
Executive Summary of the Thesis

Deep Learning-based surrogate models for parametrized PDEs:
including geometrical features through graph neural networks

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Filippo Tombari

Advisor: Prof. Andrea Manzoni

Co-advisors: Dr. Nicola Rares Franco, Dr. Stefania Fresca

Academic year: 2021-2022

1. Introduction
In many areas of Science and Engineering, mod-
els governed by Partial Differential Equations
(PDEs) which may depend on one or more pa-
rameters are ubiquitous. These parameters may
be related to either the physical properties or
the geometry of the domain which we consider.
Modeling this kind of problem typically requires
the introduction of a suitable mesh as first ba-
sic ingredient, to discretize the computational
domain and to define the set of approximat-
ing functions required to represent the prob-
lem solution, ultimately allowing the search for
highly accurate approximations. In this frame-
work, Full Order Models (FOMs), which rely on
numerical schemes such as the Finite Element
Method (FEM), Isogeometric Analysis, or the
Spectral Element Method (SEM) usually offer
high levels of accuracy, however featuring very
high computational costs, that become infeasi-
ble in many applications where the solver has
to be called multiple times. For this reason,
there is a growing literature aimed at replac-
ing these expensive models with suitable cheaper
models, also known as surrogate or Reduced Or-
der Models (ROMs), which usually offer a very
good trade-off between the computational cost

and the accuracy of the simulation. Deep learn-
ing methods, like Feed Forward Neural Networks
(FFNNs) and Convolutional Neural Networks
(CNNs), are widely used for building efficient
surrogate models to solve mesh-based problems
and they work well in modeling time-dependent
PDEs. On the other hand, these architectures
cannot infer anything about the geometry of the
problem because their structure is strictly de-
pendent on the employed mesh. Moreover, they
do not leverage the features that characterize the
mesh and its structure. For instance, when deal-
ing with complex domains such as 3D domains
and unstructured meshes, exploiting the mesh
connectivity can provide a better understand-
ing of the geometrical features of the problem.
For this reason, we introduce a surrogate model
based on Graph Neural Networks (GNNs), par-
ticular neural nets which do not require informa-
tion about the number of nodes or the number of
edges of the mesh, potentially leading to a much
more flexible approach that can accommodate
different geometries at the same time. This work
explores the advantages of using GNN-like ar-
chitecture to model physical problems involving
time-dependent PDEs that also depend on phys-
ical and geometrical parameters. The model ex-

1



Executive summary Filippo Tombari

ploits the graph representation of the mesh and
the GNN capability of inferring its geometrical
structure. It is based on the ones implemented
by Pfaff et Al. [4] and Hernández et Al. [3],
but focuses on different examples, in which we
can highlight the inductive capability of this ap-
proach. Moreover, we will see also how this
approach significantly outperforms the models
based on FFNNs and CNNs.

2. Methodology
For the sake of generality, despite the numerical
experiments referring only to linear problems,
we consider a generic nonlinear, time-dependent
PDE, since the results can also be extended to
more general problems. In particular, we con-
sider a PDE depending on a set of input pa-
rameters µ ∈ P, where the parameter space
P ⊂ R

nµ is given by a bounded and closed
set; in our analysis input parameters may rep-
resent physical or geometrical properties of the
system. In this work, we use a deep learning
model based on graph neural networks. These
deep neural networks allow us to find an ap-
proximate solution ũ(t,µ) of a FOM solution
of a PDE uh(t,µ) ∈ RNh(µ), where h > 0 de-
notes a discretization parameter, such as the
maximum diameter of elements in a computa-
tional mesh. The dimension Nh(µ) is related
to the finite dimensional subspaces introduced
for the sake of space discretization depends on
µ since changing some geometrical parameters
may change the number of nodes in the compu-
tational mesh. Note that ũ is not strictly de-
pendent on the space discretization parameter h
of the computational mesh so our model is more
flexible in accommodating different geometries
at the same time.
More precisely, we aim at introducing a suitable
deep neural network that can learn the map Φ
such that:{

ũn+1(µ) = Φ(un(µ);µ) n = 0, . . . , N − 1,

ũ0(µ) = u0
h(µ).

(1)

GNNs adopt a graph-in, graph-out architecture
meaning that these model types accept a graph
as input, with information loaded into its nodes
and edges and progressively transform these em-
beddings, without changing the connectivity of
the input graph.
The fundamental ingredients of these architec-

tures are the so called message passing oper-
ations, which enable the aggregation of node
information while leveraging the depth of the
graph.
we can introduce a suitable graph representa-
tion of the mesh by considering an undirected
graph G = (V,E), where V = (vi)

N
i=1 is the set

of vertices of the mesh and E = (eij)
N
i,j=1 is the

set of edges. Unlike other types of graph data,
such as social networks or citation graphs, com-
putational meshes have a Euclidean structure,
which means that every node i can be associ-
ated with its space coordinates xi. Often, ev-
ery node is also associated with some features
vi, which are also referred to as state variables.
Since the solutions to PDEs, once an appropriate
discretization is introduced, are effectively data
defined on graphs (the computational mesh), we
believe that these architectures can be useful
in constructing surrogate models. The model
proposed is the Encode-Process-Decode archi-
tecture shown in Figure 1, which first consists
of the input encoding, then it performs M mes-
sage passing steps through the Processor and ul-
timately combines with a call to the Decoder,
which outputs the model prediction. In order to
understand better the model, we introduce some
notation:

• vi ∈ R
din are the features associated to

each node i, such as the solution of the sys-
tem ũi evaluated at i;

• eij ∈ R
ein are the features associated to

each edge (i, j);

• Ev : Rdin → R
l, where l > din is the la-

tent dimension of the network, is the nodes
features encoder;

• Ee : R
ein → R

l, where l > ein, is the edges
features encoder;

• E : R3l → R
l is the edges features proces-

sor;

• N : R2l → R
l is the nodes features proces-

sor;

• D : Rl → R
dout , where dout is the dimension

of the output, is the decoder map.

2



Executive summary Filippo Tombari

Figure 1: The Encode-Process-Decode model.

The functions Ev, Ee, E ,N ,D are modelled with
Multi-Layer Perceptron (MLP) architectures.
In our case, the goal is to model the function
Φ in Equation (1) through the outcome F of
the decoder, in order to make predictions of the
approximate solution of the system ũ at time
tn+1 given the state of the system at time tn.
This means that for each n = 0, . . . , N − 1, we
compute:

ũn+1(µ) = ũn(µ) + ∆tF (ũn;µ)

ũ0(µ) = u0
h(µ)

(2)

Notice that, following this notation, the outcome
of the network F should approximate the tem-
poral derivative of the solution at time tn.
Despite the test predictions being done by ex-
ploiting the simulation rollout, model training
is performed by one-step prediction, that is at
each time step tn we compute F (un

h) by pass-
ing to the network as input the FOM solution
un
h. This preserves memory usage from recur-

sive training and it also allows parallelization
through batches, exploiting the power of GPUs
with tensor calculus.
We train the model by minimizing for each batch
of time instants a loss computed as the weighted
sum between two terms: (i) the MSE between
the derivative of the FOM solutions u̇n

h esti-
mated via finite differences and the model out-
comes F (un

h), with t1, . . . , tNbatch ; (ii) the MSE
between the FOM solutions un

h and the For-
ward Euler predictions ũn+1(µ) = un

h(µ) +
∆tF (un

h;µ). Instead, the prediction error is
computed as the relative MSE (RMSE) error
between the network prediction and the ground
truth solution:

RMSE(ũ,uh) =
1

N

N∑
n=0

∑Nh−1
i=0 (ũni − unh,i)

2∑Nh−1
j=0 (unh,i)

2

3. Test Case 1: Advection-
Diffusion problem

∂u

∂t
−D∆u+ b · ∇u = 0 in Ω× (0, T ]

u(x, y) = (x− 1)2 + (y − 1)2 on ∂Ω× (0, T ]

u0(x, y) = (x− 1)2 + (y − 1)2 in Ω

(3)

where Ω = (0, 1)2 \ C, with C = {(x, y) :
(x− cx)

2 + (y − cy)
2 ≤ (0.15)2}. In our simula-

tions, we parametrize the center of the circular
obstacle as µ = (cx, cy) ∈ P where P = {(x, y) :
0 < x < 1, y ≥ 0.5}. We set also T = 2,
D = 0.1 and b = [1 − t, 1 − t] for t ∈ [0, 2].
The generated dataset is composed of 100 sim-
ulations, each obtained from a different position
of the center of the obsatcle so the number of
mesh nodes varies from 770 to 790. The time
step chosen is ∆t = 0.02, resulting in 101 time
snapshots for each simulation.
In this example, the node input is a Nbatch−1×
Nh×3 tensor, where Nbatch is a hyperparameter
which is set equal to 25, Nh varies across the
simulations and the 3 features for each node i
are the ground truth solution unh,i, the time in-
stant tn and a binary variable with value 1 if
the corresponding node is on the boundary and
0 otherwise.
Another input information to provide is the edge
attributes tensor. This is a
Nbatch−1×Nedges×3 tensor containing for each
edge, the coordinates of its nodes and its length
calculated as the Euclidean norm of the distance
of the coordinates.
The output, instead, is a Nbatch − 1 × Nh × 1
tensor which represents the temporal derivative
of the solution evaluated at time tn.
The model has been trained on 80 simulations
chosen randomly and tested on the remaining
20. The results of the rollout predictions of the
test simulations are summarized in Table 1.
As we can see all the predictions RMSEs are of
order 10−3 or 10−4. Moreover, our model out-
performs significantly the ground truth solver in
the simulation time.

Test case 1. Advection-Diffusion problem

RMSE (mean) RMSE (max) RMSE (min) tgt(s) tpred(s)

AD 1 1.2× 10−3 6.1× 10−3 4× 10−4 ≈ 159.8 ≈ 9.83

Table 1: Test case 1. Results of the test set predic-
tions.

3



Executive summary Filippo Tombari

In Figure 2 an example of test set prediction
is shown together with the plot of its errors.
The dynamic of the problem is well predicted
and no propagation errors are spotted. Hence
our model and the training strategy adopted
seem to be in principle good at solving problems
concerning evolutionary PDEs in which multiple
rollout time steps need to be predicted.
The RMSE plot shows that, although the errors
are larger on the boundary in the first rollout
phase (T < 1.00), in the end they are higher
around the obstacle, where the change of direc-
tion of the advection vector b makes the predic-
tion of the solution more difficult. This happens
because GNNs follow a local-to-global general-
ization approach, first processing information lo-
cally through the Encoder and then aggregating
what has been processed from the neighborhood
to connect the mesh nodes. However, this ap-
proach may be difficult for some trajectories and
result in worse predictions at critical points of
the mesh, such as along the boundary.

Figure 2: Test case 1, prediction obtained for µ =
(0.29, 0.5) with the obstacle close to the source. First
row: rollout prediction. Second row: RMSE related
to each time step between the prediction and the
corresponding ground truth solution.

This advection-diffusion example can also be
generalized to domains in which both the po-
sition and the dimension of the obstacle change.
We slightly modify our training dataset by
adding new simulations in which the obstacle
has both a smaller and a higher radius than be-
fore. Hence, the geometrical parameter now is
µ = (cx, cy, r) ∈ P = {(x, y) : 0 < x < 1, y ≥
0.5}×{0.1, 0.15, 0.2}. This will improve the gen-
eralization of the model on new simulations as
we can see from Figure 3.

Figure 3: Test case 1, Prediction obtained for
µ = (0.6, 0.52, 0.1) . First row: rollout prediction.
Second row: ground truth solution.

The model can generalize well on this prob-
lem also if the geometries differ a lot from each
other. Indeed, an important question that arises
is whether our model can predict simulations
where the obstacle has a different shape, without
requiring retraining of the network. To investi-
gate this, we present an example in Figure 4 of a
prediction with a square obstacle located in the
top right of the domain. Surprisingly, the errors,
in this case, are of the same order of magnitude
as those discussed earlier, and the prediction of
the overall dynamics is remarkably accurate.

Figure 4: Test case 1, Prediction obtained for
µ = (0.7, 0.7, 0.3) with a square obstacle with edge
l = 0.3. First row: rollout prediction. Second row:
RMSE related to each timestep between the predic-
tion and the corresponding ground truth solution.

4. Test case 2: Advection-
Diffusion problem in a 2D
Stokes flow

We want to solve an advection-diffusion problem
like (3), but now the advection coefficient b is
the velocity field obtained by the solution of a

4



Executive summary Filippo Tombari

Stokes problem.
The domain Ω is the rectangle (0, 1) × (0, 0.5)
with a bump in the upper edge. Here Γin =
{x = 0}, ΓD = {y = 0} ∪ {y = 0.5} and
ΓN = {x = 1}. During our simulations, we
shift the position of the bump in a way that
its center cx varies from 0.35 to 0.65. Hence,
we have µ ∈ P = [0.35, 0.65]. At the inflow
Γin, we impose the Dirichlet boundary condi-
tion uin(x, y) =

4y(0.5−y)
0.52

, which is also the ini-
tial condition, on ΓD we impose no-slip bound-
ary condition and on ΓN we set ∂u

∂n = 0. The
final simulation time is T = 0.5 and D = 0.01.
Our dataset is composed of 125 simulations, each
obtained from a different position of the bump
so the number of mesh nodes varies from 937
to 1042. The time step chosen is ∆t = 0.01,
resulting in 51 trajectories for each simulation.
The training set is composed of 100 simulations
while the test set has 25 simulations, both cho-
sen randomly. We consider the same node and
edge input features of the previous example.
The results of the rollout predictions of the test
simulations are summarized in Table 2.
In this more complex problem the RMSEs are
higher than the ones in the previous example,
but we still outperform the ground truth solver
in time complexity.

Test case 2. Advection-Diffusion problem
in a 2D Stokes flow

RMSE (mean) RMSE (max) RMSE (min) tgt(s) tpred(s)

AD 2 1.64× 10−2 7.35× 10−2 1.2× 10−3 ≈ 115.65 ≈ 7.51

Table 2: Test case 2. Results of the test set predic-
tions.

The model performs well in predicting simula-
tions in which the bump has different positions,
as shown in Figure 5. However, some numerical
errors can be observed in nodes close to the in-
flow, which are generally kept under control and
remain of the order 10−5 as shown in the plot.
The behavior of the nodes around the inflow has
a significant impact on the accuracy of the simu-
lation, as any errors that arise in this region can
propagate throughout the domain, particularly
in correspondence with the bump.

Figure 5: Test case 2, prediction obtained for µ =
0.58 with the bump on the right part of the upper
edge. First row: rollout prediction. Second row:
RMSE related to each timestep between the predic-
tion and the corresponding ground truth solution

This example can be generalized by letting the
bump vary also along the lower edge and also let-
ting his dimension change. Hence we consider
a new dataset composed of 185 simulations in
which the height of the bump might be in the set
h = {0.08, 0.12, 0.175} and its center can vary
along both the upper and lower edge in the inter-
val [0.4, 0.6]. In this way, we keep it sufficiently
far from both the inflow and the outflow since
we have previously seen that this may imply nu-
merical errors in the GNN prediction. Hence,
the geometrical parameter is µ = (cx, cy, h) ∈
P = [0.4, 0.6]× {0., 0.5} × {0.08, 0.12, 0.175}.
In Figure 6 The height of the bump influences
a lot the dynamic of the system, however, the
network correctly infers the behavior of the flow
around the obstacle.

Figure 6: Test case 2, prediction obtained for µ =
(0.453, 0, 0.175) with the bump in the lower edge
with center at x = 0.453 and height h = 0.175. First
row: rollout prediction. Second row: RMSE related
to each timestep between the prediction and the cor-
responding ground truth solution.

5



Executive summary Filippo Tombari

5. Comparison with FFNN
Feed Forward Neural Networks are usually used
for building reduced-order models because they
have the capability to capture strong nonlinear-
ity through their fully connected structure.
Hence, we compare the performance of a com-
mon FFNN to our GNN on the two examples
discussed in the previous sections. In particular,
to make things simpler for FFNN we consider for
each problem the following datasets:

• for the first Advection-Diffusion problem we
let the obstacle vary only in its position,
resulting in 100 simulations, among which
we choose randomly 80 simulations for the
training set and 20 for the test set;

• For the Advection-Diffusion problem in a
2D Stokes flow we let the bump vary in its
position along the upper and lower edges
but not in its height, resulting in 125 sim-
ulations, among which we choose randomly
100 simulations for the training set and 25
for the test set.

In order to train an FFNN, we need to bring all
the simulations to the same degrees of freedom,
so we interpolate the region of interest a model-
ing 128 × 128 vertices grid so that the order of
the nodes in the mesh is preserved.
The prediction is done by exploiting the rollout
of the simulation as shown in (2) in order to
compare the robustness to propagation errors of
the two models. In Figure 7 we can clearly see
that the predictions done with GNN have less
variance than the ones done with FFNN. Even
if the range of the errors is similar, the GNN
errors are overall better despite some anomalies.

Figure 7: Boxplots of the RMSEs of the two predic-
tions.

Another key aspect to analyze is the number
of parameters of the model. The parameters
of an FFNN may increase fast due to its fully

connected structure. This implies a higher ten-
dency to overfit, as we can see from Figure 8,
and moreover, it gets the model less scalable as
the complexity of the problem increases.

Figure 8: Test case 2, Comparison between FFNN
and GNN prediction for µ = (cx, cy) = (0.6, 0). First
row: FFNN prediction. Second row: GNN predic-
tion.

6. Conclusions
Graph Neural Networks have been designed to
perform inductive inference of the geometric
structure of a given graph-structured problem,
such as a mesh-based simulation of a problem
governed by PDEs.
In contrast to Feedforward Neural Networks
(FFNNs) and Convolutional Neural Networks
(CNNs), GNNs can naturally handle problems
with varying geometrical parameters since they
intrinsically incorporate mesh features. More-
over, since they are independent of the input
degrees of freedom (dofs) of the mesh, they can
generalize to different mesh structures.
GNNs exhibit a lower tendency to overfit than
FFNNs because the learned map Φ is the same
for each mesh node by definition. Additionally,
the robustness of this model to propagation er-
rors during rollout prediction is another major
advantage.
A limitation of using Graph Neural Networks
is the computational complexity associated with
simulating over fine meshes. This can lead to a
higher number of message-passing steps, result-
ing in an increased computational cost and re-
duced accuracy due to inefficient propagation.
Hence, in future research, it may be advan-
tageous to explore the potential of combining
well-established deep learning-based reduced or-
der models, such as the ones introduced by
Franco et Al. [1] and Fresca et Al. [2], with
graph representations. This hybrid approach
could potentially lead to improved accuracy in

6



Executive summary Filippo Tombari

predicting simulations, even on more refined
meshes, while simultaneously reducing compu-
tational complexity.

References
[1] Nicola Franco, Andrea Manzoni, and Paolo

Zunino. A deep learning approach to reduced
order modelling of parameter dependent par-
tial differential equations. Mathematics of
Computation, 92(340):483–524, 2023.

[2] Stefania Fresca, Luca Dede’, and Andrea
Manzoni. A comprehensive deep learning-
based approach to reduced order modeling
of nonlinear time-dependent parametrized
pdes. Journal of Scientific Computing, 87:1–
36, 2021.

[3] Quercus Hernández, Alberto Badías,
Francisco Chinesta, and Elías Cueto.
Thermodynamics-informed graph neural
networks. arXiv preprint arXiv:2203.01874,
2022.

[4] Tobias Pfaff, Meire Fortunato, Alvaro
Sanchez-Gonzalez, and Peter W Battaglia.
Learning mesh-based simulation with graph
networks. arXiv preprint arXiv:2010.03409,
2020.

7


	Introduction
	Methodology
	Test Case 1: Advection-Diffusion problem
	Test case 2: Advection-Diffusion problem in a 2D Stokes flow
	Comparison with FFNN
	Conclusions

