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Sommario

Con il termine Automated Fraud Detection (Identificazione automatica di Frode) viene
indicato l’insieme delle azioni automatizzate (i.e. svolte da macchine) eseguite allo
scopo di identificare utilizzi illegittimi di prodotti e/o servizi. Esso rappresenta un
ambito emergente ed in espansione dove un numero sempre cresente di casi beneficia
dell’utilizzo di moderne tecniche di intelligenza artificale. Allo stesso tempo, numerose
applicazioni di Fraud Detection non possono essere completamente automatizzate per
motivi quali l’impossibilità di essere totalmente sicuri dell’illegittimità di un utilizzo
o la necessità che la decisione finale sia presa da un umano. In quest’ottica, diventa
chiara l’importanza dell’interazione tra la parte automatizzata del processo di identi-
ficazione (e.g. un algoritmo di intelligenza artificale) e gli umani che interagiscono con
esso. In questa tesi viene proposto un processo aziendale di identificazione di frodi ap-
plicato al dominio degli online marketplace. Tale processo, grazie alla combinazione
di moderne tecniche di apprendimento automatico associate a Machine Learning In-
terpretability (interpretazione di tecniche di apprendimento automatico), permette di
ottenere un’interazione tra umani e macchine che sia efficiente ed efficace. Come prima
cosa, un algoritmo di classificazione, basato sullo stato dell’arte dell’intelligenza artifi-
ciale, è stato implementato per distinguere tra utilizzi legittimi e fraudolenti.
In aggiunta, quattro differenti metodi di Machine Learning Explainability sono stati
implementati e valutati su applicazioni reali. Tra questi è stato progetto e proposto
un nuovo approccio all’interpretazione dei modelli di apprendimento automatico de-
nominato EVADE. Tale metodo, grazie ad una procedura di ottimizzazione basata su
Algoritmi Genetici, ha ottenuto risultati comparabili allo stato dell’arte.
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Abstract

With the term Automated Fraud Detection is intended the set of automated (i.e. carried
out by machines) activities performed to detect illegitimate usages of services and/or
products. It represents a rising and expanding field where more and more use cases
are benefiting from the usage of modern artificial intelligence techniques. At the same
time, several Fraud Detection applications can not be fully automated due to different
reasons such as the impossibility of being totally sure about the illegitimacy of a use or
the necessity of having humans making the final decision. In this view, the importance
of the interaction between the automated part of the detection process (e.g. the ma-
chine learning algorithm) and the humans that are interacting with the tools becomes
clear. Therefore, in this thesis we propose and design a fraud detection business process,
applied to the domain of online marketplaces, which combines modern machine learning
algorithms with predictions’ interpretation so that the interaction between humans and
machine is designed to be as smooth and efficient as possible. At first, a state-of-the-art
machine learning classifier has been implemented to solve the problem of discriminating
between which usages are legit and which are not. On top of this, four different machine
learning explainability methods have been implemented and evaluated on real tasks.
Among these methods, a novel approach to interpretable machine learning has been
designed and proposed. This method, named EVADE, through the usage of an optimiz-
ation procedure based on Genetic Algorithms, generates machine learning explanations
which proved to achieve state-of-the-art performances.
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Chapter 1

Introduction

In this section, the general scope of the research will be introduced. At the beginning,
the context is proposed with an introduction about Fraud Detection in general, followed
by a brief summary of the contributions brought by this thesis. Moreover, the chapter
continues with a description of the company in which this research has been performed,
namely HousingAnywhere, together with a concrete example of fraud in the company’s
application domain. Finally, the section is concluded with an outline about how the
contents in the rest of the document are structured.

1.1 Context

With the term Fraud it is indicated the illegitimate usage of a product or a service which
is aimed at gaining benefits in a different way from the ones that the product or service
is intended for. Please note that, for the sake of this research, the term fraud and scam
will be used as synonyms. Therefore, Fraud Detection represents the business process
aimed at identifying such illegitimate usages.

Detecting frauds is far from a trivial task and it introduces several challenges. First,
the fraudster is advantaged: it is not known when a fraud is going to be perpetrated and
in almost every real world applications it is impossible to be 100% sure of the illegit-
imacy of a usage. As a consequence, an effective fraud detection process must be time
responsive but at the same time it has to involve humans. For these reasons, the field of
Automated Fraud Detection is growing and the number of applications where machine
learning and data mining techniques are involved is rising dramatically, as showed in [15].

With that in mind, this thesis proposes an automated process for fraud detection
applied to the field of online housing marketplaces. In this application domain, a fraud
attempt is represented by the behaviour of a user, the fraudster, who misleads other
users by offering them a fake service, in this case an accommodation to be rented, aimed
at stealing money from them. At the same time, a meaningful fraud detection process
should aim at identifying such behaviours as soon as possible and consequently remove
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CHAPTER 1. INTRODUCTION

those listings form the online marketplace, so that fraudsters have minimal opportunities
to interact with legit users. Furthermore, since this is one of those domains for which
it is impossible to be totally sure about the illegitimacy of an item, the fraud detection
process must involve humans in finally determining whether a listing is a fraud attempt
or not.

However, interactions between humans and machine learning models require humans
to understand the machines in order to trust and interpret their predictions so that the
optimal decision can be made. Moreover, the increasing performances and complexity
of modern machine learning techniques represent a relevant obstacle for humans in
understanding why models are making certain decisions, thus making the interaction
between humans and machines less efficient and accurate.

1.2 Contribution

To match the presented criteria, this thesis proposes as a solution a process based on
machine learning techniques with a dedicated focus on the interaction between models
and humans. Specifically, the first building block of the solution is a machine learn-
ing algorithm which performs an initial classification of items between the ones that are
considered legit and the ones that could represent a fraud attempt. Later, listings which
are considered to be a fraud attempt are elaborated by an AI interpretability module
which is aimed at providing explanations to the classification decision taken by the ma-
chine learning model. Finally, the item is ready for the final human check, which will
assess, based on the listing’s characteristics, its classification outcome and explanations,
whether the listing is a real scam attempt or a false positive.

To sum up the scope of this research, at first a machine learning model to solve a
binary classification task has been developed, followed by the implementation and testing
of different state-of-the-art machine learning explanations techniques. Among these, a
novel technique has been designed which exploits the optimization capabilities of Genetic
Algorithm to generate adversarial machine learning explanations, achieving state-of-the-
art performances. Moreover, it has been empirically proven that human validations of
machine learning predictions can benefit from the implementation of explanations both
in accuracy and efficiency.

Enhancing Fraud Detection Through Interpretable Machine Learning 3
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1.3 About HousingAnywhere

HousingAnywhere is an online housing marketplace1, originally founded in 2009 in Rot-
terdam (Netherlands), which aims at providing customers, especially students and young
professionals, a safe online marketplace to find the perfect accommodation to rent any-
where in the world.

Figure 1.1: HousingAnywhere Logo

The platform, which is now present in more than 100 countries, offers a two-sided
marketplace where tenants can find a property that suites their renting needs, while
landlords can offer their properties to the growing users base that periodically access
the platform.

1https://housinganywhere.com
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1.4 Fraud Attempt Example

To clarify what is intended for fraud or scam attempt in this application domain, a real
example is hereafter reported. At first, by looking at figure 1.2, it is possible to see how
the item appears to be a legit one.

Figure 1.2: Listing Main Web Page

However, by taking a closer look to this listing’s details, showed in figure 1.3, it is
possible to notice several anomalies. At first, the rent price, which is the equivalent of
about 800e, is significantly cheaper than the average rent price of the area for items
of the same commodity level. The price convenience, together with nice pictures and
a very detailed description, are usually used by fraudsters to attract as many users as
possible and maximize the effectiveness of the fraud.

Moreover, useful piece of information is present also in the landlord’s profile, which
can be seen in figure 1.4. Specifically, it is suspicious that the user registered right before
posting the previous listing, which is also the only listing ever posted by him/her. In
addition, both the profile picture and the user’s description are missing.

As it can be derived from this example, a lot of different factors contribute to the
final decision of marking the listing as a fraud attempt or not, going from the user’s pro-
file to the listing’s description, including also hidden information, such as IP addresses
used to log in to the platform.

Enhancing Fraud Detection Through Interpretable Machine Learning 5
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Figure 1.3: Listing Details Web Page

Therefore, it becomes clear that an automated approach is needed, where a lot
of different factors are considered and elaborated as fast as possible. However, it is
fundamental, from a business perspective, that any kind of automated process is then
flanked by a final human validation, thus having the role of a support tool for humans
in making the final decision.
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Figure 1.4: User Profile Web Page

1.5 Outline

The rest of the document is organized as follows: in chapter 2 the background knowledge
on which this research is based is reported, followed by a selection of related works from
the literature in chapter 3. Later, in section 4, the problem is presented and formalized
and the subsequent research directions are presented; in chapter 5 the approaches on
which the experiments, widely described in chapter 6, are based are stated. The results
achieved by these experiments are then presented in chapter 7. Finally, the conclusions
of the research are stated in chapter 8 with a specific focus on the contributions brought
by this thesis to the business process and to the scientific community.

Enhancing Fraud Detection Through Interpretable Machine Learning 7



Chapter 2

Background

In this section, the background knowledge on which the thesis is based is presented. At
first, a general introduction of the business process and the the domain of automated
fraud detection will be given while in the latter part of the section the technical machine
learning knowledge will be presented.

2.1 Business Process

In order to understand where technology can bring the most value in HousingAnywhere’s
Fraud Detection process, a proper analysis of the system as it is will be performed in
the rest of the section.

First, it is important to recall the meaning of fraud from HousingAnywhere’s per-
spective, which for the focus of this research can be considered as synonym of scam.
With the term fraud it is identified the act of publishing an item (i.e. housing accom-
modation) on the platform with the final aim of stealing money from legit users through
payments which are not matched with the service such users are thinking to purchase, as
showed in section 1.4. In most cases, this is realized by scammers by engaging as many
users as possible in conversations, by publishing extremely appealing accommodations,
and then drive the communication outside the safe platform, where they can take full
control of the situation and get rid of the safe payments process.

Therefore, it is in HousingAnywhere’s best interest to identify scams being published
on the platform as soon as possible and responsively archived them, so that users are
not involved in dangerous conversations with scammers. As previously mentioned, it
is also impossible to be certain about the legitimacy of a user and, subsequently, it is
required that humans take the final decision using artificial intelligence as a support tool.

The Fraud Detection system currently in place, which can be summarized in figure
2.1, is composed by the following steps:
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1. As soon as items are published on the platform, they are sent to the AI algorithm
to be analysed.

2. The algorithm estimate the probability of an item of being fraud attempt and if
it is above certain levels, the accommodation is marked and sent to the Customer
Solution department of HousingAnywhere along with its probability score.

3. Items that are sent to the Customer Solutions department are subjected to human
validation, who will take the final decision about the accommodation being a scam
or a false alert.

4. An additional automated step is in place for accommodations for which the confid-
ence of them being a scam attempt is significantly high. Specifically, the candidate
scammer is temporary denied to access the platform until a human check. In case
the result of the human validation indicates that such user is a legit one, he/she
will be allowed to access the platform again as soon as possible.

Figure 2.1: Fraud Detection process as is at HousingAnywhere

For how the system is organized, from a business perspective it is possible to define
some key challenges:

• Human-machine interactions required predictions to be interpreted, and consequently
trusted. Complex machine learning algorithms often produce predictions based on
patterns which are not easily understandable by humans. Therefore it is funda-
mental to provide the Costumer Solutions department with predictions which can
be understood and trusted.
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• It is also extremely important to reduce as much as possible the number of false
alerts sent to such department. Having a big number of false alerts increases the
workload which is required to be performed by humans and consequently increasing
costs, and, at the same time, it can lead humans to make more wrong decisions.

2.2 Fraud Detection

This research is focused on the development of fraud detection systems aimed at the
identification of specific unintended usages of services. Such systems, in most cases, are
required to operate in time-sensitive environments, where being time responsive makes
the difference between success and failure from a business perspective. Moreover, as
stated in [28], it is impossible to be sure about the illegitimacy of a set of actions which
are suspected to be fraudulent, thus suggesting the usage of structured and mathematical
systems for analysing such suspected behaviours. Combining the previous requirements
with the increasing amount of available information about user’s actions drives intu-
itively the focus on the analysis of automated fraud detection systems, with special
attention on Data Mining and Machine Learning techniques.

The number of applications of Artificial Intelligence for Fraud Detection is growing
rapidly, as stated in [15], with a global market size of USD 20 billion in 2018 and it is
expected to reach more than 100 billion by 2026. Among the several application domains
of Fraud Detection, the most common, presented in [4], are credit cards, money launder-
ing, telecommunications, computer intrusions and medical and scientific frauds. On the
other hand, the huge amount of investments is not followed by a proportioned amount
of publicly available researches on the topic. Even though in [4] several automated
techniques applied in the past are presented, including rule-based algorithm, neural
networks, tree-based methods, genetic algorithms, Bayesian networks, meta-learning al-
gorithms and ensembling approaches, none of them were applied to the emerging field,
from a Fraud Detection perspective, of Online Housing Marketplaces, which will be the
setting of this research.

Another reason which limits the exchange of ideas about Fraud Detection research
lies in the continuous evolution of fraudsters’ approach and consequently adaptation of
detection systems. Releasing very detailed information about the structure of a fraud
prevention system could led fraudsters to discover and exploit possible flaws, as reported
also in [18].

From a technical point of view, Machine Learning and Data Mining approaches to
fraud detection have to face common challenges. First, the datasets about frauds tends
to be heavily unbalanced towards legit usages. Particularly, as stated in [29], the ratio
between legit users and fraudsters in most of cases varies from 100 to 1 to 100000 to 1,
increasing significantly the difficulty of learning for Machine Learning algorithms due to
not having enough samples, thus information, about the minority class. Furthermore,
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it is non-trivial to evaluate the performance of such algorithms, since the unbalanceness
of the data could bias some evaluation metrics towards the majority class. For example,
a naive algorithm which always classifies instances as belonging to the majority class
would achieve very good accuracy even though it does not bring any value to the fraud
detection task since it would never identify any fraud.

Lastly, Online Marketplaces belong to the class of domains introduced before where
it is not possible to be sure about the legitimacy of cases. This apparently harmless
issues has negative impact on the performance of Machine Learning algorithms. Partic-
ularly, using as knowledge manually labelled data, which could contains errors, requires
the algorithm to be robust towards noise in the input data.

In the rest of the chapter, the presented issues will be analysed along with relevant
related researches from the literature.

2.3 Machine Learning Paradigms

In this section, two machine learning paradigms, which will be treated in the scope of
this research will be presented, namely Supervised and Unsupervised Learning.

2.3.1 Supervised Learning

From a ML perspective, this task can fall under the umbrella of supervised learning
problems. Supervised Learning indicates a category of machine learning tasks where
given a set of couples (x, Y ), the goal is to learn a function f , such as f(x) = Y , which
matches an input xi with its corresponding output Yi. The learning phase is considered
supervised because it is based on a set of given samples xi for which the associated
output Yi is known.

Binary Classification

One of the most common tasks which belongs to the class of supervised learning is clas-
sification. It is defined as a classification task, a problem for which the target output Y
is represented by a label, associating items with their membership class.

Moreover, this research is based on a general binary classification problem, where the
number of different classes is two and an item belongs only to one of them, specifically
fraud attempts or legit items, as formalized in the following formula:

f(x) =

1 if item belongs to the positive class

0 if item belongs to the negative class
(2.1)
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2.3.2 Unsupervised Learning

With the term unsupervised learning, it is intended a machine learning paradigm aimed
at extracting information from unlabeled data. Specifically, the techniques which belong
to this class are often based on the exploitation of pattern naturally present in the data.

Clustering

Among the approaches belonging to the class of unsupervised learning algorithms, clus-
tering is probably the most widely used. A clustering task has to be intended as the
process through which a set of objects, in this case data instances, are divided into
different groups based on certain similarity criteria.

2.4 Dealing With Imbalanced Data

As explained exhaustively in [13], for imbalanced data it is intended every setting in
which the distribution of instances belonging to different classes is significantly differ-
ent. Even though this definition includes also multi-class scenarios, the focus of this
research will be on binary classification tasks.

As introduced at the beginning of this chapter, Automatic Fraud Detection tasks
are characterized by heavily imbalanced datasets, where the number of legit users sig-
nificantly outperforms the one of fraudsters. As a consequence, many attempts can be
found in the literature addressing this issue in similar settings. Among these, we will
analyse sampling techniques and custom cost functions.

2.4.1 Sampling

The focus of this section will be on sampling techniques aimed at mitigating imbalanced
datasets. Specifically, it is possible to define two main strategies: undersampling and
oversampling.

For Undersampling is intended the process of mitigating the unbalancess by remov-
ing samples from the majority class. As carefully explained in [13] and [16], this could
be done either randomly, by selecting random samples from the original dataset, or in-
formed, where with more complex algorithm the aim is to overcome information loss
generated by random undersampling. As claimed in [3, 7], such approach has proved to
improve classification performances when applied to Random Forest models and Sup-
port Vector Machines on imbalanced datasets.

On the other hand, oversampling is the process of data augmentation of the minority
class, aimed at mitigating the class imbalance problem and facilitating learning. As for
undersampling, the easiest approach to oversampling is to randomly replicate instances
of the minority class. However, as stated in [13], random oversampling can lead to
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overfitting on the replicated instances (i.e. bad performances on new and never seen
samples). To avoid this behaviour, synthetic oversampling has been introduced. Spe-
cifically, it is worth mentioning SMOTE, a synthetic oversampling strategy, proposed in
[5], which proved to be successful in several application domains. The underlying idea
of SMOTE, which can be seen in algorithm 1, is to generate a new sample obtained as
the perturbation of existing ones.

Algorithm 1 SMOTE Underlying Concept

1: let x be a vector representing the sample you want to base your replication on
2: let y be x’s nearest neighbor
3: compute d←− y − x
4: let r be a random number ∈ (0, 1)
5: compute the new sample z ←− x+ (d · r)

A visual representation of the generation of a new sample in a simple 2-feature
scenario, can be found in figure 2.2.

d = y - x

y

x

z = x + rd

Feature 1

Feature 2

Figure 2.2: SMOTE Visual Sample Generation

2.4.2 Cost Function

While sampling techniques act before the learning phase, cost function approaches in-
fluence the actual learning process. Even though originally this technique was not
developed to address imbalanced learning task, it has intuitively been applied and has
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empirically proven to achieve better performances than traditional sampling techniques
on certain imbalanced datasets [40, 24, 20].

As explained in [13, 16], the idea beyond applying custom cost functions to imbal-
anced datasets, whose structure can be seen in table 2.1, is to weight more classification
errors on the minority class in a way that it compensates class imbalance.

Predicted Class

TrueClass

0 1

0 C(0, 0) C(0, 1)

1 C(1, 0) C(1, 1)

Table 2.1: Custom cost function C(< true class >,< predicted class >)

2.5 Feature Engineering

Real life datasets contain information represented in complex ways, using large number
of attributes for the description of a single record. As a consequence, a proper feature
engineering process showed its usefulness, throughout the literature, in improving fraud
detection systems’ performance.

One example of such process is presented in [3], in which modelling artificial features
empirically proved to be fundamental for improving the performances of the applied
Machine Learning models, specifically Support Vector Machines [34], Random Forest [6]
and Logistic Regression [14], for detecting Credit Card frauds. Overall, most of artificial
features model the comprehensive behaviour of the user by enriching every transaction
instance with features such as number of different currencies used, number of transac-
tions in the same day, average amount spent in the last months and many others.

Furthermore, in [19] an approach is proposed, related to Online Banking Fraud De-
tection, which aims at modelling the fraudster behaviour among different accounts. The
underlying and intuitive idea is based on the hypothesis that most fraudsters perform
several frauds at the same time, accessing the platform with different identities. Even
though in [19] this is modelled using users’ devices identifier, it is up to the specific ap-
plication domain to define how to represent this feature, since they may have different
logic and functionalities.

In [18], the authors suggested to model features to incorporate spatial information.
Specifically, the rationale beyond it is that anomalies in spatial information can be an
indicator that a fraud is being perpetrated. In the approach proposed in [18], an example
of anomaly in spatial information is represented by a relevant discrepancy between ship-
ping and billing addresses of the same user.
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Finally, in [10] an attempt in modelling fraudsters profile is described. In the specific
application domain, which is Telecommunication Fraud Detection, the authors claimed
to have achieved better performances by modelling users’ profile, that is representing
explicitly features such as if the user was active outside working hours. The hypothesis
beyond this specific feature, which seems to be confirmed by the claimed results, is that
most frauds are perpetrated outside working hours.

As it can be derived from the previous examples, a domain-specific modelling of
features, mainly aimed at representing user’s behaviour, plays a key role in enhancing
automated fraud detection. Therefore, similar approaches, tailored to HousingAnywhere
application domain, must be considered.

2.6 Clustering

In this section we will analyse the combination of unsupervised and supervised learning,
namely clustering and classification. There are several attempts in the literature which
address this issue, aimed at using clustering methods to enhance final classification per-
formances.

Among these approaches, in [12] the author provides a technique, whose logic can
be seen in algorithm 2, based on the underlying idea that clustering can be used to
split classes and simplify the learning task for the classifier. To do so, each class is
internally clustered and the classifier is trained to predict the specific cluster rather
than the original class. The mathematical intuition beyond it is that the resulting
classification task is based on a higher number of decision boundaries, even if those are
linear ones, approximating non-linear decision surfaces. This intuition is also verified by
the achieved results which showed an improvement in performances for linear classifiers,
while no improvement is reported for non-linear classifiers.

Algorithm 2 Clustering Inside Classes (CIC) Algorithm

1: Training with CIC
2: Require: A set W with K ≥ 2 classes, an integer k ≥ 1
3: for j = 1, . . . ,K do
4: Partition class Lj into k clusters.
5: end for
6: Train classifier R using all training data to recognize all k ·K clusters.
7: Classification with CIC
8: Require: A point x.
9: Let i = R(x), i = 1, . . . , k, . . . , k ·K

10: Return class of cluster i.

Another strategy has been proposed in [35] which combines clustering with an en-
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semble of classifiers. Specifically, the algorithm, which training process be seen is figure
2.3, is based on the idea of a two-layer classifier. Firstly data has to be clustered. After
that, at the first layer, several classifiers are trained to predict the probability of each
sample to belong to every cluster. Then, the last layer is composed by a classifier which
is trained to predict, given the cluster confidence matrices handed by the first layer
classifiers, the target class.

Figure 2.3: COEC Training Process

The intuition beyond it, similarly to the previous example, is that learning clusters’
boundaries is an easier task and therefore the final classifier can achieve greater perform-
ances. A graphical representation of this concept can be seen in figure 2.4. The authors
claimed that this approach, namely Cluster-Oriented Ensemble Classifier (COEC), out-
performs traditional bagging and boosting techniques by 4-5%.

(a) Classification boundaries without clusters (b) Classification boundaries with clusters

Figure 2.4: Classification boundaries comparison without (left) and with (right) COEC.

16 Enhancing Fraud Detection Through Interpretable Machine Learning



CHAPTER 2. BACKGROUND

2.7 Machine Learning Models

In this section, the background knowledge about the machine learning techniques used
throughout this research is reported. Specifically, an introduction to the LightGBM
algorithm is given, alongside its elementary building blocks. Moreover, in the final part
of the section, an introduction to Genetic Algorithm will be proposed.

2.7.1 Decision Tree

Decision Trees are simple tree-based tools which can be used as a support in the decision
making process. Furthermore, they proved to be an effective tool for machine learning
classification tasks, both as plain decision trees and as the basis of more complex al-
gorithm, such as Random Forest or LightGBM.

Decision trees are composed by an intuitive structure which can be intuitively un-
derstood by humans and it is composed by the following characteristics:

• Each node represents a split point where items belong to only one of node’s chil-
dren, based on a set of conditions.

• Each leaf of the tree represents the decision outcome for the items that follow the
path to that leaf.

A graphical representation of a simple decision tree, with just three nodes and four
leaves is showed in figure 2.5.

Price

<= 500 > 500

DimensionType

Room Apartment

Fraud

<= 500 > 500

FraudLegitLegit

Figure 2.5: Simple Decision Tree

As an example, based on the tree in figure 2.5, the following decisions would be
taken:

• Item with Price = 350 and Type = Apartment would be classified as Fraud.

• Item with Price = 1000 and Dimension = 250 would be classified as Legit.

• Item with Price = 1000 and Dimension = 1000 would be classified as Fraud.
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2.7.2 Boosted Decision Trees

One of the most effective techniques of combining decision trees in machine learning
application is called Boosting. This approach is based on the simple idea of training
several weak learners and combine them afterwards instead of training a single complex
model. The singularity of the training process is represented by the fact that learners are
trained successively and, at each iteration, the aim is to learn where previous learners
failed. Even though weak learners can be represented by several different algorithms,
for the scope of this research we will focus on the usage of decision trees as weak learners.

A general pseudo-implementation of this technique is presented in algorithm 3. How-
ever, it is important to state that the algorithm is intended to be a general introduction
to boosting, while in the literature several different approaches have been presented
which details are outside the scope of this research.

Algorithm 3 Boosted Trees

1: Training of Boosted Trees
2: For each iteration i do:
3: Train a simple decision tree Mi

4: Calculate the error of Mi

5: Increase the importance of areas where the classifier is not working correctly and
decrease it where the classifier is accurate enough.

6: Classification using Boosted Trees
7: For each trained weak learned Mi:
8: Accumulate the prediction value
9: Return the final classification decision based on the combination of all weak learners.

2.7.3 Light Gradient Boosting Machine (LightGBM)

LightGBM is a recently developed approach to boosted trees, developed by Microsoft
and presented in [17], which is claimed to achieve state-of-the-art performances in sev-
eral machine learning applications with the advantage of being highly optimized from
a computational perspective. From a general point of view, the boosting is performed
by including in the loss function a gradient component to be optimized throughout the
iterative training process.

The singularity of this approach relies in two techniques: Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB).

GOSS is aimed at reducing the number of samples by keeping only the ones with
the highest gradient values, therefore assuming gradients as proxy for the amount of
information carried by a specific sample. The selected samples are then used to assess
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the information gain and build decision trees and their split conditions.

On the other hand, EFB is used to bundle together features that rarely appear
with non-zero values in instances (e.g. a set of one-hot encoded features) therefore
reducing the horizontal dimension of the input data and consequently reducing the
learning complexity.

2.7.4 Genetic Algorithms

Genetic Algorithms (GA) [23] are an optimization technique based on simulating Dar-
win’s theory of evolution on a specific domain, where instances are subjected to an
iterative process of selection and evolution.

GA are composed by several key elements:

• Population: a set of instances which goes through the iterative process.

• Fitness: a function f : x → R which maps an instance X, belonging to the
population, to a value which represents a measure of how much that sample adapts
to the environment, and consequently, how much is likely to survive to the next
iteration.

• Elitism: a phenomena for which a set of the most fit instances is brought forward
to the next iteration.

• Crossover: the process of creating a new instance for the next iteration by com-
bining two parents instances belonging to the current one, similarly to what hap-
pens with genes in evolution theory.

• Mutation: a phenomena that randomly changes instances by modifying their
features (genes).

In practice, the algorithm follows this structure:

1. It initially generates a random population of N instances, which composes the
starting point of the algorithm.

2. Each sample belonging to the current population is evaluated through the fitness
function f .

3. Through elitism, a defined percentage of the best candidates (i.e. the one with the
highest fitness value) is brought over to the next iteration.

4. Several rounds of crossover are performed, until the target size of the new popula-
tion is reached. The parents selection is performed through Tournament Selection
[9], where a subset of candidates is sample with replacement from the current
population. After sampling, the two best candidates in the subset are selected as
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parents and a new offspring is generated and added to next iteration’s population.
The motivation behind the choice of Tournament Selection lays in the trade-off
between exploration of candidates with different characteristics and computational
efficiency.

5. The final step in generating the new population is mutation. A random perturb-
ation of random candidates is performed by changing the values of their features.

6. The steps 2− 5 are repeated for any generation.

2.8 Evaluation

In this section the background knowledge about the evaluation criteria that will be
used in evaluating experiments throughout the rest of the research is given. At first, an
introduction about classification metrics will be presented alongside each one’s strengths
and weaknesses. Meanwhile, in the last part of the section a commonly used statistical
test in the field of machine learning, named t-test, will be introduced.

2.8.1 Metrics

In many real applications it is convenient to evaluate performances by using an individual
metric (i.e. a number) to ease the understating and the comparison of different models.
Before introducing the metrics it is necessary to introduce some measures:

• P : number of instances belonging to the positive class.

• N : number of instances belonging to the negative class.

• TP : true positive, number of instances correctly classified as belonging to the
positive class by the model.

• TN : true negative, number of instances correctly classified as belonging to the
negative class by the model.

• FP : false positive, number of instances wrongly classified as belonging to the
positive class by the model while belonging to the negative class.

• FN : false negative, number of instances wrongly classified as belonging to the
negative class by the model while belonging to the positive class.

• TPR: true positive rate, defined as TP
P .

• FPR: true positive rate, defined as FP
N .

At first, let’s look at Accuracy (formula 2.2), defined as the ratio between the
number of samples correctly classified over the total number of instances. Even though
accuracy is an intuitive measure of performance, it has been shown in [13] that it can
be an inappropriate measure for classification tasks with imbalanced classes. This can
be easily verified by assuming to have a trivial model which always classifies samples as
belonging to the majority class. If evaluated in a scenario in which the imbalance ratio
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is 1000:1, it will achieve an almost perfect accuracy, while it is clear that it does not
help in solving the classification problem since it will never identify any fraud.

Other very common metrics are Precision and Recall (formula 2.2 and 2.3). The
first one is a measure of how good is the model when it predicts that an instance belong
to the positive class. The latter, on the other hand, is a measure of how complete is
the model in recognizing all cases belonging to the positive class. Even though these
metrics may be valid individually for some specific tasks, in most cases, including Fraud
Detection, it is more important to consider both metrics combined at the same time.
To address this issue, F1-score has been introduced, which considers how good the
classification is in general, including both precision and recall.

Accuracy =
TP + TN

P +N
; Precision =

TP

TP + FP
(2.2)

Recall =
TP

TP + FN
; F1-score =

2 · Pr ·Re
Pr +Re

(2.3)

In order to perform detailed comparison among different models, it can be helpful to
consider graphical approaches such as Receiver Operating Characteristic (ROC)
and Precision-Recall (PR) Curves.

The ROC Curve, which can be seen in figure 2.6, represents the plot of TPR over
FPR, allowing for a comprehensive analysis over the whole spectrum of how models
enforce the trade-off between TP and FP.

Figure 2.6: ROC Curve
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As stated in [13], for highly skewed distribution the ROC curve could be overoptim-
istic over the real performances of the classifier. To address this issue, the Precision-
Recall Curve, plotted in figure 2.7, can be useful by providing an unbiased representation
of model’s performances.

Figure 2.7: Precision-Recall Curve

Finally it is possible to state that for the focus of this research, namely a classification
task with imbalanced classes, the most appropriate metric for the evaluation of a single
model is F1-score, while for comparing different algorithms the Precision-Recall
Curve can come in handy.

2.8.2 T-test For Model Selection

T-test is a statistical test aimed at assessing if two statistical populations have signi-
ficantly different characteristics. In the field of machine learning, and specifically the
model selection phase, this test is used to assess if one model is performing significantly
better than another one. It specifically requires the two models to be evaluated over a
set of independent and identically distributed (i.i.d.) tasks.

Given µ1 and µ2 respectively the mean of the two different populations, the t-test
can be performed either paired or unpaired. In the paired t-test it does not matter if the
discrepancy in performance is either positive or negative, thus resulting in the following
hypotheses: H0 : µ1 = µ2

H1 : µ1 6= µ2

On the other hand, the unpaired t-test is aimed at testing the discrepancy in just

22 Enhancing Fraud Detection Through Interpretable Machine Learning



CHAPTER 2. BACKGROUND

one direction, therefore the new hypotheses can be formalized as follows:H0 : µ1 = µ2

H1 : µ1 > µ2 or µ1 < µ2

For what concerns the scope of this research, the interest will be on paired t-test with
the specifity of having the same number of experiments for both populations. Therefore,
the procedure to be followed to perform such test can be decomposed in the following
steps:

1. Select a significance probability α and calculate one set of k evaluations for each
population, namely h(A) and h(B).

2. Calculate the set of k errors δ, where each value is calculated as δi = h(A)i−h(B)i.

3. Calculate the mean error δ = 1
k ·
∑
δi

4. Calculate the t-value as

t-value =

√
k · δ√∑
i(δ−δi)2
k−1

(2.4)

5. Assess the p-value, through distribution table given the t-value and the degrees of
freedom df , which in this specific test settings is equal to df = k − 1.

6. Finally, similarly to the traditional procedure for statistical test over the null
hypothesis, the following scenarios open up:p > α→ accept the null hypotesis H0, therefore models have comparable performances

p ≤ α→ refuse the null hypotesis, models have significantly different performances

2.9 Machine Learning Interpretability

Complex Machine Learning models can produce very accurate results which are not, by
definition, easily to justify and explain. However, as humans, we tend to trust what
we can understand while discarding what we find unclear. For this reason, in many
Machine Learning applications, a trade-off between performances and interpretability is
considered when choosing on which model to rely on.

Especially in application domains like Fraud Detection, where the model discrimin-
ates between fraudsters and legit users, it is fundamental to understand model choices,
so that human can take a more informative decision based on model’s prediction. At
the same time, explanations can be used as a debugging method which allows to have a
window for looking inside the model and, for example, spotting artificial bias inside it.
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That said, the focus of this research will be on model-agnostic explanation at pre-
diction level, where for model-agnostic explanations are intended all techniques which
allow to treat the underlying model as a black box, so that such approaches can be
easily scaled both on new problems or on the same problem with different settings.

For the rest of this research, we will define a prediction as interpreted if the related
explanations (i.e. reasons for which a certain value has been predicted) have been
generated.

2.9.1 Interpretable Models

Before moving forward, it is important to define the the concept of interpretable machine
learning model and which items belong to this class. A machine learning model can be
defined as interpretable if it generates predictions which correlation with the input fea-
tures can be easily assess. Therefore a generic model can be defined as interpretable
if it exists a function which is able to correlate each feature with its contribution to a
specific prediction.

The following algorithms, as listed in [25], belong to the class of interpretable machine
learning models:

• Decision Trees, because the prediction is the results of a specific path in the trees
and it can be easily coupled with features’ value through node splits.

• Linear Regression, thanks to the fact that the model is based on a linear combin-
ation of input features, thus it is itself the coupling function.

• Logistic Regression, for the same reason of Linear Regression.

• K-nearest Neighbours, because the prediction can be interpreted by looking at the
neighbour instances and their features.

2.9.2 Explanations Evaluation

Even though the evaluation of explanations in interpretable machine learning is still a
open research topic, a categorization of such task has been proposed in [8]. Specifically,
three different categories have been defined as follow:

• Function level evaluation: this approach does not require direct human interaction
but a proxy task, which has been previously evaluated by humans, must be present.
The advantage here lays in using a proxy task to exploit and project already present
human knowledge on the explainability task to be evaluated.

• Application level evaluation: here the idea is to let final users evaluate the explan-
ations. This approach is the most complete one but it requires an experimental
setup with humans, evaluation criteria and baselines available.
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• Human level evaluation: this technique is a simplification of application level eval-
uation in which users are not required to be domain expert, therefore making the
evaluation procedure easier to be performed.

Explanation Technique Properties

Given the increasing number of proposed techniques towards interpretable machine
learning, a proper way of comparison is needed. Therefore, [25, 32] introduced a set
of properties which can be used also as comparison criteria. On top of these properties,
it is possible to elaborate the following:

• Expressive power : measure of how the explanation technique generates its explana-
tions. For example, explanations can be generated as the result of an interpretable
machine learning model (e.g. Decision Tree) or weighted sum of features.

• Translucency : how much the explanation method has to rely on knowledge coming
from the underlying machine learning model. Since the scope of this research will
be on model-agnostic approaches, all the techniques which will be analysed are
required to have zero translucency (i.e. they do not require internal knowledge of
the model to be explained).

• Portability : intuitive measure of how adaptable is the explanation technique to be
used for explaining different models. This measure can also be seen as the inverse
of translucency, which means that the scope of this research will be on techniques
with high portability, according to the definition of model-agnostic models.

• Complexity : measure of how complex is the explanation approach, including com-
putational and logical complexity.

Explanation Properties

Assessing the quality of a machine learning explanation is a non-trivial task, due to
its nature, which requires to estimate the quality of information and how it has been
provided from a human perspective. Even though it is still an open challenge to formally
define how to calculate such values, a set of explanation’s properties have been defined
in [25, 32] from which the following list can be extracted:

• Fidelity : measure of how well the explanations approximate the behaviour of the
underlying model. In case of surrogate models, fidelity can be seen as the inverse
of the error between predictions of the original model and the surrogate one.
Moreover, for certain use cases, such as local surrogate, it makes sense to measure
the so called local fidelity, namely fidelity calculated by focusing only on a specific
subset of the input space.

• Consistency : this measure defines how much the explanations vary by changing
the model to be explained and keeping similar predictions. It is important to
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mention here that consistency is not necessarily a desired property; for example,
in a scenario in which explanations are used to debug several black box models built
on different features, it may be desirable to have different explanations, otherwise
the whole debug process could become useless.

• Stability : similar concept to consistency with the main difference of measuring
variance at explanation level. Specifically, it measures how much the explana-
tions vary when performed on similar instances. As for classical machine learning
models, low stability (i.e. high variance) can led to unreliable results and repro-
ducibility difficulties.

• Degree of importance: easily measurable property which represents if explanations
are based on features with different importance. This property is in most cases
desirable since it allows for more informative explanation if needed, otherwise
features importance can just be neglected.

• Representativeness: measure of how many instances can be explained by the same
explanations.

• Comprehensibility : this property is the most important and, at the same time, the
hardest to estimate. As it can be imagined, it’s a measure of how good humans
can understand the provided explanations. Furthermore, comprehensibility is in-
fluenced by several factors, including some which do not depend on the explanation
model directly (for example, humans who interpret the explanations), making very
difficult to find a general and accurate formal definition of it. Nonetheless, [25]
proposed to estimate comprehensibility by looking at how easy it is to guess the
output of the predictive model by using only the provided explanations.

This approach to model’s interpretability was first introduced for Random Forest in
[6], and its underlying idea is based on estimating how much each feature is important
in producing the final prediction. Here, the concept of feature’s importance is meas-
ured as the discrepancy between the prediction error with the original data and the one
generated with a copy of such data where the values of the specific feature have been
shuffled, aimed at removing information from that feature. Feature’s importance is then
intuitively considered directly proportional to the increase in prediction error.

The main advantage of this approach relies in the simplicity and intuitiveness of the
importance measure while it can suffers from different limitations. First, the shuffling of
the analysed feature insert randomness and can lead to measures which vary a lot among
different runs affecting reproducibility. Furthermore, another side effect of shuffling a
feature is the possible generation of unrealistic samples. Finally, this framework does
not allow to analyse correlated features, since a set of features may have effect only if
all of them have specific values simultaneously.
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2.9.3 Global Surrogate

An approach to interpret black box machine learning models, is to use global surrogate
model. In this context, for surrogate model, it is meant a machine learning model which
belongs to the class of interpretable models and approximate as precise as possible the
behaviour of the black box one. In practice, this is realized by the following steps:

1. Train the black box model M , of which predictions need to be explained.

2. Select a dataset D, retrieve its predictions P by feeding M with D.

3. Train a new model I, belonging to the class of interpretable models, on the same
dataset D but using as target P .

In order to assess the fidelity of the surrogate model, namely how good is approximating
the original black box one, an approach using R-squared has been proposed in [25]. R-
squared is usually used in machine learning tasks to evaluate how much information (i.e.
variance) is explained by a specific model with respect to a reference one, which in most
cases is a constant model. However, for the sake of this application, the reference model
is considered to be the black box one, obtaining the following formulation:

R2 = 1− SSE

SST
= 1−

∑n
i=1

(
ŷ
(i)
∗ − ŷ(i)

)2
∑n

i=1

(
ŷ(i) − ŷ

)2 (2.5)

where SSE and SST represents respectively the sum of squared errors and the sum of
squared total. Moreover, errors are calculated as the difference between the i-th predic-

tion of the surrogate model ŷ
(i)
∗ and the corresponding one of the original model ŷ(i).

On the other hand SST is calculated with respect to the average prediction of the black
box model ŷ.

The surrogate interpretable model can then be used to provide explanations, which
precision is strictly dependant on how good the surrogate model is approximating the
behaviour of the main one. However, it is worth mentioning that is common for global
surrogate to not being able to precisely imitate the behaviour of the main model. On
the other hand, if the global surrogate model is able to achieve similar performance, and
interpretability is needed, it is worth reconsidering the choice of a black box model in
the first place.

2.9.4 Local Surrogate

As introduced in the previous section, it often happens that global surrogate model
are a not sufficiently good approximation of black box models. Subsequently, a new
approach has been introduced in [31] called Local Interpretable Model-agnostic Explan-
ations (LIME), based on the intuitively assumption that is easier to build more precise
surrogate models by building several of them, each one specialized on a specific subset
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of the features space (i.e. in the surrounding of the sample which prediction has to be
explained).

This technique is applied by following these steps:

1. Given a input sample x, a set of predictions is generated using the black box model
f which predictions have to be explained. Specifically, the predictions are gener-
ated for x and on other synthetic input samples obtained by small perturbation
of x. For simplicity we will refer to this input subset as X ′

2. An interpretable model m is now trained over X ′ and its predictions achieved
through f .

Formally, this problem can be defined as:

explanation(x) := argminm∈ML(f,m, πx) (2.6)

where m represents a model belonging to the set of interpretable models M , f represents
the black box model which predictions have to be explained, πx represents the dimen-
sion of the proximity subset around the sample x and L represents a loss function which
evaluates how precise m is approximating f .

To evaluate local surrogate models, local fidelity is used. This approach is analogue
to the one proposed for global surrogates with the only difference that the fidelity meas-
ure is evaluated locally.

While this approach address the performance limitation of global surrogates by
providing a more flexible technique, it still has the open challenge of how to form-
ally define what is meant for proximal surrounding of a sample, which is currently
approached by choosing among the different kernels the one which makes more sense
for a specific application. Moreover, it has been empirically showed and reported in
[1], that the variance between explanations of similar points can be very high, making
interpretations harder to be trusted.

2.9.5 Shapley Values

Shapley Values represent an approach to estimate individual’s contribution to a com-
mon result. This concept has been originally introduced in [33] applied to the domain
of Game Theory and, only recently, it has been used to explain machine learning models.

In this scenario, the underlying idea of such technique is to estimate the marginal
contribution of a single feature to the final prediction. In practice, it is possible to
define the Shapley value for a specific feature as the average marginal contribution of
that feature over all possible coalitions, where coalitions have to be intended as a fixed
set of features.

28 Enhancing Fraud Detection Through Interpretable Machine Learning



CHAPTER 2. BACKGROUND

To make it clearer, let’s look at an example. Assuming to have a simple dataset with
just three features about online accommodation: price, creation hour and surface area.
Let’s also assume to have a model which assigns probabilities to instances of being a
fraud attempt. To calculate the Shapley value of feature price, the following steps have
to be performed:

1. Calculate the overall average prediction of the model over the whole input space.

2. Generate all possible coalitions out of the remaining features, which in this case
are
{∅, {creation hour}, {surface}, {creation hour, surface}}

3. For every coalition, calculate the marginal contribution as the difference between
the prediction over the coalition with and without price. Please note that when the
feature value is not fixed, such value has to be sampled from the set of possible
values for that feature. For example, for the coalition {surface}, the value of
creation hour has to be sampled from its distribution. Similarly, when it is stated
to calculate the prediction without price, it is intended that the value of price for
that prediction is sampled from feature’s distribution instead of being assigned to
the original instance value (i.e. the one which prediction has to be explained).

4. The Shapley value for feature price can now be easily calculated as the average of
all marginal contributions obtained in the previous point.

Formally, the Shapely Value of a feature xj has been defined in [25] as the following
weighted average of marginal contributions:

φj(val) =
∑

S⊆{x1,...,xp}\{xj}

|S|! (p− |S| − 1)!

p!
(val (S ∪ {xj})− val(S)) (2.7)

where S is the subset of features belonging to a coalition, p is the total number of
features on which the model has been trained, X represents the vector of feature values
of the instance to be explained and val(S) is a function returning the prediction of the
model for feature values S and marginalized over the features that are not included in S.

Assuming to have a prediction function f̂ , the prediction function val(S) can be
defined as:

valx(S) =

∫
f̂(x1, . . . , xp)dPx/∈S − EX(f̂(X)) (2.8)

where one integral is performed for each feature which is not in the set S.

To clarify the theoretical concept, let’s look at a simple example where the set of
features is {x0: creation hour, x1: surface, x2: price} and it is required to calculate the
Shapley value φ2 of feature price.

The procedure to be followed is:
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1. Calculate the average prediction of the model as base value.

2. Generate all possible coalitions {∅, {creation hour}, {surface}, {creation hour, surface}}

3. For each coalition assess the marginal contribution between the coalition with and
without the value for feature x2.
As an example, for the coalition {creation hour, surface}, the marginal contribu-
tion is defined as the difference between the predictions over two different samples.
The first instance where the features creation hour and surface have their original
values and the feature price is sampled from its distribution. While the latter is
composed by a tuple where all features have their original values (i.e. original
price value is assigned).

4. Compute the Shapley value φ2 as the weighted average of all value assessed at step
3.

Due to its strong mathematical basis, this approach guarantees a fair distribution of
contributions over the feature space, which was not provided with LIME. On the other
hand, in many real cases, when the number of features is sufficiently large, assessing
the contribution of all features and relative subsets become unfeasible. As a result, in
practical use cases, it is usually combined with sampling techniques which select a subset
of features on which the computation has to be performed.

2.9.6 Shapley Additive Explanations (SHAP)

SHAP is a model-agnostic technique used to explain machine learning predictions which
combines two of the previously introduced concepts: Shapley Values and LIME. Spe-
cifically, SHAP method is based on the idea of representing the explanations as a linear
addition of features contribution as follow:

g(z′) = φ0 +
M∑
j=1

φjz
′
j (2.9)

where M is the maximum coalition size (i.e. the total number of features), z′ ∈
{0, 1}M is a coalition vector in which every element indicates if a certain feature is
present (1) or not (0) in the coalition. Moreover, g represents the explanation function
and φj ∈ R is the Shapley Value (i.e. the marginal contribution) of the j − th feature.

On top of this underlying idea, an efficient implementation of the algorithm named
TreeSHAP has been proposed in [21]. TreeSHAP, as the name suggests, takes ad-
vantage of tree-based model structures to speed up the computation of Shapley Values,
so that it can be applied without the need of approximation techniques (e.g. features
sampling). As a result, this method can be consider as a class-specific implementation
of a model-agnostic explainability method. However, this implementation does not pre-
vent this method to be considered as model-agnostic since the same results achieved
using TreeSHAP can be calculated also with standard SHAP but it would requires more
computational power.
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2.9.7 Counterfactual Explanations

As explanations have the absolute goal of bridging the gap between man and machine
and considering the natural comparison capabilities of humans, it becomes intuitive to
explain machine learning predictions by the means of counterfactual explanations. This
approach is based on using as explanation the differences between the focus instance
and a counterfactual one which endorses the following criteria [25]:

• The counterfactual instance should be as similar as possible to the one to be
explained, so that the comparison can be done in a meaningful way.

• The counterfactual instance should be evaluated by the black box model with an
opposite prediction from the one to be explained. In this specific use case, is we
want to explain why a sample has been classified as positive, the counterfactual
instance should aimed at belonging to the negative class. In certain applications,
where it is impossible to generate samples with a specific target probability, some
tolerance is needed to satisfy this requirement.

• A way of summarizing instances should be present so that the differences between
the counterfactual and the original sample can be interpreted easily by humans
(e.g. selecting a specific subset of features).

Formally, the generation of a counterfactual instances can be summarized as the
following optimization problem:

explanation(x) := argminy(D1(x, y) +D2(t, P (y))) (2.10)

where X is the input space, x ∈ X is the instance to be explained, y ∈ X is the coun-
terfactual instance to be generated, D1 is an arbitrary distance function between two
instances belonging to X, P is the prediction function of the black box machine learning
model, t is the target prediction and D2 is another arbitrary distance function computed
among two predicted values.

For the sake of this research, a differentiation will not be made between counterfac-
tual and adversarial explanations.

Finally, this approach can be seen as generating the most similar sample to the
original one, which allows for a different prediction and then use samples’ discrepancies
to explain the original predicted value.
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Related Works

In this section a selection of related works form the literature are presented, where
automated fraud detection processes have been applied and experimented. However,
given the limited amount of publicly available researches about fraud detection in online
marketplaces, even more in the housing sub-domain, the vast majority of the following
examples are borrowed from different application domains.

For what concerns machine learning interpretability combined to automated fraud
detection processes, no publicly available researches have been found in the literature.
However, a similar evaluation of machine learning explanations borrowed from a different
application domain will be reported.

3.1 Financial Statements

Financial statements are a category of financial documents, generally used by investors
and analysts, aimed at reflecting faithfully the financial health of a company. Due to
their widespread usage, it is extremely important that these statements are reliable and
correct which, unfortunately, it is not always the case.

To address this issue, in [27], a comparison of several statistical and machine learn-
ing techniques applied to the detection of fraud between financial statements has been
proposed. From a machine learning point of view, the problem has been designed as a
binary classification one (i.e. either the statement is legit or it is a fraud) and it has
been tackle with the following approaches: Artificial Neural Network, Logistic Regres-
sion, Bagging, Stacking, Support Vector Machine(SVM) and Decision Tree.

At first, the performances of the different techniques were compared, highlighting
SVM and logistic regression as the most promising ones, and later an analysis of the most
important features for each algorithm has been performed revealing which are considered
the most important. Finally, both the machine learning models and the insights have
been proposed to the community as a framework aimed at improving automated fraud
detection in financial statements analysis.
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3.2 Credit Card

One of the domain with the largest amount of publicly available researches about Fraud
Detection, if not the largest one, is Credit Card Frauds, where for fraud it is intended an
illegitimate usage of a credit card aimed at subtracting money from the unaware owner
of the card.

In several of these researches, [4, 28, 22, 39], the problem is set as a binary classific-
ation task which, in most cases, is tackled through supervised learning approaches. In
this scenario, a wide set of different machine learning techniques have been applied, in-
cluding for example Artificial Neural Network (ANN) [22, 18], Bayesian Belief Network
(BBN) [22] and K-Nearest Neighbors (KNN) [38].

The main insights that can be derived from the broad list of examples of different
algorithms applied to the task of automated credit card fraud detection is that machine
learning algorithms and data mining techniques represent the state-of-the-art for this
task.

3.3 Online Marketplaces

As introduced at the beginning of this chapter, the amount of publicly available research
about automated fraud detection in online marketplaces is very limited, especially if we
narrow the domain to housing marketplaces (i.e. where the offered items are represented
by accommodations).

For what concern online marketplaces in general, in [30] promising results have been
showed by the application of SVM to detect merchant frauds, namely items published
on an online platform with the only objective of stealing money from other customers
through fake offerings. However, this implementation differs from the application do-
main on which this research is based on because it does not include the interaction of
humans in the detection process.

Focusing on housing marketplaces instead, in [26] an analysis has been carried out
which, even though it did not end up in the implementation of an automated fraud
detection process, it revealed several insights about common patterns in online frauds.
Among these insights, it has been showed that IP addresses and phone numbers of
advertisers are an extremely valuable information that allows to discriminate a large
portion of illegitimate usages.

On top of this, the approach which can still be considered the one that suits best
the research scope of this thesis is presented in [2], which represents a previous research
performed at HousingAnywhere over the topic of automated fraud detection. In that
case, an ensemble machine learning model was implemented and it empirically proved
that machine learning algorithms largely outperformed rule-based detection systems.
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3.4 Human-grounded Explanations Evaluation

As widely explained in section 1, in HousingAnywhere Fraud Detection process the final
decision is made by humans, with AI as a support tool. Consequently, it becomes intu-
itive to let humans evaluate machine learning explanations so that insights not merely
based on theoretical concepts can be derived and applied to business applications.

In this view, one work that stands out from the literature is presented in [37]. Spe-
cifically, the authors evaluated the impact of machine learning explanations over an alert
control business process, where humans were required to validate alerts coming from a
machine learning algorithm. In that research, the explanation algorithm that has been
chosen is SHAP and the comparison has been made between the same human validation
process with and without predictions’ interpretation.

At first, the analysis of textual data collected from humans during the experiments
showed that explanations have an impact on human reasoning by, for example, bringing
the attention over features that may would have been neglected otherwise. However, the
results showed that, as opposite to what can be intuitively expected, explanations did
not bring any statistically significant improvements in task’s effectiveness and mental
efficiency.
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Problem Statement

In this section a formal description of the problem that will be tackle with this research
is given together with a description of the available data and the technical starting point
of the research. Moreover, at the end of the chapter the research questions are presented.

4.1 Problem Formulation

The introduced problem can be formalized as a binary classification task aimed at dis-
criminating weather a newly published item on the platform is a scam attempt or not.

As stated in section 2.3.1, a binary classification task requires to learn the following
function:

f(x) =

1 if x is scam attempt

0 if x is a legit item
(4.1)

The goal is then to approximate the function f as good as possible by training on
historical fraud and legit cases.

4.2 Data

The data on which the analysis is based can be summarized in four different categories:

• Listing-specific. These attributes are represented by all the information about
the accommodation that has to be checked. Among these features, the most im-
portant that are worth mentioning are rent price, accommodation type, amenities
and location.

• User-specific. Here the information is represented by a set of feature summariz-
ing user profile, such as email address or phone number.
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• Platform-specific. These attributes are aimed at representing the behaviour
that the user had on the online marketplace. In this category it is worth mention-
ing features such as used IP addresses, time of day of interactions and different
locations from which the user accessed the platform.

• City-specific. To have a reference point against which a new item can be com-
pared to discover anomalies, a set of city-specific characteristics is used, such as
average price or average length of listing’s description.

Finally, it is worth mentioning that the dataset is composed by roughly 15% of fraud
attempts and 85% of legit listings.

4.3 Former Model

The aim of this section is to describe the machine learning model as it was at the be-
ginning of the research, so that it can be used throughout the rest of the analysis as a
benchmark for performance. We will refer to such model as legacy model.

Specifically, the legacy model is composed as an ensemble of six different classifiers,
as showed in figure 4.1, where five of them are instances of a gradient boosting algorithm
named Light Gradient Boosting Machine (LGBM), introduced in [17]. These five models
are built on different temporal selection of data, aimed at mitigating the effect of data
shifting and incorporating in the ensemble a temporal sensitive representation.

Figure 4.1: Legacy Machine Learning Model

On the other hand, the last model of the first layer is represented by a Natural
Language Processing (NLP) classifier, aimed at extrapolating knowledge from textual
information, which in this use case are represented by accommodations’ description.
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These six models are then used to provide predictions independently which are then
sent to the ensembling layer that is responsible for combining such predictions into the
final ones, as showed in the following formula:

P =
∑
c∈C

pc · wc (4.2)

where P represents the set of final predictions, c represents a classifier belonging to
the class of C of the previously introduced six classifiers, pc represents the resulting in-
termediate predictions of model c and wc represents the contribution weight given from
pc to the final predictions.

4.4 Research Directions

In this section the research directions will be presented, as a result of previously intro-
duced background knowledge and problem settings.

From a machine learning perspective, the task of classifying between legit and illegit-
imate usages presents several challenges and the subsequent research questions arise. At
first, As mentioned in [3], in most domains, fraudsters are always adapting and evolving
the way they perpetrate frauds. Moreover, as it has been demonstrated in other use
cases from the literature ([3, 19, 18, 10]) how effective features engineering and ma-
nipulation steps are in enhancing model’s learning phase. On top of this, to make the
task even more challenging, the learning process has to be performed in an imbalanced
classification scenario.

As a result the following research direction can be defined:

It is possible to design and implement an automated fraud detection process applied
to the domain of online marketplaces which:

• It is robust towards the adapting behaviour of scammers

• It includes ad-hoc solutions to deal with categorical and numerical features, includ-
ing proper features engineering steps.

• It is able to learn a meaningful behaviour from an imbalanced dataset.

• It is based on a light structure that facilitates debugging, maintenance and future
developments, which are extremely valuable characteristics from a business per-
spective.
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On the other hand, for what concerns interpretable machine learning several other
challenges arise. From a general point of view:

Can machine learning interpretability enhance a fraud detection process?
If so, how to properly integrate machine learning explanations inside an automated fraud
detection process?

By looking more in details, the following research questions arise:

How to faithfully evaluate and compare machine learning explanations applied to an
automated fraud detection procedure?

Focusing on interpretable machine learning and once the evaluation framework has
been defined:

How does the class of model-agnostic explainability techniques compare to model-
based approach?

How the proposed model-agnostic approaches compare among themselves? Which
one is more adapt to fraud detection in online marketplaces?
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Approach

In this chapter, it will be explained how the answers to the previously stated research
questions will be sought from a general perspective, while the specific details related to
individual experiments will be presented in chapter 6.

Specifically, the focus of this section will be on the formalization of how experiments
have been performed and evaluated and it will be divided in two parts: the first one,
where the approach to performance oriented experiments is presented, and a latter one,
where the focus will be on the approach to explainability experiments.

5.1 Performance Experiments Approach

As introduced before, how performance oriented experiments have been conducted is
reported here. At first, the settings of the experiments are treated, while in the final
part their evaluation is analysed.

It is important to notice that here the focus is on all experiments aimed at seeking
an answer to the research questions related to improving the machine learning classifier.

5.1.1 Experiments Setting

As for many machine learning applications, in order to properly evaluate the generaliz-
ation capabilities of the model, the dataset has been divided into training and testing
data. Specifically, the split has been performed over the data arranged chronologically,
so to avoid any leakage of information from the future (i.e. samples in the training set
which happened chronologically after samples in the test set, possibly biasing model
evaluation). Similarly, the same split has been performed over the training set itself so
that a smaller set, used for validation and model selection, is generated.
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Train Test

Train Vali
dation

Time

90 % 10 %

90 % 10 %

Figure 5.1: Train-Test-Validation splits

As it can be seen from figure 5.2, the experiments pipeline is composed by an ini-
tial iterative process, called model selection, where experiments are implemented and
then evaluated over the validation set. Once experiments are completed and the actual
performance of the selected model has to be established, the model is trained over the
whole training set (train + validation) and evaluated over a test set which has not been
seen by the model before, so that an unbiased evaluation can be derived.

Training Validation

Model
Selection

Model
Evaluation

Train Validation Test

Figure 5.2: Machine Learning Experiments Pipeline

5.1.2 Experiments Evaluation

For what concerns how these experiments have been evaluated, it is necessary to recall
some of the metrics introduced in section 2.8.1.

Specifically, all experiments have been evaluated by collecting Precision, Recall, F1-
score and Area Under the Precision-Recall Curve. These metrics are then used to make
comprehensive comparisons among different experiments with a special attention on
Recall, which, due to the sensitiveness of the application domain, is required to be
above 80% to consider an experiment as successful.
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5.2 Interpretability Experiments Approach

In this section, a description of how explainability techniques have been tested is presen-
ted, where at first the structure of an individual experiments is given, while in the last
part the evaluation criteria are analysed.

5.2.1 Experiments Settings

In order to understand how interpretability experiments have been performed it is im-
portant to introduce the concept of an explanations evaluation task.

For the sake of this research, an evaluation task consists of the human validation (i.e.
finally marking an item as scam attempt or legit) of 60 different predictions produced
by the machine learning model in the past, thus extracted from an historical database
and for which the true class is known.

As it can be seen from figure 5.3, at first 60 listings, which in the past have been
marked as fraud attempts by the machine learning model, are selected from the historical
database. It is important to specify that, to obtain complete and valuable results, the
listings have been chosen from the following different categories:

• R0H0, real legit accommodations correctly validated as legit by the human check-
ing them.

• R0H1, real legit listings accommodations wrongly reported as scam by the human
who checked them.

• R1H0, scam attempts wrongly validated as legit items by the human who checked
them.

• R1H1, scam attempts correctly reported as scams by the human who checked
them.

Historical
Database

R0H0

R0H1

R1H0

R1H1

60
Selected
Listings

Explanations
Engine Experiment

Dataset

Human
Validation

Human

Data Selection Elementary Evaluation Task

Figure 5.3: Explanations Evaluation Task

Once selected, those 60 listings are analysed by the interpretability algorithm which
generates the corresponding explanations. Finally, the selected items and their ex-
planations are validated by the human conducting the experiment and the results are
collected.
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5.2.2 Experiments Evaluation

Even though several qualitative measures have been proposed in section 2.9.2, it has
been decided that the most suitable metric to evaluate the impact of explanations is
accuracy, previously defined in formula 2.2, represented by the ratio between correct
validations and the total number of validations, which in this case is 60 per task.

The decision of relying on accuracy is based on several reasons. From a business
perspective the priority is to validate whether machine learning explanations could im-
prove the interaction between humans and machine. The simpler, yet objective, way of
doing that it has been identified in comparing the accuracy of the human validation pro-
cess with and without machine learning explanations. Furthermore, from an academic
perspective, given the novelty of the application domain and the implementation of a
novel algorithm, accuracy, thanks to its objective evaluation, it has been considered as
a valid choice for this scope too.

It is also important to mention that machine learning explanations could impact
several other factors which are worth to be analysed more, such as whether and in
which way they affect human’s thinking process, if the validation speed changes and if
this has an impact on accuracy. However, since it has been decided to focus on accuracy
as evaluation metric for the scope of this thesis, these factors will not be evaluated here
but it is worth to consider them in any future continuation of this analysis.
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Experiments

In this section, the list of experiments, both successful and not, performed in the scope
of this research is presented. Overall, experiments have been divided in two categor-
ies: performance oriented, if aimed at improving model performances over the binary
classification task, and explanations oriented, if dedicated to enhancing the human cap-
abilities of understanding machine learning predictions. Finally, the results related to
the experiments presented in this section can be found in chapter 7.

6.1 Performance Oriented Experiments

At first, the focus will be on performance oriented experiments, namely all those ex-
periments which are aimed at improving the classification performance of the machine
learning model. In the scope of this research, several experiments belong to this category,
going from the modification of the underlying machine learning structure to changing
algorithm’s technical detail such as cost function and hyperparameters’ value.

It is important to specify that all the experiments reported in this section followed
the approach presented in section 5.1 and they are aimed at seeking answers to the
research questions related to the improvement of the machine learning classifier.

For the sake of completeness, such research directions are reported again here:

It is possible to design and implement an automated fraud detection process applied
to the domain of online marketplaces which:

• It is robust towards the adapting behaviour of scammers

• It includes ad-hoc solutions to deal with categorical and numerical features, includ-
ing proper features engineering steps.

• It is able to learn a meaningful behaviour from an imbalanced dataset.
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• It is based on a light structure that facilitates debugging, maintenance and future
developments, which are extremely valuable characteristics from a business per-
spective.

6.1.1 Infrastructure Simplification

The first experiment performed consists in building a more robust, lighter and reliable
infrastructure so that all other experiments will follow. To do so, a new model, com-
posed by an individual LightGBM classifier has been built. Such model has then been
trained with all historical data, in contrast with the legacy model approach which re-
quires different models built on different temporal slices of data. Furthermore, the new
model does not include the NLP classifier which was present in the legacy one.

6.1.2 Objective Function

One of the main limitation of the legacy model is dealing with imbalanced classes, that
in this case means that samples of one class are roughly five times more frequent than
instances belonging to the other class. As a result, predictions of minority class samples
are weaker and the optimal working point of the legacy model is shifted towards the
majority class. In practice, this is reflected in skewed predicted probabilities towards 0,
assuming class 1 as the minority one. Furthermore, the optimal working point, for this
business case, of the legacy model is achieved with a classification threshold of roughly
0.2 (e.g instances with predicted probability greater or equal than 0.2 are classified as
belonging to the positive class, otherwise to the negative class) which, besides being not
ideal from a performance perspective, it also makes calculated probabilities less mean-
ingful and harder to be understood (i.e. predictions at that point are just a custom
score indicating a certain confidence in being a scam or not but they do not represent
anymore meaningful probabilities).

To address this issue, the new model has been training using a modified objective
function able to deal with imbalanced classes. Specifically, the objective used is the
minimization of a weighted Cross Entropy loss function, defined as follow:

L(p, y, c) = −(c · y · log p+ (1− c) · (1− y) · log (1− p)) (6.1)

where p represents the predicted probability, y represents the true class to which
the instance belongs and c represents a cost factor which can be used to give more
importance to a certain type of error.
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6.1.3 Missing Values Imputation

As often happens when dealing with data coming from a business case, the dataset on
which the analysis is built contains missing values. Even though LightGBM is able to
deal with missing values, in critical cases an ad-hoc approach can bring more value. Spe-
cifically, by combining the results of the data exploration and the information gathered
by debugging the LightGBM model, two features have been imputed manually. The
assumption that has been made is Missing Completely At Random (MCAR). MCAR
means that there is no relationship between a missing data point and any other values
in the dataset, thus making the likelihood that a sample is missing completely random.
This assumption is due to the fact that no correlation has been found during data ex-
ploration, therefore no reason is present to invalidate MCAR.

Two binary features, which represent respectively whether there is an anomaly in the
location data of the user and whether the accommodation includes bedroom information
or not, are imputed using a conservative approach of being 0 until proven otherwise.

6.1.4 Bayesian Optimization

LightGBM, as many other complex machine learning algorithms, allows for a huge
amount of different configurations by choosing between tens of parameters. To find
which configuration performs best in a smart way (i.e. exhaustive search of all possible
combinations is computationally unfeasible), Bayesian Optimization has been used. As
objective function to be optimized, F1-score has been picked as the best proxy for this
specific use case.

The underlying idea of Bayesian Optimization is to approximate the objective func-
tion with an initial Gaussian Process and consequently update the distribution with the
observed values and Bayes Theorem, where the posterior distribution is the result of the
combination of the prior and the observation.

Thanks to distributions approximation, BO is able to produce an approximation of
the real unknown objective function and, by balancing the trade-off between explora-
tion (i.e. testing new input values) and exploitation (i.e. testing input values in the
surrounding of an optimal point), it is able to generate a set of meaningful input values
with a feasible computation complexity.
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6.1.5 Categorical Features Encoding

Three different ways of dealing with categorical variables have been implemented and
evaluated:

• One Hot Encoding: the most common technique when it comes to encoding cat-
egorical data. This technique is based on replacing a specific categorical feature
f with n new binary features, one per different value in feature f . Moreover, for
each instance, only the new binary feature corresponding to the value assumed by
feature f is set to 1 while all the others to 0. The main advantage is that it does
not introduce any ordinal relation between different categories but it can lead to
an exploding number of features.

• Label Encoding: is an approach based on substituting each value of a specific
feature with a correspondent numerical value. This technique has the advantage
of not introducing any new feature but at the risk of generating artificial ordinal
relations between different categories.

• Fisher’s Encoding: novel technique implemented in [17] and based on Fisher’s
grouping theory introduced in [11], that is meant to be optimal for decision trees.
The underlying idea is to split the values of a specific categorical features into
groups, where the in-group variance is minimized using Fisher’s technique, and
then let the decision trees find the optimal split over these subsets.

6.1.6 Numerical Features Enhancement

In this section, all the experiments related to the enhancement of numerical features are
reported. In order to find the best representation possible of numerical features for the
machine learning model, the following experiments have been implemented:

• Discretization of numerical features using quantiles.

• Normalization of numerical features by the mean of different approaches such as
L1-norm, L2-norm and maximum value.

• Applied Principal Component Analysis (PCA) as a numerical features selection
technique. For PCA it is intended a statistical technique aimed at finding an
alternative representation (i.e. with a different set of axis) of the input data
where the variance, used a proxy for amount of information, over these axis is
maximised. Then, the features selection step is realized by selecting only a subset
of new components (i.e. principal components) which account for most of the
variance, thus reducing the features space dimensions.
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6.1.7 Boosting Technique

As an alternative to the traditional boosting technique, a novel approach, namely Dro-
pout meets Multiple Additive Regression Trees (DART), introduced in [36] have been
implemented and tested. The idea behind it is to apply the concept of dropout, bor-
rowed from the domain of deep neural network, to boosted decision trees. Similarly
to the original dropout technique, the aim is to improve the generalization capabilit-
ies of the final machine learning model by skipping some training iterations for certain
individual trees.

6.1.8 Minor Experiments

In this section, a selection of experiments that have been quickly implemented and tested
are reported. However, since they are partially out the scope of this research, they have
not been investigate deeply. Among these, it is worth mentioning:

• Attempt to ease the learning task by balancing the dataset with synthetic samples
generated with the SMOTE algorithm.

• Ensemble a simple Neural Network with the new simplified infrastructure (i.e. a
single LightGBM model). Attempts have been made both by training the Neural
Network on the same features and on different representations of the input space,
such as PCA and Clustering.

• Feed a LightGBM model with new engineered features based on Principal Com-
ponent Analysis (PCA), K-means clustering over numerical features and K-means
clustering over PCA components.

• Train a LightGBM model with Focal Loss, a novel loss designed for dense object
detection in computer vision application and empirically proved to be competitive
also for tabular data in unbalanced scenarios.
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6.2 Interpretability Oriented Experiments

In this section, all experiments focused on explaining the prediction of the underlying
machine learning model are reported. Specifically, four different approaches will be ana-
lysed: Model-based, Local Surrogate, SHAP and Adversarial explanations.

All experiments presented here are structured on the corresponding approach presen-
ted in section 5.2 and aimed at answering interpretability-related research questions,
specifically:

Can machine learning interpretability enhance a fraud detection process?
If so, how to properly integrate machine learning explanations inside an automated fraud
detection process?

How to faithfully evaluate and compare machine learning explanations applied to an
automated fraud detection procedure?

How does the class of model-agnostic explainability techniques compare to model-
based approach?
How the proposed model-agnostic approaches compare among themselves? Which one is
more adapt to fraud detection in online marketplaces?

6.2.1 Model-based Explanations

Even though, as explained previously, the focus of this research is on model-agnostic
explainability methods, it has been decided to investigate a model-specific method to
have a baseline against which model-agnostic approaches can be compared.

As stated before, the underlying model is an instance of LightGBM, which among
other offered features, it allows to store a value for all trees’ leaves while generating a
specific prediction. Such values are used to assign node importance in the final prediction
and therefore they can be used to assess which features contribute more in generating
the final prediction value.

As introduced before, in this specific scenario (i.e. binary classification task) the
final outcome of the model is calculated as follow:

f(x) =
1

1 + exp−x
(6.2)

where the outcome f(x) ∈ (0, 1) represents the probability of an instance of belonging
to the positive class and x ∈ R . While generating a prediction, the LightGBM model
goes through all the trees which is made of and each traversed leaf contributes with its
features to increasing or decreasing the values of x. During the training process, such
contributions are established so that the model can generate meaningful predictions in
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testing phase. For example, let’s think about a trivial example where instances are
composed by only two features: name and age. Let’s also assume that all and only the
instances which have name = Federico and age ≥ 23 belongs to the positive class. As a
consequence, if we take a simple instance composed by name = Federico and age = 18,
the value of x will be affected by a positive contribution from the feature name and
a negative one caused by age. By tracking all these contributions to the final value of
x, which consequently generates the prediction probability, it is possible to determine
which features are considered to be more important in assessing the final decision.

For the purpose of the application domain, the resulting explanations have been
generated by providing the three most influential factors both towards the positive and
the negative class as it can be seen from the following examples:

Model-based Explanation Example

• The model thinks it is a possible scam because:

– User’s email domain is .web

– The accommodation is 300e cheaper than city’s average rental price.

– User and accommodation are in different countries.

• On the other hand, for the following reasons it can be legit:

– User connected his/her Facebook profile.

– Listing has been created using MacOS as OS.

– User’s email contains only one number.

6.2.2 Local Surrogate Explanations

As introduced before, local surrogate models represent a model-agnostic approach to
explainability where the behaviour of a black box model is explained by interpreting a
surrogate one which belongs to the class of interpretable machine learning models and
approximate accurately enough the behaviour of the main algorithm for a given sample.

In this experiment, as surrogate explainable model a binary ridge classifier has been
implemented, that is converting the classification labels to −1, 1 and than approaching
the problem as a ridge regression task. The predictions of the surrogate model are
generated through the following formula:

y = w0 +
∑
i

wi · xi (6.3)

Such predictions are then considered explainable because each feature xi contribution
can be assessed by its associated weight wi.
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Consequently, the explanations are generated by providing humans with the most
important features (i.e. the ones having their weights with the largest magnitude). The
features associated with the largest positive weights are the ones providing the most
important contribution towards the positive class, while, on the other hand, the features
with the largest negative weights are the ones increasing the instance’s probability of
belonging to the negative class. The produced explanations are presented with the same
layout as the model-based ones in section 6.2.1.

6.2.3 SHAP

TreeSHAP, introduced in section 2.9.6, is a efficient implementation of SHAP explainab-
ility technique, which speeds up the computation by leveraging the tree-based structure
of the underlying machine learning model.

To recall, this approach is an attempt to explain machine learning predictions by
assigning to each feature a contribution factor (i.e. Shapley value), calculated as the
weighted average marginal contribution of a specific feature applied to different input
samples.

Similarly to previous methods, explanations for an input sample are generated by
providing humans with the features which have the highest marginal contribution, either
negative or positive, to the final prediction. As a result, explanations are presented with
the same layout as the one in section 6.2.1.

6.2.4 EVolutionary ADversarial Explanation (EVADE)

The last approach that has been implemented in this research belongs to the class
of adversarial explanations. Particularly, the idea is to exploit the natural ability of
humans in comparing objects by providing a set of instances with specific characteristics
alongside the one to be explained. In order to make the comparison meaningful, the
adversarial instance has to enforce two basic principles:

• Being as similar as possible to the instance to be explained, so that it differs from
the original instance by the smallest subset of important features.

• Being evaluated by the machine learning model in an opposite way with respect
to the instance to be explained, so that an adversarial comparison can be made.

To do so, a novel technique named EVADE has been developed and implemented,
that by means of genetic algorithms (introduced in section 2.7.4), it is able to produce
synthetic instances and generate machine learning explanations out of them.

At the end of the genetic optimization procedure, the best candidate (i.e. the one
with the highest fitness value) of the last population is than used as a counterexample
of the instance to be explained. The core of the optimization method relays in designing
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the correct fitness function so that, at the end of the optimization process, the best
candidate matches the criteria set at the beginning: being as similar as possible to the
original instance and, at the same time, being evaluated in a significantly different way
from the machine learning model.

In order to generate the initial population, instances are created using sampling
techniques. The sampling procedure assumes that each feature value’s is sampled from
a uniform distribution, where feature’s domain is assessed by looking at the values as-
sumed by a certain feature over the training instances. It is important to mention that,
while for categorical features the number of possible values is limited, this does not
hold for continuous features. Therefore, it has been decided to discretize all numerical
features into buckets so that, also for these features, the domain size becomes limited.
While the assumption of underlying uniform distribution may not be valid for all use
cases, it reveals to be a valid trade-off between accuracy and complexity for this research.

Similarly, the previous sampling procedure is also used when mutation has to be
applied, with the difference that instead of being applied at instance-level (i.e. for all
features), it is applied only to the features that have to be mutated.

For the purpose of this experiment, an ad-hoc fitness function has been defined as the
weighted sum of two components: a first part accounting for the discrepancy between
the best candidate’s prediction and the one of the original instance, while a second part
considers how different the two instances are.

Formally, the first part is defined as follows:

∆max = max(1− t, t) (6.4)

fpred(X
′, p, t) =

∆max − |p(X ′)− t|
∆max

(6.5)

where t ∈ [0, 1] represents the target prediction probability for the candidate (e.g. if it is
required to explain an instance belonging to the positive class, a good value for t can be
0) while ∆max is the maximum possible discrepancy between a certain probability and
the target one in a binary classification problem (i.e. predicted probabilities belongs to
[0, 1]). Furthermore, fpred is a function that given a candidate instance to be evaluated
X ′ and a prediction function p and a target prediction probability t returns a score in
the domain [0, 1]. The prediction function p, which returns the predicted probability
given a specific instance, represents the behaviour of the underlying black box machine
learning model. Consequently, fpred evaluates to 1 when the instance X ′ is evaluated
with a prediction probability equal to the target one, while it returns 0 when such pre-
diction has the highest discrepancy possible (i.e. ∆max) from the target one.

As introduced before, the second building block of the fitness function focuses on the
similarity between a candidate and the original instances. In practical machine learning
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applications it is common to have instances composed by both categorical and numer-
ical features. As a consequence, a procedure for assessing similarities between instances
must provide a way to deal with these different types of features. To do so, the similarity
function has been designed in two different parts.

The first component has been dedicated to numerical features and calculated using
the following formula:

fnum(Xnum, X
′
num) = 1− sim(Xnum, X

′
num) (6.6)

fnum(Xnum, X
′
num) = 1− Xnum ·X ′num

||Xnum|| × ||X ′num||
= 1−

∑nf
i xnumi · x′numi√∑nf

i x2numi
+
√∑nf

i x′numi
2

(6.7)
where fnum ∈ [0, 1] is the fitness function related to numerical features and sim ∈ [0, 1]
represents the cosine similarity between two instances X and X ′. These instances rep-
resent the subsets of the original instances obtained by considering only numerical fea-
tures. Furthermore, in the breakdown of the similarity function sim, nf represents the
number of numerical features, xnumi represents the value of the instance for the i-feature

As introduced before, an additional part which extends the usage of the technique
by keeping into account categorical features has been designed in the following way:

fcat(Xcat, X
′
cat) =

|Xcat ∩X ′cat|
|Xcat|

(6.8)

where fcat ∈ [0, 1] represents the fitness function calculated over categorical features
as the ratio between features which share the same value between Xcat and X ′cat over
the total number of categorical features |Xcat|. In this case, Xcat and X ′cat represents
the features subsets of the original instances where only the categorical features are
considered.

52 Enhancing Fraud Detection Through Interpretable Machine Learning



CHAPTER 6. EXPERIMENTS

Finally, the global fitness function is composed by the weighted sum of all the com-
ponents presented so far and represented by the following formula:

f(X,X ′, p, t,W ) = fpred(X
′, p, t)·wpred+fnum(Xnum, X

′
num)·wnum+fcat(Xcat, X

′
cat)·wcat

(6.9)
Which can be visually represented as in figure 6.1.

fpred

fnum

fcat

+
wpred

wnum

wcat

p

X

X'

t

Fitness
value

Input
variables

Fitness
components

Figure 6.1: Fitness Function Computation

Where, to recall, the parameters are defined as follows:

• X is the original instance to be explained.

• X ′ is the synthetic generated counterfactual example of which the fitness value
has to be assessed.

• p is the prediction function of the machine learning model which needs to be
interpreted.

• t represents the target prediction probability that the generated instance X ′ should
ideally have.

• W is composed by the weights of the individual components of the fitness function,
namely wpred, wnum, wcat.
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At the end of the iterative evolution process, the final population is used to generate
the explanations. To do so, the best candidate, represented by the instance with the
highest fitness value in the population, is used as the counterfactual sample. However,
to make comparisons understandable and actionable by humans, the similarities and
differences between the synthetic and the original instance have to be summarized by
proposing only a meaningful subset of important features. In this implementation, the
importance of a feature has been based on how many synthetic instances, belonging to
the final population, have the value of a certain feature changed from the original one.
Such criteria has been designed as follows:

g(X,X ′, f) =

1 se Xf = X ′f

0 otherwise

imp(P, f,X) =

∑|P |
i=1 g(X,Pi, f)

|f |
(6.10)

Where g(X,X ′, f) represents a simple function that evaluates to 1 if, for a specific fea-
ture f , both instances X and X ′ have the same value, 0 otherwise. The importance for
a feature f , over a population P and the original instance to be explained X, is then
calculated by imp(P, f,X) as the number of samples in the population where feature
f assumes a different value than the original one in X. Moreover, the result is then
normalized by the cardinality of the feature (i.e. the number of different values it can
have) so that the impact of high-cardinality features on importances is mitigated.

As an example, if we assume to have instances composed by just two features f1 and
f2, a population of ten candidates and f1 is in all the samples different from the original
value while f2 differs from the original one only for half of the cases. Furthermore, let’s
assume that |f1| = 10 (i.e. f1 can have ten different values) and |f2| = 2. As a result,
the importance value of imp(P, f1, X) = 10

10 = 1 and imp(P, f2, X) = 5
2 = 2.5. As it can

be seen from the previous example, even though f1 has assumed a value different from
the original one for more times than f2, thanks to the normalization factor, f2 has been
evaluated as more important.

As a last step, all features which have different values in the best candidate and in the
original instance are selected and ranked accordingly to their importance, assessed with
the previously stated procedure. The final explanation is then generated by providing
humans with the comparison of the top most important features between the synthetic
and original instances. The idea is basically to show humans which values would be
required the original sample to have so that it would be evaluated in the opposite way.
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For the purpose of this application, the top five important features are proposed
with the following structure:

Adversarial Explanation Example

The model thinks it is a possible scam because:

• Listing has been published right after user registration instead of after 24
hours.

• Listing’s rent is 200e cheaper than average of the city instead of having a
comparable rent price w.r.t. to city average.

• Listing’s description is empty, instead of being 10000 characters long.

• Listing has been published in July instead of January.

• Listing has been created using an unidentified OS instead of Mac-OS.

• Listing’s minimum rental period is not defined instead of being defined.
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Results

In this section the results of the experiments mentioned in section 6 are reported fol-
lowing the same structure of that section: a first part dedicated to the results achieved
in performance oriented experiments, while in the last part all results related to inter-
pretability are reported.

7.1 Performance Oriented Results

For the purpose of this research, multiple metrics have been taken into account so that
most aspects of the behaviour of the model can be observed and a comprehensive de-
cision can be taken. Specifically, from the set of metrics introduced in 2.8.1, Precision,
Recall, F1-score and Area Under the Precision-Recall Curve have been selected.

The final machine learning model has been achieved as a combination of all successful
experiments presented in section 6.1 that proved to improve the performances of the
original model, introduced in 4.3 and reported here for the sake of completeness:

Precision Recall F1-score PR AUC

0.4986 0.8036 0.6154 0.7399

Table 7.1: Legacy Model Performance

7.1.1 Successful Experiments

The first experiment that has been implemented, so that it would work also as a founda-
tion for all following ones, it has been the machine learning infrastructure simplification
as described in section 6.1.1.
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The performances of the new simplified model are the following:

Precision Recall F1-score PR AUC

0.5357 0.8015 0.6422 0.7229

Table 7.2: Simplified Model Performance

As it can be seen for table 7.2, the new model achieved a comparable performance
with respect to the legacy one (table 7.1) by having slightly lower Recall and PR AUC
but higher Precision and F1-score. As a result this simplified model will be used as the
basis for next experiments since the trade-off between performance and model complex-
ity it has been considered worth it.

As a second step, it has been empirically showed that the categorical features encod-
ing that worked best for the scope of this research is the one based on Fisher’s grouping
theory previously stated in section 6.1.5. Specifically, the following table compares the
performance of the different encoding techniques:

Encoding Precision Recall F1-score PR AUC

One-Hot 0.5299 0.813 0.6416 0.7734

Label 0.4976 0.8015 0.614 0.7306

Fisher 0.5357 0.8015 0.6422 0.7229

Table 7.3: Categorical Features Encoding Comparison

As a consequence of these results, it has been decided to continue with the tree-
optimized encoding based on Fisher’s grouping. Please note that Fisher’s encoding has
been used also by the simplified model presented before in table 7.2, therefore they have
the exact same performances.

On top of new infrastructure, a new objective function, presented in section 6.1.2, has
been used. To recall, it is composed by the minimization of a weighted Cross Entropy
loss function, defined as follow:

L(p, y, c) = −(c · y · log p+ (1− c) · (1− y) · log (1− p)) (7.1)

where p represents the predicted probability, y represents the true class to which the
instance belongs and c represents a cost factor which can be used to give more import-
ance to a certain type of error.

After fine tuning the parameters to be assigned to c, the overall performances of the
new model increased and the optimal working point of the classifier shifted towards a
less skewed decision threshold. In practice, this can be seen by the model producing on
average higher predicted probabilities (i.e. it is easier that an instance belonging to the
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positive class will have a predicted probability grater or equal 0.5), allowing for achiev-
ing comparable recall values to the legacy model but with a more traditional decision
threshold of 0.5 instead of 0.2.

Overall, the performances of this model are:

Precision Recall F1-score PR AUC

0.5687 0.8053 0.6667 0.7696

Table 7.4: Model Performance with Weighted Loss

Since performances increased significantly, this objective function will be used for
training the LightGBM classifier also in next experiments.

Furthermore, another experiment that empirically proved to be successful is the Miss-
ing Values Imputation proposed in section 6.1.3. Specifically, the achieved performances
at the end of this experiment can be found in the following table:

Precision Recall F1-score PR AUC

0.5801 0.8015 0.6731 0.7681

Table 7.5: Model Performance with Missing Value Imputation

As it is shown in table 7.5, the imputation increased precision, recall and F1-score
while it slightly hit PR-AUC. Overall, since the new performances are considered to be
better with respect to the use case, this imputation will be performed in future experi-
ments.

As a last successful performance oriented experiment, it is worth to mention that
performing hyper-parameters tuning by the mean of Bayesian Optimization led to the
following performance:

Precision Recall F1-score PR AUC

0.6046 0.8053 0.6907 0.7681

Table 7.6: Model Performance after Bayesian Optimization

Table 7.6 shows again a performance improvement with respect to the previous ex-
periment and therefore Bayesian Optimization has been selected to become a component
of the final machine learning model.
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7.1.2 Discarded Experiments

Even though several experiments brought positive results, some of them did not improve
the performance of the model and therefore they have been discarded. For the sake of
completeness their results will be reported in this section, while the implementation
details behind them are explained extensively in section 6.1.

Experiment Precision Recall F1-score PR AUC

Discretization 0.544 0.8015 0.6481 0.7667

L1 Normalization 0.5765 0.8053 0.672 0.7722

L2 Normalization 0.541 0.8168 0.6505 0.7739

Max Normalization 0.5 0.8168 0.6203 0.7348

PCA 0.4277 0.813 0.5605 0.7008

DART boosting 0.5146 0.8092 0.6291 0.7662

Clustering over PCA 0.5558 0.8168 0.6615 0.7619

Over-sampling with SMOTE 0.5518 0.813 0.6574 0.7716

Focal Loss 0.8107 0.5229 0.6357 0.754

Ensemble with

Neural Network
0.6046 0.8053 0.6907 0.7657

Table 7.7: Discarded Experiments Performances

As it can be seen from table 7.7, several experiments did not achieve good enough
performances to be included in the final model. Moreover, it is important to notice that
all experiments listed in this table are built on the basic LightGBM model introduced
before.

7.1.3 Final Model Performance

In this section, a summary of the previous results will be made with an exclusive focus
on the successful experiments and their contribution to the final model.

First, a breakdown of the single improvements will be made followed by a com-
prehensive comparison aimed at capturing the whole picture of performance related
improvements, from the beginning to the end of the experiments.
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Looking at the individual experiments’ contribution, the following table can be
drawn:

Experiment Precision Recall F1-score PR AUC

Initial Baseline 0.4986 0.8036 0.6154 0.7399

Model Simplification
0.5357

(+7.4%)

0.8015

(-0.3%)

0.6422

(+4.3%)

0.7299

(-1.4%)

Objective Function
0.5687

(+6.2%)

0.8053

(+0.5%)

0.6667

(+3.8%)

0.7696

(+5.4%)

Missing Values

Imputation

0.5801

(+2%)

0.8015

(-0.5%)

0.6731

(+1%)

0.7681

(-0.2%)

Bayesian Optimization
0.6046

(+4.2%)

0.8052

(+0.5%)

0.6907

(+2.6%)

0.7681

(+0%)

Table 7.8: Experiments Improvements Breakdown. Between brackets, the relative per-
centage improvement with respect to the previous iteration is given.

By looking at table 7.8, the step by step improvements can be clearly seen. It is
worth mentioning that the experiment which brought the overall largest improvements
is the introduction of the cost-sensitive objective function which revealed to be especially
suitable for an unbalanced dataset. Moreover, the impact of the new objective function
on the working point of the classifier (i.e. making the classifier working in a balanced
scenario and shifting the working point towards a more traditional decision threshold of
0.5) can be also seen from the relevant improvement brought by this experiment in the
Area Under the Precision-Recall Curve, with a relative increment of +5.4%. The under-
lying motivation relays in the concept that the more the working point of the classifier
is skewed (i.e. very low or high decision threshold to get the desired performances) the
smaller the area where the classifier works best is, and consequently the lower the PR
AUC value will be.

On the other hand, the comprehensive picture given by the set of performance ori-
ented experiments can be defined as follows:

Experiment Precision Recall F1-score PR AUC

Initial Baseline 0.4986 0.8036 0.6154 0.7399

Final Model
0.6046

(+21.3%)

0.8053

(+0.2%)

0.6907

(+12.2%)

0.7681

(+3.5%)

Table 7.9: Overall Performance Improvements

As it can be seen from table 7.9, the final machine learning model achieved a 21.3%
increase in precision with respect to the starting point of the experiments while keeping
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basically the same recall. As a consequence, also F1-score is 12.2% higher and PR AUC
is 3.5% higher than the initial model.

7.2 Interpretability Oriented Results

In this section the results related to interpretability oriented experiments will be stated.
Specifically, four different explanation methods will be analysed with their performances
evaluated both at application level and human level (2.9.2).

Specifically, humans were required to validate or not the predictions of the machine
learning model, simulating the actual process of scams detection at HousingAnywhere
presented in section 2.1. The main difference from the real scams detection process is
that machine learning predictions were presented not only with a probability score of
being a scam attempt but also with the predictions’ explanation, so to assess if they
can be used to facilitate the process of human interpreting machine learning predictions.

The results that will be presented in the rest of the section have been achieved over
interpretability evaluation tasks structured as presented in section 5.2.

7.2.1 Explanations Accuracy

It is possible to divide the explanation experiments by two different criteria:

• Evaluation Level: as introduced before, evaluating explanations is far from being
a trivial task. Specifically, due to the nature of the use case of this research, a
human-based evaluation is required. Therefore, two of the methods introduced
in section 2.9.2 that match this criteria have been used. First, an application
level evaluation has been performed by assessing the interpretability impact over
humans with prior domain knowledge over the task, and secondly a human level
evaluation, where no prior knowledge is required.

• Explanation Method: another differentiation among explanations experiments
can be made by looking at which method has been used to generate such explana-
tions. Specifically, in the scope of this research, four different methods have been
implemented: Model-based, Local Surrogate, SHAP and EVADE.

Evaluation Level

For these experiments, four humans participated and validated the machine learning
predictions. Specifically, half of the participants were domain experts at the beginning
of the experiments, while the other half was new to the domain of scams detection, so
that both human-level and application-level evaluations have been assessed.

In table 7.10, the performances over the two different evaluation levels are reported,
both overall and at individual task level. Specifically, for each task and category the
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accuracy is stated, calculated as the ratio of correct validations over the total number
of validation, as explained in section 5.2.

Evaluation R0H0 R0H1 R1H0 R1H1 Overall

Human Level #1 0.65 0.7143 0.6154 0.55 0.6167

Human Level #2 0.7 0.8571 0.4615 0.65 0.65

Human Level #3 0.8 0.8571 0.7692 0.7 0.7667

Human Level #4 0.8 0.8571 0.3077 0.55 0.6167

Human Level

Overall
0.7625 0.8214 0.5385 0.6125 0.6708

Application Level #1 0.65 0.8571 0.8462 0.7 0.7333

Application Level #2 0.7 0.2857 0.6923 0.7 0.65

Application Level #3 0.55 0.7143 0.7692 0.65 0.65

Application Level #4 0.8 0.8571 0.9231 0.7 0.8

Application Level

Overall
0.675 0.6786 0.8077 0.6875 0.7083

Table 7.10: Evaluation Level Accuracy, each cell contains the corresponding accuracy

Since the overall results in table 7.10 do not show a clear performance discrepancy
between humans with and without background knowledge, a proper scientific validation
has been performed.

Specifically, a statistical paired t-Test, introduced in section 2.8.2, has been imple-
mented to assess if the performance difference between the two evaluation approaches
is statistically significant. Therefore, the following hypotheses are formulated:H0 : µ1 = µ2

H1 : µ1 6= µ2

Where µ1 and µ2 represent respectively the mean accuracy of evaluation at human and
application levels.
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To assess how t-value is calculated is it necessary to recall the following definition:

t-value =

√
k · δ√∑
i(δ−δi)2
k−1

(7.2)

With the observed data, the variables assumed the following values:

• α = 0.05

• The set of errors δ = {0.17, 0.03, 0, 0.03}.
• The median error δ = 0.0458.

• The degrees of freedom df = 3.

• The t-value = 1.84

• The associated p-value = 0.16

As a result, p-value > α, thus it is not possible to refuse the null hypothesis with
a 95% statistical confidence since such p-value indicates a 16% probability that the
discrepancy in performance is due to randomness.

Explanation Method

In this section, the performances of the four different interpretability methods will be
presented. Furthermore, it is important to specify that, since from the results of the pre-
vious section it emerged that there is no statistically significant difference between the
performances of Human Level Evaluation and Application Level Evaluation, all further
analysis will not take into account this differentiation anymore. Finally, each explana-
tion method has been tested over two tasks and compared both with a general baseline
and among the other explanation approaches.

First, it is worth mentioning that a baseline for comparison has been created by
evaluation human’s validations in a scenario with just the prediction probabilities and
without explanations. Such baseline, which performances can be found in table 7.11, is
used as a starting point for the evaluation of all interpretability approaches.

Evaluation R0H0 R0H1 R1H0 R1H1 Overall

Baseline 0.8 0.5714 0.3077 0.5 0.5667

Table 7.11: Baseline without Explanations, each cell contains the corresponding accur-
acy

As introduced in section 6.2, the first explainability approach that has been imple-
mented is called Model-based and, even though it does not fully match the scope
of this research about Model-agnostic interpretability methods, it has the purpose of
providing a solid reference point for all future experiments. In the following table, the

Enhancing Fraud Detection Through Interpretable Machine Learning 63



CHAPTER 7. RESULTS

performances of humans over Model-based explanations are reported, both overall and
at individual task level.

Evaluation R0H0 R0H1 R1H0 R1H1 Overall

Model-based #1 0.65 0.8571 0.8461 0.7 0.7333

Model-based #2 0.65 0.7143 0.6154 0.55 0.6167

Model-based Overall 0.65 0.7857 0.7308 0.625 0.675

Table 7.12: Model-based Explanations Accuracy

Once the model-based reference performances have been collected, it is time to see
how model-agnostic techniques compare to it.

The first one to be introduced is Local Surrogate, presented in 2.9.4 and 6.2.2.
This approach to interpretability is based on simulating the behaviour of the underlying
black box machine learning model with an white box one, which aimed at being a
reliable approximation for a specific subset of the input space. Such method achieved
the following results:

Evaluation R0H0 R0H1 R1H0 R1H1 Overall

Local Surrogate #1 0.7 0.8571 0.4615 0.65 0.65

Local Surrogate #2 0.7 0.2857 0.6923 0.7 0.65

Local Surrogate Overall 0.7 0.5714 0.5769 0.675 0.65

Table 7.13: Local Surrogate Explanations Accuracy

Another Model-agnostic explainability method experimented is SHAP, introduced
in section 2.9.6 and 6.2.3, which showed the following performances:

Evaluation R0H0 R0H1 R1H0 R1H1 Overall

SHAP #1 0.55 0.7143 0.7692 0.65 0.65

SHAP #2 0.8 0.8571 0.7692 0.7 0.7667

SHAP Overall 0.675 0.7857 0.7692 0.675 0.7083

Table 7.14: SHAP Explanations Accuracy

Finally, the last model-agnostic method which have been used in this research is
EVADE, introduced in section 2.9.7 and 6.2.4. Such approach achieved the following
performances:
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Evaluation R0H0 R0H1 R1H0 R1H1 Overall

EVADE #1 0.8 0.8571 0.9231 0.7 0.8

EVADE #2 0.8 0.8571 0.3077 0.55 0.6167

EVADE Overall 0.8 0.8571 0.6154 0.625 0.7083

Table 7.15: EVADE Accuracy

Given the individual tasks’ performances, it is interesting to look at the method by
method comparison summarized in the following table:

Method R0H0 R0H1 R1H0 R1H1 Overall

No Explanations 0.8 0.5714 0.3077 0.5 0.5667

Model-based 0.65 0.7857 0.7308 0.625 0.675

Local Surrogate 0.7 0.5714 0.5769 0.675 0.65

SHAP 0.675 0.7857 0.7692 0.675 0.7083

EVADE 0.8 0.8571 0.6154 0.625 0.7083

Table 7.16: Methods Comparison Accuracy

By looking at table 7.16, the following insights can be derived:

• All interpretability methods proved to significantly improve the accuracy of hu-
mans’ validations with respect to a scenario without explanations.

• Even though Local Surrogate achieved higher accuracy than the case where no
explanations were given, it also empirically proved to be not as competitive as the
other methods on this use case.

• Even though Model-based explanations took advantage of model’s internal inform-
ation, it has been showed that both SHAP and EVADE explanations were able to
outperform it.

• Even though SHAP and EVADE explanations achieved the same accuracy value
overall, by looking at the categories breakdown a pattern arises. While SHAP
seems to have more balanced score throughout all categories, EVADE shows higher
variance where very high accuracy scores have been achieved on legit items valid-
ation while performances struggle for what regards scam attempts. An intuitive
justification to EVADE higher variance can be found in the process of generating
explanations. Specifically, EVADE is based on another machine learning tech-
nique (i.e. Genetic Algorithms) thus introducing an additional moving part in the
system. However, this represents only an hypothesis which testing is outside the
scope of this thesis and represent an interesting topic for future researches.

Enhancing Fraud Detection Through Interpretable Machine Learning 65



CHAPTER 7. RESULTS

• The categories where the validation process benefits more from explanations are
R0H1 and R1H0, which represent items on which the validation process failed in
the past.
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Conclusions

In this section, all the results achieved throughout the mentioned experiments will be
summarized and their impact on the process of Fraud Detection at HousingAnywhere
analysed. At first, a general summary will be given, with a specific focus on answering
the research questions asked at the beginning of the analysis. Meanwhile, in the second
part of the section, a more detailed analysis of the contributions brought by this research
will be given, both from an academic and a business perspective. Finally, the section
will end with considerations related to the limitations of this research alongside pending
questions representing the basis for a continuation of this work.

8.1 General Contribution

This research proposes an implementation of an automated process for Fraud Detec-
tion applied to an online housing marketplace, where humans and machine learning
algorithms work together to produce an accurate and solid business process for detect-
ing scam attempts and consequently prevent scams from happening.

To make it possible, at first, a machine learning model which tackles the task of
classifying items between possible scams and legit listings has been developed. For what
concerns the binary classification task, the final machine learning model that has been
presented achieved a 60% precision and a 80% recall, with an increment of +21% in
precision and comparable level of recall from the starting reference point.

However, given the sensitivity of this application domain, where the decision of mark-
ing an item as a possible scam has impact on customers, the final classification decision
has to remain in the hands of humans and artificial intelligence acts as a support tool.
Therefore, it has been decided to implement a machine learning interpretability pro-
cess so to ease the interaction between humans and machines. This specifically unfolds
in generating, alongside traditional predictions, what have been called machine learn-
ing explanations. In details, explanations consist of textual information proposed in a
human comprehensible way which bring insights on what causes the machine learning
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model to generate a certain prediction. In the current application domain, explanations
are represented as a set of factors which have brought the model to mark certain items
as possible scam attempts.

Concretely, the integration of machine learning interpretability into the business
process has been achieved through the implementation, evaluation and comparison of
four different explainability techniques. Among these, SHAP and EVADE were the two
approaches that achieved the best results by increasing the accuracy of humans predic-
tions’ validation up to 70%, with a +25% improvement with respect to a scenario were
no explanations were given.

Especially, a relevant contribution is represented by the novel approach to Ad-
versarial Explanations that has been developed, named EVADE. By the means of Ge-
netic Algorithms, synthetic adversarial instances are generated so that they can be used
as a counterexample explanation to the original model prediction. On top of the nov-
elty of this approach, EVADE also empirically achieved state-of-the-art performances
by obtaining the highest accuracy among the different methods together with SHAP.

The resulting fraud detection process can be found in figure 8.1, where it is possible
to see that each new item is scanned by the machine learning model and if it is thought
to be a scam attempt, it is forwarded to the interpretability module which generates,
alongside the prediction probability, the machine learning explanations. Aside the new
flow, highlighted in green, it is also shown the legacy flow, namely the process were no
explanations were generated, for comparison purposes.

New
Listings

legacy flow

Machine Learning
Model

(LightGBM)
suspect
listings

Exaplanations
Engine
(SHAP)

Human
Validation

Automated Fraud 
Detection Engine

Figure 8.1: Final HousingAnywhere Fraud Detection Process
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8.2 Academic Contributions

In this section, the academic contributions brought by this research and its experiments
will be summarized.

The first general contribution is represented by the research itself. Specifically, as
introduced in the beginning of this thesis, Automated Fraud Detection is a field which
suffers from a shortage of publicly available researches, data and use cases caused by the
sensitiveness of its applications. In this perspective, this research is aimed at standing as
a comprehensive analysis of the whole Fraud Detection business process at HousingAny-
where, with a specific focus on the interaction between humans and machines.

Moreover, it is also important to point out the novelty of this type of research
for this application domain. Specifically, this thesis represents one of the few publicly
available researches about automated fraud detection and the first attempt to integrate
interpretable machine learning with automated fraud detection in the online housing
marketplaces.

8.2.1 Classification Contribution

For what concerns the machine learning classification task, the following experiments
empirically demonstrated their positive contributions:

• Objective Function for unbalanced data. It has been shown that, even though
objective functions have not been originally designed to address the problem of
imbalanced classes, a cost function which assigns different importance to different
classification errors can bring significant benefits both in classification perform-
ances and in mitigating the effect of building skewed classifiers.

• Categorical Features Encoding. It has been validated that traditional cat-
egorical features encoding techniques, such as One-Hot and Label Encoding, do
not work as good as Fisher’s grouping encoding with tree-based machine learning
algorithm.

• Missing Values Imputation. Even though missing values are a well-known and
debated topic in the field of Machine Learning, the importance of imputation for
tree-based algorithm and for this specific application domain has been validated
by the performance enhancement brought by such technique.

• Bayesian Optimization. Similar to the previous point, hyper-parameters tuning
is a widely discussed and researched topic which development is not part of the
scope of this thesis. However, it is important to notice that the performance
improvements brought by this technique validate the effectiveness of automated
hyper-parameters tuning in modern machine learning applications.
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8.2.2 Interpretability Contributions

The major scientific contributions brought by this thesis relate to the field of inter-
pretable machine learning. Specifically, this research represents in the first place a
comparison of different explainability evaluations levels, namely application and human
one. Furthermore, several state-of-the-art explainability techniques have been compared
on a real task by a human-grounded evaluation.

On top of this, a novel approach to Adversarial explanations, namely EVADE has
been designed, implemented, tested and compared to state-of-the-art techniques. Spe-
cifically, by the means of Genetic Algorithms, this technique generates synthetic in-
stances which are able to fulfill the requirements of:

• Being as similar as possible to the original instance which prediction has to be
explained.

• Being evaluated from the black box machine learning model as different as possible
from the original instance.

The synthetic instance is then used to generate machine learning explanations by the
means of comparison with the original sample.

From a performance point of view, this method reached the same accuracy of SHAP
in human-grounded evaluation tasks, where SHAP has been chosen as the reference
method for state-of-the-art machine learning interpretability as suggested in [25].

Alongside this novel approach to Adversarial explanations, three other interpretab-
ility methods have been implemented and their performances compared. As a con-
sequence, the following scientific contributions can be derived:

• Machine Learning explanations improved in all cases the accuracy of humans valid-
ating machine learning predictions compared to a scenario were no interpretations
to predictions were given. This result appears to be in contrast with what has been
presented in [37], where explanations did not bring any statistically significant im-
provement in task’s utility. However, given the different application domains it
is also difficult to make a fair comparison with the information gathered so far.
Therefore, it will be interesting, as a future work, to perform additional human-
grounded evaluations, on different tasks, so that a comprehensive picture of the
effectiveness of these methods can be assessed.

• SHAP and EVADE achieved the highest accuracy scores, validating in the first
place the quality of the novel Adversarial approach and showing that SHAP is still
a solid proxy for state-of-the-art explanations.

• Model-based explanations did not bring relevant advantages over model-agnostic
ones, being significantly outperformed both by SHAP and EVADE. Therefore,
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model-agnostic interpretability methods appear as more appealing thanks to their
adaptability and performances.

• Explanations based on local surrogate models empirically proved to not be com-
petitive in this use case, compared to the other explainability methods.

8.3 Business Contributions

In this section, the contributions mainly related to the business of HousingAnywhere
and its fraud detection process will be given. At the beginning the impact of improving
the classification algorithm is stated followed by the contribution brought by enhancing
human-machine interactions with interpretable machine learning.

8.3.1 Model Performance Contributions

First, by looking at the classifier’s performances improvements, previously presented in
table 7.9, a clear step forward can be seen. Furthermore, it is also important to mention
that the new model relies on a significantly lighter machine learning infrastructure than
the legacy one, bringing the following benefits for HousingAnywhere:

• The new model requires less computational power given its simplified architecture,
therefore allowing for a cheaper cloud infrastructure to support it.

• A lighter and faster machine learning model increases also the scalability capabilit-
ies of the fraud detection process, handling more traffic in a more resource-efficient
way.

• A simplified machine learning infrastructure allows also to maintain and debug
the model easier.

On the other hand, from a pure classification performance point of view, the final model
results in:

• +23% in precision, approximately reducing the false positive rate of one legit item
every ten.

• +0.2% in recall, meaning that the uplift in precision does not hit the recall capab-
ilities of the model which has been maintained at the same level of the beginning
of the research.

• +12.2% in F1-score, which means that the final classifier has a much better trade-
off between precision and recall than the legacy one.

• +3.5% in Area Under the Precision-Recall Curve, showing a similar pattern that
the one showed by F1-score.
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In order to clearly assess the impact of the previously mentioned performance im-
provements on the business of HousingAnywhere it is necessary to introduce some busi-
ness related knowledge. If a rate of 4000 new accommodations published on the platform
each month and 5% of scam attempts are considered, with the legacy machine learning
model, the Customer Solutions department of HousingAnywhere would have to check
320 listings 1 per month with approximately only half of them representing real scam
attempts, while the other half is composed by false positive alerts. Thanks to the new
machine learning model precision boost, under the same rate of new listings and scam
attempts, the amount of items that would have to be validated by humans drops to
approximately 265 2 , with 55 less listings to be checked per month. The main benefits
brought by these improvements can be summarized as follows:

• Time Saving, the first intuitive benefit is that, given a reduced number of items
that have to be checked, the overall required working time is reduced too. Specific-
ally, assuming a realistic rate of 5 minutes required to check a listing on average,
it is possible to approximately quantify the saved time in 5 working hours per
month.

• Errors Reduction, assuming that the current human error rate is maintained,
a fewer number of items to be checked would mean that also the total number
of validation errors would be reduced. Specifically, assuming a realistic error rate
of 10% (i.e. human wrongly marks as scam attempt a legit listing or vice-versa),
the total number of validation errors would drop from 32 3 to approximately 27 4,
with a 16% error rate reduction.

8.3.2 Explanations Contributions

Based on the technical results achieved through the implementation of explanations
alongside the predicted probabilities, it has been decided to integrate explanations in-
side HousingAnywhere fraud detection process based on the interpretability method
SHAP.

The decision of relying on SHAP is based on the results presented in section 7.2,
where both SHAP and EVADE achieved the highest accuracy score among all methods
but SHAP also proved to be more consistent throughout the different items categories.

The business benefits of integrating machine learning explanations can be summar-
ized as follows:

• Human Training. By looking at the evaluation of explanations at Application-
level and Human-level, presented in section 2.9.2, it is possible to derive an unex-
pected benefit of explanations. Specifically, given that with a 95% confidence it is

180% of real scam attempts are detected with a 50% precision, therefore 4000·0.05·0.8
0.5

= 320
280% of real scam attempts are detected with a 60% precision, therefore 4000·0.05·0.8

0.6
= 267

310% of 320 checked listings
410% of 265 checked listings
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possible to state that there is no statistically significant difference between the per-
formance of the two different evaluation levels, it means that human validation is
not affected by the presence of background knowledge of the task. From a business
perspective, this means that the current training process for Customer Solutions
employees dedicated to gaining expertise in the process of detecting possible scam
attempts can be either reduced or avoided thanks to the implementation of ma-
chine learning explanations. The first intuitive benefit of removing the personnel
training process is time saving and cost reduction. Moreover, the whole busi-
ness process would become more scalable since there would be no barrier (i.e. no
training needed) for humans in participating in HousingAnywhere fraud detection
process.

• Higher Accuracy. As showed before, the human validation process benefits
from explanations by achieving a much higher accuracy overall. Specifically, the
improvements brought by the introduction of SHAP explanations are the follow-
ings:

– The overall accuracy increased from 57% to 71%.

– The accuracy over legit listings wrongly marked as scam attempts in the past,
increased from 57% to 86%.

– The accuracy over scam attempts wrongly validated as legit listings in the
past, increased from 31% to 62%.

– The accuracy over scam attempts correctly mask as scams in the past, in-
creased from 50% to 63%.

Estimating the actual impact of these performance improvements on the business
process is a challenging task due to the fact that the future distribution of listings
over the different categories (i.e. R0H0, R0H1, R1H0, R1H1) is unknown and
it indirectly depends also on the machine learning model. However, the results
showed distributed improvements over different categories therefore ensuring that,
independently from the distribution of listings over categories, it is very likely
that explanations would bring a reduction over the number of errors committed
by humans during the validation process.
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8.4 Limitations & Future Work

On top of the contributions brought by this thesis, new technical challenges open up,
either addressing current limitations or bringing further improvements.
Among these, the followings are the ones that are considered to be the most logical to
be researched about next:

• Improving the machine learning classifier by the means of ensembling the current
one with others of different nature (i.e. not tree-based algorithm). This scenario
brings intuitive attention to the area of deep neural networks, which proved to
achieve outstanding results in several classification tasks. Moreover, having a
model-agnostic interpretability process will allow to easily modify the underlying
machine learning infrastructure without it being affected.

• During the execution of the research it emerges that data in natural language, like
item’s description, which are currently not used from the machine learning model
can contain valuable information. However, given that the application domain is
based on an international platform, textual data can be present in several different
languages and formats. Therefore, one of the next challenges which could bring
positive results is to investigate the usage of such textual information trough mod-
ern Natural Language Processing technique. Finally, such model can be ensembled
with the current structure in order to improve the performances over the binary
classification task.

• Due to the fact that interpretable machine learning is a recent and widely open
research field, several further analyses can be made on explanations. Among these,
the ones that stand out are:

– Iterate the evaluation experiments by collecting more data and then invest-
igate each method’s characteristics. Specifically, it would be interesting to
assesses both quantitative, such as variance in the results, and qualitative
measures, such as the ones introduced in section 2.9.2 like comprehensibility,
consistency and representativeness.

– Investigate the computational performances of the different explainability
methods which have been neglected from the scope of the research but plays
a key role in real business application.

– Iterate over EVADE both by improving the underlying structure, such as
with non-linear fitness function or modelling and sampling from features dis-
tribution (instead of current uniform assumption), and by applying the tech-
nique to different interpretability tasks so that a comprehensive picture of
algorithm’s performances can be derived.
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