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A B S T R A C T

The analysis of a business process can provide valuable insights which can
be exploited in order to achieve a better understanding of the process itself.
Process Mining techniques allow to automatically extract a visual model of the
process starting from recorded sequences of activities, called Event Logs. The
extracted model can then be enhanced with logical conditions constraining
the executions of process instances: this is the goal of Decision Mining. More
precisely, its Decision Points Analysis subfield aims at augmenting places in
a Petri Net model with guards steering the execution of transitions. These
guards are usually discovered through machine learning approaches, such
as Decision Trees, whose training sets are properly created by retrieving the
path followed in the model by each trace. Due to the presence of invisible
transitions inside the Petri Net, a trace may correspond to different consistent
paths in the model. State-of-the-art approaches only consider a single path,
hence possibly losing information. In this thesis, we propose a method which
considers multiple paths that a process instance can follow inside the Petri
Net model, exploiting more knowledge from the Event Log and consequently
obtaining more precise guards. We tested the method both on a synthetic
and on a real-life process, showing the improvements with respect to current
techniques.
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S O M M A R I O

L’analisi di un processo aziendale è in grado di offrire preziose informazioni
che possono essere sfruttate per ottenere una migliore comprensione del
processo stesso. Le tecniche di Process Mining permettono di estrarre auto-
maticamente un modello visivo del processo partendo da sequenze di attività
registrate, ovvero i log degli eventi. Successivamente, il modello ottenuto può
essere valorizzato con delle condizioni logiche che vincolano le esecuzioni
delle istanze di processo: questo è l’obiettivo del Decision Mining. Più pre-
cisamente, il sottocampo della Decision Points Analysis mira ad estendere
i posti in una rete di Petri con delle guardie che guidano l’esecuzione delle
transizioni. Queste guardie sono solitamente ottenute attraverso metodi di
machine learning, come i Decision Tree, i cui training set vengono adegua-
tamente creati risalendo al percorso che ogni traccia segue nel modello. A
causa della presenza di transizioni invisibili all’interno della rete di Petri,
una traccia potrebbe corrispondere a diversi percorsi nel modello coerenti
tra loro. Gli approcci allo stato dell’arte considerano solamente un percor-
so, perdendo dunque informazioni. In questa tesi proponiamo un metodo
in grado di considerare molteplici percorsi che un’istanza di processo può
seguire all’interno del modello di rete di Petri, sfruttando maggiormente la
conoscenza nel log degli eventi e ottenendo pertanto guardie più accurate.
Abbiamo sperimentato il metodo sia su un processo sintetico che su uno
reale, mostrando i miglioramenti rispetto alle tecniche attuali.

x



1
I N T R O D U C T I O N

The ability to extract useful information from data has become increasingly
widespread [1], thanks to the improvements in hardware and software, al-
lowing for higher computational power and better resource management,
but also to the availability of data itself. Data mining and machine learning
techniques help in dealing with such massive information, finding hidden
patterns and deriving new knowledge from the existing one.

Organizations and businesses often deal with vast amount of data, which
can be used to improve the value of the company. The field of Process Mining
has gained importance over recent years, having the goal of exploiting all
those data to analyze and enhance business processes [2]. Indeed, the knowl-
edge about a process is usually recorded by the company inside the so-called
Event Log. This contains all the information about the process executions:
the activities that have been performed, the resources that carried them out,
timestamps, and other pieces of data related to the process.

Machine learning comes into play in the Decision Mining sub-field of
Process Mining: its scope is to extract the rules that steer the decisions inside
a process. Indeed, decision making represents one of the most important
assets inside an organization, and exploiting machine learning methods to
enrich business processes allows to better characterize them, hence increasing
their value. Understanding the decisions that led to specific outcomes in a
business process can be of crucial importance in order to analyze existing
process executions, but also to predict which decisions will be taken in future
instances.

There exist various tools and notations to visualize a process, such as
BPMN, Process Trees and Petri Nets. They are able to formally represent
business processes in order to create a rigorous model which can be used
both to get a broader view of the process and to gain new knowledge. In
general, a process model is a directed graph composed of a set of nodes and
a set of arcs: nodes usually represent activities that are part of the process, or
particular states of the process; arcs represent paths that can be followed by
the process.

A few approaches have been developed among the Decision Mining field,
in which rules are extracted by following the paths in the process model
reflecting the sequences of events recorded in the Event Log. Nonetheless, they
do not consider all the possible paths in the model, stopping at ambiguous
nodes or exploiting only the optimal path. Therefore, these methods suffer
from information loss, meaning that a lot of data from the Event Log is not

1



2 introduction

Figure 1.1: Example of business process showing a purchase of an item on an online
shop by a customer [3]. The process is represented using a BPMN diagram, in which
nodes with activity names represent the events in the process, while arcs represent
the possible paths that can be followed. Special rhomboid nodes allows to split
the process execution between branches; according to the particular node, all the
outgoing branches are followed or only one.

exploited. These approaches rely on Petri Nets in order to model business
processes: a Petri Net is a bipartite directed graph with places and transitions
as nodes. A place represents a process state, while a transition represents an
activity. The Petri Net model, along with the process Event Log, are used in
order to extract the rules governing the choices at decision points, i.e., those
places having more than one outgoing arc.

In this thesis, we propose a novel method which better exploits data coming
from the Event Log of a business process, resulting in improved rules and,
consequently, finer decision-making. This is achieved by considering more
than one path among the ones that a process instance could follow inside
the Petri Net model. The results obtained using the method we propose
support this idea: analyzing the same Event Log and Petri Net model, our
method finds rules with higher accuracy and it is also able to discover rules
for decision points which previous approaches were not able to find. We also
present alternative state-of-the-art approaches both for rules discovering and
for rules simplification, which we implemented and often modified in order
to better suit the Decision Mining context.

The thesis outline is the following: Chapter 2 presents the state-of-the-art
approaches which deal with this problem, along with the background needed
to better understand the setting and related works tackling Decision Points
Analysis and rules pruning; Chapter 3 contains an in-depth explanation of the
method proposed by this work; Chapter 4 presents the data used to evaluate
the approach, showing and commenting the obtained results, including a
comparison with the state-of-the-art approaches; finally, Chapter 5 draws
conclusions and suggests possible future works.



2
S TAT E O F T H E A RT

2.1 existing methods

2.1.1 First approach: dealing with control-flow structures

The problem of extracting decision rules from a process model has not been
treated vastly in the literature. The general idea, first proposed in [4] and then
detailed in [5], is to consider every decision point as a classification problem;
after the creation of a proper training set for each decision point, Decision
Trees are used to solve the problem and extract the rules we are interested in.

The first step is to discover a Petri Net representing the process model
starting from the Event Log, and this is usually done by applying existing
Process Discovery algorithms. The first one that has been proposed is the
Alpha algorithm [6]: it classifies the traces activities in four relations (direct suc-
cession, causality, parallel and choice) and then builds a Petri Net accordingly.
The resulting model does not contain invisible activities, i.e., transitions that
do not have a corresponding activity in the log; additionally, this algorithm is
not able to deal with loops, it is not very effective against noisy data, and the
obtained Petri Net might not be sound.

A better state-of-the-art alternative is the Inductive algorithm [7], which
derives a directly-follows graph of the activities in the log, and then builds a
Petri Net by detecting cuts in the graph. This algorithm is able to discover
loops and invisible activities, extracting a sound model. This is indeed the
most used algorithm to perform Process Discovery of a Petri Net starting
from an Event Log.

Every time a process instance encounters a decision point in the Petri Net,
i.e., a place with more than one outgoing arc, it means that a decision on
which path to follow needs to be taken. Hence, we look at which transition
has been executed afterwards, and we add a new example in the training set
of that decision point. The new example will contain the attributes values
from the Event Log before the choice has been made (i.e., at the decision
point) and the transition that has been fired.

To identify which decision has been taken at each decision point, we have
to look at the first activity observed immediately after the decision point: in a
Petri Net, this corresponds to the transition pointed by the selected outgoing
arc. Hence, a correct interpretation of the control-flow of the process model
is needed and this may not be straightforward, especially in more complex

3



4 state of the art

processes and nets. As noted in [5], three major issues can be identified when
performing Decision Points Analysis:

• Invisible activities: transitions in the Petri Net which do not reflect actual
activities recorded in the Event Log; they are only used for routing
purposes inside the net, for example to skip other transitions.

• Duplicate activities: transitions in the Petri Net which correspond to the
same activity in the Event Log. They have the same label in the net, and
they cannot be distinguished by looking at the log.

• Loops.

To deal with invisible activities, the authors in [5] propose Alg. 1 to track
the next non-invisible transition in the net, using it as the selected activity
after the decision point. The idea is to keep going through invisible transitions
until an actual activity recorded in the Event Log is encountered. The search
stops whenever an ambiguous place is found, for example a join place (i.e., a
place with more than one incoming arc), therefore this approach may lose
some information.

Duplicate activities are treated in a similar way, tracing the next visible
unambiguous transition which allows to distinguish between the different
paths, or until a join construct is encountered.

To handle loops, instead, they suggest to consider an activity as a possible
target of a decision point according to its relative position, that is, before,
inside or after the loop. Needless to say, loops combined with invisible or
duplicate transitions are not easy to handle, at least not without information
loss.

After analyzing all the traces in the Event Log, the obtained training sets
(one for each encountered decision point) are fed to as many Decision Tree
Classifiers in order to extract the rules governing the decisions. Each fitted
model is able to discriminate between instances in the Event Log related
to that decision point. The rule to enable transition t can be obtained by
descending the Decision Tree from the root down to the leaf node with the
corresponding label t, resulting in a conjunction of all the conditions on that
branch. In case there are multiple leaves with the same target label t, then
all these rules can be put in disjunction, since they can be seen as alternative
conditions to execute the same transition t.

In conclusion, the obtained rule related to transition t is a disjunction of
conjunctions. It explains, in terms of attributes values, the reason why certain
process instances follow that specific path in the process.

The Decision Mining method proposed in [4] has been implemented in the
ProM framework, which collects many plug-ins to perform Process Mining.
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Algorithm 1 Recursive method proposed in [5] for specifying the possible
decisions at a decision point in terms of sets of log events.

function determineDecisionClasses

decisionClasses← new empty set
while outgoing edges left do

currentClass← new empty set
t← target transition of current outgoing edge
if (t ̸= invisible activity)∧ (t ̸= duplicate activity) then

add l(t) to currentClass

else
currentClass← traceDecisionClass(t)

end if
if currentClass ̸= ∅ then

add currentClass to decisionClasses

end if
end while
return decisionClasses

end function

function traceDecisionClass(t)
decisionClass← new empty set
while successor places of passed transition left do

p← current successor place
if p = join construct then

return ∅
else

while successor transitions of p left do
t← current successor transition
if (t ̸= invisible activity)∧ (t ̸= duplicate activity) then

add l(t) to decisionClass

else
result← traceDecisionClass(t)

if result = ∅ then
return ∅

else
result∪ decisionClass

end if
end if

end while
end if

end while
return decisionClass

end function
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2.1.2 An alternative using alignments

The approach proposed in [8] partially solves this problem using optimal
alignments. A control-flow alignment between a trace in the Event Log and
the Petri Net model is an ordered sequence of tuples: the first element in
the tuple represents the move (i.e., the activity) in the log, while the second
element represents the move in the model. If a transition in the model does
not have a correspondence in the Event Log (for example, because it is an
invisible transition), then the move in the log is depicted as≫, and vice versa.
Each alignment is characterized by a cost which quantifies how much the log
trace deviates from the model: the optimal alignment between the trace and
the net is the one with the lower cost.

The optimal alignment path is then used to characterize decision points,
building their training sets. This method allows to select an entire path in the
Petri Net model for each trace in the Event Log, therefore solving the problem
of stopping on ambiguous places when looking for the next non-invisible
transition. At the same time, only the optimal path from the Petri Net source
to its sink is taken into consideration, leaving behind all the other possible
paths involving invisible transitions. In conclusion, there is still information
loss.

Even if the procedure to link Event Log data with proper decision points is
different, the rules extraction part is unchanged with respect to the approach
presented previously. A Decision Tree Classifier is fitted on each training
set and rules are extracted following the conditions on their branches, as
previously described.

2.2 background

2.2.1 Event Log

An Event Log contains the knowledge related to the executions of a business
process: these data are usually stored automatically by an information sys-
tem. However, this does not always happen: it is often the case that some
information is not recorded because it is not considered relevant, because it
is inferable from contextual information, or simply because the information
system has not been implemented with the goal of exploiting the recorded
data, for example by applying Process Mining techniques. This can be an
issue when analyzing the process, since automatic methods are not able to
deduce missing knowledge without the help of an expert.

More precisely, an Event Log is a multiset of sequences, where each se-
quence represents a specific process execution. Each sequence, also called
trace, is an ordered collection of the events that occurred in that process
instance, and it is uniquely identified by a case id. For each event in a trace,
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the name of the executed activity is recorded, along with the related process
attributes values, for example the timestamp, the resource that performed
that activity, and other attributes depending on the particular process. An
example of Event Log is shown in Fig. 2.1. A unique succession of events is a
variant: therefore, all the traces composed by that course of activities can be
grouped under that single variant.

From a technical perspective, the attributes in an Event Log can be distin-
guished between three major categories:

• Continuous variables: their values are numerical, and an order between
numbers is defined. An example of continuous variable is a Cost at-
tribute, which can take real positive values.

• Categorical variables: these variables are also known as qualitative variables
and they take discrete values, either numeric or literals. An example of
categorical variable is a Resource attribute, where each value corresponds
to the name of the person which performed the corresponding activity.
If numeric codes were used instead of real names, Resource would still
be a categorical variable, since no reasonable ordering can be defined
between the values.

• Boolean variables: attributes that can only take two possible values, True
or False.

The size of the Event Log corresponds to the number of instances (i.e., rows)
in it. Its dimensionality refers instead to the number of attributes present, also
called features. Indeed, instances in the log can be represented in the feature
space, in which every dimension corresponds to an attribute: an instance is a
point in this space, and its coordinates are the values of the attributes.

An Event Log is seldom complete, but it contains missing values: these are
usually represented using special characters and words, like ?, nan, NIL and
so on. Dealing with missing data is a common problem in the data mining
and machine learning fields, and there exist different techniques able to take
them into consideration.

2.2.2 Process Mining

Process Mining is a relatively new research area between data mining and
process analysis, gathering together those techniques that are able to extract
and model real processes, starting from Event Logs. As mentioned before,
information systems are able to store the knowledge about business process
executions, making massive quantities of data available and ready to be
exploited. The analysis of these data can lead to a better understanding of
the process, which in turn allows the process to be enriched and modified
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Figure 2.1: Example of Event Log. All the events which are part of the same trace
have the same case id.

to generate value. The Process Mining framework is depicted in Fig. 2.2,
showing all the different components that take part in this field, along with
their interactions.

The state of the art distinguishes between three types of Process Mining:

• Process Discovery, which allows to automatically discover a model of the
process, based on the Event Log. Various algorithms have been devel-
oped to perform this task, like the Alpha algorithm or the Inductive
algorithm already mentioned.

• Conformance Checking, which aims at assessing the compliance of the
extracted model with the original Event Log. This is essential in order
to review the soundness of the extracted model, and to understand if it
complies with the information recorded in the log.

• Process Enhancement, which is used to extend an existing model with
additional and useful information, using the Event Log as a source.
As mentioned earlier, the log does not only contain a mere sequence
of events, but also plenty of auxiliary knowledge which is not strictly
related to the control-flow of the model.

Decision mining falls within the scope of Process Enhancement: given an
Event Log and a process model, it aims at extracting the rules that drive the
decisions inside the process. The process model can therefore be enriched
with information that was not there before, but it was hidden inside the Event
Log data.
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Figure 2.2: The Process Mining framework [2]. The red arrows shows the three types
of Process Mining as defined in the Process Mining Manifesto.

2.2.3 Petri Net

A process can be represented through different notations, e.g., BPMN, Process
Trees, Petri Nets, UML, EPC. Regardless of the chosen one, it must be able
to correctly represent the model of a process, and it could be automatically
extracted from an Event Log using Process Discovery techniques. We rely on
Petri Nets, both because they are used also in state-of-the-art methods and
because they are fitting to deal with Decision Mining.

A Petri Net, also known as PT Net, is a bipartite directed graph which has
two types of nodes: places (P) and transitions (T). A place is represented by
a white circle, and it represents a process state. A transition is represented
by a rectangle containing the name of the activity. Places and transitions are
connected through arcs. Places which are connected to a transition through
output arcs are the transition input places, while transitions which are con-
nected to a place through output arcs are the place input transitions.

Concurrency in a Petri Net is depicted through a split-join logic. An activity
node is a split node when it has more than one outgoing arc; each arc is the
beginning of a parallel branch, and every branch is executed concurrently.
They are then joined together through a join node, which is an activity node
with more than one incoming arc.

In the Process Mining context, Petri Nets could also include invisible tran-
sitions, depicted as black rectangles without any label: these are transitions
that do not represent any actual activity recorded in the Event Log, and
therefore they are not labeled in the net. They serve for routing purposes
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Figure 2.3: Example of Petri Net [9]. Places are represented by white circles, while
transitions are depicted as white rectangles. Each black dot inside a place is a token.

only, for example to skip a certain activity or to split the process into parallel
branches. Invisible transitions are completely transparent to the log, which
instead stores only visible activities.

Every place can contain a certain number of tokens, and the distribution of
tokens among all the places in the Petri Net is called marking. Each transition
fires, i.e., is executed, only if every input place of the transition contains at
least one token. After the firing of the transition, a token is removed from
every input place and is added to each of the output places of the transition.
Starting from the initial marking of the net, transitions fire one at a time until
a final marking is reached or no transition can fire anymore. An example of a
Petri Net is shown in Fig. 2.3.

When a Petri Net represents a business process, two special places are
commonly present: a source and a sink. Process instances must start from
the source place, then different transitions are fired, and finally process
executions must arrive at the sink place. This is the stopping condition, which
corresponds to a final marking in which only the sink place contains a token.

The formal definition of a Petri Net is the following:

Definition 2.1 (Petri Net). A Petri Net is a tuple (P, T, F,M0) where

• P and T are disjoint sets of places and transitions respectively.

• F ⊆ (P× T)∪ (T × P) is a set of arcs.

• M0 is the initial marking. A marking is a function associating a set of
places with a natural number: M : P → N.
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One could extend a Petri Net with additional capabilities, such as read and
write operations. Read operations are also called guards and represent addi-
tional conditions on the firing of transitions: a guard is a boolean expression
reading some (or all) of the process attributes and, if it evaluates to true, then
the transition is allowed to fire. Write operations let transitions modify the
values of specific process attributes upon firing.

A Petri Net enhanced with these extensions is called Data Petri Net, and its
formal definition is the following:

Definition 2.2 (Data Petri Net). A Data Petri Net is a tuple (P, T, F,M0, V,U, R,

W,G) where

• (P, T, F,M0) is a Petri Net.

• V is a set of variables.

• U is a function defining the admissible values for V .

• R ∈ T → 2V is a read function providing each transition the set of
variables it must read.

• W ∈ T → 2V is a write function providing each transition the set of
variables it must write.

• G ∈ T → GV is a function providing each transition with a guard.

2.2.4 Decision Mining

Decision Mining is the sub-field of Process Mining which aims at enriching a
given process model with rules. These rules characterize every decision point
in the process model, telling which conditions a process instance must satisfy
in order to follow that path. In the context of Petri Nets, Decision Mining is
known as Decision Points Analysis: starting from a Petri Net and an Event Log
related to the same process, the goal is to find the corresponding Data Petri
Net. Indeed, the rules discovered through this approach are the guards of
those transitions that immediately follow decision points. A decision point
in a Petri Net is a place with at least two output arcs: it represents a state
in which the process can take a different path depending on its attributes
values.

This choice is usually mutually exclusive, hence only one path is taken
among the alternatives; however, it may happen that the attributes values
satisfy more than one guard, allowing the process instance to follow multiple
paths at the same time. This may happen because the actual decision is taken
by a human based on some context information which have not been included
in the Event Log.
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2.2.5 Decision Tree Classifier

Decision Tree Classifiers learning is a common supervised machine learning
method for classification. This family of tasks aims at learning a function that
maps inputs to outputs starting from a labeled training set. It consists of a
set of training instances, each composed by some input features and a target
label. The trained learner will then be able to output a label given an unseen
instance as input.

An ideal optimal model would be able to predict the correct label for every
possible instance given as input. This rarely happens in practice, since it
would require a flawless training set covering all the possible cases. Therefore,
the model is usually trained on a limited set of instances, which is the
available data, the Event Log. The model only knows about those data, but
at the same time it should be able to correctly classify unseen cases. Hence,
the model should not overfit the training set, otherwise it would fail on new
instances, despite being able to perfectly classify known ones.

The opposite also holds: we want to avoid underfitting, that is, a model
which performs poorly on the training set. This happens when the model
learns nothing actually useful from the training data, or just the dominant
features such as the average value. In conclusion, the goal is to learn a model
which is able to perform well both on known and unseen instances, avoiding
overfitting as well as underfitting.

Decision Tree learners are used in different fields in order to obtain a
predictive model by recursively partitioning a training set based on its features
values. If the target variable takes discrete values, then the fitted model is
known as Decision Tree Classifier, and it allows to classify the instances in
the training set according to the values of their attributes.

The fitting process of a Decision Tree Classifier starts at the root node. A
training set attribute is selected based on some goodness measure; if the
attribute is discrete, then the training set is split in multiple sets, one for each
possible attribute value; otherwise, a threshold is selected and the split is
performed on that value. Each children node contains a split of the training
set, and the procedure is repeated recursively until some conditions are
met, or if no further splitting is possible. If a decision node cannot be split
anymore, then it becomes a leaf node, and it is labeled with a target value
from the target feature. An example of a fitted Decision Tree Classifier is
shown in Fig. 2.4.

The selection of the split attribute and threshold (in case of continuous
variables), as well as the termination conditions, is different according to the
algorithm used.

One of the most commonly used algorithms for training a Decision Tree
Classifier is the C4.5 algorithm proposed by John Ross Quinlan [10]. Each
split attribute is the one which provides the highest information gain when
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Figure 2.4: Example of Decision Tree. Every decision node is represented by a white
rectangle containing the name of the attribute on which the split is performed. Each
branch is labeled with the corresponding value for that attribute. Leaf nodes are
represented by white diamonds containing the label of the predicted class.

splitting the (partitioned) set at the parent node. The recursion stops when all
the instances in a set belong to the same target class, or when further splitting
does not provide any information gain. Moreover, there could be additional
rules to stop the splitting procedure: for example, when a node contains a
minimum number of instances, or when a maximum tree depth has been
reached. These conditions prevent the Decision Tree from overfitting, i.e.,
perfectly fitting the training set but failing to generalize on new, unseen data.

Definition 2.3 (Entropy). Given a set of instances I with k different target
values, the entropy of the set I is defined as:

Entropy(I) = −

k∑
i=1

pi · log2 pi

Where pi is the fraction of instances with k as target value.

Definition 2.4 (Information Gain). Given a set of instances I, a split attribute
A with n different values, the information gain of the set I on the attribute A

is computed as:

InformationGain(I, A) = Entropy(I) −

n∑
i=1

I[A = i]

I
· Entropy(I[A = i])

Where I[A = i] is the number of instances in I such that the value of attribute
A is i.
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The information gain is defined as the reduction of entropy resulting from
splitting a set of instances according to an attribute (and a threshold, if the
attribute is continuous). The entropy of a set is a measure of the skewness
of its target values: if half of the instances in the set have as target value A

while the other half have B, then the entropy of the set is exactly 1. The more
unbalanced the set, the lower the entropy; a set with only one target value
will have entropy 0. Seeking for the highest information gain is equivalent to
looking for the split which minimizes the entropy in the resulting sets. The
goal of the C4.5 algorithm is indeed to partition the instances based on their
target value, so that each leaf node would contain instances with the same
target value.

rules extraction A fitted Decision Tree Classifier can be translated
into a set of rules. Each branch of the Decision Tree composes a conjunction
of atomic conditions, that are the splits on the path from the tree root to the
leaf; then, branches which end up in leaves with the same label (i.e., target
class, hence the name of the activity executed after the decision) are combined
in disjunction. The final result is one rule for each target value, in general
formed by disjunctions of conjunctions.

Alg. 2 shows how the rules extraction process is performed. First, conjunc-
tive rules are gathered, one for each leaf node of the Decision Tree. Then, all
the rules having the same target value are put in disjunction.

Algorithm 2 Method to extract rules given a Decision Tree.

function extractRules(decisionTree)
rules← ∅
leafNodes← getLeafNodes(decisionTree)

for leaf ∈ leafNodes do
branchRule← getBranchRule(decisionTree, leaf)

leafLabel← getLeafLabel(leaf)

rules← addRule(rules, branchRule, leafLabel)

end for
seenTargets← getSeenTargets(rule)

for target ∈ seenTargets do
rulesWithTarget← getRulesWithTarget(rules, target)

rulesWithTarget← createDisjunctiveRule(rulesWithTarget)

rules← addRule(rules, rulesWithTarget, target)

end for
return rules

end function



2.2 background 15

rules pruning Although the rules extraction process may be easy, the
resulting rules may not. When the height of the Decision Tree is significant,
the initial conjunctions of conditions may be quite long. Additionally, the
presence of multiple leaves with the same target may result in a final rule
composed by a considerable number of disjunctions. These two cases are not
mutually exclusive: a deep Decision Tree with multiple leaves with the same
target value would result in even longer rules.

The extracted rules perfectly represent the Decision Tree, but they may
be difficult to read and understand. To solve this problem, Decision Trees
and rules can be simplified to be shorter and easier to understand, but still
being faithful to the original Decision Tree. Additionally, pruning helps with
overfitting: a simpler model should be able to generalize better on unseen
data.

Different methods have been proposed in the literature to prune Decision
Trees or to directly simplify rules coming from them. In general, there are two
possible approaches to prune Decision Trees: pre-pruning and post-pruning.

Pre-pruning, also called stopping, refers to those techniques which are
able to stop the splitting procedure while fitting the tree. This is done by
evaluating some quality measure, for example the information gain of a split,
and by avoiding further splitting if this measure is below a certain threshold.
These methods have the advantage of saving time, since the Decision Tree is
pruned while it is being constructed. However, finding a good and general
threshold for stopping is usually difficult, resulting in a simplification that is
either too heavy or too shallow. Post-pruning techniques, on the other hand,
work on an already fitted Decision Tree. They usually build new trees which
are equivalent to the original one but more condensed.

The most common approaches are related to the latter family of pruning
techniques: it is the case of Cost-Complexity pruning, Reduced Error pruning
and Pessimistic pruning [11]. The first two methods need a separate test set,
while the last one does not, and it is also much faster. Here, we present two
state-of-the-art methods we implemented: the first one prunes the Decision
Tree by replacing subtrees with leaves when possible, while the second one
directly simplify the production rules that are extracted from the tree.

The pruning method proposed by J. R. Quinlan in its work about the
C4.5 algorithm [10] is a post-pruning one which only requires the original
training set. It is defined as a pessimistic pruning approach, and it works
by recursively replacing subtrees with leaves according to the number of
predicted errors. The algorithm is reported in Alg. 3.

Given the original Decision Tree, we consider every subtree having only leaf
nodes as children. For each leaf, we call N the number of training instances
that are contained in that leaf (i.e., the ones satisfying all the conditions along
the branch from the tree root to that leaf). Among these, we call E the number
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of training instances which are wrongly classified by that leaf (i.e., their target
value is different from the label of the leaf).

Algorithm 3 Pessimistic pruning of a Decision Tree.

procedure pessimisticPruning(decisionTree, trainingSet)
recurse = False

bottomSubtrees← getBottomSubtrees(decisionTree)

for subtree ∈ bottomSubtrees do
subtreeErrors = 0

for leaf ∈ subtree do
label← getLabel(leaf)

subtreeErrors += computeErrors(leaf, label, trainingSet)

end for
subtreeLabels← getSubtreeLabels(subtree)

for target ∈ subtreeTargets do
errors[label]← computeErrors(subtree, label, trainingSet)

end for
minErrorLabel← getMinErrorLabel(errors)

if minErrorLabel < subtreeErrors then
subtree← replaceSubtree(subtree,minErrorLabel)

recurse = True

end if
end for
if recurse = True then

pessimisticPruning(decisionTree, trainingSet)

end if
end procedure

function computeErrors(node, label, trainingSet)
nodeInstances← getNodeInstances(trainingSet)

wrongInstances← getWrongInstances(nodeInstances, label)

upperBound← getUpperBound(nodeInstances,wrongInstances)

return nodeInstances · upperBound
end function

The error rate for that leaf is therefore E/N. The author’s idea is to think of
this as observing E events among N experiments: we can then compute the
probability of error as the upper confidence bound of a binomial distribution
having as parameter N and E, that is UCF(E,N) where the confidence level
CF is suggested to be 25%. Finally, the total number of predicted errors for
that leaf can be computed as N ·UCF(E,N) since N cases are covered by the
leaf. The number of predicted errors for the entire subtree is simply the sum
of these terms for all its leaves.
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After computing the number of predicted errors for the original subtree, it
is time to determine the same quantity for the subtree when replaced with
a leaf, to understand if a substitution is needed. To do this, the subtree is
substituted with a leaf having as target value each one of the labels of its
leaves in turn. The computation is exactly the one described before.

At this point, the subtree is replaced with a leaf node having as target value
the one which provided the minimum number of predicted errors, given that
it is less than the number of predicted errors of the original subtree. Indeed,
if the number of predicted errors of the original subtree is still lower, then we
do not have to replace it, since the predictive performance would be worse.

After repeating the procedure for every subtree in the Decision Tree, the
whole process is recursively applied on the pruned tree, until no more
simplification is possible. The final result would be a pruned Decision Tree,
with fewer nodes and lower height; hence, the rules extracted from it are
possibly shorter, more readable and more easily understandable.

An alternative perspective for Decision Tree pruning has been proposed by
J. R. Quinlan in [11] and it works directly on the rules that can be extracted
from the original Decision Tree. These are also called production rules, since
they are composed of a set of conditions which "produce", or lead to, a certain
label. For every leaf, the approach extracts the corresponding production rule
in the form X1 ∧X2 ∧ · · ·∧Xn then class c where X1, X2, . . . , Xn are all the
conditions encountered along the path from the root to the leaf, and class c

is the class of the leaf, i.e., its label.
Then, the left-hand side of the production rule is simplified by dropping

some conditions, according to their relevance to the classification. This is
done by isolating each Xi in turn, and considering the training examples that
satisfy all the other conditions in the production rule; then, we build a 2× 2

contingency table dividing these examples according to the satisfaction of Xi

and the belonging to class c. A Fisher’s exact test is then performed on the
contingency table to understand the relevance of Xi in the classification. The
test returns a p-value which represents the probability that the division in the
contingency table occurs from chance.

Having done this for every Xi in turn, the condition Xi which is least
relevant for classification (i.e., the one with the largest p-value) is removed
from the left-hand side of the production rule, provided that its p-value
is greater than a predefined threshold. The Fisher’s exact test is repeated
recursively on the simplified production rule until no condition can be
removed, or all conditions have been discarded.

This process, once applied to every production rule extracted from the
Decision Tree (i.e., to every leaf) allows for an in-depth pruning of the original
rules. Each simplified rule is a conjunction of conditions, and all the simplified
rules having the same target class are put in disjunction, as explained before.
The algorithm of this pruning technique is reported in Alg. 4.
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Algorithm 4 Recursive simplification of production rules in a Decision Tree.

function simplifyProdRules(decisionTree, trainingSet, threshold)
finalRules← ∅
for leaf ∈ decisionTree do

prodRule← getBranchRule(decisionTree, leaf)

label← getLabel(leaf)

rule← simplifyRule(prodRule, label, trainingSet, threshold)

finalRules← addRule(finalRules, rule, label)

end for
return finalRules

end function

function simplifyRule(prodRule, label, trainingSet, threshold)
candidates← ∅
for rule ∈ prodRule do

otherRules← getOtherRules(rule, prodRules)

table← buildContTable(rule, otherRules, label, trainingSet)

pValue← fisherTest(table)

if pValue > threshold then
candidates← addValues(candidates, (pValue, rule))

end if
end for
if candidates ̸= ∅ then

ruleRemove← getRuleToRemove(candidates)

productionRule← removeRule(ruleRemove, prodRule)

prodRule← simplifyRule(prodRule, label, trainingSet)

end if
return prodRule

end function
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2.3 related works

2.3.1 Overlapping Rules

The rules extraction process leads to the discovery of mutually-exclusive
rules: every branch of the Decision Tree represents a conjunctive condition
which allows the execution of the transition specified by the corresponding
leaf. This is intrinsic to the nature of Decision Trees, since a branch leads to
exactly one leaf.

Although this is perfectly acceptable for most of the business processes,
others may not be fully deterministic, or some information may not have
been recorded in the Event Log. In these cases, rules that allow a process
instance to follow multiple choices at the same time may fit the data better,
even though the precision is lower. A technique to deal with such situations,
and to obtain the so-called overlapping rules, has been developed in [12].

Fitness and precision are two distinct concepts that allows to establish the
quality of the extracted guards for output transitions of a decision point. The
authors in [12] define them for every decision point as follows.

Definition 2.5 (Place fitness). Given Ep the subset of the Event Log containing
only those events which are related to output transitions of place p, the place
fitness of p is defined as:

Fitness(E, p) = 1−
| e ∈ Ep | Guard of trans(e) is violated |

| Ep |

where trans(e) returns the Petri Net transition corresponding to the event e in
the log. Therefore, the fitness of place p decreases the more output transitions
of place p are executed (i.e., are observed in the Event Log) violating the
guards.

Definition 2.6 (Place precision). Given Ep the subset of the Event Log con-
taining only those events which are related to output transitions of place p,
the place precision of p is defined as:

Precision(E, p) =

∑
e∈Ep

| obsp(e) |∑
e∈Ep

| posp(e) |

where posp(e) : E→N returns the number of possible executions of output
transitions of place p (according to the guards) before event e occurred, while
obsp(e) : E → N returns the number of actually observed executions. This
means that the place precision of place p decreases the more the guards of its
output transitions are overlapping.

The starting point is a set of observation instances for every decision point:
each instance is composed of the set of attributes values observed before the
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decision is taken, and the target value, i.e., the following transition. These are
the datasets mentioned before, and they can be obtained through different
approaches, such as the ones described in [4] or [8], but also the one proposed
in this thesis work. Subsequently, a Decision Tree Classifier is fitted on each
of these datasets, exactly as described above.

Afterwards, each Decision Tree is considered in order to possibly extend
the extracted rules with overlapping ones. More precisely, every leaf node l is
analyzed and taken into account only if it contains at least one misclassified
instance (i.e., not all the instances that follow that branch have as target value
t the one labeling the leaf). For every leaf node l with misclassified instances,
a new Decision Tree is fitted on those instances. Indeed, the idea is to focus
on those instances in order to further discriminate between them and possibly
find rules that overlap with the existing ones.

The new Decision Tree can contain either only one leaf (i.e., no suitable
split is found) or more leaves. In the first case, the label of the single leaf
would be the target value t’ which appears more often among the training
instances of this new tree. The original rule for this target value t’ is therefore
expanded adding in disjunction the conjunctive conditions expr that led to
leaf l in the original Decision Tree. Indeed, these misclassified samples would
follow transition t’ in the Petri Net model.

Concerning this first case, the original rule for target t’ is expanded as
follows: rules(t ′)← rules(t ′)∨ expr.

In the second case, for every leaf l’ of the new Decision Tree, initially we
have to put in conjunction the conditions expr that led to leaf l of the original
Decision Tree and the ones subExpr that lead to leaf l’. This is because, in
order to reach those wrongly classified instances, we have to descend the
original Decision Tree down to leaf l and then to further descend the new
Decision Tree down to leaf l’. As always, the resulting rules for all the leaves
l’ with the same target value t’ are put in disjunction between them. Finally,
the original rule for each target value t’ is expanded adding in disjunction
the obtained disjunction of conjunctions.

Concerning this second case, the original rule for target t’ is expanded as
follows: rules(t ′)← rules(t ′)∨

∨
(subExpr,t ′)∈subTreel

(expr∧ subExpr).

Alg. 5 shows the procedure to discover overlapping rules.

2.3.2 Discovering Conjunctive Conditions with Daikon

An alternative approach to perform Decision Points Analysis given an Event
Log and a process model (e.g., a Petri Net) relies on the Daikon invariants
detector and has been presented in [13]. This method does not make use of
Decision Trees.
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Algorithm 5 Method to discover overlapping rules.

function discoverOverlappingRules(decisionTree, trainingSet, rules)
leavesWithWrong← getLeavesWithWrong(decisionTree)

for leaf ∈ leavesWrongData do
subRules← ∅
expr← getBranchRule(decisionTree, leaf)

wrongInstances← getWrongInstances(leaf)

subTree← fitDecisionTree(wrongInstances)

subTreeNodes← getNumSubTreeNodes(subTree)

if subTreeNodes > 1 then
for subLeaf ∈ subTree do

subExpr← getBranchRule(subTree, subLeaf)

subExpr← combineExprs(expr, subExpr)

subLabel← getLeafLabel(subLeaf)

subRules← addRule(subRules, subExpr, subLabel)

end for
subRules← disjSameTarget(subRules)

for target ∈ subRules do
subRuleTarget← getRulesTarget(subRules, target)

rules← addRule(rules, subRuleTarget, target)

end for
else

target← getMostPredictedTarget(subTree)

rules← addRule(rules, expr, target)

end if
end for
return rules

end function
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Daikon is an implementation of dynamic detection of likely invariants,
that is, it reports likely program invariants. An invariant is a property that
holds at a certain point in a program, e.g., x.field > abs(y), y = 2x + 3,
array a is sorted and so on. Although Daikon was born with the aim of finding
likely invariants starting from a program source code, it also supports comma-
separated-values (csv) files. The spreadsheet data is first processed by a Perl
script in order to obtain correctly formatted files to be used by Daikon, which
then extracts the invariants. This is what is needed in the Decision Points
Analysis field, since there is not a program source code, but instead datasets
of observation instances. The approach suggested in [13] can only be used on
binary decision points; however, n-ary decision points can be easily converted
into a sequence of multiple binary decision points.

First, we split the set of observation instances related to a decision point
into two sets, according to the target value. Therefore, each one of these sets
has a single target value, and it contains the observation instances related
to that specific branch of the decision point. Then, we use Daikon on each
of these two sets: it returns a list of invariants which are valid on that
set. These can be seen as properties of that set: for example, if the attribute
skip_everything always takes the value True in that set, we will get the invariant
skip_everything == True.

The discovered invariants are then used to build one conjunctive expression
for each branch. Given the list of invariants for a set reported by Daikon,
we compute the information gain for each invariant, and we start building
the resulting conjunctive expression P by picking the one with the highest
information gain. Then, we iteratively add a new invariant q to the conjunctive
expression only if the conjunction P ∧ q increases the information gain with
respect to P. When all the invariants have been analyzed, we return the
resulting conjunctive expression. Note that this is done also for the other list
of invariants (the one related to the other branch of the decision point).

Finally, since we are considering binary decision point, the idea proposed
in [13] is to have a mutually exclusive choice between them. Therefore, one
conjunctive expression must be set as the negation of the other one. To do
this, considering C1 and C2 as the resulting expression, we can distinguish
between four cases:

• If C1 is not empty but C2 is, we put C2 = ¬C1.

• If C1 is empty but C2 is not, we put C1 = ¬C2.

• If C1 and C2 are not empty, we compute the information gain for each
of them, we keep the one with the highest information gain and we put
the second one as the negation of the first one.

• If C1 and C2 are both empty, simply return None for both.
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In order to discover more interesting invariants related to continuous
variables, a massive help comes from enhancing the initial dataset with
so-called latent variables, as suggested in [13]. Each continuous variable is
combined with every other continuous variable using the four basic operators
[+,−, ∗, /]. Note that this could be easily extended adding other operators.
The drawback is that adding all these combinations to the dataset vastly
increases its dimensionality, resulting in longer execution times.





3
M E T H O D S

3.1 running example

In order to support the explanation of the method proposed in this thesis, we
introduce a synthetic Data Petri Net depicting an example business process.
The model is shown in Fig. 3.1. Invisible transitions are labeled for ease of
use, so that we can conveniently refer to them. Every logical expression
corresponds to a guard, and it is linked to the related transition through a
dotted line.

The model represents an exemplified loan request process, and does not
aim at simulating a real one. Every trace execution begins at the start place
on the left, and terminates at the sink place on the right. The first performed
activity is always the Request of the loan; then, the customer needs to Register
a new account, if they do not have one already.

Afterwards, the model splits in two parallel branches. The first one per-
forms a Check of the received loan request, only if the desired amount is
higher than a predefined threshold or if the loan request has been rejected
earlier on. The second one draws up a document (PrepDoc) unless it is already
up to date. Additionally, these two parallel activities are skipped if the loan
request comes from a premium customer (skip_everything == True).

Anyhow, a subsequent FinalCheck is performed to decide the fate of the
loan request. Indeed, it can be accepted and therefore going through the OK
transition, or it can be rejected hence ending up in a NOK transition. Both
paths lead to the termination of the process. A third possibility imposes a
recheck of the loan request: in this case, the process must go through a Check
no matter what.

The running example model allows to take into consideration peculiar
control-flow structures in the Petri Net, such as invisible transitions, par-
allel branches and loops. In particular, the loop is composed by activities
Check, PrepDoc, FinalCheck. This is practical for developing new methods for
Decision Points Analysis, since we can cover more complex cases.

To create a synthetic Event Log for this process, we choose random values
for the attributes at the beginning of every trace. The sequence of activities
in the trace is generated by arbitrarily firing transitions in the model until
the final marking (i.e., the sink) is reached. The shortest variant we can have
is ⟨Request, FinalCheck, OK⟩ or ⟨Request, FinalCheck, NOK⟩. Assuming that the
loop is executed, we get instead ⟨Request, FinalCheck, Check, FinalCheck, OK⟩
and similarly with NOK.

25



26 methods

st
ar

t
R

eq
u

es
t

p
_

1

R
eg

is
te

r

sk
ip

_
1

p
_

2

ta
u

S
p

li
t_

1

p
_

3

p
_

4

C
h

ec
k

sk
ip

_
2

P
re

p
D

o
c

sk
ip

_
3

p
_

5

p
_

6
ta

u
Jo

in
_

1
p

_
7

F
in

al
C

h
ec

k
p

_
8

O
K

N
O

K

sk
ip

_
4

si
n

k
is

_
p
re

se
n
t 

=
=

 F
al

se

(s
k

ip
_
ev

er
y
th

in
g
 =

=
 F

al
se

 &
&

 a
m

o
u
n
t 

 >
 4

0
0
) 

|| 
lo

an
_
is

_
ac

ce
pt

ed
 =

=
 `

`r
ec

h
ec

k
"

(s
k

ip
_
ev

er
y
th

in
g
 =

=
 T

ru
e 

|| 
am

o
u
n
t 

 <
=

 4
0
0
) 

&
&

 l
o
an

_
is

_
ac

ce
pt

ed
 !

=
 `

`r
ec

h
ec

k
"

sk
ip

_
ev

er
y
th

in
g
 =

=
 T

ru
e 

|| 
d
o
c_

is
_
u
p
d

at
ed

 =
=

 T
ru

e

lo
an

_
is

_
ac

ce
pt

ed
 =

=
 `

`y
es

"

lo
an

_
is

_
ac

ce
pt

ed
 =

=
 `

`n
o
"

lo
an

_
is

_
ac

ce
pt

ed
 =

=
 `

`r
ec

h
ec

k
"

sk
ip

_
ev

er
y
th

in
g
 =

=
 F

al
se

 &
&

 d
o
c_

is
_
u
p
d

at
ed

 =
=

 F
al

se

is
_
p
re

se
n
t 

=
=

 T
ru

e

Figure 3.1: Data Petri Net of the running example. Every process instance begins
at the start place on the left and terminates at the sink place on the right. Places are
represented by ovals, while transitions are depicted by rectangles: white for visible
activities and black for invisible ones. Logical expressions correspond to the guards,
and they are linked to the related transitions through dotted lines.



3.2 proposed method 27

3.2 proposed method

As mentioned in the previous chapter, the approaches presented in both [4]
and [8] are prone to information loss: the former stops tracking invisible
transitions when encountering ambiguous places, the latter relies on the
optimal alignments between the Event Log and the Petri Net model, without
considering all the other possible paths. This information loss results in less
complete datasets for the decision points, hence in less accurate Decision
Trees and, finally, in less precise rules.

The method proposed in this thesis allows to take into consideration more
than one path among the ones between every pair of activities observed in
the Event Log. As mentioned before, the Inductive algorithm discovers a Petri
Net model representing a business process which usually contains invisible
activities. Therefore, given two visible transitions in the model, there could
be more than one viable path to reach the second one from the first one,
traversing invisible activities. The goal is to reduce information loss, better
exploiting the data contained in the log.

To achieve this result, first the Event Log is processed in order to create
one dataset for each decision point in the Petri Net model. This is done by
scanning the Event Log variants, and storing the decision points involved in
all the possible paths between every pair of activities; this knowledge is then
exploited to create the datasets, using the attributes values in the Event Log.
Finally, a Decision Tree learner is fitted on each one of these datasets and it is
then used to infer the transitions guards.

3.2.1 Decision Points extraction

In order to properly create a dataset for each decision point, we first need
to store which decision points are involved between an activity A in the
Event Log and the next one B. This way, for each decision point found, a new
instance will be added to the corresponding dataset containing the attributes
values in the Event Log up to activity A and the related target transitions (i.e.,
the transitions followed at every decision point).

Given the presence of invisible transitions, there can be multiple paths
between transition A and transition B in the Petri Net model of the process.
This also means that, among the decision points found in the paths, all of
them have an invisible transition as target, except for the last one, which has
transition B. In order to discover the decision points encountered along all
the possible paths between a pair of activities, we developed a depth-first
search algorithm.

first version Scanning every event in a variant in the Event Log, the
algorithm starts from the transition in the Petri Net corresponding to the
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current event B and performs a backward depth-first visit of the net, passing
through invisible transitions until it reaches the previous activity A observed
in the log. Therefore, this search is executed once for every event in the
variant except for the first one. The backward search stops whenever the
previous activity in the log has been found, or if there are no more invisible
transitions to follow. In case the previous activity in the log is encountered,
then the algorithm adds all the decision points along the followed path and
the related targets (i.e., the decisions that have been taken) to a data structure.

More specifically, the structure of the algorithm is recursive: each level of
recursion focuses on a transition in the model and it extracts all the backward
activities, that are the transitions placed one step before the current one.
Indeed, given the bipartite nature of the Petri Net, places are input nodes
to transitions, and transitions are input nodes to places. Hence, given a
transition, we look at its input places, and for each of them, we collect its
input transitions: these are the backward activities mentioned before.

The algorithm starts by following one of the input arcs of the current
transition: this leads to one of its input places. Then, it looks at the input
transitions of that place: if the previous activity in the log is among them,
then it stops following that specific path, adding the place as a decision point
(if it is one) along with the decision that has been taken, which is the current
transition. The algorithm still explores the paths related to the other input
places, since they could also lead to the previous activity in the log.

Otherwise, if the previous activity in the log is not among the input
transitions of the place, then the algorithm performs a recursion, following
every invisible transition between them. If all these transitions are visible,
then the algorithm simply stops the search along this path, since it cannot
continue.

Every time a level of recursion returns forward along the followed path,
it also signals if the previous activity in the log has been found, either by
the current level of recursion or by lower levels. If so, then the higher level
of recursion adds the current input place as a decision point. As mentioned
earlier, every time a decision point is added to the data structure, this infor-
mation is also linked to the decision that has been taken, which corresponds
to the transition the algorithm finds itself at. Indeed, the path followed by
the backward search traversed that transition, which becomes the decision
taken at the current input place.

When the algorithm terminates its execution, the data structure containing
the decision points and related targets is added to a more global mapping,
which links this collection to the corresponding variant and current activity.
This mapping is then exploited by the second part of the proposed method,
when constructing the decision points datasets.

As highlighted in the previous chapter, a Petri Net model of a business
process can often contain loops. By performing a depth-first search in the
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net, this is an issue that needs to be addressed. Since the algorithm follows
invisible activities backward, it may happen that the algorithm loops endlessly,
following a cycle composed of invisible transitions.

To avoid this problem, just before the algorithm performs a recursion
towards an invisible transition, it adds that transition to a list, passing it to
the lower level of recursion, and it removes it just after the lower level returns.
This way, the algorithm actually performs the recursion towards an invisible
transition only if that transition has not been visited by that specific line of
recursion.

Otherwise, it means that the path realizes a loop composed of invisible
transitions and can be included by the algorithm, since it corresponds to
a loop completely inside the path between the pair of activities analyzed.
The discovered loop does not contain any visible activity, and therefore it is
transparent to the Event Log. The Petri Net model allows it, hence we add
the visited decision points to the data structure.

Keeping the decision points belonging to a loop of invisible activities is
correct only assuming that the pair of activities analyzed by the algorithm
is reachable. An activity is reachable if the backward depth-first search is
able to get to it starting from the current activity. This is not always true, for
example when considering two parallel activities, or when the extracted Petri
Net model does not represent the Event Log with perfect accuracy.

To solve this problem, the algorithm should not always consider the pre-
vious activity in the log as the one to be reached by the backward search.
Instead, it should choose the most recent activity which can be actually
reached, starting from the current activity. We implemented this method
manually, at least initially, encoding a list of reachable activities starting from
every other activity.

Finally, we also implemented a slightly different version of the algorithm
in order to detect decision points between the sink of the Petri Net and the
last observed activity in the Event Log. Indeed, it may happen that the last
executed activity is not immediately before the sink, but there could be other
transitions in between, according to the model. These activities have not
been recorded in the log, therefore they have not been executed: this means
that, from the last observed activity, the process execution traverses a path
composed of invisible transitions until it reaches the sink of the net, skipping
visible transitions.

The general structure of the algorithm is similar to the one explained
before. The main difference is that now the method follows every invisible
transition backward until it finds a decision point that has been already stored
during the sliding of the current variant. In that case, it returns adding all
the decision points present along the traversed paths.
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The algorithm implementing the backward depth-first search is reported
in Alg. 6, while the method selecting the most recent reachable activity is
reported in Alg. 7.

example To clarify better the behavior of the proposed method, we illus-
trate an example of execution of the backward depth-first search. To support
the explanation, the Data Petri Net of the running example is reported in
Fig. 3.2, with arcs colored in different ways according to the paths explo-
rations.

Consider the sequence ⟨Register, FinalCheck⟩ from the running example.
The method starts at the FinalCheck transition and follows its only input
arc, finding place p_7. The only backward transition is tauJoin_1 and it is an
invisible one, hence the algorithm performs a recursion.

The new level of recursion finds itself at transition tauJoin_1 and can follow
two input arcs. It starts by following one of them, for example the one towards
place p_5. Among the input transitions of p_5, the activity we are looking
for, i.e., Register, is not present. Therefore, the algorithm goes on with the
recursion, through the only invisible transition skip_2.

The recursion goes on through tauSplit_1, where the algorithm can follow
two paths backward: the one towards skip_1 and the one towards skip_4.
The recursion on the latter one does not lead to anything useful, since it
encounters activity FinalCheck and no invisible transitions to keep going. The
recursion on the former, instead, brings the algorithm to transition skip_1
where finally activity Register is found, since it is one (the only one, in this
case) of the backward activities with respect to skip_1.

At this point, the algorithm signals that the wanted activity has been found
and returns to the upper level of recursion. This means that the traversed
path is followed in the opposite direction, adding decision points and related
targets that are found on the way. In this case, the method would add
⟨p_1, skip_1⟩ and ⟨p_3, skip_2⟩.

Arriving again at transition tauJoin_1, the algorithm has yet to follow the
other unexplored path, which is the one towards place p_6. The routing
is similar to the one explained before, until it arrives to transition skip_1.
Once more, the method signals that the target has been found and starts
retracing back its steps adding decision points, in this case ⟨p_1, skip_1⟩ and
⟨p_4, skip_3⟩.

Finally, having explored all the input arcs of transition tauJoin_1, the al-
gorithm can keep returning to the upper level of recursion towards place
p_7 and finally transition FinalCheck. In conclusion, the decision points and
related targets for the current variant and current activity (the second one of
the variant, i.e., FinalCheck) are the following: ⟨p_1, skip_1⟩, ⟨p_3, skip_2⟩ and
⟨p_4, skip_3⟩.
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Figure 3.2: Example of an execution of the proposed method. The algorithm starts
from transition FinalCheck and follows the net backward until it finds transition
Register. Arcs highlighted in blue show the paths that are actually selected by the
method: decision points on these paths are stored. Arcs highlighted in red represent
instead paths that are explored by the algorithm but that are not chosen in the end.
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Algorithm 6 Recursive method to extract decision points and related targets
by performing a backward depth-first search of the Petri Net through invisible
transitions starting from currAct up to prevAct.

function bwdDFS(prevAct, currAct, passedActs)
prevActFound = False

for inputArc ∈ getInputArcs(currAct) do
inPlace← getSource(inputArc)

backTrans← ∅
for innInputArc ∈ getInputArcs(inPlace) do

transition← getSource(innInputArc)

backTrans← addTrans(transition, backTrans)

end for
if prevAct ∈ backTrans then

prevActFound = True

if isDP(inPlace) then
mapDPs← updateDPs(inPlace, currAct,mapDPs)

end if
continue

end if
invActs← getInvisibleTransitions(backTrans)

for invAct ∈ invActs do
if invAct /∈ passedActs then

passedArcs← addArc(invAct, passedArcs)

mapDPs, found← bwdDFS(prevAct, invAct, passedActs)

passedArcs← removeArc(invAct, passedActs)

if found == True∧ isDP(inPlace) then
mapDPs← updateDPs(inPlace, invAct,mapDPs)

end if
prevActFound = prevActFound∨ found

else
prevActFound = True

if isDP(inPlace) then
mapDPs← updateDPs(inPlace, currAct,mapDPs)

end if
end if

end for
end for
return mapDPs, prevActFound

end function
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Algorithm 7 Method to select the most recent activity in the Event Log that
can be reached by the current one. It also runs the backward depth-first
search of the chosen activity, if it exists.

function extractDPs(prevSequence, currTrans)
mapDPs← ∅
prevSequenceReversed← reverseSequence(prevSequence)

for prevAct ∈ prevSequenceReversed do
if areActsReachable(prevAct, currTrans) then

mapDPs, found← bwdDFS(prevAct, currTrans, ∅)
break

end if
end for
return mapDPs

end function

problems Although this method is able to explore all the paths between
a pair of transitions, collecting decision points and related targets, it is not
perfect. The biggest drawback is that it is not able to detect decision points
in particular situations involving parallel branches. More precisely, if the
activity to be reached by the backward search is located in one of possibly
many parallel branches in the Petri Net, and some other branch is not visited
according to the Event Log, this means that it is traversed through invisible
transitions only. In that case, the algorithm should store the decision points
inside that unexplored branch, having invisible activities as targets. However,
the proposed method is not able to do this: once the previous activity in the
log is reached, the other parallel branches do not contribute to the stored
decision points.

For example, consider the sequence ⟨Request, Register, Check, FinalCheck⟩.
The algorithm starts at transition FinalCheck and performs a backward search
until it finds transition Check. It does that correctly, without adding any
decision points since p_5 and p_7, the only places on the selected path, are
not actual decision points.

However, the variant does not contain activity PrepDoc. This is a parallel
activity with respect to Check and therefore also the branch tauSplit_1, p_4,
skip_3, p_6, tauJoin_1 should have been accepted, adding ⟨p_4, skip_3⟩ as
useful decision point. The algorithm is not able to discover it, since that path
does not lead to Check.

Another issue with this approach is the manual encoding of reachable tran-
sitions. Indeed, if the currently analyzed activity cannot reach the previous
one in the Event Log, we go back in the log until we find a reachable activity.
To understand if an activity is reachable in the Petri Net, the algorithm relies
on a manually-written list containing the reachable transitions starting from
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every other one. Therefore, there is the need for an automatic method able to
deal with this problem.

Aiming at finding a solution to these pitfalls, we developed a new version
of the algorithm. This time, the backward search not only takes in consid-
eration the previous activity in the log, but the entire sequence of activities
encountered in the variant so far. Going backward, the behavior when the
previous activity in the log is found is unchanged; instead, every time the
algorithm reaches any other activity already seen in the variant, then it de-
cides whether adding the decision point or not according to some conditions.
These conditions are based on decision points already seen in the variant and
on the presence of loops, e.g., decision points are taken into consideration
if the process instance is performing a loop, even if they have already been
observed in the variant, since they can be encountered again.

In other words, this new method traces back to every previous activity
it finds, storing the decision points in all those paths between the current
activity and those ones. This allows to solve the problem mentioned before.

Considering the troublesome example presented earlier on, and therefore
the sequence ⟨Request, Register, Check, FinalCheck⟩, the algorithm now chooses
two paths: one between Check and FinalCheck and the other between Register
and FinalCheck, passing through transitions tauSplit_1, skip_3 and tauJoin_1.
In conclusion, ⟨p_4, skip_3⟩ is stored as useful decision point. Note that, in
principle, the newly discovered path would also add p_2 as decision point, if
it were one. However, the conditions inserted in the modified method prevent
this, since p_2 would have been already stored during the current variant
when considering the pair of activities Register and Check.

This approach also solves the drawback of manually encoding reachable
transitions, since it considers the whole sequence of activities seen in the
variant so far and it traces back in the net until it finds the latest ones.

However, it is not capable of finding decision points correctly in more
complex situations, not because it misses some possible paths, but because
it considers additional, erroneous ones. Indeed, given certain variants and
nets, this new version of the algorithm may find additional decision points
located on paths already explored previously during the variant, since the
newly introduced conditions are not able to cover all possible situations. In
conclusion, the method is not fully generalizable since it may find incorrect
decision points in particular occurrences.

In our opinion, it seems clearly better to prefer decision points on paths
that could have happened during the process execution, rather than on ones
that for sure never happened. Indeed, the alternative paths composed of
invisible transitions that our method finds, actually represent routes that the
process could have followed during its execution. They are not necessarily
followed, since they are introduced in the Petri Net model with the only goal
to cover all the possible cases in the Event Log.
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Therefore, we realized that exploiting the modified algorithm could be
precarious, since in particular conditions it may store decision points which
are incorrect for the current event. Instead, the original version is able to
discover the right decision points every time, losing some secondary path in
infrequent situations. Still, in general it is able to discover much more with
respect to state-of-the-art methods.

second version Since adapting the new version to every possible situa-
tion is definitely not straightforward, we reconsidered the original method.
We modified it in order to avoid manually encoding all reachable activities,
so that the method can be exploited on any Petri Net model.

More precisely, instead of checking if two activities are reachable looking at
the manually-written list, the backward depth-search algorithm looks for the
previous activity in the log and, if not found, the search is repeated looking
for the activity prior to that, and so on. In case the current activity cannot
reach any of the previous activities, then no decision points are stored. This
possibly repeated search can be computationally expensive, especially when
dealing with bigger Petri Nets with many invisible transitions; however, it
has the advantage of correctly dealing with non-reachable activities without
the need of manually encoding information.

It is not possible to reach an activity from a previous one in the variant in
two distinct situations. The first one is when the two activities are parallel, i.e.,
they are located in two different parallel branches in the Petri Net. The second
one is when the model does not perfectly represent all the process executions
in the Event Log: in this case, the two activities can be actually executed one
after the other, but the model is not able to represent that particular sequence.

In our modified approach, we condense these two cases into a single one:
if the two activities are not reachable, the algorithm is run again looking
for an even previous activity, as explained before. If the two initial activities
are not reachable because the model does not represent faithfully the log,
then this approach has the effect of possibly storing decision points already
encountered in the variant. This is not a major issue: the datasets related
to those decision points would contain additional data linked to a process
instance that traversed them anyway.

Another issue is related to loops. In the original method, whenever the
backward depth-first search algorithm encountered an invisible transition
already seen along the path, it meant that a loop composed of invisible
transitions was possible. However, this was true assuming that the two
involved activities were reachable.

Having modified the algorithm, this does not always hold. Therefore, we
ignore this kind of paths, which are not necessarily followed by the process,
being composed of invisible activities only. In conclusion, loops of invisible
transitions completely inside the path between the two involved activities
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are now disregarded. The only kind of loop composed of invisible activities
that is still considered is the one starting and terminating at the activity that
needs to be reached, since the algorithm enters the base case (i.e., the target
activity is reached).

The modified version of the algorithm implementing the backward depth-
first search is reported in Alg. 8, while the modified version of the method
selecting the previous activity to be searched is reported in Alg. 9.

Algorithm 8 Modified version of the recursive method to extract decision
points and related targets.

function bwdDFS(prevAct, currAct, passedActs)
prevActFound = False

for inputArc ∈ getInputArcs(currAct) do
inPlace← getSource(inputArc)

backTrans← ∅
for innInputArc ∈ getInputArcs(inPlace) do

transition← getSource(innInputArc)

backTrans← addTrans(transition, backTrans)

end for
if prevAct ∈ backTrans then

prevActFound = True

if isDP(inPlace) then
mapDPs← updateDPs(inPlace, currAct,mapDPs)

end if
continue

end if
invActs← getInvisibleTransitions(backTrans)

for invAct ∈ invActs do
if invAct /∈ passedActs then

passedArcs← addArc(invAct, passedArcs)

mapDPs, found← bwdDFS(prevAct, invAct, passedActs)

passedArcs← removeArc(invAct, passedActs)

if found == True∧ isDP(inPlace) then
mapDPs← updateDPs(inPlace, invAct,mapDPs)

end if
prevActFound = prevActFound∨ found

end if
end for

end for
return mapDPs, prevActFound

end function
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Algorithm 9 Modified version of the method running the backward search
on the previous activities until a reachable one is found.

function extractDPs(prevSequence, currTrans)
mapDPs← ∅
prevSequenceReversed← reverseSequence(prevSequence)

for prevAct ∈ prevSequenceReversed do
mapDPs, found← bwdDFS(prevAct, currTrans, ∅)
if found == True then

break
end if

end for
return mapDPs

end function

3.2.2 Datasets creation

Having stored the valid decision points for every event in every variant in
the Event Log, we can now use this information and the attributes values in
the log to create a dataset for each decision point. These datasets will then be
used as training sets to learn Decision Tree Classifiers.

For every event except for the first one of every trace, the algorithm retrieves
the valid decision points and their targets (the ones extracted beforehand)
related to the considered activity in the corresponding variant. These decision
points are the ones encountered between the current activity and the previous
reachable one. For every one of these decision points, the algorithm adds to
the corresponding dataset a new instance, composed by the attributes values
from the Event Log and the related target value extracted in the depth-first
search. If an attribute is not present in the dataset, then the algorithm adds it
as a new column, possibly filling the previous entries with a missing value
indicator.

Note that the attributes values added to the datasets are the ones in the
trace up to the previous event. This is because the valid decision points
are those encountered during the backward depth-first search between the
current event and the previous one. Therefore, the attributes values related
to the analyzed event have not been observed yet, since the decision has not
been taken yet.

For this reason, before analyzing the next event in the variant, the algo-
rithm stores the current attributes values, retrieving the ones related to the
considered event in the log. More precisely, the attributes values stored by
the algorithm are always the most recent ones, according to the order as they
appear in the trace. For example, if an attribute has its value set at the first
event of the trace, and it is not present anymore in the sequence, then at the
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skip_everything amount loan_accepted . . . target

True 800 ? . . . skip_2

True 800 recheck . . . Check

Table 3.1: Partial dataset of decision point p_3 of the running example

currently evaluated event the algorithm keeps that observed value for that
attribute.

Consider the variant Request, FinalCheck, Check, FinalCheck, OK. The dataset
related to decision point p_3 will be filled with two instances, since the variant
crossed it twice: the first time going from Request to FinalCheck through skip_2,
while the second time going from FinalCheck to Check.

For every trace in the aforementioned variant, the procedure scans the
activities in it, selecting the proper decision points extracted during the first
step. In this case, when reaching the first FinalCheck activity, the valid decision
points are of course ⟨p_1, skip_1⟩, ⟨p_3, skip_2⟩ and ⟨p_4, skip_3⟩. Considering
the dataset related to p_3, a new instance is added to the corresponding
dataset, containing the most recent attributes values and transition skip_2 as
target.

Then, when reaching the Check activity in the variant, the dataset of decision
point p_3 is expanded with a new instance. This contains the newly updated
attributes values and a target value of Check.

Tab. 3.1 shows how the dataset related to decision point p_3 is filled accord-
ing to the example variant. For the sake of this example, attributes values are
selected randomly. Note that the loan_accepted attribute was not present in
the Event Log when inserting the first instance in the dataset, and therefore
that column was not present initially. Afterwards, when adding the second
instance, which contains a valid value for that attribute, the loan_accepted
column is inserted, filling previous entries with a missing value indicator, ?
in this case.

The pseudocode describing the decision points datasets construction pro-
cedure is reported in Alg. 10.

3.2.3 Decision Trees training and rules extraction

Each created dataset contains all the Event Log data related to a specific
decision point inside the Petri Net model of the process. More precisely, every
instance in the dataset refers to a distinct crossing of that decision point by
some process execution; the instance is composed of the values of the process
attributes as recorded in the Event Log at the time of the decision, and by a
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Algorithm 10 Overall procedure to create decision points datasets.

Require: an Event Log and a Petri Net model of the same process
procedure createDPsDatasets

datasets← initializeDatasets()

variants← getVariants(eventLog)

for variant ∈ variants do
variantMap← ∅
sequence← ∅
for activity ∈ variant do

sequence← addActivity(activity, sequence)

if activity ̸= firstActivityInVariant then
transition← getTransition(activity, net)

validDPs← extractDPs(sequence, transition)

variantMap← addDPs(activity, validDPs, variantMap)

end if
end for
variantTraces← getVariantTraces(variant, eventLog)

for trace ∈ variantTraces do
attr← ∅
for activity ∈ trace do

if activity ̸= firstActivityInTrace then
validDPs← getDPs(activity, variantMap)

for (dp, trgt) ∈ validDPs do
datasets← updtDataset(dp, trgt, attr, datasets)

end for
end if
attr← updateAttrValues(attr, eventLog)

end for
end for

end for
end procedure
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target attribute consisting of the name of the transition that has been followed
after the decision point.

The structure of these datasets is ideal to solve the classification problem of
Decision Points Analysis, since each is composed by a set of instances related
to a single decision point, containing a set of attributes values and a discrete
target value specifying the choice that has been made. Rules extraction is the
goal, hence the Decision Tree approach proposed in the state-of-the-art is
definitely fitting.

We rely on an implementation of the C4.5 algorithm [10] in order to fit a
Decision Tree Classifier on each of the aforementioned datasets. Each fitted
tree is then exploited to extract the guards of the output transitions of the
related decision point, i.e., the rules which govern the routing of cases.

A common issue in fitting Decision Trees lies in the imbalance of the train-
ing set: a very skewed dataset (in terms of target values) may be problematic
for the fitting procedure, such that the C4.5 algorithm may not be able to
find any suitable split. A Decision Tree without any split cannot be used
for rules extraction, since it does not represent any rule at all. This can hap-
pen frequently using the method proposed in this thesis, since a backward
search only contains one visible activity and possibly many invisible ones.
Hence, for a single pair of activities in a trace, only one of the valid decision
points will contain the visible activity, but at the same time all the other valid
decision points will contain invisible activities. Depending on the model,
the probability of adding an invisible activity to the datasets is therefore
much higher than adding a non-invisible one: this can lead to extremely
unbalanaced datasets, up to two orders of magnitude.

A possible way to counter this issue resides in sampling techniques. Their
goal is to rebalance the target class distribution in the dataset, and they
achieve this by building a new dataset containing selected samples from the
original one. When dealing with binary decision points, sampling can be
performed in two opposite manners:

• Oversampling: new synthetic instances are generated starting from the
examples belonging to the minority class, until there is a balance be-
tween the two classes. The simplest way to perform oversampling is by
randomly duplicating instances of the minority class. More involved
techniques, like SMOTE (Synthetic Minority Oversampling TEchnique),
allow to create new instances that are close to the existing ones in the
feature space. The advantage of oversampling methods is that there is
no information loss, since all the existing instances in the dataset are still
used. However, duplicating existing data can lead to overfitting, since a
lot of examples would be in the exact same spot in the feature space;
generating synthetic instances partially counters this issue, because the
new samples are near existing ones.
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• Undersampling: existing instances belonging to the majority class are
selected until there is a balance between the two classes. As before,
the straight way to perform undersampling is to randomly choose
instances from the majority class. Alternative approaches has been
developed, usually related to the k-nearest-neighbors algorithm, hence
selecting instances from the majority class according to their distances
to the ones of the minority class in the feature space. The advantage
of undersampling methods is that the only exploited data is the one
already present in the dataset, since there is no generation of new
instances. The drawback is that some data is eliminated, since the goal
is to reduce the number of examples related to the majority class.

Having evaluated advantages and disadvantages of the existing sampling
methodologies, we opted for random undersampling. The goal of the algo-
rithm proposed in Section 3.2.1 is to avoid information loss, hence multiple
paths that could be followed during the process executions are selected, and
the corresponding data is added to the datasets, which are often very large,
as mentioned before. Given this abundance of information about possible de-
cision points traversals, discarding some instances belonging to the majority
class still results in rich datasets.

In conclusion, information is lost when performing undersampling in this
context; however, the balanced datasets contain a lot more data with respect to
previous methodologies, and this leads to finer results. Additionally, reducing
the size of the dataset should help in avoiding excessive overfitting.

To support decision points which have more than two outgoing arcs (i.e.,
they are not binary), we decided to perform undersampling from the majority
class for each of the minority classes. This way, the resulting dataset will be
composed of the instances belonging to the minority classes, and a number
of examples from the majority class that is equal to the sum of the instances
of the minority classes. This way, the C4.5 algorithm can find a suitable split
and the resulting Decision Tree can be used for rules extraction.

3.3 rules pruning implementation

As mentioned in Section 2.2.5, the rules extracted from a Decision Tree may
be simplified in order to be more readable and understandable.

Among the two pruning approaches proposed earlier, the latter one (which
directly simplifies guards) allows for possibly complete simplification of
a production rule, meaning that an entire branch of the tree is removed.
In particular circumstances, it may happen that all the production rules
involving a specific class c are completely pruned from the tree. This results
in a missing rule for that target class, therefore we would not be able to
characterize that choice of the decision point with a logical expression.
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To avoid this from happening, we can tune the only hyperparameter in
this method, which is the threshold on the p-value. Indeed, increasing the
threshold means that fewer production rules are pruned. However, finding a
proper threshold value may be difficult, especially if we want this method
to work on unseen processes. Hence, one could start from a low p-value
threshold, for example 1%, and, if at the end of the process any rule is empty,
the simplification procedure is repeated with an increased p-value threshold.

A 1% increase would result in finer pruning, at the expense of longer exe-
cution times. A much better idea would be to increase the p-value threshold
by a quantity around 5% every time a target value is left without a rule.

3.4 adapted implementation of the daikon method

As mentioned in Section 2.3.2, Daikon discovers several kinds of invariants,
some of which are comparisons between:

• Continuous and categorical variables.

• Continuous and boolean variables.

• Categorical and boolean variables.

• Categorical variables.

• Boolean variables.

These kinds of comparisons are not often very interesting in the Decision
Points Analysis field, especially since there is usually no point in comparing
different types of variables. In [13], it is reported that “Daikon supports three
primitive data types (integer, float and string) and sequences these primitive data
types”. However, in our experience this support does not seem to be that
straightforward. The inequalities do not appear to be based on lexicographical
comparisons; instead, it looks like categorical and boolean variables are first
converted to numerical ones through a mapping, and then the inequalities
are computed and reported.

Some relations between non-continuous variables are apparently useful,
but this does not hold in presence of missing values. As before, it looks
like Daikon applies some mapping to non-continuous variables: a boolean
variable taking values True and False will be mapped to {0: False, 1: True}
but another boolean variable containing missing values ? will be mapped
to {0: ?, 1: False, 2: True} and therefore the resulting equality/inequality in-
variants would be misleading. It is worth mentioning that useful invariants
related to categorical and boolean variables are reported by Daikon, e.g.,
loan_accepted == “recheck” or is_present == True, but they actually include only
a single variable.
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In general, the most interesting invariants reported by Daikon are the ones
related to continuous variables. Indeed, it tests for unary, binary, and ternary
invariants, and it can output invariants that are combination (linear and
non-linear) of those variables. However, this does not always happen since
it deeply depends on the initial dataset and on the attributes values. For
example, given a dataset with only one continuous variable, Daikon may not
be able to output a single invariant containing that variable.

Another aspect to discuss about the proposed approach is the final adjust-
ment of conjunctive expressions. Although having two non-overlapping and
mutually exclusive rules for the respective branches of the decision point
makes sense in principle, it limits the results of the Decision Points Analysis
process. Indeed, the conjunctive expressions obtained before the adjustment
are based on process instances that followed the respective paths. With the
final adjustment, we throw away one entire conjunctive expression between
the two, putting it as the negation of the other one. This may lead to the
loss of important information acquired during the rules discovery process.
Additionally, process instances that follow the path of the discarded expres-
sion may not even have a value for the attributes specified by the negation of
the other expression (because maybe those attributes were not useful in that
process instance). In those cases, a check on the other condition is not even
possible since those attributes are not even present.

Finally, avoiding the expressions adjustment allows to easily extend the
approach also to non-binary decision points. Daikon discovers the invariants
for each set of process instances related to each branch, and the final con-
junctive expressions are built by greedily adding an invariant provided that
the information gain increases, as explained before. Keeping the resulting
expression as they are, may result in overlapping conditions, i.e., two (or
more) branches are guarded by the same conjunctive expression. Daikon
discovers invariants looking at the datasets independently and, even if the
resulting expressions are built considering the information gain (hence also
the datasets related to the other branches), the greedy approach may result in
equal branching conditions. As presented in Section 2.3.1, this is something
that can happen in the Decision Points Analysis field, and it usually reflects
missing information in the Event Log since certain choices in business process
may be the product of human decisions in presence of ambiguity, and not
everything is recorded in the log.

One final remark about the approach presented in [13] is that the greedy
selection of atoms to build the conjunctive expression may lead to non-
deterministic results. Indeed, it may happen that two or more atoms have the
same exact information gain. We can break this tie in different ways, for ex-
ample choosing an alphabetical order of the atoms. Either way, this influences
the outcome, i.e., the resulting conjunctive expression. The alternative guards
are basically equivalent since the original atoms have the same information
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gain. Nonetheless, if the attributes chosen to be in the final expressions end
up being different depending on the tie-breaking rule, this could lead to
potentially different outcomes while testing on new instances, since we test
on completely different variables. An alternative approach could be to put in
disjunction the atoms with the same information gain; however, this would
most likely result in very long resulting expressions.

Among the approaches presented in [13], we implemented the CD+IG+LV
variant, which is the discovery of conjunctive conditions using Daikon and
the greedy approach based on information gain, all of which using the dataset
enriched with latent variables. As shown in Alg. 11, the major differences
with respect to the proposed method are linked to the elimination of some of
the invariants discovered by Daikon (the ones which do not really make sense,
as reported before) and the final conditions adjustment. Indeed, this is done
only if the analyzed decision point is binary, rewriting the rule as not (rule) if
it is a conjunction of multiple invariants, or simply negating the operand if
the rule is composed by only one invariant. Additionally, the input dataset is
preprocessed as follows: instances containing missing values for continuous
attributes are removed, while the other missing values are replaced with ?.
Finally, when picking the invariant with the maximum information gain, the
tie-breaking rule selects the atom which comes last alphabetically.
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Algorithm 11 Our implementation of the CD+IG+LV variant using Daikon.

procedure discoverRulesWithDaikon(trainingSet)
expressions← ∅
for target ∈ trainingSet do

setTarget← getSetTarget(trainingSet, target)

setTarget← addLatentVariables(setTarget)

invariants← getDaikonInvariants(setTarget)

invariants← removeMeaninglessInvariants(invariants)

conjExpr← buildConjExpr(invariants, trainingSet)

expressions← addExpr(expressions, conjExpr)

end for
if isBinaryDecisionPoint(trainingSet) then

expressions← adjustConditions(expressions)

end if
end procedure

function removeMeaninglessInvariants(invariants)
for invariant ∈ invariants do

contNonCont← isCompContAndNonCont(invariant)

nonConts← isCompBetweenNonConts(invariant)

if contNonCont∨nonConts then
invariants← removeInvariant(invariant)

end if
end for
return invariants

end function

function buildConjExpr(invariants, trainingSet)
resultingExpr← ∅
remainingInvariants = invariants

while remainingInvariants ̸= ∅ do
maxGainInv← getInvWithMaxIG(invariants, trainingSet)

newExpr← combineExprs(resultingExpr,maxGainInv)

newIG← computeIG(newExpr, trainingSet)

if newIG > computeIG(resultingExpr, trainingSet) then
resultingExpr = newExpr

end if
remainingInvariants← removeInv(maxGainInv)

end while
return resultingExpr

end function
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4.1 processes

In order to test the novel method proposed in this thesis, we relied on
two distinct processes: a synthetic one and a real one. The former is the
running example presented in Section 3.1, whose Event Log is generated by
arbitrarily selecting attributes values (respecting the guards) and by firing
transitions at random. We generated a total number of 100 traces, which
can be grouped in 31 different variants. The activities belong to the set
⟨Check, FinalCheck, NOK, OK, PrepDoc, Register, Request⟩ as previously shown.
There are five additional different attributes: amount is a continuous one,
loan_is_accepted is a categorical one having yes, no and recheck as possible
values, while doc_is_updated, is_present, loan_is_accepted and skip_everything
are boolean ones.

The latter is instead an Event Log stored by an information system
of an Italian municipal police force, which was introduced in [14]. This
log is composed of 150370 traces, divided in 231 variants, ranging
from a length of 2 activities up to 20 activities. There is a total of 11

different activities, belonging to the set ⟨Add Penalty, Appeal to Judge,
Create Fine, Insert Date Appeal to Prefecture, Insert Fine Notification,
Notify Result Appeal to Offender, Payment, Receive Result Appeal from Prefecture,
Send Appeal to Prefecture, Send Fine, Send for Credit Collection⟩.

This real-life process contains 13 additional distinct attributes: amount,
expense, paymentAmount, points and totalPaymentAmount are continuous ones,
article, dismissal, lastSent,matricola, notificationType, org:resource and vehicleClass
are categorical ones, and there is an extra variable time:timestamp containing
the time at which the activity has been executed.

Given these two Event Logs, we extracted the related Petri Nets through
the Inductive algorithm, in order to also discover invisible transitions. More
precisely, to obtain the running example net we relied on an implementation
of the Inductive Miner inside the PM4PY library [15] for the Python program-
ming language. Instead, the net related to the real-life Event Log has been
discovered using an implementation of the Inductive Miner in the ProM
framework, so that the model is identical to the one analyzed in [8].

The different implementations of the Inductive Miner allow to specify a
noise threshold, ranging from 0 to 1. In particular, a noise threshold of 0

means that the discovered net perfectly represents the information contained
in the Event Log. Increasing the noise threshold value, the extracted net will

47



48 evaluation

ignore some behaviors recorded in the log: therefore, the obtained model will
not be completely sound with respect to the Event Log, and certain variants
may not be perfectly replicated. We extracted both the Petri Nets using a
noise threshold of 0, in order to have perfectly sound models.

The mined real-life process Petri Net contains different parallel branches,
starting from the ones splitting from transition Create Fine at the very begin-
ning. Moreover, the bottom branch also contains a loop on activity Payment,
which can be possibly fired many times consecutively, choosing the invisible
transition skip_7 after decision point p_12. The loop is terminated whenever
the decision goes towards transition skip_8. Notice that the loop, and there-
fore transition Payment, could also be entirely skipped passing through the
invisible transition skip_4.

It is interesting to observe that, increasing the noise threshold of the
Inductive Miner to a value of 0.2, the loop is not detected anymore. Transition
Payment can be executed once, or it can be skipped as before.

Fig. 4.1 shows the Petri Net of the real-life process, extracted using the
Inductive Miner implemented in ProM with a noise threshold of 0.

4.2 results

In this section we present and discuss the results produced by the method
proposed in this thesis on the two datasets introduced before. Concerning
the real-life process, we also compare the results with the ones presented
in [8], since both the Event Log and the Petri Net model are identical. For
Decision Trees construction, our method relies on an implementation of the
C4.5 algorithm which supports all types of attributes; an additional parameter
imposes a maximum depth of the trees (i.e., the maximum number of levels
in the tree) of 7, in order to avoid gigantic structures.

4.2.1 F1-score measure

In order to quantitatively measure the quality of the discovered guards, for
each decision point we tested the related Decision Tree with the corresponding
dataset extracted using the novel method. We then measured the accuracy
of the predictions through the F1-score, which is related to both the precision
and the recall of the test.

Considering a binary dataset, that is a dataset with only two possible
target values, we define one of them as the positive class and the other as the
negative one. Precision is defined as the ratio between the number of true
positives (tp), i.e., members of the positive class that are correctly predicted
as positive, and the sum of true positives and false positives (fp), the latter
ones being the instances of the negative class that are mistakenly predicted as
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Figure 4.1: Petri Net of the real-life process
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Decision Point Found F1-score Rule Discovered

p_1 yes 1 exact

p_3 yes 0.7801 partially correct

p_4 yes 0.9719 exact

p_8 yes 1 exact

Table 4.1: Results applying the proposed method to the running example process

positive. Hence, precision shows how many instances are correctly classified
as positive among the ones that are predicted as positive.

The recall of a prediction is instead defined as the ratio between the true
positives and the sum of true positives and false negatives (fn), the latter
ones being the members of the positive class that are incorrectly predicted as
negative. In other words, recall represents how many instances are classified
as positive among the ones that are actually positive in the dataset.

Finally, the F1-score is defined as two times the product between precision
and recall, divided by the sum of these two quantities, as shown below in 4.1.

Precision =
tp

tp+ fp
Recall =

tp

tp+ fn
F1-score = 2· Precision · Recall

Precision+ Recall
(4.1)

When dealing with non-binary datasets and therefore more than two
possible target values, the F1-score is computed for each class separately.
The values can then be combined in different ways: we opted for a weighted
average between them, considering the number of instances belonging to each
class. In the two test processes evaluated in this thesis, the only non-binary
decision point is p_8 in the running example Petri Net, which has three
outgoing arcs.

4.2.2 Running example process

Tab. 4.1 shows the results concerning the running example process. The
proposed method is able to discover the guards for all the output transitions
of all the decision points inside the Petri Net model. Each decision point
dataset is balanced in terms of target values, therefore there is no need to
apply an undersampling technique since the C4.5 algorithm is able to find
suitable splits. The extracted rules are almost always identical to the actual
ones, and they are reported in Tab. 4.2.

The only slight difference resides in the output guards for decision point
p_3. Indeed, the attribute loan_is_accepted is not part of the discovered rules,
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Decision Point Target Discovered Rule

p_1
Register

skip_1

is_present = False

is_present = True

p_3
Check

skip_2

(skip_everything = False∧ amount > 398)∨

(skip_everything = True ∧ amount > 987)

(skip_everything = False∧ amount ⩽ 398)∨

(skip_everything = True∧ amount ⩽ 987)

p_4

PrepDoc

skip_3

doc_is_updated = False∧

skip_everything = False

skip_everything = True∨

(doc_is_updated = True∧

skip_everything = False)

p_8
OK

NOK

skip_4

loan_is_accepted = yes

loan_is_accepted = no

loan_is_accepted = recheck

Table 4.2: Discovered rules applying the proposed method to the running example
process

while it was there in the original Data Petri Net. To understand the reason
behind this, we have to analyze the fitted Decision Tree: in fact, there is no
split on attribute loan_is_accepted, because it only takes the value recheck or it
is missing.

Indeed, a process execution traverses p_3 for sure once, either to execute
transition Check or to skip that activity passing through the invisible transition
skip_2. On this first pass, attribute loan_is_accepted is not defined, since it takes
a value only after the activity FinalCheck. Therefore, the decision point dataset
would contain a missing value indicator for this crossing.

However, if the same process execution performs a loop, then it traverses
again decision point p_3, but this time the attribute loan_is_accepted is perfectly
defined, having value recheck. As a matter of fact, a process instance can loop
only if activity FinalCheck signals that there is the need to recheck the loan
request.

In conclusion, when considering p_3, the attribute loan_is_accepted can only
be a missing value or equal to recheck. Since the C4.5 splitting algorithm of
the Decision Tree only considers non-missing values when computing the
information gain, it only observes value recheck. This results in an information
gain of zero, hence no splitting and, therefore, no condition on attribute
loan_is_accepted along the branches of the tree.
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Decision Point Target Discovered Rule

p_1
Register

skip_1

is_present = False

is_present = True

p_3
Check

skip_2

(skip_everything = False∧ amount > 398)

(skip_everything = True∨ amount ⩽ 398)

p_4
PrepDoc

skip_3

doc_is_updated = False∧

skip_everything = False

doc_is_updated = True∨

skip_everything = True

p_8
OK

NOK

skip_4

loan_is_accepted = yes

loan_is_accepted = no

loan_is_accepted = recheck

Table 4.3: Simplified guards applying the production rules pruning method to the
running example process

Considering decision point p_4, we observe that the discovered rules are
perfectly in line with the ones in the original Data Petri Net; however, the
F1-score is slightly less than 1. The reason behind this result is to be traced
back to what has been described in Section 3.2.1: the proposed depth-first
search algorithm is not able to detect decision points on branches that are
parallel to the transition it has to reach.

For this reason, in such particular conditions the method does not add
the related instance in the dataset of p_4, therefore losing some data. When
performing a prediction, the resulting accuracy cannot be exactly 1, since
those cases have not been covered. An analogous behavior affects decision
point p_3, whose F1-score is already lower than 1 given the rationale explained
before.

Applying the rule production pruning method introduced in Section 2.2.5,
allows to obtain even more compact rules. Interestingly, the guards for the
output transitions of p_4 become the exact copy of the ones in the original
Data Petri Net, and rules related to decision point p_3 now are also more
similar to the original ones. The simplified rules are shown in Tab. 4.3.

On the other hand, the pessimistic pruning approach presented in Sec-
tion 2.2.5 does not seem to have any effect on the extracted rules. This is
reasonable, since guards related to the running example process are already
short and straightforward.

The computation of overlapping rules as explained in Section 2.3.1 allows
to add further conditions in disjunction with the ones already found. More
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precisely, the guard for transition Check is expanded with the following
conditions:

skip_everything = True∧ amount ⩽ 987

skip_everything = False∧ amount ⩽ 398

Which correspond exactly to the guard for transition skip_2 of the same
decision point p_3. This indicates that many instances having transition Check
as target are misclassified by the Decision Tree, since their actual target is
skip_2. This is in line with the recorded F1-score for this decision point of
0.7801.

Additionally, for the same reason, the guard for transition skip_3 is ex-
panded with the corresponding condition obtained for transition PrepDoc,
that is:

doc_is_updated = False∧ skip_everything = False

For the sake of completeness, we also comment the guards discovered using
the Daikon invariant detector method presented in Section 2.3.2, discarding
continuous attributes with missing values and meaningless invariants. Daikon
is not able to find guards for outgoing transitions of decision points p_1, p_3
and p_4. Instead, it discovers the correct rules related to p_8.

In conclusion, at least concerning the running example process, applying
the rule production simplification method to the guards extracted from the
Decision Trees seems to provide the best results in term of readability and
faithfulness to the logical conditions in the original Data Petri Net.

4.2.3 Real-life process

We found the most interesting results applying the proposed method to the
Event Log related to the real-life process, mostly because of its larger size
and variety of cases. Besides, being able to compare the results with the ones
presented in [8] allows to show the improvements introduced by the method
itself.

Tab. 4.4 shows a comparison between our method and the state-of-the-art
one, which makes use of optimal alignments. For every decision point in
the Petri Net model, it is reported whether or not each method was able to
find the guards for their outgoing transitions, along with the corresponding
F1-score.

It is immediately visible that our method is able to discover guards for
all the decision points in the given model, while the optimal alignments
approach only managed to get rules for 5 out of the 11 decision points. On
top of that, the F1-scores are always higher, indicating a better prediction
accuracy of the learned Decision Tree Classifiers.

The extracted rules are therefore more precise, with the downside that they
are lengthy for certain output transitions. This is not an issue if a machine has
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Proposed Method Optimal Alignments

Decision Point Found F1-score Found F1-score

p_1 yes 0.791 yes 0.755

p_2 yes 0.908 yes 0.458

p_3 yes 0.766 yes 0.567

p_5 yes 0.833 no 0.434

p_7 yes 0.892 no 0.49

p_12 yes 0.900 yes 0.808

p_13 yes 0.892 no 0.499

p_14 yes 0.954 no 0.498

p_15 yes 0.692 no 0.434

p_19 yes 0.971 no 0.497

p_26 yes 0.968 yes 0.933

Table 4.4: Comparison between the results of the proposed method and the optimal
alignments one on the real-life process

to interpret them, but it may become one if we consider human-readability.
Indeed, some of the guards contain tens of conditions in disjunction, resulting
in extended rules which are difficult to understand.

This problem is partially mitigated by rule pruning methodologies, that
are able to eliminate a few conditions. However, certain guards still remain
far too long to be easily read and understood. A possible further help may
come from modifying the algorithm for Decision Tree learning, for example
reducing the maximum depth of the tree, or imposing a minimum number
of instances for each leaf, in order to obtain smaller trees and, consequently,
shorter rules.

In order to test our method on incomplete models, i.e., Petri Nets that
do not faithfully represent all the possible variants contained in the Event
Log, we also extracted the model for this real-life process using the Inductive
Miner and specifying a noise threshold of 0.2. The resulting Petri Net is
identical to the one studied so far, with the exclusion of the loop: place p_3
has two outgoing arcs, one toward Payment and one toward skip_4; then,
transition Payment goes directly into place p_16, since there is no loop.

The final version of the proposed algorithm is able to manage such situa-
tions. Consider the sequence ⟨Create Fine, Payment, Payment⟩: the depth-first
search would start from the last Payment activity, following invisible transi-
tions backward until it reaches the first Payment activity. However, since the
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loop is not present anymore in the model, this is not possible. Therefore, the
algorithm selects the previous activity Create Fine as the one to be reached.

This means that place p_3 has been chosen twice in the sequence, even if
it is not part of a loop. Indeed, it is selected on the backward path between
the first Payment and Create Fine, but also on the one between the second
Payment and the first Payment. Hence, the dataset of p_3 would contain two
different instances related to these two traversals.

As mentioned in the previous chapter, this is not an issue, since the
same process execution passed through that decision point in order to reach
Payment the first time and, according to the Petri Net model, reaching Payment
a second time would mean crossing p_3 again. This is also supported by the
results, since the F1-scores for this incomplete net are identical to the ones
obtained before.

In general, the datasets related to many of the decision points are very
unbalanced in terms of target values, such that the C4.5 algorithm is not able
to find any suitable split in order to build a Decision Tree. As mentioned
in the previous chapter, this issue is amplified by the proposed method,
since for each visible transition on a path, many invisible ones are taken into
consideration, resulting in unbalanced datasets.

Therefore, for this real-life process a rebalancing technique is needed in
order to extract rules for more than three decision points (p_3, p_5, p_26)
output transitions. As proposed earlier, we relied on an undersampling
technique in order to obtain perfectly balanced datasets. This allows to
build a proper Decision Tree Classifier for each decision point dataset, hence
extracting related guards.

Given that random undersampling may lead to slightly different results ev-
ery time the sampling is executed, the F1-score values reported in Tab. 4.4 are
average values. More precisely, we decided to perform undersampling, Deci-
sion Tree fitting and F1-score computation 10 times, averaging the resulting
quantities in order to obtain a more realistic value.

On the other hand, the Daikon invariant detector approach does not suffer
from unbalanced datasets, since it considers each subset of instances with
the same target value and discovers invariants that are valid in that set.
Concerning this real-life process, our adapted implementation of Daikon
presented in Section 2.3.2 is able to find guards for almost all decision
points. The extracted conjunctive conditions are more compact with respect
to the ones discovered with Decision Trees, and they often contain linear
combination of continuous attributes.

For instance, considering decision point p_1 and target transition skip_1,
Daikon discovers the following guard:

totalpaymentAmount · points ⩾ points · paymentAmount
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A more complex rule is instead found when considering decision point p_5
and its target transition Insert Fine Notification. Note that it has been slightly
rewritten to manually factor out some terms:

2 · (expense− totalPaymentAmount) = 0∧−2 · (amount+ points) = 0

In conclusion, concerning the real-life process, the novel method proposed
in this thesis is able to discover the guards for the output transition of all the
decision points in the Petri Net model, something that the optimal alignment
approach was not able to do. Moreover, the recorded F1-scores are higher,
which translates in better Decision Tree Classifiers for prediction and finer
rules.

However, not all the guards are easily readable by humans because of their
excessive length. The two rule pruning methods that have been tested are not
always able to simplify the guards enough to be comfortably intelligible. The
approach relying on the Daikon invariant detector is instead able to extract
more compact rules, although it cannot discover guards for all the decision
points.

The results presented in this section do not aim to represent an extensive
proof of the general validity of the proposed method. Nonetheless, they are
encouraging, as the comparison with the state-of-the-art technique using
optimal alignments shows several advantages of this novel approach.
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C O N C L U S I O N S A N D F U T U R E W O R K S

In this thesis we proposed a novel method to perform Decision Points Anal-
ysis on a Petri Net model of a business process discovered starting from
an Event Log. The approach differs from the state-of-the-art ones because it
exploits more information related to the control-flow structure of the model.
More precisely, current methodologies either follow the path of the process
instance until an ambiguous place is found, or they choose a single optimal
path in the entire net.

Our aim is to exploit all the possible paths that a process instance may
follow according to the corresponding Petri Net model, traversing invisible
transitions. Unfortunately, we did not manage to produce an algorithm able
to correctly generalize on all the possible control-flow structures, since in
some cases it would also consider incorrect paths. Therefore, we developed a
technique which takes into consideration all the possible paths in most of the
cases, in order to avoid considering invalid ones in particular conditions.

Nonetheless, this method is able to keep track of more paths with respect
to current techniques. This knowledge is then exploited in order to perform
Decision Points Analysis, considering each decision point in the Petri Net
as a classification problem, as already proposed in the state-of-the-art meth-
ods. These classification problems are solved using Decision Tree learners,
which are then employed to extract the guards of the decision points output
transitions.

The results on both a synthetic and a real process show that the proposed
method is indeed exploiting more information, since it discovers guards for
transitions where previous approaches failed. Additionally, the quality of the
extracted guards is higher, as proved by the F1-scores. This allows for better
process analysis and prediction capabilities, two key aspects when dealing
with business processes.

Reducing information loss is one of the main challenges in Decision Points
Analysis and future works should follow that direction. The proposed method
could be extended in order to consider all possible paths in every situation,
especially when dealing with unexplored parallel branches. This would most
likely result in even higher F1-scores, hence accurate models for prediction,
since less knowledge is left out.

Future research should also delve into the two main issues mentioned in
this thesis: imbalanced datasets and lengthy rules. The former is an intrinsic
consequence of considering all possible paths, and alternative rebalancing
techniques should be studied with the aim of avoiding losing too much
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information but at the same time averting overfitting. The latter could be
mitigated either stopping the Decision Tree fitting procedure earlier, obtaining
smaller trees, or exploiting more advanced rule pruning techniques. This is a
crucial aspect, since shorter guards are more readable by humans, which is
necessary for easier process diagnostic and enhancement.
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