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Abstract

The computer simulation of Fluid-Structure Interaction (FSI) phenomena allows
to gain more insight on complex interactions and behaviors of solids immersed in
fluid flows, helping predict their effects. Applications range from aeroelasticity, to
turbomachinery, or biomechanics, just to name a few.

It is possible to perform those simulations in different ways: one of them involves
a technique known as partitioned algorithm. A partitioned algorithm aims at solving
a FSI problem basically by means of three elements, which include a fluid solver, a
structural solver and a third component which performs the interaction between the
other two. The advantage of this technique consists in reusing and adapting already
developed and optimized solvers and connect them.

In this thesis, the MultiBody Dynamics analysis software (MBDyn) has been linked
to the multiphysics coupling library precise Code Interaction Coupling Environment
(preCICE), with the purpose of extending MBDyn capabilities in the field of FSI
simulations.

For this reason, an adapter(i.e. a piece of connecting code, in this case written in
C++), has been developed to implement this coupling.

Coupling MBDyn with preCICE represents and advantage and an extension of
capabilities, because many other adapters for the fluid side have already been developed
for this library. It is then possible and simple to choose among a considerable number
of fluid solvers, including many well-validated open source and commercial codes. On
the other hand, with a fully integrated MBDyn adapter, the library preCICE gains
the opportunity to connect to a multibody dynamics software, which has not yet been
completely developed.

The coupling between MBDyn and preCICE has been successfully tested in different
scenarios, including some well-known FSI benchmark problems. Also some current
limitations of applicability, emerged in one of those benchmarks, have been analyzed.

The current status of the adapter represents a good starting point to explore
more in detail the behavior of the MBDyn-preCICE coupling even in more complex
scenarios and to use it in real-world applications.

Keywords— fluid structure interaction, partitioned algorithms, multibody dynamics,
MBDyn, preCICE
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Sommario

La simulazione computerizzata di fenomeni di Fluid-Structure Interaction (FSI) consente
di ottenere una maggiore comprensione di interazioni e comportamenti complessi di corpi
solidi immersi in un fluido, aiutando a prevederne gli effetti. Le applicazioni si estendono
dall’aeroelasticità, alle turbomacchine od alla biomeccanica, solo per citarne alcune.

È possibile eseguire tali simulazioni in modi differenti: uno di questi utilizza una tecnica
nota come algoritmo partizionato. Un algoritmo partizionato tenta di risolvere un problema
di FSI utilizzando tre elementi: un solutore fluido, un solutore solido ed un terzo componente
che si occupa dell’interazione tra gli altri due. Il vantaggio di questa tecnica consiste nel
poter riutilizzare ed adattare elementi codice già sviluppato ed ottimizzato e di connetterli.

In questa tesi, il MultiBody Dynamics analysis software (MBDyn) è stato collegato alla
libreria software di simulazione multifisica precise Code Interaction Coupling Environment
(preCICE), con l’obiettivo di estendere, per MBDyn, le possibilità di simulazione nell’ambito
della simulazione fluido-struttura.

Per questa ragione, un adattatore (ovvero del codice software di connessione, in questo
caso scritto in C++) è stato sviluppato per realizzare questa operazione.

La connessione di MBDyn con preCICE costituisce un vantaggio ed una estensione di
potenzialità, in quanto sono già presenti molti adattatori per preCICE in ambito fluidodina-
mico: diventa così possibile e semplice scegliere tra un considerevole numero di solutori fluidi,
tra cui molti codici open-source e commerciali molto noti. D’altra parte, con un adattatore
MBDyn completamente integrato, la libreria preCICE ottiene la possibilità di connettere un
solutore multiboby, un aspetto ad oggi non ancora completamente sviluppato.

L’interazione tra MBDyn e preCICE è stata sperimentata con successo in scenari diversi,
tra cui una serie di problemi di riferimento in ambito FSI ben noti in letteratura. Anche
alcune attuali limitazioni d’uso, emerse durante lo studio di uno di questi problemi, sono
state analizzate.

Lo stato attuale di conoscenza e sviluppo dell’adattatore rappresenta un buon punto
di partenza per analizzare più in dettaglio il comportamento dell’interazione tra MBDyn
e preCICE anche in scenari più complessi e di utilizzarlo come strumento di analisi in
applicazioni reali.

Parole chiave— interazione fluido struttura, algoritmi partizionati, dinamica multibody,
MBDyn, preCICE
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Chapter 1

Introduction

Fluid-Structure Interaction (FSI) describes the mutual interaction between a moving or
deformable object and a fluid in contact with it, surrounding or internal. It is present in
various forms both in nature and in man-made systems: a leaf fluttering in the wind, water
flowing underground or blood pumping in an artery are typical examples of fluid-structure
interaction in nature. FSI occurs in engineered systems when modeling the behavior of
turbomachinery, the flight characteristics of an aircraft, or the interaction of a building with
the wind, just to name a few examples.

All the aforementioned problems go under the same category of FSI, even if the nature
of the interaction between the solid and fluid is different. Specifically, the intensity of the
exchanged quantities and the effect in the fluid and solid domains vary among different
problems.

There can be multiple ways to classify FSI problems, based on the flow physics and on
the behavior of the body. Incompressible flow assumption is always made for liquid-solid
interaction, while both compressible and incompressible flow assumptions are made when a
gas interacts with a solid, depending on the flow properties and the kind of simulation. The
main application of air-solid interaction considers the determination of aerodynamic forces
on structures such as aircraft wings, which is often referred to as aeroelasticity. Dynamic
aeroelasticity is the topic that normally investigates the interaction between aerodynamic,
elastic and inertial forces. Aerodynamic flutter (i.e. the dynamic instability of an elastic
structure in a fluid flow) is one of the severe consequences of aerodynamic forces. It is
responsible for destructive effects in structures and a significant example of FSI problems.

The subject may also be classified considering the behavior of the structure interacting
with the fluid: a solid can be assumed rigid or deforming because of the fluid forces. Examples
where rigid body assumption may be used include internal combustion engines, turbines,
ships and offshore platforms. The rigid body–fluid interaction problem is simpler to some
extent, nevertheless the dynamics of rigid body motion requires a solution that reflects the
fluid forces. Within the deformable body–fluid interaction, the nature of the deforming body
may vary from very simple linear elastic models in small strain to highly complex nonlinear
deformations of inelastic materials. Examples of deforming body–fluid interaction include
aeroelasticity, biomedical applications and poroelasticity.

The interaction between fluid (incompressible or compressible) and solid (rigid or de-
formable) can be strong or weak, depending on how much a change in one domain influences
the other. An example of weakly coupled problem is aeroelasticity at high Reynolds number,
while incompressible flow often leads to strongly coupled problems. This distinction can lead
to different solution strategies, as briefly described below.

Physical models aren’t the only way in which FSI problems can be classified. The solution
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Chapter 1. Introduction

procedure employed plays a key role in building models and algorithms to solve this kind
of problems. The two main approaches are: the monolithic approach in which both fluid
and solid are treated as one single system and the partitioned approach in which fluid and
solid are considered as two separated systems coupled only through an interface. This latter
approach is often preferred when building new solution procedures as it allows to use solvers
that have been already developed, tested and optimized for a specific domain. The solvers
only need to be linked to a third component, which takes care of all the interaction aspects.

The partitioned approach can be further classified considering the coupling between the
fluid and solid: the solution may be carried out using a weakly coupled approach, in which the
two solvers advance without synchronization, or a strongly coupled approach, in which the
solution for all the physics must be synchronized at every time step. Although the weakly
coupled approach is used in some aerodynamic applications, it is seldom used in other areas
due to instability issues. A strongly coupled approach is generally preferred, even though
this leads to more complex coupling procedures at the interface between fluid and solid.

This work describes the implementation and the validation of what is called an adapter,
that is the “glue-code” needed to interface a solver to a coupling software library, thus
adopting a partitioned approach to solve FSI problems. The adapter presented here connects
the software code MultiBody Dynamics analysis software (MBDyn) to the multi-physics
coupling library precise Code Interaction Coupling Environment (preCICE).

Interfacing MBDyn with preCICE has multiple advantages: on one side it extends the
capabilities of MBDyn to be used in FSI simulations by connecting it with a software library
which has been already connected to widely used CFD solvers; on the other side, it allows to
describe and simulate FSI problems with a suite of lumped, 1D and 2D elements (i.e. rigid
bodies, beams, membranes, shells, etc.) decoupling the shape of the object (i.e. the interface
with the fluid) from its structural properties, which can be described by different models
and constitutive laws.

The thesis is structured as follows:

• Section 2 introduces the reader to FSI problems and their complexity, with particular
attention to the physical description of the fluid and solid domains and the interface.

• Section 3 focuses on numerical methods, describing how to computationally deal with
these kind of problems: details regarding the different coupling approaches are given
here.

• Section 4 explains the features of preCICE that the adapter needs to support and
gives a short introduction to MBDyn, explaining the main functionalities of interest.

• Section 5 presents the adapter developed in this work, its most important features
and how to configure a FSI simulation with it.

• Section 6 describes the validation of the adapter, the comparison of the results with
some well-known benchmarks together with a comparison to a real world experiment.

• Section 7 summarizes the findings and outcomes of this work and gives an outlook to
future development on this topic.

• Finally four appendices give further information concerning the structure and the
configuration of the software components used in this work.
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Chapter 2

Physical aspects of Fluid-Structure
Interaction problems

Dynamic models of solids or fluids aim at describing the evolution of an initial configuration
through time. Structural mechanics and fluid dynamics use different perspectives when
describing the motion of respectively a solid or a fluid particle. When dealing with FSI
problems, the two approaches need to be combined in order to obtain a suitable description
of the two domains and their interface: this aspect is treated in 2.1.

As outlined in the introduction, the fluid and the solid domain of a FSI problem might
be described by means of many different models: some of them are outlined in section 2.2.
Dimensional analysis and the use of dimensionless numbers is a powerful tool used to classify
fluid dynamics problems: some of the principles used there can be applied to FSI problems
in order to classify them: this can help define and classify FSI problems, as described in
section 2.3.

2.1 Description of motion
In a FSI model, the fluid in motion deforms the solid because of the forces exerted to
the structure. The change in the shape of the solid modifies the fluid domain, causing a
different flow behavior. For this reason it is necessary to describe formally the kinematics
and the dynamics of the whole process. Classical continuum mechanics considers the
motion of particles by means of two different perspectives [1]: the Eulerian description,
briefly described in section 2.1.1, and the Lagrangian description, outlined in section 2.1.2.
Those two perspectives are typically combined into the arbitrary Lagrangian-Eulerian (ALE)
method, described in section 2.1.3.

2.1.1 Eulerian perspective
The Eulerian perspective observes the change of quantities of interest (e.g. density, velocity,
pressure) at spatially fixed locations. In other words: the observer does not vary the point
of view during different time steps. Thus, quantities can be expressed as functions of time at
fixed locations. This is represented by the following notation:

Θ = Θ̃(x, y, z, t) (2.1)

where Θ is a quantity of interest and Θ̃ denotes the same quantity form an Eulerian
point of view; (x, y, z) represent a fixed location in the euclidean space.
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Figure 2.1. Eulerian perspective

A computational mesh can be interpreted as a number of observers distributed across the
domain of interest and connected to each other in order to form a a grid with nodes. If the
particles of the domain move, a purely euclidean mesh does not move and the position of the
nodes remains fixed at any instance of time [8]. This behavior is represented in Figure 2.1
(adapted from [8]). The mesh is independent of particles movement, resulting in a convenient
choice for Computational Fluid Dynamics (CFD) problems, where fluid flows throughout the
whole computational domain. Within this approach, proper mesh refinement is crucial for
computational accuracy as it defines to what extent small scale movement can be modeled
and resolved [17].

2.1.2 Lagrangian perspective
A Lagrangian observer focuses on a single particle and follows it throughout the motion, as
depicted in Figure 2.2. Changes in the quantities of interest are observed at different spatial
locations.

Figure 2.2. Lagrangian perspective

The motion of the particle and the other quantities of interest can be described by reference
coordinates (or material coordinates) in Euclidean space (X,Y, Z), uniquely identifying the
observed particle at a reference configuration [75]. Usually t = 0 is chosen as reference time
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but this is not mandatory. The Lagrangian observer only registers changes concerning one
specific particle as time advances. Thus, quantities of interest can be described as:

Θ = Θ̂(X,Y, Z, t) (2.2)

In contrast to the Eulerian perspective (Equation 2.1), the obtained information is
strictly limited to a single material particle (implied by the usage of the capital reference
coordinate variables). Information about a fixed point in space is not directly available and
no convective fluxes appear in a Lagrangian description.

This perspective is again translated into computational meshes: at a reference instance
of time, mesh nodes are attached to material particles. As these move, the mesh nodes move
with them causing the mesh to deform. Figure 2.2 describes the situation. The mesh nodes
always coincide with their respective particles.

In this situation, large-scale and irregular motions (and more importantly deformations)
lead to distortions of the computational mesh, which yields smaller accuracy in simulations.
This requires the application of techniques to keep the desired accuracy [48].

Lagrangian perspective is the usual method of choice for Computational Solid Mechanics
(CSM) simulations.

Eulerian and Lagrangian descriptions are related [2]. A mapping between them can
described by the motion function φ such that:

~x(t) = φ( ~X, t) (2.3)

Equation 2.3 tells that the Eulerian, spatial position ~x of a particle at time t is the
mapping of the particle at its reference configuration ~X: the mapping must be bijective.

2.1.3 ALE method
As outlined above, CSM and CFD problems adopt different perspectives. The arbitrary
Lagrangian-Eulerian (ALE) approach, a combination of the two points of view, is used for
FSI problems. As the name implies, an ALE observer moves arbitrarily with respect to a
specific material particle. Figure 2.3 depicts such a situation.

Figure 2.3. ALE perspective

When dealing with computational meshes, an ALE mesh is considered as it can move
almost arbitrarily with respect to the motion of the underlying particles, as shown in Figure
2.4. The only constraint is that node movements should not distort the mesh too much
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as this leads to computational inaccuracy. Many algorithms exist to implement suitable
quality criteria and keep the mesh motion reasonable and to allow the nodes to follow moving
particles up to a certain extent [10].

Since the mesh motion and material particle motion are not directly linked, a new
unknown is introduced: the relative movement between the ALE mesh and the material
domain. This approach is particularly useful in FSI problems: fluid and solid must follow
the moving interface between them for physical reasons.

Since the solid domain is usually described in a Lagrangian perspective, the solid mesh
is kept attached to the FSI interface. However, also the fluid domain must deform to avoid
formation of gaps between the meshes. Therefore, in ALE methods the fluid mesh nodes
at the interface move with it. Fluid mesh nodes follow the fluid particles sticking to the
interface (for viscous flows), while the rest of the fluid mesh is allowed to move in such way
that mesh distortions are kept minimal, to preserve computational accuracy [60].

(a) undistorted mesh (b) distorted mesh

Figure 2.4. ALE mesh

2.2 Domains and interface
Fluid-Structure Interaction implies that the overall model is determined by models defining
the fluid behavior and the solid behavior, briefly described in sections 2.2.1 and 2.2.2. A short
overview of beam models is given in section 2.2.3 as it is relevant for the model developed
in this work. Finally a formal definition of the interface is given in section 2.2.4, as it is
necessary to impose suitable coupling conditions at the common boundary of the solid and
the fluid.

2.2.1 Fluid domain
An exhaustive description of all possible fluid models is far beyond the scope of this work. A
quite general model is the viscous compressible one described by the Navier Stokes Equations
(NSE).

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.4a)

∂

∂t
(ρ~v) +∇ · (ρ~v ⊗ ~v) +∇p−∇ · τ − ρ~g = 0 (2.4b)

∂

∂t
(ρe0) +∇ · (ρe0~v) +∇ · (~vp+ ~q − ~v · τ )− ~v · ρ~g = 0 (2.4c)
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where:

• ρ denotes density

• ~v is flow velocity in all dimensions

• p denotes pressure

• τ is the viscous stress tensor

• ~g represents the sum of all body forces

• e0 is the total energy per unit mass

• ~q is the heat flux by conduction

They consist in the mass conservation equation (2.4a), the conservation of momentum
equation (2.4b) and the energy conservation equation (2.4c). For a Newtonian fluid, the
viscous stress tensor is given by:

τ = −2

3
µ (∇ · ~v) I + 2µS (2.5)

with µ being the dynamic viscosity and S the rate of deformation tensor (i.e. the
symmetric part of the velocity gradient ∇~v):

S =
1

2

(
∇~v +∇~vT

)
(2.6)

A detailed derivation of such equations and the theory beyond can be found for example
in [59] and [58] or in [56].

The set of equations above, even with a Newtonian fluid model, lack some other infor-
mation in order to form a closed set of Partial Differential Equations (PDE). A conductive
heat flux model is needed (e.g. Fourier’s Law), the caloric and thermodynamic equations
of state have to be chosen, a proper turbulence model (if needed, see [56]) and finally, the
appropriate initial and boundary conditions for the problem [22] must be defined.

Simplifications can be done to obtain less sophisticated flow models such as: adiabatic,
inviscid, incompressible, and many others. Dimensional Analysis is a powerful tool to
determine to what extent some reduced models are meaningful, and it is widely used in
fluid dynamics, as described in section 2.3.1. Most CFD software codes allow to set up
simulations with the most suitable model which can be coupled with a solid model to build
a FSI problem. Some further details are given in section 3.1.

2.2.2 Solid domain
In solid mechanics, particles do not travel as much as they do in fluid dynamic problems, as
described in 2.1.2. For this reason, a Lagrangian perspective is generally used.

The de-Saint Venant-Kirchhoff model [54] is very commonly used when describing the
movement of a solid: it is also often used in FSI problems ad it is capable of handling large
deformations. The material is considered:

• homogeneous: the material properties do not depend on the position of the particle

• linear elastic: the stress-strain relationship is linear

• isotropic: the stress-strain relationship is independent from the direction of the load
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A general expression of the dynamic equation can be derived from the Virtual Work
Principle (VWP) applied to an arbitrary control volume:

ρ
∂2~u

∂t2
= ∇ ·T + ρ~f (2.7)

In equation 2.7:

• ρ: is the material density

• ~u: is the particle displacement

• T: is the second Piola-Kirchhoff stress tensor

• ~f : is the sum of body forces

In order to close the dynamic equation, a constitutive law which must be considered to
relate stress and strain:

T = λItr [εG] + 2µεG (2.8)

where εG is the Green-Lagrange strain tensor:

εG =
1

2

(
FTF− I

)
(2.9)

and F is the deformation gradient. λ and µ are material properties and are named Lamé
constants. These relate to the Young modulus E and the Poisson ratio ν which are more
commonly used in practice. The relationship among the various parameters is the following:

E =
µ(3λ+ 2µ)

λ+ µ
(2.10)

ν =
λ

2(λ+ µ)
(2.11)

The set of parameters (E, ν) or (λ, µ), together with the density ρ fully define the
material, under the assumptions of linear elasticity, isotropy and homogeneity.

The set of PDEs is completed when suitable initial and boundary conditions are defined.

2.2.3 Models with reduced dimensionality: beams
The equations introduced in section 2.2.2 may be a tough task to solve even in case of
isotropic hyperelasticity, when considering a 3-D domain. Even with today’s computers and
using finite elements techniques, it is not always feasible or convenient to treat a solid as
a three-dimensional continuum. Bodies with particular geometric features can be seen as
lower dimension ones, with respect to the governing equations [36]. Such bodies are called
beams (one dimension), plates or shells (two dimensions).

The beam model splits the description of the geometry into two sub-problems:

1. a beam is defined by its reference line and the movement (displacement and rotation)
of the solid is completely defined by it (see Figure 2.5),
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2. the beam cross section is considered as a whole, its movement depends on the movement
of the reference line, stresses are generalized into resultants (axial, bending, shear,
torsional) which represent the aggregate effect of all of the stresses acting on the cross
section. The constitutive properties of the section (axial, shear, torsion and bending
stiffness) allow to relate stresses and deformations (by means of VWP) and close the
problem.

Figure 2.5. beam model (image taken from [26])

The beam model can be used to build elements of a Finite Element Method (FEM).
For example, the beam element can be modeled by means of a Finite Volume approach, as
described in [25], which computes the internal forces as functions of the straining of the
reference line and orientation at selected points along the line itself, called evaluation points.

This approach is particularly interesting for FSI problems in which slender structures
are involved. A mapping is needed between the fluid-solid interface and the reference line
movement, which will be described in Sections 4.1.4 and 4.1.7.

2.2.4 Interface and interaction
Since FSI problems are centered on the interaction of the fluid and solid domain, their
common interface needs to be described properly. A simple representation of the situation
at the so called wet surface is shown in Figure 2.6. Quantities related to the solid use S
subscript, while fluid domain and the interface are labeled with F and FS, respectively.

Figure 2.6. fluid solid interface

In order to have a physically correct behavior, some conditions have to be met [39]:
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• solid and fluid domains should neither overlap nor separate,

• for a viscous fluid model, the flow velocity at the interface must equal the boundary
velocity (no-slip condition),

• for an inviscid fluid model, only velocity components normal to the wet surface have
to be equal to the structural velocity as the fluid may slip freely in tangential direction
at any boundary,

• forces exchanged at the interface must be at equilibrium.

The first two conditions result in the kinematical requirement that the displacements of
fluid and solid domains, as well as their respective velocities have to be equal at the wet
surface (denoted by ΓFS):

∆~xF = ~uS (2.12)

~vF =
∂~uS
∂t

(2.13)

The last condition results in the equilibrium requirement. Force vectors are computed
from the stresses at the interface and the outward normal vectors of fluid and solid domain,
respectively. They have to be equal and opposite leading to the dynamic coupling condition:

σF · ~nF + σS · ~nF = 0 (2.14)

σ ∈ R3×3 represents the stress tensor (note that for the fluid it comprises pressure and
viscous stresses), while ~n ∈ R is the outward normal unit vector.

2.3 Classification of FSI problems
In the previous chapters we have seen that there exist a lot of models that can describe fluid
flow and solid mechanics. In Fluid-Structure Interaction problems we need to couple two of
them: the variety of coupled problems seems to be so large that single FSI model that is
applicable to every problem appears to be unfeasible. For this reason it is useful to classify
FSI problems and look for specific properties in each class. The first step is to switch from
dimensional quantities to dimensionless ones.

2.3.1 Dimensional analysis
We use the principle that a physical law should only relate to dimensionless quantities. There
exist a rather general theorem called the Π Theorem or the Vaschy-Buckingham Theorem [33],
which tells how many dimensionless quantities are needed to rewrite a model in dimensionless
fashion. This theorem states that the number of dimensionless quantities, P, is equal to that
of the dimensional ones describing the problem, N, minus R, which is the rank of the matrix
of dimension exponents. This matrix is formed by the columns of the dimension exponents
of all variables [34]. An example is given in the following Section 2.3.2, Table 2.1.
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2.3.2 Dimensional analysis in fluid domain
Dimensional analysis is widely used in fluid dynamics. In order to keep the analysis simple,
we consider the adimensionalization of the incompressible Navier-Stokes momentum equation
equation for a Newtonian fluid [20]:

∂~v

∂t
+ (~v · ∇)~v = −∇p

ρ
+ ν∇2~v + ~g (2.15)

The variables involved in equation 2.15 are the following:

• t : time

• ~x: coordinates

• ~v: velocity field

• p: pressure field

• ρ: fluid density

• ν: fluid kinematic viscosity

• ~g: gravity (or body forces)

• L: reference dimension

• V0: reference velocity

t ~x ~v p ρ ν ~g L V0

L 0 1 1 -1 -3 2 1 1 1
M 0 0 0 1 1 0 0 0 0
T 1 0 -1 -2 0 -1 -2 0 -1

Table 2.1. fluid matrix of dimension exponents

The rank of the above matrix is 3 so 6 dimensionless parameters are needed to rewrite
the equation 2.15:

• length: ~x∗ = ~x
L

• velocity : ~v∗ = ~v
V0

• time: t∗ = V0t
L = t

Tfluid

• pressure: possible choices: p∗ = p
ρV 2

0
or, if viscous forces are dominant, p∗ = pL

ρνV0

• Reynolds number : Re = V0L
ν . It defines the ratio between inertia and viscous forces

• Froude number : Fr = V0√
gL

. It defines the ratio between the flow inertia to the body
field forces

The adimensionalized momentum equation becomes:

∂~v∗

∂t∗
+ (~v∗ · ∇)~v∗ = −∇p∗ +

1

Re
∇2~v2 +

1

Fr2
~g (2.16)

From Equation 2.16 a lot of models might be derived, from Stokes regime when viscosity
is dominant, to Euler regime when viscosity is negligible with respect to inertia forces.
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2.3.3 Dimensional analysis in solid domain
Even if it is seldom used, Dimensional Analysis can be made also for the solid domain [49].

The variables involved in a solid dynamics equation are:

• t : time

• ~X: coordinates

• ~u: displacement field

• ρS : solid density

• E : elastic modulus

• ~g: gravity

• L: reference dimension

• U0: reference displacement

From the variables above the following parameters can be derived:

• length: ~X
L : dimensionless coordinate

• displacement : ~u
L : dimensionless displacement

• time:
t
√

E
ρS

L = t
Tsolid

dimensionless time

• entity of displacements: U0
L = δ: displacement number

• gravity: ρSgL
E : elastogravity number

Tsolid can be seen as L
c with c =

√
E
ρS

which is the scale of elastic wave velocity. The
displacement number δ tells how big the structure displacement are related to the overall
dimension, and defines the large displacements region. Finally, the elastogravity number
combines gravity (or body forces in general), density and stiffness: when large the deformation
induced by body forces in the solid are large.

2.3.4 Dimensional analysis of coupled problems
It is now possible to undertake the dimensional analysis of a fully coupled fluid and solid
interaction problem. Some of the parameters are only defined in the fluid side or in the
solid side (e.g. viscosity or stiffness). Some parameters are common to both domains (e.g.
length scale or gravity). The variables of interest are now the velocity in the fluid and
the displacements in the solid. Each of them can be related to all the parameters without
separation. For example, the fluid velocity relationship is of the kind:

g(~v; ~x, t; ρ, µ, V0; ρS , E;~g, L) = 0 (2.17)

Equation 2.17 is composed of 11 dimensional parameters. Applying π theorem, the total
number of independent dimensionless parameters is expected to be 8. Starting from the ones
derived in the previous sections:

12



2.3. Classification of FSI problems

1. ~x∗ = ~x
L : dimensionless coordinates

2. ~v∗ = ~v
V0
: dimensionless fluid velocity

3. t∗f = V0t
L : dimensionless time

4. Re = V0L
ν : Reynolds number

5. Fr = V0√
gL

: Froude number

6. δ = U0
L : displacement number

7. ρSgL
E : elastogravity number

The 7 quantities above derive from the separated problems. The last one necessarily
mixes things from the fluid and the solid side otherwise it would have been found in one
uncoupled case. There is no unique choice for this parameter, the following are the most
common ones.

Mass number

The simplest, but arguably most important parameter is the ratio of the two densities: the
Mass Number M.

M =
ρ

ρS
(2.18)

This can range from O
(
10−4

)
in air-steel interaction to O (1) when both media have

about the same density. This parameter is particularly significant for the so called added
mass stability problem, described in Section 3.5.

Reduced velocity

Another possible choice is the reduced velocity:

UR =
V0√
E
ρS

(2.19)

It is the ratio between the free fluid velocity and the velocity of elastic waves in a solid, c.
It contains information on the way the two dynamics are related and it can range different
orders of magnitude.

Cauchy number

Another possible parameter combines stresses or stiffness. It is known as the Cauchy number,
as defined in [11]:

CY =
ρV 2

0

E
(2.20)

It is the ratio between the fluid inertial forces, quantified by the dynamic pressure, and
the stiffness of the solid E. The higher it is, the more the solid is elastically deformed by the
flow.

These are actually the most important parameters involving Fluid-Structure Interaction
problems. Among them, there is no universally better choice but there are efficient choices
that would be more helpful in solving or in analyzing a given problem.
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Chapter 3

Computational aspects of
Fluid-Structure Interaction problems

This section deals with the computational aspects of FSI problems. The first possible
categorization of solution techniques distinguishes between monolithic and partitioned
approach, as discussed in Section 3.1. This work is based on the latter approach, so its two
different coupling strategies, namely strong and weak, are discussed in Section 3.2. As strong
coupling is generally needed for accurate solution, an overview of strong coupling algorithms
is given in Section 3.3. Section 3.4 focuses on aspects concerning the interface mesh, and how
the solid and the fluid exchange data between them. Finally Section 3.5 briefly describes a
common issue arising in strongly coupled problems: the added mass effect (AME).

3.1 Monolithic and Partitioned Approach
Analytical solutions are impossible to obtain for the large majority of Fluid-Structure
Interaction problems; on the other hand, laboratory experiments may be costly, unfeasible
or limited. For those reasons, numerical simulations may be employed to analyze the physics
involved in the interaction between fluids and solids. With the current capabilities of computer
technology, simulations of scientific and engineering models have become increasingly detailed
and sophisticated.

The numerical methods used to solve FSI problems may be roughly classified into two
classes: the monolithic approach and the partitioned approach. There is no exact distinction
between the two approaches, as they might be seen differently among fields of applications.
The idea here is to consider how many solvers are used to find a solution.

In the monolithic approach, the whole problem is treated as a unique entity and solved
simultaneously with a specialized ad hoc solver (see Figure 3.1). The fluid and structure
dynamics form a single system of equations for the entire problem, which is solved simul-
taneously by a unified algorithm. The interface conditions are implicit in the solution
procedure [40], [64].

This approach can potentially achieve better accuracy, as it solves the system of equations
exactly and the interface conditions are implicit in the model [62], but it may require more
resources and expertise to develop from scratch a specialized code (it solves a very specific
model) that can be cumbersome to maintain.

On the other hand, in the partitioned approach, the fluid and the solid domains are treated
as two distinct computational fields, with their respective meshes, that have to be solved
separately (see Figure 3.2: how data are passed between solvers is detailed in Section 3.2).
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∆t
Sf (tn)

Ss(tn)

Sf (tn+1)

Ss(tn+1)

Figure 3.1. monolithic approach: Sf , Ss denote the fluid and the structure solutions

The interface conditions are used explicitly to communicate information between the fluid
and structure solutions. This implies that the flow does not change while the solution of
the structural equations is calculated and vice versa [13]. The partitioned approach thus
requires a third software module (i.e. a coupling algorithm) to incorporate the interaction
aspects. It communicates the boundary conditions described in Section 2.2.4: i.e. forces or
stresses (dynamic data), calculated by the fluid solver at the wet surface, are passed to the
solid component and displacements or velocities (kinematic data), computed by the solid
solver at the interface, are sent to the fluid component in return. Finally, fluid and structural
solutions together yield the FSI solution.

Sf (tn) Sf (tn+1)

Ss(tn) Ss(tn+1)
∆t

∆t

coupling coupling

~v σ

~v σ

~v σ

~v σ

Figure 3.2. partitioned approach: Sf , Ss denote the fluid and the structure solutions, while
σ and ~v represent coupling data

A big advantage of this approach is that software modularity is preserved: different and
efficient solution techniques can be used for the flow equations and structural equations.
Provided that they can exchange data, existing solvers for the fluid and solid problem can
be reused, ranging from commercial to academic and open-source codes. Those solvers
are usually well-validated. Besides, compared to monolithic procedures, the programming
efforts are lower for partitioned approaches, as only the coupling of the existing solvers has
to be implemented rather than the solvers themselves. The challenge of this approach is,
however, to define and implement algorithms to achieve accurate and efficient fluid-structure
interaction solution with minimal code modification. Particularly, the interface location
that divides the fluid and the structure domains changes in time. The partitioned approach
requires that the fluid solver has ALE capabilities, as introduced in Section 2.1.3. More
detailed and practical explanations about the coupling component used in this work are
given in Section 4.2.
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3.2 Coupling Strategies
Because of the modularity, the partitioned approach has gained much attention in research.
The structure sketched in Figure 3.2 needs to be detailed and specialized in function of the
coupling strategies.

In an interface multi-physics coupling like FSI, the boundary surface is in common
between the two sides of the simulation. The results make sense and are numerically stable
only if the two sides of the interface are in agreement, since the output values of the one
simulation become input values for the other (and vice-versa). The solution strategies can
be roughly divided into weakly and strongly coupled approaches. They are often referred to
as explicit and implicit methods in the literature. When the fluid and solid solutions are
computed iteratively until some convergence criteria within the same time step, the scheme
is called implicit coupling. The faster, simpler but less precise explicit coupling consists in
executing a fixed number of iterations (typically one per time step) and exchange coupling
values without convergence checks.

3.2.1 Explicit coupling schemes
As in the previous Section, Sf represents the fluid solver, which computes the stresses (named
df here) at the deformable boundary. Ss is the structure solver, which uses these forces to
compute the displacement and velocity of the boundary (named ds). In a serial-explicit (or
conventionally staggered) coupling scheme, the solver Sf uses the old time step boundary
values d(n)

s to compute the values of d(n+1)
f for the next time step:

d
(n+1)
f = Sf

(
d(n)
s

)
(3.1)

When the fluid solver completes the time step, data are passed to the structural solver:

d(n+1)
s = Ss

(
d

(n+1)
f

)
(3.2)

Note that Equation 3.1 uses values computed at tn, while Equation 3.2 uses values
computed at t(n+1). The order of execution might be inverted.

In order to reduce execution time, the solvers might run in parallel, using data from the
same time step (parallel-explicit coupling):

d
(n+1)
f = Sf

(
d(n)
s

)
(3.3a)

d(n+1)
s = Ss

(
d

(n)
f

)
(3.3b)

The two explicit approaches are shown schematically in Figures 3.3a and 3.3b.
In general, an explicit coupling is not enough to regain the exact (as in the monolithic

approach) solution of the problem as the matching of coupling conditions between the solvers
is not enforced within each time step: no balance between fluid and structural domain
with respect to forces and displacements at the interface can be guaranteed ( [39], [13]).
Nevertheless, explicit coupling yields good results if the interaction between fluid and solid is
weak, as in aeroelastic simulations, where in general the simulations show small displacements
of the structure within a single time step and the flow field isn’t much influenced by the
structural displacements [18].
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d
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s
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(a) serial explicit coupling
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(
d

(n)
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)

Ss
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(n)
f

)

d
(n)
s

d
(n)
f

d
(n+1)
f

d
(n+1)
s

n← n+ 1

(b) parallel explicit coupling

Figure 3.3. Explicit coupling schemes

3.2.2 Implicit coupling schemes
On the other hand, strongly (implicit) coupling techniques require an iterative method to
solve the fixed-point equation that derives from enforcing the agreement of the interface
variables. The coupling conditions at the wet surface are enforced in each time step up to a
convergence criterion. If the criterion is not met, another subiteration within the same time
instance is computed. Therefore, the solution can approximate the monolithic solution to an
arbitrary accuracy.

As in the explicit case, solvers may run in a sequential mode: the coupling is then named
serial (or staggered) and the solvers wait for each other.

d
(n+1),i+1
f = Sf

(
d(n+1),i
s

)
(3.4a)

d(n+1),i+1
s = Ss

(
d

(n+1),i+1
f

)
(3.4b)

Equations 3.4 show that, in contrast with explicit coupling, both solvers use interface
values at time step n+1, but one of them uses data from previous iteration. If run in parallel
mode [53], the system becomes:

d
(n+1),i+1
f = Sf

(
d(n+1),i
s

)
(3.5a)

d(n+1),i+1
s = Ss

(
d

(n+1),i
f

)
(3.5b)
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At convergence, the following relation holds of serial (or Gauss-Seidel) coupling:

d(n+1)
s = Ss

(
Sf

(
d(n+1)
s

))
(3.6a)

d(n+1)
s = Ss ◦ Sf

(
d(n+1)
s

)
(3.6b)

and the following relation holds for parallel (or Jacobi) coupling:(
d

(n+1)
s

d
(n+1)
f

)
=

(
0 Sf
Ss 0

)(
d

(n+1)
s

d
(n+1)
f

)
(3.7)

Acceleration techniques are necessary to bring fixed point equation 3.6b or 3.7 to
convergence. Those techniques are described in Section 3.3.

The two implicit schemes are shown schematically in Figures 3.4a and 3.4b: accel refers
to the post-processing step implemented to speedup convergence. After every non-converged
iteration, the latest stored state of the solver (checkpoint) is reloaded and coupling iteration
i for the current time step is incremented. When the solution converges, the time step n is
incremented.

Sf (ds) Ss (df ) accel
d

(n+1),i
s

d
(n+1),i+1
f d̃

(n+1)
s d

(n+1),i+1
s

i← i+ 1

(a) serial implicit coupling

Sf (ds)

Ss (df )

accel

d
(n+1),i
s

d
(n+1),i
f

d̃
(n+1),i
f

d̃
(n+1),i
s

d
(n+1),i+1
f

d
(n+1),i+1
s

i← i+ 1

i← i+ 1

(b) parallel implicit coupling

Figure 3.4. Implicit coupling schemes

Implicit methods are generally applicable to any kind of FSI problems, in contrast with
explicit methods. When fluid and structure are strongly coupled, explicit coupling can be
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subject to numerical instabilities, a problem that cannot always be solved by reducing the
coupling time step size [71]. These instabilities can be overcome by implicit methods, even if
several coupling iterations may be executed every time step, until the values on both sides
of the interface converge.

3.3 Strong coupling algorithms
As mentioned in the previous section, implicit methods require some post-processing (generally
called acceleration) techniques to to make the solution of the single time step of the coupled
partitioned FSI problem converge. This requires to solve a a fixed-point equation, in fact:

H(ds) := Ss ◦ Sf (ds) (3.8a)
ds = H(ds) (3.8b)

R(d) := H(d)− d = 0 (3.8c)

Equation 3.8a represents the composition of the solid and the fluid solution, while
Equation 3.8b represents the resulting fixed point equation. As the order of execution can
be switched, in Equation 3.8c, where the residual is defined, the input data ds is generically
substituted with d.

The basic approach to solve the fixed point equation is to perform the corresponding
fixed point iteration (FPI):

xi+1 = H(xi) i = 1, 2, . . . (3.9)

which is known to converge if the mapping H is a contraction, but this is not the general
case in FSI computations [53].

3.3.1 under-relaxation
The way to stabilize the iterations is to perform a FPI with under-relaxation as illustrated
in the following algorithm:
Algorithm 1: FPI with relaxation
Result: dk

1 initialization of d0;
2 k = 0;
3 d̃1 = Ss ◦ Sf (d0);
4 r0 = d̃1 − d0;
5 while ‖rk‖ > ε do
6 compute dk by relaxation;
7 k = k +1;
8 end

The under-relaxation is defined by:

dk+1 = dk + ω (H(dk)− dk) (3.10)

Where ω in Equation 3.10 is the relaxation factor. The relaxation parameter has to be
small enough to keep the iteration from diverging, but as large as possible in order to use as

20



3.3. Strong coupling algorithms

much of the new solution as possible [45]. The optimal ω value is problem specific and not
known a priori. A suitable dynamic relaxation parameter is a better choice, like the Aitken
under-relaxation [41] which adapts the factor at each iteration with the following relation:

ωi = −ωi−1
rTi−1 (ri − ri−1)

‖ri − ri−1‖2
(3.11)

Aitken under-relaxation can be a good choice for strong interaction with a fluid solvers
that does not fully converge in every iteration or for compressible fluid solvers.

3.3.2 Quasi-Newton Least Squares schemes
Under-relaxation is a good choice for easy stable problems, but is outperformed by more
sophisticated quasi-Newton coupling schemes. Equation 3.8c could be solved iteratively with
a Newton method [70]:

R(dk) := rk (3.12a)

R(dk) +
∂R

∂d

∣∣∣∣
dk

(dk+1 − dk) = 0 (3.12b)

dk +

(
∂R

∂d

∣∣∣∣
dk

)−1

(−rk) = dk+1 (3.12c)

The residual at iteration k is defined in Equation 3.12a. If the Jacobian matrix of the
equation is known, a Newton iteration can be performed as in Equation 3.12b. The updated
values can be computed using Equation 3.12c.

In situations where:

• black-box systems are considered (i.e. the Jacobian is unknown),

• the cost of a function evaluation is sufficiently high that numerical estimation of the
Jacobian is prohibitive,

there exist a number of matrix-free methods that use only information derived from
the consecutive iterations and that build an approximation based on those values. This
approach is known as quasi-Newton method [32]. Input and output data of H and R are
used to approximate the solution of 3.12c. Algorithm 2 (taken from [69]) shows the basics
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steps to estimate data at next step using the Quasi-Newton Least Squares Method :
Algorithm 2: Quasi-Newton Least Squares method
Result: dk+1

1 initial value d0;
2 d̃0 = H(d0) and R0 = d̃0 − d0;
3 d1 = d0 + ωr0;
4 for k = 1 . . . do
5 d̃k = H(dk) and rk = d̃k − dk;
6 V k =

[
∆rk0 , . . . ,∆r

k
k−1

]
with ∆rki = ri − rk;

7 W k =
[
∆d̃k0, . . . ,∆d̃

k
k−1

]
with ∆d̃ki = d̃i − dk;

8 decompose V k = QkUk;
9 solve the first k lines of Ukα = −QkTRk;

10 ∆d̃k = W kα;
11 dk+1 = d̃k + ∆d̃k;
12 end

In algorithm 2 the matrices V k and W k are constructed from the previous iterations and
the known values of d0, . . . dk and d̃0, . . . , d̃k. ∆d̃k is constructed in the column space of W k

(line 10). For this reason a least squares problem is solved:

α = argmin
β∈Rk

‖V kβ +R(dk)‖ (3.13)

The least squares problem is solved computing the decomposition of V k into an orthogonal
matrix Qk ∈ Rk×k and an upper triangular matrix Uk ∈ Rn×k (line 8). Then α is computed
in line 9.

When building matrices V k and W k (lines 6-7 ), it is possible to use information from
previous time steps.

Finally, to ensure linear independence of columns in the multi-secant system for Jacobian
estimation, a filter can be used [31], in order to drop nearly dependent columns of Qk and
avoid singularity of the approximated Jacobian.

The above algorithm is usually denominated in FSI interface quasi Newton with inverse
Jacobian from a least squares model (IQN-ILS) (or Anderson acceleration). There exist
other algorithms, like generalized Broyden (IQN-IMVJ) or manifold mapping to solve the
problem. A complete description of those methods goes beyond the scope of this work: a
presentation of the most common algorithms can be found in [3], while a comparison of the
performances can be found in [46].

3.3.3 Convergence criteria
At each time step, the coupling algorithm enforces matching conditions at the wet surface
up to a convergence criterion. If not sufficiently met, another iteration within the same time
step is performed. The fixed point formulation itself induces a criterion based on the current
residual rk+1.

A scalar absolute convergence criterion can be defined as in Equation 3.14: it is useful
for close to zero values of the coupling quantities, when rounding errors become important:

‖rk+1‖ ≤ εabs (3.14)
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The more common relative convergence criterion, defined in Equation 3.15, is particularly
useful when different quantities (e.g. forces and displacements) are compared together to
evaluate convergence:

‖rk+1‖
‖d̃k+1‖

≤ εrel (3.15)

3.4 Interface Mesh and Data Mapping
FSI methods can also be classified considering how the fluid and solid meshes are treated.
The conforming mesh methods consider the interface as a physical boundary condition
(see Section 3.4.2), while non-conforming mesh methods treat the boundary location as a
constraint imposed on the model equations (see Section 3.4.1) [39].

3.4.1 Non-conforming Mesh methods
In non-conforming mesh strategies all interface conditions are imposed as constraints on
the flow and structural governing equations. It is possible to use non-conforming meshes
for fluid and solid domains as they remain geometrically independent from each other (see
Figure 3.5).

This approach is mostly used in immersed boundary methods [42]. Coupling is imposed
by means of additional force terms appearing in the model equations of the fluid, which
impose the kinematic and dynamic conditions. The forces represent the effects of a boundary
or body being immersed in the fluid domain. A purely Eulerian mesh (see Section 2.1.1) can
be used for the whole computational domain, since the force terms are dynamically added at
specific locations to represent the structure.

The fluid forces applied on the solid at the wet surface are computed and used as input
for the structural solver, which employs a standard Lagrangian mesh (see Section 2.1.2).

Immersed boundary methods are particularly innovative and are useful to overcome some
issues in CFD computations, on the other hand most of the current implementations of FSI
problem implement a conforming mesh strategy.

(a) mesh at t = t1 (b) mesh at t = t2

Figure 3.5. non conforming mesh example
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3.4.2 Conforming Mesh methods
Conforming mesh methods adapt very well to the partitioned approach described in Sec-
tion 3.1, as they usually consists in the computational steps described above, namely:
computation in the fluid, computation in the solid, enforcing of interface conditions and
mesh movement (see Figure 3.6).

Fluid and structure meshes need to share the boundary of the wet surface, as the coupling
conditions are enforced by applying kinematic or dynamic conditions to those boundaries.
Node-to-node matching of fluid and structure meshes at the interface is not required, as long
as a suitable mapping between the interface nodes is performed (see Section 3.4.3).

The match between the interfaces must hold at each time step: this implies that both
solid and fluid domains need to deform. Deformation is easily expressed in the solid domain
as the structural mesh is usually represented in Lagrangian perspective (see Section 2.1.2).
ALE perspective (Section 2.1.3) for the fluid domain becomes necessary in this case.

Mesh deformation can turn out to be a complicated task as in general the fluid mesh is
deformed during motion (see Figure 2.4). Mesh smoothing techniques need to be applied in
order to keep a good mesh quality in terms of distorted elements which can lead to accuracy
loss in simulations. (the following video shows highly distorted fluid elements during FSI
motion: video).

Mesh smoothing is generally applied to keep the fluid mesh as uniform and undistorted
as possible during movement. There is a wide variety of mesh updating procedures [72].
The torsional spring analogy [12] is a fairly simple technique that computes mesh movement
considering mesh edges as springs and solving the subsequent Laplace equation that derives
from the mesh movement.

Some other references about mesh motion alternatives can be found in [29].

(a) mesh at t = t1 (b) mesh at t = t2

Figure 3.6. conforming mesh example

3.4.3 Data Mapping
When partitioned coupling is involved and the meshes are conforming but not node-to-node
coincident, the challenge is to correctly map the data between the solid and the fluid sides.
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This is a common situation as fluid and solid require a different mesh refinement at the
interface.

The mapping procedure needs not only to find the closest available mesh point (or points)
on the opposite mesh, but also to preserve mass and energy balance. Variables are basically
mapped in two ways: consistent and conservative forms.

In the consistent mapping a value on a node of one grid has the same value of the
corresponding node on another grid: that is, it reproduces the values on both meshes. In
the conservative form, integral values are preserved between meshes. In an FSI problem,
nodal forces are mapped in conservative form, while velocities or displacements are mapped
in consistent form. An example is shown in Figure 3.7.

1mm 3mm 2mm 1mm 0mm

3mm 1mm

3mm 1mm

(a) displacements: consistent mapping (nearest neighbor)

3N 1N 4N 2N 3N

6N 7N

3N 1N 2N 2N 2N 3N

(b) forces: conservative mapping

Figure 3.7. Examples of mapping data between non-coincident meshes: consistent (a) and
conservative (b) schemes.

different mapping strategies can be implemented [5]:

• Nearest Neighbor : finds the closest point on the source mesh and uses its value for the
target mesh. It does not require any topological information and is first-order accurate.
It is the computationally easiest implementation and it is useful when interface meshes
are coincident.

• Nearest Projection: projects the points of the target mesh on the source mesh,
interpolates the data linearly and assigns the values to the target mesh. It requires
topology information for the source mesh. The interpolation on the mesh elements is
second order accurate.

• Radial Basis Function (RBF): this method does not requires topological information
and works well on general meshes. The mapping uses radial basis functions centered
at the grid points of the source mesh [47].
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3.5 Stability: Added Mass Effect
When a solid moves or vibrates in a fluid domain, the interaction changes the way in which
the structure behaves. There exists a vast variety of literature (e.g.: [7], [9], [24], [61])
describing the effects of Fluid-Structure Interaction in terms of added mass, added damping
or even added stiffness on a vibrating structure in function of fluid properties (e.g. density
or viscosity), or flow properties (e.g. velocity), or geometry.

Besides the physical aspects of the interaction, some numerical issues arise when trying
to simulate this kind of problems.

The numerical issue named added mass effect (AME) is introduced here, as it is relevant
for both strongly and weakly coupled partitioned approaches in the solution of FSI problems.

Weakly coupled algorithms give good results in aeroelasticity studies, but they are known
to become unstable under certain conditions, in particular when fluid and structure densities
are comparable (M ≈ 1, see Section 2.3.4) and when the structure is particularly slender [6].
Under the same conditions, strongly coupled algorithms exhibit convergence problems.

For this reason, the mass ratio M is a suitable indicator to determine the kind of
interaction between solid and fluid: when M � 1 (i.e. when the solid is much denser than
the fluid), the interaction is weak, while when densities are comparable the interaction is
strong and imposes some limits on the partitioned solution techniques.

The problem has been analyzed in literature by means of “toy FSI models” (in [6], [14]
or [53]). Even though the number of parameters affecting stability is large and not completely
understood in complex scenarios, all of the studies point out the mass ratio M as the most
relevant parameter.

A simplistic explanation of the phenomenon stems from the idea that at the interface,
fluid and structure have no gaps (Section 2.2.4). For this reason, if the structure moves, also
the fluid particles around it have to move: the acceleration of the surrounding fluid results
in greater inertial forces and the structure appears more inert.

Added mass effect appears both in incompressible and in compressible fluid models, but
with slightly different effects and implications.

3.5.1 AME in compressible regime
In compressible regime, the use of a weakly coupled algorithm, which does not enforce mass
and energy balance at the interface (see Section 3.2.1), imposes a limit to the mass ratio
above which the simulation becomes unstable and the algorithm fails to find a solution [4].

A strongly coupled algorithm (Section 3.2.2) does not become unstable, but converges
slowly: many sub-iterations are needed at each time step in order to reach the required
convergence criteria (Section 3.3.3).

It can be shown that, in the compressible case, changing the time step of the partitioned
simulation can be beneficial to the solution. The time step reduction to an arbitrarily small
value cannot stabilize a weakly coupled algorithms when the stability criterion on the mass
ratio is not met, but has an effect on strongly coupled ones [71].

A step size reduction can compensate a higher mass ratio value [19]: the convergence of
a strongly coupled algorithm improves proportionally to the time step reduction. At the
theoretical limit of vanishing time step, the monolithic solution could be found.

3.5.2 AME in incompressible regime
AME is a much greater issue in incompressible regime than in compressible flows. A simple
physical explanation of this fact could be as follows: a deformation of the structure results
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in a perturbation of the fluid domain close to the structure, which then propagates through
the rest of the fluid domain. In compressible models, the speed at which a perturbation
propagates (speed of sound) has a finite value. For this reason the effect of a perturbation is
spatially limited during a time step. In contrast, in an incompressible model, the speed at
which the aforementioned perturbation propagates through the domain is infinitely large.
A change in the geometry affects the whole domain without delay and impacts the whole
domain at each time step [6].

It has been observed that loose coupling of fluid and structural part in the context
of incompressible flow and slender structures frequently yields unstable computations [19].
However, strict stability limits exist also for strongly coupled algorithms. Those limits have
a different relation to the time step with respect to compressible models.

Simulations show that reducing the time step may result in increased instability. The
AME is inherent in the coupling itself: in sequentially staggered schemes the fluid forces
depend upon predicted structural interface displacements rather than the correct ones and
thus contain a portion of incorrect coupling forces. This contribution yields the instability [14].

Provided that the stability limit is not exceeded, implicit methods behave differently in
incompressible regime: the number or sub-iterations required to reach convergence during a
single time step increases when the time step decreases. Besides, achieving the monolithic
solution limit is not guaranteed ( [19], [71]).

These observations are consistent with the aforementioned physical explanation.
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Chapter 4

Software Packages used in this work

This chapter illustrates the main software tools used in this work. First, the MultiBody
Dynamics analysis software (MBDyn) is shortly presented in Section 4.1. Then, the cou-
pling library precise Code Interaction Coupling Environment (preCICE) is introduced in
Section 4.2.

4.1 MBDyn
MBDyn is free and open-source1 general purpose Multibody Dynamics analysis software de-
veloped at the Dipartimento di Scienze e Tecnologie Aerospaziali of the University Politecnico
di Milano.

Most of the information concerning MBDyn is taken from the official documentation
given in the software website2 and from the input manual3.

MBDyn allows to build a system to simulate multi-body dynamics, which4 is the study
of the behavior of interconnected rigid or flexible bodies, each of which may undergo large
translational and rotational displacements.

MBDyn can simulate linear and non-linear dynamics of rigid and flexible bodies (including
geometrically exact and composite-ready beam and shell finite elements, component mode
synthesis elements, lumped elements) subjected to kinematic constraints, external forces
and control subsystems [51]. MBDyn has been developed to serve as an analysis tool for
rotorcraft research and can simulate essential fixed-wing and rotorcraft aerodynamics.

As explained more in detail later, MBDyn is open to be connected to other software
components to perform multi-physics simulations. In particular, it is possible to pass
externally computed forces and to steer the multi-body simulation from an external API:
this feature has been particularly useful in building and adapter to couple MBDyn with the
library preCICE (see Chapter 5).

In this section we give a short introduction to some of the relevant features of MBDyn,
starting form basic information on the input file syntax (Section 4.1.1), and the output files
(Section 4.1.8). Then some of the elements relevant for the description of the models used in
the this work are presented: nodes (Section 4.1.2), beam elements (Section 4.1.4), bodies
(Section 4.1.5), joints (Section 4.1.6) and forces (Section 4.1.7).

1the software is available through a public git repository gitlab.polimi.it/Pub/mbdyn
2MBDyn website: mbdyn.org
3a copy can be found at the following link [input manual] or in the code repository
4see Wikipedia entry: Multibody system
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4.1.1 Basic syntax
MBDyn is a command line tool and can be generally started from a terminal passing an
input file containing all the information required to perform a simulation.

The input files is structured in blocks and each block has a syntax described in Backus
Naur form in the input manual.

1 begin : data ;
2 # select a problem
3 problem : initial value ;
4 end : data ;
5

6 begin : initial value ;
7 # problem-specific data
8 end : initial value ;
9

10 begin : control data ;
11 # model control data
12 end : control data ;
13

14 begin : nodes ;
15 # nodes data
16 end : nodes ;
17

18 begin : elements ;
19 # elements data
20 end : elements ;

Listing 4.1. MBDyn input file structure

As illustrated in listing 4.1, statements are logically divided in blocks. Each block is
opened by a begin statement and it is closed by an end statement.

The sequence of relevant valid blocks is:

• data: it defines the kind of problem to be solved by the analysis. The most significant
one is initial value and is already defined in the example.

• type of problem: it takes the name of the problem defined in the data block (initial
value in this case) and contains all the information required by the integration method
to perform the desired simulation (e.g. simulation type, time step, number of iterations,
tolerance ...).

• control data: it mostly contains the required information to ensure that a consistent
model will be generated (i.e. the number of nodes, elements, forces...).

• nodes: this block contains all the nodes required by the simulation. They are defined
as the entities that make degrees of freedom available to the simulation, so they must
exist before any element is generated.

• elements: it contains all the elements. They are defined as the entities that generate
equations using the degrees of freedom provided by the nodes.

We focus now on the main entities of a MBDyn simulation, namely nodes and elements.
A detailed example of the input file used in most simulations in this work can be found in
Appendix D.1.
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4.1.2 Nodes
Nodes are the basic blocks of a model: they instantiate kinematic degrees of freedom and
the corresponding equilibrium equations. There can be different type of nodes in MBDyn,
we focus here on structural nodes.

Structural nodes can have 3 degrees of freedom, thus describing the kinematics of point
mass motion in space (position) or 6 DoFs (position and orientation), and thus describing
the kinematics of rigid-body motion in space.

Each node has a unique label and can be specified in different ways:

• static: this keyword instantiates only equilibrium equations (force for 3 DoF nodes
or force and moment for 6 DoF nodes)

• dynamic: this also instantiates momentum (3 and 6 DoFs) and momenta moment
(6 DoFs)

Also modal and dummy nodes exist, but are beyond the scope of this work. Nodes are the
starting point to define the elements of a simulation.

4.1.3 Elements
Elements constitute the components of the multi-body model. Each has a unique numerical
label and is connected to one or more nodes. They write contributions to nodes equations
and represent connectivity and constitutive properties.

There exist many types of elements in MBDyn, we focus here on the ones used in the
FSI simulation: beams, bodies, joints and forces.

4.1.4 Beam elements
As briefly introduced in Section 2.2.3, when simulations involve slender bodies, it is particu-
larly interesting to use a 1D finite element model together with a form of mapping between
the interface (wet surface) and the model to exchange kinematics and dynamics information.
This can be performed in MBDyn using beam elements (described in this section) and the
external structural mapping element (described in Section 4.1.7).

MBDyn models slender deformable components by means of finite volume beam elements
with a high level of flexibility.

The beam element is defined by its nodes and a reference line; although 2 and 3 nodes
beam elements are implemented, only beam3 are considered here (Figure 4.1). Each node of
the beam is related to a structural node (node 1 to 3 in Figure 4.1) by an offset (o1 to o3)
and a relative orientation.

The Finite Volume approach described in [25] is used to model the beam element. It
computes the internal forces as functions of the reference line strain and as functions of the
orientation at the evaluation points (i.e. integration points, point I and II in Figure 4.1) that
are between nodes 1 and 2, and between nodes 2 and 3 (at ξ = −1/

√
3 and ξ = 1/

√
3 of a

non-dimensional abscissa −1 ≤ ξ ≤ 1 ranging from node 1 to node 3).
A 6D constitutive law is defined at each evaluation point: it relates the strains and the

curvatures of the beam (and their time derivatives) to the internal forces and moments at
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Figure 4.1. MBDyn beam model, taken from the input manual

the evaluation points in the form:

Fx
Fy
Fz
Mx

My

Mz


= f





εx
γy
γz
κx
κy
κz


,



ε̇x
γ̇y
γ̇z
κ̇x
κ̇y
κ̇z



 (4.1)

Using the convention of x-axis as beam axis we have:

• Fx: axial force component,

• Fy and Fz: shear force components,

• Mx: torsional moment component,

• My and Mz: bending moment components,

• εx: axial strain component,

• γy and γz: shear strain components,

• κx: torsional curvature component,

• κy and κz: bending curvature components,

• f : constitutive law.

Beam section Constitutive Law

In dynamic simulations, linear elastic or viscoelastic laws are generally used, even though
nonlinear laws can be used. Focusing on linear laws, MBDyn allows the user to define every
kind of constitutive laws, going from an isotropic beam section to a fully anisotropic one:
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in fact the entire 6× 6 constitutive matrix can be provided. It is up to the user to define
a valid law as the matrix must satisfy some constraints, e.g. it must be symmetric. The
simplest case of linear elastic constitutive law is represented in Equation 4.2, in which a
diagonal matrix relates internal forces to strain and curvature of the beam.

f =



EA 0 . . . 0
χGA

χGA

GJp
...

sym. EJy 0
EJz


·



εx
γy
γz
κx
κy
κz


(4.2)

The simplest case of linear viscoelastic law uses a proportional factor to be applied to
the stiffness matrix of Equation 4.2 such that: viscosity = factor · stiffness.

In the context of FSI simulations, this feature allows the user to define a section
constitutive law that is independent from the shape of the beam itself. Thus the aerodynamic
aspects and the structural aspects are handled by two distinct elements of the model: i.e.
the interface mesh defines the aerodynamic forces and the beam constitutive law defines the
structural properties.

Some studies about the definition of general beam section constitutive properties (com-
posite beam section characterization) are available in the literature: an early work can be
found in [27], a review in [37] or an application to wind turbine blades in [44].

4.1.5 Bodies
The body element describes a lumped rigid body when connected to a regular, 6 DoF
structural node, or a point mass when connected to a rotationless, 3 DoF structural node. It
can be used in connection with a structural element to give inertial properties: for example,
in a beam element (see Section 4.1.4), 2 bodies are added to the evaluation points of the
beam to account for lumped inertia of each portion in which the beam is divided.

4.1.6 Joints
structural nodes can be constrained by means of joint elements. Many different joints
are available. In the FSI model the following types of joints are used:

• clamp: grounds all 6 DoFs of a node in an arbitrary position and orientation.

• total joint: allows to arbitrarily constrain specific components of the relative
position and orientation of two nodes [50].

4.1.7 Forces
The force element is a general means to introduce a right-hand side term to the equations.
Structural forces are specific to structural nodes and have three components that may depend
on arbitrary parameters and a location in space.

MBDyn allows to communicate with an external software that computes forces based
on information regarding the kinematics of the model. This feature is at the basis of the
development of the adapter. The following elements can be used.
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External Structural

The External Structural element allows to communicate with an external software that
computes forces applied to a pool of nodes and may depend on the kinematics of those
nodes. In this case forces are applied directly to the nodes. In a FSI model, this would
require that each interface mesh node has a correspondent MBDyn structural node.

External structural mapping

This element is similar to the previous one, but the nodes where forces are applied and the
kinematics is computed depend on structural nodes through a linear mapping. This element
has been used in building the adapter. In order to use the external structural mapping
elements, the following steps have to be performed:

1. a set of points is defined for each structural node according to a specified offset.
Those points are used to compute the kinematics of the interface points, originating
from the rigid-body motion of the structural nodes,

2. before the simulation, a linear mapping matrix H is generated starting from the
position of the above points and the interface mesh points (this is performed by means
of an Octave script which is part of MBDyn). The matrix is stored in sparse form,

3. the mapping matrix is used during the simulation to map forces and kinematics
between the interface nodes and the structural nodes.

The constant matrix mapping allows to compute the position and the velocity of the
interface points as function of the points rigidly offset from structural nodes:

xinterf = Hxmbdyn (4.3a)
ẋinterf = Hẋmbdyn (4.3b)

The same matrix is used to map back the forces onto structural nodes based on the
preservation of the work done in the two domains:

δxTmbdyn · fmbdyn = δxTinterf · finterf = δxTmbdyn ·HT · finterf (4.4)

which implies

fmbdyn = HT finterf (4.5)

When performing an FSI simulation with strong coupling (see Section 3.3), MBDyn
may need to compute multiple iterations of the same time step in order to reach global
convergence. This is performed by using the keyword tight in the coupling of the external
structural mapping. The computation and the communication pattern is the following:

1. MBDyn sends the predicted kinematics for time step k,

2. MBDyn receives a set of forces sent by the external peer; those forces are computed
based on the kinematics at iteration j,

3. MBDyn continues iterating until convergence using the last set of forces until, while
reading the forces, it is informed that the external peer converged. this implies that
MBDyn solves the kinematics for time step k at iteration j using the forces evaluated
by the external solver for iteration j − 1 .
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The communication with the external software, in our case the adapter itself, is performed
by means of a local unix socket.

4.1.8 Simulation output
There are different output files regarding a simulation performed with MBDyn. the name of
those files is specified with the option -o (otherwise the name is the same as the input file)
and the extensions are:

• .out: for miscellaneous output

• .mov: for kinematic output of the nodes

• .ine: for the dynamic output of the nodes

• .frc: for the output of force elements

• .act: for the output of beam elements

• .jnt: for the output of joint elements

The .out file contains information regarding the simulation iterations residuals while
other files are described in more detail in Appendix D.2.

4.2 preCICE
The main information concerning preCICE is taken from the official documentation: i.e. [23]
and [5]. The preCICE website is also a source of documentation5.

The open-source6 software library preCICE provides the components to connect tradi-
tional single-physics solvers and create a partitioned multi-physics simulation (e.g. fluid-
structure interaction, conjugated heat transfer, solid-solid interaction, etc.). It aims at
coupling existing solvers in a partitioned black-box manner (see Section 3.2): only minimal
information about the solver is available and connection involves just the interface nodes.

In order to be flexible and easily implemented, the impact on the solvers should be as
minimal as possible: for this reason, preCICE offers a high level application programming
interface (API) (Section 4.2.5) in different languages, such as C/C++, Fortran and Python.
The ability to switch among different solvers is advantageous as it provides a lot of flexibility
in developing and testing new coupled components.

In a nutshell, preCICE simply affects the input and observes the output of the solvers
(called participants). The required data and control elements are accessed using an adapter, i.e.
a “glue code” that is attached to the corresponding solver and communicates the information
with the library.

preCICE makes all the actions required to perform a coupled simulation:

• it implements the coupling strategy (Section 4.2.1),

• it verifies convergence criteria (Section 4.2.1),

• it instantiates the communication between the participants (Section 4.2.2) ,

5www.precice.org
6The code can be accessed via Github: github.com/precice/precice
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• it computes the mapping of data between meshes (Section 4.2.3).

preCICE is configured by means of an extensible markup language (XML) file (Section
4.2.4).

4.2.1 Implemented coupling strategies
The partitioned approach (Section 3.2) is obviously the coupling strategy adopted by preCICE.
It allows both explicit (Section 3.2.1) and implicit coupling (Section 3.2.2). The possible
variants are four:

• serial-explicit: a serial, weakly coupled algorithm (Figure 3.3a). The first solver
uses the second solver solution at the last time step to compute its current solution.
In contrast, the second solver needs the current first solution to compute its solution
at the same time instance. The order of execution is user defined.

• parallel-explicit: both solvers advance in parallel (Figure 3.3b) and exchange data
at the end of each time step, resulting in a less stable procedure. The bottleneck of
this procedure is related to the most time consuming solver.

• serial-implicit: a serial strongly coupled algorithm (Figure 3.4a). The user can
define the order of execution, the coupling algorithm (basically all the algorithms
described in Section 3.3) and its parameters in a section of the configuration file named
acceleration.

• parallel-implicit: again both solvers execute in parallel (Figure 3.4b). An implicit
scheme modifies the result of the fixed-point iteration on both data [53].

4.2.2 Communication strategies
All the participants need to communicate with each other, in order to share coupling data.
Each solver might be executed in multiple processes or on different nodes of a cluster
(intrafield parallelism). This form of parallelization requires efficient forms of communication
between the solver in order to avoid that data transfer becomes a bottleneck during a
simulation.

preCICE implements a fully parallel process-to-process communication approach [65]
using:

• message passing interface (MPI): available on most scientific computers, it may be
necessary to adapt/change the MPI versions of the respective single-physics solvers or
of preCICE.

• Transmission Control Protocol/Internet Protocol (TCP/IP): popular means of network
communication and free of incompatibilities between versions.

As to performances, MPI is the best technique especially when a high numbers of nodes
is present. Anyway, socket communication is quite as fast, such that both techniques are
very well-suited for larger-scale simulations [23].

In each solver, executed in parallel, one “master” process is defined to manage the progress
of the simulation. No central node is required. The participating processes use asynchronous
point-to-point (M:N) communication. The channels are static and defined in the beginning
of the simulation. This sets a limit in using preCICE with dynamically adaptive meshes or
immersed boundaries.
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4.2.3 Data mapping
Even if volume coupling is possible, preCICE is mainly designed to couple simulations that
share a common surface boundary (namely conforming meshes, in the terminology used in
Section 3.4.2). The meshes do not need to be node-to-node coincident, so it is necessary to
map variables at the interface, preserving the geometry (i.e. no gaps or superpositions at
the interface) and the mass and energy balances.

The user defines which data are shared by each participant (i.e. solver) and the way data
is shared in the configuration section named mapping. As described in Section 3.4.3, two
kinds of mapping are available:

• consistent: the value of a node at the one grid is the same as the value of the
corresponding node (or nodes) at the other grid. In general the number of fluid nodes
is at least the same or, more often, exceeds the nodes of the structure, so a single
structural node is associated to several fluid nodes. The mapping of displacements is
consistent: in the simplest case, all fluid nodes experience the same displacement of
a single solid node, otherwise an interpolation is performed (see Section 3.4.3 for a
detailed explanation and Figure 3.7a for an example).

• conservative: in the same conditions as before, forces are mapped from multiple fluid
nodes to a single solid node in an additive manner (see Section 3.4.3 and Figure 3.7b
for an example).

Along with the mapping strategy, a method must be defined: nearest-neighbor,
nearest-projection, rbf (see Section 3.4.3). For the latest method, preCICE imple-
ments a wide variety of basis functions, with Gaussian and thin plate splines being the most
widely used.

4.2.4 Configuration
In order to run a multi-physics simulation with preCICE, all the participating, adapted
solvers have to be started (the order is irrelevant). Some configuration files are needed:

• each adapter generally needs its own configuration file. It normally contains information
about the boundaries (wet-surface) used for the coupling, the names of exchanged
data, mesh and the name of the common preCICE configuration file, together with
other parameters, specific to the adapter. The one for the MBDyn adapter will be
described in more detail in Chapter 5 and in Appendix B.

• preCICE configuration file: This is an XML file and each participant points at it. It
defines all the information relevant to the simulation:

– type and name of exchanged data and meshes over which those data are passed,

– which solvers participate in the simulation, which data produce or consume, and
how the mapping is performed,

– how solvers communicate among each other,

– the coupling scheme and all the concerning necessary information.

The structure of a preCICE configuration file is illustrated in Appendix A.
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4.2.5 Application Program Interface
A solver, in order to be coupled to preCICE, must either provide a way to access its core
functions (e.g. initialize, set input data, read output, advance...) from outside the code (via
API, socket, etc...) or it has to be slightly modified in order to perform all the operations
required by the preCICE library.

The result is an adapter, which can be the modified and recompiled original solver, or a
standalone piece of code that communicates with the original unmodified solver on one side
and with the preCICE library on the other. The adapter groups together all the calls to the
preCICE methods from its API (a list of the API calls, taken from the official documentation,
can be found in Appendix C.1).

While preCICE is written in C++, there exist APIs also for other languages, so that the
adapter can be written also in C, Fortran or Python.

A coupling consists of a configuration and an initialization phase, multiple coupling
advancements and a finalization phase: the general structure of an adapter can be found in
Appendix C.2.

4.2.6 Official Adapters
This work introduces an adapter to preCICE for MBDyn. It is based on previous MBDyn
adapters and on the examples given on the preCICE website7. Official adapters are currently
available for several free solvers, e.g. CalculiX, Code-Aster and SU2. Also some closed-source
software packages are supported. A (maybe outdated) list of official adapters can be found
in [68], while the current status of coupled codes can be found at the following link: preCICE
adapters.

7github.com/precice/precice/wiki/Adapter-Example
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MBDyn Adapter and its integration

To prepare an existing simulation code for coupling, preCICE has to be integrated with
the solver, using an API described in Section 4.2.5 and in Appendix C.1. The “glue-code”
required for this operation is called adapter, as depicted in Figure 5.1.

Figure 5.1. Coupling CFD to CSM via preCICE.The existing solver code, the adapter and
the linked library are highlighted (image taken from [68]).

5.1 Design of the adapter structure
In order to couple MBDyn with preCICE, a C++ adapter has been implemented within the
scope of this work. The adapter needs to be integrated with both the MBDyn solver and the
coupling library. The two connections are distinct but strictly interconnected. The adapter
has the advantage of being completely independent from both the preCICE library and
MBDyn. The first connection is achieved via the API given by the library libprecice.so,
the second connection exploits the API given by MBDyn through its library libmbc.so.

5.2 Structure of the code
The code for the adapter is available through a public git repository1. The code is conceptually
divided in two classes, as illustrated in Figure 5.2.

The main class is MBDynAdapter, which implements the functions given by the preCICE
interface. It has access to the class MBDynConnector which takes care of all the aspects
regarding MBDyn. Attributes, methods and operations of each class are briefly described in
the following sections.

1mbdyn-beam-adapter
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Figure 5.2. MBDyn adapter class structure
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5.2.1 Class MBDynAdapter
The file MBDynAdapter.h and its source file MBDynAdapter.cpp implement all the methods
required to perform a FSI simulation with MBDyn as the solid solver. The basic steps are:

1. prepare the MBDyn solver,

2. prepare the interface,

3. provide access to the mesh and initialize the coupling data,

4. steer the coupled simulation,

5. finalize the simulation.

Initialization

In the initialization phase, the instance of MBDynAdapter gets a JavaScript Object Notation
(JSON) file (see Section 5.3) that contains all the parameters useful for the simulation.
Then it instantiates the MBDynConnector (see Section 5.2.2) which takes care of all the
operations concerning MBDyn: in particular starting the simulation and creating an instance
of MBCNodal in order to have access to the simulation.

In the next step an instance of precice::SolverInterface is initialized and configured
with all the relevant information data:

• preCICE configuration file (see Section 4.2.4 and Appendix A).

• participant (i.e. solver) name

• information regarding the data to be read and written

The next initialization step is the definition of the interface mesh. The data concerning
the vertices are stored in the MBDynConnector to be used to plot the output and are passed
to the SolverInterface to define the wet surface nodes. The mesh nodes are stored in
the same text file that is used by MBDyn to build the external structural mapping
information (see Section 4.1.7). This means that the MBDyn mapped points coincide with
the interface mesh on the structural side (note that it doesn’t have to be the same mesh of
the fluid side, as preCICE can map non identical meshes, as described in 4.2.3). The suitable
size of memory is then initialized to contain the coupling information: mainly displacements,
to be written on the preCICE interface, and forces, to be read from the interface.

Execution

The simulation phase of the adapter follows the steps briefly described in Section 4.2.5 and
in Appendix C. The most important elements of the code are illustrated in listing 5.1.

The main execution phases include:

1. read initial checkpoint (i.e. reload state if previous iteration did not converge) [line 6]

2. read forces from interface (i.e. get the current available fluid solution) [line 10]

3. copy forces to MBDyn: this step is performed as forces can be scaled by a user specified
coefficient during the initial part of the simulation, see Section 5.3 [line 14]

4. make MBDyn connector solve the current simulation time step [lines 16-18]
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5. make MBDyn connector compute force and moment resultants [line 22]

6. write the displacements computed at the current iteration of the current time step to
preCICE in order to perform coupling [line 25]

7. get the interface time step (this would be mandatory in case of different time steps
between fluid and solid) [line 28]

8. check if the current time step converged [line 31]: notify MBDyn [lines 35 and 38]. If
converged, update time, iterations and write output data (see Section 5.4).

1 void MBDynAdapter::runSimulation(){
2 // Start coupling:
3 while (interface->isCouplingOngoing()){
4

5 if(interface->isActionRequired(cowic)){
6 interface->fulfilledAction(cowic);
7 }
8

9 // read forces from interface
10 interface->readBlockVectorData(forceID, vertexSize, vertexIDs, forces);
11

12 // copy forces to connector with coefficient
13 conn->computeForces(forces,coeff);
14

15 // MBDyn solves the current iteration
16 if(conn->solve()){
17 conn->writeVTK(iteration);
18 break;
19 }
20

21 // compute force and moment resultants on the structure
22 conn->computeResultants(true, root);
23

24 // write data to interface
25 interface->writeBlockVectorData(displID, vertexSize, vertexIDs,

displacements);
26

27 // advance time step
28 precice_dt = interface->advance(precice_dt);
29

30 // Checkpoint
31 if(interface->isActionRequired(coric)){
32 // timestep not converged
33 interface->fulfilledAction(coric);
34 // tell MBDyn that time step not converged
35 conn->putForces(false);
36 }else{
37 // timestep converged
38 conn->putForces(true);
39 iteration++;
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40 t += precice_dt;
41 conn->writeVTK(iteration);
42 }
43 }
44 }

Listing 5.1. MBDynAdapter simulation execution

Finalization

In the finalization phase all the objects used during the simulation are closed and memory is
released.

5.2.2 Class MBDynConnector
The class MBDynConnector takes care of all the operations related to MBDyn and the
structural side of the simulation.

Initialization

The instance of MBDynConnector is initialized within the MBDynAdapter and some different
tasks are performed in this phase.

The first task is to read the mesh of interface points. The mesh file location is passed
through the input file: to avoid too much duplication, it is the same file used by MBDyn to
build the mapping matrix before the simulation (see Section 4.1.7). The mesh file contains
information concerning the interface points and the connectivity. The (x, y, z) coordinates
are passed to preCICE to build the structural part of the interface mesh. The same points,
together with the connectivity, are stored in the MBDynConnector and are used to write the
output in VTK format during the simulation (see Section 5.4).

The following task consists in starting MBDyn. The MBDyn input file location is passed
through the JSON file and a separated process is spawned with the parameters required
to run an MBDyn program. Upon a correct initialization, the MBDyn simulations hangs
waiting for an external connection (i.e. the external structural mapping).

Finally, an instance of MBCNodal is created to take care of the communication with
MBDyn: a socket is opened and the communication is initialized.

Execution

During the execution phase, MBDynConnector steers the simulation on the MBDyn side.
Some of the actions have been already introduced in listing 5.1:

• send forces to the external structural mapping points,

• perform the simulation step,

• retrieve displacements,

• inform MBDyn that the time step has converged or not.

If the time step has converged (at a user defined time interval), the simulation data are
saved.
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5.3 Input parameters
Some input data are needed in order to perform a simulation. Such data are stored in a
JSON file2. The file is given as input in the form:

1 mbdyn-beam-adapter -f config.json

An example of input file is given in Appendix B. The type of data can be related to
different aspects of the simulation:

1. preCICE:

• precice-config: the interface must be initialized with the preCICE configuration
file (see Section 4.2.4 and Appendix A),

• readDataName: label of the data to be read from the interface (typically forces),

• writeDataName: label of the data to be written (typically displacements),

• participantName: label the participant in the FSI simulation,

• meshName: label of the interface mesh in the FSI simulation.

2. MBDyn:

• mesh: location of the file containing the points mapped in MBDyn,

• mbdyn-input: input file name to be passed to MBDyn,

• node-socket: name of the socket to exchange data between the adapter and
MBDyn (the name has been made configurable to allow different simulations to
run in parallel using different sockets: the user must take care to use the same
name in the MBDyn input file),

• mbdyn-output: location and prefix of all MBDyn related output files (see Sec-
tion 4.1.8 and Appendix D.2).

3. Simulation:

• displacement-delta: Boolean value that tells the adapter whether to pass the
relative displacement between two consecutive iterations or the displacement
from the initial configuration. This is mainly due to compatibility with differ-
ent fluid adapters (e.g. the current version of the SU2 adapter requires delta
displacements),

• iterstart: the following four parameters are used to give progression to the
forces applied to the structure (Figure 5.3 gives an example of the behavior).
The purpose is to ease the beginning of the simulation, letting the flow settle
and avoiding initial spikes in the application of the forces that could result in a
diverging simulation, The current parameter tells MBDynConnector how many
iterations to perform with a reduced starting coefficient (200 in the example),

• coeff0: this value is the initial coefficient (0.1 in the example),

• period: this value is the number of iterations to reach 1 (600 in the example),

2see for example json.org for some information about the syntax
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• ramp-type: label defining the type of ramp. A linear law or a 1/2 · (1− cos) law
can be used.

4. Output (see Section 5.4 for some more details):

• write-interval: value that defines how often the MBDynConnector writes output
data,

• resultant-file: location of the file containing the resultant and moment of the
fluid forces applied to the structure,

• root-coords: vector containing the coordinates of the point about which the
resultant moment has to be computed,

• vtk-output: location and prefix of the output file.

5. Some parameters are used for debug purposes and might be removed in future releases:

• pre-iteration: number of simulation iterations performed by MBDyn before
coupling with the fluid solver. This can ease the initial coupling in case the
definition of the structural model isn’t in equilibrium,

• read-coords: Boolean value used to read the mapped points coordinates back
in the adapter from MBDyn instead of reading the mesh file,

• every-iteration: Boolean value used to force the adapter to write output data
at each coupling iteration.

Figure 5.3. Coefficient applied to nodal forces at beginning of simulation

5.4 Output results
Besides the output strictly related to preCICE, concerning information about convergence and
number of iterations, or the output strictly related to the MBDyn solution (see Appendix D.2),
the adapter gives two types of output.
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Chapter 5. MBDyn Adapter and its integration

The information concerning the interface mesh points is saved in vtu file format, which
is a binary XML VTK file format used to store data on unstructured grids of points. A
sequential number corresponding to the current iteration is appended to the name of the file
so that any visualization software (e.g. ParaView3) can load the whole dataset as a time
series. Each file contains the following vector data:

• displacement,

• displacement delta,

• velocity,

• nodal force,

for each node. An example of visualization is given in Figure 5.4. For debug purposes
also the area and the normal of each cell can be saved.

Figure 5.4. Output data in VTU format

The second output file contains the resultant and the moment applied to the structure
by the fluid forces.

Each line of the file has the form:

t␣Fx␣Fy␣Fz␣Mx␣My␣Mz␣c

where t is the current time step, Fx, Fy, Fz are the components of the resultant,Mx,My,Mz

are the components of the moment (the point is defined in the input file) and finally c is the
coefficient applied to the nodal forces (see Figure 5.3).

3paraview.org
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Chapter 6

Validation Test Cases

6.1 Introduction
In order to validate the coupling adapter developed in this work, some test cases have
been simulated, which are supposed to qualitatively and quantitatively confirm the physical
correctness of the implementation.

The validation has been carried out in different steps: the first task (Section 6.2)
consisted in validating the MBDyn model that has been used throughout the simulations
and in verifying that the implementation of the coupling works as expected.

The second step aimed at comparing the results obtained performing a FSI simulation
with MBDyn with another structural solver, both in compressible and in incompressible
regime (Sections 6.3 and 6.4).

Then, some results obtained from FSI simulations, coupling MBDyn with OpenFOAM,
have been compared with some benchmarks present in literature. At first, the problem
described in [60] has been considered (see Section 6.5): it is composed of a square bluff body
with a trailing flap. It is characterized by a mass ratio (see Section 2.3.4) of 1.18 · 10−3: this
turned out to be a fundamental parameter for the convergence of simulations, and has been
extensively analyzed in the subsequent sections.

One set of well-known benchmarks in FSI literature are the three Turek-Hron FSI test
cases described in [66]. Those cases are characterized by the same domain (a round cylinder
with a trailing flap) and the same fluid properties. Changes impact only fluid velocity and
structural properties (in particular ρ,E).

At first, the so-called FSI2 benchmark (characterized by a mass number of 0.1) has been
considered (Section 6.6). This benchmark, together with the previous one, shows the validity
of the adapter and its potential use in FSI simulations.

Finally, the FSI3 benchmark has been extensively analyzed (Section 6.7). It has a mass
number of 1 and, up to now, it has not been possible to find a suitable set of coupling
parameters that can make this case converge when coupled with MBDyn.

It appears that the added mass effect (AME) (see Section 3.5), plays a dominant role in
the convergence of a FSI problems with MBDyn. For this reason, a sensitivity analysis has
been performed on the FSI3 problem setup (Section 6.8). In particular, flow velocity, fluid
density and solid stiffness have been varied in order to gain some insight about the range of
parameters and adimensional numbers that must be considered to understand how critical a
simulation can be.

The last Section of this chapter (6.9) introduces a a real case scenario, comparing some
of the results obtained in the experiments described in [35], concerning a flapping wing, with
a simulation reproducing the same physical model.
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Chapter 6. Validation Test Cases

Each section starts with a short description of the test case, including the most relevant
parameters: e.g. the fluid domain geometry and discretization, structural and coupling
parameters. Finally some results are presented, together with the coupling performances.

The meshes for all test cases have generated with the free software Salome1. Files for
MBDyn interface points have been generated by a Python script running within the Salome
environment. The script is part of the software made for this work.

6.2 Dummy fluid solver
The first task implemented to validate the adapter consisted in developing a simple dummy
fluid solver : i.e. a software component connected to the coupling library preCICE with
the simple task to apply forces to user-defined nodes on the structure and read back the
displacements of the interface nodes.

This approach allowed first to validate the MBDyn model with the external structural
mapping component (see Section 4.1.7) and the correct data exchange between preCICE and
the adapter.

The dummy solver has been written in Python and it is part of the software package in
this work.

A MBDyn cantilever beam model composed of 5 beam3 elements (see Section 4.1.4) has
been written to perform this test, as depicted in Figure 6.1. This requires a total of 11 node
elements to define the structure.

The beam section is uniform and rectangular (w × h) and the physical properties
(e.g. ρ,E, ν) are constant throughout the beam length.

1 2 3 4 5

L

l

x

y

z

Figure 6.1. cantilever made of 5 beam elements

The inertia of the structure is provided by 2 body elements (see Section 4.1.5) attached
to the second and third nodes of each beam (see Figure 4.1). The center of gravity of each
body placed at the corresponding node. Each body has the following inertial properties (see
Figure 6.2):

m = ρwh
l

2
I =

m

12

h2 + w2 0 0

0 l2

16 + w2 0

0 0 l2

16 + h2

 (6.1)

The first node of the structure is clamped (to implement the cantilever constraint), while
all other nodes are constrained (with total joint elements) to move in the x− y plane and
rotate only around the z − axis so that the structure can move only in the x− y plane. The
interface mesh is represented in Figure 6.3. Only the connectivity elements belonging to the
x− z and y − z plane are represented, but it does not affect the behavior if the structure.

1salome-platform.org/
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6.2. Dummy fluid solver

l/2

h w
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z
CoG
n2n1 n3

Figure 6.2. body element attached to node 2 of the beam element

Figure 6.3. interface points mesh

The model has been loaded by a concentrated load on two tip nodes (Figure 6.4a) and
with an equivalent distributed load on the nodes belonging to the upper surface (Figure 6.4b).

(a) cantilever with tip load

(b) cantilever with distributed load

Figure 6.4. model and data exchange test-cases

The results have been compared to the expected theoretical values in terms of tip
displacement at steady state and in terms of frequency of the tip movement when the system
has been loaded with a step load.

When both the MBDyn model and the data exchanged through the preCICE interface
have been validated, the model has been coupled to a CFD solver.
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6.3 Vertical flap: incompressible regime
The first validation step consisted in comparing the results obtained with MBDyn with the
ones given by another structural solver with the same fluid model.

For this purpose a simple case of a vertical flap immersed in a flow in incompressible
regime has been considered, borrowing an example given in the preCICE website.

6.3.1 Fluid domain
The fluid domain is represented in Figure 6.5. The inlet is on the left with uniform flow
velocity, the outlet is on the right, while all other boundaries are no-slip walls.

20m

4m

4m0.1m

1mx

z

Figure 6.5. vertical flap: fluid domain

The fluid domain is discretized in an structured hexaedral mesh as depicted in Figure 6.6.
The main fluid and mesh values are given in Table 6.1 and 6.2.

Figure 6.6. vertical flap: fluid mesh

parameter value
fluid density ρ [kg m−3] 1
kinematic viscosity ν [m2 s−1] 10−3

flow velocity ~v [m s−1] 10
flow type laminar

Table 6.1. Vertical flap: fluid properties
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6.3. Vertical flap: incompressible regime

parameter value
number of mesh points ndof 17344
number of cells nc 8400
number of interface cells nint 42

Table 6.2. Vertical flap: mesh properties

6.3.2 Simulation and Coupling parameters
The coupling between the fluid solver and the structural solver is the same for the MBDyn
and the CalculiX simulation. The main data are given in Table 6.3:

parameter value
simulation time t [s] 50
step size ∆t [s] 10−2

coupling scheme serial implicit S → F
coupling algorithm IQN-ILS
displacement rel. convergence limit 10−4

force rel. convergence limit 10−3

interface mesh mapping RBF

Table 6.3. Vertical flap: coupling parameters

6.3.3 Structural Solver: CalculiX
The structural model built in CalculiX is composed of 40 C3D82 as represented in Figure 6.7.

The properties of the solid are reported in Table 6.4.

parameter value
solid density ρ [kg m−3] 3000
Elastic modulus E [Pa] 4 · 106

Poisson coefficient ν 0.3

Table 6.4. Vertical flap: solid properties

6.3.4 Implementation with MBDyn
The MBDyn model uses the same solid properties of Table 6.4 and it is composed of 10
beam3 elements. Apart from the different orientation, the setup is the same as the one
briefly described in Section 6.2. The only relevant parameter that can be explicitly set up in
MBDyn, compared to CalculiX, consists in the structural damping of the beam elements
(see Section 4.1.4), which is set to be proportional to stiffness matrix of the element with a
coefficient of 2 · 10−3.

2general purpose linear brick element with 8 nodes
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Figure 6.7. vertical flap: CalculiX mesh

The interface mesh is divided into 20 faces for the front and back surfaces of the flap.
The upper surface is divided into 2, so that the interface is identical to the one obtained in
CalculiX.

6.3.5 Results
The problem considered is characterized by the dimensionless parameters given in Table 6.5
and its solution is represented in Figure 6.8.

parameter value
mass number M 3.3 · 10−4

reduced velocity UR 0.274
Cauchy number CY 2.5 · 10−5

Table 6.5. Vertical flap: dimensionless numbers

The solutions between CalculiX and MBDyn are first compared in terms of resultants
applied to the structure during the simulation (Figures 6.9 and 6.10), then the tip displacement
in x direction is considered in Figure 6.11. The forces and moments applied to the structure
in the two cases are very close. The tip displacement shows that both structures exhibit
the same damping and the oscillating frequency is very close: CalculiX shows a slightly
higher frequency and a more visible second order frequency. The MBDyn structure looks a
little more flexible: after 50 seconds of simulation tends to 58mm of tip displacement in x
direction, while the same structure in CalculiX tends to 53mm of displacement.

The convergence and the number of iterations required by the two solvers are shown
in Figures 6.12a and 6.12b. They show that, in general, MBdyn and CalculiX require 2
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Figure 6.8. vertical flap: velocity field

Figure 6.9. vertical flap: resultant forces
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Figure 6.10. vertical flap: moment applied at root

Figure 6.11. vertical flap: tip displacement x direction
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6.3. Vertical flap: incompressible regime

iterations to converge. This can be explained by the small mass number of this case. At
some time steps MBDyn requires more iterations: this is due to the fact that, for some
reasons due to the coupling not completely understood at the moment, a force unbalance
arises in the y-direction (out of the plane of the model) which produces a moment around
x-axis. This moment is absorbed by the rotation constraints at the nodes and it does not
affect the behavior of the resultant in x and z directions, but it affects the convergence.

Finally, MBDyn allows to analyze the internal forces of each beam, as represented in
Figure 6.13.
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(a) CalculiX

(b) MBDyn

Figure 6.12. vertical flap: convergence and iterations
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6.3. Vertical flap: incompressible regime

Figure 6.13. vertical flap: MBDyn beam internal forces
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6.4 Vertical flap: compressible regime
A model similar to the one described in the previous section has been used to test the
coupling capabilities of the adapter with a different fluid solver: SU23. The current coupling
adapter between SU2 and preCICE allows to build FSI simulations only in compressible
regime. Besides, SU2 allows to define bidimensional domains, while OpenFOAM and MBDyn
are strictly tridimensional. Bidimensionality is enforced in OenFOAM using empty boundary
conditions, while in MBDyn is enforced through constraints on nodes. For those reasons a
similar model has been built.

6.4.1 Fluid domain
The fluid domain is represented in Figure 6.14. The inlet is on the left with uniform flow
velocity, the outlet is on the right, while all other boundaries are slip walls.

4.2m

1.2m

1.
2m0.002m

0.
4mx

y

Figure 6.14. vertical flap (compressible): fluid domain

The fluid domain is discretized in an unstructured triangular mesh as depicted in
Figure 6.15. The main fluid and mesh values are given in Table 6.6 and 6.7.

Figure 6.15. vertical flap (compressible): fluid mesh

3su2code.github.io
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6.4. Vertical flap: compressible regime

parameter value
fluid properties standard air
outlet pressure p [Pa] 101300
inlet temperature T [K] 288
inlet Mach number Ma 0.1
flow type euler

Table 6.6. Vertical flap (compressible): fluid properties

parameter value
number of mesh points ndof 5580
number of cells nc 10709
number of interface points nint 162

Table 6.7. Vertical flap (compressible): mesh properties

6.4.2 MBDyn model
The MBDyn model uses solid properties defined in Table 6.8 and is composed of 5 beam3
elements.

parameter value
solid density ρ [kg m−3] 1000
Elastic modulus E [Pa] 5.6 · 109

Poisson coefficient ν 0.4
structural damping 1 · 10−3

Table 6.8. Vertical flap: solid properties

6.4.3 Coupling parameters
The main data concerning the coupling between MBDyn and SU2 are given in Table 6.9:

parameter value
simulation time t [s] 1
step size ∆t [s] 10−3

coupling scheme serial implicit S → F
coupling algorithm IQN-ILS
displacement rel. convergence limit 10−5

force rel. convergence limit 10−3

interface mesh mapping RBF

Table 6.9. Vertical flap (compressible): coupling parameters
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6.4.4 Results
The problem considered is characterized by the dimensionless parameters given in Table 6.10:
in particular the mass number remains in the order of O

(
10−3

)
. A sketch of the flow solution

is represented in Figure 6.16.

parameter value
mass number M ≈ 1.2 · 10−3

reduced velocity UR ≈ 1.44 · 10−2

Cauchy number CY ≈ 2.53 · 10−7

Table 6.10. Vertical flap (compressible): dimensionless numbers

(a) vertical flap (compressible): x-momentum

(b) vertical flap (compressible): streamlines

Figure 6.16. vertical flap (compressible): flow solution

The combination of parameters considered in this test case aimed at considering a very
thin flexible element surrounded by a low-Mach flow, so that large displacements are involved.
The structure reaches a steady deformed shape after around 1 second as shown in Figure 6.18,
concerning tip displacement.

The fluid flow has been initialized with a steady solution obtained considering a rigid
structure, then the FSI problem has been simulated progressively applying the aerodynamic
load to the flap: a linear ramp starting at 1% of the load with a duration of 0.2 seconds (see
Section 5.3 for the adapter input parameters).

Resultant forces (Rx, Ry) and moment (Mz) computed at the root of the flap are shown
in Figure 6.17.
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6.4. Vertical flap: compressible regime

Figure 6.17. vertical flap (compressible): resultant forces

Figure 6.18. vertical flap (compressible): tip displacement
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Each time step of the problem converges quite rapidly, requiring 5 iterations in most
cases (see Figure 6.19). This outcome agrees with the fact that a low mass number and
a high fluid velocity make the problem loosely coupled (see section 3.3 for some details).
Nevertheless an explicit simulation would diverge immediately.

Figure 6.19. vertical flap (compressible): convergence and iterations

Axial and shear forces and bending moment in each of the MBDyn elements are plotted
in Figure 6.20.
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6.4. Vertical flap: compressible regime

Figure 6.20. vertical flap (compressible): MBDyn internal forces

63



Chapter 6. Validation Test Cases

6.5 Square bluff body Benchmark
The first simple problems aimed at verifying that the complete FSI problem works and gives
correct results: i.e. the MBDyn model, the mapping with the interface mesh, the coupling
adapter and the fluid model (i.e. fluid flow and mesh movement performed with different
solvers).

After that, it is important to verify the performance of the system considering well-known
benchmarks, so that the results can be compared with a large number of algorithms and
techniques.

6.5.1 Problem description
The first benchmark considered here has been described in [60]. The structural part is
composed of a square bluff body with a trailing thin flap, as shown in Figure 6.21. The
geometrical data are given in Table 6.11.

| parameter value
H [mm] 10
L [mm] 40
t [mm] 0.6

Table 6.11. square bluff body: geometry

Figure 6.21. square bluff body benchmark: domain

6.5.2 Fluid domain
The fluid domain is represented in Figure 6.21 and has been simulated in OpenFOAM.
The inlet is on the left with uniform flow velocity, the outlet is on the right, the external
boundaries (top and bottom) are slip-walls while all other boundaries (body and flap) are
no-slip walls.
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6.5. Square bluff body Benchmark

The fluid domain is discretized with an structured hexaedral mesh as depicted in
Figure 6.22. The main fluid and mesh values are given in Table 6.12 and 6.13.

Figure 6.22. square bluff body: fluid mesh

parameter value
fluid density ρ [kg m−3] 1.18
dynamic viscosity µ [kg m−1 s−1] 1.82 · 10−5

Reynolds number Re 332
flow velocity ~u∞ [m s−1] 0.513
flow type laminar

Table 6.12. square bluff body: fluid properties

parameter value
number of mesh points ndof 59096
number of cells nc 29040
number of interface cells nint 202

Table 6.13. square bluff body: mesh properties

6.5.3 Solid domain
The properties of the solid are reported in Table 6.14. The MBDyn model is composed of 10
beam3 elements. The setup resembles the one briefly described in Section 6.2. The structural
damping of the beam elements (see Section 4.1.4) has been set to be proportional to the
stiffness matrix of the element with a coefficient of 1 · 10−2. This value appeared to be high
enough to give a smooth structural solution without being excessively damping.

The interface mesh is divided into 202 faces and it is shown in Figure 6.23.

65



Chapter 6. Validation Test Cases

parameter value
solid density ρ [kg m−3] 100
Elastic modulus E [Pa] 2.5 · 105

Poisson coefficient ν 0.35

Table 6.14. square bluff body: solid properties

Figure 6.23. square bluff body: structural interface mesh

6.5.4 Coupling parameters
The main coupling data are given in Table 6.15. The particularly short time step is required
by fluid mesh movement: as it will be apparent in the results, the thin flexible flap moves
quickly and with large displacements. The diffusion algorithm used by OpenFOAM to deform
the fluid mesh produced inconsistent cell volumes when using higher time steps.

parameter value
simulation time t [s] 6
step size ∆t [s] 5 · 10−4

coupling scheme serial implicit S → F
coupling algorithm IQN-ILS
displacement rel. convergence limit 10−4

force rel. convergence limit 2 · 10−4

interface mesh mapping RBF

Table 6.15. square bluff body: coupling parameters

Most parameters are similar to the ones used in other examples as they turned out to fit
well with most of the experiments.

6.5.5 Results
The problem presented here is characterized by the dimensionless parameters given in
Table 6.16 and its solution is represented in Figure 6.26.

As in other simulations, fluid forces are applied with a ramp to ease convergence at the
beginning of the simulation: during the first 100 ms they are scaled to 10%, to reach 100%
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6.5. Square bluff body Benchmark

parameter value
mass number M 1.18 · 10−2

reduced velocity UR ≈ 1 · 10−2

Cauchy number CY 1.24 · 10−6

Table 6.16. square bluff body: dimensionless numbers

after another 100 ms.
Alternating vortices begin developing quite rapidly and the structure starts oscillating.

After around 2 seconds it reaches a vortex lock-in regime (e.g. [38]), as shown in Figure 6.24
(in particular the tip displacement in y direction).

Figure 6.24. square bluff body: tip displacement

Forces are measured on the whole structure on the fluid side, while they are measured
only on the flap in the solid domain. Figure 6.25 shows a detail of 0.5s of simulation. The
difference in x -direction represents the drag force on the square body. Differences in lift and
moment are almost zero.

Each time step converges with an average of 8 iterations, except for some conditions
in which the coupling algorithm fails in making coupling forces converge. Those situations
show a quite distorted fluid mesh that make the overall FSI problem harder to solve.

An higher average number of iterations agrees with the fact that a higher mass number
makes the problem strongly coupled. Here M is in the order of O

(
10−2

)
.

As in the previous examples, the axial and shear forces and bending moment in each of
the MBDyn elements are plotted in Figure 6.28: in this case a temporal slice of 0.5s has
been considered.
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Figure 6.25. square bluff body: resultant forces (detail)
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6.5. Square bluff body Benchmark

(a) t=3.37s velocity (b) t=3.37s pressure

(c) t=3.47s velocity (d) t=3.47s pressure

(e) t=3.53s velocity (f) t=3.53s pressure

Figure 6.26. square bluff body: fluid solution

6.5.6 Validation
This problem has been used as a benchmark in a great number of studies in literature. The
comparison between the simulations is generally made on the tip displacement, in terms of
amplitude and frequency of oscillation. In Table 6.17 some results are given and compared
to the present study.

The comparison shows a very good agreement among the studies: considering all the
previous simulations, the average tip displacement is 11.2 mm with a standard deviation
of 1.06 mm, while the average frequency of oscillation is 3.1 Hz with a standard deviation
of 0.09 Hz.

This study, with a tip displacement of 11.2 mm at a frequency of 3.067 Hz, shows that

4Fluid Structure Interaction Problems using SU2. First SU2 Annual Developers Meeting. TU
Delft, 6 September 2016
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Figure 6.27. square bluff body: convergence and iterations

Study f [s−1] dy tip [mm]
Wall and Ramm [60] 3.08 13.1
Kassiotis et al. [43] 2.98 10.5
Wood et al. [74] 2.94 11.5
Olivier et al. [55] 3.17 9.5
Walhorn et al. [73] 3.14 10.2
Matthies and Steindorf [52] 3.13 11.8
Dettmer and Peric [16] 3.03 12.5
Habchi et al. [30] 3.25 10.2
Froehle and Persson [21] 3.18 11.2
Sanchez et al.4 3.15 11.5
Present study 3.067 11.2

Table 6.17. square bluff body: results

the implementation of the adapter can give good results.
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Figure 6.28. square bluff body: MBDyn internal forces (detail)
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6.6 Turek-Hron FSI2 Benchmark
Another well known benchmark, concerning FSI simulations performed in incompressible
flow regime, is proposed by Turek and Hron [66]. A very important thing to notice about
this study is that it is a “Proposal for numerical benchmarking of fluid-structure interaction
between an elastic object and laminar incompressible flow”. So the paper gives a specific
problem setup to which others can contribute.

The fluid domain is similar to the one described in the previous section. The domain
is again composed of a bluff body (a cylinder) and a flap, but different flow velocities and
structural properties are considered, so that 3 cases arise, commonly known as FSI1, FSI2
and FSI3.

For reasons that will be apparent in the next section, FSI2 is considered first.

6.6.1 Problem Description
The structural part is composed of a round cylinder with a trailing thin flap, as described in
Figure 6.29. The geometrical data are given in Table 6.18.

parameter value
H [m] 0.41
L [m] 2.5
l [m] 0.35
h [m] 0.02
C [m] (0.2, 0.2)
r [m] 0.05

Table 6.18. FSI2: geometry

Figure 6.29. FSI2: domain
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6.6. Turek-Hron FSI2 Benchmark

6.6.2 Fluid domain
The fluid domain is represented in Figure 6.29 and has been simulated in OpenFOAM. The
inlet is on the left with parabolic flow velocity, the outlet is on the right, while all other
boundaries are no-slip walls.

The fluid domain is discretized in a structured hexaedral mesh as depicted in Figure 6.30.
The main fluid and mesh values are given in Table 6.19 and 6.20.

Figure 6.30. FSI2: fluid mesh

parameter value
fluid density ρ [kg m−3] 1000
kinematic viscosity ν [m2 s−1] 1 · 10−3

Reynolds number Re 100
max flow velocity ~umax [m s−1] 1.5
mean flow velocity ~u [m s−1] 1
flow type laminar

Table 6.19. FSI2: fluid properties

parameter value
number of mesh points ndof 51464
number of cells nc 25224
number of interface cells nint 180

Table 6.20. FSI2: mesh properties
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6.6.3 Solid domain
The properties of the solid are reported in Table 6.21.

parameter value
solid density ρ [kg m−3] 10000
Elastic modulus E [Pa] 1.4 · 106

Poisson coefficient ν 0.4

Table 6.21. FSI2: solid properties

The MBDyn model is the same as the one used in 6.5 and is composed of 10 beam3
elements, with a structural damping of 1 · 10−2.

The interface mesh is divided into 90 faces and is shown in Figure 6.31: it has been built
so that there is a solid interface cell every two fluid interface cells.

Figure 6.31. FSI2: structural interface mesh

6.6.4 Coupling parameters
The main coupling data are given in Table 6.22. In this case a time step of 1 ms is enough
for the simulation.

parameter value
simulation time t [s] 15
step size ∆t [s] 1 · 10−3

coupling scheme serial implicit S → F
coupling algorithm IQN-ILS
displacement rel. convergence limit 10−4

force rel. convergence limit 2 · 10−4

interface mesh mapping RBF

Table 6.22. FSI2: coupling parameters
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6.6. Turek-Hron FSI2 Benchmark

6.6.5 Results
The problem presented here is characterized by the dimensionless parameters given in
Table 6.23 and its solution is represented in Figure 6.34.

parameter value
mass number M 0.1
reduced velocity UR 8.45 · 10−2

Cauchy number CY 7.14 · 10−4

Table 6.23. FSI2: dimensionless numbers

In this case, the ramp applied to fluid forces at the beginning of the simulation is longer,
in order to make the fluid flow and the structure settle: during the first 500 ms forces are
scaled to 10% and reach 100% after another 500 ms.

Alternating vortices begin developing and the flap begins oscillating with an increasing
amplitude. After around 4 seconds the structure reaches a vortex lock-in regime, as shown
in Figure 6.32.

Figure 6.32. FSI2: tip displacement

Forces are measured on the whole structure on the fluid side of the simulation, while
they are measured on the flap alone in the solid domain. Figure 6.33 shows a detail of 2 s of
simulation. The difference in x -direction represents the drag force on the cylinder.

Each time step converges with an average of 14.5 iterations, which again confirms the
trend of more coupling iterations as the mass number increases.

As in the previous examples, the axial and shear forces and bending moment in each of
the MBDyn elements are plotted in Figure 6.28: in this case a temporal slice of 2 s has been
considered. The values plotted here consider a beam with 2 mm width: i.e. the thickness of
the solid and fluid domains considered in this case.

6.6.6 Validation
Turek and Hron benchmarks have been used as a reference in many studies considering
strongly coupled FSI simulations.
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Figure 6.33. FSI2: resultant forces (detail)
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(a) t=5.0s velocity (b) t=5.0s pressure

(c) t=5.135s velocity (d) t=5.135s pressure

(e) t=5.27s velocity (f) t=5.27s pressure

Figure 6.34. FSI2: fluid solution

FSI2 is fully oscillating while the same problem, considering the structure rigid (named
CFD2 in [66]) is steady: for this reason it is considered an excellent check for interaction
mechanisms [67].

Besides, FSI2 gives the largest deformation and in some cases it is considered the most
difficult of the three benchmarks [63], as it gives deformations four times greater than the
flap height.

The comparison of the results can be done in terms of tip displacement and in terms of
lift and drag force applied to the whole structure. The results given in the original paper and
in a review made by the same authors, together with other studies found in literature, are
compared to the present study in Table 6.24 for the data concerning the tip displacement,
and in Table 6.25 for the forces applied to the structure.

The study in [67] proposes 7 different simulation methods and results for FSI1 and FSI3
test cases. In the numerical results it is stated that “clear differences between the different
approaches with regard to accuracy are visible. Particularly for the drag and lift values,
which lead to differences of up to order 50%, and also for the displacement values which are
in the range of 10% errors”.

For the FSI2 test case only the results from the initial Turek and Hron paper [66] and a
few others are available.

Comparing the results of this simulation with previous studies (Table 6.24), the average
displacement in x direction is very close to all other data (mainly due to mean pressure
applied to the tip face), while mean oscillation is lower of about 3mm. The displacement in
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Figure 6.35. FSI2: convergence and iterations

Study dx tip [mm] f [Hz] dy tip [mm] f [Hz]
Benchmark [66] −14.58± 12.44 3.8 1.23± 80.6 2.0
Turek et al. (2010) [67] −14.85± 12.70 3.86 1.30± 81.7 1.93
Gjertsen [28] −14.83± 13.11 1.24± 81.6
Degroote [15] −14.07± 12.37 3.7 1.18± 76.5 1.9
Present study −14.95± 9.85 3.87 2.78± 83.39 1.93

Table 6.24. FSI2: comparison of results (displacements)

Study drag [N m−1] f [Hz] lift [N m−1] f [Hz]
Benchmark [66] 208.83± 73.75 3.8 0.88± 234.2 2.0
Turek et al. (2010) [67] 215.06± 77.63 3.86 0.61± 237.8 1.93
Gjertsen [28] 161.50± 73.75 0.88± 234.2
Degroote [15] 217.52± 84.65 3.7 −0.74± 267.6 1.9
Present study 239.13± 31.93 3.87 3.43± 308.57 1.93

Table 6.25. FSI2: comparison of results (forces)

y direction is about 2 mm higher. It looks like the MBDyn structure is a bit more flexible
(as also seen in Section 6.3 for the vertical flap). This also reflects the fact that average drag
and lift are higher, as shown in Table 6.25.

The greatest difference can be seen in the oscillation of drag, which is much smaller than
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Figure 6.36. FSI2: MBDyn internal forces (detail)
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other studies. The data collected during the simulation allow to separate the contribution
of the cylinder from the one of the flap (see first graph of Figure 6.33). The cylinder has
an average drag of 140 N m−1 with a standard deviation of ≈ 7 N m−1. Considering that
the average CD of a cylinder at Re = 100 is around 1.35 [57], and an average fluid velocity
around the cylinder of about 1.4 m s−1, the contribution is as expected. The contribution of
the flap seems to be much lower than the values given by other studies.

As previously stated, the results for the FSI3 case differ by in some cases 50% for drag
and lift. With this in mind, we could expect similar behavior also in the FSI2 results.
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6.7 Turek-Hron FSI3 Benchmark
Omitting for a while the test case named FSI1 as it is not oscillating, we considered the
other benchmark proposed in [66], named FSI3. Its parameters are very similar to FSI2,
with the only different properties shown in Table 6.26. The corresponding dimensionless
numbers are given in Table 6.27.

parameter FSI2 FSI3
solid density ρ [kg m−3] 10000 1000
Elastic modulus E [Pa] 1.4 · 106 5.6 · 106

max flow velocity ~umax [m s−1] 1.5 3
mean flow velocity ~u [m s−1] 1 2

Table 6.26. FSI2-FSI3: different parameters

parameter FSI2 FSI3
mass number M 0.1 1
reduced velocity UR 8.45 · 10−2 2.67 · 10−2

Cauchy number CY 7.14 · 10−4 7.14 · 10−4

Reynolds number Re 100 200

Table 6.27. FSI2-FSI3: dimensionless numbers

The simulation of the FSI3 benchmark using MBDyn and OpenFOAM connected with
preCICE proved to be an unfeasible task, at least at the time of writing. This same test case is
known to work, giving correct results, coupling OpenFOAM and CalculiX as described in the
preCICE website5. Nevertheless, substituting CalculiX with MBDyn, all other parameters
being equal, makes the simulation diverge.

Different approaches have been experimented, acting on each part of the problem. For
example:

• in the fluid domain:

1. using more strict convergence criteria for the fluid solver

2. using a linear or parabolic profile of the inlet velocity (tests on FSI2 showed very
little difference)

3. using a ramp also in the fluid velocity

4. defining a finer (2× or 3×) fluid mesh

5. considering a different thickness of the fluid and solid domain (which showed
that having thicker domain produces a negative impact on the convergence)

• in the solid domain:

1. considering more or fewer MBDyn nodes (from 5 to 20 nodes)

2. changing solver (naive, umfpack, klu, . . .)

5Tutorial-for-FSI-with-OpenFOAM-and-CalculiX
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3. using different damping coefficients

• in the adapter:

1. using different ramp profiles and times

• in the coupling parameters:

1. changing coupling strategies (serial, parallel)

2. using more strict convergence criteria

3. turning the extrapolation parameter on or off (on gets a better initial guess for
the next time step)

4. changing acceleration algorithm and parameters

None of the simulations allowed to simulate the system correctly. In general every
simulation diverged at some point of the ramp phase.

Thus a sensitivity analysis has been carried out, in order to better understand the limits
of the current coupling, as described in the following section.

6.8 Sensitivity analysis of FSI1-FSI3 Benchmarks
It can be interesting to understand what combination of simulation parameters has a stronger
impact on the convergence or divergence of the model. We decided to focus on the FSI3
benchmark and perturb some of the input parameters.

Table 6.27 shows that the two test cases present the same Cauchy Number CY . It looks
that, at first, it might not be a significant parameter to understand the limits of application
of this setup. For that reason we decided to focus on the variation of the mass number M
and the reduced velocity UR and observe in which cases the simulation diverges.

We started from the original FSI3 test case with the same configuration parameters given
in Section 6.6, and modified the following parameters:

1. ρf (fluid density): 100 → 1000 kg m−3, so that the mass number is in the range
0.1→ 1. A mass number of 0.1 has shown to converge (i.e. FSI2 benchmark) while
previous tests, characterized by smaller mass number, did not present convergence
issues. Solid density ρs is kept fixed at 1000 kg m−3.

2. E (structure elastic modulus): 5.6 · 106 → 2 · 1011 Pa, so ranging from the elastic
modulus of a soft rubber (used in the FSI3 benchmark) to the one of steel. The
corresponding reduced velocity UR, at ~u = 2m s−1, is in the range ≈ 7 · 10−4 → 0.13

3. ~u (mean flow velocity): 0.2→ 10 m s−1 so that the Reynolds number Re ranges from
20 (as in FSI1) to 1000.

We were interested in keeping the simulation time short, so we considered 1 s of simulation:
the first 0.5 s has been used to ramp up forces on the structure, from $10% up to 100%,
then the simulation evolves for the remaining 0.5s. An experiment is considered successfully
completed if it reaches the final time without non-physical results due to lack of convergence
at some time steps.

The results are presented in the following subsections.
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6.8.1 FSI3 sensitivity Analysis
The first scenario consists in a perturbation of the FSI3 test case, i.e. keeping ~u = 2m s−1

and Re = 200. The results are illustrated in Table 6.28:

mass ratio
UR E[MPa] 0.1 0.2 0.25 0.5 1

1.41 · 10−4 2 · 105 2.204 2.618 3.126 4.418
6.32 · 10−4 1 · 104 15.024 43.1

2 · 10−3 1 · 103 23.46 10.78
6.32 · 10−3 1 · 102 7.592 11.788
1.41 · 10−2 20 11.46 87.675
2.67 · 10−2 5.6 7.216 36.426 FSI3

Table 6.28. FSI3 sensitivity analysis: green cells simulation completed with average number
of iterations, red cells simulation diverged

Table 6.28 shows that there is a limit in the ability of the coupled system to produce
results. It is situated in the range between 0.25 and 0.5 of mass ratio. This condition can
be improved if the material is much stiffer (which corresponds to a smaller UR) and can
become worse when the material is more flexible. The lower right corner of the table, which
represents the FSI3 setup, appears to be quite far from the actual range of convergence of the
system. The table also shows, for completed simulations, the average number of iterations
required for each time step to converge. A trend is visible (even if it does not hold for every
case): the higher mass ratio, the more iterations are needed. The similar trend is visible for
UR.

The empty green cells have not been simulated. It is supposed that, if a simulation
completes successfully for a given mass ratio, it will complete also for a lower one. Conversely,
if a simulation does not work for a given UR, it will not work for a higher UR (i.e. for a more
flexible material).

6.8.2 FSI1 sensitivity Analysis
The same kind of analysis has been conducted considering a fluid velocity of 0.2m s−1

(Re = 20), thus replicating FSI1 test case in [66].

mass ratio
UR E[MPa] 0.1 0.2 0.25 0.5 1

1.41 · 10−5 2 · 105 2.138 2.146 3.064
6.32 · 10−5 1 · 104 2.337

2 · 10−4 1 · 103 9.83
6.32 · 10−4 1 · 102 8.688 24.45
1.41 · 10−3 20 18.238 38.398
2.67 · 10−3 5.6 6.314 FSI1

Table 6.29. FSI1 sensitivity analysis
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Table 6.29 illustrates the results: as in the previous section, green cells indicate that
the simulation completed (the number represents the average number of iterations), while
red cells indicate that the simulation diverged. In this case yellow cells indicate that the
simulation finished, but at some point it reached the maximum number of iterations, meaning
that the progressive loading of the structure is difficult. It can be possible that there exist
a better set of coupling parameters that makes a specific test work better, nevertheless it
looks to be a symptom of the fact that the simulation is close to the limits of applicability.

Comparing the results with Table 6.28, it can be seen that the range of feasible parameters
becomes smaller. This seems to be in accordance with the idea that a lower fluid velocity
makes the interaction stronger and the convergence more difficult.

Similarly, the lower right cell represents test case FSI1 and it seems to be not possible to
simulate it with the current setup.

6.8.3 Sensitivity Analysis at higher velocity
In order to have more insight on the influence of the physical parameters on the simulation,
also a higher fluid velocity of 10m s−1 (Re = 1000) has been considered.

mass ratio
UR E[MPa] 0.1 0.2 0.25 0.5 1

7.07 · 10−4 2 · 105 5.552 6.706 8.647
3.16 · 10−3 1 · 104 10.184 9.713

1 · 10−2 1 · 103 14.101 50.731 36.566
3.16 · 10−2 1 · 102 10.640 17.122
7.07 · 10−2 20 42.998 35.046
1.34 · 10−1 5.6 11.725

Table 6.30. Re 1000 sensitivity analysis

Table 6.30 shows a pattern similar to previous experiments. In this case, a larger number
of parameter combinations appears to be feasible.

6.8.4 Analysis of the results
The current knowledge regarding the overall setup of the test case does not allow to correctly
simulate the benchmark experiments FSI1 and FSI3, characterized by a mass ratio of 1.
Perturbing some of the parameters, thus affecting the mass ratio M or the reduced velocity
UR, allows to reach feasible configurations.

Tables 6.28 to 6.30 show all a similar path: the upper left part of the table contains
feasible configurations, while the lower right part the unfeasible ones. If the fluid velocity is
lower, more configurations fail.

Those aspects appear to agree with the explanations given in Section 3.5 and in the
cited literature. The model considered here shows a a clear relationship between mass ratio,
structure stiffness and simulation outcome at a prescribed fluid velocity. The same clear
path would not hold if we considered reduced velocity UR only, thus putting all experiments
together. For example, row 1 of Table 6.30 tells that UR ≈ 7 · 10−4 would allow to reach
M = 1, while row 4 of Table 6.29 tells that UR ≈ 6.3 · 10−4 would allow to reach only
M ≈ 0.2.
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6.9 Flapping wing simulation
An application example of preCICE-MBDyn coupling in the study of FSI problems can be
found in [35], in which the effect of spanwise wing flexibility on thrust, lift and propulsive
efficiency of a rectangular wing, oscillating in pure heave, is analyzed by means of water
tunnel experiments.

The study shows that, for some oscillating frequencies, a degree of spanwise flexibi-
lity yields a small increase in the thrust coefficient and a small decrease in power-input
requirement, resulting in higher overall efficiency.

6.9.1 Experimental setup
Before describing the FSI model and the simulation, it is necessary to briefly introduce the
experimental setup.

The study considers three types of rectangular wings, with profile NACA 0012 and with
different section properties, as shown in Figure 6.37. The section labeled (i) is considered
inflexible, the one labeled (ii) is considered flexible and the last one highly flexible.

Figure 6.37. wing section properties (image taken from [35])

Each wing has the following dimensions: chord c = 100 mm and span b = 300 mm.
The experimental setup is shown in Figure 6.38. The displacement of the root section is

given by s = aROOT sin(ωt), where aROOT = 0.175 · c. The flow velocity U0 is in the range
1÷ 3 m s−1. The following dimensionless parameters are considered:

• Re = ρU0c
µ : Reynolds number

• kG = πfc
U0

: Garrick reduced frequency

• Sr = 2faMID
U0

: Strouhal number at mid-span

Experiments are carried out for the three types of wings in the following ranges: Re =
1 · 104 ÷ 3 · 104 and kG = 0÷ 7.

The results give information concerning the average thrust coefficient CT = T
1
2
ρU2

0 c
over a

finite number of cycles and the mean power input coefficient C̄P =
¯Fyv

1
2
ρU3

0 c
.

Besides, information concerning the ratio aTIP
aROOT

and tip phase lag φ are given.
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Figure 6.38. experimental setup (image taken from [35])

6.9.2 Simulation setup
The experimental setup described in [35] has been replicated in a FSI simulation using
MBDyn as structural solver and OpenFOAM as CFD solver.

Fluid domain

The fluid domain is represented by a box of size 1.5×0.6×0.5m, as represented in Figure 6.39.
The boundary conditions are:

• constant inlet velocity for the face at x = −0.25m,

• constant pressure for the face at x = 1.25m,

• symmetry plane at the root of the wing (z = 0),

• slip walls for the other external surfaces,

• no-slip wall for the wing surface.

The NACA 0012 wing has been drawn in Salome and exported in OpenFOAM as .stl file.
The mesh has been built with the tool snappyHexMesh and it is composed of 218451 cells.

Interface

The same NACA 0012 profile drawn in Salome has been used to generate the interface mesh
for the external structural mapping of MBdyn. The interface mesh is composed of 1286
cells (1200 quadrangles and 86 triangles), as shown in Figure 6.40.

Structural domain

The structural model is composed of 10 MBDyn beam elements. Considering the flexible (or
the highly flexible) structure, the stiffness of the wing can be considered completely given
by the 1 mm metal plate, as the PDMS, with a Young modulus of 360 ÷ 870 kPa would
contribute with only a small fraction of the overall stiffness.
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(a) mesh bounding box

(b) wing detail

Figure 6.39. NACA 0012 fluid mesh

Figure 6.40. NACA 0012 interface mesh
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The stiffness matrix of each beam element is given in Equation 6.2, in which w represents
the chord and h the metal thickness.

Ewh 0 . . . 0
Gwh

Gwh

G1
3wh

3
...

sym. E 1
12wh

3

E 1
12hw

3


(6.2)

At each of the 21 nodes of the structure there is a body element attached, carrying the
mass of the corresponding chunk of beam (both metal and PDMS).

The wing motion is achieved by means of a total pin joint element attached to the
root of the wing, which moves the root node with a sin(ωt) law along the y direction. The
motion starts with a ramp of the kind 1

2

(
1− cos

(
t
τ

))
in order to ease convergence.

Coupling

The main data concerning the coupling between the fluid solver and the structural solver are
given in Table 6.31:

parameter value
simulation time t [s] 2
step size ∆t [s] 10−3

coupling scheme serial implicit S → F
coupling algorithm IQN-ILS
displacement rel. convergence limit 10−3

force rel. convergence limit 10−3

interface mesh mapping Nearest neigh. and RBF

Table 6.31. NACA 0012: coupling parameters

Different experiments have been carried out considering different parameters. For example,
a shorter time step is beneficial for a better mesh displacement, at the expense of a longer
simulation time. At the same time, convergence limits have an obvious impact on the
simulation time, as more iterations are required in order to reach a lower convergence limit.

Finally, also mesh mapping strategy (see Section 3.4.3) influences the simulation quality
and time: nearest-neighbor is faster but can be detrimental for mesh movement, on the other
side, the Radial Basis Function (RBF) mapping gives better results, but for larger grids
(≈ 4000 points) the computational cost of the mapping becomes relevant. Moreover, it needs
to be tuned.

6.9.3 Results
Due to resource constraints, only some preliminary results have been carried out fort the
flexible wing. In particular, the results obtained with a root displacement of ±2.5 mm at 2.5
Hz with a fluid velocity of 1 m s−1 are presented here. This corresponds to:

Re = 10000, kG = 0.785, Sr ≈ 1.5 · 10−2 (6.3)
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Figure 6.41. NACA 0012 displacement

The tip displacement is shown in Figure 6.41. After the first transient oscillation, the
peak tip displacement settles to around 3.62mm. compared to the root displacement, the
ratio is around aTIP

aROOT
≈ 1.45 with a lag of around 27o. These results are much closer to the

the ones of thehighly-flexible wing presented in [35].
The first eigenfrequency of the model, computed in MBDyn, is ≈ 6.8 Hz. The first

eigenfrequency of the metal plate alone, considered as a cantilevered beam, would be around
9 Hz. The mass of the PDMS lowers the value, as expected. The amplification and the
lag found in the simulation seem to be compatible with those theoretical data, while the
experimental model seems to be stiffer. Citing the article: “the airfoil comprises a tear-drop
solid aluminium leading edge followed by a flexible steel plate”. The aluminium leading edge
might contribute to the overall stiffness of the model.

The root displacement considered in the simulation is much smaller than the one used in
the article in order to keep the mesh deformation small. This aspect might also be a cause
of the discrepancy in the results. Nevertheless the difference between the experimental and
the computer model needs to be further analyzed.

On the other hand, the pitch angle of the wing tip, in the second plot of Figure 6.41,
shows that the wing is torsionally rigid, as expected.

The forces and moment exerted on the wing are shown in Figure 6.42. Focusing on the
force on the x-direction, it is possible to compute the average CD:

C̄D =
F̄x

1
2ρU

2
0 c · b

≈ 0.02615 (6.4)

which is close to the values 0.0245÷ 0.028 presented in the sources of the article.
The number of required iterations is, in this model, very stable: 15 iterations are required

at each time step to converge, as shown in Figure 6.43. As in the previous examples, nodal
forces converge slower than displacements.

Finally some images taken from the fluid and the solid side of the simulation are shown
in Figure 6.44 and in Figure 6.45.
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Figure 6.42. NACA 0012 forces

Figure 6.43. NACA 0012 iterations
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(a) NACA 0012 velocity t=1.2s

(b) NACA 0012 pressure profile t=1.2s

Figure 6.44. NACA 0012 fluid domain
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(a) NACA 0012 deformed shape (10x)

(b) NACA 0012 forces on surface

Figure 6.45. NACA 0012 solid domain
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Conclusions

In this thesis, we developed an adapter for MBDyn to enable Fluid-Structure Interaction
(FSI) simulations with the coupling library preCICE. The adapter has been validated both
qualitatively and quantitatively with several test cases.

This work allows MBDyn to extend its capabilities in FSI simulations, as it can be
coupled with a wide set of CFD solvers which are already connected to preCICE.

Among other possible simulations, this connection allows the FSI simulation of slender
bodies immersed in fluid flow and gives the possibility of prescribing different structural
properties independently from the external geometry: shape and structural properties of the
structure can be decoupled, thus allowing specific and independent tuning of parameters.

The adapter introduced here can also be used with other MBDyn elements (e.g. shells),
simply changing the MBDyn configuration file. Besides, it has been developed independently
from MBDyn itself as it makes use of external APIs. So it does not impact directly the
development of MBDyn.

During the development phase, a great attention has been given to the configuration
process of a simulation. For this reason, most of the adapter parameters are read at runtime
from a JSON configuration file.

Given the development and the tests carried out in this work, some directions of further
analysis and development appear to be particularly interesting. First of all it is necessary
to better understand the limits of application for the whole FSI setup as it is now: for
example if there exists a set of parameters that allows to simulate models similar to the FSI3
benchmark, as it is known to work by simply using a different structural solver.

It will also be important to analyze the behavior and the performances of a simulation
in more complex, 3D real world scenarios, where more computational resources are needed.

There can also be future developments in the software code of the adapter itself. Some of
them concern the whole simulation: for example it would be useful to make the configuration
easier and less redundant, as some of the parameters are duplicated among the components.

Other extensions are relative to the possibility of applying a variable time step to the
MBDyn simulation: in principle, the fluid and the solid simulation can advance at different
time steps, as they might have different specific needs. But in this case, at some point in the
simulation, preCICE will need to synchronize the two simulations by forcing a prescribed
time step to the solvers. For our simulations we kept the time step coincident among the
solvers: the fluid solver generally requires a shorter time step and the MBDyn simulation is
not costly. But there can be situations in which this feature might be useful. It has already
been partly developed and it does not require much work to be finalized.

Another extension concerning the adapter consists in giving preCICE information about
the topology of the mesh (e.g. triangles or quadrangles defining the interface). This would
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allow a better use of some of the mapping strategies. This information is already available
in the adapter as it is used to draw output information and should be easy to send it also to
preCICE.

Anther, more complex, development would consist in possibly extending MBDyn capa-
bilities to simulate Solid-Solid Interaction (SSI) applications. This would allow to couple
MBDyn, though preCICE, with different FEM solvers (or even with itself). This kind of
coupling would allow to simulate multibody models, in which some relevant sub-models are
simulated by means of a dynamic FEM model. This kind of development would require some
modifications also in the MBDyn code.

Some of the preliminary results have been already presented to the second preCICE
community hour, but for the continuation and the future development of this work we aim
at including the code, together with some usage examples, into the MBDyn and preCICE
repositories and websites, with the goal to find other benchmarks, users, comparisons and
use scenarios.
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preCICE configuration file

The following represents a rather standard preCICE configuration file. Its main parts are:

• definition of the interface dimension (line 3)

• definition of names of exchanged data (lines 5-6)

• definition of the mesh names and which data are read or written (lines 8-15)

• definition of the solvers (participants) together with information concerning the meshes
and exchanged data (lines 17-27)

• definition of the communication protocol (line 29)

• definition of the coupling strategy, together with simulation time, time step, convergence
criteria and acceleration method (lines 31-40)

1 <?xml version="1.0"?>
2 <precice-configuration>
3 <solver-interface dimensions="3">
4

5 <data:vector name="Forces" />
6 <data:vector name="Displacements" />
7

8 <mesh name="FluidMesh">
9 <use-data name="Forces" />

10 <use-data name="Displacements" />
11 </mesh>
12 <mesh name="StructureMesh">
13 <use-data name="Forces" />
14 <use-data name="Displacements" />
15 </mesh>
16

17 <participant name="FluidSolver">
18 <use-mesh name="FluidMesh" provide="yes" />
19 <use-mesh name="StructureMesh" from="StructureSolver" />
20 <write-data name="Forces" mesh="FluidMesh" />
21 <read-data name="Displacements" mesh="FluidMesh" />
22 </participant>
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23 <participant name="StructureSolver">
24 <use-mesh name="StructureMesh" provide="yes"/>
25 <write-data name="Displacements" mesh="StructureMesh" />
26 <read-data name="Forces" mesh="StructureMesh" />
27 </participant>
28

29 <m2n:sockets from="FluidSolver" to="StructureSolver" />
30

31 <coupling-scheme:serial-implicit>
32 <participants first="FluidSolver" second="StructureSolver" />
33 <max-time-windows value="10" />
34 <time-window-size value="1.0" />
35 <max-iterations value="15" />
36 <relative-convergence-measure limit="1e-3" data="Displacements" mesh="

StructureSolver"/>
37 <exchange data="Forces" mesh="StructureMesh" from="FluidSolver" to="

StructureSolver" />
38 <exchange data="Displacements" mesh="StructureMesh" from="

StructureSolver" to="FluidSolver"/>
39 </coupling-scheme:serial-implicit>
40 </solver-interface>
41 </precice-configuration>

Listing A.1. preCICE configuration file example
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MBDyn adapter configuration file

The data required by the MBDyn adapter are described in Section 5.3. The order within
the file is irrelevant, but for clarity reasons similar parameters have been grouped together:

• Data concerning the preCICE coupling (lines 2-6)

• Data necessary for MBdyn coupling (lines 7-11)

• Data used for the simulation (lines 12-15)

• Information for output (lines 16-19)

• Debug parameters (lines 20-22)

1 {
2 "precice-config": "../precice-config.xml",
3 "readDataName": "Displacements0",
4 "writeDataName" :"Forces0",
5 "participantName" :"Solid",
6 "meshName": "Solid-Mesh",
7 "mesh": "./mesh/root0f.dat",
8 "mbdyn-input": "./map_10n_3x_21j.mbd",
9 "node-socket": "/tmp/mbdyn.node.sock",

10 "mbdyn-output": "./out_mbd",
11 "displacement-delta": false,
12 "iterstart": 500,
13 "coeff0": 0.05,
14 "period": 2000,
15 "ramp-type": "linear",
16 "write-interval": 10,
17 "resultant-file": "./output/resultant.txt",
18 "root-coords": [0.0, 0.0, 0.0],
19 "vtk-output": "./output/MBDyn-OF_",
20 "pre-iteration": 5,
21 "read-coords": true,
22 "every-iteration": false
23 }

Listing B.1. MBDyn adapter configuration file example
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preCICE API

C.1 preCICE API calls
Each participating solver needs to be linked to the preCICE library and call methods from
its application programming interface (API). The preCICE adapter groups together the calls
to the API. While preCICE is written in C++, it provides an API also for C, Fortran and
Python. An excerpt from the C++ API is shown in Listing C.1 as drawn from the preCICE
documentation.

A coupled simulation is first configured and initialized phase, then multiple coupling
advancements occur up to a finalization phase.

First a SolverInterface object needs to be created: its parameters are the rank of the
process and the size of the communicator if the execution is parallel.

The configure() method defines the preCICE configuration file, reads it and sets up
the communication inside the solver. The following methods that follow in Listing C.1
are called “steering methods”. The initialize() method sets up the data structures and
communication channels to other participants.At the first communication the participants
exchange meshes. It returns the maximum time step size that the solver is allowed to execute
next.

initializeData() optionally transfers any initial non-zero coupling data values among
participants. The advance() method take care of equation coupling, data mapping and
communication.

finalize() destroys the data structures and closes the communication channels.
Each solver defines its interface mesh. Each mesh and each node on the mesh are assigned

an integer ID. getMeshID() gets the ID of the mesh over which the coupling is performed.
setMeshVertex() creates a vertex on the specified mesh position. Additionally, topological
information, such as edges or triangles can be passed to preCICE with additional methods.

Data values are assigned to meshes by means of methods with names of the kind
write*Data(), which fill the buffers with data from the solver’s mesh or with methods like
read*Data(), which read data from the buffers into the solver’s mesh.

Some other methods allow to access useful information for the coupling, in particular if
the simulation is still running, if there are new data do be read or written or if the current
coupling time step has converged or not.

The solver asks if it has to write or read a checkpoint and it informs preCICE that it
fulfilled these tasks [70].
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1 class SolverInterface
2 {
3 public:
4 SolverInterface(
5 const std::string& solverName,
6 int solverProcessIndex,
7 int solverProcessSize);
8

9 void configure(const std::string& configurationFileName);
10

11 double initialize();
12 void initializeData();
13 double advance(double computedTimestepLength);
14 void finalize();
15

16 int getMeshID(const std::string& meshName);
17 int setMeshVertex(int meshID, const double* position);
18 void setMeshVertices(int meshID, int size, double* positions, int* ids);
19

20 void writeScalarData(int dataID, int valueIndex, double value);
21 void writeVectorData(int dataID, int valueIndex, const double* value);
22 void writeBlockScalarData(
23 int dataID,
24 int size,
25 int* valueIndices,
26 double* values);
27

28 bool isCouplingOngoing();
29 bool isReadDataAvailable();
30 bool isWriteDataRequired(double computedTimestepLength);
31 bool isTimestepComplete();
32

33 bool isActionRequired(const std::string& action);
34 void fulfilledAction(const std::string& action);
35 // ...
36 };

Listing C.1. preCICE API methods

100



Appendix C. preCICE API

C.2 preCICE adapter structure
An example of an adapted solver is shown in Listing C.2, as published in the presentation
article of preCICE [5] and also in the preCICE website1

1 turnOnSolver(); //e.g. setup and partition mesh
2

3 precice::SolverInterface precice("FluidSolver","precice-config.xml",rank,
size); // constructor

4

5 int dim = precice.getDimension();
6 int meshID = precice.getMeshID("FluidMesh");
7 int vertexSize; // number of vertices at wet surface
8

9 // determine vertexSize
10 double* coords = new double[vertexSize*dim]; // coords of vertices at wet

surface
11

12 // determine coordinates
13 int* vertexIDs = new int[vertexSize];
14 precice.setMeshVertices(meshID, vertexSize, coords, vertexIDs);
15 delete[] coords;
16

17 int displID = precice.getDataID("Displacements", meshID);
18 int forceID = precice.getDataID("Forces", meshID);
19 double* forces = new double[vertexSize*dim];
20 double* displacements = new double[vertexSize*dim];
21

22 double dt; // solver timestep size
23 double precice_dt; // maximum precice timestep size
24

25 precice_dt = precice.initialize();
26 while (precice.isCouplingOngoing()){
27

28 if(precice.isActionRequired()){
29 saveOldState(); // save checkpoint
30 precice.markActionFulfilled();
31 }
32

33 precice.readBlockVectorData(displID, vertexSize, vertexIDs, displacments);
34 setDisplacements(displacements);
35 dt = beginTimeStep(); // e.g. compute adaptive dt
36 dt = min(precice_dt, dt);
37 computeTimeStep(dt);
38 computeForces(forces);
39 precice.writeBlockVectorData(forceID, vertexSize, vertexIDs, forces);
40 precice_dt = precice.advance(dt);
41 if(precice.isActionRequired()){ // timestep not converged
42 reloadOldState(); // set variables back to checkpoint

1precice/wiki/Adapter-Example
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43 precice.markActionFulfilled();
44 }
45 else{ // timestep converged
46 endTimeStep(); // e.g. update variables, increment time
47 }
48 }
49 precice.finalize(); // frees data structures and closes communication

channels
50 delete[] vertexIDs, forces, displacements;
51 turnOffSolver();

Listing C.2. preCICE adapter structure
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D.1 MBDyn input file
Main File

The main file used for the FSI simulations follows the structure described in Section 4.1.1.

1 begin: data;
2 problem: initial value;
3 end: data;
4

5 set: real DT = 5e-4;
6 set: real INITIAL_TIME = 0.0;
7 set: real FINAL_TIME = 10.0;
8

9 begin: initial value;
10

11 initial time: INITIAL_TIME;
12 final time: FINAL_TIME;
13 time step: DT;
14

15 method: ms, .6;
16 nonlinear solver: newton raphson, modified, 5;
17 linear solver: umfpack, colamd, mt, 1;
18

19 tolerance: 1e-6;
20 max iterations: 1000;
21

22 derivatives coefficient: 1e-9;
23 derivatives tolerance: 1e-6;
24 derivatives max iterations: 100;
25

26 output: iterations;
27 output: residual;
28 end: initial value;
29

30 # number of beam3 elements
31 set: integer N = 10;
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32

33 begin: control data;
34 structural nodes:
35 +1 # clamped node
36 +2*N # other nodes
37 ;
38 rigid bodies:
39 +2*N # mass of other nodes
40 ;
41 joints:
42 +1 # clamp
43 +2*N # other total joints on nodes to force 2D
44 ;
45 beams:
46 +N # the whole beam
47 ;
48 forces:
49 +1 # loads the beam
50 +1 # load on last node
51 ;
52 end: control data;
53

54 # root reference
55 set: const integer ROOT = 1;
56 set: const real Xroot = 0.0;
57 set: const real Yroot = 0.0;
58 set: const real Zroot = 0.0;
59 reference: ROOT, Xroot, Yroot, Zroot, eye, null, null;
60

61

62 # material density [kg/m^3]
63 set: real rho = 100.;
64 # beam width (z direction)
65 set: real w = 4.e-3;
66 # beam height (y direction)
67 set: real h = 6.e-4;
68 # beam lenght (x direction)
69 set: real L = 0.04;
70 # lenght of half beam3 element
71 set: real dL = L/(2*N);
72

73 # mass of single chunck
74 set: real m = rho*w*h*dL;
75

76 # elastic properties
77 set: real E = 2.5e5;
78 set: real nu = 0.35;
79 set: real G = E/(2*(1+nu));
80 set: real A = w*h;
81 set: real Jz = 1./12.*w*h^3;
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82 set: real Jy = 1./12.*h*w^3;
83 set: real Jp = Jy + Jz;
84 set: real damp = .01;
85

86 set: integer curr_node;
87

88 begin: nodes;
89 structural: ROOT, static,
90 reference, ROOT, null, # position
91 reference, ROOT, eye, # orientation
92 reference, ROOT, null, # initial velocity
93 reference, ROOT, null; # angular velocity
94

95 set: curr_node = 2;
96 include: "beam.nod";
97 set: curr_node = 4;
98 include: "beam.nod";
99 set: curr_node = 6;

100 include: "beam.nod";
101 set: curr_node = 8;
102 include: "beam.nod";
103 set: curr_node = 10;
104 include: "beam.nod";
105 set: curr_node = 12;
106 include: "beam.nod";
107 set: curr_node = 14;
108 include: "beam.nod";
109 set: curr_node = 16;
110 include: "beam.nod";
111 set: curr_node = 18;
112 include: "beam.nod";
113 set: curr_node = 20;
114 include: "beam.nod";
115 end: nodes;
116

117

118 set: const integer BEAM_NNODES = 2*N+1;
119 set: real da = .005;
120 set: integer CURR_BEAM = 1;
121

122 begin: elements;
123 joint: 500+ROOT, clamp, ROOT, node, node;
124

125 set: curr_node = 2;
126 include: "beam.elm";
127 include: "joint.elm";
128 set: curr_node = 4;
129 include: "beam.elm";
130 include: "joint.elm";
131 set: curr_node = 6;
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132 include: "beam.elm";
133 include: "joint.elm";
134 set: curr_node = 8;
135 include: "beam.elm";
136 include: "joint.elm";
137 set: curr_node = 10;
138 include: "beam.elm";
139 include: "joint.elm";
140 set: curr_node = 12;
141 include: "beam.elm";
142 include: "joint.elm";
143 set: curr_node = 14;
144 include: "beam.elm";
145 include: "joint.elm";
146 set: curr_node = 16;
147 include: "beam.elm";
148 include: "joint.elm";
149 set: curr_node = 18;
150 include: "beam.elm";
151 include: "joint.elm";
152 set: curr_node = 20;
153 include: "beam.elm";
154 include: "joint.elm";
155

156 force: CURR_BEAM, external structural mapping,
157 socket,
158 create, yes,
159 path, "/tmp/mbdyn.node.sock",
160 no signal,
161 coupling,
162 # loose,
163 tight,
164 #reference node, 1,
165 #orientation, euler 123,
166 #use reference node forces, yes,
167 points number, 3* BEAM_NNODES,
168 CURR_BEAM,
169 offset, null,
170 offset, 0,da, 0.,
171 offset, 0., 0., da,
172 CURR_BEAM + 1,
173 offset, null,
174 offset, 0,da, 0.,
175 offset, 0., 0., da,
176 CURR_BEAM + 2,
177 offset, null,
178 offset, 0,da, 0.,
179 offset, 0., 0., da,
180 CURR_BEAM + 3,
181 offset, null,
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182 offset, 0,da, 0.,
183 offset, 0., 0., da,
184 CURR_BEAM + 4,
185 offset, null,
186 offset, 0,da, 0.,
187 offset, 0., 0., da,
188 CURR_BEAM + 5,
189 offset, null,
190 offset, 0,da, 0.,
191 offset, 0., 0., da,
192 CURR_BEAM + 6,
193 offset, null,
194 offset, 0,da, 0.,
195 offset, 0., 0., da,
196 CURR_BEAM + 7,
197 offset, null,
198 offset, 0,da, 0.,
199 offset, 0., 0., da,
200 CURR_BEAM + 8,
201 offset, null,
202 offset, 0,da, 0.,
203 offset, 0., 0., da,
204 CURR_BEAM + 9,
205 offset, null,
206 offset, 0,da, 0.,
207 offset, 0., 0., da,
208 CURR_BEAM + 10,
209 offset, null,
210 offset, 0,da, 0.,
211 offset, 0., 0., da,
212 CURR_BEAM + 11,
213 offset, null,
214 offset, 0,da, 0.,
215 offset, 0., 0., da,
216 CURR_BEAM + 12,
217 offset, null,
218 offset, 0,da, 0.,
219 offset, 0., 0., da,
220 CURR_BEAM + 13,
221 offset, null,
222 offset, 0,da, 0.,
223 offset, 0., 0., da,
224 CURR_BEAM + 14,
225 offset, null,
226 offset, 0,da, 0.,
227 offset, 0., 0., da,
228 CURR_BEAM + 15,
229 offset, null,
230 offset, 0,da, 0.,
231 offset, 0., 0., da,
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232 CURR_BEAM + 16,
233 offset, null,
234 offset, 0,da, 0.,
235 offset, 0., 0., da,
236 CURR_BEAM + 17,
237 offset, null,
238 offset, 0,da, 0.,
239 offset, 0., 0., da,
240 CURR_BEAM + 18,
241 offset, null,
242 offset, 0,da, 0.,
243 offset, 0., 0., da,
244 CURR_BEAM + 19,
245 offset, null,
246 offset, 0,da, 0.,
247 offset, 0., 0., da,
248 CURR_BEAM + 20,
249 offset, null,
250 offset, 0,da, 0.,
251 offset, 0., 0., da,
252 # echo, "flap_points.dat", surface, "flap.dat", output, "flap_H.dat",

order, 2, basenode, 12, weight, 2, stop;
253 mapped points number, 204,
254 sparse mapping file, "flap_H.dat";
255

256 # constant absolute force in node 11
257 force: 2,absolute,
258 2*N + 1,
259 position, null,
260 0., 1., 0.,
261 # slope, initial time, final time / forever, initial value
262 ramp, .0, 0., 1., 0.;
263 end: elements;

Listing D.1. MBDyn input file example

Beam nodes

The position of the nodes (see Section 4.1.2) is defined with the following included file.

1 structural: curr_node, dynamic,
2 reference, ROOT, (curr_node - 1) * dL, 0.0, 0.0,
3 reference, ROOT, eye,
4 reference, ROOT, null,
5 reference, ROOT, null;
6

7 structural: curr_node + 1,dynamic,
8 reference, ROOT, curr_node * dL, 0.0, 0.0,
9 reference, ROOT, eye,

10 reference, ROOT, null,
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11 reference, ROOT, null;

Listing D.2. MBDyn beam nodes

Beam elements and Bodies

beam elements (see Section 4.1.4) and body elements (see Section 4.1.5) are defined in the
following input file.

1 # body: BODY_LABEL, NODE_LABEL,
2 # mass
3 # reference node offset
4 # inertia tensor
5

6 body: 1000+ curr_node, curr_node,
7 m,
8 null,
9 diag, 1./12.*(h^2+w^2)*m, 1./12.*(dL^2+w^2)*m, 1./12.*(dL^2+h^2)*m;

10

11 body: 1000+ curr_node + 1,curr_node + 1,
12 m,
13 null,
14 diag, 1./12.*(h^2+w^2)*m, 1./12.*(dL^2+w^2)*m, 1./12.*(dL^2+h^2)*m;
15

16 # beam 3 nodes
17 # NODE1_LABEL, offset
18 # NODE2_LABEL, offset
19 # NODE3_LABEL, offset
20 # orientation from node
21 # CONSTUTIVE LAW: EA, GAy, GAz, GJ, EJy, EJz
22 #linear elastic generic, diag,
23 #EA, GAy, GAz, GJ, EJy, EJz,
24

25 beam3: 100+curr_node,
26 curr_node - 1,null,
27 curr_node, null,
28 curr_node + 1,null,
29 eye,
30 linear viscoelastic generic,
31 diag, E*A, G*A*5./6., G*A*5./6., G*Jp, E*Jy, E*Jz,
32 proportional, damp,
33 same,
34 same;

Listing D.3. MBDyn beam elements
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Joints

In order to keep a simulation bidimensional, some joint elements (see Section 4.1.6) are
applied to nodes as a constraint.

1 joint: 500+curr_node, total joint,
2 ROOT,
3 position, null,
4 position orientation, eye,
5 rotation orientation, eye,
6 curr_node,
7 position, null,
8 position orientation, eye,
9 rotation orientation, eye,

10 position constraint, 0,0,1,null,
11 orientation constraint, 1,1,0,null;
12

13 joint: 500+curr_node+1, total joint,
14 ROOT,
15 position, null,
16 position orientation, eye,
17 rotation orientation, eye,
18 curr_node+1,
19 position, null,
20 position orientation, eye,
21 rotation orientation, eye,
22 position constraint, 0,0,1,null,
23 orientation constraint, 1,1,0,null;

Listing D.4. MBDyn joints
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D.2 MBDyn output file structure
.mov file

For each time step the file contains one row for each node whose output is required. The
rows contain the following columns:

• 1: the label of the node

• 2–4: the three components of the position of the node

• 5–7: the three Euler angles that define the orientation of the node

• 8–10: the three components of the velocity of the node

• 11–13: the three components of the angular velocity of the node

• 14–16: the three components of the linear acceleration of the dynamic and modal
nodes (optional)

• 17–19: the three components of the angular acceleration of the dynamic and modal
nodes (optional)

All the quantities are expressed in the global frame, except for the relative frame type of
dummy node, whose quantities are, by definition, in the relative frame.

.ine file

This output file refers only to dynamic nodes, and contains their inertia. For each time
step, it contains information about the inertia of all the nodes whose output is required.
Notice that more than one inertia body can be attached to one node; the information in this
file refers to the sum of all the inertia related to the node. The rows contain the following
columns:

• 1: the label of the node

• 2–4: item the three components of the momentum in the absolute reference frame

• 5–7: item the three components of the momenta moment in the absolute reference
frame, with respect to the coordinates of the node, thus to a moving frame

• 8–10: the three components of the derivative of the momentum

• 11–13: the three components of the derivative of the momentum moment

.frc file

An external structural element writes one line for each connected node at each time step in
this file. Each line contains the following columns:

• 1: the label of the element and that of the corresponding node; the format of this field
is element_label@node_label

• 2–4: the three components of the force

• 5–7: the three components of the moment
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If a reference node is defined, a special line is output for the reference node, containing
the following columns:

• 1: the label of the element and that of the corresponding node; the format of this field
is element_label#node_label

• 2–4: the three components of the force applied to the reference node, as received from
the peer

• 5–7: the three components of the moment applied to the reference node, as received
from the peer

• 8–10: the three components of the force that are actually applied to the reference
node, in the global reference frame

• 11–13: the three components of the moment with respect to the reference node that
are actually applied to the reference node, in the global reference frame

• 14–16: the three components of the force resulting from the combination of all nodal
forces, in the global reference frame

• 17–19: the three components of the moment with respect to the reference node resulting
from the combination of all nodal forces and moments, in the global reference frame

.act file

This type of file contains the output related to beam elements. The internal forces and couples
are computed from the interpolated strains along the beam by means of the constitutive law,
at the two evaluation points. For each time step and for each element, the format of the
columns is:

• 1: the label of the beam

• 2–4: the three components of the force at the first evaluation point

• 5–7: the three components of the couple at the first evaluation point

• 8–10: the three components of the force at the second evaluation point

• 11–13: the three components of the couple at the second evaluation point

.jnt file

The output concerning joint elements is generally made of a standard part, plus some extra
information depending on the type of joint, which, when available, is described along with
the joint description. Here the standard part is described:

• 1: the label of the joint

• 2–4: the three components of the reaction force in a local reference

• 5–7: the three components of the reaction couple in a local frame

• 8–10: the three components of the reaction force in the global frame

• 11–13: the three components of the reaction couple, rotated into the global frame
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for total joints:

• 14–16: the three components of the relative displacement in the reference frame of the
element

• 17–19: the three components of the relative rotation vector in the reference frame of
the element

• 20–22: the three components of the relative velocity in the reference frame of the
element

• 23–25: the three components of the relative angular velocity in the reference frame of
the element
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Acronyms

ALE arbitrary Lagrangian-Eulerian. 3, 5, 6, 16, 24

AME added mass effect. 15, 26, 47

API application programming interface. 29, 35, 39, 93, 99

CFD Computational Fluid Dynamics. xiii, 2, 4, 5, 7, 23, 39, 49, 86, 93

CSM Computational Solid Mechanics. xiii, 5, 39

FEM Finite Element Method. 9, 94

FPI fixed point iteration. 20

FSI Fluid-Structure Interaction. v, vii, 1–3, 5–7, 9, 10, 13, 15–17, 19, 23, 24, 26, 31, 34, 41,
47, 64, 67, 72, 75, 85, 86, 93, 103

IQN-ILS interface quasi Newton with inverse Jacobian from a least squares model. 22, 51,
59, 66, 74, 88

JSON JavaScript Object Notation. 41, 43, 44, 93

MBDyn MultiBody Dynamics analysis software. v, vii, 2, 29, 39, 45, 47, 85, 86, 93, 97

MPI message passing interface. 36

NSE Navier Stokes Equations. 6

PDE Partial Differential Equations. 7

preCICE precise Code Interaction Coupling Environment. v, vii, 2, 29, 35, 39, 45, 48, 85,
93, 95, 97, 99

RBF Radial Basis Function. 25, 51, 59, 66, 74, 88

SSI Solid-Solid Interaction. 94

TCP/IP Transmission Control Protocol/Internet Protocol. 36

VWP Virtual Work Principle. 8, 9

XML extensible markup language. 36, 37, 46
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