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Abstract

Illegal landfills represent a serious health threat due to the numerous pollutants they may
release through leachate or combustion fumes. Therefore, they must be detected as soon
as possible and action must be promptly taken to appropriately dispose of their waste. For
these reasons, the European Union recently launched the PERIVALLON project, which
this thesis is part of, aimed at exploring AI-based solutions to counteract this phenomenon
and its related crimes. Within this context, Computer Vision approaches have already
proven promising for solving different tasks, such as illegal landfill detection via remote
sensing images, even though generally suffering from data scarcity, stemming from the
difficulty in retrieving positive samples.

To address this issue, this thesis proposes a synthetic data augmentation approach,
eventually allowing the generation of a high number of images containing landfill instances.
For this approach, we designed a pipeline to create multiple structures of objects from
different waste categories and implant such structures in aerial or satellite images. This
pipeline exploits the Blender modelling tool for rendering the graphical part and combines
geographic and semantic information to define feasible locations for instance placement.
This process allows to create synthetic images in averagely 10 seconds per image, with
instances appearing in totally realistic locations in 85% of the cases. Furthermore, these
images were used to fine-tune a neural network for the task of binary scene classification,
leading to minor performance improvements.

Keywords: illegal landfills, waste detection, synthetic data, augmentation





Sommario

Le discariche illegali rappresentano una seria minaccia per la salute a causa dei numerosi
inquinanti che queste possono rilasciare tramite percolato o fumi di combustione. È quindi
importante identificarle il prima possibile e agire prontamente per smaltire in modo oppor-
tuno i rifiuti che le compongono. Per questo motivo, l’Unione Europea ha recentemente
avviato il progetto PERIVALLON, di cui è parte questa tesi, con l’obiettivo di esplorare
soluzioni fondate sull’intelligenza artificiale per contrastare tale fenomeno e i crimini ad
esso legati. In questo contesto, alcuni approcci nel campo della Computer Vision si sono
già dimostrati promettenti per rispondere a diverse consegne, come l’identificazione di dis-
cariche illegali tramite immagini di telerilevamento, nonostante queste consegne soffrano
spesso del problema di scarsità dei dati, originato dalla difficoltà di reperire campioni
positivi.

Per affrontare questo problema, questa tesi propone un approccio di augmentation
tramite dati sintetici tale da consentire la generazione di un numero elevato di immagini
contenenti istanze di discariche. Per questo approccio, abbiamo progettato una pipeline
per creare varie strutture di oggetti di diverse categorie di rifiuti e impiantare tali strut-
ture in immagini aeree o satellitari. Questa pipeline sfrutta lo strumento di modellazione
3D Blender per il rendering grafico e combina informazioni geografiche e semantiche per
definire posizioni accettabili dove introdurre le istanze. Questo processo consente di creare
immagini sintetiche in mediamente 10 secondi per immagine, con istanze in posizioni to-
talmente realistiche nell’85% dei casi. Queste immagini sono poi state utilizzate per fare
fine-tuning di una rete neurale per classificazione binaria delle scene, portando a lievi
miglioramenti delle prestazioni.

Parole chiave: discariche illegali, identificazione di rifiuti, dati sintetici, augmentation
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1| Introduction

Environmental risk assessment is the set of practices and measures to evaluate the likeli-
hood and descending effect entity of the potential harm caused by human activities to the
environment and all of its inhabitants, with the aim of safeguarding the planet as well as
guiding decision-making to counteract such harm. [1, 2]. In this context, illegal landfills
represent a paramount issue for multiple reasons. First of all, such waste sites are signif-
icantly dangerous for the environment and for peoples’ health, since massive amounts of
untreated waste might severely pollute soil by leaching great quantities of heavy metals,
thus inducing a severe risk where these landfills are located close to agricultural areas [3].
In addition, illegal landfills usually contain hazardous materials and frequently happen
to be burnt for disposal, thus leading the aforementioned materials to release in the air
thousands of cube meters of lethal compounds and fumes [4]. Taking this into account,
it is not surprising that a recent study [5] also identified a positive correlation between
the presence of illegal landfills in a municipality and the mortality and hospitalization in
the same area for multiple serious diseases, such as leukemia, cancer and tumors. Finally,
beside being accountable for all these health-related issues, illegal landfills also represent
a major artifact of waste trafficking, a frequent crime in Europe, which is centered on
bypassing regulations in order to reduce waste disposal costs [4].

For all these reasons, in December 2022, the European Union launched a 3-year project,
named PERIVALLON, aimed at developing solutions to counteract environmental crimes
by leveraging the most cutting-edge technologies in fields such as Artificial Intelligence
(AI) and Computer Vision (CV) [6]. These fields, often exploiting methods from the Deep
Learning (DL) area, such as Convolutional Neural Networks (CNN), have recently been
thriving with works aimed at promoting modern approaches in waste management, with
topics ranging from chemical analyses of waste to the design of innovative applications
such as smart bins or waste-sorting robots [7]. Numerous studies from all over the world
have also addressed the complex task of illegal landfill detection [7], which consists in
trying to determine the presence of illegal landfills in Remote Sensing (RS) images, i.e.
images captured by UAVs or satellites, with the eventual aim of accelerating the site
identification process while relieving the necessity for physical site inspection [8].
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Recent studies approach this task with the implementation of custom CNNs, sometimes
supported by a Feature Pyramid Network (FPN) [9] to account for the multiple scales at
which a landfill might appear in an aerial image [8, 10, 11]. However, these approaches
face the serious issue of data scarcity since obtaining the necessary labels to effectively
train a CNN usually requires technical expertise [8] and might be a significantly time-
consuming process [10]. To overcome this limitation, multiple approaches have already
been attempted; for instance, some studies focused on creating benchmark datasets [10,
12], whereas others applied methods from the area of Weakly/Self-Supervised Learning
[13]. In this context, the adoption of synthetic data to augment the training dataset has
already proven promising for waste detection [13, 14], even though hindered, sometimes,
by a poor realism in the artificially generated images [13].

This thesis aims at proposing an alternative approach in the field of Synthetic Data
Augmentation (SDA) for illegal landfill detection, based on the implantation in RS images
of various object structures for multiple waste categories.

The contributions of this work can be summarized as follows:

• We design a pipeline leveraging Blender, a popular 3D modelling tool [15], to intro-
duce synthetic waste instances in RS images. This pipeline also combines geographic
and semantic information to determine realistic locations where to insert instances.

• We evaluate qualitatively and quantitatively the performances and outputs of such
approach and observe that it allows to generate synthetic images in averagely
≈ 10 seconds per image, with instances appearing in totally realistic locations in
85% of the cases. Furthermore, fine-tuning experiments highlight that extending
the training set with synthetic images usually results in increases in F1 and recall,
in spite of decreases in accuracy and precision.

The rest of the thesis is organized as follows:

• Chapter 2 discusses a set of studies related to the work presented in this thesis. A
first part focuses on approaches for landfill and waste detection, whereas a second
one describes recent approaches adopting synthetic data.

• Chapter 3 presents the designed method for data augmentation focusing on the de-
tails of the input information and of all the phases that allow to introduce synthetic
waste instances in RS images.

• Chapter 4 describes the conducted experiments for quantitative and qualitative
evaluation of the proposed method. An introductory part is dedicated to the exper-
iment environment and to practical configurations of some of the inputs.
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• Chapter 5 presents the conclusions by resuming the work of this thesis. This
chapter ends with a presentation of opportunities for future work.
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2| Related work

2.1. Illegal landfill detection

Illegal landfills represent a serious problem for people’s health and for the environment
safety, having been proven accountable for numerous hazards [16]. A major threat is
represented by waste leachate, which might contaminate soil and pollute underground
water by releasing significant quantities of heavy metals [3, 16]. In addition, criminal
organizations frequently happen to set fire to waste disposals with the aim of deleting
evidence of the presence of hazardous materials, thus allowing for diffusion in the air of
a wide range of dangerous chemicals, such as carbon monoxide and dioxide, which are
obtained from the combustion of such materials [4]. All these polluting substances are
severely dangerous for human health and represent the main motivation for the increase
of serious diseases in locations close to illegal disposals [5].

For all these reasons, it is paramount to promptly detect illegal landfills and to steadily
counteract their diffusion or expansion. In this regard, governments have already per-
formed various attempts, such as installing cameras to ease monitoring and patrolling
[17] or requesting citizens to signal potential anomalies [18]. However, these methods
generally result in failures while requiring also a significant contribution from human
entities, a contribution which can nowadays be relieved thanks to the latest technologi-
cal advances in the field of landfill detection. A historical overview of such advances is
presented in the following section.

2.1.1. State-of-the-art approaches

Early approaches to landfill detection date back to the ending decades of the previous
century, when studies still leveraged human interpretation and suggested that aerial im-
ages allowed to determine size, location and composition of waste sites, along with their
chronological evolution where historic images were available [19–21]. In those years, it
became also apparent that support might have arrived from aerial thermographic images
obtained via infra-red cameras, leveraging the discovery that temperature in waste sites
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was anomalous with respect to their surroundings [22]. Then, in the early years of the new
millennium, remotely sensed data and digital ortho-photos allowed to shift to approaches
based on image processing, with particular attention to spatial and spectral features of
areas close to the dumping sites [23, 24]. This trend in spatial analysis continued until the
last years of the decade, when these approaches were integrated with data from external
sources, such as demographic and geographic data from GIS systems [25, 26], and satellite
images started to gain popularity and to be reckoned promising [27].

However, in 2015, the state of the art for illegal landfill detection had not progressed
significantly from what just mentioned, as Glanville et al. [28] asserted in their article.
Moreover, these scholars also observed that most of the previous studies had been con-
ducted in Europe, Japan and in the US, thus completely neglecting other parts of the
world, such as the country they lived in, Australia. Given these shortcomings, the authors
tried to identify the technical requirements for advances in landfill detection and asserted
that Remote Sensing images had a great potential yet not fully explored. However, they
also observed that, most likely, serious advances would have required the adoption of very
high resolution images, such as aerial images or those which satellites were expected to
provide only a few years later.

High resolution images became central in the work by Selani et al. [29], which is
also one of the first studies to apply Machine Learning (ML) approaches to illegal landfill
detection by addressing this problem as a classification task. To solve this task, the authors
created a custom dataset of 610 multi-spectral satellite images, which they labelled into 6
categories, with 2 of them referring to waste. Subsequently, the scholars trained 2 different
models, a Support Vector Machine [30] and a Random Forest (RF) [31] and notice that
the first outperforms the latter. Nevertheless, RF have been adopted also recently by
Ulloa-Torrealba et al. [32], in a method that combines a RF model with a segmentation
approach to detect waste on the streets via aerial images and GIS data.

Selani et al. [29] inaugurated what has now become the main trend in landfill detection,
i.e., the use of AI methodologies. In this sense, the last few years of research have been
dominated by approaches leveraging CNNs and DL methodologies.

In 2019, Abdukhamet [33] considered illegal landfill detection as an object detection task
and he addressed it with a RetinaNet [34] in which the backbone had been replaced by
a DenseNet [35]. Then, he built a dataset of more than 2000 images from the Shanghai
area and labelled them manually with bounding boxes to highlight the garbage. This
approach resulted in an average accuracy of 84.7% when setting the IoU parameter to
0.3. Furthermore, he observed that (i) results could be improved with some geometric
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data augmentation, such as flipping and rotation, as well as that (ii) different results
could be obtained by changing the size of the input, since a different amount of context
information was available.

Two years later, in 2021, Youme et al. [36] followed a similar approach to detect
instances in images caught via drones in Saint Louis, Senegal. For this work, 5000 images
were manually labelled with bounding boxes to train a Single Shot Detector [37] which
demonstrated to perform well even though detecting a high number of false positives.

In the same year, Devesa and Brust [38] addressed the problem as an object segmenta-
tion task leveraging the increasing availability of open satellite images from the Buenos
Aires area. The authors trained a UNet [39] on a dataset of almost 2000 6-band man-
ually annotated images and achieved 63% IoU. They also conducted ablation studies by
removing some of the bands in each image, but the best model still resulted to be the one
trained with all 6 bands.

In 2022, Shahab and Anjum [40] designed a multi-path CNN to address the detection
problem as a binary classification task (waste/no-waste). Since no benchmark dataset
was available at the time, the authors created their own custom dataset with 6000 images
per class by collecting the candidates from various sources on the Internet and placing
in each category only those images that were classified as such by both the authors after
visual inspection. Images in the non-waste class contained no instance of waste, whereas
positive images contained instances occupying at least a fourth of the whole picture.
Upon training, 9000 images (75% of each class) were used for training and validation,
whereas the remaining 3000 were used for testing. The model demonstrated to perform
exceptionally well, achieving 98.33% overall accuracy.

Finally, in 2023, Sun et al. [10] spent 6 months, supported by 12 experts, to create
and label a dataset with 2200 sub-meter GSD images, containing 2500 dumpsites from
multiple cities in the world, divided into 4 classes. Subsequently, they designed and
trained a custom deep CNN, called BCANet, using the Faster R-CNN [41] as baseline.
Such network managed to detect more than 98% of the landfills when trained with some
geometric augmentation to relieve class imbalance. The authors claim that this method
might reduce of 96.8% the inspection time to detect illegal landfills.

In this rich environment of works, two notable studies were published by Torres et al.
[8, 12]. The first of these studies addresses the problem of illegal landfill detection as a
multi-scale scene classification task. In order to solve it, the authors created, with the
aid of experts from a local governmental environmental agency, a dataset of 3000 sub-
meter-resolution images from Northern Italy, purposely designed with a higher number
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of negatives to specifically account for real imbalance. Then, they trained a CNN with a
ResNet50 [42] backbone, pre-trained on the ImageNet [43] dataset and augmented by an
FPN, which should allow it to better account for multiple scales. This model achieved
88% precision and 87% recall on the test set. Subsequently, the obtained results were
evaluated both quantitatively and qualitatively. From the quantitative point of view, the
authors considered standard metrics, such as average precision and F1 score, as well as
the Expected Calibration Error, which describes how reliable a model output confidence
is with respect to the actual confidence of an image belonging to a certain class. The
authors assert that the found error levels are valid and, therefore, that the model may be
adopted by analysts. For qualitative analysis, the authors extracted and analysed Class
Activation Maps to detect which portions of an image affect the output confidence the
most. The model seems to behave well in this context, identifying in most cases the same
areas that guided the decisions of expert annotators. This led the authors to eventually
assert that their model might be a useful support to optimize the process of illegal dump
detection.

In their second work [12], Torres et al. published AerialWaste (AW), an extended
version of the dataset adopted in the previous study. This dataset contains more than
10,000 sub-meter resolution images from 3 different sources and it is suitable for multiple
tasks: binary/multi-label classification and weakly supervised localization. In order to
verify the validity of these images, the authors trained the same model presented in the
previous study on images from AW, achieving 82% precision and 80% recall.

Following the future work suggestions by Torres et al. [8], Fasana et al. [13] addressed
illegal landfill detection with weakly supervised approaches. In their work, the authors
considered the detection problem as a multi-label classification task and evaluated sev-
eral methodologies, such as training set extension, transfer learning and self-supervised
learning, to counteract the major problem of data scarcity. Then, they trained the model
proposed by Torres et al. [8] for each of those methodologies, achieving the highest results
when augmenting the dataset with synthetic data.

This type of data has been adopted also by Padubidri et al. [14], who proposed, in
2022, a different DL approach addressing high-resolution airborne images from the city
of Houston, USA. The authors trained 2 different models: a basic CNN with 3 hidden
layers and a model composed of residual blocks. Given the unavailability of positive data,
the authors adopted a synthetic augmentation approach leveraging the 3D modelling
tool Blender [15] to implant waste instances in aerial images. Then, they could train the
models using as positives the synthetically augmented images and few real positives, while
leaving the other real positives for the test set. After training the models, the authors
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achieved 98% precision and 90% recall with the CNN model as well as 97% precision and
92% recall with the residual one.

2.2. Synthetic data

For the concept of Synthetic data no definition has been universally accepted yet. How-
ever, by combining multiple sources, it is possible to agree that synthetic data are artifi-
cially obtained as output of some mathematical process or algorithm without leveraging
direct measurement, unlike real data [44–47]. Throughout the last decade, synthetic data
have been used in several ML contexts, such as Natural Language Processing or bioinfor-
matics, even though the field which most benefited from this practice is CV [47]. Such
a wide adoption of this approach is motivated by two main reasons. Firstly, synthetic
data allow to easily gather a significant quantity of information, enough to train complex
supervised models, from even rare or dangerous situations and without major privacy con-
cerns. Secondly, they offer the possibility to automatically annotate the generated data,
an opportunity which is incredibly valuable in CV, where obtaining labels such as bound-
ing boxes or object segmentations usually results in prohibitive costs [48]. In addition,
this type of data have already proven to be really effective, achieving results comparable
with those obtained by models trained with only real data, while being efficient in terms
of economic and temporal costs [48].

Given the scope of this thesis, this section focuses on the different approaches involving
synthetic data in the field of CV with specific attention to the two main directions that
can be followed when dealing with these data [47]: using them (i) to build standalone
datasets or (ii) to augment real datasets with the aim of improving results from model
training.

2.2.1. Fundamental works

To this day, synthetic data have already been adopted for a wide range of tasks, from
optical flow estimation to depth estimation, from semantic segmentation to 3D scenario
reconstruction [49]. However, throughout the last few decades, a specific field, i.e., au-
tonomous driving, has always pioneered approaches in this context, with studies involving
synthetic data being publicly released since the late 80s [48]. To support advances in this
field and a major task for it, i.e., urban Semantic Segmentation (SS), a few significant
synthetic datasets were released in 2016.

The SYNTHIA dataset [50] counted more than 213,000 photo-realistic snapshots of a
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virtual city created with the Unity development platform [51] and showing significant
realism and variability. In this virtual scene, almost every element could be changed
dynamically, from object textures to lighting, from weather and seasons to the camera
view-point, thus allowing the output images to be as diverse as possible while lowering
the required effort for potential future extensions. Furthermore, being all such images
obtained via rendering of a virtual environment, the authors were able to automatically
generate SS labels with pixel-level accuracy for 13 classes, thus reducing sensitively the
temporal costs for annotation. The dataset was then tested on 2 different networks and it
demonstrated incredible performances when combined to real images, providing in some
cases accuracy improvements of more than 10%.

(a) Color image (b) Annotation

Figure 2.1: Example from the SYNTHIA dataset. From [50].

The Virtual KITTI dataset [52] contained only 17,000 frames collected in 35 photo-
realistic synthetic video sequences for several CV tasks, such as scene segmentation and
optical flow estimation. In order to create such sequences, the authors leveraged a selection
of 5 real urban videos from the KITTI dataset [53] to initialize camera parameters and to
virtualize the real scenes by cloning objects into similar publicly available assets. Then,
the authors created 7 variations of each video, differing in environmental settings such
as weather and illumination, and automatically generated their ground-truth annotations
(Figure 2.2). The authors, assessing pedestrians to be complex to animate, focused only
on the class of cars and conducted some experiments on it. With these experiments,
they demonstrated that virtual pre-training followed by real-world fine-tuning allowed a
significant increase in deep model performances, whereas the changing of scene conditions
was accountable for serious deteriorations.

An additional paramount work for the task of urban SS is represented by a dataset
of 25,000 images from the popular videogame Grand Theft Auto V [54]. To extract
these images, the authors applied a technique called detouring, which allowed them to
obtain the standard video game images and pixel-accurate annotations (Figure 2.3a).
By introducing a wrapper at the graphics API level, the authors could intercept all the
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(a) Base clone (b) Camera rotated left 15° (c) Camera rotated right 15°

(d) Overcast weather (e) Fog (f) Rain

(g) Morning (h) Sunset (i) Ground-truth label

Figure 2.2: Example from the Virtual KITTI dataset. Original image, variations and
segmentation label. Adapted from [52].

rendering commands and the related resources, i.e., mesh, shaders and textures. Then,
they could duplicate the render pass to produce two images: the usual color image from
the videogame and an image where each pixel was given a value depending on a hash
of its <Mesh-Texture-Shader> (MTS) combination (Figure 2.3b). Subsequently, they
applied a rule mining method to group the MTS combinations by occurrence frequency
and they adopted a simple interface to manually annotate the MTS into the final classes.
This interface also allowed them to propagate the mapped classes to all other images
where the just-annotated MTS appeared, thus requiring only a single annotation for each
MTS. As a result of this, the authors were able to obtain pixel-perfect annotations in
only 49 hours, a time which is almost 3 magnitude orders lower than what they could
have expected from manually labelling each pixel. In addition, experiments showed that
with just 1/3 of the CamVid dataset [55] and all the synthetic images it is possible to
outperform models trained solely on the CamVid dataset.

A similar approach was adopted by Butler et al. [56] to create the MPI-Sintel dataset,
which addressed the task of optical flow estimation, another task which is significantly
affected by data scarcity, given the absence of sensors for natural motion measurement.
The MPI-Sintel dataset was built leveraging Sintel, an open-source short movie produced
with Blender [15]. Given the open-source nature of such video, it was easy for the authors
to access all the code to generate it. Therefore, they were immediately able to edit ren-
der passes in the Blender [15] motion blur pipeline and obtain different rendered images,
including the necessary ground-truth annotations. In particular, to obtain such annota-
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(a) Original images and their final ground-truth annotations. .

(b) Segmented images with pixels grouped by MTS.

Figure 2.3: Examples from the Grand Theft Auto V dataset. From [54].

tions, the authors replaced, in a specific render pass, color vectors with motion vectors,
thus producing images that represented the motion of each pixel (Figure 2.4). Finally, to
build the dataset, they extracted 35 clips of 50 frames each, thus providing 49 flow images
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each. On this dataset, the authors experimented common estimation methods and noted
that those who used to work well with available benchmarks performed definitely worse
on this dataset, thus opening a wide space for future research.

Figure 2.4: Examples of frames and related motion images from the MPI-Sintel dataset.
Adapted from [56].

2.2.2. Approaches in Remote Sensing

In the recent years, synthetic data have become more and more relevant also in the field
of RS, another field in which data acquisition and publication on a large scale have proven
significantly complex for several reasons. Among these, the costs for image collection and
major privacy concerns are paramount causes of the general availability of small datasets
[49]. In this context, synthetic data have emerged as a valuable resource to overcome
current limitations and, therefore, they have been adopted for multiple different tasks.

One of the first works in this field [57] consisted in the creation of Synthinel-1, a dataset
for building segmentation released in 2020 and composed of more than 2,000 synthetic
overhead images at 0.3 m/px resolution. These images were obtained via CityEngine [58],
a 3D modelling software specifically designed to create urban aerial images, allowing the
creation of large virtual worlds with multiple styles. Among these, the authors selected a
set of 9 styles (Figure 2.5) to simulate cities all over the world, thus overcoming geographic
shortcomings of most of the available real datasets. Cities are created with a 2-step
process: first, the road network is randomly generated, then the areas in between the
roads are populated with models such as buildings, trees or landscapes. The resulting
images were used to train 2 deep learning architectures by augmenting real datasets. The
authors found, after ablation studies, that the best models can be obtained by considering
a subset of all the images which excludes those generated with specific styles. In such
case, they noticed improvements both in within-domain and out-of-domain tasks.
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Figure 2.5: Selected styles for Synthinel-1 aerial synthetic images. From [57].

One year later, Shermeyer et al. [59] released RarePlanes, a dataset composed of both
real and synthetic images (Figure 2.6) and targeting the task of aircraft detection. In
this dataset, the 253 real images contain 14,700 annotated aircraft whereas the 50,000
synthetic images account for 630,000 annotations. To obtain the synthetic images, the
authors first combined a proprietary GIS framework and geospatial vectors to create
airport sites. After adding runways, they imported the newly-created airport scene in
Unreal Engine [60], and spawned aircrafts in it. Then, they adjusted parameters defining
weather, illumination and the surrounding biome to increase the image variability. After
performing some experiments, the authors noticed that the dataset they created allowed
to achieve the same training results as a 100% real dataset with one composed for 90% of
synthetic images.

Figure 2.6: Examples of real (top row) and synthetic (bottom row) images from the
RarePlanes dataset. Adapted from [59]
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After noticing that most of the available works involved complex designs and could not
be replicated, Xu et al. [61] decided to systematize a simple and reproducible method,
called SIMPL, for creating synthetic overhead images. This method consists in implanting,
via CityEngine [58], 3D models into real sub-meter-resolution satellite images, used as
background to enhance realism. To compose the virtual scene, a ground plane is first
introduced with an overhead image applied as texture; then, 3D models are randomly
placed in the scene and some user-defined parameters are leveraged to define the object
visual properties and other settings such as lighting. Finally, the image can be rendered
and annotations can be automatically generated. The conducted experiments show that
images created with this method improve training performances for the tasks of zero-shot
and few-shot detection.

Figure 2.7: The SIMPL procedure for synthetic aerial images generation. (a) is a real
image for background, (b) is a 3D object model, (c) is the set of parameters
to build the scene. From [61]

Synthetic data have also been recently used for waste detection. In 2022, Padubidri
et al. [14] addressed this problem as a binary classification task (dumping/no-dumping).
They extracted and visually annotated 29,000 patches from a dataset of high-resolution
aerial images from the city of Houston. Among these patches, they could annotate only
176 positives, thus highlighting the common problem of positive instance scarcity in the
context of waste detection. In order to solve this issue, the authors randomly selected 2,000
negative images and edited them with the introduction of dumping instances by means
of Blender [15]. Then, they trained two different networks on a training set composed of
16,000 negative patches, the 2,000 synthetic images and 35 real positives. The trained
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models showed similar high performances, achieving both more than 97% precision and
more than 90% recall on a test set completely composed of real images.

In the same field, also Fasana et al. [13] attempted an approach involving synthetic
data. In particular, they adopted these data to augment images from the AW dataset [12]
when exploring various weakly supervised approaches to overcome data scarcity for the
multi-label classification task. The authors created synthetic images by extracting waste
patches from positive samples and pasting them into negatives with small alterations,
such as patch border blur and patch rotations. Despite noticing that this method usually
created unrealistic positives, they also obtained the best results when training the chosen
architecture with this augmentation.

Finally, in 2023, Song et al. [49] published SyntheWorld, a large dataset composed
of 40,000 synthetic images with sub-meter resolution addressing the tasks of land cover
mapping, building segmentation and building change detection. The images were obtained
by combining Blender [15], a 3D modelling tool, with several Python scripts. Among these,
two specific scripts allowed the authors to generate urban scenes with a road grid and
natural scenes with rivers or mountains, in which models were introduced by exploiting the
Geometry nodes Blender feature. Other scripts accounted for randomization of the light
and camera parameters, whereas Blender allowed to procedurally generate buildings and
trees for an increased variability. Furthermore, the authors leveraged recent generative AI
models to create seamless textures for various scene objects, such as roofs or roads. Finally,
after conducting experiments for all the tasks addressed by the dataset, the authors
noticed that SyntheWorld outperforms other synthetic datasets in building segmentation,
it improves network performances when combined with portions of real datasets in land
cover mapping, and it achieves acceptable results in building change detection.

(a) Semantic Segmentation (b) Building change detection

Figure 2.8: Examples from SyntheWorld. Adapted from [49].
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This section describes the designed method to augment RS images, which is similar to
the SIMPL method presented in [61] with the main differences being that, in this case,
objects are arranged in complex structures and that their placement depends on the image
context. With this method, we can generate 3 structures, Heaps, Stacks and Scattered
objects, for 3 waste categories from the AW dataset [12], Tires, Rubble/excavated earth
and rocks (henceforth, Rubble) and Bulky items (Figure 3.1).

(a) Heap of Rubble (b) Stacks of Tires (c) Scattered Bulky items

Figure 3.1: Object structures and waste categories.

The designed method was implemented, for the graphical part, with Blender [15], a
popular 3D modelling tool which can also be controlled via Python scripts, thanks to the
bpy library. Therefore, the whole procedure was completely automated, thus requiring no
human intervention to complete.

The following sections describe more in detail the designed augmentation pipeline and
all the necessary inputs.

3.1. Inputs

The designed pipeline leverages several external inputs, which are needed for differ-
ent tasks in the pipeline: the AW images and the 3D models are used in the graphical
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part, whereas all other inputs support the process of defining legal positions for instance
placement.

This section describes all the inputs and their features, leaving the technicalities about
their usage to the next sections, which focus on the specific processes involving such
inputs.

3.1.1. AerialWaste

AerialWaste is a dataset of RS images developed as a collaboration between Politecnico
di Milano and ARPA Lombardia, the environment monitoring agency of Region Lom-
bardy, Italy. Being it mainly developed at the same institution where this thesis work
was conducted, it has been possible to take advantage of additional information, such as
location of the areas in the images, information which is not in the public domain for pri-
vacy concerns. Furthermore, at the time this work was conducted, an extended version of
the dataset presented in [12] was already available within the research group. Therefore,
for this thesis, such version was adopted and all the statistics in these pages refer to it.

The dataset contains 10,977 images from 3 different sources (Figure 3.2) but all covering
a squared area with a side of 210 meters. However, since the different sources provided
images with different Ground Sample Distance (GSD), images from each source vary in
their average size. In particular:

• AGEA images are the result of an airborne campaign launched in 2018 by the
Italian Agriculture Development Agency (AGEA). These images have a GSD of
≈ 20 cm/px and a size of ≈ 1000× 1000 pixels.

• WorldView-3 images are high-resolution pan-sharpened RGB satellite images cap-
tured in 2021. They have a GSD of ≈ 30 cm/px and a size of ≈ 700× 700 pixels.

• Google Earth (GE) images were downloaded with the Google API. Their original
sampling resolution is ≈ 50 cm/px but they have been up-sampled with scale factor
2, thus resulting in having a size of ≈ 1000× 1000 pixels.

AerialWaste is originally split in training set (75%) and test set (25%) and it has been
annotated by professional photo interpreters to support 3 different tasks:

• For binary classification, images have been annotated as positives (containing a
landfill) or negatives (no landfill), with the distribution shown in Table 3.1.

• For multi-label classification, some positive images have been further annotated
to describe the type of object (15 categories) in the landfill and its storage mode (7
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(a) AGEA (b) Google Earth (c) WorldView-3

Figure 3.2: Examples of AerialWaste images from different sources.

Set Positives Negatives Total

Training 2793 5579 8372

Test 866 1739 2605

Total 3659 7318 10977

Table 3.1: Distribution of positives and negatives for binary classification in the Aerial-
Waste dataset.

categories). All such categories, along with their distributions across training and
test set, are displayed in Table 3.2. Visual examples can be found in Figure 3.3.

• For Weakly-supervised localization some images have been annotated with a
segmentation mask surrounding the waste objects, as shown in Figure 3.3.

In this thesis, AW provides the background images for augmentation, which are also
a necessary input for some phases of the instance placement process, such as Semantic
Segmentation (SS) or Shadow Detection (SD).

3.1.2. 3D models

3D object models are paramount for the augmentation process, since they are the basic
components of the structures to implant in the background images. When building such
structures, the core idea is to leverage models of single objects instead of off-the-shelf
models of the structures themselves. This choice was motivated by a pair of reasons:
firstly, introducing in multiple images the same model of the entire structure would reduce
variability in augmentation and, secondly, available models for these structures are usually
obtained via 3D scans of real instances, thus introducing in the model also portions of the
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Name Training Test Total

Rubble/excavated earth and rocks 314 66 380

Bulky items 317 44 361

Fire Wood 163 38 201

Scrap 185 27 212

Plastic 133 24 157

Vehicles 44 26 70

Tires 39 13 52

Domestic appliances 21 5 26

Paper 28 5 33

Sludge-Zootechnical waste-Manure 19 4 23

Foundry waste 9 1 10

Stone/marble processing waste 15 1 16

Asphalt milling 9 3 12

Corrugated sheets (presumed asbestos-cement) 14 1 15

Glass 7 2 9

Heaps not delimited 491 93 584

Full container 115 54 169

Big bags 53 19 72

Full pallets 69 7 76

Delimited heaps (by barriers/walls/etc) 53 31 84

Cisterns 32 9 41

Drums bins 18 2 20

TOTAL 2148 475 2623

Table 3.2: Distribution of categories for multi-label classification in the AerialWaste
dataset.

real scene or ground plane, which would eventually result in patches with a sharp border
contrast with the background image. Therefore, structures are built by exploiting single
objects and leveraging specific Blender features, as discussed in Section 3.3.

Nevertheless, concerning the adopted models, the designed method followed different
approaches for the different waste types supported: for the cases of Tires and Bulky
items, the models were downloaded from the Internet, whereas, for the case of Rubble,
the singular shards were procedurally modelled. All the models from the Internet were
freely downloaded from SketchFab [62] under the CC-BY license and manually adjusted
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Figure 3.3: Examples of manual segmentations of waste instances in aerial images of the
AW dataset. TO = Type of Object. SM = Storage Mode. From [12].

in Blender. These adjustments were mandatory, since the Blender scene is completely
described with metric measures and most of the downloaded models were provided with
excessive dimensions. Therefore, in order to obtain models with realistic sizes, these were
applied some geometric transformations, such as scaling. As already said, instead, the
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(a) Tires (b) Bulky items (c) Rubble

Figure 3.4: Blender collections for the different waste types.

atomic rubble shards were created via procedural modelling; the followed approach is
described in Appendix C.

Finally, all the models belonging to a specific waste type were grouped in a Blender
collection, thus allowing them to be used as a single input by the Geometry nodes described
in Section 3.3.

3.1.3. DUSAF7.0

DUSAF7.0, acronym for Destination of Use of Soils for Agriculture and Forests, is the
seventh version of a digital map project launched in 2000/2001 by Regione Lombardia,
providing land cover information for the entire region updated to 2021. To realize this
digital map, the annotators worked with AGEA orthophotos with a GSD of 20 cm/px.

The dataset is officially provided by Regione Lombardia through its online geographic
portal [63] as a set of vectorial data (in the shapefile format), thus representing the region
in terms of polygons described by geographic coordinates. Each of these polygons, which
has, by design, a minimum perimeter of 20 meters and a minimum area of 1600 m2, is
assigned a label describing its land use. All the available land uses, listed in Appendix A,
have been collected and organized in a 5-layer hierarchy extending the original 3 layers
of the CORINE Land Cover [64] legenda to account for peculiarities of the territory of
region Lombardy.

In this work, polygons could be extracted for each of the images in the AW dataset by
leveraging the geographic information available solely within Politecnico di Milano. For
each image and for each polygon, then, the geographic coordinates have been converted
into pixel coordinates, in order to foster integration with the information extracted from
other datasets. This integration will be described in detail in Section 3.4.

Beside this polygonal information, DUSAF7.0 describes also hedges and tree lines. How-
ever, the representation given to these entities is that of a simple line, thus considering
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only their length and neglecting other relevant dimensions, such as their width. In ad-
dition, as revealed by Regione Lombardia in the official description to the DUSAF7.0
dataset, these entities have been annotated only when their length was greater than 5
meters, thus ignoring all other instances of hedges or tree lines. Given these limitations,
this kind of information was considered unhelpful and, therefore, it has not been included
in any step of the augmentation method.

Figure 3.5: Examples of images from the AW dataset with overlaid polygons from
DUSAF7.0.

3.1.4. DTM5x5

The DTM5x5, where DTM stands for Digital Terrain Model, is a dataset officially
released by Regione Lombardia through its online geographic portal [63] and describing
the distribution of altitudes throughout the Lombardy region. This dataset provides
raster data, i.e., a grid of data where each point is associated a value. On this grid, each
point is 5 meter distant from its 4 direct neighbors, thence the "5x5" in the dataset name.
The altitude value refers to the terrain level for both urban and extra-urban locations,
whereas it refers to the water level for geographic points on lakes or water reservoirs.

According to the official description provided on the online geographic portal, this
dataset is mainly obtained by combining data from a topographic database with those
from Lidar campaigns, filling regions without data with information from a previous DTM
with a resolution of 20 meters. The topographic database was divided in lots with multiple
scales and resolution, with a higher scale implying a higher altitude accuracy. The com-
bination of data was then harmonized according to level curves, thus creating a vectorial
terrain model.

Despite being realized with the most updated data in 2015, to the best of our knowledge,
this is still the best dataset conforming to our needs. Since images in the AW dataset
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refer to locations in different provinces of the Lombardy region, it was necessary to find
a DTM or DEM (Digital Elevation Model) covering the whole region. However, all the
datasets complying to this requirement had a lower resolution, usually ≈ 30 meters. On
the other hand, Regione Lombardia provides also a continuous value map for DTM data,
which however covers only the Sondrio province.

3.1.5. OpenEarthMap

OpenEarthMap (OEM) [65] is a dataset consisting of 5000 images suited for the task
of land cover mapping, a SS task for RS images. The dataset images were extracted from
several different sources and represent areas from all over the world, with the aim of com-
posing a dataset with a high geographic variability and incline to increased generalization
towards unseen regions. For these reasons, the authors introduced in the dataset also
images openly available, thus providing samples also for those regions which had been
neglected in most-used datasets.

Given the different provenance of the images, these usually have a different size and a
different GSD even though, for the latter aspect, all the sources provide images in the
range of 25-50 cm/px. In addition, since the dataset is intended for semantic segmentation,
it also contains a set of labels, which classify each pixel into 8 possible classes. These are:

• Bareland : a land without vegetation but dominated by rocks, sands or other
earthen materials;

• Rangeland : any land covered by shrubs or other non-cultivated vegetation;

• Developed space : an area covered with artificial materials such as asphalt, con-
crete, bricks or tiles;

• Road : any area on which a vehicle might move, such as streets, airport lanes or
bicycle lanes;

Figure 3.6: Examples of images and labels from the OEM dataset.
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• Tree : single instances and groups of trees;

• Water : any water body, such as rivers, lakes and swimming pools;

• Agriculture land : crops or pastures;

• Building : residential, commercial and industrial buildings.

The dataset labels were obtained after a meticulous annotation process involving 16
people, with 8 people directly performing annotation while the other 8 were employed
only for double-checking. The result is a carefully annotated dataset with a significant
degree of spatial detail. Furthermore, the dataset has already been split in training (3000
images), validation (500 images) and test set (1500 images), though labels have been
published only for the first two portions. To verify training results on the test set, it is
necessary to upload an archive containing the output predictions on the related CodaLab
page [66].

For this thesis, OEM was used to train a network for SS, which contributes to the
process of instance placement.

3.2. Scene setup and rendering

This section provides an overall description of the designed method, which consists
of a sequence of phases (Figure 3.7) to render a Blender virtual scene where instances
of waste structures are created and positioned on top of a background image. In this
section, the focus is on the generic scene construction and on the final rendering phase;
the Instance placement and Instance creation parts are carefully described in the following
sections. As a note for the sake of precision, in order to totally comply with the reference
system adopted by Blender, all the following descriptions will assume a right-handed z-up
reference system.

The scene setup starts with the creation of a Plane mesh, which visually is a simple
rectangle with only 4 vertices, one for each corner. Since this mesh will act as background

Figure 3.7: The pipeline and its phases, with focus on Scene setup and Rendering.
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for all the synthetic waste instances, it can be positioned to lie on the xy plane, orthogonal
to the z axis. Given that all images in the AW dataset [12] cover a squared area with
a side of 210 meters, the introduced plane is created with such a size. Subsequently, to
complete the background construction, the plane is applied as texture the chosen aerial
image.

At this point, a camera is introduced, since it will be mandatory for rendering the
scene. In order to center the camera projection plane with the center of the background
image, the camera is placed on the z axis, in the positive region and pointing downwards,
sufficiently far from the plane to never intersect any eventual waste instance. Furthermore,
given that the background image is originally from a satellite or an aerial vehicle, the
camera is chosen to be orthographic, i.e., a camera that renders images according to an
orthographic projection, thus simulating well the behavior of an observer significantly far
from its target. Finally, to ensure the rendering will cover the whole image and nothing
more, the field of view of the camera is set to be square and to return an image with the
same size as the original one.

In order to guarantee realism in the scene and, above all, to allow the instances in it
to cast shadows, a light source must be added. In this case, considering that the content
of the background image is always an open-air scene, it would be useful to introduce a
light source to emulate the Sun. For this reason, a directional light is introduced, i.e.,
a light whose beams hit the surface in all points with the same direction, a good choice
to emulate the effect of a real source significantly far from its target. Since most of
the images in AW have shadows directed North-West, the light source is rotated and
translated to be positioned in the fourth quadrant of the xy plane, with a positive z

coordinate. Furthermore, in order to improve realism and avoid sharp shadows on the
background, a white ambient light is added as well.

Once the scene is set up, the process can proceed with the determination of the location
for instance placement along with the dimensions and rotation of the instance, as described
in Section 3.4. After defining these parameters, the instance is created with the method
thoroughly described in Section 3.3.

Once all instances have been created and placed, the scene is rendered from the per-
spective of the orthographic camera introduced before (Rendering phase).
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Figure 3.8: Representation of the Instance creation phase. Top line: the procedure to
create Heaps. Bottom line: the procedure for Stacks and Scattered objects.

3.3. Instance creation

The designed method allows to arrange objects in 3 different structures, Heaps, Stacks
and Scattered objects, for which examples are provided in Figure 3.1. In order to create
such structures, the method mostly leverages Geometry nodes, a Blender feature that
allows the definition of specific configurations to procedurally edit an input geometry
through a wide range of transformations. However, even though the application of these
configurations as mesh modifiers constitutes the main step for obtaining a visually intel-
ligible structure, this is not the only step needed for creating such structure, as shown in
Figure 3.8.

This section aims at providing a detailed description of all such steps without specific
attention to the actual node configurations. A thorough description of these configurations
and of their components can be found in Appendix B.

3.3.1. Stacks and Scattered objects

The simplest structures to build are Stacks and Scattered objects which only require a
sequence of basic phases and differ solely for the specific node configuration to apply.

To begin with, it is mandatory to introduce in the virtual scene a base mesh, which is a
strict requirement for the application of any modifier. In this case, the chosen mesh is the
Plane which visually is a simple rectangle with only 4 vertices, one for each corner. Since
this Plane will act as ground surface for the object structures, it can be positioned to lie
on the xy plane, orthogonal to the z axis. When inserting the Plane, it is also possible to
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set its size, which is a key factor for the case of Scattered objects.

After importing in the scene the 3D object models to compose the structures, the node
configuration can be created and applied with a modifier to the Plane formerly introduced.
The chosen configuration will receive as input the needed objects and some parameters to
adjust its appearance. Among these parameters, the case of Stacks reckons the number
of objects to stack up as well as the number of rows and columns of stacks, whereas the
case of Scattered objects has only the density of the objects to distribute on the surface.

3.3.2. Heaps

Unlike the procedure for the structures presented in previous section, building Heaps is
a rather complex process because its core idea is to distribute objects on a mesh presenting
hill-like protrusions. However, Blender does not natively provide a mesh with such features
and, therefore, this must be modelled with an ad-hoc procedure.

The Blender mesh which best fits for the required adjustments is the Grid, which visually
is a rectangle, similarly to Plane used in the previous cases, but with vertices also inside
the rectangle, not only on the 4 corners. As the mesh name suggests, inner vertices
are distributed to form a grid, whose number of rows and columns can be defined upon
creation together with the rectangle size. Similarly to the previous case, since the rectangle
will be needed as a surface to lie covering objects on, it can be introduced on the xy plane,
orthogonal to the z axis.

The required protrusions can be obtained by randomly selecting some of the Grid inner
vertices and by positively changing their z coordinate, thus moving such vertices higher
than all others. However, following this editing procedure without additional adjustments
would result in creating pin-like protrusions in the Grid (Figure 3.9a), which would be
sensitively far from the expected results. To solve this issue, it is possible to exploit
another Blender feature, called Proportional edit. By enabling this feature, when changing
the height of a vertex, its neighbors, within a certain custom radius, are lifted as well by
a value proportional to their distance from the selected vertex. In this way, depending on
the chosen radius, it is possible to obtain protrusions with a variable degree of smoothness
(Figure 3.9b).

Nevertheless, applying the Geometry nodes at this point would result in distributing
objects all over the mesh, instead of covering only the created protrusions. Therefore,
rendering such instance with an overhead camera would imply rendering a rectangle cov-
ered with the selected objects. To avoid this situation, it is necessary to constrain object
placement only on the elevated portions of the base grid. This is achievable with the
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(a) Without Proportional edit (b) With Proportional edit

Figure 3.9: Different approaches for lifting vertices

support a Weight paint, a Blender feature which allows to associate a value in the [0,1]
range to each vertex of a specific mesh. Given the procedure followed to create the pro-
trusions, it is easy to notice that vertices belonging to such protrusions are those with a
z coordinate greater than 0. Therefore, in the Weight paint, such vertices can be assigned
value 1, whereas all the others can be given value 0, thus creating a sharp distinction
between the vertices belonging to the Heap and those that do not belong.

From this point on, the process proceeds as in the previous case, with the import of the
covering models and the application of the geometry modifier. Similarly to the other cases,
the node configuration has an adjustment parameter, which is the density of the covering
objects. This value is affected by the Weight paint introduced before: by multiplying the
weight for the given density value, each vertex is assigned a density which is either the
parameter value or 0, with the parameter value being applied only to the points on the
protrusions. Therefore, points outside of the Heap are assigned density 0 and the mesh is
not covered by objects in that part.

Finally, it is worth mentioning that the process described in this section is just a vanilla
version of the actual implemented process. Indeed, in order to improve realism of the
output instances, several small adjustments were added to the method: for instance, the
Weight paint was extended with a halo effect at the heap basis in order to avoid a sharp
contrast between the instance border and the background image.

3.4. Instance placement

One of the main objectives for the whole augmentation process is to create images with
the highest degree of realism. Given this aim, a crucial phase to consider is Instance
placement, i.e., that phase in which various decisions are made to define in which posi-
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tion to implant a synthetic instance. In this context, the simplest approaches are often
either impractical or unfruitful. For example, a potential solution could be to manually
select the implantation location, resulting however in requiring human intervention in a
process which aims at being completely automatic. Otherwise, it is possible to distribute
instances in completely random locations, thus avoiding the need for human intervention
but creating a process incline to place instances in totally unfeasible locations, such as on
water in lakes or reservoirs. To avoid this issue, it is possible to manually annotate all
the images with the legal placement areas; however, this method would result in being
significantly time-consuming, though potentially incredibly accurate. As a consequence,
it is necessary to revert to other approaches which can be totally automated, even though
potentially more complex or less accurate.

The procedure proposed in this work is composed of 2 parts, one offline and one that
takes place during the augmentation process. In the offline part, several sources are
combined to define all the image areas where it would be legal to place a waste instance.
Then, during augmentation, a rectangular portion is identified within such legal areas to
provide dimensions and rotation for the base mesh for creating an instance as described
in Section 3.3.

This section describes in detail both these parts. In the first one, each source contributes
by defining some legal and illegal areas, handled as polygons similar to those obtained
from the DUSAF7.0 dataset, described in Section 3.1.3. Then, the legal polygons from
each source are intersected with those from all other sources, thus defining areas that in
all sources are considered legal. In order to foster visualization, this process is described
in this section in terms of binary masks, where legal areas are associated to color white,
whereas illegal areas are black. A summary of this phase, including the mask combination,
is provided in Figure 3.10.

3.4.1. Land cover

When defining the location where to place a waste instance in an image, it is important
to consider where, in real life, such instance could be located. In this context, the positive
samples in the AW dataset can be a paramount reference, since they show real examples
of landfills, which might guide the placement of synthetic ones. However, these images
provide per se no information about the represented context, thus complicating the ex-
traction of placement guidelines. This information can be introduced with the DUSAF7.0
dataset, described in Section 3.1.3, and leveraged to study which land cover uses are most
frequent in positive images.
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Figure 3.10: The Instance placement phase: input mask combination and effects of erosion
on legal regions. The center of the output rectangle is found in the red areas.

Within this study, for each land cover category, we counted the number of positive im-
ages containing at least one polygon labelled with that category. Then, we performed the
same count for the negative images and converted these absolute values into percentages,
in order to compute a ratio between percentages for the positive and for the negative case.
The results of these computations, which are visualized in the histograms in Figure 3.11,
were analysed to determine which categories are most likely to host a waste instance.
An interesting observation concerns category 2111, Simple arable land, which appears in
a very high number of positive instances. However, this category is also present in a
significant number of negatives and the percentage ratio is approximately 1. This result
suggests that such category is simply very frequent within the dataset, thus preventing it
from further analysis about its likelihood to contain waste instances.

Given this difficulty encountered in determining whether a category is likely to contain
positives, the focus shifted towards the identification of categories which are most likely
not to. These categories were assumed to be those that appear in a restricted number of
positives and were specifically analysed via visual inspection with the aim of identifying
some removable categories. Within this process, we selected all the categories appearing
in less than 100 images and observed them in search of waste instances. If a category
contained no waste instance or a very small percentage of them, it was deemed discardable.
A list of discardable categories is provided in Table 3.3.



32 3| Method

Figure 3.11: Land cover histograms. Category 3112 was excluded from percentage ratio
because the ratio would have been infinite.
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ID Name Occurrences

222 Fruit trees and berry plantations 96
511 Water courses 94

12123 Technological units 58
223 Olive groves 50
2242 Other wood cultures 49
31311 High-density coppice mixed forest 33
3223 Bank vegetation 33
5122 Artificial water bodies 27
331 Beaches, dunes, sands 27

31112 High-density tall-tree broad-leaved forest 25
3222 Riverbed vegetation 17
12121 Hospital units 11
411 Inland marshes 11
5123 Water bodies from extractive aquifer activities 11
3121 Mid-high-density coniferous forest 9
5121 Natural water bodies 7
314 Recent reforestations 4

31122 Low-density tall-tree broad-leaved forest 3
332 Bare rocks 3
3111 High-density broad-leaved forest 3
3114 Chestnut groves 2
31312 High-density tall-tree mixed forest 2
3112 Low-density broad-leaved forest 1
333 Sparsely vegetated areas 1
2313 Water meadows 1
3122 Low-density coniferous forest 0
31321 Low-density coppice mixed forest 0
3211 Natural grasslands without arboreal or shrub-like species 0
3212 Natural grasslands with arboreal or shrub-like species 0
123 Port areas 0

Table 3.3: Removable land cover categories with the number of positive images containing
them (occurrences).

In summary, in the designed augmentation method, the land cover information has
been extracted from the DUSAF7.0 dataset and adopted to determine which land use
categories are highly unlikely to host a waste instance. These categories were deemed
illegal for placement and, therefore, added to the black portion of the related mask, as
shown in Figure 3.12.
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(a) Image form AW dataset (b) Polygons from DUSAF7.0 (c) Land cover mask

Figure 3.12: Example for land cover.

3.4.2. DTM

Following the same guiding idea presented in Section 3.4.1, i.e., to aim at placing in-
stances in location where they could realistically be, another situation to address is that
of steep slopes, such as mountain sides. In these contexts, indeed, it is highly unlikely
for landfills to be located, since the terrain conformation might lead waste to fall from
its original place. However, since the AerialWaste dataset does not provide information
about slopes or a terrain model, this must be introduced from an external source, such as
the DTM5x5, presented in Section 3.1.4. Information from this dataset, that describes the
altitude distribution over a region of interest, can be used to compute slope distribution
over the same region. As a side effect, the introduction of such information also allows to
exclude placement of instances across areas separated by a harsh discontinuity.

Therefore, slope information is used to create a specific mask to distinguish between
high-slope illegal areas and low-slope legal ones. However, in order to obtain such infor-
mation, it is necessary to extract it from the altitude levels presented in the reference
raster data. For each point in the raster, slope can be computed as the ratio between the
altitude difference and the distance with a neighboring point. In this case, we considered
the slope of a point to be the highest value returned from this computation involving
the point and each of its 8 surrounding neighbors. Then, the resulting value is converted
into angular information, which is used to define illegal areas via the application of a
threshold. In this case, such threshold was set to 20°, thus considering illegal areas with
a higher slope.

Given the grid nature of the input dataset, masks obtained from this process usually
result in displaying jagged borders between white and black regions. To avoid this unreal-
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istic situation, we added a smoothing mechanism consisting of multiple subsequent erosion
and expansion transformations to remove sharp corners from the represented polygons.
The outputs of this process are exemplified in Figure 3.13.

(a) Image from AW dataset (b) Slope image (c) DTM mask

Figure 3.13: Example for DTM

3.4.3. Semantic Segmentation

Some portions of the image where placement is unfeasible cannot be excluded only with
the masks presented in the previous Sections sections 3.4.1 and 3.4.2. In this context, it is
intuitively unlikely, if not impossible, to find instances over trees or on top of roofs, thus
requiring the creation of a specific mask to consider such areas illegal. In order to obtain
such mask, it is necessary to semantically interpret the image, practice which is nowadays
feasible thanks to the modern DL methods, such as CNN. Therefore, we decided to train
a network for Land Cover Mapping on the OEM dataset, and to use such network for
segmenting images in the AerialWaste dataset.

By performing inference on such dataset, it is possible to obtain, for each image, seg-
mentation labels where each pixel is assigned either to one of the 8 classes from the OEM
dataset or to an additional background class, generally used for locations beyond the
borders of sensed images. The final mask was created by considering illegal, beside the
background, 4 of the 8 OEM categories: Building, Tree, Water and Road. Outputs of this
process are exemplified in Figure 3.14.

3.4.4. Shadow Detection

In the scene described in Section 3.2, the implanted waste structures are the only objects
casting shadows. Therefore, it is not possible for such implanted structures to be covered
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(a) Image from AW dataset (b) SS output (c) SS mask

Figure 3.14: Example for Semantic Segmentation.

themselves, not even partially, by shadows. As a consequence, the artificial waste instances
are always uniformly invested by light and placing them across light and shadow areas
would result in illumination inconsistency. For this reason, the mask for shadow detection
is introduced with the intent of defining shadow areas as illegal, thus allowing instance
placement only in lit areas and avoiding any illumination artifact.

To detect shadows, we adopted an adjusted version of the automatic method expressed
in [67] and centered around the computation of the SSSI index. In its original version,
this method receives as input only an RGB image and starts with a pre-processing step
motivated by a spectral analysis over the 3 channels. In this step, all the channels are
applied a threshold both on the low end and on the high end, with the aim of classifying
the smallest values as shadow and the highest as light. After computing the thresholds, the
image pixels are normalized between such thresholds, thus creating a normalized image.
The SSSI index can now be computed for each pixel with the following formula:

SSSI =
PC1 +B + SENT

R +G+ 1
(3.1)

where:

• PC1 is the normalized image projection on the first component from PCA;

• R, G and B are the 3 channels from the original image;

• SENT is GLCM feature [68] computable from the greyscale version of the image.

The computed values consent to build an image where each pixel is associated its SSSI.
In this image, the pixel values are then averaged on a cluster basis, with clusters computed
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Figure 3.15: Components and outputs of the SSSI computation on an AW image. No
adjustment applied to index computation.

following the SNIC algorithm [69]. At this point, a thresholding mechanism should be
applied on the output averaged image with a dual approach, depending on the modality
of the histogram of pixel values in the SSSI image. If the image is multimodal, then Otsu
thresholding should be applied, otherwise, if the image is unimodal, another clustering-
based method is proposed. After thresholding, pixels with values above the threshold
should be considered in the shadow, whereas other pixels should be in the light.

In our adjusted version, the early stages have not been altered whereas some changes
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(a) Unimodal (b) Bimodal

Figure 3.16: Thresholding flaws following the original approach from [67].

have been applied to the index computation and to the thresholding mechanism. With
respect to thresholding, after visually inspecting the results, we noticed that the proposed
approach was not effective, detecting in images a significantly higher quantity of shadow
than what actually present (Figure 3.16). Therefore, we replaced the proposed approach
with a relative threshold: this level would indicate a percentage in the range of SSSI s,
allowing to classify as shadow pixels with an index above the threshold. Additional details
about the choice of the threshold can be found in Section 4.1.2.

After updating the thresholding mechanism, we also adjusted the formula for computing
the SSSI index. We noticed that the computation of the SENT factor was the most
computationally expensive, without being accountable for significant changes in the index
(Figure 3.17). For this reason, we decided to simplify the index formula into:

SSSI =
PC1 +B

R +G+ 1
(3.2)

Figure 3.17: Comparison of SSSI image before thresholding after index computation with
and without SENT.
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thus significantly accelerating the shadow detection process. Figure 3.18 exemplifies
outputs from this process.

Figure 3.18: Exemplary image from the AW dataset and its related mask for Shadow
Detection.

3.4.5. Google overlays

As described in Section 3.1.1, some images of the AW dataset have been obtained by
means of a download from the GE platform. As a consequence, these images are all
watermarked with 2 overlays: the Google logo in the bottom left corner and a box with
copyright information in the bottom right one. These 2 overlays clearly represent regions
of the image where it would be illegal to place an instance and, therefore, they should be
excluded from placement by means of a specific mask.

The Google logo in the bottom left corner is always located in the same position and
always has the same size across all the GE images in the AW dataset. Therefore, it was
possible to manually create a polygon covering it and consider such area illegal.

Unlike the Google logo, the copyright box can have different sizes across different images.
With the aim of considering illegal only the area covered by the box, it became necessary to
identify the exact position of the top right corner of such box. This information allows to
create a rectangle covering the whole box, since its opposite corner is always the bottom
right corner of the whole image. After visually inspecting some GE images from the
AW dataset, we noticed that the top left corner of the box could be found via template
matching, leveraging the observation that the copyright writing in the box always starts
with the word "Imagery". Therefore, we extracted from an image the portion with such
word and adopted it as template. Then, for each image, we performed matching on the
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Figure 3.19: The "Imagery" filter used for template matching.

bottom 50 lines of pixels with the aforementioned filter and extracted the coordinates of
the pixel with the highest correlation coefficient. With this method, only 5 points were
found over more than 5,300 images: (47, 13), (275, 24), (391, 24), (532, 24) and (648, 24).
We observed examples (Figure 3.20) of images for each of these points and noticed that
the last 4 points actually corresponded to sensor information, whereas (47, 13) was the
result in those images that do not contain a copyright box. Finally, the top-left corner of
the rectangle was obtained with small manual adjustments, thus allowing the creation of
such polygon and to considered it illegal.

Figure 3.20: Examples of Google overlays. Red cross indicates the output position from
template matching. Cyan polygons highlight the final overlays to remove.

Figure 3.21: Exemplary image from the AW dataset and its related mask for Google
overlays.
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3.4.6. Online phase

All the masks described in the previous sections are created and combined offline, thus
requiring, during augmentation, to use only information from the final overall mask.
Within the legal regions of this mask, it is necessary to find a rectangular area aimed at
hosting the base Grid or Plane meshes of the synthetic waste structures.

In order to allow eventual instances to entirely fit inside the legal regions, an erosion pre-
processing step is introduced. Legal regions are eroded by the length value describing an
instance minimum size, value which should be passed as parameter. This transformation
ensures that any point selected inside the eroded region satisfies the condition of minimum
distance from the border and, therefore, is a valid candidate to act as center of the
searched-for rectangle. Among these candidates, one is randomly picked and we compute
its actual distance from the border of the legal area before erosion. This distance defines
the maximum value for the synthetic instance size. Then, a circle is created centered in
the point found before and with a random radius between the minimum and maximum
sizes defined above. The final rectangle is found inscribed in this circle.

Once the needed rectangle has been found, the augmentation process can proceed with
the creation of the waste instance, described in Section 3.3.
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4| Experiments

This section describes the various experiments conducted within the work of this thesis,
with a dedicated section for each of them. In these experiments, which all required
the generation of synthetic images, waste instances were constrained by some general
restrictions. Firstly, in order to ensure realism in the created instances, only a subset
of all possible combinations of structure and waste types was admitted; therefore, in
augmented images, Tires can be present in Stacks or Heaps, whereas Rubble can only
appear in Heaps and Bulky items can only be Scattered. Secondly, the background aerial
images were always chosen among the negatives of the AW training set.

Beside these general constraints, which were common to all experiments, a few other
limitations, concerning dimensions or position, were applied to instances in a fraction of
attempts. In terms of dimensions, instances could be divided into standard-sized and
greater-sized, with the latter being generated in the same way as the first ones, but adopt-
ing a higher parameter for their minimum size. In terms of location, instead, instances
could be centered or not; in the non-centered case, the overall mask for instance placement
was used as is, whereas, in the centered case, it was combined with an additional total
black mask with a white rectangle in the center (Figure 4.1), thus forcing instances to be
placed in a central portion of the image.

(a) Initial overall mask (b) Center-constraining mask (c) Final overall mask

Figure 4.1: Mask combination for centered instances.



44 4| Experiments

4.1. Computation environment

All the experiments presented in this chapter were conducted on a server at Politecnico
di Milano equipped with 2 NVIDIA GeForce RTX 2080 Ti GPUs. For these experiments,
all the synthetic images were rendered using only one of those GPUs and adopting the
Cycles rendering engine, natively incorporated in Blender.

4.1.1. Semantic Segmentation network

In order to obtain the SS masks, a specific network was trained on the OpenEarthMap
dataset [65], described in Section 3.1.5. On this dataset, we trained an FT-UNetFormer
[70], a UNet-like network in which both the encoding and decoding parts are transformers.
This choice was motivated by the results presented in the OEM reference paper, where the
authors claimed such architecture to show the best performances. Therefore, with the aim
obtaining similar results, we also tried to replicate the training environment by selecting
the same number of epochs, 200, the same loss function, the multi-class cross-entropy,
and the same optimizer, AdamW, initialized with the default PyTorch hyper-parameters
apart from learning rate and weight decay. These latter values were defined via tuning,
process which identified values significantly similar to those presented in the OEM paper.
Therefore, we set the learning rate to 6 × 10−5 and the optimizer weight decay to 0.01.
Finally, the network backbone was initialized with the pre-train weights officially provided
by the network authors and the batch size was chosen to be 8 in accordance with the OEM
paper, even though memory limitations on our devices required us to train the model with
both GPUs, instead of using a single one.

Given the eventual aim of our training, i.e., to obtain a model for inference on AW
images, we introduced an augmentation phase to account for potential differences in image
resolution. Since the OEM dataset contains images with a GSD in the range of 0.25-0.5
m/px, whereas AW images are in the range 0.2-0.3 m/px, we trained the network on a
512 × 512 crop of the original images, to allow AW ones to result in having a similar
resolution after simple resize.

Finally, since the labels for the OEM test set are not released to the public, inference
labels on test images were submitted to the official CodaLab competition [66], achieving
the results presented in Table 4.1.
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Category IoU

Bareland 45.07%

Rangeland 59.27%

Developed space 55.89%

Road 64.90%

Tree 73.30%

Water 86.58%

Agriculture land 74.80%

Building 80.70%

mIoU 67.56%

Table 4.1: Intersection over Union (IoU) metric for our model on the OEM test set.

Qualitative evaluation on AW images

The AW dataset does not provide land cover mapping labels for its images. Therefore,
considered the temporal cost of the annotation practice, which is allegedly 2.5 hours per
image for the OEM dataset [65], it is unfeasible to quantitatively evaluate AW images,
thus allowing only qualitative evaluation.

For this reason, Figure 4.2 shows some examples of SS labels obtained from inference on
images from the AW dataset. Figures 4.2a and 4.2b display very accurate segmentation
labels, mostly for trees, buildings, roads and water elements, in urban environments. A
similar accuracy is achieved in Figures 4.2c and 4.2d, with good annotations in a forest
context and a in rural setting. Instead, Figures 4.2e and 4.2f show two major limitations
of our model: in the first figure, buildings in an industrial context are not segmented with
the same accuracy as in the aforementioned ones, whereas in the latter figure, a portion of
an agricultural field is misinterpreted as water. Nevertheless, despite these inaccuracies,
a wide portion of the legal areas is still correctly segmented, thus allowing instances to
be eventually placed in such regions. Finally, it can be noticed that the Google overlays
are usually interpreted differently and rather randomly across the various images, as in
Figures 4.2b, 4.2c, 4.2e and 4.2f.

4.1.2. Shadow detection threshold

Thresholding is a crucial phase in the creation of a SD mask. As described in Sec-
tion 3.4.4, the original approach to this phase, proposed in [67], was replaced by one
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(a) An urban context (b) Another urban context

(c) Forest environment (d) Rural context

(e) Industrial context (f) A field mistaken for water

Figure 4.2: Examples of good (4.2a to 4.2d) and bad (4.2e and 4.2f) segmentation labels
on images from the AW dataset.

based on a relative threshold on the values of the SSSI index, thus introducing the need
to define a unique threshold level. Similarly to the case of SS described in Section 4.1.1,
the AW dataset does not provide shadow segmentation labels for its images, thus prevent-
ing the threshold definition via quantitative approaches. Therefore, it became necessary
to determine the sought-for level via visual inspection.

Figure 4.3 shows SD masks obtained at different threshold levels, highlighting the issue
of precision-recall trade-off in the choice of such level. Indeed, lowering the threshold
percentage implies the correct classification of more shadow pixels, thus increasing recall.
However, this process leads to considering as shadows also a high number of pixels which
are in the light, thus lowering precision. Conversely, raising the threshold implies increas-
ing precision, with almost all pixels classified as shadow being actually in the shadow,
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Figure 4.3: Shadow detection masks at various threshold levels.

though lowering recall, i.e., having a smaller percentage of all the shadow pixels classified
as such. Given this trade-off, the threshold was set to 60%, leveraging the idea that for
the eventual use of the shadow mask it would have been better to sacrifice precision in
favor of recall, without lowering excessively any of the two metrics.

The choice of a threshold over 50% does not allow solving the major limitation encoun-
tered with this approach, i.e., misclassification of fields with certain cultures, such as those
in the 50%-mask in Figure 4.3 and in Figure 4.4. The latter of these figures, highlights the
persistence of this issue even with higher thresholds, with fields with dark-green plants
still classified as shadow, whereas, to the human eye, they are clearly in the light.

Figure 4.4: Field misclassification in SD masks with high thresholds.
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4.2. Computation efficiency evaluation

Experiments in this section aim at evaluating the computational speed of the proposed
method and the temporal impact of each type of waste on the augmentation process.
For this evaluation, we generated 4 sets of 100 images each, with 3 instances of standard
dimensions per image, and computed the average time for image generation. Each of
these sets differs from the others solely for the waste type of implanted instances: 3 sets
are built allowing introduction of instances of a single waste type, whereas the last one
combines instances from all categories.

As shown in Table 4.2, the Rubble class accounts for most of the computational effort,
with a temporal cost for augmentation which is almost 3 to 4 times higher than the cost
for the other classes. This behavior can be attributed to the process for Heap generation,
which contains procedures that have to be executed for all the vertices of the base Grid,
vertices which might be particularly numerous, especially for bigger instances. This ex-
plains also why introducing Tires in an image requires more time than introducing Bulky
items : as highlighted at the beginning of this chapter, Tires can appear in Heaps, whereas
Bulky items cannot. Nevertheless, it can be noticed that the method requires less than
12 seconds per image to perform augmentation with instances from all categories, thus
being suitable for augmentation on a large scale.

Experiment Time (s) Time (min) Time per
image (s)

Time per
instance (s)

Bulky only 422 7.0 4.2 1.41

Tire only 577 9.6 5.8 1.92

Rubble only 1665 27.8 16.7 5.55

All waste types 1178 19.6 11.8 3.93

Table 4.2: Results from computation efficiency experiments. In each experiment 100 im-
ages with 3 standard-sized instances were generated.

4.3. Placement evaluation

Instance placement is a paramount phase in the proposed augmentation method. As
described in Section 3.4, the designed pipeline combines several inputs, leveraging various
datasets, with the aim of positioning instances in realistic areas of the background image.
With the experiment described here, we aimed at evaluating the entity of such realism.
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Similarly to the cases described in Sections 4.1.1 and 4.1.2, the AW dataset does not
provide masks to compare with those obtained from the designed input combination.
As a consequence, quantitative evaluation was once more unfeasible and the accuracy of
instance placement could be evaluated only qualitatively. Therefore, for this experiment,
we generated a set of 100 images, allowing placement of a random number of standard-
sized instances in the range [2, 5], and visually inspected them to classify each of the
resulting 315 object structures according to the feasibility of their location. For this
classification, we defined 3 categories:

• Legal: the instance is in a location that is physically feasible and potentially real-
istic;

• Borderline: the instance is located in an area that, according to the inserted
inputs, is comprehensibly realistic, even though some detail suggests that it is not
totally realistic: for example, this is the case of instances slightly crossing the border
between light and shadow areas or lying over multiple objects with different heights;

• Illegal: the instance is in a location that should not be allowed by the mask com-
bination, thus highlighting a fault in the masks themselves.

As visible in Table 4.3, the designed method places instances in totally feasible ares in
85% of the cases, leaving less than 4.5% of the waste structures in illegal regions.

Images Instances Legal Borderline Illegal

100 315 85.08% 10.48% 4.44%

Table 4.3: Results from placement evaluation experiments.

(a) Illegal (b) Borderline (c) Legal

Figure 4.5: Samples from each of the categories for placement evaluation.
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4.4. Inference on synthetic images

As an initial quantitative evaluation of the effectiveness of augmented images, we con-
ducted a set of studies based on inference on such images with a pre-trained model. For
these experiments, we adopted the public model trained by Torres et al. [12] on the AW
dataset. Then, for each experiment we generated 100 images for each dimension-location
constraint combination and input such images to the model. To evaluate the inference
outputs, we computed the average of the confidence scores returned by the model and
counted the number of recognized positives. Being all the 100 images generated to contain
artificial waste instances, they are all inherently positive; therefore, the model is expected
to return very high values both for average confidence and for the number of detected
positives.

Results from these experiments, reported in Table 4.4, highlight instead significantly
poor performances. Indeed, the model never exceeds an average confidence of 20% and
detects at most 14 positives over 100 images. In addition, the network seems to be biased
towards centered and, above all, greater instances. This latter type of instances, indeed,
allows the model average confidence to double with respect to the cases with standard-
sized instances.

Not centered Centered

Standard size 7.32% (3) 9.67% (4)

Greater size 13.75% (10) 18.66% (14)

Table 4.4: Average confidence from inference on synthetic images. In brackets, the number
of detected positives.

4.5. Training with synthetic data

With the aim of evaluating the potential of synthetic data for the task of landfill detec-
tion, our final set of experiments focused on training a CNN for binary classification. The
architecture chosen for these experiments is the one presented in [8], for which a model
trained on an earlier version of the AW dataset is publicly available. In our experiments,
we fine-tuned such public model by extending the training set with synthetic images,
without altering the validation and test set, which were thus still composed of only real
images.

Following the results from Section 4.4, which highlighted a network bias towards greater
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and centered instances, we decided to attempt 4 sets of training experiments, with syn-
thetic images differing across these sets for the constraints applied to the implanted in-
stances. In particular, in the first set of attempts (Table 4.5), instances had their standard
size and could be located all over the background image, in the legal regions defined by
the placement masks. Then, for the second set of fine-tuning experiments (Table 4.6),
instances were forced in a central region of the base image, while preserving their standard
size. Finally, for the third and fourth sets of attempts (Table 4.8), the two experiments
above were repeated with greater instances.

For each set of experiments, we evaluated the effect of extending the training set with a
different number of synthetic images. In particular, the training set was extended by 250,
500, 750, 1000 and 1500 images. In all the attempted cases, we set to 0.5 the confidence
threshold to discriminate between positives and negatives and fine-tuned the network with
the same loss and hyper-parameters. Specifically, we trained our models on a single GPU,
optimizing a binary cross-entropy loss with a linearly decreasing learning rate initialized
at 0.005 and a batch size of 6. Furthermore, we introduced an early-stopping strategy
based both on a patience of 10 epochs and on a 0.005 minimum delta on the loss value.

The resulting metrics, proposed in Tables 4.5 to 4.8, highlight a common pattern: the
highest value in accuracy is always achieved by the base model, whereas the highest value
in the F1 score is always obtained when extending the training set with exactly 500 syn-
thetic positives. Because of this metric distribution, for which no case shows all the highest
values, it is difficult to define whether the model improves or not. By considering only
accuracy, indeed, adding synthetic images clearly leads to metric losses, thus suggesting a
model regression. Instead, if considering only the F1 score, several fine-tuned models rep-
resent an improvement with respect to the baseline model. This dilemma might be solved

Experiment Accuracy Precision Recall F1-Score

Base 87.29% 81.89% 79.54% 80.70%

250 86.60% 77.92% 83.56% 80.64%

500 87.26% 81.21% 80.46% 80.83%

750 86.68% 82.16% 76.78% 79.38%

1000 86.45% 82.27% 75.75% 78.87%

1500 86.68% 82.16% 76.78% 79.38%

Table 4.5: Results from fine-tuning experiments with standard-sized instances located in
any part of the image. In bold, highest value for each metric.
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Experiment Accuracy Precision Recall F1-Score

Base 87.29% 81.89% 79.54% 80.70%

250 86.72% 82.91% 75.86% 79.23%

500 86.99% 77.69% 85.63% 81.47%

750 85.18% 79.02% 75.75% 77.35%

1000 86.99% 79.47% 82.30% 80.86%

1500 87.26% 80.02% 82.41% 81.20%

Table 4.6: Results from fine-tuning experiments with standard-sized instances located at
the center of the image. In bold, highest value for each metric.

Experiment Accuracy Precision Recall F1-Score

Base 87.29% 81.89% 79.54% 80.70%

250 86.18% 79.51% 78.97% 79.24%

500 87.10% 78.40% 84.71% 81.44%

750 86.87% 82.04% 77.70% 79.81%

1000 86.91% 80.37% 80.46% 80.41%

1500 86.30% 74.83% 88.85% 81.24%

Table 4.7: Results from fine-tuning experiments with greater-sized images located in a
any part of the image. In bold, highest value for each metric.

Experiment Accuracy Precision Recall F1-Score

Base 87.29% 81.89% 79.54% 80.70%

250 86.76% 79.53% 81.26% 80.39%

500 87.22% 78.72% 84.60% 81.55%

750 86.30% 81.32% 76.55% 78.86%

1000 87.02% 78.60% 84.02% 81.22%

1500 86.64% 79.46% 80.92% 80.18%

Table 4.8: Results from fine-tuning experiments with greater-sized images located in a
central portion of the image. In bold, highest value for each metric.
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by considering the eventual aim for deploying an application based on these models. As
noticed by Torres et al. [8], these models might be useful to environmental inspectors for
detecting dangerous landfills. In this context, a higher number of positives, coinciding
with higher recall and lower precision, might be preferable than a better accuracy. Indeed,
a higher number of false positives might simply translate in requiring either more human
inspections of aerial images or more physical inspections on waste sites which, worst case
scenario, will result in pointless visits. Under these assumptions, accuracy can be deemed
as secondary, whereas F1 and recall can be considered more relevant. Therefore, given
that the fine-tuned models improve F1 by significantly improving recall, these models
might be considered an improvement with respect to the base one.

Additional support to this thesis can derive from comparing the baseline model with the
best one from fine-tuning. This best fine-tuned model is the one obtained by extending
the training set with 500 images with greater and centered instances. By comparing its
accuracy with that of the baseline, it is possible to notice that this metric decreases by
0.07%, an amount which is almost null and significantly lower than the increase in F1,
0.85%, which is more than 10 times higher. In addition, by extracting the confusion ma-
trices for this 2 models (Figure 4.6), it can be computed that the accuracy decrease is due
to an additional misclassification of 2 images over the 2605 in the test set. Furthermore,
it is possible to notice that recall increases of more than 5%, whereas precision decreases
of slightly more than 3%, with almost a 2% difference in favor of recall. Given the dis-

(a) Baseline model (b) Fine-tuned model

Figure 4.6: Confusion matrices for the models under comparison.
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cussion above and this quantitative comparison, this fine-tuned model can rightfully be
considered an improvement from the baseline.

Finally, it might be interesting to analyse why the best F1 for fine-tuned models is
obtained with an extension of exactly 500 images. Reasons for this behavior might lie
in the quantity of synthetic images with relation to the number of real positives already
included in the dataset, i.e., 2301. 500 is approximately 20% of such number, a percentage
which might be sufficiently high to positively impact on the learning capabilities of the
network without preventing it from learning from the actual positives. Indeed, considering
the limited variability of our synthetic images, raising too much their number might lead
the network to focus more on our instances than on the real positives.
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5| Conclusions and future work

This thesis addressed the problem of illegal landfill detection as a binary classification
task, aiming to solve one of its major issues, i.e., positive sample scarcity, by proposing a
method for synthetic data augmentation. This method allows to artificially create positive
samples with multiple synthetic landfill instances in averagely ≈ 10 seconds per image.

Within this context, we designed a pipeline leveraging the Blender modelling tool to
implant various waste object structures in Remote Sensing images from the AerialWaste
dataset. This pipeline also combines geographic and semantic information from each
image to define the most realistic location for implanting an instance, eventually posi-
tioning less than 4.5% of all instances in unfeasible areas. Furthermore, the pipeline was
completely automated, thus eliminating any need for human intervention in the process,
thanks to the bpy library, a Blender extension that allows to control this tool via Python
scripts.

In order to evaluate the effectiveness of the generated images, some fine-tuning experi-
ments were conducted on a Convolutional Neural Network for which a model trained on
AerialWaste is publicly available. This network, which was originally proposed by Torres
et al. [8], consists of a ResNet50 backbone extended with an FPN to better account
for features at different scales. The aforementioned experiments highlight that none of
the fine-tuned models improves the accuracy of classification, albeit providing, when ex-
tending the training set with 500 synthetic images, an increase in F1 Score motivated
by a significant increase in recall. This result might be considered an improvement, with
respect to the base model, under the assumption that recall might be privileged over pre-
cision given the eventual application of the trained models, i.e., to aid human inspectors
in detecting seriously dangerous landfills.

These results highlight the potential of this approach, which might be even higher,
considering the various limitations in the pipeline inputs and in the quality of output
images. Therefore, future work can proceed in the following directions:

• All-waste extension: this method can be extended to create structures with ob-
jects from any of the categories from the AerialWaste dataset, thus allowing the
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creation of synthetic images with a higher degree of variability.

• Multi-label classification: the designed method allows to know exactly, for each
augmented image, the waste category of the artificially introduced objects, thus ex-
tremely simplifying the labelling process. This process might allow the introduction
of any number of positive samples for each waste category, potentially resulting in
class balance.

• Waste segmentation: Blender can also be used to render a scene segmentation
mask. In this context, it is possible to render the base aerial image as background
and the injected waste objects with a color depending on their categories. This
would allow both binary and multi-label Semantic Segmentation.

• Photo-realism improvement: The augmented images still leave a significant
space for improvement in photo-realism. Above all, work can be done to introduce
shadow consistency between the implanted instances and the objects represented in
background images.

• Input improvement: Some of the masks used for instance placement can be
significantly improved to overcome their current limitations, for example in the
cases of Semantic Segmentation and Shadow Detection.
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A| Land cover categories

ID Name

111 Continuous urban fabric
1111 Dense residential fabric
1112 Averagely dense continuous

residential fabric
112 Discontinuous urban fabric
1121 Discontinuous residential

fabric
1122 Sparse and nucleiform

residential fabric
1123 Scattered residential fabric
11231 Farmsteads
121 Industrial or commercial units

of large factories for public
and private services

1211 Industrial or commercial units
and annexed spaces

12111 Industrial or commercial units
12112 Agricultural units
1212 Large factory units for public

and private services
12121 Hospital units
12122 Public and private service

units
12123 Technological units
12124 Cemeteries
12125 Military areas
12126 Photovoltaic installations
122 Road and rail networks and

associated land
1221 Road networks and associated

land
1222 Rail networks and associated

land
123 Port areas

ID Name

124 Airports
131 Mineral extraction sites
132 Dump sites
133 Construction sites
134 Unused and non-vegetated

degradated areas
141 Green urban areas
1411 Parks and gardens
1412 Green uncultivated areas
142 Sport and leisure facilities
1421 Sport units
1422 Campings and receptive units
1423 Amusement parks
1424 Archeological areas
211 Non-irrigated arable land
2111 Simple arable land
2112 Wooded arable land
2113 Horticultural lands
21131 Full-field horticultural lands
21132 Protected horticultural lands
2114 Nursery cultures
21141 Full-field nursery cultures
21142 Protected nursery cultures
2115 Familiar cultures
212 Permanently irrigated land
213 Rice fields
221 Vineyards
222 Fruit trees and berry

plantations
223 Olive groves
224 Firewood arboriculture
2241 Poplar woods
2242 Other wood cultures
231 Pastures
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ID Name

2311 Pastures without arboreal or
shrub-like species

2312 Pastures with arboreal or
shrub-like species

2313 Water meadows
311 Broad-leaved forest
3111 High-density broad-leaved

forest
31111 High-density coppice

broad-leaved forest
31112 High-density tall-tree

broad-leaved forest
3112 Low-density broad-leaved

forest
31121 Low-density coppice

broad-leaved forest
31122 Low-density tall-tree

broad-leaved forest
3113 Riparian formations
3114 Chestnut groves
312 Coniferous forest
3121 Mid-high-density coniferous

forest
3122 Low-density coniferous forest
313 Mixed forest
3131 High-density mixed forest
31311 High-density coppice mixed

forest
31312 High-density tall-tree mixed

forest
3132 Low-density mixed forest
31321 Low-density coppice mixed

forest

ID Name

31322 Low-density tall-tree mixed
forest

314 Recent reforestations
321 Natural grasslands
3211 Natural grasslands without

arboreal or shrub-like species
3212 Natural grasslands with

arboreal or shrub-like species
322 Moors and heathland
3221 Heathland
3222 Riverbed vegetation
3223 Bank vegetation
324 Transitional woodland-shrub
3241 Heathlands with arboreal or

shrub-like species
3241 Heathlands with arboreal or

shrub-like species
3242 Heathlands in abandoned

agricultural areas
331 Beaches, dunes, sands
332 Bare rocks
333 Sparsely vegetated areas
335 Glaciers and perpetual snow
411 Inland marshes
511 Water courses
512 Water bodies
5121 Natural water bodies
5122 Artificial water bodies
5123 Water bodies from extractive

aquifer activities
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This section describes the structure and behavior of the Geometry node configurations
used for generating the various object structures as discussed in Section 3.3.

Before delving into the details of each specific configuration, it might be worth noticing
that each node is associated a type, which is described by a specific color. In particular,
in our configurations, 4 types of nodes have been used:

• Group input/output (black): these nodes represent inputs and outputs of the
whole processing flow and they are compulsory in every configuration.

• Geometry (teal): these nodes operate transformations on geometry elements.

• Math (blue): the nodes operate computations on numeric inputs and provide
numeric outputs.

• Input (wine): these nodes can be used to provide additional inputs from the scene
to the flow.

In addition, each node is featured by a set of input and output sockets, which have
themselves a type depending on the handled data and associated to a specific color. The
socket types used in our configurations are:

• Integer, associated to color green;

• Float, associated to color grey;

• Geometry, associated to color aquamarine;

• Vector, associated to color purple;

• String, associated to color sky blue;

• Boolean, associated to color pink.
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B.1. Heaps

The Geometry node configuration to create a Heap of objects is shown in Figure B.1
and, unlike the modelling step described in Section 3.3.2, is the simplest of the adopted
configurations.

The core nodes for the creation of the Heap are the two Geometry nodes present in the
configuration: the Distribute Points on Faces and the Instance on Points. The first of
these nodes receives as input, on the Mesh socket, a geometry element which coincides with
the mesh which the configuration is applied to as a modifier. As its name suggests, this
node creates a random set of points lying on the input mesh. The geometric information
of these points is passed to the other Geometry node, which accounts for placing object
instances in the positions defined by the input points. The geometric output of this node
is the final Heap.

However, no Heap of objects could be created if no object model was passed as input to
the Instance on Points node, which is why a Collection Info node is introduced. This node
inputs information about a collection of objects and defines the collection behavior in the
flow. The Original/Relative attribute defines which position to consider for the collection

Figure B.1: Geometry node configuration to create Heaps.
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objects: with Original, the considered position for each object ignores relative distances
with other objects. The Separate children attribute allows to consider each object in the
collection as a separate entity and it can be combined with the Pick Instance input on the
Instance on Points node to replace each point with a single object, instead of using the
whole collection. Finally, the Reset children input defines whether to reset all temporary
transformations applied to the collection children.

A crucial aspect of the Heap structure is the effect of the Weight paint, described in
Section 3.3.2, and introduced to allow instances to be positioned only on the mesh hill-
like protrusions. This effect is achieved thanks to the combination of the Named attribute
node with a Math node for multiplication. The first of these two nodes introduces the
Weight paint information from the attribute called Height and passes it to the other node.
This node scales it according to a density value, which should be passed as parameter,
and outputs the scaled value to the Distribute Points on Faces node. In this way, points
are distributed only where the scaled density value is different from 0, i.e., on the mesh
protrusions.

Finally, the remaining Math nodes are used improve the graphical aspect of the output
geometry by forcing a randomized rotation on the instances of the covering objects. The
Random value node is used to generate a vector of 3 random floats in the range [0, 2π].
This output vector is used by the Rotate Euler node to overwrite default rotations for
points from the Distribute Points on Faces, passing the output rotation values to the
Instance on Points node.

B.2. Scattered objects

The configuration for Scattered objects is significantly similar to that of Heaps, described
in Section B.1, differing only in 2 aspects related to the left part of the diagram showed
in Figure B.2, which shows the node configuration for this case. The right part of the
diagram, involving the Geometry nodes, the Collection Info and the Rotate Euler nodes
is unaltered with respect to the configuration for Heaps.

The main difference with the Heap node configuration, lies in the approach to create
the rotation vector. In this case, the core idea is to restrict rotation on the x and y axes to
multiples of 90°. This choice leveraged the assumption that, being this structure intended
for objects scattered on a plane, it would be unrealistic, for such objects, to be assigned a
random rotation on the aforementioned axes, since this would allow the objects to detach
from the ground plane. Therefore, the only allowed random rotation was considered to
happen on the z axis, which is orthogonal to the ground plane and, thus, cannot detach
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Figure B.2: Geometry node configuration for Scattered objects.

objects from it. This complex rotation mechanism is handled with the set of Math nodes
in the bottom left corner of Figure B.2. The Random Value-Multiply combinations return
a multiple of π/2 in the range [−π, π], whereas the bottom Random Value determines the
angle for rotation around the z axis. The three numbers obtained from this process are
provided as input to the Combine XYZ node, which combines the three inputs into the
vector to pass to the Rotate Euler node.

The other difference from the Heap case lies in the absence of the two nodes for the
Weight paint information. Given that such mechanism was not adopted to create this
structure, the related node flow could be removed.

B.3. Stacks

An almost totally different configuration allows to create Stacks of objects. With respect
to the configurations described in the previous Sections B.1 and B.2, only 2 nodes are
still present: the Collection Info and the Instance on Points, which are used to replace
the detected points with object instances.
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Figure B.3: Geometry node configuration to create Stacks.

A representation of the node configuration for Stack creation is provided in Figure B.3.
In this representation, all the necessary parameters extend the Group Input. Among these
parameters:

• Count is the number of objects to include in the Stacks ;

• Seed is a random integer to control the Random Value node;

• Rows is the number of rows of Stacks to create;

• MaxIndex is an integer determining the number of Stacks to create

• DistanceX and DistanceY are 2 float values to use as offsets for distributing
Stacks on a grid structure.

The key Geometry node in this configuration is the Mesh line, which generates vertices
on a line, connected by edges and distant a given offset from each other. In this case, since
position is assigned to the created points by means of another node, the Set Position, the
Offset input in the Mesh Line has been set to a constant 0 vector. This node controls
also the number of objects to stack up by means of the Count input, which defines the
number of vertices the node should create.

As already suggested, the position for each node is defined by the Offset input of the Set
Position node, which creates the mesh to pass to the Instance on Points. The aforemen-
tioned input is a vector obtained from the Math node section of the flow, which produces
values for the 3 spatial coordinates and eventually combines them with a Combine XYZ
node. For the x and y coordinates, the core idea is to distribute Stacks on a grid: the
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Random Value node produces an index for each point which allows to determine, via
modulo and division operation by the Row input, indices for its positioning on the grid.
These indices are combined with the general inputs DistanceX and DistanceY to deter-
mine the actual x and y coordinates. For the z coordinate, instead, the accountable node
is the Accumulate Field, which returns an increasing value for each of the points with a
specific Group Index. In our case, this index is the number obtained from the Random
Value node, number which inherently identifies a specific stack on the aforementioned
grid. Therefore, with the Accumulate Field, all the points in a specific stack are assigned
an increasing value, equivalent to the z of the previous point processed in the same group
plus a given offset, i.e., the Value input of this node.

Finally, the most careful readers might have noticed that the configuration in Figure B.3
contains two Add nodes with fixed values. These values can be computed at run-time
from the collection objects and were introduced for the sole purpose of placing the overall
Stack structure at the center of the scene.
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Unlike the categories of Tires and Bulky items, whose Blender collections are composed
of models downloaded from the Internet, collections of shards for the Rubble class were
procedurally generated. In particular, this generation process produced 10 types of Rubble,
which were created by taking as reference just as many real images from AerialWaste.
Examples of synthetic instances of all these types, along with their real references, are
provided in Figure C.1.

The modelling procedure started by introducing in the scene multiple copies of a Blender
mesh which is deemed suitable to represent shards of a specific Rubble type. In this
context, the chosen meshes were either the Cube or the UV Sphere. However, these
meshes per se are too regular to represent shards obtained from destructive activities
such as building demolition. Therefore, we added a randomization phase in which all the
vertices of the base objects are shifted of a random constrained amount in any of the 3
spatial direction. This process makes the initial mesh significantly more irregular, thus
resembling much more an actual Rubble shard.

Once the shape of the shards is defined, these must be assigned a material, which is
accountable for their color and other rendering properties. All the Rubble types are as-
signed a material with shading properties depending on a node configuration, similar to
those described in Appendix B. The default structure of the shading node configuration,
composed of a Principled BSDF and a Material Output node, is extended with a Color-
Ramp and an Object Info node, as shown in Figure C.2. The ColorRamp allows multiple
objects with the same material to acquire a different color within a specified gradient
of tonalities, after receiving a certain index number, which is provided by the Random
output of the Object Info node.

After applying this material to all the shards in the scene, the shards are grouped in
the same collection and the scene is exported as a blend file. This will allow the collection
to be appended to the scene when necessary during augmentation.
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(a) Bricks (b) Concrete

(c) Scrap (d) Metal

(e) Woodlike 0 (f) Woodlike 1

(g) Bricks and grass (h) Sand

(i) Earth sand (j) Grey sand

Figure C.1: Types of Rubble. On the right of each pair, a synthetic instance of the specified
type; on the left its real reference.
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Figure C.2: Shading nodes for the Concrete type of Rubble.
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