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1. Introduction

With the term "timbre", we refer to the percep-
tual qualities of a musical sound distinct from its
amplitude and pitch. Modeling timbre is a hard
task: it is a difficult job to define a physical or
mathematical model of timbre since it is a per-
ceptual and subjective characteristic of sound.
Most of state-of-the-art musical sound libraries
used by studio composers are still obtained with
high quality records of real instruments. How-
ever, building a music sound library with this
methodology can be very a expensive and time
consuming task. For this reason, there is in fact
a substantial body of research in timbre mod-
elling and synthesis. A particular sub-field of
research is the one regarding timbre transfer.
Timbre Transfer techniques may find application
in several different scenarios, particularly in mu-
sic production environments. Having a tool that
takes as input a signal of a recorded instrument
and that gives as output the same recording but
with a new timbre could be helpful to music pro-
ducers. Different systems has been proposed in
order to perform the timbre transfer task, most
of them using generative Deep Learning models
[3]. In this thesis, after giving an overview of
the existing techniques and methodologies that

pursue this goal, we propose a method which
can effectively create a timbre space that per-
mits to operate one to many timbre transfer.
We do this by training a conditional convolu-
tional beta-variational autoencoder architecture
on a subset of the NSYNTH dataset 1] build by
us. The system takes as input the module of the
Short Time Fourier Transform of a note’s sig-
nal with a given timbre, also known as spectro-
gram, and outputs multiple spectrograms of the
same note with different timbres. It does that
by constructing a navigable conditioned latent
space representation of timbres and automati-
cally encoding the pitch information. Given the
possibility to move inside the latent space, we
perform timbre interpolation, namely the mor-
phing between two timbres, generating new sam-
ples that go from a starting timbre to an ending
one, exploring the timbral space between them.
We evaluate our system from different perspec-
tives. In particular, we establish a twofold eval-
uation system based on classification and per-
ceptual ratings. The experimental results show
that the model is capable of performing the tim-
bre transfer task having the generated samples
that match the ground truth ones and that the
conditioned latent space creates automatically



clusters based on timbre and pitch, giving the
possibility to perform timbre interpolation by
moving inside it.

The rest of this manuscript is structured as fol-
lows. In section 2, we provide the problem for-
mulation, formalizing it. In section 3 we explain
the technical details of the proposed method.
In section 4 we describe the experimental setup
along with an outline of our evaluation meth-
ods. In section 5 we examine the results: in the
first place we give a visual inspection of the la-
tent space, after that we present how the system
perform in both timbre transfer and timbre in-
terpolation. Finally, in section 5 we conclude
our work.

2. Problem formulation

The problem we want to tackle in this thesis
is twofold: firstly, we want to perform one-to-
many timbre transfer from notes of a given tim-
bre class and secondly we want to perform tim-
bre interpolation between the notes generated
performing the timbre transfer task, exploiting
the properties of the latent space derived during
the training phase of the timbre transfer task.
Let us first explicitly define the one-to-many
timbre transfer problem. Given a discrete sound
signal x! characterized by a specific timbre class
t, we calculate its time frequency representation
St.

St = |STFT(x")]. (1)

Considering the network as a function f that
takes S? as input, the output will be:

St,... St = f(Sh), 2)

where the apexes t,11, ..., t, represent a discrete
pre-defined set of timbre classes T', dataset and
application dependent. These representations
are transformed back using Griffin Lim Algo-
rithm (GLA), ending up in a set of discrete audio
signals:

x", ..., x" = GLA(S",...,8™), (3)

each one representing the audio signal x! with
only the timbral characteristic varied.

As anticipated, we also explore the possibility of
performing interpolation between different tim-
bres. While the interpolation task is not directly

modeled during the training procedure, it is pos-
sible thanks to the latent space ordering enforced
by the timbre-based conditioning. With interpo-
lation we mean the generation of new notes that
perform a gradual morphing between two given
notes belonging to two different timbre classes:
given a couple of generated signals x’e and x®
with a,b € T and a # b, the system will produce
m € N timbre interpolations between x’s and
x', with m adjustable. The first and the last
of the m outputs will be, by convention, exactly
x'e and x that can be defined as the starting
point and the ending point of the interpolation.

3. Proposed Method

Figure 1 show the end to end representation of
the system in the one-to-four timbre transfer sce-
nario. In the following, we provide additional
details about each of the three sub-structures of
the system depicted in Figure 1.
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Figure 1: End to end representation of the sys-
tem.

3.1. Pre-Processing

As time-frequency representation of the signals
we opted for the log-Short Time Fourier Trans-
form (log-STFT, whose result from now on
will simply be called spectrogram) since it is
the transform that better matches our needs,
namely the possibility of high quality inver-
sion and the fact that the frequency axis is not
chroma-related, giving the same attention to all
the frequencies arranged in a logarithmic scale.
The spectrograms are then chopped along the
time axis in order to match the input size ex-
pected by the network. Finally, we perform a
0-1 range min-max normalization for each set
(train set, validation set and test set).

3.2. Network architecture

The architecture can be defined as a conditional,
convolutional beta-variational autencoder. The



encoder and the decoder have symmetrical ar-
chitectures based on convolutional layers with
ReLU activations followed each by a batch nor-
malization layer. The network can be defined as
a function f:

Fx1 = f(SFxT, Cyr, h) (4)

where Spy7 is the input spectrogram with T
the total number of time frames and F' the total
number of frequency bins, C%, - is the condi-
tioning matrix concatenated on the channel axis
with Spyr, h® is the one-hot vector concate-
nated with the input of the decoder and S%.
is the generated spectrogram with the new tim-
bre. Each entry C%,, with ¢ = {1,...,T} and
f =A{1,...,F} of the conditioning matrix has
the same natural value ¢ € {0,...,n — 1} asso-
ciated to a specific timbral class and the vector
h¢ is the one-hot representation of that value.

3.3. Post-Processing

The first part of the post-processing phase is
the de-normalization of the output of the net-
work. We have to perform the inverse of process
used on the normalization in the pre-processing
phase. After that, we take the de-normalized
spectrograms and render the frequency axis lin-
ear. The last step is the one of re-synthesis of
the generated spectrograms. For this task, we
use Griffin Limm Algorithm (GLA), an iterative
method for phase estimation based on the spec-
trogram and re-synthesis.

3.4. Interpolation

Our architecture is built to map a spectrogram
into a [-dimensional latent space. Each input
signal is then represented by n points in the la-
tent space called embeddings. Each of these em-
beddings is actually represented by two different
points, namely the output of the mu layer and
the output of the log_var layer, representing
the bottleneck of the encoder architecture men-
tioned in section 3.2. It is possible for us to sam-
ple new points belonging into the latent space
that aren’t necessarily associated to the input
of the networks and that will result in spectro-
grams that follow the distribution of the latent
space itself.

In our work we perform timbre interpolation,
meaning that we generated a series of new au-
dio samples with a starting point and an ending

point. Given the embeddings ef and ei-’ with a, b
belonging to the set of target timbres, constitut-
ing representations of the same input signal 1,
the interpolation function will yield to m € N
new embeddings, including the starting point e
and the ending point e? following the algorithm
1.

Algorithm 1 Interpolation of embeddings

1: m = # of interpolations

2: ratios = array of m equally space float num-
bers € [0, 1]

3: embeddings = ||

4: vl = starting embedding

5: v1 = ending embedding

6: fori =0tom —1do

7. v = (1.0 — ratioli]) x vl + ratio[i] x v2

8  append v to embeddings

9: end for

10: return embeddings

4. Experimental Setup and
Evaluation Methods

Each STFT consists in a 512 x 256 frequency-
time representation of the associated audio sig-
nal. The resulting spectrogram covers 2.048s of
the signal. We empirically found the best ar-
rangement of parameters for our network with
learning rate = 0.0001, Adam optimizer, batch
size = 64, latent dimension = 64 and the param-
eter B has been set to 2. The hyper parameter
B € R is a value that weights the reconstruction
loss Ly and the KL loss Lgy, |2] so that the full
loss function of the network can be formulated
as:

LOSS =Lr+ - Lkr. (5)

We imposed an early stopping on the training
procedure when the validation loss did not de-
crease for more than 20 epochs saving the model
with the best validation loss. The network con-
verged around epoch 396 and the duration of the
training has been around 90 minutes.

4.1. Dataset

The dataset is a subset of NSYNTH dataset,
a large-scale and high-quality dataset of anno-
tated musical notes. The NSYNTH dataset con-
tains a total of 305,979 musical notes, each with



a unique pitch, timbre, and envelope. Each sam-
ple is four seconds long, monophonic, sampled
at 16 kHz and is generated from one over 1,006
instruments taken from commercial sample li-
braries.

In our work we used a subset of the aforemen-
tioned dataset in order to perform the specific
case of one-to-four timbre transfer. As input we
used the flute acoustic class and as output the
string acoustic, keyboard acoustic, guitar acous-
tic and organ electronic classes. A dataset split
policy of 80-10-10 was used with 708 samples for
training, 88 for validation and 88 for test for each
timbral class. Indeed, the total number of sam-
ples in the train set is 2832, 352 for validation
and 352 for test since we have 4 output timbral
classes.

In the training phase the couples input-output
spectrogram have the same pitch value enabling
the automatic clustering of both timbre and
pitch. In order to do that we built the dataset
so it has the same number of samples for each
pitch, that, in our case, can have a value that
goes from 68 to 100.

4.2. FEvaluation Methods

A twofold system evaluation method has been
set that combines an objective assessment based
on a timbral classifier and a perceptual one
based on subjective ratings gathered with a
questionnaire. The perceptual evaluation is
needed since the timbre of a sound is primarily a
perceptual characteristic that can be judged in
its integrity only by a human response.

The classifier is trained on the same dataset de-
fined in the previous section and is designed to
classify the timbral class of a spectrogram be-
longing to one of the for classes string, keyboard,
guitar and organ. It is used as a means both for
the evaluation of the timbre transfer and timbre
interpolation. In the former case we classify the
outcomes of the network, namely the spectro-
grams generated in the inference phase carried
out by test set. In the latter, we analyze the
probability of belonging to the starting timbre
or the ending one for each of the interpolation
spectrograms.

Forty-three subjects, ranging from 24 to 36 years
participated to the perceptual evaluation. The
questionnaire was divided in two parts. In the
first one, the subject is made to listen to 20 (5

strings, 5 keyboards, 5 guitars and 5 organs)
couples of samples consisting each on a ground
truth audio sample follow by 2 seconds of silence
and a generated sample with the same pitch and
belonging to the same timbral class. The subject
is asked to rate the similarity of the two audio
samples on a five point scale where the value 1
corresponds to "not similar" and 5 to "identi-
cal". In the second one, we perceptually evalu-
ate timbre interpolation. The subject is made to
listen to 12 triplets of generated samples. Each
triplet consists of three generated samples: the
first one representing the starting timbre, the
second one the interpolation and the third one
the target timbre. Each sample is spaced one
second apart from the others. Since in our ex-
periment we perform interpolation having m = 5
interpolation points, we ask the subject if the
timbre of the sample in the middle (the sec-
ond one) is more similar to the timbre of the
first sample or to the timbre of the last one (the
third) in a scale that ranges from 1 to 5 where 1
means "the timbre is identical to the one of the
first sample" and 5 means "the timbre is identi-
cal to the one of the last sample".

5. Results

In this section we expose the results obtained
from the experimental setup just explained. We
first present the latent space topology along
with t-SNE graphics, then the timbre transfer
and timbre interpolation tasks’ performances are
shown on both the classification and perceptual
evaluation’s methodologies.

5.1. Latent Space Topology

As a preliminary result, we bring a visual inspec-
tion of the latent space of the trained architec-
ture. The latent space is actually bipartite: vae
architectures [4] map the input data into a latent
space consisting of two 1-D layers, representing
the encoded normal distributions, so the encoder
is trained to return the mean (u) and the covari-
ance (o) that describe these Gaussians.

To visualize the latent space, we used t-SNE di-
mensionality reduction on the 64-D p and o vec-
tors representing the training set embeddings,
respectively shown in Fig. 2a and Fig. 2b. As
we can see, a peculiar form of clustering hap-
pens. In the t-SNE representation of the p la-
tent vectors there are 33 clusters representing



the 33 pitches ranging from 068 to 100 used in
the training set. In the t-SNE representation of
the o latent vectors, we can clearly identify 4
clusters associated with the four timbre classes
string, keyboard, guitar and organ. From this,
we infer that the architecture perform automat-
ically in the latent space a pitch clustering in
the mu layer and a timbre clustering associated
to the log_variance layer. This results per-
mits a latent space navigation in both dimen-
sion, namely moving in a timbre space by sam-
pling the log variance latent space but also mov-
ing in a pitch space by sampling the p latent
space having conditioned only the timbre infor-
mation in the training phase.

(a) p latent space (b) o latent space

Figure 2: t-SNE on mu layer and log_variance
layer

5.2. Timbre Transfer

The first evaluation of the timbre transfer out-
comes obtained in our experiment happens via
classification. As explained in section 4.2, we
trained a classifier to discern between the 4 tar-
get timbre classes used in the experiment. Fig-
ure 3 shows the results of the classification on
the test set outcomes of the network in a form
of confusion matrix. As we can see, we obtained
perfect classification for the classes string, key-
board and guitar and a single misclassified sam-
ple for the organ class, interpreted as a guitar
sample by the network.

The first part of the perceptual test is dedicated
to the evaluation of timbre transfer. The re-
sults has been aggregated by timbral class, in
order to inspect the quality of the audio recon-
struction depending on the class. As we can
see from the box-plots shown in Figure 4, we
have quite uniform results, with the keyboard
class reaching the best score. Since the string
class is actually composed by recordings of dif-

ferent instruments (violins, violas, cellos) played
with different techniques such as legato, détaché
and staccato, the architecture has a harder time
modeling the class, justifying the lowest score of
the class. The white triangle represent the mean
score obtained for each class.

K G
Predicted label

Figure 3: Confusion matrix on timbre transfer
predictions.
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Figure 4: Perceptual ratings for timbre transfer
task.

5.3. Timbre Interpolation

The first evaluation of the timbre interpolation
is also obtained via classification. This time, we
get the probability to belong to each one of the
4 timbral classes for each interpolation. With
m = b, we denominated the interpolation points
as 1, 2, 3, 4 and 5 where the point 1 represents
the starting point, point 5 the ending point and
the points 2, 3, 4 the points in between in the
latent space, calculated following the algorithm
1.

To visualize the results, given a certain inter-
polation that goes from timbre ¢, to timbre 3,
we set up a graphic with the evolution of prob-
abilities of the interpolation points (represented
on the x-axis) to belong to the starting timbre
to (blue line) and the ending timbre ¢, (orange
line). We show these plots for all the interpola-
tions aggregated in Figure 5. From these plot we
infer the fact that, while the point 3 is averagely
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Figure 5: Probability of interpolation points to belong to starting or ending timbre.

in the middle between the two classes, the points
2 and 4 are tended to be classified with a strong
confidence as belonging respectively to the start-
ing timbre class and to the ending one. This
could be happening because of the low general-
ization capabilities of the classifier that, since it
is trained on our dataset, does not have great
potential with new unseen data.

The quality of the timbre interpolations has
been evaluated in the second part of the percep-
tual test. In this case, the results has been aggre-
gated for all points 2, 3 and 4 since points 1 and
5 are the actual outcomes of the timbre trans-
fer task, already evaluated in section 5.2. Fig-
ure 6 shows the box plots with the results. The
scores reveal that perceptually the interpolation
works, having the interpolating points matching
the scores given by the subjects. We can notice
that the point three has a mean score slightly
under 3, while point 2 and point 4 have values
respectively near the starting timbre (score =
1) and the ending timbre (score = 5). A possi-
ble explanation for this fact is derived from the
topology of the latent space: two points with
different timbres are well separated in the latent
space, as depicted in Figure 2b but the path go-
ing from one to the other could lead to a non-
smooth evolution.
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POINT 3
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Figure 6: Perceptual ratings for timbre interpo-
lation task.

6. Conclusions

In this work we presented a method to perform
timbre transfer and timbre interpolation based
on a conditional convolutional beta-VAE model.
The results based on classification and percep-
tual evaluation show that the system is capable
of performing both timbre transfer and interpo-
lation. In addition we showed that the system is
able to cluster in the latent space both the tim-
bre and the pitch giving only the timbre informa-
tion as condition. Further studies may focus on
pitch conditioning or may extend the presented
work on longer musical signals.
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