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Abstract

Robust multi-model fitting is the task of finding a series models that best fit
a set of data corrupted by noise and outliers. This is an ubiquitous problem
in Computer Vision where organizing unstructured visual data points in
high level geometric structures is a necessary and basic step to derive better
descriptions and understanding of a scene.

The sampling phase is a crucial step in robust multi-model fitting, therefore,
in this work, we present a novel sampling strategy, termed semantic-aware
sampling. In Computer Vision, visual data comes from pictures or frames of
a video sequence, but state-of-the-art robust estimators are agnostic about
the visual semantics of the points, they just treat visual data as geometric
locations in an abstract space. On the contrary, we exploit the information
that input points have been extracted from one or multiple pictures. This
enhancement of the sampling process improves the performance of robust
estimators while reducing the number of required iterations.

We propose to analyse the images by combining two approaches: a hand-
crafted approach, where we extract a set of corresponding points, and a
data-driven approach, where we obtain a probability map, termed semantics,
that guides the sampling toward promising regions containing foreground
objects rather than background.

Experiments show that this simple yet powerful approach significantly
reduces the error of state-of-the-art robust estimators, thus improving model
estimation.
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Sommario

Il robust multi-model fitting consiste nel trovare i modelli che meglio descrivono
un insieme di punti corrotti da rumore e valori anomali. Questo è un problema
onnipresente nella Computer Vision in cui organizzare i punti di un’immagine
secondo strutture geometriche di alto livello è un passaggio fondamentale per
descrivere e comprendere meglio l’immagine.

La fase di campionamento è un passaggio fondamentale nella stima ro-
busta dei modelli, per tale motivo, in questo elaborato, viene presentata una
nuova strategia di campionamento, denominata semantic-aware sampling. In
Computer Vision, i dati visuali provengono da immagini o frame di un video,
ma gli stimatori robusti presenti nello stato dell’arte sono agnostici rispetto
alla semantica dei punti, considerano solo la loro posizione su uno spazio
astratto. Al contrario, il semantic-aware sampling sfrutta l’informazione che i
punti sono stati estratti da una o più immagini. Migliorare il campionamento
accresce le prestazioni degli stimatori robusti e riduce il numero di iterazioni
richieste.

Si propone di analizzare le immagini combinando due approcci: un approc-
cio hand-crafted, in cui viene estratto un insieme di corrispondenze tra i punti
delle immagini, e un approccio data-driven, in cui si ottiene una mappa di
probabilità, denominata semantica, che guida il campionamento verso regioni
promettenti che contengano gli oggetti di interesse piuttosto che lo sfondo.

Gli esperimenti dimostrano che questo semplice ma potente metodo riduce
significativamente l’errore degli stimatori presenti nello stato dell’arte miglio-
rando così la stima dei modelli.
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Chapter 1

Introduction

1.1 Problem formulation

In this work, we address the robust multi-model fitting problem. First of
all, let’s describe the rationale behind the terminology. The word “fitting”
means to find a mathematical function, or model, that best fits a set of data
points, possibly corrupted by noise. For example, Fig. 1.1a shows a set of
points scattered on an unknown straight line. We can apply the ordinary least
squares (OLS) method to find the best line that approximate the data points
by minimizing the sum of the squared residuals, where the residual of point i
is computed as |ỹ(xi)− y(xi)|, being ỹ the true model and y the estimation1.
OLS returns the function y = x, colored green, which corresponds to the
true model the points come from. Secondly, the word “robust” means that
the methods work even in the presence of anomalous data points, called
outliers. Let’s go back to the OLS example. Fig. 1.1b shows that even adding
a single outlier, OLS returns a very different function than the truth one
and that is why we say OLS is sensitive to outliers. In the example, OLS
returns the function y = 0.3836x− 0.9863, colored red, while the truth model
is ỹ = x, colored green and dashed. We are looking for methods that can
automatically detect and ignore outliers during the estimation. We refer to
such methods as “robust”. Finally, the term “multi-model” means that we can
have multiple functions describing the data points. Therefore, given a model,
we have gross-outliers, i.e. points that cannot be explained by any model, and
pseudo-outliers, i.e. points that can be explained by another model. Note, we
say a model “explains” a point if the point lies closer than a threshold ε to
the model. Summing up, we look for methods, called robust estimators, that

1OLS uses a residual measured only on the y-axis, the robust estimators that we will
see later use a geometric residual, i.e., a value proportional to the point-model distance.

1
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(a) (b)

Fig. 1.1: Simple Ordinary Least Squares (OLS) example. (a) shows OLS result in case
there are no outliers. The estimated function coincides with the true one, i.e. y = x. (b)
shows OLS result in case there is an outlier, colored orange. The estimated functions is
y = 1

2x− 1, which is very different from the true one, i.e., y = x. Even a single outlier can
harm the OLS estimation.

can detect multiple models that describe the data points in the presence of
outliers and noise.

Robust multi-model fitting is an ubiquitous problem that can be encoun-
tered in many Computer Vision applications. For example, it is used in the
template matching task to aggregate point-correspondences belonging to the
same template discarding wrong matches produced because of background
noise and clutter. Also, it is used in 3D reconstruction to estimate multiple
rigid moving objects so to initialize the multi-body Structure-from-Motion
pose graph [11][24]. Other scenarios where the estimation of multiple models
plays a primary role include face clustering, pose estimation and video motion
segmentation, just to name a few.

1.2 The sampling phase

Most popular robust estimators implement a sampling phase: they randomly
sample a minimal set of points, called minimal sample set (MSS), required
to uniquely determine the free parameters of the model. For example, two
points are required to fit a line, three points are required to fit a circle, four
points are required to fit a homography and eight points are required to fit a
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Fig. 1.2: Probabilistic estimate for the number of samplings M given the cardinality of the
MSS, denoted as s. The plot depicts the case where the probability of success is 0.95 and
the inlier ratio is 0.45. For s = 2 we need 14 samplings, for s = 3 we need 32 samplings, for
s = 4 we need 72 samplings, for s = 8 we need 1781 samplings. It is an exponential growth.

fundamental matrix 2. The rationale is that by using a few points it is more
likely to select no outliers and fitting the correct model. This simple, yet
powerful, idea allows the methods to be robust to outliers. Note, this is the
opposite of OLS which is data hungry and the more data it has, the better
the model it can estimate. Having a sampling phase has a drawback: to
make sure we find the models that better explain the data, we should sample
all possible MSSs. This would take too long, so the common practice is to
calculate a probabilistic estimate. However, we have only shifted the problem:
Fig. 1.1b shows that, as the cardinality s of the MSS increases, the number
of required samplings M becomes too expensive.

The number of samplings can be significantly reduced if we use a more
sophisticated sampling strategy than uniform sampling. A popular choice
is the use of localized sampling [15], i.e., we select neighboring points in
the ambient space as they are more likely to be part of the same geometric
model. This strategy helps us to limit the number of required samplings but,
since different models can obey different spatial distributions, it could also be
harmful.

2The homography and the fundamental matrix will be described in Sec. 4.1.3.2 and
Sec. 4.1.3.6, respectively.
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(a) (b)

(c) (d)

Fig. 1.3: Embed semantics into discrete probability. (a) shows the points over the picture.
(b) shows the point matches. (c) show the CAM Mc with c = “bread”. (d) graphically
represents the discrete probability vector p. Original figure from AdelaideRMF data-set
[25].

1.3 Our contribution

As described in Sec. 1.1, robust estimation is the solution to many Computer
Vision tasks where the sets of input points have been extracted from pictures.
As far as we know, state-of-the-art robust estimators just ignore the picture,
only consider the location of the points, and are completely unaware of
their semantics. We believe that exploiting point semantics can improve the
performance of robust estimators. We propose to extract the semantics of the
picture using a Convolutional Neural Network and embed this information
into the estimator by implementing a sophisticated sampling strategy that
we call semantic-aware sampling. An example is shown in Fig. 1.3. Given an
image pair, we independently extract the keypoints from each image, as shown
in Fig. 1.3a and match the left and right image-points according to their
local description, as shown in Fig. 1.3b. Moreover, for each picture we get its
semantics by extracting a probabilistic map, as shown in Fig. 1.3c. Finally,
we assign this probability to the matches to obtain a discrete probability
vector as graphically shown in Fig. 1.3d and use it in the sampling phase
along with locality information. In the example, the semantics we extracted
from the image focuses on the cube, but we will extract many probabilistic
maps, each focused on a different part of the pictures, so we will also have
maps that highlight the other objects depicted in the image, namely bread,
toy and chips.
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The advantage of our method is twofold: it allows to sample many more
pure MSSs, i.e., MSSs with neither gross-outliers nor pseudo-outliers, thus
reducing the number of required samplings and, when embedded into robust
estimation, it allows to achieve a lower misclassification error than state-of-
the-art methods.

1.4 Outline
The remaining of this work is structured as follows:

• Chapter 2 introduce to the concepts of preference and consensus and
presents some popular robust estimators for each approach.

• Chapter 3 deals with the importance of good sampling and describes
different sampling strategies for the multi-model scenario.

• Chapter 4 presents the two approaches to image processing: the hand-
crafted approach, where we explicitly design the feature extractor, and
the data-driven approach, where we let the model learn the features by
itself.

• Chapter 5 describes our proposed method by providing both intuition
and formal description along with the pseudo-code.

• Chapter 6 discusses the experimental setup and the comparison with
the state-of-the-art methods.

• Chapter 7 is devoted to conclusions and future work.
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Chapter 2

Robust model fitting

As mentioned in the introduction, robust model fitting is the problem of
finding a model, or multiple models, explaining the data in the presence of
noise and outliers. The algorithms tackling this problem are called robust
estimators and we devote this chapter to their presentation.

2.1 Consensus and preferences

In robust model fitting, we can recognize two broad families of estimators:
consensus-based and preference-based. In order to define these two approaches,
it is necessary to introduce the notion of residual. A residual is a measure of
how well the model θ ∈ Θ fits a point x ∈ X and can be formally described
as a function:

r : X ×Θ→ R+ (2.1)

that associate to each point-model pair (x, θ) ∈ X × Θ a positive value
proportional to the point-model distance. Given a model θ, points that have
residual less than a certain threshold ε are called inliers while points that
have residual greater than ε are called outliers.

The consensus set of a model is the set of its inliers. Consensus-based
methods select the model(s) with the largest consensus or, equivalently, with
the largest number of inliers. The most representative algorithms of this family
are RANSAC (Sec. 2.2) and its variants to the multi-model case (Sec. 2.3).

The preference set of a point is the set of models having that point as
inlier. Preference-based methods exploit the preference trick : points of the
same true model are inliers for the same estimated models. Thus, we can use
the estimated models to represent the points in a new conceptual space, called
preference space, where inliers to the same true model form groups and can
be clustered. Methods that follow the preference approach implement a two

7
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sampling clustering

Fig. 2.1: First-represent-then-clusterize scheme. At first, we sample a bunch of models
and we build a matrix that we will use to cluster the points in the preference space. This
matrix is called preference matrix and is shown in the middle as a white-blue box where
blue dots are 1 and white dots are 0. Original figure from AdelaideRMF data-set [25].

steps first-represent-then-clusterize scheme, as illustrated in Fig. 2.1. Given
a set of N data points, a bunch of M models is randomly sampled in order
to build a matrix Ω called preference matrix with N rows and M columns.
The columns of the matrix represent the consensus set of each model while
the rows represent the preferences. We will use the rows of the preference
matrix to describe the points in the preference space. The most representative
algorithms in this family are J-Linkage (Sec. 2.4) and T-Linkage (Sec. 2.5).

2.2 RANSAC
The Random Sample Consensus (RANSAC) algorithm [1] is a simple yet
powerful method for estimating the parameters of a model in the presence of
noisy data and outliers. Given a set of N data points, RANSAC iterates M
times three operations:

i) randomly samples a minimal sample set (MSS), i.e., set of points
required to uniquely fit a model;

ii) uses the points in MSS to fit a model θm;

iii) counts the inliers of θm.

At the end RANSAC returns the model with the largest number of inliers
or, equivalently, with the largest consensus. Fig. 2.2 show an iteration of
RANSAC. Note, the model type must be known in advance.

The cardinality of the MSS corresponds the minimum number of points
required to uniquely compute the parameters of the model θm. For instance,
a straight line needs two points to be uniquely determined, a circle needs
three points, a homography needs four points and a fundamental matrix needs
eight points. The homography and the fundamental matrix will be described
in Sec. 4.1.3.2 and Sec. 4.1.3.6, respectively. RANSAC is formally described
in Alg. 1. As a final remark, note that the inlier threshold ε is a critical
parameter because the sparsity of the inliers is not always the same.
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(a) Set of points. (b) Sample a MSS. (c) Fit θm (line).

ε
ε

(d) Count θm in-
liers.

Fig. 2.2: Example iteration of RANSAC. Two points are randomly sampled to fit a straight
line and its inliers are computed. Yellow points represent the MSS, green points the inliers
to θm while red points are the outliers. ε is the inlier threshold.

Algorithm 1: RANSAC
Input : {xn | n = 1, . . . , N} − set of data points

s − number of samples required to fit the model
ε − inlier threshold
M − number of iterations

Output : θ∗ − best model
n∗ − number of inliers of θ∗

1 n∗ ← 0
2 for m = 1, . . . ,M do
3 S ← Draw a minimal sample set of s points
4 θm ← Fit the model using S
5 n ← Count the inliers of θm using ε as inlier threshold
6 if n > n∗ then
7 n∗ ← n
8 θ∗ ← θm
9 end

10 end
11 return θ∗, n∗

2.3 Sequential RANSAC & Multi-RANSAC
To make RANSAC estimate multiple structures we can repeat its execution
many times. At each iteration, RANSAC finds the model θm with the largest
consensus, stores it and removes its inliers. We stop when there are no
models with sufficiently large consensus. This extension of RANSAC to the
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(a) (b) (c) (d) (e)

(f)

Fig. 2.3: Sequential RANSAC. Figure (a) shows a set of points, figures (b) to (e) show four
iterations of Sequential RANSAC that produce good model estimations. At each iteration
we find a model θi and remove the inliers with respect to θi to run RANSAC again. The
main limitation comes from its sequential behavior. If one of the first estimates is poor, we
will remove points that are inliers to other models and this will lead us to bad results. An
example is shown in (f). Original figure from [17].

multi-model case is called Sequential RANSAC. An example execution is
shown in Fig. 2.3 (from Fig. 2.3a to Fig. 2.3e). As pointed out by [17], the
major drawback of Sequential RANSAC is its greediness: if one of the initial
structures is inaccurate, the overall result is poor. An example of this scenario
is shown in Fig. 2.3f where the models we obtain are not the desired ones.

Multi-RANSAC [17] avoids the sequential behavior of Sequential RANSAC,
which is at the root of its issues, and simultaneously estimates k models. At
each iteration, the k models are updated with k new sample models using a
fusion procedure that explicitly enforces the disjointness of the consensus set.
However, as demonstrated in [19], the method has poor results in the case of
intersecting structures.

2.4 J-Linkage

J-Linkage [19] is a method explicitly designed for robust multi-model fitting
that follows the preference approach. As described in Sec. 2.1, we randomly
sample a pool ofM models and we build the preference matrix Ω of size N×M ,
where N is the number of data points. For each (i, j) with i ∈ {1, . . . , N}
and j ∈ {1, . . . ,M}:

Ω(i, j) =

{
1 ifr(i, j) ≤ ε

0 otherwise
(2.2)
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As mentioned in Sec. 2.1, the rows of Ω are the preference sets PS ∈ {0, 1}M
of the points. An example preference matrix is shown in Fig. 2.4a. Once we
have computed Ω, we have the description of the points in the preference
space. In addition, we need a concept of distance in this space. J-Linkage
uses the Jaccard distance that measures the degree of overlap of two sets:

dJ(A,B) = 1− |A ∩B|
|A ∪B|

(2.3)

where A and B are two preference sets (rows of Ω). Note, dJ ranges from 0
(identical sets) to 1 (disjoint sets).

J-Linkage is described in Alg. 2. It proceeds in a bottom-up manner:
starts from singletons and at each iteration merges the two clusters with the
smallest Jaccard distance. The preference set of the just merged cluster is
computed as the intersection of the preference sets of its points. The algorithm
ends when the distance between the two closest clusters is 1, which means
that the algorithm merge clusters whose preference sets overlap, i.e., have at
least a 1 in common. Finally, we can estimate a model from each cluster by
least square fitting. Note, the choice of the inlier threshold is critical as in
RANSAC.

Algorithm 2: J-Linkage
Input : set of data points represented by their preference set.
Output : clusters of points belonging to the same model.

1 Put each point in its own cluster.
2 while True do
3 Compute the Jaccard distance between all the clusters.
4 Find the two cluster Ci and Cj with the smallest distance dmin.
5 if dmin = 1 then
6 End clustering.
7 end
8 if dmin < 1 then
9 Merge Ci and Cj in a new cluster C.

10 Compute PSC as PSCi ∩ PSCj .
11 end
12 end
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Fig. 2.4: Comparison between the preference matrix of J-Linkage and T-Linkage. (a) shows
the preference matrix for J-Linkage; (b) shows the preference matrix for T-Linkage.

J-Linkage T-Linkage

Space {0, 1}M [0, 1]M

Cluster
⋂
PS minPF

Similarity Jaccard Tanimoto

Table 2.1: Comparison J-Linkage and T-Linkage.

2.5 T-Linkage

A critical parameter of RANSAC (Sec. 2.2) and J-Linkage (Sec. 2.4) is the
inlier threshold ε: points that lie immediately before the threshold are inliers,
while points immediately after are outliers. T-Linkage [27] improves J-Linkage
by relaxing this rigid behavior by assigning a continuous value in [0, 1] to the
points rather than a binary value in {0, 1} (outliers or inliers). Given a set
of N points and M sampled models, for each (i, j) with i ∈ {1, . . . , N} and
j ∈ {1, . . . ,M} we define the (i, j) entry of the preference matrix as:

Ω(i, j) =

{
e−

r(i,j)
τ if r(i, j) ≤ 5τ

0 otherwise
(2.4)

where τ plays the same role of the inlier threshold ε, but it is less critical
since it replaces the abrupt truncation of Eq. 2.2 with an exponential decay.
Points are represented by their preference function PF ∈ [0, 1]M , which is
an extension to the continuous space of the preference set PS ∈ {0, 1}M .
An example preference matrix is shown in Fig. 2.4b. Moreover, the Jaccard
distance is replaced with the Tanimoto distance

dT(A,B) = 1− < p, q >

‖p‖2 + ‖q‖2− < p, q >
(2.5)
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where p and q are two preference functions (rows of Ω), < ·, · > indicates
the inner product and ‖·‖ indicates the norm. The clustering method is
described in Alg. 3. As for J-Linkage, T-Linkage starts from singletons and
at each iterations merge the two cluster with lower distance. The preference
function of the resulting cluster is computed as the element-wise minimum.
A comparison of J-Linkage and T-Linkage is reported in Tab. 2.1. Finally, we
can estimate a model from each cluster by least square fitting.

Algorithm 3: T-Linkage
Input : set of data points represented by their preference function.
Output : clusters of points belonging to the same model.

1 Put each point in its own cluster.
2 while True do
3 Compute the Tanimoto distance between all the clusters.
4 Find the two cluster Ci and Cj with the smallest distance dmin.
5 if dmin = 1 then
6 End clustering.
7 end
8 if dmin < 1 then
9 Merge Ci and Cj in a new cluster C.

10 Compute PFC as the component-wise min of PSCi and PSCj .
11 end
12 end
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Chapter 3

Sampling

In the description of RANSAC(Sec. 2.2), J-Linkage (Sec. 2.4) and T-Linkage
(Sec. 2.5) we have defined a parameter M which corresponds to the overall
number of uniformly sampled models. While RANSAC only keeps the model
with the largest consensus, J-Linkage and T-Linkage use all models to move
to the preferences space. So far we have not specified the value of M because
it depends on the sampling strategy. In this chapter we will see that the
better the sampling the lower the value of M we can choose.

3.1 The importance of good sampling
In order to define the number of samplings, it is necessary to introduce a
measure of goodness for the samplings. In the context of robust multi-model
fitting, estimators are designed to deal both with gross-outliers, i.e., points
not belonging to any model and pseudo-outliers, i.e., points belonging to other
models. To this end, they do not consider all the points at once, but they
only sample a minimal sample set (MSS). When the MSS contains points all
belonging to the same model, we denote it as pure. In other words, a pure
MSS is a gross-outlier-free and pseudo-outlier-free MSS.

In the single-model case, since RANSAC (or one of its variants) just keep
the model with the largest consensus, we are interested in sampling at least
one pure MSS. If we wanted to be sure to sample a pure MSS at least once,
we would have to try all possible combinations of points, i.e.,

(
N
s

)
samplings,

where N represents the number of points and s is the cardinality of the MSS.
For a large N this would take too long and that is why it is common to use a
a probabilistic estimate as:

M =
ln(1− p)

ln (1− (1− e)s)
(3.1)

15
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Fig. 3.1: Plot of the number of required samplings for different values of the outlier ratio e
and the MSS cardinality s.

where p is the probability of finding the optimal solution within M uniform
samplings and e is the outlier ratio. However, we have only shifted the
problem: from Fig. 3.1 it can be seen that, with the same outlier ratio e,
increasing the cardinality s of the MSS, exponentially increases the number
M of samplings required to have a pure MSS with probability p. Note that
Eq. 3.1 is an underestimation because it does not take noise into account. The
estimate is even more severe in the multi-model setting and becomes crucial
for methods that exploit the preference trick. When multiple models describe
the data-points we need to sample at least a pure MSS for each model. Also,
having a large number of pure MSS allows for a better description of the
points in the preference space and makes it harder for greedy algorithms (like
J-Linkage and T-Linkage) to cluster points from different geometric models.

The number of samplings can be significantly reduced if we use a more
sophisticated sampling strategy than uniform sampling.

3.2 Localized Sampling

In this section, we present the localized sampling strategy [15] proposed to
increase the probability of sampling points all belonging to the same geometric
model. The rationale is that points belonging to the same model are likely to
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be close, therefore the idea is to sample neighboring points. In practice, we
sample a first point α with uniform probability and compute the distance of
every point β 6= α with respect to α as:

dαβ =

√
(xα − xβ)2 + (yα − yβ)2 (3.2)

From dαβ, the probability of point β having already sampled α is computed
as:

p(β|α) =

{
1
Zα
e−sαd

2
αβ α 6= β

0 α = β
(3.3)

where
Zα =

∑
β 6=α

e−sαd
2
αβ (3.4)

and sα is chosen heuristically.

3.3 Multi-GS
Multi-GS [23] is a guided sampling strategy driven only by residual sorting
information. Given a set of N input data-points {xi | i = 1, . . . , N}, M
geometric models {θj | j = 1, . . . ,M} are randomly sampled. For each point
xi we compute its absolute residuals with respect to the M sampled models:

r(i) =
[
r

(i)
1 r

(i)
2 ... r

(i)
M

]
(3.5)

We denote by ak the index of the k-th geometric model. For point xi, we sort
the model indices a(i)

k in non-descending order based on the corresponding
residuals:

u ≤ v =⇒ r
(i)

a
(i)
u

≤ r
(i)

a
(i)
v

(3.6)

In practice, we rank the models according to the preference of xi. The lower
the residual, the more the model is preferred. Two points xi and xj will share
many common models at the top of their preference lists if they are inliers of
the same geometric model. Let a(i)

1:h be the vector with the first h elements of
a(i). We define the “intersection” between xi and xj as:

f(xi,xj) =
1

h

∣∣∣a(i)
1:h ∩ a

(j)
1:h

∣∣∣ (3.7)

where
∣∣∣a(i)

1:h ∩ a
(j)
1:h

∣∣∣ finds the number of common models shared by a
(i)
1:h and

a
(j)
1:h. Window size h specifies the number of leading models to take into

account. We can choose h in the range d0.05Me ≤ h ≤ d0.4Me.
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Fig. 3.2: N ×N matrix K: element (i, j) is the number of common models shared between
points xi and xj in the first h positions. Figure from [23].

As shown in Fig. 3.2, we obtain a N ×N matrix, denoted as K, where
the element (i, j) is f(xi,xj), i.e., the ratio of models shared between points
xi and xj. The rows of K show that an inlier concentrates mostly on inliers
from the same geometric model, while for a gross-outlier the row values are
generally low and appear to be randomly distributed. The idea of Multi-GS
is to use the rows of K to drive the sampling phase. The first point xi is
selected from a discrete uniform distribution. To sample the second point xj,
we look at the i-th row of K and we use this row as discrete probability over
points to drive the sampling. To sample other points, we get the probability
vector as the element-wise multiplication of the rows of the points previously
sampled.

3.4 DGSAC

The Density Guided Sampling and Consensus (DGSAC) [39] is an automatic
pipeline for robust multi-model fitting that exploits the concept of Kernel
Residual Density (KRD) to differentiate between inliers and outliers. DGSAC
begins with generating model hypotheses using density guided sampling
(KDGS). Given a set of N data-points {xi | i = 1, . . . , N}, M geometric
models {θj | j = 1, . . . ,M} are randomly sampled. We denote by rij the
residual of point xi with respect to hj. In the following, we introduce two
vectors qj and li which encode the preference of models over points and the
preference of points over models, respectively. For each model hj, we sort
point indices qij according to the ascending order of the residuals:

qj =
[
q1
j q2

j ... qNj
]

s.t. r
q1j
j ≤ r

q2j
j ≤ ... ≤ r

qNj
j (3.8)
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For each point xi, we sort model indices lij according to the ascending order
of the residuals:

li =
[
li1 li2 ... liM

]
s.t. rili1

≤ rili2
≤ ... ≤ riliM

(3.9)

Since we use the residual in two different flavors, we refer qj as residual based
hypothesis and li as point preferences. In practice, qj ranks first the points
that lie closer to model hj , while li ranks first the models that better describe
point xi.

Given a model hj and a point xi, we define the kernel residual density
(KRD) of point xi with respect to model hj as:

d
qij
j =

1

N

N∑
k=1

1

b
qij
j

K

(
r
qij
j − r

qkj
j

b
qij
j

)
(3.10)

where we set the bandwidth b
qij
j for point xqij as r

qij
j and K(·) can be any

symmetric kernel function. We use the Epanechnikov kernel

K(u) =
3

4
(1− u2) s.t. |u| ≤ 1 (3.11)

but other kernels (like Gaussian) can also be used. For good hypotheses, KRD
is large near the regression surface (inlier region) compared to the outlier
region. For a bad hypothesis, KRD is nearly flat throughout.

We can exploit the KRD to compute the KRD-based point preferences.
For each point xi, we sort model indices vij according to the descending order
of the kernel densities:

vi =
[
vi1 vi2 ... viM

]
s.t. divi1

≥ divi2
≥ ... ≥ diviM

(3.12)

The pairwise point correlation between xi and xj can be computed as:

cij =
vi1:T ∩ vj1:T

T
(3.13)

where T = 5. Once we compute cij for all the point couples, we obtain a
N ×N matrix, denoted as C. In practice, we move into a density space where
the distance between the points is computed with cij. An example of matrix
C is shown in Fig. 3.3b.

We can use the KRD in the sampling phase to obtain the KRD-Guided
Sampling (KDGS). The idea is to combine point preferences and kernel
densities. For each minimal sample set (MSS) with cardinality η, we sample
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(a) (b)

Fig. 3.3: The figure shows two N ×N matrices, where N is the number of points. The
element (i, j) represents the correlation between point xi and xj . (a) show the residual-
based point correlation; (b) show the density-based point correlation. Figure from [39].

the first point xi deterministically and the remaining η − 1 points without
replacement according to a discrete probability distribution that we describe
below. For each point xi, we compute the potentially good model hypotheses.
To this end, we take the residual based hypothesis : if the point appears within
the first β positions, we select that model as good. In the set of potentially
good models, we select the model hden that maximizes the density with respect
to xi and the model hres that minimizes the average residual for the first β
points in the residual-based hypothesis. Thus, for each xi, we get two profiles
(vectors): a density profile with the densities of all the points with respect to
hden and a residual profile with the residual of all the points with respect to
hres. We invert the residual profile to have high quantities for points we prefer.
We normalize both profiles and compute the element-wise product. This way
we computed a discrete probability matrix S that take into account the best
model that can describe each point from a density and residual perspective.
During sampling, if a point xi was sampled, we consider i-th row of matrices
C and S, we compute the element-wise product and we use the resulting
vector as discrete probability distribution.

As mentioned, we sample the first point deterministically. We prepare
a vector ν with all the point indices and at each iteration we consume an
element of the vector. This way all the points are sampled at least once and
KDGS stops when ν is empty. We can also add an explanation score that
remove models that were already sampled many times during the random
sampling.

Once all the models have been sampled, we run a model selection algorithm.
Two strategies were proposed: a greedy strategy and an optimal one which is
modeled as a quadratic problem. Being that in this work we are interested in
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Fig. 3.4: CONSAC scheme. Figure from [40].

the sampling strategy, we will not go into the model selection part. For an
exhaustive description, the reader is referred to [39].

3.5 CONSAC

CONSAC [40] extends Sequential RANSAC and is the first method that
approaches the sampling strategy from a learning perspective. Suppose
there are M instances of a geometric model h (such as line, homography
or fundamental matrix) apparent in the data Y. We denote the set of all
the model instances asM = {h1, ...,hM}. CONSAC estimatesM via three
nested loops:

1. Single Model Instance Sampling. It uses RANSAC to compute a
hypothesis pool H = {h1, ...,hT} via random sampling of T MSS and
selects the model ĥ with the larger consensus. This level corresponds
to one row of Fig. 3.4.

2. Multi-Hypothesis Generation. It repeats the single model instance
sampling M times to fully generateM. At each new iteration, a new
model ĥm is selected so that it not only maximizes its consensus, but
maximizes the joint consensus of all selected models up to the current
iteration.

ĥm = arg max
h∈Hm

gs(h,Y , ĥ1:(m−1)) (3.14)



22 CHAPTER 3. SAMPLING

where gs measures the joint inlier count of the current hypothesis with
respect to the previous ones. This level corresponds to the entirety of
Fig. 3.4.

3. Multi-Hypothesis Sampling. CONSAC repeats steps 1 and 2 to
independently generate a pool P = {M1, ...,MP} of candidate solutions.
Finally, as shown in Eq. 2.2 , the solution with the larger joint consensus
is selected.

M̂ = arg max
M∈P

gm(M,Y) (3.15)

where gm measures the joint inlier count of all the hypotheses inM.

Let’s now discuss about the sampling strategy adopted by CONSAC. At
each iteration, a neural network predicts the sample weights for each point
yi conditioned on a states sm that encodes the information about the m
previously sampled models. We define the state entry sm,i of observation yi
as:

sm,i = max
j∈[1,m)

gy(yi, ĥj) (3.16)

where i ∈ [0, |Y|] and gy measures if yi is an inlier of model ĥj. Note, sm,i
measures if so far we have found a model describing point xi. A visualization
of the state vector is shown in the last column of Fig. 3.4.

Before running CONSAC, we need to train the neural network in order to
increase the chance of sampling pure MSSs. The network (shown in Fig. 3.5)
can be trained end-to-end both in a supervised or self-supervised learning
manner. In order to update the network weights w, we approximate the
gradients of the expected task loss `(M̂) by drawing K multi-model instances:

∂

∂w
L(w) ≈ 1

K

K∑
k=1

[
`(M̂k)

∂

∂w
log p(Pk;w)

]
(3.17)

where P is a pool of multi-model instances. If ground-truth models are
available, we can use the task specific loss `(ĥ,hgt) minimizing the difference
between the estimated model and the ground-truth one. In absence of ground-
truth labels, we can train CONSAC in a self-supervised fashion by replacing
the task loss with another quality measure, such as the joint inlier counts of
the estimated models. For an exhaustive description, the reader is referred to
[40].
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Fig. 3.5: CONSAC neural network architecture. Figure from [40].

3.6 Limits of state-of-the-art methods
The methods described in this chapter work on a set of points and the
geometric relationship between them. We can define the geometric information
in many ways: as the ratio of models explaining all the points at the same
time (Sec. 3.3), i.e., the larger the number of models shared by two points, the
more likely they belong to the same geometric model; or as density (Sec. 3.4),
i.e., denser regions are more likely to contain inliers to the same model. We
could also avoid explicitly crafting the geometric information we are going
to use, we can let the model learn it by itself (Sec. 3.5). Many statistical
approaches can be proposed to guide the sampling, but we claim that all of
these will only consider one side of the coin: geometry. When points come
from images and we know it in advance, we can leverage this information and
change the way we act. In particular, we can use the image in the robust
estimation itself to get which regions are worth investigating and discard
regions that are not relevant. This way, there is no need to sample at least
once all the points, which can be very inefficient when the outlier ratio is high.
The major limitation of the methods seen in this chapter is the fact they are
not specialized for images, they do not use the semantics of the points and
just treat them the same way.

In this work, we want to exploit the semantics of points to extract a set of
discrete probabilities that can guide the sampling phase in robust estimation.
So, we devote the next chapter to introduce the two main approaches to
image processing.
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Chapter 4

Image processing

As described in Sec. 1.1, robust estimation is the solution to many Computer
Vision tasks where the sets of input points have been extracted from a picture
I ∈ RH×W×3, or set of pictures. The final objective of this work is to show
that we can take advantage of the picture I in the robust estimation itself.
To this end, we devote this chapter to present two approaches to image
processing: the traditional approach where we use a hand-crafted feature
extractor, like SIFT (Sec. 4.1.1), to extract locally-distinct points and the
data-driven approach where we let a model, like a Convolutional Neural
Network (Sec. 4.2.5), learn by itself the relevant features for a given task.
In recent years, the data-driven approach has overcome and sometimes even
replaced the traditional approaches [30], but this has not yet happened in
the case of robust fitting. We aim to make the two approaches work together
in a single method rather than just training a model end-to-end. Since we
know in advance that points come from a picture I, we describe how to use I
to improve the sampling. We devote this chapter to the presentation of the
traditional hand-crafted approach in Sec. 4.1 and the data-driven approach
in Sec. 4.2.

4.1 Hand-crafted approach

4.1.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) [16] is a method to extract
features1 from images. These features have very appealing properties that
make the method still used today: they are invariant to image scale and
rotation, and partially invariant to illumination changes and distortion.

1By features we mean distinctive aspects of something.

25
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Fig. 4.1: Scale space pyramid. Figure from [43].

So, if we take two pictures of the same scene from two close locations, with
different angles and lighting conditions, SIFT will produce similar features.
SIFT features are encoded as a list of pairs of the form (keypoint, descriptor).
A keypoint is a locally distinct point, i.e., a location of the image that differs
from its neighborhood. A descriptor encodes the local appearance around the
associated keypoint.

The SIFT algorithm consists of the following steps: first constructs the
scale-space pyramid (Sec. 4.1.1.1) and computes the Difference of Gaussian
(Sec. 4.1.1.2), secondly finds the candidate keypoints (Sec. 4.1.1.3) and filters
out the ones representing edges (Sec. 4.1.1.4), thirdly finds the keypoints
orientations (Sec. 4.1.1.5) and lastly generates the descriptors (Sec. 4.1.1.6).

4.1.1.1 Constructing the scale-space pyramid

To get rid of image details without adding new fake ones, SIFT takes the
original image and generates five progressively blurred out images. Then, it
resizes the original image to half size and generates blurred out images again.
The process is repeated four times. Each set of five blurred images of the
same size forms an octave. In practice, each blurred image L is obtained by
convolving the image I with a Gaussian kernel Gσ having standard deviation
σ:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (4.1)

where ∗ is the convolution operation in x and y, and

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (4.2)
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Fig. 4.2: Difference of Gaussian (DoG). Figure from [16].

As shown in Fig. 4.1, the series of blurred out and resized images, stacked on
top of each other, forms the scale-space pyramid.

4.1.1.2 Compute the Difference of Gaussian

As shown in Fig. 4.2, for each octave, SIFT compute the difference D(x, y, σ)
between each pair of adjacent images separated by a constant multiplicative
factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)
(4.3)

The resulting images are called Difference of Gaussian (DoG) images and
provide a close approximation to the scale-normalized Laplacian of Gaussian,
which was shown to be required for true scale invariance [7].

As shown in Fig. 4.3, in DoG images only borders survive. The reason is
that regions with the same intensity values remain the same when blurred out,
while regions showing high diversity in intensity values undergo a significant
transformation. These regions are the borders. In other words, pixels that
have not changed due to blur will go to zero when subtracted, while pixels
that changed a lot will survive.

4.1.1.3 Finding keypoints

As shown in Fig. 4.4, each pixel of D(x, y, σ) is compared to its neighbors,
both the eight pixels at the same scale and the nine in the scale above and
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(a) (b) (c)

Fig. 4.3: (c) is the pixel-wise difference between (a) and (b). Notice that (a) and (b) have
a different degree of blur. As you can see, borders bring up. Original figure from [43].

Scale

Fig. 4.4: Pixel-level extrema. The “X” marks the current pixel. The green bullets mark
the neighbors. We mark “X” as candidate keypoint if it is larger or smaller than all his
neighbors. Figure from [16].

below. The process is repeated for each DoG, except the topmost and the
lowermost ones because they have not enough neighbors. In this way, we
are able to detect local extrema2 at pixel-level. Those are our candidate
keypoints.

So far, extrema are pixels, i.e., the discretization of a continuous function
which is the content represented by the image. So, instead of considering all
points within the pixel as extrema, we can be more accurate by estimating
the position of the extrema within the pixel. An example is shown in Fig. 4.5.

To compute sub-pixel extrema, we locally approximate D(x, y, σ) in the
position of each pixel-level extrema. This is done using the Taylor expansion
up to the quadratic terms. Sub-pixel extrema increase the chances of matching
and therefore the stability of the algorithm. In addition, to get rid of low-
contrast keypoints, we remove those ones with magnitude |D(x̂, ŷ, σ̂)| < 0.03.

2By “extrema” we mean both maxima and minima.
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Fig. 4.5: The pixel-level maximum is the lighter pixel. The sub-pixel maximum is the red
spot.

1

2
3

(a) Box 1 is a flat
region; box 2 is an
edge; box 3 is a cor-
ner.

(b) Principal curva-
tures of a flat re-
gion.

(c) Principal curva-
tures of an edge.

(d) Principal curva-
tures of a corner.

Fig. 4.6: Principal curvatures for flat regions, edges and corners. Original figure from [43].

4.1.1.4 Getting rid of edge keypoints

Fig. 4.6a shows that the image region around a keypoint can be flat, an edge
or a corner. Let’s analyze these cases:

• Flat region. The intensity values of the pixels are very similar, then
both the principal curvatures3 are small. It is shown in Fig. 4.6b.

• Edges. Across the edge the intensity values change, along the edge
the intensity values are very similar. Therefore the principal curvature
across the edge is large while the principal curvature along the edge is
small. It is shown in Fig. 4.6c.

• Corners. The intensity values change in both directions, so both
principal curvatures are large. It is shown in Fig. 4.6d.

Corners are locally distinguishable in both the directions, that is why we just
want those keypoints while discarding edges. In practice, to eliminate edges,

3We do not provide a rigorous definition of principal curvature, we just remark that it
measure how the surface bends in different directions at a point location.
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SIFT uses a criterion based on the ratio of the eigenvalues of the Hessian:

H =

[
Dxx Dxy

Dxy Dyy

]
(4.4)

The derivatives are estimated by taking differences of neighboring pixels. The
eigenvalues of H are proportional to the principal curvatures of D. We can
avoid computing explicitly the eigenvalues as we are only interested in their
ratio. Let α and β be eigenvalues of H with α > β. Given a square matrix,
the determinant is the product of the eigenvalues and the trace is the sum
of the eigenvalues. So, we can compute the sum and the product of the
eigenvalues directly from H:

α + β = Tr(H) = Dxx +Dyy (4.5)

αβ = Det(H) = DxxDyy −D2
xy (4.6)

Let’s define the ratio r = α/β and use it to compute the following quantity:

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
(4.7)

To sum up, we want
α

β︸︷︷︸
r

< threshold (4.8)

Since (r + 1)2/r for r > 1 is a monotonic increasing function, we have

(r + 1)2

r
<

(threshold + 1)2

threshold
(4.9)

Using Eq. 4.7 we obtain

Tr(H)2

Det(H)
<

(threshold + 1)2

threshold
(4.10)

SIFT uses a threshold equal to 10.

4.1.1.5 Finding keypoints orientation

To have rotation invariance, we need to assign an orientation to each keypoint.
For each keypoint, we set a region size which depends on the scale: the bigger
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Fig. 4.7: Example of an orientation histogram. The histogram has peak at 20-29 degrees,
so, we assign orientation 3 (the third bin) to the keypoint. Figure from [49].

the scale, the bigger the region. For all (x, y) within the region, gradient
magnitude m(x, y) and orientation θ(x, y) are computed4:

m(x, y) =

√
[L(x+ 1, y)− L(x− 1, y)]2 + [L(x, y + 1)− L(x, y − 1)]2

(4.11)

θ(x, y) = arctan

(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
(4.12)

Once computed the gradient magnitude and orientation of the region, we
build an orientation histogram with 36 bins covering 360 degree range of
orientations. Before being added to the histogram, a gradient orientation
is weighted by its gradient magnitude and by a Gaussian-weighted circular
window with σ that is 1.5 times that of the scale of the keypoint.

Peaks in the histogram correspond to dominant directions of local gradients.
The highest peak in the histogram is detected. Fig. 4.7 illustrates an example
of the resulting orientation histogram.

Moreover, any other local peak above 80% of the highest peak is used
to also create a new key point with that orientation (but same location and
scale of the original key point). So, orientation can split up one key point
into multiple key points.

Finally, a parabola is fit to the 3 histogram values closest to each peak to
interpolate the peak position for better accuracy.

4The scale of the key point is used to select the Gaussian smoothed image, L, with the
closest scale, so that all computations are performed in a scale-invariant manner.
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(a) Split 16×16 window into
sixteen 4× 4 windows

(b) Add gradient orientation
into a 8 bin histogram.

(c) Multiply for the gaussian
kernel.

Fig. 4.8: Visualization of some steps to compute the descriptors. Figure from [49].

4.1.1.6 Generating descriptors

First, we take a 16×16 window around the key point that we split into sixteen
4× 4 windows. It is shown in Fig. 4.8a. For each 4× 4 window we compute
gradient magnitude and orientation. We add the gradient orientation to a
histogram of 8 bins, each bin corresponding to 45 degrees. It is shown in
Fig. 4.8b. Each gradient orientation is weighted by the corresponding gradient
magnitude and by a Gaussian kernel that weight more the orientation closer
to the keypoint. It is shown in Fig. 4.8c. Finally, we normalize the 128
values we have obtained from the 16× 8 bins. To have rotation independence,
the keypoint orientation is subtracted from each bin orientation. To have
illumination independence, we threshold the values above 0.2. The resulting
vector must be normalized again. This vector of length 128 is called descriptor
and can uniquely identify a keypoint.

4.1.2 Feature Matching

Sec. 4.1.1 describes how to extracts the SIFT features from an input image.
SIFT features are pairs representing locally distinct points in the descriptor
space. Given an image pair, referred as left and right image, we independently
extract the SIFT features, i.e., keypoints and descriptors. For each keypoint
in the left picture, we get the most similar keypoint in right picture using
Nearest Neighbors in the descriptor space.

As shown in Fig. 4.9, given a set of points X, Nearest Neighbor finds
the closest point xp ∈ X to a given query point xq. In the context of
feature matching, we use Nearest Neighbor to get the set of corresponding
points, or matches,

{
< xLi ,x

R
i > | i = 1, . . . , N

}
where xLi and xRi represent

the coordinates of the keypoints in the left and right picture, respectively5.
To eliminate ambiguous matches we use the ratio test [16]. First of

5In this work, we denote with round brackets the point coordinates and with angle
brackets the matches.
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Fig. 4.9: Nearest Neighbor example. Given a set of blue points and a red query point,
Nearest Neighbor selects the closest blue point.

all, instead of applying the Nearest Neighbor algorithm, we use a direct
generalization called k-Nearest Neighbor, where k closest points are selected.
For our purpose, we set k = 2 and we extract the two closest point in the
right picture with respect to a given query point from the left picture. Then
we discard the matches where the second-closest point is very close to the
first. In particular, given a query point xq and its two closest points in the
descriptor space, denoted as xi and xj, the ratio test tells us to discard the
points that have the ratio of their distances to the query point greater than a
threshold:

‖xq − xi‖2

‖xq − xj‖2

> ε (4.13)

where we set ε = 0.8 as suggested in [16]. Finally, to group points belonging
to the same geometric transformation, we will use a robust estimator such
as RANSAC (Sec. 2.2) or T-Linkage (Sec. 2.5). To ground our discussion on
geometric transformations, Sec. 4.1.3 rigorously presents the elements we are
going to need in this work.

4.1.3 Geometric transformations

In this section, we will describe the geometric transformation between points
from two pictures. We start presenting the projective plane (Sec. 4.1.3.1).
Then we will describe the homography transformation (Sec. 4.1.3.2) which
maps a point in a picture to a point in the other picture. Then we will present
a simple way to compute the homography given at least four corresponding
points (Sec. 4.1.3.3). Then we will move to epipolar geometry (Sec. 4.1.3.5)
so to introduce the fundamental matrix (Sec. 4.1.3.6) which maps a point
in a picture to a line in the other picture. In short, the homography is used
to map points of planar objects, while the fundamental matrix can relate
points of 3D objects. Our objective is to find the transformation matrix,
homography or fundamental matrix, given a set of corresponding points. For
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an exhaustive description, the reader is referred to [13].

4.1.3.1 The 2D projective plane

The projective plane P2 is a 3D space where two conditions are satisfied: the
homogeneous property, i.e., (a, b, c) = (ka, kb, kc), and (0, 0, 0) /∈ P2. In P2

points and lines are both represented as 3D vectors. Let us see how to move
them from R2 to P2. A point in R2 is represented by the pair (x, y) and
for different values of x and y we have different points. We move to P2 by
adding a third coordinate that we set to 1. Thus all the points of the form
(kx, ky, k)> for k 6= 0 are the same in P2 and we can always come back to R2

dividing by k and removing the 1 in the third coordinate6. A line in R2 is
represented by the equation ax+ by + c = 0. For different values of a, b and
c we have different lines. We represent each line in P2 as the vector (a, b, c)>.
As for points, all the lines of the form (ka, kb, kc)> for k 6= 0 are the same
line both in P2 (homogeneous property holds) and R2 (divide both sides of
the equation by k). Having points and lines both represented as 3D vectors
allows for very interesting results. Let us show three of them.

Result 4.1.1 The point x lies on the line x if and only if x>l = 0.

Result 4.1.2 The intersection of two lines l and l′ is the point x = l× l′.

Result 4.1.3 The line through two points x and x′ is l = x× x′.

4.1.3.2 Homography transformation

A homography (or projective transformation) is an invertible mapping h :
P2 → P2 such that three points x1, x2 and x3 lie on the same line if and only
if h(x1), h(x2) and h(x3) do. Moreover, for each homography h and point
x ∈ P2, there is a non-singular 3× 3 matrix such that:x′y′

z′

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

xy
z

 (4.14)

or more briefly, x′ = Hx. We call H homogeneous matrix and it defines a
mapping between a plane to another.

6When we add the third coordinate to a 2D point, we say it is in homogeneous
coordinates.
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4.1.3.3 Direct Linear Transformation

In this section, we are going to determine the homogeneous matrix H from
a set of four corresponding points xi ↔ x′i where xi = (xi, yi, zi)

> and
x′i = (x′i, y

′
i, z
′
i)
>, i ∈ [1, 4]. The projection of xi using H is x̂′i and it is

computed as:

x̂′i = Hxi =

h11 h12 h13

h21 h22 h23

h31 h32 h33

xiyi
zi

 =

h1xi
h2xi
h3xi

 (4.15)

where
hk =

(
hk1 hk2 hk3

)
(4.16)

Matrix H has to map xi in x′i, thus xi and its projection x′i must be the same
vector, i.e., λ1xi = λ2x

′
i (recall that in projective geometry the homogeneous

property hold, then x = λx ∀x). This is equivalent to checking that xi and x′i
are parallel vectors, which can be easily checked computing the cross-product
of xi and x′i and imposing it equal to zero. So we obtain the following:

x′i × x̂′i =

y′ih3xi − z′ih2xi
z′ih

1xi − x′ih3xi
x′ih

2xi − y′ih1xi

 =

 0ᵀ z′ix
ᵀ
i −y′ix

ᵀ
i

−z′ix
ᵀ
i 0ᵀ −x′ix

ᵀ
i

y′ix
ᵀ
i −x′ix

ᵀ
i 0ᵀ


︸ ︷︷ ︸

Ai (3×9)

h1ᵀ

h2ᵀ

h3ᵀ


︸ ︷︷ ︸
h (9×1)

(4.17)

We have a system of linear equations in the unknowns h11, · · · , h33. The third
row is linearly independent and since the equations hold for any representation
of xi, we can choose zi = 1. So we can rewrite:

Ai =

(
0ᵀ z′ix

ᵀ
i −y′ix

ᵀ
i

−z′ix
ᵀ
i 0ᵀ −x′ix

ᵀ
i

)
︸ ︷︷ ︸

(2×9)

(4.18)

Given a set of four corresponding point, we can build a system of 8 equations
in 9 constraints: 

A1

A2

A3

A4


︸ ︷︷ ︸
A (8×9)

h1ᵀ

h2ᵀ

h3ᵀ


︸ ︷︷ ︸
h (9×1)

= Ah (4.19)

We can get an additional equation imposing ‖h‖ = 1. To obtain H, we
compute the singular value decomposition of A:

A = U︸︷︷︸
(8×8)

D︸︷︷︸
(8×9)

V ᵀ︸︷︷︸
(9×9)

(4.20)
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The last row of V ᵀ is h =
(
h11 · · · h33

)
. To get H, we just need to reshape

from 9× 1 to 3× 3.

4.1.3.4 Normalization phase

As a final remark on the DLT method, we are going to present the data
normalization step. Data normalization is an essential pre-processing step in
the DLT algorithm [13]. We can normalize the data points as follows:

1. Translate so that the centroid is at the origin (zero-mean points).

2. Scale so that the average distance from the origin is
√

2.

3. The transformation is independently applied to each of the two images.

In practice the transformation is carried out multiplying each point by a
proper transformation matrix T . In particular T first translate the points
and then scale them, thus it has the form:

T =

s 0 s(−mx)
0 s s(−my)
0 0 1

 (4.21)

where

mx =
1

N

N∑
i

xi my =
1

N

N∑
i

yi

s =

√
2

davg

davg =
1

N

√
(xi −mx)2 + (yi −my)2

Since we have two images, we have two vectors of points x and x′, thus we are
going to have two transformation matrices T1 and T2. We get the normalized
points as:

x̃i = T1xi x̃′i = T2x
′
i (4.22)

Applying DLT to x̃i and x̃′i we get H̃. From H̃ we get H as follows:

H = T−1
2 H̃T1 (4.23)

4.1.3.5 Epipolar geometry

When we take a picture, the 3D scene is projected onto a 2D space and we
lose the depth information. How can we get this information back? Human
beings have two eyes to understand and grasp the depth of the world. By
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Fig. 4.10: (a) shows a basic setup with two cameras C and C ′, a 3D point X and its
projections x and x′ on the left and right pictures respectively. The term projection means
the intersection between the left (right) picture and the ray defined by the 3D point X
and the camera center C (C ′). The plane π where C, C ′, X, x and x′ lie is called epipolar
plane. (b) shows a 2D point x in the left picture that could be the projection of any point
on the ray defined by x and the camera center C. By projecting each candidate 3D point
X onto the right picture, we realize that all the possible candidate 2D points x′ lie on the
epipolar line l′. This is why we say that each point x in the left picture is mapped into the
corresponding epipolar line l′ in the right picture: x 7→ l′. The reasoning is symmetrical
for the two pictures, so x′ 7→ l also holds. Figure from [13].

emulating humans, we can use two cameras, so we can extract 3D information
by examining the relative positions of the objects in the two pictures, called
stereo images. This practice is called stereo vision. Epipolar geometry is the
geometry that relates the 3D points to their projections onto the 2D pictures.
Fig. 4.10a shows a point X in the 3D space. There are two cameras C and
C ′ taking a picture of the same scene from two different locations7. Thus the
3D point X is projected onto two 2D pictures at x and x′.

To continue the presentation of epipolar geometry, let’s introduce some
terminology. The line joining C and C ′ is called baseline. The 3D point X,
the 2D points x and x′, and the cameras C and C ′ lie on the same plane π,
called epipolar plane. The intersections of π with the two pictures are two
lines l and l′ called epipolar lines. The baseline intersects the two pictures in
two points e and e′, called epipoles.

Suppose we only know a 2D point x in the left picture, while the corre-
sponding 3D point X and its projection x′ on the right picture are unknown.
Fig. 4.10b shows that the 3D point X may lie everywhere on the ray defined
by the camera center C and x. By projecting each candidate 3D point X
onto the right picture, we realize that all the possible candidate 2D points x′

7C and C ′ are the two camera centers.
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Fig. 4.11: π is a plane not passing through either the two camera centers. Point x in the
left picture is projected onto π in a 3D point X that is then then projected to a point x′

in the right picture. Plane π induce an homography Hπ between the two pictures: each
point in the left picture is mapped to a point in the right picture. Figure from [13].

lie on the epipolar line l′. This is why we say that each point x in the left
picture is mapped into the corresponding epipolar line l′ in the right picture:
x 7→ l′. The reasoning is symmetrical for the two pictures, so also x′ 7→ l
holds. The mapping from points to lines is represented by a matrix F , called
fundamental matrix, presented in the next section (Sec. 4.1.3.6).

4.1.3.6 Fundamental matrix

As described in Sec. 4.1.3.5, given a pair of stereo images, each point in a
picture is mapped into the corresponding epipolar line on the other picture
and the fundamental matrix F describe this mapping. In the following, we
geometrically derive the fundamental matrix.

Suppose again we only know a 2D point x in the left picture. Let’s consider
a plane π not passing through either the two camera centers. The intersection
of π with the ray defined by x and the camera center C is a 3D point X. This
point X is then projected to a point x′ in the right picture. Note, point x′
must lie on the epipolar line l′. Since the mapping from x to x′ only depends
on the intersection of planes and lines, plane π induce an homography Hπ

between the left and right pictures:

x′ = Hπx (4.24)

Since both the epipole e′ and the point x′ must lie on the epipolar line l′, by
using Result 4.1.3 we compute l′ as:

l′ = e′ × x′ = [e′]× x
′ (4.25)
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where

[e′]× =

 0 −e′z e′y
e′z 0 −e′x
−e′y e′x 0

 (4.26)

with e′ = (e′x, e
′
y, e
′
z)
>. Combining Eq. 4.24 and Eq. 4.25 we get:

l′ = [e′]× x
′ = [e′]×Hπ︸ ︷︷ ︸

F

x = Fx (4.27)

where F is the fundamental matrix. Note, plane π is used as a means of
defining a point map from one picture to another, but it is not required in
order for F to exists.

In the following, we are going to prove an important property for the
fundamental matrix. Given a pair of corresponding points x↔ x′, since x′

must lie on the epipolar line l′, by using Result 4.1.1, we get:

x′
>
l′ = 0 (4.28)

From Eq. 4.28 and Eq. 4.27 we get the following system of equations:{
l′ = Fx

x′>l′ = 0
(4.29)

By substituting the first equation into the second we get Result 4.1.4.

Result 4.1.4 Given a pair of corresponding points x↔ x′ in the two pictures,
the fundamental matrix satisfies the following condition: x′>Fx = 0

It gives a way of characterizing the fundamental matrix only in terms of
corresponding points in the pictures. This enables F to be computed from
picture correspondences alone. We can compute the fundamental matrix F
in a similar way to what we did with homography by solving a system of
equations. To uniquely determine the parameters of F we need at least eight
points.

4.2 Data-driven approach

4.2.1 Introduction to Machine Learning

Machine Learning (ML) is a sub-field of Artificial Intelligence concerned
with the question of how to build algorithms and models that automatically
improve with experience. By model we mean a parametric function that
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takes an input sample and returns an output. Based on the type of samples
and the desired output, we distinguish different learning paradigms, such as
Supervised Learning, Unsupervised Learning and Reinforcement Learning. We
say a model is learning if it improves its performance (with respect to a given
metric and task) while looking at the data. The goal of ML is to learn the
model8 directly from the data.

4.2.2 Supervised Learning

In Supervised Learning (SL) the model learns the mapping between the input
xi and its desired output (or target) ti. We can identify three phases: training,
testing and production. During the training phase, the model looks through a
data-set, called training-set, and learns, meaning tune its parameters. During
the testing phase, we assess the model measuring its performances on a new
data-set, called test-set. The reason why we need a new data-set is that we
are not interested in the model’s ability to store information, but its ability
to correctly predict the output of new samples that it has never seen before.
This capability is called generalization. During the production phase, the
model already tested is used to predict the output of a given input.

The model is trained so that the performances are maximized, this cor-
responds to minimizing an error (or loss) function that is a measure of the
distance between the desired output and the output provided by the model.
The training-set consists of pairs: TR = {(xi, ti) | i ∈ [1, N ]} and based on
the domain of the target ti, we can define two problems:

• Regression. The target is a continuous value, i.e., ti ∈ R.

• Classification. The target belongs to a finite set of discrete categories
(also called labels or classes), i.e., ti ∈ Λ = {λ1, ..., λN}.

Artificial Neural Networks are a successful class of non-linear models used in
SL and they are going to be described in the next section (Sec. 4.2.3).

4.2.3 Artificial Neural Networks

An Artificial Neural Network (ANN) is weighted directed graph whose vertices
are called neurons and whose edges are called connections. Neurons that
receive the input from the environment are called input neurons, while neurons
that emit the result to the environment are called output neurons. The
remaining neurons that have no contact with the environment (but only with

8Learning a model means tuning its parameters.
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Fig. 4.12: Feed Forward Neural Network with I input neurons, 1 output neuron and a
single hidden layer with H neurons. hj and g are nonlinear function, called activation
functions.

other neurons) are called hidden neurons. Neurons are grouped into layers,
forming an input layer, an output layer and several hidden layers [34]. ANN
are universal approximating functions, i.e., they are able to approximate any
continuous function over a compact domain at any required level of precision
(by increasing the number of its parameters) [2] [4] [6] [10] [37] [42]. A special
case of ANN is the Feed Forward Neural Network (FFNN) where the graph
does not contain loops.

Fig. 4.12 shows a simple FFNN implementing the following function:

y = g

(
H∑
j=0

Wj hj

(
I∑
i=0

wjixi

))
(4.30)

where x0 = 1, h0(·) = 1, hj and g are nonlinear function, called activation
functions. The network takes in input a I-dimensional point x = (x1, ..., xI)
and then each neuron computes a nonlinear function of the linear combination
of its inputs. The results are propagated from left to right enabling the
computation for the consecutive layer.

The activation function used by an hidden neuron can be a sigmoid, an
hyperbolic tangent or a Rectified Linear Unit, shown respectively in Fig. 4.13a,
Fig. 4.13b and Fig. 4.13c. The activation function used by the output neuron
depends on the task. In regression we can simply use a linear function. In
classification we can use the sigmoid or, when we need to interpret the output
of the network as a probability, we can use the softmax activation function:

softmaxi(x) =
exi∑C
j=1 e

xj
(4.31)
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(a) (b) (c)

Fig. 4.13: (a) is the sigmoid function σ(x) = 1
1+e−x ; (b) is the hyperbolic tangent function

tanh (x); (c) is the Rectified Linear Unit function ReLU(x) = max(0, x).

where i = 1, . . . , C and C is the number of classes. We use the softmax to
normalize the outputs values so that they sum to 1.

A FFNN is trained using error backpropagation, i.e., the error is iteratively
minimized using the following update rule:

wk+1 ← wk − η
[
∂E

∂w

]
w=wk

(4.32)

where E is the error (or loss) function. Back-propagation consists of two
steps:

• Forward pass. We compute the output of every neuron, from the
input to the output layer.

• Backward pass. We start from the output layer and going backward
to the input layer we recursively apply the chain rule to update the
weights.

In regression, the error is usually the sum of the squared error (Eq. 4.33),
while in classification it is usually the cross entropy loss (Eq. 4.34).

E =
N∑
n=1

(tn − yn)2 (4.33)

E =
N∑
n=1

(tn log(yn) + (1− tn) log(yn))2 (4.34)

A FFNN trained for classification is called classifier.
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4.2.4 Image classification and localization

Given an input image I ∈ RH×W×3 and a fixed set of labels (or classes)
Λ = {λ1, ..., λN}, image classification is the problem of assigning a label λi
to image I. It is a specific case of the classification problem described in
Sec. 4.2.1 where the objects of the classification are images. We can further
divide between multi-class classification where we assume each image is
assigned to a single target label and multi-label classification where the image
contains many objects of different classes and can be assigned to more than
one target label. The localization problem, in addition to the label, returns
the coordinates (x, y, h, w) of the bounding box enclosing that object. In order
to make the classification, we feed the classifier with a number of relevant
features that represent some properties of the image, such as a distinct shape
(edge, corner, curve, or even an object) or a color. Note, a good feature
selection improves the classification accuracy and generalization. We can
broadly identify two families of features: hand-crafted and learned features.
Hand-crafted features are manually designed, engineered, and selected by
experts in the field. Representatives of this family are the SIFT features,
described in Sec. 4.1.1. In some cases, experts may not be able to identify
which features are optimal in a given task and may select sub-optimal features.
Learned features solve this issue. The idea is to let the model learn on its
own what the relevant features are by looking at many examples. Feature
selection and classification are jointly carried out by a single model, such as
a Convolutional Neural Network, described in Sec. 4.2.5. When the network
learns both the features and the classifier out of it, we talk about Deep
Learning (DL) [30].

There are pros and cons for both families. Hand-crafted features have
good properties that learned features lack: they allow us to leverage prior
information, are interpretable, and don’t require a large data-set to be designed.
On the other hand, having a model capable of selecting by itself the optimal
features for a given task leads to better results.

In the next section (Sec. 4.2.5) we are going to describe Convolutional
Neural Networks.

4.2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [3] are a special type of ANNs that
make the explicit assumption that inputs are images. CNNs consists of two
blocks: a feature extractor (FE) and a classifier. The FE mainly uses two
types of layers: convolutional and max-pooling layers. Convolutional layers,
unlike fully-connected layers, have neurons arranged in three dimensions:
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(a) (b)

Fig. 4.14: (a) is a regular 3-layer ANN; (b) is a CNN whose neurons are arranged in three
dimensions width, height and depth. The red input layer holds the image, so its width and
height would be the dimension of the image and depth would be 3 (RGB image). Figures
(a) and (b) from [53].

width (w), height (h) and depth (d), as shown in Fig. 4.14. We call depth
slice the set of w × h neurons with the same depth d̄.

The assumption that inputs are images is encoded into the network using
convolutional layers since they have two properties: the local connectivity
and the parameter sharing. Local connectivity means that each neuron is
connected to only a local region of the input volume9. Parameter sharing
means that all the neuron in a depth slice are forced to use the same weights
and bias. Every convolutional layer transforms a 3D input volume to a 3D
output volume, usually by decreasing its spatial size (width and height) and
increasing its depth. The convolutional layer’s parameters consist of a set
of learnable filters (or kernels). Every filter is small spatially but extends
through the full depth of the input volume. During the forward pass, we slide
each filter across the width and the height of the input volume and compute
the dot product between the entries of the filter and the input at any position.
This operation is called convolution and an example is shown in Fig. 4.15.

As we slide the filter over the width and height of the input volume we
will produce a 2-dimensional activation map (or feature map) that gives
the responses of that filter at every spatial location. Each filter produce a
separate 2-dimensional activation map. Intuitively, the network will learn
filters that activate when they see some type of visual feature or pattern. We
will stack this activation maps along the depth dimension and produce the
output volume.

We call receptive field of a pixel10 (px, py), the region of the input volume
involved in the computation of (px, py). In other words, the receptive field is
the region of the input that affects a pixel in the output map. Usually, the
term receptive field refers to the regions of the network input that affect the

9Recall that in fully-connected layers each neuron is connected to the entire input.
10As for the locations in the image, we refer to a location in the activation map with the

term pixel.
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(a) (b)

Fig. 4.15: In (a), we compute the element-wise product between the filter (or kernel) and
the overlapped subset. The result is summed up to get a single value. In (b), both the
filter and the overlapping region are shown to be 3D volumes, rather than 2D arrays. In
addition, the blue arrows show the filter sliding. Figure (a) from [46]. Figure (b) from [52].

score of an output neuron.
The depth of the output volume corresponds to the number of filters,

while the spatial dimension may be computed using the formula:

1 +
W − F + 2P

S
(4.35)

where W and F are respectively the input and the filter width, S is the stride
(number of pixels we move the filter while sliding) and P is the size of the
zero-padding (to control the input dimension, we surround it with zeros).

As previously mentioned, in addition to convolutional layers, we also
have max-pooling layers. They are periodically put in-between successive
convolutional layers to reduce the spatial size of the input. They operates
independently on every activation map resizing it spatially using the max
operation. An example is shown in Fig. 4.16.

The max pooling layer works as a switch in the backward pass routing
the gradient to the input that had the highest value in the forward pass.
Hence, during the forward pass the pooling layer keep track of the index of
the max activation. Moreover, the pooling operation provides a certain degree
of distortion invariance because reducing the size, images with shifted pixels
results similar in the reduced representation.

Finally, at the top of the network there is the classifier which consists in
one or more fully connected layers. Classifiers were described in Sec. 4.2.3.
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Fig. 4.16: Max pooling layer with filter size 2×2 applied with a stride of 2. It computes the
maximum for each colored square region. The 75% of the activation pixels are discarded.
Figure from [53].

4.2.6 Class Activation Mapping technique

As previously mentioned, learned features make the classification a black-box
task, meaning that designers do not know what the CNN is looking at when
performing the prediction. From the outside we can only see the mapping
between inputs and outputs without understanding the reasons that drive
the model to make a specific prediction.

Zhou et al [32] proposed a technique, called class activation mapping, that
allows us to know not only the prediction of the target label, but also the
corresponding relevant image regions that the CNN focuses on when it is
predicting the output. As shown in the lower right of Fig. 4.17, a colored mask,
called class activation map (CAM), is overlapped on the image to highlight
the most important regions involved during the prediction. Red regions are
very relevant, while blue ones are irrelevant. The shift from red to blue is
gradual. That is why there are yellow (meaning relevant) and cyan (meaning
slightly relevant) regions. This technique is mainly used for explainability,
i.e., to visualize what is driving a given prediction but, since relevant regions
of the image contain the target objects, we can use the technique also for
localization. Convolutional layers are meaningful pattern detectors, but this
capability is lost when fully-connected layers are used for classification. In
order to preserve the localization ability, we can perform global average pooling
(GAP) on the feature maps just before the classifier and uses those as features
for the prediction. The network architecture is illustrated in the upper part
of Fig. 4.17.

The score of a class λ, denoted by Sλ, with λ ∈ Λ, is computed as follows:

Sλ =
∑
k

(
wk

λ 1

W ·H
∑
x,y

fk(x, y)

)
(4.36)

where fk with k ∈ {1, . . . , K} denotes the k-th feature map of the last convo-
lutional layer; wkλ is the class λ weight that multiplies fk; x ∈ {1, . . . ,W};
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Fig. 4.17: In the upper part of the image the CNN architecture is shown. In the lower part
the Class Activation Mapping technique is shown. Original figure from [32].

y ∈ {1, . . . , H}; W and H denote the width and the height of the features
maps fk. The class activation mapping technique is trained in a Weakly
Supervised Learning (WSL) setting11, meaning that only image-level labels
are required as targets in the training-set. At inference time, we use the class
activation mapping technique to produce the CAM12 of the target class λ.
The procedure is illustrated in the lower part of Fig. 4.17. The CAM of class
λ, denoted by Mλ is computed as the weighted sum of the feature maps:

Mλ(x, y) =
∑
k

wk
λfk(x, y) (4.37)

Moreover, we can show that, reorganizing Eq. 4.36, the score of class λ is
equal to the spatial average of the CAM (of class λ):

Sλ =
∑
k

(
wk

λ 1

W ·H
∑
x,y

fk(x, y)

)

=
1

W ·H
∑
x,y

(∑
k

wk
λfk(x, y)

)
︸ ︷︷ ︸

=:Mλ(x,y)

=
1

W ·H
∑
x,y

Mλ(x, y) (4.38)

11By WSL we mean training without ground-truth bounding boxes.
12The class activation map (CAM) is the output of the class activation mapping (CAM)

technique. Procedure and output object are shortened in the same way.
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Fig. 4.18: Three ways Transfer Learning can improve performance during training. Figure
from [22].

As a final remark, it is important to observe that the CAM method does not
guarantee to localize the full extent of the objects: it highlights the regions it
deems relevant but the map could cover sub-parts of the object or the even
part of the background (coarse edges of the red regions) and that is why many
methods, like [38] [36], were proposed to improve the quality of the CAMs.
The reader may wonder why not directly train a network for object detection.
In some tasks training in a fully supervised setting (with the bounding boxes
around each object for every image) is not feasible, due to time constraints
or monetary costs, that is why the weakly-supervised approach (use only
image-level labels) is sometimes preferred. Furthermore, we are fascinated
by the ability of the network to discover the intrinsic relationship between a
label and a shape or pattern in the image. We train the network for image
classification, so only labels are required.

4.2.7 Transfer Learning

Transfer learning is a method to reuse the feature extractor learned for a
source task S in a destination task D. The idea is to first train a base CNN
for task S using a training set TRS, then remove the classifier and add a
new classifier specific for the task D we want to tackle that we train using
a new training set TRD. The rationale behind transfer learning for image
classification is that if a model is trained on a large and general enough data-
set, the feature extractor will still able to extract good features representing
elements of the visual world. We can exploit these learned feature maps for a
new task, without having to start from scratch by training a large model on
a large data-set. As described in [22] and shown in Fig. 4.18, there are three
possible benefits when using transfer learning:

• Higher start. The initial performance is higher than it otherwise
would be.
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• Higher slope. The rate of improvement during training is steeper
than it otherwise would be.

• Higher asymptote. The converged performance of the trained model
is better than it otherwise would be.

If the destination data-set TRD is large enough, it is still common practice
to start from a pre-trained network and perform fine-tuning. The idea is to
unfreeze a few of the top layers of a frozen base model and jointly train both
the newly-added classifier layers and the last layers of the base model. This
allows us to fine-tune the higher-level features in the base model in order to
make them more relevant for the destination task [50].

Transfer learning is powerful but can yield poor results. The reason is that
the features have been optimized for another problem (the source problem)
and may be sub-optimal for the destination problem.
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Chapter 5

Proposed Method

(a) (b)

(c) (d)

Fig. 5.1: (a) shows an image pair depicting three objects: bread, cube and chips; (b) shows
the keypoints marked in red; (c) show the point-matches between the pictures. (d) shows
the clusters of points, each one represented with a different color. Original figure from
AdelaideRMF data-set [25].

Deep learning (DL) has dramatically improved the state-of-the-art in image
classification, localization and many other tasks [30]. Unfortunately, for tasks
like robust multi-model fitting where little data is available, deep learning
alone does not outperform the performance of classical robust estimators.
In this work, we propose a DL-based sampling strategy to boost up robust
estimators dealing with multi-view geometry problems. As described in
Sec. 4.1.3.5, multi-view geometry is the study of the geometric relations
between multiple views of a 3D scene. Typically, given two (or more) pictures
of the same scene, as in Fig. 5.1a, we want to automatically estimate the

51



52 CHAPTER 5. PROPOSED METHOD

geometric relationships between corresponding points in the images. We recall
the process to get corresponding points from an image pair. We independently
extract a set of points from each picture as in Fig. 5.1b. To this end, we
can use a hand-crafted feature extractor like SIFT (Sec. 4.1.1). The points
are matched across pictures (Fig. 5.1c) using Nearest Neighbors and ratio
test (Sec. 4.1.2). We now have a set of corresponding points described by a
series of geometric models and we can apply a robust estimator like T-Linkage
(Sec. 2.5) to cluster points belonging to the same model and filtering outliers.
Fig. 5.1a shows a dynamic scene where three objects (bread, cube and chips)
move in different positions between the left and right image, thus there are
three fundamental matrices that describe the scene, each corresponding to an
object. The result of the robust estimation is shown in Fig. 5.1d. Note that
traditional robust fitting approaches use underlying pictures as in Fig. 5.1a
only to extract point correspondences and then discard it, the images are not
used in the robust estimation itself.

Human observers can easily recognize the different objects in pictures. For
example in Fig. 5.1a we can clearly distinguish the cube from other objects
and background and by comparing it with Fig. 5.1b we can infer that all
the red points that lie on the cube image-region have undergone the same
rigid motion, i.e., they are inliers of the fundamental matrix describing the
motion of the cube. The presence of semantics helps humans to group point
correspondences and the main intuition behind the proposed approach is that
a semantic prior can be helpful also in robust estimation. To this end, to
extract the semantic information from the image, we use a Convolutional
Neural Network (CNN) which has been shown to be an optimal pattern
locator [32]. The CNN maps the visual appearance of an object to a label
which represents its meaning and that is why we refer to this information
with the term semantics. We will use the semantics to guide the sampling
phase so to discover geometric models.

The remaining of this chapter is organized as follows. Sec. 5.1 describes
how to extract semantics from an image couple to produce a set of discrete
probabilities, called semantic priors, that robust estimators use to guide
the sampling phase and discover geometric models in the data. This novel
sampling strategy, called semantic-aware sampling, is described in Sec. 5.2.
Moreover in Sec. 5.3 we describe a thresholding technique to filter outliers.

5.1 Semantic prior

As mentioned in the introduction to this chapter, we use information extracted
from the Convolutional Neural Network (CNN) to guide the sampling towards



5.1. SEMANTIC PRIOR 53

(a) (b)

(c)

Fig. 5.2: Each CAM locates the patterns of the corresponding object: (a) locates the bread;
(b) locates the cube and (c) locates the chips. Original figure from AdelaideRMF data-set
[25].

good geometric models. Specifically, we propose two approaches: the first
leverages the Class Activation Mapping (CAM) method while the second
exploits the features coming from the last convolutional layer of the CNN.

We have selected these two approaches because both allow us to get the
location of the objects (or significant patterns) in the image without being
trained using ground-truth bounding boxes. We train a CNN for image
classification having in mind the idea that in order to map images to labels,
the network intrinsically learns a high-level representation of the image objects
and we can exploit it for localization. The CAM method returns an aggregate
map that highlights the patterns of a single object but requires that the
classes the image can belong to are fixed. When we expose the model with
an image of an unknown class, the classifier cannot guess the target label
(simply because it is unknown) but, as long as the patterns of the depicted
object are similar to one or more patterns known by the model, the feature
maps can localize the patterns in the image. In practice, sometimes we have
good feature maps but aggregating them using the weights of the classifier
produce poor CAMs unable to localize the object in the image. This happens
because the object does not belong to any of the fixed classes, thus we decided
to directly use the features from the last convolutional layer (before being
aggregated). On the one hand we no longer know which pattern each map
represents, on the other hand we are extending the applicability of the method
to patterns similar to those learned from the network but mapped to unknown
labels.
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Fig. 5.3: CNN architectures to extract semantics by using the CAM method. The output
of the last convolutional layer is a tensor composed by K feature maps {f1, . . . , fK}. We
use a Global Average Pooling (GAP) Layer to spatially aggregate the pixels of each fk and
we feed the resulting vector to the classifier. Original figures from [32] and AdelaideRMF
data-set [25].

5.1.1 Semantic prior from CAMs

Our first approach uses the CAM method (Sec. 4.2.6) in a multi-label clas-
sification setting, i.e., the model associates the input image I ∈ RH×W×3

with a set of labels Λ̄ ⊆ Λ corresponding to the objects in the image rather
than a single label. The set Λ̄ will contain all the labels that have proba-
bility greater than a threshold, e.g., 0.5. For example, from Fig. 5.1a we
get Λ̄ = {bread, cube, chips}. For each label λ ∈ Λ̄, we produce a matrix
Mλ ∈ RH×W whose values are larger in the regions where the patterns of
object λ are located. Mλ is called Class Activation Map (CAM) and local-
izes objects of class λ in the picture [32]. An example is shown in Fig. 5.2.
We can interpret each pixel of the CAM Mλ as the probability p that the
corresponding pixel in the image contains an object of class λ. The idea is
to assign this probability to the points we are going to sample thus making
the sampling of pure minimal sample sets (MSS) more likely. Given a set of
points X = {(xn, yn) | n = 1, . . . , N}, we define the n-th entry of the discrete
probability p as:

pn = Mλ(xn, yn) (5.1)

where n ∈ {1, . . . , N}. Note that, before being used, p needs to be normalized
so that the probabilities sum to 1:

N∑
n=1

pn = 1 (5.2)

An example of this process is shown in Fig. 5.4 where we embed the semantics
of the bread into the points so to obtain a discrete probability vector p that
we use to guide the estimator to sample points belonging to the bread. Note,
the example shows that CNNs are excellent pattern locators [32] and can
localize the bread pattern very well in the picture.
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(a) (b) (c)

Fig. 5.4: Embed semantics into discrete probability. (a) shows the points over the picture;
(b) show the CAM Mλ with λ = “bread”; (c) graphically represents the discrete probability
vector p. Original figure from AdelaideRMF data-set [25].

We further extend this basic process as we have a couple of pictures
representing the same scene (Fig. 5.1a) and we are interested in sampling
good matches rather than points per se. Therefore we impose an additional
constraint: the probability of a match is the minimum between the proba-
bilities of the match end-points. We denote as pL and pR the left and right
discrete probability vectors corresponding respectively to the left and right
image. We compute the n-th entry of the discrete probability vector as:

ψn = min{pLn , pRn} (5.3)

Note that, also in this case, before being used, ψ must be normalized so that
the probabilities sum to 1.

N∑
n=1

ψn = 1 (5.4)

where n ∈ {1, . . . , N}. A comparison from the disjoint probabilities (pL and
pR) and the joint probability ψ is graphically represented in Fig. 5.5: all
the points that lie over the bread have high disjoint probabilities pL and pR
(Fig. 5.5a) while some of this points have low joint probability ψ (Fig. 5.5b).
This happens to wrong correspondences that match point on the bread to
background points in the other image. With the mechanism described so far,
we jointly use the semantics of both the left and right picture and this allows
to naturally discard mismatches by assigning them low probability of being
sampled. We can now repeat the process for the CAMs of the other labels
in Λ̄ and we obtain three discrete probabilities that can be used as priors to
guide the samplings. The semantic priors of the cube and chips are shown in
Fig. 5.6 where it can be appreciated that the maps focus on the given objects
assigning low probabilities to points that lie in other regions.
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(a) pL and pR (b) ψ

Fig. 5.5: Comparison between disjoint and joint probabilities. (a) graphically shows the two
disjoint discrete probabilities pL and pR; (b) graphically show the joint discrete probability
ψ. Original figure from AdelaideRMF data-set [25].

(a) (b)

Fig. 5.6: (a) shows the semantic prior of the cube; (b) shows the semantic prior of the
chips. Original figure from AdelaideRMF data-set [25].

Alg. 5 formally describes the process illustrated so far. Note, we assume to
have already trained a CNN (as in Fig. 5.3) for the multi-label classification
setting (a set of labels is returned by the network). The algorithm takes
as input a couple of pictures

(
IL ∈ RH×W×3, IR ∈ RH×W×3

)
, as shown in

Fig. 5.1a and a set of corresponding points
{
< xLn ,x

R
n > | n = 1, . . . , N

}
where x�n =

(
x�n , y

�
n ,
)
is a point in image I� and � ∈ {L,R}. In line 1 and 2

we independently feed the CNN with IL and IR to get two sets of labels Λ̄L

and Λ̄R, one for each image. To reduce the error, in line 3 we compute the
intersection of these sets and get Λ̄. For each label (or class) λ ∈ Λ̄, in lines 5
and 6 we compute the CAMs of IL and IR and we get ML

λ and MR
λ . Then,

in line 9, for each point xLn in the left image, we will assign to pLn the value
of ML

λ at the coordinate of the point. In line 10, we do the same for all the
points in the right image. Once we have the two probability vectors pL and
pR, in line 11 we compute the element-wise minimum to get ψλ. We repeat
the process for all the labels λ ∈ Λ̄. In line 13, we store each ψλ in a set Ψ
that will contain all the discrete probabilities for all the objects. We use the
probabilities ψ ∈ Ψ as priors for the sampling.
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Algorithm 4: Semantic priors from CAMs
Input :

(
IL ∈ RH×W×3, IR ∈ RH×W×3

)
− image pair{

< xLn ,x
R
n > | n = 1, . . . , N

}
− set of matches

Output : ψ − semantic prior for class λ

1 Λ̄L ⊆ Λ← Retrieve the classes image IL belong to
2 Λ̄R ⊆ Λ← Retrieve the classes image IR belong to
3 Λ̄ = Λ̄L ∩ Λ̄R

4 for λ ∈ Λ̄ do
5 ML

λ ← Compute the CAM of IL for class λ
6 MR

λ ← Compute the CAM of IR for class λ
7 ψλ ← Initialize array of length N
8 for n ∈ {1, . . . , N} do
9 pLn = ML

λ (xLn)
10 pRn = MR

λ (xRn )

11 ψλ,n ← min
{
pLn , p

R
n

}
12 end
13 Ψ← Add ψλ to set Ψ

14 end
15 return Ψ

5.1.2 Semantic prior from features

In the previous subsection (Sec. 5.1.1), we described how to extract the
semantic prior from CAMs. In this subsection, we will see that we are not
forced to use CAMs, we can directly exploit the feature maps. In practice, we
move towards a Transfer Learning framework: in the source task S we train
a CNN for (multi-class or multi-label) image-classification using a data-set
TRS, then we remove the classifier (as in Fig. 5.7) and we use the features as
semantics for the sampling. In this case the sampling is the destination task
and, unlike standard Transfer Learning, we do not have a data-set TRD and
we do not even know the object-labels the network is going to see, that is why
it makes no sense to design a new classifier on top of the feature extractor.
Note, we rely on the assumption that the network has been trained on a wide
enough data-set so that a good range of object-patterns can be localized,
including new patterns that are somehow similar to patterns already learned
from the network.

Alg. 5 formally describes how to extract a set Ψ of discrete probabilities
that we use as priors for sampling. The algorithm takes as input a couple
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Fig. 5.7: CNN architectures to extract semantics by using the features from the last
convolutional layer. Original figure from [32].

pictures
(
IL ∈ RH×W×3, IR ∈ RH×W×3

)
, as shown in Fig. 5.1a and a set of

corresponding points
{
< xLn ,x

R
n > | n = 1, . . . , N

}
where x�n =

(
x�n , y

�
n ,
)
is

a point in image I� and � ∈ {L,R}. In lines 1 and 2 we separately feed the
FE (as shown in Fig. 5.7) with IL and IR. From I� we extract K feature
maps f̄�k ∈ RH̄×W̄ . Since we need to overlap I� ∈ RH×W×3 and f̄�k ∈ RH̄×W̄ ,
in line 4 and 5 we resize f̄�k so that they are the same spatial size and we
get f�k ∈ RH×W . We rearrange the feature maps as couples

(
fLk , f

R
k

)
, as

shown in Fig. 5.8. Each couple highlight the same patterns in the left and
right image respectively. Let us focus on a couple of feature maps

(
fLk , f

R
k

)
and match

(
xLn ,x

R
n

)
. The value f�k (x�) represents the probability that point

x� belongs to an image-object according to feature map f�k . A match is
likely to relate two points of the same geometric model if both of them have
high probability in their respective feature map. Therefore, in line 7 we
compute the probability of the match as the minimum of the probabilities of
its endpoints:

ψk,n = min
{
fLk (xLn), fRk (xRn )

}
(5.5)

This way, if both points are object-points, they will have a high value on their
feature map. If one of them is an outlier (or pseudo-outlier), it will have a low
probability, and by computing the minimum we assign low probability to the
match. Note, in order to compute the semantic prior, we are jointly using the
semantics of both the left and right image. Repeating the computation for all
the N matches and all the K feature maps, we get K discrete probabilities
ψk that are added to set Ψ in line 9. Fig. 5.9 shown some of this features:
compared to the CAMs that localize a single object-pattern, feature maps
can highlights a sub-region of the pattern or even part of the background but,
as soon as the CNN is correctly trained, it should focus on image objects
rather than background.

As a final remark, let’s discuss the value of K, i.e., the number of filters
in the last convolutional layer. We have to set a small value for K: this
allows us to reduce the number of semantic priors to be considered during the
sampling and to compress the dimensionality of the latent representation. We
set K = C, where C is the number of classes. This choice did not harm the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5.8: Feature maps of breacubechips. Each feature map highlights a particular pattern
or shape. Original figure from AdelaideRMF data-set [25].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5.9: Some semantic priors from features. Original figure from AdelaideRMF data-set
[25].
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classification accuracy in the source problem. In the next section we describe
how to use the set of discrete probabilities as priors for the sampling phase.

Algorithm 5: Semantic priors from features
Input :

(
IL ∈ RH×W×3, IR ∈ RH×W×3

)
− image pair

FE − CNN feature extractor{
< xLn ,x

R
n > | n = 1, . . . , N

}
− set of matches

Output : Ψ =
{
ψk ∈ R|P | | k = 1, . . . , K

}
− semantic priors

1 f̄L1 , ..., f̄
L
K ← FE (IL)

2 f̄R1 , ..., f̄
R
K ← FE (IR)

3 for k ∈ {1, . . . , K} do
4 Spatially resize f̄Lk ∈ RH̄×W̄ to get fLk ∈ RH×W

5 Spatially resize f̄Rk ∈ RH̄×W̄ to get fRk ∈ RH×W

6 for n ∈ {1, . . . , N} do
7 ψk,n ← min

{
fLk (xLn , y

L
n ), fRk (xRn , y

R
n )
}

8 end

9 Ψ← Add ψk to set Ψ

10 end

11 return Ψ

5.2 Semantic-aware sampling
So far we have seen that robust estimators rely on a sampling phase to select
a set of models explaining the data points. This mechanism allows us to be
robust to outliers since we do not take into account all the points at once. In
this section, we present a novel sampling strategy called semantic-aware sam-
pling that exploits the semantic priors Ψ = {ψk | k = 1, . . . , K} of an image
pair to guide the sampling phase towards models that can better explain the
data. The algorithm is formally described in Alg. 6. It takes as input an image
pair (IL, IR), a set of corresponding points

{
< xLn ,x

R
n > | n = 1, . . . , N

}
, a

scalar s representing the number of samples to be drawn and a parameter ν
who regulates the ray of the locality circumference.



62 CHAPTER 5. PROPOSED METHOD

Algorithm 6: Semantic-aware Sampling
Input :

(
IL ∈ RH×W×3, IR ∈ RH×W×3

)
− image pair{

< xLn ,x
R
n > | n = 1, . . . , N

}
− set of matches

s − number of samples required to uniquely fit the model
ν − parameter to regulate the locality prior

Output : Ω − preference matrix

1 Ψ← fsemantic prior
(
(IL, IR) ,

{
< xLn ,x

R
n > | n ∈ {1, . . . , N}

})
2 T ← 3N

3 while t < T do
4 k ←

⌊
t
N

⌋
mod N

5 MSS← fMSS sampling
({

xLn ,x
R
n | n = 1, . . . , N

}
, ψk, s, ν

)
6 F ← fmodel (MSS)

7 r ← fresidual
(
F,
{
< xLn ,x

R
n > | n = 1, . . . , N

})
8 for n ∈ {1, . . . , N} do
9 if rn < τ then

10 coln ← e−
r
τ

11 end
12 else
13 coln ← 0

14 end
15 end
16 Ω← Add column coln
17 end
18 return Ω

In line 1 we extract the set Ψ of semantic priors that we use in line 5 to
sample the minimal sample sets, the procedure is shown in Alg. 7. In line 6
we fit a geometric model and in line 7 we compute the residuals. From line 8
to line 14 we apply Eq. 2.4 that for convenience we report below:

Ω(i, j) =

{
e−

r(i,j)
τ if r(i, j) ≤ 5τ

0 otherwise

where i is a point and j is a geometric model. In line 16, we add a new
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column to the preference matrix Ω by using the vector previous computed.
At the end, the algorithm returns the preference matrix Ω (line 18).

Algorithm 7: MSS sampling using semantic prior
Input :

{
< xLn ,x

R
n > | n = 1, . . . , N

}
− set of matches

ψk − prior probability vector
s − number of samples required to fit the model
ν − parameter to regulate the locality prior

Output : MSS − minimal sample set

1 ψk ← ψk∑N
n=1 ψk,m

2 < xL,xR > ← fsample

({
< xLn ,x

R
n > | n = 1, . . . , N

}
, 1, ψk

)
3 ψ̄L ← flocality

({
xLn | n = 1, . . . , N

}
,xL, ν

)
4 ψ̄R ← flocality

({
xRn | n = 1, . . . , N

}
,xR, ν

)
5 ψ̄ ← Compute the element-wise min between ψ̄L and ψ̄R

6 ψ̄ ← ψ̄ � ψk
7 ψ̄ ← ψ̄∑N

n=1 ψ̄n

8 MSS← fsample

({
xLn | n = 1, . . . , N

}
\ x, s− 1, ψ̄

)
9 MSS← {x}+ MSS

10 return MSS

Let’s now describe Alg. 7. In line 1 we normalize ψk as in Eq. 5.6:

ψk =
ψk∑N
n=1 ψk

(5.6)

and we use it as prior to sample a single match < xL,xR > (line 2). Since
closer points are more likely to belong to the same geometric model [15],
in lines 3 and 4 we compute the locality priors ψ̄L and ψ̄R for the match
end-points where probability ψ̄�n for n ∈ {1, . . . , N} depends on the Euclidean
distance from x� with � ∈ {L,R}. In line 5 we aggregate ψ̄L and ψ̄R into a
single discrete probability vector ψ̄ for the match by using the element-wise
min. In line 6 we compute the Hadamard product of ψk and ψ̄ and we use
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(a) (b) (c)

Fig. 5.10: Combination of semantics and locality. Fig. (a) shows the point semantics
extracted from the features: the points on the bread are the most likely to be sampled but
also some points on the chips have non-zero probability to be sampled. Fig. (b) shows the
effect of combining semantics and locality: a point on the bread is sampled, so points on
the cube and chips have a very low probability of being sampled. Note that, by using only
the localized prior, we would have sampled background points. Fig. (c) shows the points
that are sampled in this iteration. Original figure from AdelaideRMF data-set [25].

this prior to sample the remaining s− 1 points (line 8). The rationale is that
we want to sample both image-object and close points: ψk tells us which are
the image-object points and ψ̄ filters points far away from the first sampled
one. This allows to consider a wider area (larger ν) around the object without
the risk to sample outliers. This reasoning is graphically shown in Fig. 5.10:
we sample the first point by using the semantics in Fig. 5.10a, then we apply
the locality and we get the probability distribution in Fig. 5.10b which is
then used to sample the other seven points as shown in Fig. 5.10c. At the
end, the algorithm returns the MSS (line 10).

Algorithm 8: Compute locality prior
Input : {xn | n = 1, . . . , N} − set of data points

xα = (xα, yα) − coordinates of the just sampled point
Output : ψ̄ − discrete probability vector

1 for n ∈ {1, . . . , N} do
2 (xn, yn) = xn

3 d2 = (xn − xα)2 + (yn − yα)2

4 σ = νd

5 ψ̄m = e−
d2

σ2

6 end
7 return ψ̄
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Fig. 5.11: Locality example. When we sample a point xα, denoted with the red star, the
probability of the other points depends on their distance from xα. Original figure from
AdelaideRMF data-set [25].

The sampling is computed using function fsample whose parameters are
respectively a population of points, the number of points to be sampled
and the prior discrete probability over the points. The sampling is always
without replacement. The locality prior is computed using function flocality

whose parameters are respectively a population of points, a reference point
xα against which to compute the distance and a parameter ν who balances
the relationship between semantics and distance. It is chosen heuristically.
The function flocality is described in Alg. 8. In line 2 we just unpack the
coordinates of the n-th point (done just to make the next step more clear).
In line 3 we compute the squared distance of the n-th point form xα. In line
4 we compute σ as the multiplication of the distance and the parameter ν
who regulates the notion of proximity to the point xα. Finally, in line 5 we
compute the discrete probability of the points: the probability is inversely
proportional to the distance from xα, the smaller the distance, the greater
the probability of sampling the point. The result of this process is shown
in Fig. 5.11 where the red star represents xα and its neighbors have larger
probability to be sampled than far away points. Note that, since there is no
semantics, we also give high probability to background points. The algorithm
returns the discrete probability vector ψ̄.

5.3 ERGO

Our semantic-aware sampling allows to drive the sampling towards the fore-
ground and, being based on semantics, can also separate points of different
object being very effective in the multi-model case, especially for preference-
base algorithms that rely on a good representation of the points in the
preference space. In this section we introduce ERGO, a method that al-
lows us to filter out gross-outliers before the model estimation. Recall that
gross-outliers are those points not belonging to any geometric model and that
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(a) Uniform
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(b) Localized
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(c) Semantic-aware

Fig. 5.12: ERGO plots for breadcubechips. The plots have on x-axis the ordinal value
of the points and on the y-axis the average Tanimoto distance w.r.t. its s − 1 closest
points, where s is the cardinally of the MSS. For graphical reasons, points belonging to
the same clusters have the same color and are ordered. Black points are gross-outliers. (a)
comes from a uniform sampling; (b) comes from a localized sampling; (c) comes from a
semantic-aware sampling.
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(a) Uniform
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(b) Localized
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(c) Semantic-aware

Fig. 5.13: ERGO plots for breadcartoychips. The plots have on x-axis the ordinal value
of the points and on the y-axis the average Tanimoto distance w.r.t. its s − 1 closest
points, where s is the cardinally of the MSS. For graphical reasons, points belonging to
the same clusters have the same color and are ordered. Black points are gross-outliers. (a)
comes from a uniform sampling; (b) comes from a localized sampling; (c) comes from a
semantic-aware sampling.

arise due to background clutter or measurement errors. As we have seen in
the Sec. 2.1, preference-based algorithms cluster the points in the preference
space because points belonging to the same geometric model appears as dense
regions while gross-outliers are sparse points in this space.

In Fig. 5.12 and Fig. 5.13 we represent points based on their neighborhood
in the preference space: for each point we compute the average Tanimoto
distance from its C neighbors thus accessing the density of points around it.
Estimating the right value of C is not an easy task. On the one hand, the
more points we consider, the more confident we can be that the point is an
inlier to some model and does not belong to a set of outliers that by chance
are close together in the preference space. On the other hand, considering too
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many points would be harmful because we could consider points belonging
to different models and the average distance would no longer be relevant. In
general, we should set C to the minimum cluster cardinality expected for the
models. In the worst case, to be sure we do not take points from other models,
we can consider C = s− 1, where s is the cardinality of the minimal sample
set (MSS). The rationale behind this choice is that a cluster corresponding
to a model must contain at least s points otherwise we would never be able
to sample a pure MSS and the cluster would be considered too small and
therefore discarded.

In Fig. 5.12 and Fig. 5.13 we use the representation of the points based
on the neighborhood to compare uniform, localized and semantic-aware
sampling. First, we observe that by using localized sampling rather than
uniform sampling, the points belonging to some model (colored pink, blue,
orange and green) drop towards zero. This effect is emphasized when using
semantic-aware sampling. Moreover, inspecting the plots we see that gross-
outliers (colored black) are all close to one. Recall that gross-outliers are
points not belonging to any model, retrieved due to background clutter or
errors in the point-matching phase, and which we would like to discard.

When we focus on Fig. 5.12c and Fig. 5.13c, both produced by using the
semantic-aware sampling, we notice that the gap between inliers to some
model (colored pink, blue, orange and green) and gross-outliers (colored
black) increase therefore making less severe the choice of a threshold to
filter out outliers. In other words, we propose to filter out points that in
the Tanimoto space have average distance to the neighborhood larger than
a threshold. Usually the outlier rejection phase is performed using robust
statistical techniques only after an estimate of the geometric models has
already been computed. Our sampling strategy allows us to improve the
preference embedding so that we can perform outlier rejection at an early
stage, when models have not yet been fitted. We called this thresholding
technique in the preference space Early Rejection of Gross-Outliers (ERGO
for short).

Early rejection may occasionally filter out inliers sparse on the preference
space. When the number of inliers lost due to ERGO is small, we can retrieve
these points in a subsequent refitting step, this is a common practice in robust
estimation. For example this is the case of Fig. 5.13c: setting the threshold
to 0.6 we lose two points. On the other hand, if the number of lost inliers is
large, we may no longer be able to fit the corresponding models. For example
this is the case of Fig. 5.12c: setting the threshold to 0.6 we lose all the points
in the pink and blue cluster and almost half of the points in the orange and
green clusters. That is the reason why ERGO is so effective when associated
to a good sampling strategy that sharply separate inliers and outliers.
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Algorithm 9: ERGO
Input : X − set of N points described in the preference space

C − number of neighbors to consider
δ − threshold to reject points

Output : X ′ − set of good points λ

1 X ′ = ∅
2 for i ∈ {1, . . . , N} do
3 ξ ← Initialize array of length N − 1
4 for j ∈ {1, . . . , N} \ i do
5 dij ← Compute the Tanimoto distance between xi and xj
6 ξ ← Add dij to set ξ
7 end
8 ξ′ ← Sort ξ
9 d̂← 1

c

∑C
c=1 ξ

′
c

10 if d̂ ≤ δ then
11 X ′ ← Add point xi to X ′

12 end
13 end
14 return X ′

ERGO is formally described in Alg. 9. It takes as input the set X of
data points represented by their preference functions (or preference sets), the
number C of neighboring points we are going to consider and a threshold
δ. In line 1 we initialize the set X ′ of good points that will be returned
by the algorithm. By good points we mean the points that are inliers to
some geometric model. In order to compare all the pairs of points we have
implemented two nested loops in lines 2 and 4 both iterating over the data
points. Note that the second loop excludes xi to avoid the comparison of a
point with itself. Given the point xi, in line 3 we initialize an array of length
N − 1, since for each point we compute N − 1 distances. From line 4 to line
7, we compute the average Tanimoto distance d̂ between xi and the C closest
points in the preference space. Finally, from line 10 to line 12 we check if the
average distance between xi and its neighborhood is below the threshold and
eventually we add the point to the set X ′.

Summing up, using a semantic-aware sampling allows for more sharp
separation of inliers and outliers, makes a thresholding technique like ERGO
less critical and reduce the number of inliers we lose in the thresholding.
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5.4 Summary
This chapter has formally presented the semantic-aware sampling, a sam-
pling strategy that can be embedded in robust estimation to achieve smaller
misclassification error while reducing the number of samplings. The reason
behind these results is the better representation of the points in the preference
space given by our sampling strategy.

Let’s recap the flow of computation. Given a couple (or more) pictures
representing the same dynamic scene, in order to extract the geometric
models, we follow two paths. On the one hand we extract the SIFT keypoints
and descriptors and we match them in the descriptor space to find a set
of corresponding points. On the other hand, we use a CNN to extract the
semantics (features or CAMs). Then, for each point that has coordinate
(x, y) in the ambient space, we associate a probability by using the semantics.
Finally, we assign each match the minimum probability of its endpoints. This
way we obtain a discrete probability vector. At the end of the process, we have
a set of discrete probabilities that can be used as priors for the sampling phase
of the robust estimator. Optionally, we can use ERGO to perform an early
rejection of gross outliers by using just the preference matrix. This simple
yet powerful idea will be test in the next chapter devoted to experiments.
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Chapter 6

Experiments

In this chapter we present the experiments carried out to validate our method.
Sec. 6.1 describes the setting we used for the experiments and Sec. 6.2 reports
the results of the comparison of our approach with other methods.

6.1 Setting

6.1.1 Test data-set

For testing we used the standard AdelaideRMF [25], a data-set for robust
geometric model fitting (homography estimation and fundamental matrix
estimation). It is composed of 38 image pairs (19 for motion segmentation and
19 for plane segmentation) with matching points corrupted by gross-outliers.
The ground-truth segmentations are also available.

6.1.2 Evaluation metric

In our experiments we took into account two measures. First, the number Υ
of pure MSS sampled by the algorithm. Suppose we perform M samplings,
we compute the number of pure MSS as

Υ =
M−1∑
i=0

υi (6.1)

where υi measure if all the points belongs to the same geometric model
according to the ground-truth:

υi =

{
1 if points in MSS all belong to the same model
0 otherwise

(6.2)

71
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Fig. 6.1: Pure MSS histogram for breadcubechips. The x-axis represents the clusters (1
is “bread”, 2 is “cube”, 3 is “chips”), the y-axis represents the number of pure MSS for
each cluster. Green denotes the localized sampling strategy, while yellow denotes the
semantic-aware sampling strategy.

We also used a fine-grained counter to measure the number of pure MSS for
each geometric model. An example is shown in Fig. 6.1.

Moreover, we are interested to see how the sampling improve the ability
of the algorithms to find the correct geometric models in the data, thus we
adopted the standard evaluation metric for robust multi-model fitting, namely
the Misclassification Error (ME), defined as:

ME =
number of misclassified points

number of points
(6.3)

where a point is misclassified when it is assigned to a wrong geometric model
according to the ground-truth. For a better reading, in the following, we
will refer to the percentage misclassification error, denoted as ME %. Note
that, since there is no one-to-one mapping between the ground-truth and
the estimated mask, in order to check if a point is misclassified, we need to
consider all possible label-mappings between the two masks and select the
one that minimizes the error.

6.1.3 Base network and training data-set

For the experiments, we selected Inception V3 [31] as base network. It is
the third edition of Google’s Inception Convolutional Neural Network [28],
originally introduced during the ImageNet Recognition Challenge [20]. We
cut the network immediately after layer 279 (mixed 9) and we performed
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Fig. 6.2: Inception V3 Architecture.

fine-tuning by using a model pre-trained on ImageNet and freezing the layers
up to 228. We used this configuration because it was the best one after
performing hyper-parameter tuning.

We trained the Convolutional Neural Networks previously described on
two data-set. For motion segmentation task (fundamental matrix estimation)
we used a data-set of common objects. We have selected the Caltech 256 [18],
a data-set of 256 object categories containing a total of 30607 images. It is
an improvement to its predecessor, the Caltech 101 data-set [14], which is a
standard data-set for classification and localization. Caltech 256 was collected
by downloading examples from Google Images and then manually grouping
the images by category. For plane segmentation (homography estimation) we
used a data-set representing buildings. In particular, we have selected the
Architectural Style data-set [29] designed to recognize the architectural style
of a building in an image. The rationale behind this choice is that, since we
cannot distinguish between planes using this CNN architecture, it is enough
to distinguish between foreground and background. This is the reason why
we will see that the results for plane segmentation will not exceed those of
the competitors.

6.1.4 Tools and libraries

We implemented the proposed method using Python 3.6.9. To support the
implementation of the algorithm and visualization of the results we have used
many libraries, the main ones are listed below.

• Numpy. It is a Python library that provides a multidimensional array
objects, various derived objects, and an assortment of routines for fast
operations on arrays [47]. We extensively used this package to store
all the information (usually tensors) and for efficiency we exploited its
built-in sampling functions.

• Tensorflow. It is a free and open-source software library developed by
Google for machine learning. It has a particular focus on training and
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inference of deep neural networks [33]. We used this framework to train
all the Convolutional Neural Networks used in the experiments and to
extract feature maps and CAMs from images.

• OpenCV. Open Source Computer Vision Library is an open-source
computer vision and machine learning software library. It was built
to provide a common infrastructure for computer vision applications
and to accelerate the use of machine perception in the commercial
products [48]. We have extensively used the RANSAC implementation
for homography and fundamental matrix estimation and it has been
very useful in general for image manipulation.

• Pandas. It is a software library for data manipulation and analysis
[54]. In particular, it offers data structures and operations for manip-
ulating numerical tables and time series. We mainly used it for data
manipulation.

• Matplotlib. It is a comprehensive library for creating static, animated,
and interactive visualizations in Python [45]. We used this library to
show all the pictures and plots in this work and throughout the all
experimental phase.

6.2 Experimental results

6.2.1 Semantic-aware sampling with T-Linkage

We approached the experimental stage using T-Linkage as a reference algo-
rithm. We implemented it from scratch in Python, tuning the thresholds so
that the error in the best run was minimized1. We then replaced the localized
sampling with semantic-aware sampling and repeated the experiments. The
results of some experiments are graphically shown in Fig. 6.3, Fig. 6.4, Fig. 6.5,
Fig. 6.6 and Fig. 6.7.

A complete overview of the results is shown in Tab. 6.1. The table shows
the percentage misclassification error of T-Linkage equipped respectively with
localized sampling in the first column and with semantic-aware sampling in
the second column. Below is the mean and the median of the values in the
two columns. Note, to avoid fluctuations due to particularly lucky or unlucky
runs, the results are the average of 100 iterations. From the table we see that
the results of our method are significantly better.

1In the experiments, we consider the average misclassification error for 100 runs, not
the minimum.
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(e) Localized
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(f) Semantic-aware

(g) Localized - ME % = 5.7915 (h) Semantic-aware - ME % = 0.0

Fig. 6.3: Experiment: biscuitbook. (a) and (b) show the preference matrix with the
localized and semantic-aware sampling respectively. (c) show the histogram of Pure MSS
for each cluster (1 is “biscuit”, 2 is “book”). Green and yellow denote the localized and
semantic-aware sampling, respectively. (g) and (h) show the cluster masks for localized
and semantic-aware sampling with the corresponding percentage Misclassification Error.
(e) and (f) plot the points based on their average distance from the neighborhood. Note,
the semantic-aware sampling pushes inliers towards zero and outliers towards one. Original
figure from AdelaideRMF data-set [25].
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(f) Semantic-aware

(g) Localized - ME % = 6.4516 (h) Semantic-aware - ME % = 0.0

Fig. 6.4: Experiment: biscuitbookbox. (a) and (b) show the preference matrix with the
localized and semantic-aware sampling respectively. (c) show the histogram of Pure MSS
for each cluster (1 is “biscuit”, 2 is “book”, 3 is “box”). Green and yellow denote the localized
and semantic-aware sampling, respectively. (g) and (h) show the cluster masks for localized
and semantic-aware sampling with the corresponding percentage Misclassification Error.
(e) and (f) plot the points based on their average distance from the neighborhood. Note,
the semantic-aware sampling pushes inliers towards zero and outliers towards one. Original
figure from AdelaideRMF data-set [25].
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(e) Localized

0 50 100 150 200
Points

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

di
st

an
ce

 fr
om

 th
e 

7 
clo

se
r p

oi
nt

s

(f) Semantic-aware

(g) Localized - ME % = 10.9705 (h) Semantic-aware - ME % = 0.8439

Fig. 6.5: Experiment: breadcartoychips. (a) and (b) show the preference matrix with the
localized and semantic-aware sampling respectively. (c) show the histogram of Pure MSS
for each cluster (1 is “bread”, 2 is “car”, 3 is “toy”, 4 is “chips”). Green and yellow denote the
localized and semantic-aware sampling, respectively. (g) and (h) show the cluster masks for
localized and semantic-aware sampling with the corresponding percentage Misclassification
Error. (e) and (f) plot the points based on their average distance from the neighborhood.
Note, the semantic-aware sampling pushes inliers towards zero and outliers towards one.
Original figure from AdelaideRMF data-set [25].
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(e) Localized
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(f) Semantic-aware

(g) Localized - ME % = 5.5046 (h) Semantic-aware - ME % = 0.9174

Fig. 6.6: Experiment: cubebreadtoychips. (a) and (b) show the preference matrix with
the localized and semantic-aware sampling respectively. (c) show the histogram of Pure
MSS for each cluster (1 is “cube”, 2 is “bread”, 3 is “toy”, 4 is “chips”). Green and yellow
denote the localized and semantic-aware sampling, respectively. (g) and (h) show the
cluster masks for localized and semantic-aware sampling with the corresponding percentage
Misclassification Error. (e) and (f) plot the points based on their average distance from the
neighborhood. Note, the semantic-aware sampling pushes inliers towards zero and outliers
towards one. Original figure from AdelaideRMF data-set [25].
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(e) Localized
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(f) Semantic-aware

(g) Localized - ME % = 13.0 (h) Semantic-aware - ME % = 0.0

Fig. 6.7: Experiment: toycubecar. (a) and (b) show the preference matrix with the localized
and semantic-aware sampling respectively. (c) show the histogram of Pure MSS for each
cluster (1 is “toy”, 2 is “cube”, 3 is “car”). Green and yellow denote the localized and
semantic-aware sampling, respectively. (g) and (h) show the cluster masks for localized
and semantic-aware sampling with the corresponding percentage Misclassification Error.
(e) and (f) plot the points based on their average distance from the neighborhood. Note,
the semantic-aware sampling pushes inliers towards zero and outliers towards one. Original
figure from AdelaideRMF data-set [25].
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Index Label Localized Semantic-aware

0 biscuit 4.9697 0.0152
1 biscuitbook 1.6158 0.0000
2 biscuitbookbox 7.1081 2.8031
3 boardgame 11.5233 6.7706
4 book 2.3583 0.0000
5 breadcartoychips 14.0717 5.5274
6 breadcube 2.8802 0.1116
7 breadcubechips 2.9957 2.4348
8 breadtoy 4.9757 0.7951
9 breadtoycar 6.5060 2.0060
10 carchipscube 3.8545 0.2788
11 cube 5.9570 1.4139
12 cubebreadtoychips 9.8563 3.0795
13 cubechips 7.5246 1.3697
14 cubetoy 8.5944 2.2892
15 dinobooks 19.0722 14.5556
16 game 8.8884 1.3734
17 gamebiscuit 4.9970 2.3018
18 toycubecar 12.0600 1.3900

Mean 7.3584 2.5535
Median 6.5060 1.4139

Table 6.1: T-Linkage Misclassification Error % for two-view motion segmentation. These
results are the average of 100 iterations for each sampling strategy. The lower the better.

6.2.2 Comparison with Multi-GS

In order to make a fair comparison with Multi-GS, we set the same number
of sampled MSSs for the two methods. Specifically, we set them at the double
of the number of points. For each experiment we counted the number of pure
MSS sampled in the process, as shown in Eq. 6.1. In Tab. 6.2 we reported
the overall number of pure MSS for Multi-GS, localized and semantic-aware
sampling. We aim to maximize the number of pure MSS, so the higher is
the result, the better is the method. Looking at the table we see that, by
using the same number of samplings, our method is able to retrieve a larger
number of pure MSS than Multi-GS.
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Index Label Multi-GS Localized Semantic-aware

0 biscuit 138 36 461
1 biscuitbook 199 24 260
2 biscuitbookbox 179 35 288
3 boardgame 138 34 229
4 book 122 26 133
5 breadcartoychips 84 14 165
6 breadcube 196 64 284
7 breadcubechips 118 21 191
8 breadtoy 205 57 432
9 breadtoycar 75 10 160
10 carchipscube 107 49 157
11 cube 82 2 32
12 cubebreadtoychips 256 34 287
13 cubechips 172 41 346
14 cubetoy 169 62 321
15 dinobooks 92 24 352
16 game 33 0 4
17 gamebiscuit 184 12 195
18 toycubecar 107 46 194

Table 6.2: Comparison Multi-GS, Localized and Semantic-aware Sampling for the motion
segmentation task using data from [25]. We report in the table the overall number of pure
MSS (all the points in MSS belong to the same model) for all the strategies. The higher
the better.

6.2.3 Comparison with DGSAC

We compared DGSAC with our implementation of T-Linkage with semantic-
aware sampling. For a fair comparison we directly used the original code of
DGSAC that we have downloaded from [51]. A complete overview of the
results is shown in Tab. 6.3. We run DGSAC 100 times for any image pair of
[25] for the motion segmentation task. In order to avoid fluctuations due to
particularly lucky or unlucky runs, the results are the average of 100 iterations.
At the bottom of the table, we reported also the overall mean and median.
Since we aim to minimize the misclassification error, the results in the table
show that T-Linkage equipped with the semantic-aware sampling surpassed
DGSAC.
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Index Label DGSAC Semantic-aware

0 biscuit 2.6545 0.0152
1 biscuitbook 2.0205 0.0000
2 biscuitbookbox 1.8764 2.8031
3 boardgame 19.0573 6.7706
4 book 1.3850 0.0000
5 breadcartoychips 11.3165 5.5274
6 breadcube 2.3926 0.1116
7 breadcubechips 6.6043 2.4348
8 breadtoy 6.3229 0.7951
9 breadtoycar 10.8916 2.0060
10 carchipscube 14.6303 0.2788
11 cube 6.6854 1.4139
12 cubebreadtoychips 9.4832 3.0795
13 cubechips 3.4472 1.3697
14 cubetoy 2.8273 2.2892
15 dinobooks 17.4861 14.5556
16 game 5.5408 1.3734
17 gamebiscuit 3.6707 2.3018
18 toycubecar 9.6750 1.3900

Mean 7.2615 2.5535
Median 6.3229 1.4139

Table 6.3: T-Linkage Misclassification Error % for two-view motion segmentation. These
results are the average of 100 iterations for each sampling strategy. The lower the better.

6.2.4 Comparison with CONSAC

We compared CONSAC with our implementation of T-Linkage with localized
and semantic-aware sampling. Unfortunately, the implementation of CONSAC
(taken from [44]) do not implement the motion segmentation task. Thus, to
keep a clean comparison between the methods, we applied our method to
the plane segmentation task. A complete overview of the results is shown in
Tab. 6.4. The table show that T-Linkage equipped with the semantic-aware
sampling and CONSAC have comparable results for the plane segmentation.
The rationale is that the network is not trained to recognize planes, thus we
can only distinguish between foreground (buildings) and background (sky or
grass).
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Index Label CONSAC Localized Semantic-aware

avg. std. avg. std. avg. std.

0 barrsmith 2.74 1.16 8.96 5.35 1.58 0.55
2 bonython 0.00 0.00 2.22 1.65 0.00 0.00
3 elderhalla 11.31 8.47 17.57 8.78 0.75 0.23
4 elderhallb 0.94 0.44 16.78 4.72 16.94 6.85
5 hartley 11.69 0.16 4.56 2.54 1.69 0.85
6 johnsona 17.64 0.11 7.83 2.16 6.92 3.85
7 johnsonb 20.22 6.24 17.38 3.35 14.73 3.02
8 ladysymon 2.95 0.00 9.45 0.95 10.72 1.21
9 library 0.93 0.00 5.49 1.67 5.40 0.96
10 napiera 7.02 4.33 8.41 1.20 6.36 1.41
11 napierb 10.97 2.00 17.37 2.28 11.89 1.87
12 neem 4.56 3.00 16.27 6.75 6.56 4.13
13 nese 0.00 0.00 0.79 1.39 2.28 1.20
14 oldclassicswing 1.32 0.00 4.91 1.06 0.26 0.00
15 physics 0.00 0.00 0.57 0.46 0.00 0.00
16 sene 1.60 2.00 4.08 7.17 0.72 0.30
18 unionhouse 0.30 0.00 3.55 3.66 0.30 0.00

5.54 1.60 8.60 3.24 5.12 1.55

Table 6.4: Comparison CONSAC and T-Linkage with Localized and Semantic-aware
Sampling.
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Chapter 7

Conclusions and future works

In this work, we have presented a novel sampling strategy for robust fitting,
which we call semantic-aware sampling. We explicitly assume that the input
points have been extracted from a picture (set of pictures). This limits the
applicability of our method but allows to reduce the number of required
samplings and, when embedded into robust estimators, to achieve a lower
misclassification error. In addition, our method allows us to increase the
number of pure minimal sample set (MSS), namely set of points all belonging
to the same geometric model (neither gross-outliers nor pseudo-outliers).

We propose to combine the hand-crafted approach where a set of corre-
sponding points is extracted from the pictures and the data-driven approach
where we leverage the feature maps of a Convolutional Neural Network to
get a set of probability maps highlighting the input regions that are likely to
contain an object (or multiple objects) and are therefore worth sampling. We
can inspect features at different levels of abstraction and aggregation, there-
fore, for the sake of generality, we call this information semantics, referring
to the semantics of the points as opposed to their geometric configuration.

The results of our experiments showed that, fixed the number of samplings,
the use of image semantics is effective in producing many more pure MSS and
reducing misclassification error. We have taken T-Linkage as our reference
algorithm and we would like to investigate what the effect of this sampling
strategy would be in other state-of-the-art methods, both consensus-based and
preference-based. Furthermore, it would be interesting to apply our technique
to the video segmentation task, taking into account a set of contiguous frames
and segmenting the rigid motion of objects over time.

From the Deep Learning side, we believe that being able to produce more
accurate semantics can further improve the performance of the sampling.
There are several directions we can take: producing higher resolution maps
[35][41], or following other approaches instead of using features or CAMs,
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such as using autoencoders [5] that learn a compressed representation of the
input, thus learning hidden structures in the data. This approach would allow
us to be even more general and we believe it would be an interesting research
direction.
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