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Abstract

Halo orbits represent orbital trajectories located around Lagrange points within the frame-
work of the Circular Restricted Three Body Problem dynamics (CR3BP). In this thesis,
Halo orbits around the L2 Lagrange point, within both the Sun-(Earth+Moon) and Earth-
Moon systems, are considered. Given the inherent instability of the L2 Lagrange point,
it becomes imperative to implement an effective station keeping strategy. This research
aims to achieve this goal by implementing and thoroughly investigating the Floquet Mode
Approach (FMA) as a control algorithm. The core of this study is dedicated to conducting
a failure analysis of the FMA employing a Monte Carlo simulation. This analysis aims
to uncover boundaries and critical factors that influence the effectiveness of the FMA
in control Halo orbits, thereby contributing to a deeper understanding of its practical
applicability. Within the established operational limits, this study includes two distinct
applications. The first application concerns the Radiation Environment Monitor for En-
ergetic Cosmic rays (REMEC) mission. In this case, a preliminary analysis is conducted
to assess station keeping costs. The second application involves the Bi-Circular Restricted
Four Body Problem (BR4BP), where the algorithm’s utility is explored in a different dy-
namical model.

Keywords: Halo orbit, Floquet Mode Approach, Monte Carlo simulation, failure analy-
ses, Earth-Moon system, Sun-Earth system
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Sommario

Le orbite Halo rappresentano traiettorie orbitali situate attorno ai punti di Lagrange
nel contesto del Problema dei Tre Corpi Ristretto e Circolare (CR3BP). In questa tesi,
vengono esaminate le orbite Halo attorno al punto di Lagrange L2, sia nel sistema Sole-
(Terra+Luna) che nel sistema Terra-Luna. Data l’innata instabilità del punto di Lagrange
L2, diventa essenziale implementare una strategia di mantenimento della stazione effi-
cace. Questa tesi si prefigge di raggiungere questo obiettivo attraverso l’implementazione
e l’indagine approfondita del Floquet Mode Approach (FMA) come algoritmo di con-
trollo. Il nucleo di questo studio è dedicato all’esecuzione di un’indagine delle cause di
fallimento del FMA mediante una simulazione di Monte Carlo. Questa analisi mira a
scoprire i limiti e i fattori critici che influenzano l’efficacia del FMA nel controllo delle
orbite Halo, contribuendo così a una comprensione più approfondita della sua applicabil-
ità pratica. All’interno dei limiti operativi stabiliti, questo studio comprende due diverse
applicazioni. La prima applicazione riguarda la missione Radiation Environment Monitor
for Energetic Cosmic rays (REMEC). In questo caso, viene condotta un’analisi preliminare
per valutare i costi di mantenimento della stazione. La seconda applicazione coinvolge il
Problema dei Quattro Corpi Ristretto e Circolare (BR4BP), in cui viene esplorata l’utilità
dell’algoritmo in un diverso sistema dinamico.

Parole chiave: orbite Halo, Floquet Mode Approach, simulazione di Monte Carlo, analisi
dei fallimenti, sistema Sole-Terra, sistema Terra-Luna
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1| Introduction

In astrodynamics celestial bodies motions, both natural and artificial, are governed by the
mutual gravitational influence. Space mission design exploits different dynamical models,
defined by the number of bodies considered.
The most popular and simplest one is the Two Body Problem (2BP), where two objects,
with mass m1 and m2, influence each other with their mutual gravitational force. An
assumption can be done, if m2 << m1, the object with mass m2 is considered under the
only gravitational influence of the other object with mass m1. The resulting dynamics
is called Restricted Two Body Problem (R2BP) and Kepler’s laws are obtained. In all
those cases where a central body is present (e.g Earth) the dynamics of a second body
(e.g spacecraft (s/c)) can be approximated through the Kepler’s laws. The patch conic
method exploits the 2BP to design interplanetary space missions, in particular all those
with high energy trajectories.
Since the R2BP doesn’t cover all the characteristics of the space environment, more pre-
cise and complete models were sought, such as the Space Manifolds Dynamics (SMD).
The latter exploits the natural dynamics of the solar system and it improves the mission
design in terms of accuracy and cost, resulting in a more suitable and realistic model for
the development of low-energy trajectories [4].
In this case the simplest dynamical model is called Three Body Problem (3BP), where
a third body has been added with respect to the 2BP. Also in this model is possible to
assume that m2 << m1 and m2 << m3, thus m2 is considered under the only gravi-
tational influence of the others two bodies. The resulting dynamics is called Restricted
Three Body Problem (R3BP).
A slightly different model can be developed by introducing an additional assumption: if
the motion of m1 and m3 occurs on a circular orbit∗, the model is called Circular Re-
stricted Three Body Problem (CR3BP).
In the environment of the CR3BP five equilibrium points exist. They are called La-
grangian points and in the last decades they have been exploited in many space mission
applications. Their importance is growing in time since they maintain a fixed configuration

∗This assumption is valid if the orbital motion has a small eccentricity
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and they are suitable for different space mission scenarios, from deep space observation
to Sun observations.
This thesis has been developed in the field of the CR3BP, with an application in a Bi-
Circular Restricted Four Body problem (BR4BP). The BR4BP with respect to the CR3BP
adds a further celestial body. Furthermore, it is called Bi-Circular because the third mas-
sive body rotates around one of the two primaries (e.g Moon around the Earth).

1.1. Motivation and goals

The Lagrangian points are divided in equilateral Lagrange points L4,5 and collinear La-
grange points L1,2,3, Fig. 1.1. The L1,2 points are the most exploited as space missions’
operational locations, but they are unstable, thus an object does not naturally orbit in
their vicinity without a proper control system on-board.
Adequate station maintenance is required on the operational orbit to ensure the proper
development and conclusion of the mission.
Starting from the mission ISEE-3, launched in 1978, numerous methods to control a
spacecraft around Lagrange points have been developed. It’s important to understand
how a control system works, in order to comprehend its limits and behaviours in different
mission scenarios, such that a space mission in this environment can be designed in the
best way.
In a mission scenario at Lagrange points, especially at L2, there are three main drivers
that characterize the mission design: the s/c shall communicate with the Earth avoiding
eclipses, it shall be visible to the Sun for the solar panels and the maneuver insertion cost
should be as low as possible. These three drivers can be achieved with high amplitude
orbits [32]. Therefore, in this thesis, a station keeping algorithm will be thoroughly tested
and studied for both low and high amplitude orbits.

In literature, there are some comparisons between different control methods as [11, 19, 33].
However, these studies compared algorithm for specific mission orbits.
In [6], a Monte Carlo simulation was performed at the Sun-Earth, Earth-Moon and in
high fidelity model for multiple L2 Halo orbits. The primary objective of that research
is to examine various control strategies utilizing the Floquet Mode Approach, specifically
for those orbits where the algorithm works.
The objective of this thesis is to push the algorithm beyond its limits, examining its
behavior as it approaches failure and the reasons behind it, with the aim of gaining a
clearer understanding of the algorithm’s operational boundaries.
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Figure 1.1: Sun-Earth system Lagrange points, not in scale. [23]

1.2. Thesis structure

The structure of the thesis is the following: in Chapter 2 the literature review about
CR3BP and station keeping methods is going to be presented. In Chapter 3 the dynamics
models is going to be shown, about CR3BP, halo family in L2 and BR4BP. In Chapter 4,
the Floquèt Mode Approach (FMA) controller is going to be developed; As in Chapter 5, a
simulation of the station keeping algorithm in Sun-(Erth+Moon) and Earth-Moon systems
is proposed and the algorithm limitations are going to be presented. In Chapter 6, two
applications of the station keeping algorithm are considered: one in Sun-(Earth+Moon)
system at L2, for the baseline option of Radiation Environment Monitor for Energetic
Cosmic rays (REMEC) mission [1]. For the former case, also major perturbations along
all mission phases will be defined [36], and the other one in BR4BP environment. In
Chapter 7 conclusions and future works are presented.
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2.1. Circular Restricted Three Body Problem

As previously mentioned, the space environment has to be modelled to design a space
mission in the correct way. For our purpose the CR3BP has been implemented.
The first studies 3BP were made by Newton in Philosophiae Naturalis Principia Math-
ematica (1687). Since 3BP has no a closed solution, Euler began to study a simplified
version of the problem and in 1767 he formulated CR3BP in a rotating synodic reference
frame, in which the two main mass bodies are on the same axis rotating on the same
barycenter. At the same time Lagrange found two solutions of the problem in which the
masses move aligned or at the vertex of an equilateral triangle, and the Lagrange points
were found, where the gravitational forces are in equilibrium.
Another important characteristic of the CR3BP is the Jacobi integral, discovered by Ja-
cobi in 1836. The Jacobi integral is a constant of motion. It was used by Hill in 1877
to define and important tool: the Zero Velocity Curves (ZVCs). The ZVCs give insights
about the motion of the s/c, showing regions where the s/c is allowed to move.
Thereafter, Poincaré used the Hill’s studies to find the first periodic orbits.
Over the centuries, CR3BP has been studied to the present day. The CR3BP was studied
in depth by Szebehely in 1967 [35], giving an important reference to study orbit families
around Lagrange points.

2.1.1. Linear dynamics

Linear dynamics of periodic orbits around equilibrium points has been studied to under-
stand the nonlinear behavior of these dynamical systems, in particular around L1 and
L2. The result is that the linear dynamics is of the type center x center x saddle [32].
The saddle indicates hyperbolic behavior, one stable and the other unstable. Therefore,
the problem will have two eigenvalues (stable and unstable) and two eigenvectors, re-
spectively. The eigenvectors represent two directions in which the s/c can be perturbed:
in one case it will converge, in the other it will diverge from the periodic orbit. These
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manifolds can be used to bring the s/c from Earth to Lagrange points and vice-versa.
This hyperbolic behaviour makes L1,2 very unstable thus a station keeping technique is
required for the design of orbits around them.

2.1.2. Orbits around Lagrange points

The computation of periodic orbits around Lagrange points is challenging due to hyper-
bolic behaviour of the CR3BP. The goal is to eliminate the hyperbolic parts since from
the center manifold is possible to obtain two families called Lyapunov orbits (vertical and
horizontal), shown in Fig. 2.1.

Figure 2.1: Horizontal and vertical Lyapunov family [38].

From literature there are three ways to compute only the center manifold, thus the
periodic orbits: reduction method [18], a semi-analytical approach which exploits the
Poincaré–Lindstedt method [27] and numerical methods as in [20, 32, 39]. In this thesis
the a numerical method based on the Newton’s method has been implemented.
In addition to Lyapunov orbits, there are also 2-D quasi-periodic orbits called Lissajous
orbits Fig. 2.2 that connect the two families of Lyapunov orbits. A specific solution of
the Lissajous orbits are the well-known Halo orbits. The Halo orbits can be computed
analytically, considering the in-plane and out-of-plane frequencies to be equal [10]. Halo
orbits are 3-D periodic orbits, symmetric with respect to x-z plane. In this thesis, Halo
orbits in the Sun-(Earth+Moon) and Earth-Moon reference frame will be studied.
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Figure 2.2: Lissajous family [26].

The computation of the periodic orbits around Lagrange points is strongly depending on
the mass parameter µ. A complete classification can be found on Soldini’s Ph.D. theses
[32].

2.1.3. Space missions at Lagrange points

This section will list the main space missions to L2 in the Sun-(Earth + Moon) and
Earth-Moon systems. The main data were taken from [30]. Since this thesis focuses on
the development of a station keeping algorithm, station keeping costs will be reported
where they could be found.
Table 2.1 shows how the station keeping costs per year in L2 is generally in the order
of m/s. Thus the cost is not so high, however, an adequate station strategy must be
developed for mission success.

2.2. Station keeping: state of the art

This section provides a brief discussion and list of the main station-keeping strategies.
The classification of station keeping methods is carried out as following [30]. A first
classification is done if the algorithm is based on Dynamical effects and it will be classified
as (CAT.i) while the other are based on the General control theory (CAT.ii). Within
both categories, two kind of control strategies exist: Impulsive(A) and Continuous(B).
Moreover these methods are suitable for either linear or non-linear dynamics.

†Sun-Earth.
†Earth-Moon.
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The well-known method within the CAT.i.A is Floquét mode approach (linear), developed
by Simò et al. [31] and later, in 2001 Gòmez et al. [12], which exploits the Floquét modes.
In CAT.i.B are included Hamiltonian structure preserving (linear) developed by Scheers
et al. in 2003[28], which stabilizes the orbit in the sense of Lyapunov stability and the
Pole placement technique (linear) developed by Gurfil at al. in 2006 [15].
In CAT.ii.A there are Target point technique (linear) developed by Howell et al. in
1993 [17], which can be a very flexible method and the Sliding mode control(non-linear)
developed by Shahid et al. in 2010 [29].
In CAT.ii.B are included Linear feedback control developed in 1970 by Farquhar [9] and
in 1973 by Breakwell [2] the θ-D method (non-linear) developed by Xin et al. in 2008 [37].
Some of these methods have been implemented exploiting the Solar radiation pressure
(SRP) to control the orbit (e.g. HSP integrating with SRP [33]).
Linear methods and methods belonging to CAT.i used especially to understand as best
as possible the dynamics of the problem and are methods exploiting the dynamics of the
problem itself. Developing these methods provide very useful and qualitative information
about the problem which has been studied [19]. Therefore, Floquét mode approach method
have been selected and implemented in this thesis.
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3| Dynamic models

This chapter will present the main dynamic models used in the thesis, their development
and their main characteristics.

3.1. Circular Restricted Three Body Problem

As already mentioned in Chapter 1, CR3BP derives from some assumptions of the n-body
problem. The first assumption is the number of bodies considered. It’s obvious as in our
case the number of body, which we will identify as n, is n = 3. Fig. 3.1 shows a graphical
representation of the model considered.

Figure 3.1: 3BP representation in inertial frame.

The three bodies are governed by Newton’s law of universal gravitation:

F = G
m1m2

d2
(3.1)

Where m1 and m2 are the two primaries’ masses, d is the norm of their distance, G the
universal gravitational constant and F the gravitational force. Therefore, applying the
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second Newton’s law, the equations of motion of the overall system in the inertial frame
can be retrieved Eq. (3.2):



m1R̈1 = G
m1m2

R3
12

R12 +G
m1m3

R3
13

R13,

m2R̈2 = G
m2m1

R3
21

R21 +G
m2m3

R3
23

R23,

m3R̈3 = G
m3m1

R3
31

R31 +G
m3m2

R3
32

R32.

(3.2)

A further assumptions can be done, if m3 << m1 and m3 << m2, we can state that m3

does not influence the other two bodies thus m1 and m2 will move following the second
Kepler’s law. Moreover, in some particular cases, the motion of the two primaries (m1,
m2) can be assumed to be circular.
In this thesis the two primaries are defined by the system Sun-(Earth+Moon), where
the Sun and the Earth+Moon system revolve around their common center of mass in a
circular motion. The plane on which the primaries move is the ecliptic, and the third
body is represented by the s/c.
Before deriving the equations of motion is important to define two reference frames one
inertial and the other rotating.

3.1.1. Reference frames

The CR3BP is defined in a rotating frame (x,y, z) with respect to an inertial frame(X̂, Ŷ , Ẑ).
Fig.3.2 shows the two reference systems that have the same origin that coincides with the
system Sun-(Earth+Moon)’s center of mass (CM); The two primaries both lie on the x

axis; z is the rotation axes and coincides with Ẑ; The rotating frame rotates on the eclip-
tic plane with a constant mean motion n∗; at t=0 the two reference frames will coincide.

∗Mean motion n =

√
2π

T
where T is the period of the rotating frame
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Figure 3.2: Inertial and rotating reference frames representation.

With these new assumptions the motion of a s/c in an inertial frame under the gravita-
tional influence of the two primaries will be:

R̈ = G
m1

| R1 −R |3
(R1 −R) +G

m2

| R2 −R |3
(R2 −R) (3.3)

Since in the next chapters the problem will be treated in the rotating frame, it is im-
portant to identify a rotation matrix that will allow to pass from a reference frame to
another. Let’s first define the state of the spacecraft in the inertial frame as X = (R, Ṙ)

and the one in the rotating frame as xd = (rd, ṙd)
†. The relations to pass between the

two reference systems are:



rd = TriR,

ṙd = ṪriR+ TriṘ,

R = T T
ri rd,

Ṙ = Ṫ T
ri rd + T T

ri ṙd.

(3.4)

Using as reference Fig. 3.2, the direction cosine matrix Tri(t) that appears in Eq. (3.4)
can be define as:

† □d denotes variables with dimension in the rotating frame, the absence of the subscript on the
same variable indicates that the same variable is dimensionless
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Tri(t) =

 cosnt sinnt 0

− sinnt cosnt 0

0 0 1

 (3.5)

A complete development of Eq. (3.4) can be found in Soldini [32].

3.1.2. Equations of Motion in the rotating frame

In this section, the equations of motion in the rotating reference frame are calculated and
adimensionalized ([5, 20]).
Let’s first define some parameters, the distance between the two primaries l = 1AU =

1.496 · 108km and the total mass of the system:

M = m1 +m2 where m1 = mSun and m2 = mEarth +mMoon (3.6)

Then the mass ratios are defined as:

µ1 =
m1

M
and µ2 =

m2

M
(3.7)

Thanks Eq. (3.7) and Eq. (3.6) the following equation holds:

µ1 + µ2 = 1 (3.8)

Defining the mass parameter µ = µ2 and using Eq. (3.8), Eq. (3.7) becomes:

µ1 = 1− µ and µ2 = µ (3.9)

Thus the masses of the system can be expressed as function of the total mass M :

m1 = (1− µ)M and m2 = µM (3.10)

In the same way, the distance of the primaries with respect to the CM can be expressed
using the same procedure:

dd1 = µl and dd2 = (1− µ)l (3.11)

A representation of these quantities is shown Fig. 3.3.
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Figure 3.3: Rotating reference frame representation.

Applying Newton’s second law, the vectorial formulation of the CR3BP can be expressed
as:

r̈d + 2ω × ṙd + ω × (ω × rd) =
1

m
(F1d + F2d) = −G

m1

r31d
r1d −G

m2

r32d
r2d (3.12)

Where,

• ω : reference system angular velocity.

• m : spacecraft mass.

• r̈d : relative acceleration.

• 2ω × ṙd : Coriolis acceleration..

• rd × (ω × rd) : centripetal acceleration.

• r1d = (xd + µl)̂i+ ydĵ + zdk̂.

• r2d = (xd − (1− µ)l)̂i+ ydĵ + zdk̂.

By performing the vector products and substituting Eq. (3.10) and Eq. (3.11) into Eq. (3.12),
the latter can be rewritten as:



ẍd − 2nẏd − n2xd = −GM

[
1− µ

r31d
(xd + µl) +

µ

r32d
(xd − (1− 1µ)l)

]
,

ÿd + 2nẋd − n2yd = −GM

[
1− µ

r31d
yd +

µ

r32d
yd

]
,

z̈d = −GM

[
1− µ

r31d
zd +

µ

r32d
zd

]
.

(3.13)
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The complete procedure to obtain Eq. (3.13) can be found in Appendix A.1.
Tab. 3.1 shows the parameters used to adimensionalize Eq. (3.13)

l [km] τ [s] v [km s−1]

1AU

√
l3

GM

√
GM

l

Table 3.1: Parameters to adimensionalize distance, time and velocity.

The dimensionless time parameter is τ = nt, in this way the first and second time deriva-
tives can be computed as:


(□̇) =

d(□)

dt
= n

(□)

dτ
= n(□)′

(□̈) =
d2(□)

dt2
= n2 (□)

dτ
= n2(□)′′.

(3.14)

Thus, the dimensionless equations of motion in CR3BP are:



x′′ − 2y′ − x = −1− µ

r31
(x+ µ)− x+ µ− 1

r32
µ,

y′′ + 2x′ − y = −1− µ

r31
y − µ

r32
y,

z′′ = −1− µ

r31
z − µ

r32
z.

(3.15)

Where,

• x =
xd

l
, y =

yd
l

and z =
zd
l

.

• r1 =
√
(x+ µ)2 + y2 + z2 and r2 =

√
(x+ µ− 1)2 + y2 + z2.

The complete procedure to obtain Eq. (3.15) is described in Appendix A.2.

Since the total potential of the system can be written as:

V =
1

2
(x2 + y2)︸ ︷︷ ︸
rotational

+
1− µ

r1
+

µ

r2︸ ︷︷ ︸
gravitational

(3.16)

Eq. (3.15) can be rewritten to highlight the first partial derivatives of the total potential
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as:


x′′ − 2y′ = Vx,

y′′ + 2x′ = Vy,

z′′ = Vz.

(3.17)

Where the partial derivatives Vx, Vy and Vz are

• Vx = x− 1− µ

r31
(x+ µ)− x+ µ− 1

r32
µ

• Vy = y − 1− µ

r31
y − µ

r32
y

• Vz = −1− µ

r31
z − µ

r32
z

The total potential of the system in a rotating reference frame is composed by a rotational
and gravitational contributions. Writing the equations of motion in dimensionless form
highlight their only dependence on the mass parameter µ.

3.1.3. Lagrange points

In this section the equilibrium points (Lagrange points) of the system are numerically
computed using the built-in Matlab® function fzero ([5, 20]). To study static equilibrium
the following relations have to hold:

x′′ = y′′ = z′′ = x′ = y′ = z′ = 0 (3.18)

So: 

Vx = x− 1− µ

r31
(x+ µ)− x+ µ− 1

r32
µ = 0,

Vy = y − 1− µ

r31
y − µ

r32
y = 0,

Vz = −1− µ

r31
z − µ

r32
z = 0.

(3.19)

There are five equilibrium points: L1,2,3 are identified as the collinear ones and L4,5 as the
equilateral Lagrange points.
As shown in Fig. 3.4, collinear equilibrium points lie on the x axis, this imply that z = 0

and y = 0. Thus, the condition to find L1,2,3 can be recovered by Eq. (3.19):
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Vx(x, 0, 0) = x− 1− µ

(x+ µ)2
µ

(x+ µ− 1)2
= 0 (3.20)

Moreover, Fig. 3.4 shows the positions of L1,2,3 with respect to the primaries, thus, those
positions can be approximated with Eq. (3.21), then Eq. (3.20) has to be solved numeri-
cally, using the approximated values as initial conditions.

xL1 = 1− µ− ϵ1,

xL2 = 1− µ+ ϵ2,

xL3 = −µ− ϵ3.

(3.21)

Where ϵ1 > 0, ϵ2 > 0 and ϵ3 > 0 are quantities to set arbitrarily, such that xL1, xL2 and
xL3 are close to the real ones. Since Eq. (3.19) has to hold, the choice of ϵ1 > 0 and ϵ2 > 0

can be made graphically thanks to Fig. 3.5a, while for ϵ3 > 0 thanks to Fig. 3.5b.

Figure 3.4: Lagrange points schematic representation.

For what concern equilateral Lagrange points, they are located on the vertices of an
equilateral triangle [20], this imply that r1 = r2 = 1. Thus, L4,5 have been calculated
through geometric considerations.

The computation of Lagrange points has been performed considering the Sun-(Earth+Moon)
system, with a mass parameter µ = 3.04042 · 10−6 [34]. The results are presented in Ta-
ble 3.2.
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x [ndu] y[ndu] z[ndu] x [km] y[km] z[km]
L1 0.98998 0 0 1.48099 · 108 0 0
L2 1.01007 0 0 1.51105 · 108 0 0
L3 -1 0 0 −1.49597 · 108 0 0
L4 0.49999 0.86602 0 7.47984 · 107 1.29555 · 108 0
L5 0.49999 -0.86602 0 7.47984 · 107 −1.29555 · 108 0

Table 3.2: Lagrange points coordinates in rotating reference frame of Sun-(Earth+Moon) system

(a) Total potential derivative with respect to x around the Sun

(b) Total potential derivative with respect to x around the Earth

Figure 3.5: Total potential derivative with respect to x.
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3.1.4. Jacobi Integral and Zero Velocity Curves

The dimensionless equations of motion in CR3BP are an autonomous system, since the
independent variable is time, it is called time-invariant system. A property that charac-
terise that kind of systems are the presence of an integral of motion, a quantity that is
conserved during the motion.
In the case of the CR3BP the integral of motion is called Jacobi Integral (C) [5, 20, 32].
Taking Eq. (3.17) and multiplying the first equation by ẋ, the second one by ẏ and the
third one by ż and then summing the three equations,it is possible to obtain the energy
derivative indicated as Eq. (3.22).

E ′ = x′x′′ + y′y′′ + z′z′′ − 2y′x′ + 2x′y′ − x′Vx − y′Vy − z′Vz = 0 (3.22)

Eq. 3.22 is easily integrable, the Jacobi Integral is obtained:

E =
1

2

dv2

dτ
− dV

dτ
=

d

dτ
(v2 − 2V ) = 0 =⇒ (v2 − 2V ) = −C = const (3.23)

Where v2 = x′2 + y′2 + z′2. The equation can be rewritten knowing that V = −U , where
U is the total potential energy.
In Chapter 2, it was indicated how the Jacobi integral was exploited by Hill to obtain
insights about the motion of a s/c around Lagrange points. Some conclusions can be
retrieved from Eq. (3.23):

• 2V − C > 0 =⇒ v2 > 0 : possible motion.

• 2V − C < 0 =⇒ v2 < 0 : impossible motion

This means that there are areas where v2 = 0 and C∗ = 2V . C∗ is called Critical Jacobi
constant. It defines limits between possible motion (allowed regions) and impossible mo-
tion (forbidden regions), these boundary surfaces are called Zero velocity curves (ZVCs).

An example of ZVCs, for the Earth-Moon system, is reported in Fig. 3.6. It is evi-
dent how a s/c needs to increase its energy to enlarge its possible motion. What has
just been said is made more evident by Fig. 3.7. The figure shows that for some levels of
energy the s/c is literally bounded around one of the two masses (Case 1); if the energy
increases the motion between the two masses becomes possible (Case 2). As the energy
increases further, the motion becomes larger and larger (Case 3-4), until the s/c can move
freely (Case 5).
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Figure 3.6: Zero velocity curves for Earth-Moon system, with µ = 0.0121505.

Figure 3.7: Areas in which the spacecraft can travel according to its energy level [20].

3.1.5. Linearised equations of motion

As far as, we know that the collinear Lagrange points are unstable, while the equilateral
Lagrange points are stable, to be able to affirm this, it is necessary to study the local
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stability of the system. The equation of motions Eq. (3.15) must be linearised in the
vicinity of each Lagrange point, such that the eigenvalues of the linearised equations can
be computed in order to study the stability of the system.
If xeq, yeq and yeq are the components of the position of a generic Lagrange point, it is
necessary to perturb them such that:


x = xeq + ξ,

y = yeq + η,

z = zeq + ζ.

=⇒


x′ = x′

eq,

y′ = y′eq,

z′ = z′eq.

(3.24)

Then, a Taylor expansion can be developed for the left hand side of Eq. (3.15), evaluating
it at the equilibrium points and neglecting higher-order terms:



∂V

∂x
(x, y, z) =

�
�
�
��
0

∂V

∂x

∣∣∣∣
eq

+
∂2V

∂x2

∣∣∣∣
eq

ξ +
∂2V

∂y∂x

∣∣∣∣
eq

η +
∂2V

∂z∂x

∣∣∣∣
eq

ζ,

∂V

∂y
(x, y, z) =

�
�
�
��
0

∂V

∂y

∣∣∣∣
eq

+
∂2V

∂y2

∣∣∣∣
eq

η +
∂2V

∂x∂y

∣∣∣∣
eq

ξ +
∂2V

∂z∂y

∣∣∣∣
eq

ζ,

∂V

∂z
(x, y, z) =

�
�
�
��
0

∂V

∂z

∣∣∣∣
eq

+
∂2V

∂z2

∣∣∣∣
eq

ζ +
∂2V

∂x∂z

∣∣∣∣
eq

ξ +
∂2V

∂y∂z

∣∣∣∣
eq

η.

(3.25)

Knowing Eq. (3.15), Eq. (3.24), and Eq. (3.25), the linearised equations of motion are:


ξ′′ − 2η′ = V eq

xx ξ + V eq
xy η + V eq

xz ζ,

η′′ + 2ξ′ = V eq
yy η + V eq

yx ξ + V eq
yz ζ,

ζ ′′ = V eq
zz ζ + V eq

zx ξ + V eq
zy η.

(3.26)
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Equation (3.26) can be written in vectorial form:

d

dτ



ξ

η

ζ

ξ′

η′

ζ ′


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

V eq
xx V eq

xy V eq
xz 0 2 0

V eq
yx V eq

yy V eq
yz −2 0 0

V eq
zx V eq

zy V eq
zz 0 0 0


=⇒ X ′ = AX (3.27)

Where the matrix A is composed as:

A =

[
0 I

VJ J

]
; J =

 0 2 0

−2 0 0

0 0 0

 (3.28)

The matrix VJ is the Jacobian matrix of the total potential evaluated at the equilibrium
points. In Appendix A.3 the full expression of the Jacobian is presented. Now, it is
possible to compute the eigenvalues of A, thus the stability of Lagrange points: L1, L2

and L3 will have a real and positive eigenvalue that determines the instability, while L4

and L5 will have all the eigenvalues on complex axis and negative plane that determine
stability.

3.2. Halo orbits design

In this section, the mathematical tools used to compute the Halo family of orbits will
be presented. Since the equations of motion do not have a closed solution, there are
techniques that exploit geometrical characteristics of the orbit. In this thesis the numerical
method known as Differential correction or Shooting method has been implemented.

3.2.1. State Transition Matrix

Before introducing the methodology used to compute Halo orbits, another tool have to
be introduced: the State Transition Matrix (STM). The dynamics in the CR3BP can be
expressed in a compact and general way as:

{
ẋ = f(x, t),

x(t0) = x0.
(3.29)
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where x0 is the initial value of the state. In this scenario, it possible to define a function
that map the initial condition x0 at time t to the final condition x at time t, as shown
in Fig. 3.8. This function is called flow of the dynamics such that x = φ(x0, t0, t). Thus
the flow is the system of ODEs.

Figure 3.8: Mapping of initial conditions through flow

If we have perturbed initial conditions that are propagated through the flow Eq. (3.30).
The final conditions will be displaced with respect to those not perturbed Fig. 3.9.

x+ δx = φ(x0 + δx0, t0, t) (3.30)

Figure 3.9: Mapping of perturbed initial conditions through flow

If the deviations with respect to the initial conditions are small, the flow can be linearised,
and the following equation is obtained:
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δx =
∂φ

∂x0

(x0, t0, t)δx0 =⇒ δx = Φ(x0, t0, t)δx0 (3.31)

Where Φ(x0, t0, t) is the STM (Jacobian of the flow) and it is a linear analytic map be-
tween δx0 and δx. The full derivation can be found in Appendix A.4.

In this thesis the STM will be computed numerically, through the use of variational
equations Eq. (3.27) that can be written in the following way:

δẋ(t) = A(t)δx(t) (3.32)

Deriving with respect to time Eq. (3.31),

δẋ = Φ(x0, t0, t)δẋ0 (3.33)

Taking into account Eq. (3.32), Eq. (3.33) and Eq. (3.31) tthe following equation is ob-
tained:

Φ̇(x0, t0, t) = A(t)Φ(x0, t0, t) (3.34)

Equation (3.34) can be integrated to compute the STM at each time step, where the
initial conditions will be Φ(x0, t0, t0) = I6

†

3.2.2. Differential corrections

Since the mathematical problem in trajectory design is a Two boundary Value Problem
type, the differential correction methods are used.
In this thesis the Multi-variable Newton method has been implemented [24, 39]. The
Multi-variable Newton method is a generalization of the classical Newton’s method. In
this section its main features will be presented.

Let’s first introduce a vector that collects all those free variables that can be modified:

X =


X1

...
Xn

 (3.35)

†I6 is identity matrix 6x6
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Where n is these number of free variables. Some of free variables are constrained , thus
a vector constraint can be defined:

F (X) =


F1(X)

...
Fm(X)

 = 0 (3.36)

The goal is to find a vector X∗ such that F (X∗) = 0, which can be done using the
Newton’s method. In this application, since we have multiple variables, we are going to
apply a Multi-variable Newton method.
Let’s expand Eq. (3.36) with a Taylor expansion up to the first order:

F (X) = F (X0) +
∂F (X0)

∂X0

(X −X0) (3.37)

Thus, substituting Eq. (3.36) into Eq. (3.43), the following equation is obtained:

F (X0) +DF (X0)(X −X0) = 0 (3.38)

Where DF (X0) is the Jacobian matrix of the problem of size m × n. At this point
Eq. (3.38) can be written in iterative way:

Xj+1 = Xj −DF (Xj)
−1
F (Xj) (3.39)

The iteration process continue up to a certain value of Xj+1 such that F (Xj+1) < ϵ,
where ϵ is a selected tolerance..

3.2.3. Single shooting: Halo orbits

In the previous sections the STM and the Multi-variable Newton method have been
presented. Now, these two tools can be joined together to implement the Single shooting
procedure to compute Halo orbits.
Halo orbits are 3D periodic orbits, symmetric with respect x − z plane. This plane is
intersected perpendicularly, thus, the only component velocity on that plane is along y.
This means that a generic initial condition on x− z plane can be written as:

x = [x0 ; 0 ; z0 ; 0 ; ẏ0 ; 0] (3.40)
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The target condition is to reach after half period (T/2), the same x − z plane, where
yt = 0, ẋt = 0 and żt = 0‡. By fixing the coordinate z0, the free variables vector can be
defined as:

X0 =

x0

ẏ0

T

 (3.41)

Knowing the symmetry conditions to impose, the constraint vector can be formulated as:

F (X0) =

y(T/2)− yt

ẋ(T/2)− ẋt

ż(T/2)− żt

 < ϵ (3.42)

At this points the Jacobian matrix of the constraints with respect to the the free variables
can be computed:

DF (X0) =
∂F (X0)

∂X0

=



∂y

∂x0

∂y

∂ẏ0

∂y

∂T

∂ẋ

∂x0

∂ẋ

∂ẏ0

∂ẋ

∂T

∂ż

∂x0

∂ż

∂ẏ0

∂ż

∂T


=

Φ21 Φ25 ẏ

Φ41 Φ45 ẍ

Φ61 Φ65 z̈

 (3.43)

Where Φ is the STM.
To conclude, the new vector of free variable is derived:

X =

x0

ẏ0

T

−

Φ21 Φ25 ẏ

Φ41 Φ45 ẍ

Φ61 Φ65 z̈


y(T/2)− yt

ẋ(T/2)− ẋt

ż(T/2)− żt

 (3.44)

Then, the new initial conditions can be reformulated and the procedure is iterated from
Eq. (3.41) to Eq. (3.44), until the constraint vector(Eq. (3.42)) is within the tolerance ϵ.

3.2.4. Orbit continuation

Orbit continuation is a technique used to generate a family of orbits [14, 20]. In this
thesis, it has been used to generate L2 southern Halo family for Sun-(Earth+Moon) and

‡□t are the target conditions
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Earth-Moon systems.
Halo families can be generated from the bifurcation of a 2D Lyapunov orbit [14]. A generic
initial condition for a Lyapunov orbit on the x− z symmetric plane can be:

x1 = [x0 ; 0 ; 0 ; 0 ; ẏ0 ; 0] (3.45)

Since Halo orbits are 3D orbits, an initial condition for the first Halo orbit can be generated
from Eq. (3.45), adding a perturbation (d) to the z coordinate:

x1 = [x0 ; 0 ; d ; 0 ; ẏ0 ; 0] = [x0 ; 0 ; z1 ; 0 ; ẏ0 ; 0] (3.46)

With this new initial condition the new orbit can be computed with the procedure shown
in Section 3.2.3.
The updating procedure continue such that the initial condition for the new orbit will be:

xn = [xn−1 ; 0 ; zn−1 + d ; 0 ; ẏn−1 ; 0] (3.47)

The iteration on the coordinate z continue until the z coordinated change more rapidly
than the x coordinate:

|xn − xn−1| < |zn − zn−1| (3.48)

When x will change more rapidly than z, the same iteration expressed in Eq. (3.47) can
be done on x coordinate.

3.2.5. Halo orbits stability

Halo orbits’ stability has been computed with an numerical approach as in [3, 32].
Let’s first define the Monodromy matrix [12, 19] as the STM evaluated after one Halo
orbital period:

M = Φ(x0, t0, T ) (3.49)

The eigenvalues of the Monodromy matrix have the following form:

m1 > 1

m2 =
1

m1

< 1

m3 = m4 = 1

m5 = m6
∗

(3.50)
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The eigenvalues of M provide information on the global stability of Halo orbits: if they lie
outside the unit circle§ in the complex plane, they represent instability, if they lie within
it they indicate stability, and if they are equal to unity they identify marginal stability.
The eigenvalues m1 and m2 are associated to the hyperbolic behaviour: m1’s eigenvector
indicates the most expanding direction, while, m2’s eigenvector indicates the converging
direction; m3 = m4 = 1 are associated to neutral variables, there is only one eigenvec-
tor associated to the eigenvalue equal to one and it is tangent to the orbit, the other
eigenvalues is associated to a variation of a variable (e.g. energy or period) that change
along the orbits family; m5 = m6

∗ are complex conjugate pair, their modulus is equal
to one and they define a rotating plane. This is due to an existence of a quasi-periodic
orbit around the Halo orbit. Moreover, the computation of the Invariant manifolds in the
CR3BP exploits the Monodromy matrix, since the Monodromy matrix gives the direction
of stable and unstable direction.

Now, the stability index can be defined as:

k = tr(M )− 2 (3.51)

A Halo orbit can be defined as stable if k is in the range ±2.

3.2.6. Halo family characteristics

In this section, it will be presented the southern L2 Halo family in the Sun-(Earth-Moon)
system and the major parameters that characterizing these orbits. All the tools just
presented have been used to generate the family and to derive the parameters.
Figure 3.10 shows the Halo family parameterized with respect to the amplitude Az

¶.
§the Monodromy matrix gives discrete information, thus the eigenvalues are studied with respect on

the unitary circle of complex plane
¶Az is selected as the maximum value that the coordinate z assumes.
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Figure 3.10: L2 Sun-Earth Halo family parameterized with the amplitude.

Figure 3.10 shows how the amplitude increases as the orbit approaches the Earth, except
for the orbits most closed to it, where Az begins slightly decrease.
Figure 3.11 shows how the main Halo orbit parameters change as function of Az. The
orbital period (Fig. 3.11a) decreases when the amplitude increases, passing from a maxi-
mum value of 180 days to a minimum of 100 days. Also the Jacobi constant (Fig. 3.11b)
decrease as amplitude increases. The stability index (Fig. 3.11c) shows that the more
stable orbits are those more closest to Earth. The same figure shows that in some cases
the stability index is within the interval ±2, those orbits are stable and they are called
Near rectilinear Halo orbits (NRHO). NRHO are indeed stable, and will not be considered
as a case study in this thesis.

(a) Orbital period
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(b) Jacobi constant

(c) Stability index

Figure 3.11: Halo family main characteristics.

3.3. Bi-Circular Restricted Four Body Problem

As in this thesis, an application of station keeping in the four-body environment will be
presented, this section will introduce a specific dynamics, referred to as the Bi-circular
Restricted Four-Body Problem .
The dynamics implemented was developed by [22], where the fourth body is introduced
within the dynamics of the CR3BP as a perturbation. The additional body in this case
will be the Moon, Fig. 3.12 shows a graphical representation of the model.
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Figure 3.12: CR3BP and BR4BP representation [22].

The equations of motion have the same form of Eq. (3.17), the only difference is inside
the total potential V that in this case takes into account the presence of the Moon:

VM(x, y, z, µ, θ) = V (x, y, z, µ, θ) +
mM

rM
− mM

ρ2M
(x cos θ + y sin θ) (3.52)

where,

• θ̇ = ωM = 1.2367 · 10 [ndu] : Moon’s angular velocity.

• mM = 3.6942 · 10−8 [ndu] : Moon’s mass.

• ρM = 2.5721 · 10−3 [ndu] : Earth-Moon’s distance

• r2M = (x− 1 + µ− ρM cos θ)2 + (y − ρM sin θ)2 : s/c-Moon’s distance.
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The FMA is a method that exploits SMD, in particular it is a control method used in
CR3BP dynamics that makes use of the theory of invariant manifolds. The method,
developed in [12, 31], aims to cancel the unstable component of the error state vector
(e.g. with an impulsive maneuver), such that the s/c can naturally converge towards the
nominal orbit. The information about stable and unstable directions are not recovered
from STM, since its elements grow exponentially in time [19], but from the Floquèt modes.
This Chapter presents the main components required for FMA development and shows
the implementation of the algorithm.

4.1. Floquèt Modes

As indicated above, since Floquèt modes are periodic functions, they are used to obtain
indication about the stable and unstable directions. The method used to compute the
modes follows the procedure found in Keeter [19], thus the Floquèt modes can be computed
numerically by this formula:

Ẽ(t, t0) = Φ(t, t0)Se
−J̃t (4.1)

Matrix S is a real matrix that collects the eigenvectors of the Monodromy matrix,
Eq. (3.49). The complex eigenvectors have to be separated in imaginary and real part to
keep S a real matrix.
J̃ is a Jordan matrix that depends on the eigenvalues of the Monodromy matrix, Eq. (3.50).
Let’s define Poincarè exponents ωi:

• for a real eigenvalue (mi) : ωi =
1

T
lnmi = ri.

• for a complex eigenvalue (mi = ai + bij) : ωi = ri + θij, where ri =
1

T
ln (

√
a2i + b2i )

and θi =
1

T
arctan

(
bi
ai

)
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Thus the Jordan matrix is defined as:

J̃ =



r1

r2

r3

r3

r5 θ5

−θ5 r5


(4.2)

Due to inaccurate integration or numerical problem, it could happen that m3 and m4 are
not a pure real number but they have a very small imaginary part, in those few cases they
are treated as a complex number.

4.2. Controller definition: one-axis and two-axes con-

trollers

Different controllers exist [11, 16, 19], but the aim of all of them is to eliminate the
unstable component of the error state vector. The error state vector is defined as the
difference between the actual spacecraft state and the nominal one. It is an error both
in position and velocity, thus the FMA requires the knowledge of the entire state of the
spacecraft. Let’s define the error state vector:

δ(t) = [δx ; δy ; δz ; δẋ ; δẏ ; δż] (4.3)

The Floquèt modes (Eq. (4.1)) can be used as base to express the error state vector
(Eq. (4.3)) at any time along the orbit, such that:

δ(t) =
6∑

i=1

ciei(t) (4.4)

Where ei are the vector components of the matrix defined in Eq. (4.1). Since e1 is the
unstable direction, the aim is to cancel the component c1. Before that, the projection
factor π1 along the unstable direction has to be computed as the signed minor of the first
column of the matrix [δ , e2 , e3 , e4 , e5 , e6]. At this point the unstable component can
be computed projecting the error state vector along the unstable component:

c1 = π1(t) · δ(t) (4.5)
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If ∆ is the maneuver to cancel the unstable component, Eq. (4.4) becomes:



δx

δy

δz

δẋ

δẏ

δż


+



0

0

0

∆x

∆y

∆z


= δ +∆ =

6∑
i=2

ciei(t) (4.6)

This implies that:

π1(t) ·∆ = −c1 = π4(t)∆x + π5(t)∆y + π6(t)∆z (4.7)

Selecting ∆y = 0 and ∆z = 0, the maneuver to cancel the unstable component of the
error state vector along the x direction will be:

∆x = − c1
π4(t)

(4.8)

In the case of the two-axis controller, it is necessary to minimize the Euclidean norm of
Eq. (4.7) [16], therefore, imposing ∆z = 0:

∆x = − c1π4(t)

π2
4(t) + π2

5(t)
; ∆y = − c1π5(t)

π2
4(t) + π2

5(t)
(4.9)

In this thesis, single-axis and two-axis control has been implemented,but there are also
cases in the literature where three-axis control is exploited [11, 19].

4.3. Real mission scenario

In order to make the simulation close to a real mission, some parameters have to be
defined. This section is going to talk about Operational errors and Mission constraints.

4.3.1. Operational errors

All the errors will be generated with a Gaussian distribution with mean equal to zero.
In the simulation three kinds of operational errors have been introduced:

• Orbit injection error: the s/c shall reach its nominal orbit, but it will not be
released exactly on a point belonging to it, thus it will have different nominal position
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and velocity.

• Orbit determination error: the s/c during the operational phase of the mission
shall be monitored from ground, so that its state can be determined. Again, the
data acquisition will not be precise and the position and velocity states acquired
will be different. This will introduce an orbit determination error.

• Orbit maneuver errors: the propulsion system on the s/c will be inaccurate, thus
it will not provide precisely the correct maneuver. This kind of error can be of two
type: an error in magnitude or in direction of the maneuver. In this thesis only the
magnitude error has been modelled.

4.3.2. Mission constraints

Also some mission constraints are introduced to simulate a real mission scenario.

• Minimum tracking time: this is the minimum time between two orbit determi-
nation. It is a very specific parameter for each mission, since it depends on the
mission operational orbit (e.g. eclipses) or on telecommunication constraints (e.g.
antennas availability/visibility).

• Minimum maneuver magnitude: This constraint is important for two reasons:
the former relates to the propulsion system, as an impulsive system cannot physically
produce a manoeuvre below a certain value; the latter is that if the magnitude of the
manoeuvre is too little, it could be of the same order of magnitude of the tracking
errors [4, 19].

• Minimum time between maneuvers: this constraint indicates the minimum
time between two successive maneuvers. This parameter is limited by the first
constraint, in fact a maneuver cannot be done before an orbit determination acqui-
sition. Moreover, it can be also a design parameter for the propulsion system since
it determines the number of total firings.

4.4. Station keeping algorithm

In this Section, the implemented algorithm will be shown. The algorithm consists of two
main parts: the former is used to selected the design parameters and to produce and store
all the information necessary for the latter, which is the actual station keeping algorithm.

First of all, the operational orbit has to be selected. Then, the initial conditions are
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integrated over one orbital period to obtain the nominal orbit, the STM and the Mon-
odromy matrix. At this point the STM and the Monodormy matrix are used to compute
the Floquèt modes along one orbit. Next, the nominal orbit and the Floquèt modes are
interpolated and replicated for n orbital periods and they are stored. The operational
errors and mission constraints can be selected. Now, the station keeping algorithm simu-
lation can be performed.
The procedure is illustrated below with a list of steps:

• Initialization:

1. Select the operational orbit.

2. Integrate the initial state x0 over one orbital period to compute nominal orbit xnom,
the state transition matrix Φ, for each state of xnom, and the Monodromy matrix
M .

3. Compute Floquèt modes E using Φ and M .

4. Define the number of orbits (n) for the simulation

5. Replicate interpolated data (E, xnom) for n obits and store them.

6. Decide operational errors and mission constraints.

7. Perturb x0 with orbit injection errors.

• Station keeping algorithm:

1. Integrate up to next tracking point and obtain the real state xreal.

2. Generate orbit determination errors errOD and add it to xreal to compute the
estimated state xestim = xreal + errOD.

3. Compute the error state vector δx = xestim − xnom

4. Assessment of manoeuvre (it depends on control strategy)

(a) if no need to perform a maneuver, restart from point 1.

(b) if a maneuver is necessary, continue.

5. Compute projection factor along unstable direction π1 with δx.

6. Compute the unstable component c1

7. Compute the maneuver ∆
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8. Compute magnitude orbit maneuver error errman and add it to ∆ to compute the
real maneuver ∆̃ = ∆+ errman.

9. Change the real state adding the maneuver xreal = xreal + ∆̃.

10. Restart from point 1.

4.5. Monte-Carlo simulation

In the development of the station keeping algorithm, operational errors are introduced
at the beginning and during the simulation. This implies a stochastic process, so all
performance parameters resulting from the simulation will be stochastic in nature. For
this reason a Monte-Carlo simulation with a sample size of 100 trials [13] is performed to
obtain statistically reasonable data.

4.5.1. Analysis of failure cases

The Monte-Carlo simulation is used also to develop a parametric analysis about the
success of the station-keeping algorithm. The study will test the Floquèt mode approach
on two main parameters:

• the minimum time between maneuvers, as this is an important design parameter,
since knowing whether a manoeuvre can be performed every 20 days or 60 days can
be useful for mission design.

• the Halo family of orbits, to understand in which cases the algorithm may fail, but
more importantly why.

Thus, a parametric study has been done varying these two parameters.
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In this Chapter, all the parameters required to define the simulation, the control strategy
and the results will be shown and commented. The simulation was carried out for both
Sun-(Earth+Moon) and Earth-Moon systems, analysing in particular the failure cases
through a Monte Carlo method.

5.1. Control strategy

Various control strategies can be employed, depending on the evolution of the unstable
component [31], the specific position along the orbit, regular time intervals, or deviations
from the nominal orbit [11]. The latter strategy has been selected, thus some boundaries
and zones need to be defined:

• Free motion: No manoeuvres are performed within this zone, so the spacecraft
moves according to its own dynamics. The zone is bounded by the nominal orbit
and the starting maneuvers lines.

• Perform maneuver: Maneuvers can be performed within this zone if necessary.
This zone is delimited by the boundaries starting maneuvers and limit maneuver.

• Interrupt simulation: This zone lies beyond the boundary limit maneuver ; if
the spacecraft is in this zone, the simulation is interrupted and the station keeping
algorithm is considered to have failed.

Figure 5.1 shows the terminology just introduced.

Figure 5.1: Control strategy graphical representation.
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Further considerations need to be made about the Perform maneuver zone. A space-
craft in that zone will not always perform a maneuver, there are two cases in which the
maneuver will not be done:

1. If the spacecraft is approaching the nominal orbit: followed by an OD when the
actual position is closer to the nominal orbit than the previous one.

2. If the minimum time between two consecutive manoeuvres has not elapsed.

In all other cases, when the spacecraft is in that area, a maneuver will be performed.

5.2. Failure analysis

In this Section, as already mentioned, a failure analysis of the Floquet mode approach,
applied to Halo orbits station keeping, is presented. The station keeping simulation is
considered a success, if the s/c will remain within the limit maneuver boundary for thr
prescribed simulation time. The analysis is done in the Sun-(Earth+Moon) and Earth-
Moon systems.

5.2.1. Sun-Earth systems

Let’s first analyze the station keeping in the Sun-(Earth+Moon) system. Some Halo or-
bits along the family have been selected, as reported in Table 5.1. Figure 5.2 graphically
shows the chosen samples. The reason why these orbits were selected is that, prior to the
Monte Carlo simulation, the FMA was tested along the entire Halo orbit family.It was
noticed that the algorithm began to fail when a certain amplitude value was exceeded, so
more orbits were selected after that value, to better analyze this behaviour.
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Figure 5.2: Sun-Earth systems selected orbits
graphical representation.

Az [km] T [days] k

6.27 · 103 180.38 1695
3.62 · 105 180.04 1458.13
6.95 · 105 179.02 978.13
9.94 · 105 177.16 548.75
1.38 · 106’ 171.57 174.67
1.65 · 106 161.06 45.68
1.72 · 106 155.21 24.81
1.77 · 106 149.84 14.24
1.80 · 106 144.61 7.93
1.82 · 106 139.42 3.89

Table 5.1: Amplitudes, periods and stabil-
ity indexes of the selected orbits for Sun-
(Earth+Moon) system.

Table 5.2 shows the input simulation parameters: operational errors, mission constraints,
control strategy and simulation time [11, 16].

Input Parameters

Number of orbits 10
OD errors 1.5 km and 1 cm/s
OI errors 150 km and 3 cm/s

Maneuver errors 5% in magnitude
Tracking points one per day

Min. time btw. maneuver variable
Starting maneuver 500 km
Limit maneuver 50000 km

MC trials 100
µ 3.04042 · 10−6 [34]

Table 5.2: Input parameters for Monte Carlo simulation in the Sun-(Earth+Moon) system

The minimum time between maneuvers is not fixed but variable, and will be chosen from
time to time as a fraction of the orbital period. The notation used in plots to represent
that parameter will be ∆tmin.
Moreover, the results will be presented for one-axis and two-axes controllers. They have
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been implemented as seen in Section 4.2.

Figure 5.3 shows the success probability of the station keeping algorithm implemented
with the Floquet mode approach, as function of the ∆tmin and Az. The first interesting
observation that can be made is that the two-axis controller (Fig. 5.3b) provides an overall
greater number of successes respect to one-axis controller (Fig. 5.3a), in particular higher
amplitudes are better controlled. For both cases two common behaviours have been
identified:

1. Increasing ∆tmin the station keeping starts to fail. However, for higher Az ampli-
tudes, the station keeping algorithm starts to fail at higher ∆tmin than in the case
of lower Az.

2. Increasing the amplitudes Az, even if ∆tmin is low, the station keeping fails.

The first behaviour is quite clear: increasing ∆tmin means that the station keeping is
constrained to control less an orbit, thus, at a certain point it will fail. Since Halo orbits
become more stable when Az increases, it is reasonable to think that, the station keeping
that fails with a low amplitude orbit at a certain ∆tmin, will succeed with the same ∆tmin

but an higher amplitude orbit.
The reasons for the second behavior lie in the very structure of Floquet mode approach.
Since the method aims to cancel the error state vector along the unstable component
such that the s/c naturally converge on the nominal orbit, if the stable component is not
so strong, the s/c will not able to converge on the nominal orbit. Remember, that the
system is stable when the eigenvalues are within the unitary circle on the complex plane.
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(a) One-axis controller

(b) Two-axis controller

Figure 5.3: Successes of Floquet mode approach: Halo orbits around L2 in Sun-Earth system.

To better understand this behaviour, consider Fig. 5.4. Since the stable and unstable
eigenvalues are the inverse of each other, low amplitude orbits, which are very unstable,
have large value of the unstable component and thus a very small value of the stable
component. On the other hand, higher amplitude orbits have small value of the unstable
component but higher values of the stable component respect to low amplitude orbits.
In addition, Fig. 5.4 highlights how at the beginning the unstable component decreases
rapidly, while the stable component varies less. After that, the behaviour is the inverse
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and the stable component change faster than the unstable one. For this reasons, in Fig. 5.4
is possible to identify two zones: success and failure zones. In the success zone the stable
component is strong enough to keep a s/c bounded around a nominal orbit. In the failure
zone, since the stable component increases, becoming less stronger, it will not able to keep
the s/c bounded. Between the two zones, there is a transition region where the station
keeping could succeed or not.

Figure 5.4: Unstable and stable eigenvalues of Halo orbits around L2 in Sun-(Earth+Moon)
system.

These behaviours are more visible summing the successes for each orbit, as represented
by Fig. 5.5. It is clear how at the beginning, in the success zone, the number of successes
increasing since the orbits become more stable, but just as we enter in the failure zone,
the success rate start to decrease. Moreover, it is visible how the two-axes controller,
Fig. 5.5b, respect to the one axis-controller Fig. 5.5a, is more suitable for controlling
larger amplitude orbits.
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(a) One-axis controller

(b) Two-axis controller

Figure 5.5: Sum of successes of Floquet mode approach: Halo orbits around L2 in Sun-
(Earth+Moon) system.

5.2.2. Earth-Moon

In this Section the same kind of analysis is proposed for the Earth-Moon system. The
selected orbits are shown in Fig. 5.6 and Table 5.3. Input parameters have been modified
respect to the Sun-Earth case. Since Halo orbits in Earth-Moon system are much smaller
than in the previous case, OI error in position, limit maneuver and starting maneuver
have been changed, as described by Table 5.4.
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Figure 5.6: Earth-Moon systems selected orbits
representation.

Az [km] T [days] k

38.44 14.83 1214.22
2.12 · 104 14.72 965.72
3.81 · 104 14.45 574.64
4.96 · 104 14.13 329.23
5.73 · 104 13.81 199.82
6.12 · 104 13.60 147.11
6.50 · 104 13.33 102.38
6.88 · 104 12.97 65.21
7.27 · 104 12.44 34.92
7.65 · 104 11.43 10
7.75 · 104 10.81 3.52
7.77 · 104 10.45 1.22

Table 5.3: Amplitudes, periods and stability
indexes of the selected orbits for Earth-Moon
system.

Input Parameters

Number of orbits 10
OD errors 1.5 km and 1 cm/s
OI errors 15 km and 3 cm/s

Maneuver errors 5% in magnitude
Tracking points one per day

Min. time btw. maneuver variable
Starting maneuver 100 km
Limit maneuver 10000 km

MC trials 100
µ 0.0121505 [34]

Table 5.4: Input parameters for Monte Carlo simulation in the Earth-Moon system

The same conclusions drawn for the Sun-(Earth+Moon) system can be applied to the
Earth-Moon system. Figure 5.7 shows the same two behaviours: the station keeping fails
as Az and ∆tmin increase. However, more stable orbits can have grater ∆tmin. Also in this
case, the two-axes controller, Fig. 5.7b works better with respect to the one-axis controller
Fig. 5.7a.
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(a) One-axis controller

(b) Two-axis controller

Figure 5.7: Successes of Floquet mode approach: Halo orbits around L2 in Earth-Moon system.

Figure 5.8 shows the failure and success zones. It is still evident how the station keep-
ing has more successes for orbits with higher unstable component. Indeed, Fig. 5.9, as
previously, shows that the success rate increases until the failure zone is reached.
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Figure 5.8: Unstable and stable eigenvalues of Halo orbits around L2 in Earth-Moon system.

(a) One-axis controller

(b) Two-axis controller

Figure 5.9: Sum of successes of Floquet mode approach: Halo orbits around L2 in Earth-Moon
system.
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5.3. Results

In this section, the main simulation results will be presented: station keeping cost, posi-
tion error respect to the nominal orbit and the total number of necessary maneuvers. The
cases considered are those where the station keeping has reached at least 90% of success.
The parameter ∆tmin holds significance as it ensures greater flexibility for a mission. The
choice of this parameter affects in different ways the presented results.

The number of maneuvers is strictly dependent from ∆tmin, it is rapidly decreasing when
∆tmin increases, as represented by Figs. 5.10e, 5.11e, 5.12e and 5.13e. A propulsion sys-
tem that has to work 30 times is more robust than one that has to work 100 times, thus
the number of maneuvers is an important design parameter for a propulsion system.

The position error generally slightly increases when both Az and ∆tmin increase, as in
Figs. 5.10c, 5.11c, 5.12c and 5.13c. The two-axes controller is, in general, more capable
to keep a s/c bounded around a nominal orbit.

The cost of the station keeping instead increases when the ∆tmin increases, while since the
orbits become more stable, when Az decreases, the cost slightly decreases, as in Figs. 5.10a,
5.11a, 5.12a and 5.13a. Again, the two-axis controller is able to keep station keeping costs
lower with respect to the one-axis controller.

As mentioned above, the two-axes controller is able to control Halo orbits with higher
amplitudes than the one-axis controller.
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(a) Mean cost. (b) STD cost.

(c) Mean position error. (d) STD position error.

(e) Mean n° of maneuvers. (f) STD n° of maneuvers.

Figure 5.10: Sun-(Earth+Moon) System: One-axis Controller.
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(a) Mean cost. (b) STD cost.

(c) Mean position error. (d) STD position error.

(e) Mean n° of maneuvers. (f) STD n° of maneuvers.

Figure 5.11: Sun-(Earth+Moon) System: Two-axes Controller.
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(a) Mean cost. (b) STD cost.

(c) Mean position error. (d) STD position error.

(e) Mean n° of maneuvers. (f) STD n° of maneuvers.

Figure 5.12: Earth-Moon System: One-axis Controller.
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(a) Mean cost. (b) STD cost.

(c) Mean position error. (d) STD position error.

(e) Mean n° of maneuvers. (f) STD n° of maneuvers.

Figure 5.13: Earth-Moon System: Two-axes Controller.
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In this Section, two applications of the algorithm will be presented: one referring to the
baseline operational orbit of the REMEC mission, the other will be an application in the
BR4BP dynamics.

6.1. Application A: REMEC Mission

The REMEC mission [1] aims to monitor deep space from cosmic rays through the use of
a CubeSat.It is a mission proposed by the European Space Agency (ESA). The mission
analysis consisted in the development of a baseline [21] and backup [8] solution. Figure 6.1
shows the chosen orbits for the baseline option. The station keeping on the operational
orbit and a preliminary analysis of the main perturbations affecting the s/c during the
mission phases were performed on the baseline case’s trajectories. All the data used in
this thesis that describe physical and geometrical properties of the CubeSat derived from
[1].

(a) Parking orbit representation (b) Transfer and operational orbits representation

Figure 6.1: REMEC mission’s orbits.

6.1.1. Torque perturbations

Three kind of perturbations have been considered: Solar radiation pressure (SRP), Mag-
netic field, and Gravity gradient. Since this is a preliminary design the worst case condi-
tions are considered. Here below the models[32, 36] are going to be presented:
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Solar Radiation Pressure
Let’s compute the SRP at 1AU:

PAU =
SF

c
= 4.556 · 10−6 N

m2
(6.1)

Where the Solar flux SF = 1367W/m2 and the speed velocity c = 3 · 108m/s.

At this point, the value obtained in Eq. (6.1) needs to be scaled at the s/c distance:

PSC = PAU

(
1AU

rsun−sc

)2 [
N

m2

]
(6.2)

Where rsun−sc is the distance between the Sun and the spacecraft. The maximum torque
can be computed as:

Tsrp−max = PSCASCρr(cps − cg) [N ·m] (6.3)

Where

• ASC = [1.570604; 2.728604] m2: for Chemical Propulsion (CP) and Electric Propul-
sion (EP) respectively; Surface area hits by the Sun.

• ρr = [1.2; 1.8]: reflectivity coefficients.

• (cps − cg) = 1.8 cm: distance between the centres of pressure and gravity (worst
case).

The SRP is going to be largest disturbance for the whole lifetime mission; thus it is
modelled for all mission phases.

Gravity Gradient

The maximum torque due to the gravity gradient is computed as:

Tgg−max =
3Gme

2r3Earth−sc

|IM − Im| [N ·m] (6.4)

Where,

• G: Gravitational constant.

• me: Earth mass.
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• rEarth−sc: Earth-s/c distance.

• |IM − Im|: Difference between the maximum and minimum s/c inertia moments.

The moment of inertia used are different for the Beginning Of Life (BOL), End Of Life
(EOL) and cruise phase:

• BOL: I = [4.40; 7.84; 10.42] kg m2

• EOL: I = [3.56; 3.71; 6.32]kg m2

• Cruise: I = [3.68; 4.32; 6.94]kg m2

Magnetic torque

The dipole model is used to approximate the magnetic field and the torque due to magnetic
field is computed with the following formula:

Tmag−max = B mmag [N ·m] (6.5)

Where,

• mmag = 0.1 Am2: norm of parasitic magnetic induction (worst case).

• B: norm of magnetic field at spacecraft distance.

The magnetic field is approximated with a harmonic expansion model at first order, after
the geosynchronous distance that model is no more valid since the solar wind modify the
magnetic field. For this reason, the magnetic torque is modeled only for the parking orbit,
moreover, it will be orders of magnitude less than SRP far from Earth.

Figure 6.2a shows how the torque due to SRP is higher than the Gravity Gradient (GG)
and magnetic torques for the most orbital period. GG and magnetic torques become
greater when the spacecraft passes near to the Earth. The SRP’s torques are shown for
different reflectivity coefficient and areas.
As visible in Fig. 6.2b, right after the s/c goes far from the Earth the SRP becomes the
biggest torque disturbance and it has the same behavior as in the parking orbit, while
GG decrease rapidly.
Fig. 6.2c shows that for the operational orbit the same conclusions of the transfer orbit
can be done. The GG’s torque is dependent by moment of inertia that are different for
cruise and EOL phases, but the difference is so small that graphically the curves are
overlapped.
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(a) Disturbance torques on the parking orbit at BOL.

(b) Disturbance torques on the transfer orbit at cruise

(c) Disturbance torques on the operational orbit at cruise and EOL

Figure 6.2: Perturbations on REMEC mission orbits.
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6.1.2. Station keeping

The objective of station keeping for this application was to have a preliminary knowledge
of the costs of orbit maintaining.
The operational orbit selected [21] has an amplitude Az = 280000 km with the initial
conditions shown in Table 6.1 and a period of about 180 days.

x[ndu] y[ndu] z[ndu] ẋ[ndu] ẏ[ndu] ż[ndu]

1.008020 0 0.001871 0 0.011098 0

Table 6.1: Initial conditions of the REMEC mission operational orbit

The input simulation parameters have to be defined: operational errors, mission con-
straints, control strategy and simulation time. They are shown in Table 6.2.

Input Parameters

Number of orbits 10
OD errors 1.5 km and 1 cm/s
OI errors 150 km and 3 cm/s

Maneuver errors 5% in magnitude
Tracking points one per day

Min. time btw. maneuver 30 days
Starting maneuver 500 km
Limit maneuver 50000 km

Table 6.2: Input parameters for the station keeping algorithm for REMEC mission

Two results will be shown, one without and the other with the effect of solar radiation
pressure affecting the s/c dynamics. The SRP was introduced into the dynamics using
the cannonball model [32], so the s/c is assumed to be a spherical object with distributed
optical properties, hits by the Sun. Equation (3.17) has been modified to introduce the
effect of the SRP:


x′′ − 2y′ = Vx + asx,

y′′ + 2x′ = Vy + asy,

z′′ = Vz + asz.

(6.6)

Where asx,asx and asx are the acceleration components of the SRP. The SRP acceleration
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can be computed as:

as =
PSCASC

mSC

ρr (6.7)

Where the mass of the s/c is mSC = 100 kg, ASC = 1.570604 m2 and ρr = 1.8.
At this point, the simulation can be performed by conducting 100 trials to obtain statis-
tically significant results. Thus, following the procedure in Section 4.4 the main results
obtained are reported in Table 6.3.

no SRP with SRP
Mean STD Mean STD

Error 612.15 km 89.60 km 8550.39 km 1112.63 km
SK cost 4.04 m/s 1.01 m/s 69.55 m/s 5.11 m/s

n° maneuver 33 3 44 1

Table 6.3: Simulation results REMEC mission.

To get an idea of what happens during the simulation, some graphic representations of a
test simulation for both cases are provided. It is important to emphasise that in the case
with SRP, eclipses are not present and that the affected surface is the same throughout
the overall simulation time, thus it is a worst case scenario. The orbits are in both
cases controlled, as shown in Figs. 6.3a and 6.3b, but the one with SRP seems to have a
behavior such that the s/c drifts from the nominal orbit over time. The error in the case
without SRP is bounded, Fig. 6.3c, while that with SRP diverges over time, Fig. 6.3d.
Figures 6.3e and 6.3f show that the manoeuvre is performed when the unstable component
is maximum, and then decreases immediately thereafter. Moreover, in the case with SRP
the values are larger, increase in time and are all shifted in the same direction.
More plots about the evolution of errors can be found in Appendix B.1.
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(a) Controlled orbit representation (no SRP). (b) Controlled orbit representation (with SRP).

(c) Error norm (no SRP). (d) Error norm (with SRP).

(e) Unstable component (no SRP). (f) Unstable component (with SRP).

Figure 6.3: Comparison between station keeping with and without SRP.

6.2. Application B: BR4BP

An application of the station keeping algorithm in the framework of BR4PP is shown.
The dynamics in BR4BP has already been presented in Section 3.3.
Future developments of the REMEC mission operational orbit aim to refine what was
previously identified as the baseline case in a more complete and realistic dynamical
model, as in BR4BP. Since the initial conditions (Table 6.1) are found and integrated
in the CR3BP environment, the same initial conditions and thus the orbit itself don’t
exist in this new dynamics. Figure 6.4 shows how the initial conditions integrated in the
BR4BP dynamics does not give a closed orbit.
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Figure 6.4: Orbit in BR4BP environment computed with initial conditions of the CR3BP .

There are two possible ways to solve this problem: either recompute the new initial con-
ditions in the new dynamics or keep the same initial conditions used in CR3BP and use
the station keeping algorithm to control the orbit in the BR4BP dynamics. The second
option was selected.
Performing the station keeping with the same input values of Table 6.2, with the only dif-
ference in Limit maneuver= 500000 km, the results obtained with 100 trials are reported
in Table 6.4.

Mean STD

Error 124934.33 km 7472.16 km
SK cost 2210.51 m/s 266.89 m/s

n° maneuver 49 1

Table 6.4: Simulation results in BR4BP.

The results are worse than in the CR3BP case, but were predictable as the Moon is intro-
duced as a perturbation and therefore the station keeping algorithm has to compensate
for it. However the SK is able to keep the orbit bounded as shown in Fig. 6.5.

For this reason, a reference orbit in the BR4BP can be calculated using the station keeping
algorithm in order to be used as an initial guess for future refinement. To compute this
reference orbit the input parameters have to be changed, as defined in Table 6.5. In
this way the resulting controlled orbit is not affect by operational errors and mission
constraints. The result of the simulation can be seen in Fig. 6.6. Important to note that
the mean error in this case is equal to 12299.15 km.



6| Application 63

Figure 6.5: Controlled orbit in BR4BP computed with initial conditions of the CR3BP .

Input Parameters

Number of orbits 1
OD errors 0
OI errors 0

Maneuver errors 0
Tracking points one per day

Min. time btw. maneuver 1 days
Starting maneuver 100 km
Limit maneuver 500000 km

Table 6.5: Input parameters to compute a reference orbit in BR4BP

Figure 6.6: Controlled orbit in BR4BP to use as initial guess for future refinement.
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7| Conclusion

In this thesis, the Floquet mode approach method has been implemented and deeply
studied, for Halo orbits in L2 for Sun-(Earth+Moon) and Earth-Moon systems. As shown
in Chapter 5, FMA has some limits of application. Since FMA exploits stable component
to keep the s/c bounded around the nominal orbits, Halo orbits with a small unstable
component, and therefore a larger stable component, are more difficult to control than
orbits with a higher unstable component. In addition, the FMA was implemented by
varying the minimum time between maneuvers ∆tmin and amplitude Az of the Halo orbits,
to see how the algorithm was influenced by these parameters. As a general consideration,
performances can be improved implementing a two-axes controller.
Within the identified operating limits, two applications were made. Application A: on the
REMEC mission, where a preliminary evaluation of station keeping cost and about main
perturbations were needed. The results were in agreement with literature (Table 2.1,[6,
11, 12, 30, 31]). In this application the station keeping was implemented also with SRP.
Application B: station keeping was tested inside the BR4BP to verify if it was able to
control a s/c. It turned out that the FMA was able to keep a s/c bounded around a
nominal orbit, even if the station keeping costs are not reasonable.

7.1. Future works

As just said, FMA has some limitations, specifically respect to orbits with a very little
unstable component. For this reason, it is suggested to perform the same analysis as
described in Chapter 5, implementing another method, such as Hamiltonian Structure
Preserving to check whether this method is able to control all orbits of the Halo family.
Moreover, since an orbit in BR4BP has been computed using the FMA, this orbit can
be used as initial guess for future refinement of the same orbit but in the four-body
dynamics.
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A| Circular Restricted Three

Body Problem

A.1. Equation of motion in rotating frame

As described in [5], the position vector of the s/c is defined according to Fig. 3.3:

rd = xdî+ ydĵ + zdk̂ (A.1)

Then Eq. (A.1) has to be derived twice:

vd =
drd
dt

= ẋdî+ xd
dî

dt
+ ẏdĵ + yd

dĵ

dt
+ żdk̂ + zd

�
�
���
0

dk̂

dt
=

∂rd
∂t

+ (ω × rd) (A.2)

ad =
dvd

dt
=

∂vd

∂t
+ (ω × vd) =

∂

∂t

(
∂rd
∂t

+ (ω × rd)

)
+ ω ×

(
∂rd
∂t

+ (ω × rd)

)

=
∂2rd
∂t2

+���
0

ω̇ × rd + ω × ∂rd
∂t

+ ω × ∂rd
∂t

+ ω × (ω × rd)

=
∂2rd
∂t2

+ ω × (ω × rd) + 2ω × ∂rd
∂t

(A.3)

Since the z axis of rotating frame coincides with Ẑ axis of inertial frame and the assump-
tion of circular motion has been already introduced: dk/dt = 0 and ω̇ = 0. Using second
Newton’s law, Newton’s law of universal gravitation and Eq. (A.3) can be written as:

r̈d + 2ω × ṙd + ω × (ω × rd) =
1

m
(F1d + F2d) = −G

m1

r31d
r1d −G

m2

r32d
r2d (A.4)

Since ω =
[
0, 0, nk̂

]T
, the vectorial products are:
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• 2ω × ṙd = −2ωẏdî+ 2ωẋdĵ

• ω × (ω × rd) = −ω2xdî− ω2ydĵ

At this point, substituting also m1 = (1 − µ)M , m2 = µM , d1 = µl and d2 = (1 − µ)l,
Eq. (A.4) can be written as:



ẍd − 2nẏd − n2xd = −GM

[
1− µ

r31d
(xd + µl) +

µ

r32d
(xd − (1− 1µ)l)

]
,

ÿd + 2nẏ − n2y = −GM

[
1− µ

r31d
yd +

µ

r32d
yd

]
,

z̈d = −GM

[
1− µ

r31d
zd +

µ

r32d
zd

]
.

(A.5)

A.2. Dimensionless equation of motion in rotating

frame

Considering Eq. (3.14), let’s first compute its time derivatives:
x component: ẋ = nx′ ẋ = n2x′′

y component: ẏ = ny′ ẏ = n2y′′

z component: ż = nz′ ẋ = n2z′′

(A.6)

Now, substitute Eq. (A.6) into Eq. (A.5):

n2x′′
d − 2n2y′d − n2xd = −GM

[
1− µ

r31d
(xd + µl) +

µ

r32d
(xd − (1− 1µ)l)

]
,

n2y′′d + 2n2y′ − n2y = −GM

[
1− µ

r31d
yd +

µ

r32d
yd

]
,

n2z′′d = −GM

[
1− µ

r31d
zd +

µ

r32d
zd

]
.

(A.7)

Since GM/n2 = l3 and l3/rd
3 = 1/r3, divide Eq. (A.7) by n2:



x′′
d − 2y′d − xd = −

[
1− µ

r31
(xd + µl) +

µ

r32
(xd − (1− 1µ)l)

]
,

y′′d + 2y′d − yd = −
[
1− µ

r31
yd +

µ

r32
yd

]
,

z′′d = −
[
1− µ

r31
zd +

µ

r32
zd

]
.

(A.8)
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Having only components function of space, divide Eq. (A.8) by l to obtain the final
equations: 

x′′ − 2y′ − x = −1− µ

r31
(x+ µ)− x+ µ− 1

r32
µ,

y′′ + 2x′ − y = −1− µ

r31
y − µ

r32
y,

z′′ = −1− µ

r31
z − µ

r32
z.

(A.9)

A.3. Jacobian matrix of the total potential

The dimensionless second partial derivatives [32] of the Jacobian are here reported for
completeness.



Vxx = 1− 1− µ

r31

[
1− 3(x− µ)2

r21

]
− µ

r32

[
1− 3(x− (1− µ))2

r22

]
,

Vyy = 1− 1− µ

r31

[
1− 3y2

r21

]
− µ

r32

[
1− 3y2

r22

]
,

Vzz = −1− µ

r31

[
1− 3z2

r21

]
− µ

r32

[
1− 3z2

r22

]
,

Vxy = (1− µ)
3(x− µ)y

r51
+ µ

3(x− (1− µ))y

r52
,

Vxz = (1− µ)
3(x− µ)z

r51
+ µ

3(x− (1− µ))z

r52
,

Vyz = (1− µ)
3yz

r51
+ µ

3yz

r52

(A.10)

A.4. State transition matrix

In case of small deviations from initial conditions the flow can be linearised:

φ(x0 + δx0, t0, t) = φ(x0, t0, t) +
∂φ

∂x0

(x0, t0, t)δx0 (A.11)
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Let’s now substitute Eq. (A.11) into Eq. (3.30),

x+ δx = φ(x0, t0, t) +
∂φ

∂x0

(x0, t0, t)δx0 (A.12)

Since x = φ(x0, t0, t), Eq. (A.12) becomes:

δx =
∂φ

∂x0

(x0, t0, t)δx0 (A.13)

The Jacobian of the flow in Eq. (A.13) is a matrix and each component can be expressed
as:

∂φ

∂x0

(x0, t0, t) =



∂φx

∂x0

∂φx

∂y0

∂φx

∂z0

∂φx

∂ẋ0

∂φx

∂ẏ0

∂φx

∂ż0

∂φy

∂x0

∂φy

∂y0

∂φy

∂z0

∂φy

∂ẋ0

∂φy

∂ẏ0

∂φy

∂ż0

∂φz

∂x0

∂φz

∂y0

∂φz

∂z0

∂φz

∂ẋ0

∂φz

∂ẏ0

∂φz

∂ż0

∂φẋ

∂x0

∂φẋ

∂y0

∂φẋ

∂z0

∂φẋ

∂ẋ0

∂φẋ

∂ẏ0

∂φẋ

∂ż0

∂φẏ

∂x0

∂φẏ

∂y0

∂φẏ

∂z0

∂φẏ

∂ẋ0

∂φẏ

∂ẏ0

∂φẏ

∂ż0

∂φż

∂x0

∂φż

∂y0

∂φż

∂z0

∂φż

∂ẋ0

∂φż

∂ẏ0

∂φż

∂ż0



(A.14)
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B.1. Evolution of component errors

Here below are presented a comparison between the evolution of component errors with
and without SRP. In the case with SRP is evident how the errors are not bounded and
increase in time. Moreover, Fig. B.1b shows how the error along x is shifted to the positive
plane, a behaviour due to the SRP moving the s/c away.

(a) Error component along x (no SRP). (b) Error component along x (with SRP).

(c) Error component along y (no SRP). (d) Error component along y (with SRP).
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(e) Error component along z (no SRP). (f) Error component along z (with SRP).

Figure B.0: Comparison between evolution of component errors with and without SRP.
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