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ABSTRACT 

 

Disasters, whether natural or man-made have become an issue of mounting concern all over the world. 

Natural disasters such as floods, earthquakes, landslides, cyclones, tsunamis and volcanic eruptions are 

phenomena that have devastating effects on infrastructure and property and often result in the loss of human 

lives. Floods are amongst the most prevalent natural disasters. The frequency with which floods occur, their 

magnitude, extent and the cost of damage are escalating all around the globe. 

 

Crisis Mapping of inundated regions is crucial for determining the flood extent, to plan the deployment of 

emergency response teams, and assessment of damages. The main aim of the thesis is to investigate flood 

mapping using Sentinel-1 and Sentinel-2. The presented method aims to improve the flood classification 

results from SAR and Optical Imagery by fusing them to limit the disadvantages in both types of imagery 

and in a way to complement each other when they are processed to obtain a better flood inundation map. 
The main objective of the thesis is an assessment of the influence of fusing SAR and Optical Imagery on 

flood classification accuracy. 

 

Two study cases have been considered. The results obtained from confusion matrices indicate enhancement 

in Overall Accuracy of ~5% and User’s Accuracy of more than 24%, for the considered study cases.  

Keywords: Natural disasters; Crisis mapping; Floods; Flood Mapping; Flood Classification; SAR; Optical 

Imagery 

  



 

RIASSUNTO 

I disastri, naturali o provocati dall'uomo, sono una ragione di crescente preoccupazione in tutto il mondo. I 

disastri naturali come alluvioni, terremoti, frane, cicloni, tsunami ed eruzioni vulcaniche sono fenomeni 

che hanno effetti devastanti su infrastrutture e proprietà e spesso provocano la perdita di vite umane. Le 

alluvioni sono tra i disastri naturali più diffusi. La frequenza con cui si verificano le alluvioni, la loro entità, 

l’estensione e i danni stanno aumentando in tutto il mondo. 

 

La realizzazione di carte di emergenza delle regioni inondate è fondamentale per determinare l'estensione 

delle alluvioni e permettere il dispiegamento di squadre di pronto intervento e la valutazione dei danni. Lo 

scopo principale della tesi è indagare la mappatura delle alluvioni utilizzando Sentinel-1 e Sentinel-2. Il 

metodo presentato mira a migliorare i risultati della classificazione delle alluvioni da SAR e immagini 

ottiche fondendoli insieme per limitare gli svantaggi in entrambi i tipi di immagini e in modo da completarsi 

a vicenda. L'obiettivo principale della tesi è una valutazione dell'effeto della fusione di SAR e immagini 

ottiche sull'accuratezza della mappatura delle alluvioni. 

 

Sono stati analizzati due casi di studio. I risultati ottenuti indicano un miglioramento nell'accuratezza 

complessiva di ~ 5% e di oltre il 24% nell'accuratezza dell'utente per i casi di studio considerati.  

Parole chiave: disastri naturali; Carte di emergenza; Alluvioni; Classificazione; SAR; Immagini ottiche   
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1. INTRODUCTION 

 

1.1. PROBLEM STATEMENT 

 

Multi-spectral satellite data are preferred for the estimation of water coverage under cloud-free weather 

conditions due to their high spectral correlation with the open water surface on the ground and respective 

mapping accuracy (Irwin, 2017). However, as flood events take place during periods of extended cloud 

coverage the exploitation of multi-spectral data may become questionable. Thus, space-borne radar data 

may be the only wide covering real time resource for generating frequently updated inundation maps 

(Behnamian, 2017). 

Flood monitoring in this thesis is done with the aid of SAR and optical Imagery fused together to overcome 

the disadvantages of both types of imagery making use of their advantages. For adequate management of 

flood, it is essential to find the most competent way to fuse SAR and optical Imagery to delineate flood and 

retrieve useful information for risk managers., as well as prove there is enhancement of the results obtained 

fusing SAR and Optical imagery rather than separately analysing SAR (Sentinel 1) or Optical (Sentinel 2).   

By exploring different ways to map the flood extent for two study cases, this work aims to contribute in 

mapping water inundation fusing optical and SAR imagery. Flood supervised classification using Random 

Forest machine learning algorithm as well as KD KNN supervised classification techniques have been 

exploited. The methodology is described in chapter 5 of this thesis.  

 Error matrices are used to assess classification accuracy. Overall accuracies, user’s and producer’s 

accuracies, and the Kappa statistics are derived from the error matrices to determine if there is an 

enhancement using the introduced methodology. 

Specifically, this study aims to answer the Question stated in Research Objectives addressed in the next 

section of introduction. 

  



 

1.2. RESEARCH OBJECTIVES 

The Overall objective of my thesis is to experiment the quality and results obtained from the fusion of SAR 

and optical imagery that could improve flood mapping.   

This research will be guided by the following questions: 

Research question 1: 

Does the use of the fused SAR and Optical data improve flood mapping in different areas in comparison to 

existing approach of analysing each data separately? 

To answer the first question, the data are fused and classified to extract the flooded area and the results are 

validated against the reference made from one of the data sources provided by Copernicus as well as the 

fused image to conclude the quality and improvement of the results or otherwise. 

 

Research question 2: 

What is the influence of parameters on classification accuracy?  

High classification accuracy is often a goal for researchers. One of the objectives of this research is observe 

the change in the classification accuracy of flood mapping experimenting different kind of classification 

algorithm as well as working with the training sample and different bands of SAR and Optical data to 

achieve a better solution for flood monitoring. 

Computing confusion matrices on these multiple classification algorithms will help to determine their 

influence on the classification accuracy.  

 

Research question 3: 

What are the uncertainties and limitations of this approach? 

Every technique of image processing carries some uncertainties and limitations. The approach described in 

this thesis will encounter them as well. Each step in the methodology will address this third research 

question. Aspects which might be expected to lead to uncertainties are as follows: 

• Long Processing Time, 

• Memory Deficiency, 

• Data Quality 

• Lack of Specific Available Data And 

• Influence of Environment. 

  



 

 

1.3. THESIS OUTLINE 

This thesis has been organized into 5 chapters.  

Chapter 1 Presents the introduction, the aim of the thesis and defines the objective of the thesis.  

Chapter 2 Presents floods criticality and statistics. 

Chapter 3 Presents a literature review on the State of Art on flood monitoring using different methods. 

Chapter 4 Presents the study area, the data source and data processing.  

Chapter 5 Presents the methodology and approach employed for this research. 

Chapter 6 Presents the results, the conclusion and future work.  

  



 

2. FLOODS EVENTS AND FLOOD MAPPING  

2.1. FLOODS  

Floods are one of the most common widespread natural hazards with global average annual flood loss 

estimated to US$ 104 billion (UNISDR, 1996 - 2015). Additionally, as can be seen in Figure 1 (UNISDR, 

1996 - 2015) the frequency of occurrence of floods is much higher than other disasters. In years 1995–2015, 

floods were estimated to represent 43% of all weather-related catastrophes, reaching more than 3,000 

documented flood disasters, affecting 2 to 3 billion people, with a total of 157,000 fatal casualties. Their 

widespread existence, frequency with which floods occur, their magnitude, extent and the cost of damage 

and destruction drives scientists to investigate this phenomenon thoroughly (Berz, 2001; Schumann, 2015). 

 

Figure 1: Percentage of occurrences of natural disasters by disaster type in years (UNISDR, 1996 - 2015) 

In 2007, the European Commission indicated that floods were natural occurrences which could not be 

avoided. However, there is a growth in the probability and adverse impacts of flood events due to increase 

in population and some human activities such as growing human settlements and economic resources in 

floodplains and a decrease of the natural water reservation by land use coupled with climate change. The 

sustained climate change will increase the probability of severe, persistent and irreversible consequences. 

Extreme sea level events and floods will occur more frequently, with severe damages to Europe’s coastal 

communities (European Commission, 2007).  

In Europe, detected data suggest that climate change has already significantly changed flood magnitude, 

timing and extent ( Blöschl, G. et al., 2019) . The annual water discharges in Europe have generally been 

observed to increase in the north and decrease in the south (EEA, 2010; EEA, 2012) , a trend that is predicted 

to hold in the future, as is linked with probable changes in precipitation regimes that control the intensity 

and frequency of rain-fed floods and possibly of flash floods (Feyen et al., 2006, 2010). 

Most notable increases in flood losses are projected in these regions of Europe (Belgium, Denmark, France, 

Germany, Ireland, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern 

Ireland), as well as for Hungary and Slovakia (Feyen, 2016) 2010. 

 



 

The Secretary General of United Nation Quoted “The COVID-19 pandemic has disrupted lives worldwide. 

At the same time, the heating of our planet and climate disruption has continued apace. Record heat, ice 

loss, wildfires, floods and droughts continue to worsen, affecting communities, nations and economies 

around the world”. 

 

 

Figure 2: Number of occurrences of each type of natural disaster in 2018 (Podlaha, 2019) 

  



 

2.2. STATISTICS ABOUT FLOOD IMPACTS 

Flooding is a natural phenomenon and is not a rare process associated with river dynamics. Flood has 

always been a multiplying factor to human’s problems throughout the ages, floods have affected human 

health, the environment, cultural heritage and economic activities and caused many more damages as shown 

below in Figure 3. 

 

Figure 3: Classification of the types of damages caused by the flooding (Messner, 2007) 

Historical records show that resulting flooding in the arid regions of Somalia and Kenya, malaria outbreaks 

were reported during the 1997-1998 El Niño event. Subsequently, extensive research on mosquito vectors 

of Rift Valley Fever in Kenya (mainly Aedes and Culex species) clearly has associated the risk of outbreaks 

with flooding. ( Githeko, A. & Ndegwa, W., 2001) 

Following the 1997-1998 El Niño event in East Africa, a Rift Valley Fever outbreak in Somalia and northern 

Kenya killed up to 80% of livestock and affected their owners (Patz, 1998). In West Africa the disease is 

linked to epizootic diseases with increased risks during the wet season. During the 1997-1998 El Niño, the 

rise in sea-surface temperature and excessive flooding (Patz, 1998) provided two conducive factors for 

cholera epidemics which were observed in Djibouti, Somalia, Kenya, Mozambique and the United Republic 

of Tanzania, all of which border the Indian Ocean. Cholera epidemics also have been observed in areas 

surrounding the Great Lakes in the Great Rift Valley region. Between 1991 and 1996 cholera also affected 

21 counties in Peru resulting in almost 200000 cases and 11700 deaths (Parmenter, 1999) 

Leptospirosis, a disease allied with flooding, is a major concern in some parts of Europe. Outbreaks of the 

disease have been reported following floods in Ukraine and the Czech Republic in 1997 (Kríz, 1998) and 

Portugal in 1967 (Simoes, 1967). As well as the direct injuries and infections resulting from flooding, 

psychological suffering including cases of suicide that has been associated with the event.  

Floods can root pollution of public water supplies with both bacteria and parasites as surface discharge 

flows into rivers and reservoirs. A decrease in the availability of clean water surges the risk of drinking 

contaminated supplies and also reduces the amount of water available for personal hygiene thus leading to 

skin infections (WORLD HEALTH ORGANIZATION, 2003). 

  



 

 

In the period 1998-2002, there have been more than 100 major floods in Europe (including the 2002 

catastrophic floods along the Danube and Elbe rivers) that caused several hundred fatalities, the 

displacement of about 500,000 people and over € 25 billion in insured economic losses. Until 2009 flooding 

and storms were still the costliest hazards, and the number of fatalities had reached 1126 in 213 recorded 

flood events. The overall losses recorded for this period now added up to about EUR 52 billion for floods 

and EUR 44 billion for storms. (EEA, 2011) 

Increases in heavy precipitation events and floods will cause more weather-related accidents, delays, and 

traffic disturbances in the already congested networks. Additionally, problems like silting, changes in river 

morphology and damages of banks and flood protection schemes, whereas airports may suffer infrastructure 

damages and increased delays and cancellations of operations (Christodoulou A., Demirel H, 2018). 

Predictions in Europe as a whole that will be more prone to flood risk (with mean annual river flow set to 

increase), water stress will be more pronounced in Southern European regions, and may well cause tensions 

between different users of dwindling reservoirs and aquifers. Under 2°C warming, median river flows in 

Mediterranean regions are expected to fall in all four seasons (EUROPEAN COMMISSION, 2018). 

Flooding alone may cost EU countries up to EUR 1 trillion per year in damages by the end of the century. 

Most of this would be due to coastal flooding (up to EUR 961 billion). Damages from river flooding could 

also rise to up to EUR 112 billion compared to EUR 5 billion today, and there is considerable increase in 

river flood risk for Europe even under a 1.5º C warming scenario. This could also affect transport 

infrastructure. By the end of the century, under a high warming scenario, about 200 airports and 850 

seaports of different size across the EU could face the risk of inundation due to higher sea levels and extreme 

weather events. (EUROPEAN COMMISSION, 2018) 

PESETA IV study estimates that currently river flooding causes damage of 7.8 €billion/year in the EU and 

UK, which is equivalent to around 0.06% of current GDP. Moreover, more than 170,000 people every year 

are exposed to river flooding (JRC PESETA IV, 2020). Coastal flood losses would grow by two orders of 

magnitude and climb to 250 €billion/year in 2100, while 2.2 million people would be exposed per year to 

coastal inundation compared to 100,000 at present 

PESETA IV assesses the consequences of climate change for eleven climate impact categories: human 

mortality from heat and cold waves, windstorms, water resources, droughts, river flooding, coastal 

flooding, wildfires, habitat loss, forest ecosystems, agriculture and energy supply. Some of the Key 

findings related to flooding is that if Global warming and continued development in flood prone areas will 

progressively increase river flood risk. With 3°C global warming by the end of the century, river flood 

damage in the EU and UK would be six times present losses of 7.8 €billion/year and nearly half a million 

people would be exposed to river flooding each year, compared to 170,000 now. Keeping global warming 

with 1.5°C would halve these economic impacts and reduce the number of people exposed by 230,000. 

(JRC PESETA IV, 2020). 

Finally, not only physical health and physical structures are affected by flooding but also there is an increase 

in the instances of mental illnesses that was also observed among the flood victims especially Post 

Traumatic Stress Disorder (PTSD), depression, and developing suicidal thoughts (Zhong, 2018). 

 

  



 

3. STATE OF ART 

Flood risk maps are very useful in preparing for and in mitigating the impact of floods by minimizing the 

exposure and vulnerability of human lives, property and infrastructure. In recent time, it is becoming 

increasingly common to use GIS and Remote Sensing for flood delimitation and its attendant risks and 

hazards (World Meteorological Organization, 2013). During floods, decision makers and rescue workers 

require rapid and detailed status reports to identify areas affected by the floods, direct rescue missions and 

implementation of mitigation measures. Remote sensing helps in the quick assessment of flood damage 

through the provision of comprehensive, rapid, accurate and real time multi temporal imagery with 

information on what is actually happening on the ground. The previous chapter introduces the negative 

impact of flood globally and therefore, highlights the importance of flood monitoring to introduce plans for 

prevention, protection and mitigation. This chapter is dedicated to discuss the state of the art of flood 

mapping based on remote sensing techniques. 

 

3.1.  FLOOD MAPPING USING REMOTE SENSING TECHNIQUES 

Remote Sensing has made substantial contribution in flood monitoring and damage assessment that leads 

the disaster management authorities to contribute significantly. “Remote sensing is the science and art of 

obtaining information about an object, area, or phenomenon through the analysis of data acquired by a 

device that is not in contact with the object, area, or phenomenon under investigation” (T. M. Lillesand, R. 

W. Kiefer and J. W. Chipman, 2008). 

Remote sensing is the practice of acquiring information about Earth’s land and water surfaces by using 

images acquired from an overhead perspective and not by being in contact with the body of interest 

(Campbell and Wynne, 2011). Remotely sensed satellite observations from the space have fundamentally 

changed the way in which scientists study the atmosphere, oceans, land, vegetation, glaciers, sea ice, and 

other environmental aspects of the Earth's surface. Half a century of the satellite observations of the Earth 

have provided dramatic pictures and they are the basis for a new scientific paradigm: (Horvat, 2012). By 

utilizing sensors operating in the visible and microwave spectral bands, remote sensing techniques. 

The quantities that are measured using remote sensing sensors are the emitted, scattered, and reflected 

electromagnetic energy from the phenomena under investigation. Useful information is then extracted 

through interpretation of these measurements (Intera Kenting Ltd, 1992). 

 The practice began in 1850–1860 as balloonists took ground photographs using the newly invented camera. 

Aerial photography was used during the First World War and was developed greatly during the Second 

World War, when German V-2 rockets launched and carried remote sensors into space. Remote sensing 

matured in the 1970s when the Skylab and Landsat satellites were launched, with the mission of monitoring 

land and ocean surfaces (Planatek Italia, 2019). The first integration of remote sensing with flood 

monitoring mentioned in literature dates back to the 1970s, where data from Landsat 1 helped to analyse 

the Mississippi flood of 1973. The ERTS data provided the first opportunity for mapping the regional extent 

of flooding at the time of the imagery (Morris Deutsch Fred Ruggles, 1974). 

 

 

 



 

Similarly, many more studies involving mapping of floods and water surfaces were developed using remote 

sensing. They differ in their applied methods (index-based, thresholding, change detection), spatial 

resolution, the analysis approach (pixel-based, object-based), sensors used and, most importantly, by main 

data type - optical, SAR, Digital Elevation Model (DEM), Light Detection and Ranging (LiDAR). 

 

 

3.2. OPTICAL SATELLITE IMAGERY FOR FLOOD MAPPING 

Optical remote sensing is carried out by passive systems that use the sunlight as source to image the Earth’s 

surface. Thus, low solar angles and the atmosphere, especially cloud coverage, hamper useful data 

acquisitions especially during flooding that is coupled with thick cloud coverage during event occurrence. 

The spectral acquisition ranges between visible light (VIS) (400 - 700 nm) and near-infrared (NIR) (700 - 

1300 nm) or short-wavelength infrared (SWIR) (1300 – 3000 nm) as shown in the figure 4 below (Lillesand, 

T.M., Kiefer, R.W. & Chipman, J.W.,, 2008). Clouds during the acquisitions reduce the number of available 

images significantly as with every optical satellite mission. 

 

Figure 4: Spectral Wavelength 

Earth observation via satellites dates back to the Keyhole-Satellites of the United States (U.S.) Corona-

program in the 1960s. After the U.S. government declassified the images from the Corona-program the 

panchromatic films were digitized and are provided for a small price (Schowengerdt, 2007). Since 1972 the 

Landsat satellites enable regular multi-spectral acquisition of the Earth’s surface. The data base of Landsat 

archive images is immense and the images are available for free, thus, they have a great potential for long-

term lake monitoring (Nath, R.K. & Deb, S.K., 2010) . Landsat images acquire only medium-resolution 

images, as the spatial coverage is negatively correlated to the spatial resolution. 

  



 

In 1999 the multi-spectral ASTER sensor was launched on board of the Terra satellite, however, the images 

have only available been free of charge since April 2016 (Tan, H. & NASA, 2016). The resolution of the 

ASTER images is 15 m in red, green and NIR, 30 m in SWIR and 90 m in thermal. A blue band is not 

acquired. ASTER images have proven useful for the monitoring of lakes (Gholizadeh, M., Melesse, A. & 

Reddi, L.,, 2016). 

 

In the last two decades several commercial satellite missions with a high spatial resolution were launched, 

e.g., IKONOS, WorldView-2/3, SPOT 5/6/7, Quickbird, and RapidEye (RE). However, a disadvantage of 

those satellite missions is the cost of the image data and the limited availability of archive data. The high-

resolution satellites generally do not acquire the Earth’s surface regularly, but only on-demand. RE images 

which have been acquired since 2009 are available freely for German scientists with a data proposal.  

 

A great potential for Flood monitoring is the new Copernicus Earth observation program: the first high-

resolution optical satellite (Sentinel-2a) launched in 2015, and joined by a second satellite Sentinel-2b in 

2017, that is identical in construction (Drusch, M. et al.,, 2012). The Sentinel-2 satellites have a spatial 

resolution of 10 m to 60 m. The multi-spectral images include VIS, red edge, NIR and SWIR and are 

provided free of charge. 

 

3.2.1. Sentinel 2 

Sentinel 2 is the Multispectral optical imagery (MSI) data that was used as a Dataset for the study cases and 

hence is explained in more details in this section of this thesis. 

 

The Copernicus Sentinel-2 mission MSI works passively, by collecting sunlight reflected from the Earth 

and comprises a constellation of two polar-orbiting satellites placed in the same sun-synchronous orbit, 

phased at 180° to each other. It aims at monitoring variability in land surface conditions, and high revisit 

time (10 days at the equator with one satellite, and 5 days with 2 satellites under cloud-free conditions 

which results in 2-3 days at mid-latitudes) will support monitoring of Earth's surface changes.  Each satellite 

carries an innovative wide swath high-resolution multispectral imager with 13 spectral bands as shown 

below in figure5, for a new perspective of our land and vegetation (THE EUROPEAN SPACE AGENCY). 

 

 
 

Figure 5: Spectral Bands of Sentinel 2 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload


 

 

Figure 6: Spectral Bands of Sentinel 2 and Specifications 

 

Sentinel-2 mission is the result of close collaboration between the European Space Agency (ESA), the 

European Commission, industry, service providers, and data users. 

 

Sentinel 2 Specification 

Band 13 bands 

Resolutions Four bands at 10m, six bands at 20m and three bands at 60m spatial 

resolution. 

Revisit time For each single SENTINEL-2 satellite is 10 days and the combined 

constellation revisit is 5 days. 

Product Levels Level-0, Level-1A and Level-1B are not made available to Users 

Level-1C and Level-2A orthorectified UTM/WGS84 projection 

Altitude 785 km 

Field of View (FOV) 290 km 

Launched Sentinel-2A on 23 June 2015 

Sentinel-2B on 7 March 2017 

Site Kourou, French Guiana 

Launcher Vega rocket 

Design life  7 years 

Tiles 100x100 km2 

Tile Projection UTM/WGS84 

Price Free of Charge upon user registration 
 

Table 1:Sentinel Specification Summary (THE EUROPEAN SPACE AGENCY) 

 

 

 



 

This Sentinel-2 observation data acquired can be utilised by services such as (THE EUROPEAN SPACE 

AGENCY): 

• Land monitoring 

• Emergency management 

• Security 

• Climate change. 

 Figure 7 shows an infographic which answers questions about Sentinel 2, to understand more about its 

design, the main applications it could be used in, to whom the services are offered and when was it launched. 

 

 

Figure 7:Sentinel-2 infographic (THE EUROPEAN SPACE AGENCY) 

 

 

  

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/thematic-areas-and-services/land-monitoring
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/thematic-areas-and-services/emergency
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/thematic-areas-and-services/security
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/thematic-areas-and-services/climate-change


 

3.3. SYNTHETIC APERTURE RADAR (SAR) IMAGERY FOR FLOOD 

MAPPING 

Synthetic Aperture Radar (SAR) sensors, are considerably different from optical data, being active sensors 

operate independently of the sunlight transmitting their own energy to illuminate the target and record the 

wave echoed back from each object. SAR works on microwave portion of the spectrum (see figure 4), with 

longer wavelengths, providing different information.  

 

Microwaves offer a different perception of the Earth’s surface compared to sensors operating in the visible 

and infrared parts of the spectrum due to their long wavelength, microwaves can penetrate clouds and 

sometimes even vegetation canopies to collect information about the terrain underneath forests. Then again, 

these instruments can gather information about many physical properties like the surface roughness and the 

moisture content for instance (Ulaby, F., Long, D., Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, 

K.,, 2014). Radars are one type of active microwave sensors. 

 

The SAR is an imaging radar with microwave pulses transmitted by its own antenna, and receives the 

echoed energy reflected back from the target to the sensor, called the backscatter (Ozdemir, 2012). SAR 

was basically used by the military to carry out tasks related to tracking and gathering intelligence about the 

enemy. However, this technology started being studied in the last few decades by researchers, and it found 

an assembly of applications spanning from archaeology, precision farming, detection and monitoring of sea 

ice, disaster management and assessment of damages caused by floods (Ozdemir, 2012). SAR also captures 

the phase information which evidenced useful in interferometric techniques to measure the ground 

deformations caused by earthquakes (Lee, W. J., Lu, Z., Jung, H. S., and Ji, L. , 2017) and landslides 

(Raspini, F., Ciampalini, A., Del Conte, S., Lombardi, L., Nocentini, M., Gigli, G.,, 2015) 

 

SAR sensors are shown in figure8 with the corresponding wavelengths. The frequency of the SAR sensor 

determines the remote sensing application and the kind of information that can be extracted from its 

products (Campbell, J. B. and Wynne, R. H., 2011) 

 

 
Figure 8: Commonly-used SAR frequency bands and their wavelengths (Campbell and Wynne, 2011) 

 
 



 

 
Figure 9: Penetration depths of X-band, C-band and L-band frequencies in a vegetation canopy, a dry soil, and a dry snow and ice 

(Podest, 2017) 

 
Figure 9 illustrates how radar beam has varying degrees of penetration according to its wavelength., the 

same area is perceived differently by a short-wavelength sensor compared to a long-wavelength one. In the 

end, C-band sensors, due to their medium wavelength, reach a good compromise between flood mapping 

and canopy penetration. Due to the help of multi-frequency data, the flood extent could be delineated more 

precisely by avoiding difficulties to interpret complex backscatter variations in certain types of land cover 

(Boni, G., Pierdicca, N., Pulvirenti, L., Squicciarino, G., and Candela, L., 2015) 

 

Seasat, launched in 1978 by the National Aeronautics and Space Administration (NASA), was the first 

satellite used for civilian applications to carry onboard a SAR sensor. This mission had as an objective to 

monitor the ocean, but it was unfortunately short-lived due to a technical failure on the same year it was 

launched (Ozdemir, 2012). After this mission, many other SAR sensors from other countries were launched 

including ESA’s ERS-1 and ERS-2 missions in 1991 and 1995 respectively, which contained radar sensors 

in their payloads. The short wavelength X-band sensor carried aboard TerraSAR-X and CosmoSkyMed 

provides the finest resolution in the market up to now. TerraSAR-X is a commercial X-band SAR satellite 

launched in 2007 to meet the requirements of both the scientific community and the defence industry. In 

2010, TerraSAR-X was joined in orbit by its twin satellite TanDEM-X. The Canadian Radarsat-2, launched 

by the end of 2007, operates in the medium wavelength C-band frequency and manages to achieve a metric 

resolution. The first British satellite SAR sensor is the low-cost NovaSAR-1 delivered into orbit in 

September 2018, and is primarily targeted at maritime observation. NovaSAR-1 operates in the S-band to 

reach a 6 m-resolution for a swath of 15 to 20 km (Cohen, M., Larkins, A., Semedo, P. L., and Burbidge, 

G., 2017). The SAR sensor with the longest wavelength is the Japanese L-band PALSAR-2 launched in 

2014. The radar energy from PALSAR-2 is theoretically capable of penetrating forest canopies thanks to 

its wavelength. Sentinel-1 is different from the SAR commercial satellites just mentioned in that its products 

are available free of any charge, and it acquires images systematically without being tasked, except after 

being requested in emergency situations. Moreover, the revisit time offered by the constellation of Sentinel-

1A and Sentinel-1B is of 6 days only. 

 
 



 

3.3.1. Sentinel-1 

Sentinel 1 is the European Radar Observatory for the Copernicus joint initiative of the European 

Commission (EC) and the European Space Agency (ESA). Sentinel-1 mission is designed as a two-satellite 

constellation and provides with continuous all-weather, day-and-night imagery at C-band Sentinel 1 comes 

in 2 levels, Sentinel-1 Level 1 (L1) and Level 2 (L2) products. Sentinel-1 has been designed to address 

primarily medium- to high-resolution applications such as monitoring sea-ice zones and the polar 

environment; mapping in support of humanitarian aid in crisis situations; surveillance of marine 

environments; monitoring land surface motion risks; and mapping of land surfaces, forest, water and soil, 

agriculture. Emergency operations shall be completed typically within 24 h, and in no case more than 48h 

after a user request has been issued. More Sentinel 1 specifications are summarized in Table 2. (THE 

EUROPEAN SPACE AGENCY) 

 

 

 

 

Table 2: Sentinel-1 Specification Summary (THE EUROPEAN SPACE AGENCY) 

 

 

Sentinel 1 Specification 

Satellite Lifetime 7 years 

Products  L1 and L2 

Constellations 2 satellites, Sentinel-1A and Sentinel-1B 

Coverage  up to 400 km 

Distribution Raw, SLC, GRD, OCN 

Mode Strip Map mode (SM), Interferometric Wide-swath mode (IW), Wave 

mode (WV) and Extra Wide-swath mode (EW), depending on which the 

polarization, resolution, incidence angle, phase error, swath, radiometric 

accuracy are affected. 

Processing level Level 0, 1, 2 

Revisit Time 12 days in a single pass, 6days two-satellite 

Launched 03 April 2014 - Sentinel-1A 

25 April 2016 - Sentinel-1B 

Site Kourou, French Guiana 

Rocket Soyuz rocket 

Radiometric accuracy for all measurement modes to be within 1 dB (3σ) and 0.5 dB (3σ) 

Price Free of Charge upon user registration 

Polarization Like polarized HH, VV Otherwise Cross polarized HV, VH 



 

 

 

 

Figure 10: Sentinel 1 Modes 

 

 

Sentinel-1 data products are distributed by European Space Agency (ESA) and include: 

• Raw Level-0 data (for specific usage) 

• Processed Level-1 Single Look Complex (SLC) data comprising complex imagery with amplitude 

and phase (systematic distribution limited to specific relevant areas) 

• Ground Range Detected (GRD) Level-1 data with multi-looked intensity only (systematically 

distributed) 

• Level-2 Ocean (OCN) data for retrieved geophysical parameters of the ocean (systematically 

distributed). 

 

 

 

 

 

 

 

 

 

 



 

3.4. SAR AND OPTICAL IMAGERY DATA FUSION FOR MAPPING AND 

MONITORING  

 

Data fusion involves the “combination of two or more different images to form a new image by using 

a certain algorithm” (Pohl, C., & Van Genderen, J.L., 1998).  

 Fusing different Remote Sensing scenes can enhance cartographic object extraction, and improve spatial 

resolution (Ehlers, 1991; Mangolini, 1994). Hence, there is an increasing interest in data fusion of 

multisource Remote Sensing acquisitions (Amarsaikhan, D., & Douglas, T., 2004); (Byun, Y., Han, Y., & 

Chae, T., 2015) . Over time, the availability of earth observation data has improved and it now covers 

different portions of the electromagnetic spectrum at different spatial, temporal and spectral resolutions 

(Pohl, C., & Van Genderen, J.L., 1998). This provides users with multiple data choices, but also creates 

additional challenges related to preserving the original spectral characteristics of the input image data 

(Ehlers, 2004) in the resulting fused images. 

Multisensory data consisting of SAR and multispectral imagery positively impact the accuracies in various 

applications as well as reduces the disadvantage of working with the different types of data separately.  

 

Optical imagery has high potential for rapid disaster mapping since it is available from a multitude of 

sensors and relatively easy to interpret due to its band composite in the visible wavelength range. 

Nonetheless, using optical data has a series of drawbacks when used for flood mapping (Sunuprapto, H., & 

Hussin, Y. A., 2000), (Estel, 2015). These include:  

• Affected by daylight and weather conditions e.g., clouds, shadow.  

• Neither penetrates vegetation nor soil, only detects surface tops.  

• Not responsive to dielectric properties.  

• Affected by topographical effects.  

• Affected by sun-glint 

  

On the other hand, SAR data also has a variety of limitations to be considered in the process of data 

selection:  

• Often limited to binary segmentation into flooded and non-flooded.  

• Inaccuracy in recording floods in urban areas (corner reflection principle).  

• Noise and increased measurement uncertainty due to speckle.  

• Higher difficulty to interpret information  

• Geometric distortion 

 

Therefore, fusing the SAR and Optical Imagery in a way to complement each other could lead to better 

results for Flood monitoring. This is done after pre-processing on the different data separately to remove 

disadvantages that could affect the quality of the results. Figure 11 below describes the process necessary 

to fuse optical and SAR data. 

 

  

SAR 

Optical Imagery 

Pre-Processing 

Pre-Processing 

 

Fusion 

Figure 11: Steps to Image Fusion 



 

4. DATA & STUDY AREA 

 

The previous chapter introduced Remote sensing and Data used in remote sensing optical and SAR, 

commercial and free data. It also presented particularly Sentinel 1 and Sentinel 2 that was used in this thesis 

for flood mapping and monitoring. This chapter will provide information about the datasets used to answer 

the research questions outlined in Chapter 1 of this thesis, and also describes the chosen Areas of Interest 

(AOI). Figure 20 shows the workflow followed to find suitable study cases to implement the methodology 

on and achieve the aim of the thesis presented. 

 

 
 

Figure 12:Workflow of Finding Suitable Case Study 

 

4.1. RESEARCH STUDY CASES 

4.1.1. Detecting a Potential Flood 

Step one of the thesis was to find suitable events with accessible and available satellite images acquired 

both with SAR and optical sensors. The available databases have been explored (Copernicus, floodlist.com, 

disastercharter.org, emdat.be, Wikipedia etc.) to find information about floods which occurred between 

2015 - present. The Sentinel satellites imagery has been selected, due to their characteristics and to their 

availability free of charge. Since the Sentinel-1 satellite started collecting data in April 2014 and Sentinel 

2 in June 2015, the possible range of research starts from 2015 until the present. However, an important 

factor to consider was the location. To qualify some event as a potential for further research, it has to have 

enough additional information other than the satellite imagery. That can be problematic because, to some 

extent, the quality of data like road network or other shapefile as secondary data were not always available 

for all regions. This process required a considerable effort. 

 

4.1.2. Detecting Availability of Data  

This step consists of two simultaneous searches for Sentinel-1 image and Sentinel-2. Both searches should 

result in images that follow criteria mentioned in the section 3.1.2.1 Data Criteria. The Dataset used for 

both case studies are the ones with the least cloud coverage. Section 3.2 depicts the Dataset used. The choice 

of the most efficient method for water identification and mapping depends on the type of satellite 

information (optical or radar) as well as on the spatial resolution this information could provide (Jiri 

Marsalek, 2006). 
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4.1.2.1. Data Criteria  

Chosen data had to follow certain selection criteria to obtain the best results in flood delineation. The 

Sentinel 1 and Sentinel 2 dates should not be very different from each other, so that the extent of the flood 

has not changed over time, as well as, being in the time range of the flood event occurrence. The percentage 

of clouds shouldn’t be more than 40%. The Sentinel 1 and Sentinel 2 should be overlapping and covering 

the complete AOI.  

4.2. DATASETS 

Data products from Sentinel-1 and Sentinel-2 are freely available on the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/). Registered users can choose the place, date, data type and other required 

parameters and download the data. However, download speeds are limited to two datasets at a time per 

user. Due to flooding that is always coupled with thick clouds layer a lot of Sentinel 2 scenes were available 

but with almost 98 – 99 % of cloud coverage. Dataset for Spain Zaragoza and France Nice were used for 

this thesis presented in the next section. The Dataset used for both case studies are ones with the least cloud 

coverage.  

4.3. SPAIN - EBRO RIVER CASE STUDY 

The Ebro river, Figure12, runs through seven autonomous communities and its hydrographic basin is one 

of the largest in the Iberian Peninsula. Its average contribution, of about 14 km3 per year, represents almost 

4% of the total Mediterranean basin contributions. The Middle Ebro River presents a meandering channel 

with a very low slope. The average width of the floodplain is 3.2 km, having a maximum width of 6 km. 

Its great extent favours geological, topographic, climatic, and water balance variability. In the Middle Ebro 

River stands out the remarkable increase of discharge contributed from the Aragon River basin, which 

drains the Western Pyrenees. Thus, flooding processes are common in this river reach, but the combination 

among decrease of discharges, dam construction and expansion and reinforcement of defences have created 

an unusually quiet period as regards flooding events during the last quarter of the previous century. 

Nevertheless, with the turn of the century, it seems that the Middle Ebro River has entered into new 

dynamics, with bigger and more frequent flooding. Important flooding episodes appear around the city of 

Zaragoza in spring, given when snow melts in the Pyrenees or due to the excessive precipitation and surface 

runoff, being them the cause of extensive damage, loss of property and human suffering (S. Domenech, 

2009).  

  
  

Figure 13: Ebro River in Spain (S. Domenech, 2009) 



 

The study area is focused in Zaragoza province which has an area of 973.78 square kilometres and 

coordinates of 41° 38' 58.8948'' N and 0° 53' 15.7632'' W. Figure 13, highlighted with a darker box and red 

circle. The Ebro at Zaragoza stood at 4.86 metres, above the alert stage of 4.5 metres, with flow rates of 

1,785 m3/s (Flood List, 2018).  

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Ebro River and AOI - Zaragoza 

Various high-water events of different magnitudes have been observed in the Middle Ebro, in 12th April 

2018, an extraordinary flood event occurred in the Ebro basin due to the snow that melted in the Pyrenees. 

The firsts flooded areas were registered in Caste Jón (Navarra) and the peak in Zaragoza city foreseen on 

15th April around 12:00 UTC. Blocking of an entire neighbourhood in Zaragoza and shut the provincial 

highway.  

 

Table 3:Flood Event Details (Flood List, 2018) 

Event Navarre and Aragon Regions, North East Spain, April 2018 

Date April 12 to April 16, 2018 

Type River flood 

Cause Extreme rainfall, Snow melt 

River level 4.86 m 

Alert stage 4.5 m 

Fatality 1 



 

 

 

Figure 15:Ribera Alta orthophotography on 14 April 2018 (Confederación Hidrográfica del Ebro, CHE, 2018) 

 

This favours a greater understanding of the water behaviour of the Ebro river over time. For the study area, 

a vertical aerial photograph corresponding to a part of the section that the CHE called “Ribera Alta” was 

used (Figure 15), captured on 14 April 2018.  



 

The reason of the flood as specified above is the melting of snow that showed a huge increase from 2017 – 

2018 then in 2016- 2017 as shown in figure 15. 

 

 

 

 

 

 

 

 

Figure 16 below show some images that depicts how the flood event in April 2018 affected Ebro river area.  

 

 

 

 

 

 

Figure 16:Snow melting comparison with an increase in 
2017-2018 (CONFEDERACIÓN HIDROGRÁFICA DEL EBRO 
COMISARIA DE AGUAS, 2018) 

Figure 17:Flood Damage (Flood List, 2018) 



 

4.4. DATASET FOR SPAIN – ZARAGOZA 

Sentinel 1 and Sentinel 2 data were used to understand how fusing these two sources of data would result 

in higher accuracy in flood monitoring, specified below are some of the basic Specification of these Datasets 

used in Zaragoza case study. 

 

Table 4:  Zaragoza Dataset 

 

 

 

 

 

 

 

  

Sentinel 2 

Data  Date Cloud 

Coverage 

Projection 

S2A_MSIL2A_20180414T105651_N0207_R094_T30TXL_20180414T112338 14/04/2018 31.4% UTM 

WGS 

Zone 30N 

S2A_MSIL2A_20180414T105651_N0207_R094_T30TXM_20180414T112338 14/04/2018 31.4% UTM 

WGS 

Zone 30N 

Sentinel 1 

Data  Date Projection 

S1A_IW_GRDH_1SDV_20180413T175451_20180413T175516_021452_024F10_6834 13/04/2018 UTM WGS Zone 30N 



 

4.5. FRANCE ALPES-MARITIMES CASE STUDY 

France experiences catastrophic floods on a yearly basis, with significant societal impacts. A potential 2°C 

increase in global temperatures would likely further intensify this problem by significantly increasing flood 

probability (Roudier P, 2016) and severity.  

NatCatSERVICE report (NatCatSERVICE, 2017) which is provided by Munich Re to the European 

Environment Agency under institutional agreement, and which illustrates the impacts of extreme weather 

and climate related events in the European Economic Area (EEA) member countries (1980-2017), ranks 

France as having had the most flood-related fatalities (from extreme weather and climate related events) in 

Europe (approximately 23,500 over the 1980-2017 period). Furthermore, according to (Paprotny D, 2018), 

while overall exposure to floods has declined in most European countries, mostly in central and northern 

Europe, relative exposure has increased in France and other western states (i.e., Germany, Netherlands) 

seemingly because of intense urbanization processes, occupying and transforming flood prone land. 

On 2nd to 3rd October 2020 red warnings were issued by National central forecasting centre 

(meteorological and hydrological) for France, areas of Alpes-Maritimes Department (Figure 17), which 

were among the hardest hit by Alex Storm leading to heavy rainfall and extensive flooding. Hundreds of 

homes are thought to have been destroyed and several damages occurred to infrastructures and buildings. 

"We have actually had houses wiped out," said Alpes-Maritimes prefect Bernard Gonzalez. for the night 

between 02/10 and 03/10.  

 

Figure 18: Alpes Maritime highlighted in France Map 

  



 

Particularly speaking, Alex storm, ravaged several villages around the city of Nice on the French Riviera. 

Nice Mayor Christian Estrosi called it the worst flooding disaster in the area for more than a century after 

flying over the worst-hit area by helicopter. (CNN, 2020). The city of Nice is a big French city located 

south east of France, located in the department of Alpes-Maritimes of the region Provence-Alpes-Côte 

d'Azur. The latitude and longitude of Nice are 43.706 degrees North and 7.262 degrees East. 

  

 

 

Table 5:Specification of Nice City (Map-France.com) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The disaster on 2nd and 3rd of October 2020 not only caused flooding but massive landslides, destruction 

to properties and a number of fatalities as mentioned in table 6 and in Figure 19.  

Table 6: Damage in Nice (European Commission, Joint Research Centre, 2020)   

Area: 71.92 km² (7 192 hectares) 

Maximum altitude: 520 m 

Average altitude: 260 m 

Altitude of the city hall: 10 m 

Event Floods in south eastern France and northern Italy 

Date October 2 to October 3, 2020 

Cause Alex Storm 

Coupled Disaster  Landslide and Flood 

Fatality 12 

Nice 

Figure 19:Nice-France (European Commission, Joint Research Centre, 2020) 

https://www.map-france.com/Nice-06100/
https://www.map-france.com/department-Alpes-Maritimes/
https://www.map-france.com/region-Provence-Alpes-Cote-Azur/
https://www.map-france.com/region-Provence-Alpes-Cote-Azur/
http://floodlist.com/tag/france
http://floodlist.com/tag/italy


 

  

4.5.1. Dataset for France – Nice 

Sentinel 1 and Sentinel 2 data were also used for Nice (France) to understand how fusing these two sources 

of data would result in higher accuracy in flood monitoring, specified below are some of the basic 

Specification of these Datasets used in Nice case study shown in Table 7. 

Table 7: France Nice Dataset 

 

  

Sentinel 2 

Data  Date Cloud 

Coverage 

Projection 

S2B_MSIL1C_20201003T101759_N0209_R065_T32TLP_20201003T141329 03/10/2020 7.4% UTM 

WGS 

Zone 32N 

Sentinel 1 

Data  Date Projection 

S1A_IW_GRDH_1SDV_20201003T172246_20201003T172311_034635_040884_80B9 03/10/2020 UTM WGS Zone 32N  

Figure 20: Landslide and Flooding due to Alex Storm (BBC) 



 

5. METHODOLOGY 

 

The previous chapter has described the data sources and data criteria which were used in this study and has 

presented the chosen test areas that are used to map the flood extent using remote sensing through data 

fusion. The focus of this chapter is on the methods used. This chapter will start with definitions of the pre-

processing workflow required before any quantitative analysis on Remote Sensing images (Sentinel 1 and 

Sentinel 2). The workflow shown in figure 21 underlines the methodology main divisions explained in this 

thesis Pre-Processing of Sentinel 1 and Sentinel 2, Processing starting from data fusion of SAR and optical 

reaching to Flood Inundation which is the aim of this thesis and finally Accuracy assessment to evaluate 

the performance of the suggested method. The proposed method depend will be explained in detail in this 

Chapter. The Tool used for visualization, pre-processing and processing is the free software SNAP (Sentinel 

Application Platform) Tool version 8.0.0, created specifically by ESA for the analysis of the data captured 

by Sentinel satellites. The maps are produced using ArcGIS software. 

 

  

Figure 21: Workflow of Flood Delineation done on the AOI 

 

5.1. FLOOD DELINEATION  

One of the biggest problems is obtaining a clear picture of the overall extent of the flood. In the aftermath, 

risk maps can be created that combine a trio of variables – the flood extent, the type of land inundated and 

the likely flood return period – to guide civil protection officials as well as insurers as to how much money 

should reasonably be spent to protect or insure areas on the map from future floods (ESA). Flood 

Monitoring can be done using different techniques that differ in the required data, processing, time cost, 

and accuracy. Methods vary from hydrological methods, change detection, Classification (supervised 

classification, unsupervised classification and object-based classification) and visual interpretation etc. This 

thesis covers supervised classification that is to be explained in details in Flood classification section 5.4.2.  

This section starts with a very brief definitions of the pre-processing workflow for Sentinel 1 (calibration, 

terrain-correction, speckle-filtering, and co-registration) required before any quantitative analysis of SAR 

images and following pre-processing of Sentinel 2.  
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5.2. SENTINEL -1 PRE-PROCESSING  

As shown in the previous figure 21 Pre-processing is the first step of the methodology that is done on 

Sentinel 1 and Sentinel 2, however, the pre- processing is not typical for both data types. Pre-processing of 

datasets step is necessary for the processing phase to avoid unnecessary noises thus removing errors and 

making the various data consistent during the processing that will affect the quality of the final output. For 

Sentinel 1 figure 22 states the sequence followed for the pre-treatment of the Sentinel 1 which follow a 

standard pre-processing chain for SAR. Each pre-processing step will be explained extensively in what 

follows. 

 

Figure 22: Pre- Processing Workflow 

5.2.1. Subset 

A subset is a section of a larger downloaded image. Since satellite data downloads usually cover more area 

than you are interested in you can select a portion of the larger image to work with (2021).Creating a Subset 

is based in our area of interest). it is to be used as an input for the next step so that only the subset area is 

radiometrically calibrated saving processing cost. 
 

5.2.2. Radiometric Calibration 

Performing Radiometric Calibration, the value representing the radar backscatter intensity; in units of 

decibels dB because of the wide range of values it can assume; is taken for each pixel. The backscattering 

coefficient σ 0 is the quantity obtained at each pixel after calibration of the distributed SAR image, is taken 

for each pixel, and σ 0 (The dimensionless backscattering coefficient)-bands are generated for the two 

polarizations that we provide, VH and VV (Tavus, et al., 2018; Ban, et al., 2017). There is the possibility 

of obtaining other bands, but the _0-band is the one that provides the best separation between terrestrial soil 

areas and those with water (Bioresita, et al., 2018). 

 

Permanent water bodies have temporal heterogeneity regarding backscattering (Martinis, et al., 2015). The 

backscatter intensity values are usually below -20 dB and manifest themselves in dark, practically black 

tones. Applying the theoretical knowledge characteristic of the flat areas, the wave beams emitted by the 

sensor are reflected on the surface, which acts as a mirror, causing almost no return of energy towards the 

sensor; hence, its intensity value and representation in the radar image. There are surfaces that, at the scale 

of the measuring wavelength, behave as smooth and share almost identical scattering properties with water 

surfaces that can create “false positives” (Henry, et al., 2006).  

 

5.2.3. Speckle Filtering 

The speckle noise impedes the interpretation and cause degradation in the quality of SAR images. That is 

why, any classification of the SAR image is preceded by a speckle filtering, which tries to smooth out and 

reduce the noise while preserving the texture and edge information (de Leeuw, 2009). Mainly, noise is due 

to random oscillations of the signal returned to the sensor due to the interaction of the emitted wave with 
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the rough terrain surfaces (Senthilnath, et al., 2013). Many methods for speckle reduction exist in the 

literature. The speckle present on SAR images is assumed to be a multiplicative noise, since it grows 

proportionally to the signal. This phenomenon can be easily confirmed in high-backscatter areas which 

appear grainier than darker ones. Adaptive filters like Lee filter, Frost filter, and the Gamma MAP filter 

build on this assumption, and are based on the local statistics of the image calculated within a moving 

window (Qiu, 2004). 

 

 

5.2.4. Terrain Correction 

SAR images suffer inherently from geometric distortions (layover and foreshortening) typical of side-

looking radar images of elevated areas. A correction taking into account a digital terrain model and 

orthorectification allow to reduce distortions due to changes in the topography and the angle 

of incidence with the ground with respect to the nadir. Terrain correction used in this study 

was range doppler terrain correction and the digital elevation model (DEM)–SRTM-3Sec. This pre-

processing operation is essential when the SAR dataset is used in combination with an optical one. 

 

5.3. SENTINEL -2 PRE-PROCESSING  

The above section described the pre-processing steps for Sentinel 1, similarly, Sentinel 2 data requires pre-

treatment to reach to the required quality of input data for the fusion process of Sentinel 1 and Sentinel 2. 

These steps of pre-processing of both Sentinel 1 and Sentinel 2 are followed to ensure a trusted outcome 

limiting the uncertainties of the research objectives aiming at flood monitoring. The workflow in (Figure23) 

depicts the steps undergone for pre-treatment of Sentinel 2. 

 

Figure 23:Sentinel 2 Pre-processing workflow 

 

5.3.1. Resampling 

Resampling is the technique of manipulating a digital image and transforming it into another form. This 

manipulation could be done for various reasons: change of resolution, change of orientation, i.e., rotation, 

change of sampling points, etc. This technique is used extensively in image processing for all applications, 

including medical, industrial and of course in remote sensing. This is because the image as it is captured 

will have limitations imposed by the imaging geometry or camera. However, for analysis, we would like to 

have the image in a different and better form. (Padmanabhan, 2005). 

Creating multi-resolution product is currently not supported in SNAP. Therefore, it will not work to 

combine the different resolutions in one product. For fusing Sentinel 2 and Sentinel 1 it was needed to 

resample the multi resolution Sentinel 2. Sentinel 2 comes in bands with resolutions of the 10m, 20m bands 

and 60m, while Sentinel 1 comes with a resolution of 10m. Therefore, resampling was done to 10m for 

fusion. Resampling, is the first necessary operation, aimed to geometrically correct distorted pixels in the 

original imagery. Available resampling methods included: the nearest neighbour, bilinear interpolation, and 
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cubic convolution. The first option was chosen, as it allowed us to preserve the original pixel values.  (David 

P. Roy, 2016).  

5.3.2. Cloud Removal 

Many studies have developed and tested different methods of cloud masking of Sentinel-2 images. For 

Sentinel 2 L1C, The Idepix Processor provides a pixel classification into properties such as clear/cloudy, 

land/water, snow, ice etc (Step Forum, 2017).The Idepix produces extra NDWI, water mask and other 

additional layers to separate features from each other easily. 

 

5.3.3. Subset and Mosaicking (optional) 

Lastly, both images were subsetted to the selected AOI this step is done for faster processing of data. 

Mosaicking is an optional step depending on whether the AOI is covered by a one or two Sentinel -2 image. 

After completing the required pre-processing steps the main processing on Sentinel 1 and Sentinel 2 is 

undertaken to reach the objective of flood monitoring. 

 

5.4. PROCESSING ON PRE-PROCESSED DATA SET FOR FLOOD 

DETECTION 

To Summarize, figure 24 shows the pre-processing steps undergone by Sentinel 1 and Sentinel 2 that were 

required for the start of processing that is the second step in the Workflow of Flood Delineation done on 

the AOI as shown previously in figure 21. 

 

 
Figure 24: Complete Pre-Processing overview for Sentinel 1 and Sentinel 2 

 

The processing starts with fusion of Sentinel 1 and Sentinel 2 reaching to extraction of landcover classes 

from the fused image using a training set and supervised classification method. These steps are necessary 

to achieve the aim of this thesis for flood delineation and detection and are explained in details in the 

following chapters. 
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5.4.1. Fusion of Sentinel 1 and Sentinel 2 

This thesis aims at experimenting flood delineation by fusing multi sensor imagery after completing the 

pre-processing treatment on Sentinel 1 and Sentinel 2 separately as explained in figure 24 previously. The 

synergetic use of different information layers can help detect more precisely the areas affected by the flood, 

reducing false alarms, uncertainty and missed identifications which may affect algorithms based on data 

from a single source. Both the integration of multilevel information and the use of multi-sensor imagery 

increase the overall accuracy (Björn Waske, 2008). For an image segmentation or classification task, the 

goal of fusing data from different sensors is to reduce the classification error rate obtained by single source 

classification. 

The input layers for data fusion employed in the model prediction stage include:  

• Sentinel-1as a master layer 

• Sentinel-2: All bands including NDWI, MNDWI layers as a slave layer. 

The fusion was done through Collocate process in SNAP. 

 

5.4.1.1. Collocation 

The Collocation Tool allows to collocate (fuse) two spatially overlapping products, however they should 

have the same projection for both Sentinel 1 and Sentinel 2. The output product will contain all the bands 

from Sentinel 1 and Sentinel 2 data. Collocation requires 2 input products, one master product which 

determines the extent, pixel size and pixel registration of the output product, and one or more slave products 

which will be clipped and resampled accordingly. The Collocation module does not support multi-

resolution products as master.  Collocation works by iterating over all the pixels in the master products and 

tries to find the closest pixel in the slave product (Fabrizio_Ramoino, 2017). 

 The collocation for Sentinel 1 and Sentinel 2 was done using Sentinel 1 as master and s2 as slave mainly 

due to the fact that Sentinel 2 was had No Data value due the cloud masked regions as well as due the 

resampling that was done to Sentinel 2 bands. Trials were done of removing the 20m and 60m in the 

classification but the results were not as good as with all the layers. Therefore, the input for the fusion were 

as shown in the below table:  

Table 8: Collocation Inputs 

 

  

Master Product Pre-Processed Sentinel 1 bands  

Slave product 
Pre-Processed Sentinel 2 bands along with the NDWI produced using Idepix for 

cloud removal 

Other Inputs  Vector layers as training samples for the different classes 



 

5.4.2. Flood Classification 

Fusing the Sentinel 1 and Sentinel 2 as explained in the previous chapter is an important step that allows 

for the synergetic detection of flooded area in study cases. In the recent years, significant efforts have been 

devoted to the implementation of a monitoring methodology. From the operational point of view, during 

dangerous floods, and preference is given to simple and fast methods (Jiri Marsalek, 2006). Traditionally, 

different pattern recognition methods and machine learning algorithms have been used to automatically 

classify multi-temporal remotely sensed images and to extract change information. These typically rely on 

methods for identifying different categories associated to complex land surfaces. These methods include 

but are not limited to change detection and Classification both supervised and unsupervised. Change 

detection involves the analysis of at least two remote sensing images acquired over the same geographical 

area at different times. Whereas, classification is one of the major approaches to infer land cover 

information from remotely sensed data (Alberto Refice, 2017). The next section introduces the supervised 

classification and the methods of supervised classification that are implemented in this thesis.  

 

5.4.2.1. Supervised Classification 

Supervised classification is a common approach for information extraction from images and consists of two 

main stages: training and classification. During the training stage, a set of representative labelled samples 

are selected for each class which are pairs of input and expected output data. The derived model can be as 

simple as a function that maps the given input to the corresponding output in the training dataset. Once 

trained, a classifier is used for the assessment of the probability of every image pixel to belong to the classes. 

In a remote sensing application, the training samples are either collected on the ground using in situ surveys, 

or manually digitized by an expert from airborne or satellite data. Supervised learning algorithms have been 

adopted by various sectors recently such as the manufacturing and the financial industries. Other 

applications that make extensive use of supervised learning are virtual personal assistants, image 

recognition on social media, and autonomous cars. 

 

5.4.2.2. Random Forest supervised classification 

 

In this study, the RANDOM FOREST classification method implemented in the ESA SNAP Tool was 

applied for determining the flooded areas. The random forest algorithm, proposed by L. Breiman in 2001, 

has been extremely successful as a general-purpose classification and regression method (Gérard Biau, 

2015). RF is a machine learning algorithm. It builds upon the concept of decision trees. Random forest 

builds multiple decision trees and merges them together to get a more accurate and stable prediction (Niklas 

Donges, 2020). A random forest is a predictor consisting of a collection of M (Number of trees in the forest) 

randomized regression trees. To classify a new object based on attributes, each tree gives a classification 

and we say the tree “votes” for that class. The forest chooses the classification having the most votes (over 

all the trees in the forest) and in case of regression, it takes the average of outputs by different trees 

(VIDHYA, 2016). The approach, which combines several randomized decision trees and aggregates their 

predictions by averaging, has shown excellent performance in settings where the number of variables is 

much larger than the number of observations (Niklas Donges, 2020).  

https://builtin.com/data-science/introduction-to-machine-learning


 

 

Figure 25: Random Forest Decision Tree 

In this study, a land cover map with four classes including the flooded surfaces has been produced in SNAP 

software using the Random Forest method. Different combinations of feature sets were also tested in a 

selected sub-area. Four classes were determined (permanent and flooded water surfaces, urban, forest, 

agriculture). The training areas (polygons) for each class were delineated from the pre-processed Sentinel2 

data, the water training sample were taken also using NDWI with visual interpretation and different bands 

of Sentinel 2 have been considered. The training areas were selected over colour combination that ensures 

maximum visibility of the required class from the Sentinel 2 image.  As mentioned before, other Supervised 

classification methods were experimented with the highest accuracy found using Random Forest and 

following is KDKNN in SNAP. 

 

 

5.4.2.3. KD KNN supervised classification 

 

K-D tree: KD tree is a tree-based specific data structure for efficiently representing our data (SINGH, 

2017),. The k-d tree is a data structure invented by Jon Bentley in 1975. Despite its fairly old age and there 

exist a number of spatial index structures in literature; however, k-d tree and its variants remain probably 

the most popular data structures used for searching in multidimensional spaces, at least in main memory. A 

k-d tree, or k-dimensional tree, is a data structure used for organizing some number of points in a space 

with k dimensions. It is a binary search tree with other constraints imposed on it. K-d trees are very useful 

for range and nearest neighbour searches. Typical algorithms construct k-d trees by partitioning point sets 

recursively along with different dimensions. Each node in the tree is defined by a plane through one of the 

dimensions that partitions the set of points into left/right (or up/down) sets, each with half the points of the 

parent node. These children are again partitioned into equal halves, using planes through a different 

dimension. Partitioning stops after log n levels, with each point in its own leaf cell. The partitioning loops 

through the different dimensions for the different levels of the tree, using the median point for the partition 

(Otair, 2013).  



 

 

Figure 26: KD KNN Supervised classification Partitioning 

The KD KNN Supervised classification was used in this thesis along with Random Forest supervised 

classification and comparison if each method was done along with the results highlighted in chapter 6 of 

this thesis. 



 

5.5. ACCURACY ASSESSMENT 

Finally reaching to the accuracy check that is required to conclude if the method followed in the previous 

chapters for flood delineation is useful and results in a more accurate output for the water extent or 

contradicts the assumption that fused data improves the result of accurate flood mapping. Reference maps 

were available to compute the accuracies of the derived flood maps.  The water extent classified is assessed 

against Reference maps as well as the Collocated Sentinel 1 and Sentinel 2 images taken during the 

flooding. This to verify that the method of fusing the multisensory data will add up to the accuracy of 

classification thus complimenting each other. The accuracy scores allow to infer the agreement rate between 

the produced flood map and the corresponding reference, and to tell whether the flood is underestimated or 

overestimated. The Intercomparison was carried out by collecting Intercomparison point done using SNAP 

software from 30 – 80 per class were taken the advised range is between 30 – 50 per class. Figure 27 shows 

an example of test points taken on France Nice Fused image for performing Confusion Matrix for the 

Results obtained. Figure 28 shows Intercomparison point against Copernicus Reference Image for the same 

flood France Nice October 2020. 

 

 

Figure 27: France-Nice Intercomparison Points in Fused Sentinel 1 and Sentinel 2 Image 

  



 

 

Figure 28: France-Nice Intercomparison Points in Reference Copernicus image 

 

Confusion matrix shows a number of correct and incorrect predictions by comparing two data sources and 

therefore, is used to assess the accuracy of classified image by comparing the classification result with 

reference image and the fused image. Confusion matrix reports the overall accuracy, kappa coefficient, 

error of commission and error of Omission, Producer and user accuracy for each classified category. Filling 

of this matrix is a necessity for this study since it focuses on accuracy improvement of classification 

resulting from fused image of Sentinel 1 and Sentinel 2. 

 

Kappa Coefficient is a measure of the overall accuracy of classification taking into account the agreement 

occurring by chance. Error of commission gives the percentage of extra pixels in each class. Error of 

Omission gives the percentage of pixel left out from the class. Producer accuracy show the ratio of correctly 

classified pixel according to classifier and user accuracy’s the ratio of matched ground truth with the 

classifier labels. 

 

In the next chapter the results of confusion of the two case studies; France – Nice and Spain Zaragoza; are 

presented and the output of the classification. 

 

 

 



 

The Final Overall procedure of the methodology undertaken in the delineation of the flood in my thesis is 

shown below in figure 29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29:Overall Workflow of preprocessing and Processing 
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6. RESULTS AND CONCLUSION 

This chapter presents the results and discussion of the generated output and accuracy. This chapter describes 

the results obtained through the previously described methods from case studies and formulates answers to 

the research objectives introduced in section 1.4.  

6.1. RESULTS OF SPAIN ZARAGOZA CASE STUDY 

Output of the processes done in the methodology is divided mainly into 3 Outputs: - 

• Map of Fused Image (figure 30) 

• Maps of Supervised Classification  

o Random Forest Supervised Classification (figure 32) 

o KD KNN Supervised Classification (figure 33) 

• Confusion Matrix  

o Random Forest Confusion Matrix (Table 9) 

o KD KNN Confusion Matrix (Table 10) 

Below is a demonstration of the above mentioned about, additionally the reference map (figure 31) that 

helps in identifying the accuracy of the outputs. 

  



 

 

Figure 30: Spain Zaragoza Fused Sentinel 1 and Sentinel 2 Map 



 

 

Figure 31:Spain Zaragoza Reference map from Copernicus (COPERNICUS_ European Commission, 2018) 

  



 

 

Figure 32:Spain Zaragoza Random Forest Supervised Classification 



 

 

Figure 33:Spain Zaragoza KD KNN Supervised Classification 



 

Table 9: Comparison of Producer's and User's Accuracy With Copernicus reference map and Fused image using Random Forest 
method 

Table 10:Comparison of Producer's and User's Accuracy with Copernicus map and Fused image using KDKNN method   

Land Cover Class 

Relative to Copernicus Map Relative to Fused Sentinel 1 and Sentinel 2 

Producer Accuracy User Accuracy Producer Accuracy User Accuracy 

Agriculture  87.88% 

 

78.38% 

 

87.50% 

 

100% 

 

Forest 75% 

 

68.18% 

 

88.89% 

 

81.63% 

 

Urban  71.43% 

 

83.33% 

 

92.59% 

 

86.21% 

 

Water 90.24% 

 

97.37% 

 

100% 

 

100% 

 

Overall Accuracy 81.208% 92.83% 

Kappa Coeff. 0.749 0.904 

Land Cover Class 

Relative to Copernicus Map Relative to Fused Sentinel 1 and Sentinel 2 

Producer Accuracy User Accuracy Producer Accuracy User Accuracy 

Agriculture  100% 

 

100% 

 

100% 100% 

 

Forest 69.57% 

 

88.89% 

 

 

66.67% 

 

95.65% 

 

Urban  91.43% 

 

71.11% 

 

95.65% 

 

66.67% 

 

Water 97.44% 

 

97.44% 

 

100% 

 

100% 

 

Overall Accuracy 88.079% 90.08% 

Kappa Coeff. 

 

0.841 0.868 



 

 

The results in the confusion matrix show that there is misinterpretation between forest and urban classes in 

the classification output of Random Forest as well as KD KNN methods relative to both Copernicus 

reference map (Joint Research Centre Data Catalogue, 2018) as well as in the fused image, however, there 

is an improvement in the results of the fused image as compared to Copernicus Reference map. 

However, the Intercomparison relative to the fused image using both Random Forest and KD KNN methods 

shows 100% User and Producer accuracy in the water class. With an Overall accuracy in the Random Forest 

method of 92.83% and Kappa Coefficient of 0.904 and using KD KNN method of 90.08% overall accuracy 

and Kappa Coefficient of 0.868. 

The Intercomparison relative to the Copernicus Reference map using Random Forest method shows 

97.436%User and 90.24% Producer accuracy and 97.44% User and Producer accuracy using KD KNN in 

the water class. With an Overall accuracy in the Random Forest method of 81.208% and Kappa Coefficient 

of 0.749 and using KD KNN method of 88.079%overall accuracy and Kappa Coefficient of 0. 841. 

Surprisingly the accuracy results of intercomparison relative to reference is less for Random Forest method 

than in KD KNN. Table 7 shows the producer and user accuracy using Random Forest method and 

following Table 8 shows a comparison between producer and user accuracy using KD KNN method.  

The results of Comparison show an improvement in the classification results of both methods Random 

Forest and KD-KNN when the Fused image of Sentinel 1 and Sentinel 2 images are used.  

The Classification using Random Forest shows an over estimation in Agriculture class as compared to 

KDKNN. The Urban area surrounding the Ebro river is accurately mapped using both Random Forest and 

KD KNN as well as Agriculture field around the Ebro River. However, for the area away from the river 

where a lot of factors interfer and visual interpretation is unclear errors occurred in the classification factos 

such as clouds, shadow, sun and others play a role in misinterpretation and confusion. Most of the 

exaggerated Agriculture in Random Forest were mostly areas where clouds where located and removed.  

 

6.2. RESULTS OF FRANCE NICE CASE STUDY 

Output of the processes done in the methodology is divided mainly into 3 Outputs: - 

• Map of Fused Image (figure 34) 

• Maps of Supervised Classification  

o Random Forest Supervised Classification (figure 36) 

o KD KNN Supervised Classification (figure 37) 

• Confusion Matrix  

o Random Forest Confusion Matrix (Table 11) 

o  KD KNN Confusion Matrix (Table 12) 

Below is a demonstration of the above mentioned about, additionally the reference map (figure 35) that 

helps in identifying the accuracy of the outputs. 

 

https://www.google.com/search?newwindow=1&rlz=1C1BNSD_enAE937AE937&sxsrf=ALeKk00qaggbiosVFXggPKpZmwucns0Sqg:1617280857755&q=exaggerated&spell=1&sa=X&ved=2ahUKEwjU55zYiN3vAhWlTRUIHSF_BckQkeECKAB6BAgBEC8


 

 

Figure 34:France Nice Fused Sentinel 1 and Sentinel 2 Map 

  



 

 

Figure 35:France Nice Reference map from Copernicus (European Commission, Joint Research Centre, 2020) 



 

 

Figure 36:France Nice Random Forest Supervised Classification 



 

 

Figure 37:France Nice KD KNN Supervised Classification 

  



 

Table 11:Comparison of Producer's and User's Accuracy with Copernicus map and Fused image using RF method 

 

 

Table 12:Comparison of Producer's and User's Accuracy with Copernicus map and Fused image using KD KNN method 

   

Land Cover Class 

Relative to Copernicus Map Relative to Fused Sentinel 1 and Sentinel 2 

Producer Accuracy User Accuracy Producer Accuracy User Accuracy 

Land 65.08% 78.85% 84.21% 100% 

Urban 68.75% 80.49% 90.91% 81.08% 

Water 85.71% 72.41% 91.30% 87.50% 

Overall Accuracy 
75.60% 88.89% 

Kappa Coeff. 
0.606 0.832 

Land Cover Class 

Relative to Copernicus Map Relative to Fused Sentinel 1 and Sentinel 2 

Producer Accuracy User Accuracy Producer Accuracy User Accuracy 

Land 50% 69.23% 73.33% 68.75% 

Urban 60.87% 68.29% 67.5% 62.79% 

Water 79.12% 62.07% 72% 80% 

Overall Accuracy 
65.07% 70.83% 

Kappa Coeff. 
0.445 0.556 



 

The results in the confusion matrix shows that there is misinterpretation between water and urban classes 

in the classification output of Random Forest as well as KD KNN methods relative to both Copernicus 

reference map (Joint Research Centre Data Catalogue, 2020) as well as in the fused image, however, there 

is an improvement in the results of the fused image as compared to Copernicus Reference map for Random 

Forest, unlike the case study of Spain the Random Forest method showed better results than KD KNN also 

the KD KNN results for both the Copernicus reference map (Joint Research Centre Data Catalogue, 2020) 

as well as in the fused image were not very good. 

However, the Intercomparison relative to the fused image using Random Forest methods shows 87.5% User 

and 91.3% Producer accuracy in the water class and for KD KNN methods shows 80% User and 72% 

Producer accuracy in the water class. With an Overall accuracy in the Random Forest method of 88.89% 

and Kappa Coefficient of 0.832 and using KD KNN method of 70.83% overall accuracy and Kappa 

Coefficient of 0.556. 

The Intercomparison relative to the Copernicus Reference map using Random Forest method shows 

72.414% User and 85.714% Producer accuracy and 62.069% User and 79.121% Producer accuracy using 

KD KNN in the water class. With an Overall accuracy in the Random Forest method of 75.60%and Kappa 

Coefficient of 0.606 and using KD KNN method of 65.07% overall accuracy and Kappa Coefficient of 

0.445. Table 9 shows the producer and user accuracy using Random Forest method and following Table 10 

shows a comparison between producer and user accuracy using KD KNN method.  

The results of Comparison show an improvement in the classification results of Random Forest method 

when the Fused image of Sentinel 1 and Sentinel 2 images are used.  

  



 

6.3. CONCLUSION 

Flood risk mapping is an essential component for relevant land use planning in flood plain areas and it aids 

in the efforts of city planners and administrators to prioritize their mitigation or relief response. The basic 

notion of flood risk mapping undertaken in this thesis is to efficiently delineate flood prone areas in the 

selected study cases of Spain Zaragoza and France Nice. 

The goal of this thesis was to perform an operational mapping of the flooding using the synergic fusion 

SAR and optical images in a minimum of time, and ideally in an automatic way. Free satellite data of 

Sentinel 1 and Sentinel 2 was preferred to make the introduced algorithms accessible to any region prone 

to flooding, regardless of its geographical location and its budget as well as and the SNAP Tool of ESA 

which are freely available providing the sufficient means for this thesis purpose. Two algorithms of 

Supervised classification; Random Forest and KD KNN; processes were presented where the interest was 

identifying and in mapping the extent of the flood from the fused images.  

This process proved capable of a quick and automatic mapping of the extent of the inundation, which can 

assist response authorities to prioritize during rescue operations through experimental results. The rapidity 

of execution is a very important factor especially when the main purpose of the flood map is to support 

relief efforts at the time of the disaster. This approach was evaluated on two flood events Spain Zaragoza 

and France Nice captured by Sentinel 1 and Sentinel 2. 

According to the assessment metrics calculated to evaluate the accuracy of the classification, the results 

were reasonable for France Nice and more accurate for Spain Zaragoza, considering that the technique and 

quality of images used for the fused Sentinel 1 and Sentinel 2, and the images used for the intercomparison 

map of Copernicus were different. The Copernicus Reference maps presented were mainly created using 

single imagery source either SAR imagery or Optical imagery. The Intercomparison relative to Copernicus 

Reference map (single source data) proved that using the fused image of SAR and Optical developed higher 

accuracy specifically in water class. 

Results show that for Spain Zaragoza using Random Forest supervised classification Kappa Coefficient 

was 0.904 with a 100% producer and user accuracy for the Water class and an overall accuracy of 92.83% 

and using KD KNN results show Overall accuracy of 90.08, Kappa Coefficient of 0.868 even though 

decreased the producer and user accuracy for the Water class is still 100%.  

For France Nice Overall accuracy in Random Forest show an 88.89% and Kappa Coefficient of 0.832 with 

a 91.30% producer and 87.50% user accuracy for the Water class and using KD KNN an overall accuracy 

70.83 and Kappa Coefficient of 0.556 with a 72% producer and 80% user accuracy for the Water class.  

Both cases proved better results in intercomparison with Copernicus map single imagery source 

Flood maps derived from remotely sensed images are always, although to different extents, affected by 

errors, no matter what type of images and which pattern recognition algorithm have been used. The training 
data required by the supervised classification method were delineated manually on the optical dataset.  The 

accuracy of the work presented can be further improved by using higher resolution data which will generate 

flood inundation map with higher accuracy. 

  



 

Fusing SAR and Optical Images was of advantage because both the sources complimented each other. SAR 

sensor using microwave to penetrate returning a backscatter rich with data regardless of the weather 

condition and the importance of Multispectral optical image to identify feature on the surface thus being 

able to define a training sample that is to be used in classification and carrying data for clouds free regions 

that are useful in determining more accurately the class of the pixels, a fused image is having more bands 

to help improving the accuracy and results of classification. However, there are still limitations due to 

Sentinel 1 and Sentinel 2 resolution. Using higher resolution would have further helped in improving the 

output, as well as, having ground truth would have helped the evaluation of the results. Another limitation 

is that after removing the clouds from the Optical image the pixels are given a No Data Value therefore, in 

this case the classification relies only on SAR image for pixel value returning to the idea that a single source 

is still used in clouded areas of the image. 

 

  Future work improvements that can be carried out include: - 

• The flood extent classifier showed satisfying results on the datasets examined, however it might 

fail if the water bodies and rivers are too small to appear clearly in the pre-flood Sentinel 1 and the 

Sentinel-2 product. In this particular case, the classifier cannot be trained efficiently to recognize 

the water class. In the future, the method proposed to delineate the extent of the inundation could 

benefit from recent commercial optical sensors, capable of delivering metric or even sub-metric 

resolution images, to address the above-mentioned issue concerning narrow river channels that 

cannot be distinguished with the 10 m-resolution Sentinel-1 and Sentinel-2.  

  

• Looking more in depth into adapting and applying the inundation extent mapping algorithm to 

urban areas, since they are at a higher risk of human and financial losses. 

 

• Detecting and delimitating non-permanent from permanent water surfaces from Fused images and 

other classes as well however this mainly depends on two parameters. First the use of higher 

resolution imagery to identify other classes. Secondly, having other input such as vector layer for 

the main layers for example roads, rivers, lakes, agriculture fields with their types. 

 

• Finally, Obtaining Ground truth and field data that could be used to better check the accuracy of 

the results. 
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