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Abstract

Adaptive Rational Equilibrium Dynamics models were introduced in the late 90s.
In these capital asset pricing models, investors have the option to choose between a funda-
mental trading strategy, incurring a positive cost, and a cost-free trend-following strategy.
The distinction between fundamentalists and trend followers is then introduced. A Mar-
ket Maker balances the (positive or negative) excess demand for the risky asset, updating
its price accordingly. More sophisticated models account for the presence of other types
of investors, such as contrarians and bias traders.
Under the Efficient Market Hypothesis and the Rational Expectation Hypothesis, in-
vestors are assumed to be rational, aiming to adopt the best performing strategy. Analyt-
ical and numerical results demonstrate that financial markets are stable, and prices tend
to converge to the fundamental value when agents are not inclined to change their beliefs
at each time instant. Multiple non fundamental equilibria may arise as the tendency
to update strategies increases. As the intensity of choice further rises, market dynamics
become chaotic, leading to massive price fluctuations.
From a mathematical perspective, financial instability arises due to homoclinic bifurca-
tions of stable and unstable manifolds of the fundamental steady state, giving rise to
strange and chaotic attractors. Pessimistic phases, characterized by price fluctuations
below the fundamental value, can be mitigated by constraining traders’ possibilities. The
uptick rule serves as an example.

Keywords: complex systems, stability, bifurcations, deterministic chaos, Adaptive
Rational Equilibrium Dynamics





Abstract in lingua italiana

I modelli Adaptive Rational Equilibrium Dynamics furono introdotti a fine anni 90.
In questi capital asset pricing models gli investitori possono scegliere tra una strategia
d’investimento fondamentale, pagando un costo positivo, e una strategia basata sull’ os-
servazione dei trend che non ha un costo. La distinzione tra fondamentalisti e seguitori di
trend è quindi introdotta. Un Market Maker bilancerà l’eccesso di domanda (positivo o
negativo) del titolo rischioso e il suo prezzo verrà aggiornato di conseguenza. Modelli più
sofisticati permettono la presenza di ulteriori tipi di investitori. Per esempio, investitori
in controtendenza e bias traders.
Sotto l’Ipotesi di Mercato Efficiente e l’Ipotesi di Attesa Razionale gli investitori sono
considerati razionali: il loro obiettivo è adottare la strategia più performante.
Risultati analitici e numerici mostrano come i mercati finanziari sono stabili e i prezzi
tendono al valore fondamentale quando gli agenti non sono così inclini a cambiare le loro
convinzioni ad ogni istante di tempo. Più di un equilibrio non fondamentale può apparire
al crescere della tendenza ad aggiornare strategia. Al crescere ulteriore dell’intensità di
scelta le dinamiche di mercato sono caotiche portando a consistenti fluttuazioni dei prezzi.
Da un punto di vista matematico, l’instabilità finanziaria è dovuta alle biforcazioni omo-
cline delle varietà stabile e instabile dell’equilibrio fondamentale, dalle quali compaiono
attratori strani e caotici.
Fasi pessimistiche caratterizzate da fluttuazioni dei prezzi al di sotto del valore fonda-
mentali possono essere contrastate limitando le possibilità degli investitori. L’uptick rule
rappresenta un esempio.

Parole chiave: sistemi complessi, stabilità, biforcazioni, caos deterministico, Adaptive
Rational Equilibrium Dynamics
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Introduction

Adaptive Rational Equilibrium Dynamics models, introduced by William A. Brock and
Cars H. Hommes in 1997, are commonly referred to as Brock-Hommes models (BH models
for short) in the literature. These models quickly garnered attention for their effective-
ness in capturing various aspects of financial markets: investors’ tendencies to buy and
sell risky assets, price fluctuations, endogenous shifts between pessimistic (undervalued
prices) and optimistic (overvalued prices) phases, as well as financial instability and chaos.

Traders in the model can choose from different investment strategies based on predictions
of future prices, each strategy incurring a cost. Investors are assumed to be rational,
adhering to the Efficient Market Hypothesis and Rational Expectation Hypothesis. This
implies that agents are mean-variance maximizers, learning from the past. A Market
Maker balances the excess demand for the risky asset, updating its price accordingly. It
is reasonable to assume that the best performing strategy in the recent past will attract
more followers, with strategy performance measured by the last observed net realized
profit. The intensity of choice parameter plays a crucial role in the market dynamics,
influencing the global behavior of the stock market. For small values of the intensity of
choice parameter, the market is stable, and prices tend to the fundamental value, while
non fundamental equilibria appear, and large price fluctuations are possible as it increases.

The interaction between prices and investor beliefs is modeled through a discrete time
dynamical system, representing a complex system governed by nonlinear functions. The
theory of complex systems is suitable for explaining market behavior concerning the pa-
rameter values, particularly the intensity of choice. Concepts such as equilibrium, stabil-
ity, bifurcation, chaotic orbits, and strange attractors play a crucial role in understanding
why financial markets become unstable and prices fluctuate when investors are likely to
adapt their strategy. Chaotic dynamics result from the presence of at least one strange
attractor arising from homoclinic bifurcations of stable and unstable manifolds of the
fundamental steady state. Instability and chaos become intrinsic properties of the system
when the intensity of choice parameter is sufficiently large and cannot be avoided unless



2 | Introduction

the possibilities of the investors are limited by regulators.

This thesis is organized as follows. Chapter 1. provides an introduction to the Ef-
ficient Market Hypothesis, where markets are assumed to be efficient and traders are
rational. Section 1.1 presents the historical economic context, while section 1.2 develops
the mathematics of the EMH and introduces two tools used by fundamentalists and trend
followers: Fundamental Analysis (subsection 1.2.1) and Technical Analysis (subsection
1.2.2). Chapter 2. discusses the ARED model proposed by Hommes et al. (section 2.2)
following a brief historical introduction to these models (section 2.1). Analytical and
numerical results are presented in sections 2.3 and 2.4, respectively. Section 2.5 covers
the most recent and potential future developments, and section 2.6 concludes the chapter
with the application of the uptick rule to the considered adaptive system. All proofs of
the theorems stated in this work are contained in Appendix B, while Appendix A provides
a brief guide to the mathematics of complex systems.
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1.1. Historical context

The formalization of efficient market theory occurred in the 1960s and 1970s, pioneered
by Eugene Fama and Paul Anthony Samuelson. They independently and simultaneously
developed the theory, laying the foundation for what would become the Efficient Market
Hypothesis (EMH).

Even in the late 19th century, economists had intuitions that financial agents should
react rationally to market information. George Gibson’s 1889 publication, "The stock
markets of London, Paris, and New York" marked the early appearance of the idea of
efficient markets in economic and financial literature. Gibson emphasized that publicly
known information in an open market determines the value of shares.

Albert Einstein’s 1905 formalization 1 of Brownian motion 2 came after Louis Bachelier’s
1900 PhD thesis, "The Theory of Speculation" which proposed Arithmetic Brownian Mo-
tion for asset price dynamics 3. Although Bachelier’s work was overlooked for decades, it
was rediscovered in the 1950s and 60s 4.

1Albert Einstein developed the mathematical tools for Brownian motion only in 1905, as detailed
in his paper titled "On the Movement of Small Particles Suspended in Stationary Liquids Required by
the Molecular-Kinetic Theory of Heat" citeEinstein. Remarkably, this occurred five years after Louis
Bachelier’s groundbreaking work. It’s noteworthy that Einstein was unaware of Bachelier’s contributions
at the time.

2A Brownian motion (BM) Wt is a stochastic process such that:

1. W0 = 0 a.s. ;

2. Increments are independent i.e. Wt −Ws ⊥⊥ Fs for any t > s,
and stationary, namely Wt+h −Wt ∼ Wh for any t, h > 0 ;

3. for any t > s it follows Wt −Ws ∼ N(0, t− s).

3In his thesis Bachelier proposed an Arithmetic Brownian Motion (ABM) for asset dynamics, namely
St = S0 + σWt . "The Theory of Speculation" can be considered the genesis of financial modeling.

4Bachelier and his work were essentially rediscovered around 1955. Leonard Jimmie Savage stumbled
upon some of Bachelier’s publications in the Yale library, prompting him to inquire among his colleagues
about anyone familiar with Bachelier. Among those approached was Paul Anthony Samuelson. As a
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In 1961, John Fraser Muth in his paper "Rational expectations and the theory of price
movements" introduced the Rational Expectations Hypothesis (REH), asserting that mar-
ket agents are rational decision-makers who base their actions on the best available infor-
mation. Eugene Fama, in 1965, released "The behaviour of stock-market prices" outlining
key features of efficient markets.
Paul Anthony Samuelson ("Proof that properly anticipated prices fluctuate randomly")
provided a formal economic argument for efficient markets in the same year, modelling
asset prices dynamics in terms of martingales 5 rather than in terms of random walks 6.

The term "Efficient Market Hypothesis" was first used in 1967 by Harry Roberts in
"Statistical versus clinical prediction of the stock market" Eugene Fama’s influential 1970
paper, "Efficient capital markets: A review of theory and empirical work" provided the
first definition of an efficient market: a market is said to be efficient with respect to an
information set if the price fully reflects that information set.
In 1992, Burton Malkiel, in his work "Efficient Market Hypothesis" , presented his unique
perspective on market efficiency, a definition essentially equivalent to Fama’s (1970): a
market is said to be efficient if the price would be unaffected by revealing the information
set to all market participants.

A famous quote by Jensen ("Some anomalous evidence regarding market efficiency",1978):
"I believe there is no other proposition in economics which has more solid empirical ev-
idence supporting it than the Efficient Market Hypothesis". In his opinion "a market is
efficient with respect to an information set if it is impossible to make economic profits by
trading on the basis of that information set."

Critiques of the EMH emerged in the 1980s and 90s, challenging the theory’s assump-
tions. In 1980 Grossman and Stiglitz ("On the impossibility of informationally efficient
markets") argued the impossibility of perfectly informationally efficient markets, as infor-
mation gathering incurs costs. In 1985, De Bondt and Thaler ("Does the stock market
overreact?") presented evidence of asset prices overreaction, contributing to the birth of
behavioral finance.

student at MIT, Samuelson subsequently located a copy of Bachelier’s Ph.D. thesis in the MIT library.
5A stochastic process Xt is a martingale if and only if E(Xt|Fs) = Es(Xt) = Xs for any t > s. Namely

the expected value of Xt conditional to the information available at time s is Xs. As a consequence, a
martingale is such that E(Xt) = X0 for any t > 0.

6A random walk is a stochastic process with independent and identically (IID) increments with zero
mean. The Brownian motion is a classical example of random walk. If asset prices follow random walks,
they exhibit a random movement, uninfluenced by their past history. Further details on this concept will
be explored in the following section.
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The 2007-2008 financial crisis 7, though seemingly a challenge to market efficiency, was
interpreted by some, like Ray Ball ("The global financial crisis and the efficient market
hypothesis: What have we learned?", 2009) , as a failure to heed the lessons of efficient
markets rather than evidence against them.

Despite ongoing debates, the impact of efficient market theory on real financial markets
is substantial. The following sections will delve into the mathematics of efficient markets,
introducing two tools derived from the EMH: Fundamental and Technical Analysis.

1.2. Efficient Market Hypothesis

As introduced in the previous section, the Efficient Market Hypothesis (EMH) posits that
markets are efficient. However, before delving into the definition of what constitutes an
"efficient market," let’s address the question of why a market should be efficient.

The answer is straightforward: markets need to be efficient; otherwise, the information
available in the markets becomes inconsequential for decision-making. In an inefficient
market, firms may engage in speculation or market timing 8, attempting to capitalize on
market inefficiencies. This can lead to distortions in investment decisions, particularly
when company managers are incentivized by high asset returns, creating opportunities
for companies to exploit mispricing of securities.

As previously emphasized, following Fama (1970), a market is deemed efficient concern-
ing an information set if the price fully reflects that information set. In 1992, Malkiel
provided an alternate definition, asserting that a market is efficient if the price remains
unaffected upon revealing the information set to all market participants.

These expressions may seem somewhat enigmatic, prompting further inquiries: What
constitutes the information within the information set? What does it mean for the price
to fully reflect that information set? And, importantly, why should prices exhibit such
behavior?

7The financial crisis, originating with the Subprime crisis in 2006, led to the collapse of numerous
banks and companies. This collapse was primarily attributed to the lack of adequate liquidity, preventing
the mitigation of insolvency scenarios. Initially occurring in the U.S., the crisis swiftly spread to infect
the world economy, and its repercussions are still evident today.

8Market timing is an investing strategy wherein traders attempt to forecast future prices movements.
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Certainly, there are no definitive answers to these questions, and diverse interpretations
give rise to different iterations of market efficiency, as will become evident shortly. If
prices fully reflect the information set, trading assets at market prices would yield a null
Net Present Value 9 activity. Deviations from this scenario could potentially open avenues
for arbitrage.

The information set in the market is categorized into three main types:

1. Past prices and time series. This category includes historical prices and other time
series data, such as past interest rates;

2. Public information. Public information encompasses a wide range of data that is
available to the general public. This includes time series data, the latest economic
and financial news, and other publicly accessible information;

3. Private information owned by insiders. Private information refers to data that is not
publicly disclosed and is known only to a select group of individuals, often insiders
within a company.

These categories reflect the different levels of information incorporated into the Efficient
Market Hypothesis (EMH), each associated with a specific form of market efficiency:
weak; semi-strong; and strong. The efficiency of a market is determined by how quickly
and accurately prices adjust to the information within these categories. This distinction
was first introduced by Michael C. Jensen in 1978.

A market is considered weak form efficient if it is impossible to forecast future prices
by observing their past values. This implies that all historical information, specifically
past prices and other time series such as interest rates, is already reflected in current
market prices. The logic behind this form of efficiency is that if investors could consis-
tently predict future price movements based on historical data, they would exploit these
patterns for arbitrage opportunities. In a frictionless stock market, meaning no trans-

9Indeed, the Net Present Value (NPV) serves as a metric for evaluating the desirability of an invest-
ment. It is computed by summing up all the future cash flows generated by the investment and then
discounting this sum back to its present value. If the NPV is calculated to be zero, the investment is
termed "fair." In practical terms, this implies that the present value of expected future cash flows equals
the initial investment outlay. When NPV is positive, the investment is generally considered attractive,
indicating potential profitability. Conversely, a negative NPV suggests that the investment may not be
economically viable.
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action costs, no short selling constraints 10, and no capital controls 11, investors would
buy assets expected to rise and sell those expected to fall, taking advantage of the antic-
ipated price movements. To prevent such arbitrage opportunities and ensure weak form
efficiency, market prices must adjust quickly to new information, making it challenging
to profit from historical price patterns. This concept leads to the idea that future prices
follow a random walk, as they are not systematically influenced by past price movements
or patterns.

(a) FTSE MIB index in a one year window updated to
the 15th of October 2023 (source: Yahoo! Finance)

(b) simulated random walk
starting from S0=1

Figure 1.1: Comparison between asset prices (a) and random walks (b)

A market is considered semi-strong form efficient if it is impossible to forecast future
prices by studying public information. Public information encompasses time series data,
such as prices, macroeconomic indicators like GDP, inflation, and interest rates, and news
related to companies, including balance sheets, earnings, losses, investment plans, or an-
nouncements of cost reductions. Generally, this information is readily available at no cost.
Naturally, asset prices react positively to good news and negatively to bad news, reach-
ing a new equilibrium. Following this adjustment, prices should not exhibit predictable
patterns; otherwise, arbitrage opportunities would arise.

A market is deemed strong form efficient if it is impossible to forecast future prices by uti-
lizing both public and private information. Private information refers to data accessible
only to a restricted group, such as employees of companies or central banks and regulators.

10Financial regulators may impose rules against short selling to prevent aggressive speculative behavior
and potential market manipulation. In section 2.6 the example of the uptick rule is provided.

11Measures taken by national governments or monetary authorities to regulate the flow of capital in
and out of a country’s economy. These controls are often implemented to maintain stability in financial
markets, protect the domestic currency, and prevent excessive speculation or abrupt capital flight. Capital
controls can take various forms, including: transaction takes; currency pegs or bands; limits on foreign
investment and liquidity requirements.
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This particular definition of market efficiency, involving private information, is controver-
sial for two main reasons. Firstly, in numerous countries, insider trading (trading based
on private information) is illegal and strictly opposed. Secondly, acquiring private infor-
mation incurs a cost, leading to a paradox known in the literature as the Grossman &
Stiglitz paradox 12.

Weak form efficiency implies the unpredictability of future price movements. In other
words, if there are identifiable trends or recurring patterns in time series data, it suggests
that market prices can be predicted, allowing individuals to capitalize on this knowledge
and generate profits. This forms the foundation of Technical Analysis.

In a market characterized by strong form efficiency, where prices reflect both public and
private information, analyzing how past prices responded to market information can be
useful for investors. This approach aligns with the objectives of Fundamental Analysis.

1.2.1. Fundamental Analysis

Fundamental Analysis can be defined as the study of asset prices and their determinants.

As a consequence of the strong form efficient market hypothesis, the objective of Fun-
damental Analysis is to uncover the relationship between prices, returns, and dividends
and their determinants, which are the fundamental information or signals available in
the market. Individuals who employ Fundamental Analysis are colloquially referred to as
fundamentalists.

The primary focus of fundamentalists is to calculate the intrinsic value of an asset and
make trading decisions based on this valuation. Fundamental Analysis can also be utilized
to forecast the future performances of companies by ranking them according to various
economic indicators. One example of such a ranking system is the F-score 13.

12According to Grossman and Stiglitz, if prices accurately reflect all available information, then the
information becomes worthless. In their view, if there’s a cost associated with obtaining information,
rational individuals would refrain from paying for it. Consequently, if nobody is willing to pay for
information, it follows that information does not impact prices. For a more in-depth examination, refer
to the already cited Grossman and Stiglitz (1980)

13The Piotroski F-score, named after Joseph Piotroski, an accounting professor at Stanford, assigns an
integer score F between 1 and 9 to each company. Based on this score, companies are categorized into
three groups: low financial performance (F ∈1, 2, 3), medium financial performance (F ∈4, 5, 6), and
high financial performance (F ∈7, 8, 9). For a more in-depth examination, refer to "Value Investing: The
Use of Historical Financial Statement Information to Separate Winners from Losers" by Piotroski.
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The intrinsic value of an asset, often referred to as the fundamental price, is essentially
the present value of future cash flows discounted back to the present day using the ap-
propriate risk-adjusted interest rate. When the actual price is lower than the calculated
fundamental value, it is considered advantageous to buy the asset. Conversely, if the ac-
tual price exceeds the fundamental value, the recommendation is to sell. This investment
approach aligns with the principles followed by fundamentalists in the Adaptive Rational
Equilibrium Dynamics model, which is explored in detail in the subsequent chapter.

In a simple Capital Asset Pricing Model (CAPM) with N risky assets and a risk-free
asset with interest rate rf , the Market portfolio (M) is considered, then the risk adjusted
discount factor k for the asset is given by:

k = E(r̃) = rf + β[E(rM)− rf ]

where β is the systematic risk and E(rM)− rf the risk premium of the Market portfolio.

The intrinsic value V0 is then calculated as the sum of the expected future dividends
d properly discounted back to the present day:

V0 =
∞∑
i

E(di)
(1 + k)i

1.2.2. Technical Analysis

Technical Analysis involves the search for predictable patterns in asset prices.

As discussed earlier, Technical Analysis is a consequence of the weak form definition
of market efficiency, where traders believe that prices react slowly to new information.
Therefore, they look for predictable trends in asset dynamics. The main difference with
fundamentalists is that traders opting for Technical Analysis only focus on prices since
they consider them the manifestation of all available fundamental information. Investors
who rely on this kind of analysis are called trend followers or chartists, and they will be
considered in the adaptive system proposed in Chapter 2.

First of all, let’s enumerate the possible different types of trends. Trends can be dif-
ferentiated based on their duration in time or their direction, or both. For trends in time,
we can further distinguish between:
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• Primary trend: it lasts for a consistent period;

• secondary trend: it is registered inside a primary trend;

• minor trend: short term trend observed inside a secondary trend;

Figure 1.2: Primary trends (purple arrows), secondary trends (blue arrows) and minor
trends (yellow arrows) spotted in the FTSE MIB index (source: Yahoo! Finance)

Regarding price movements, trends can be classified as follows:

• Up-trend: characterized by a sequence of higher highs and higher lows.14 and higher
lows;

• Down-trend: marked by a sequence of lower highs and lower lows;

• Consolidation: a phase in which neither up-trends nor down-trends are evident.

Alongside asset prices, chartists delve into the realm of traded volumes. Traded volume
denotes the quantity of stocks exchanged during a given period. These volumes are typi-
cally categorized as either high or low, with the distinction drawn from the average volume
observed over the specified time frame. In figure 1.2 and 1.3 daily volumes are displayed
alongside prices, manifesting as green (if positive) and red (if negative) peaks at the bot-
tom of the graphs. In essence, the traded volume, when correlated with trends, becomes
a pivotal element for trend followers, offering insights to predict potential scenarios in the
immediate future.

14Highs and lows of prices in the context of trends are relative to the specific monitoring window, which
can be defined based on different timeframes such as daily, weekly, monthly, or yearly.
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Figure 1.3: UP-trends (green arrows), down-trends (red arrows) and consolidations (yellow
arrows) spotted in the FTSE MIB index (source: Yahoo! Finance)

An extremely simplified guideline is presented in the following table. This guideline aims
to provide a straightforward approach to understanding the interplay between trends and
volumes in technical analysis.

trend volume interpretation
up high the up-trend may persist
up low there is a lack of conviction in the up-trend: possible stagnation

down high the down-trend may persist
down low there is a lack of conviction in the down-trend: possible stagnation

Table 1.1: Possible scenarios and their interpretation

In the upcoming chapter, trend followers will base their actions on this guideline.
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Indicators play a crucial role in Technical Analysis, serving as formulas and indexes to
measure trends, momentum 15, volatility, and more. The Simple Moving Average (SMA)
16, the Relative Strength Index (RSI) 17, and the Average Direction Index (ADX) 18 are
among the most widely considered indicators.

Figure 1.4: SMA (orange line), RSI (purple line) and ADX (black line) for the FTSE MIB
index (source: Yahoo! Finance). In this case a time window of 14 days is considered

15It indicates the strength of a market by measuring the rate of change of prices with respect to their
effective values.

16It is the usual moving average applied to closing prices over the considered period. Since registered
prices are assumed to be daily, the moving average will take into account 5 observations for the weekly or
shorter-term progress, 20 observations for the monthly or medium-term progress, and 250 observations
for the yearly or longer-term progress.

17Introduced by Welles Wilder in 1978 in his book "New Concepts in Technical Trading Systems", it
measures the speed and velocity of price movements for stocks, futures, and bonds over a specified period
of time, making it useful for spotting trends. For a more in-depth understanding, refer to "New Concepts
in Technical Trading Systems" by Welles Wilder.

18Introduced by Welles Wilder in 1978, measures the strength of a trend by quantifying the velocity
of a price, regardless of its movement. For a more comprehensive treatment, refer to "New Concepts in
Technical Trading Systems" by Welles Wilder.
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Dynamics

2.1. Brief history of ARED models

The concept of Adaptive Rational Equilibrium (ARE) was initially introduced by William
A. Brock and Cars H. Hommes in 1997 in their paper "A rational route to randomness".

The fundamental assumption underlying the Adaptive Rational Equilibrium (ARE) is
that agents in financial markets make decisions based on future predictions of relevant
variables, such as the price of a traded asset. Investors can choose from a finite set of
predictors, denoted as P , which are functions of past values of the variables of interest,
essentially incorporating all available information at the decision time. However, obtain-
ing information comes at a cost, and each predictor, being an expected value, carries
a specific cost. More sophisticated and comprehensive predictors typically incur higher
costs compared to simpler, naive predictors.

Choosing a strategy in this context is equivalent to selecting a predictor. Each strategy is
associated with a utility function, and a "performance" function takes into consideration
both the utility of the strategy and its associated cost. According to the Efficient Market
Hypothesis, particularly the Rational Expectation Hypothesis, at each time instant (given
that the model operates in discrete time), agents will select their strategy based on the
best performance observed up to that point. This could involve choosing the strategy
that has led to the highest profit or the smallest prediction error.

The parameter β in the model, referred to as the "intensity of choice", represents the
tendency of agents to change their predictor type. Its value influences the overall dynam-
ics of the system, encompassing the asset price and the fractions of investors following
each strategy.
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The term "Adaptive Rational Equilibrium Dynamics" (ARED) is employed to describe
the dynamics generated by this system, and its name reflects two primary considerations,
elucidated by Brock and Hommes:

1. Deliberate economic act: the selection of a predictor is considered a deliberate
economic act, where agents make rational decisions regarding their strategy. This
intentional decision making process is integral to the concept of equilibrium within
the economic framework;

2. Reciprocal interaction: the choice of a predictor actively contributes to the dynamics
of the market equilibrium. Simultaneously, the market equilibrium, in its dynamics,
influences the subsequent selection of predictors. This mutual interaction forms a
feedback loop, emphasizing the interconnected nature of the choice of predictors
and the overall equilibrium dynamics in the market.

Brock and Hommes designed this model with a specific focus on two key features:

1. Realistic dynamics replication: the model should possess the capability to replicate
the dynamics observed in actual financial markets. This includes the characteristic
behavior of investors, who regularly adjust their strategies based on the available
information in the market. Consequently, these strategy changes should induce
corresponding fluctuations in prices;

2. Complex and chaotic dynamics: despite its simplicity, the model should have the
capacity to generate intricate and possibly chaotic dynamics. The aim is to illustrate
that even from a straightforward conceptual framework, complex and non linear
behaviors can emerge 1, akin to the unpredictability often observed in real financial
markets.

In their initial exploration of ARED models, Brock and Hommes concentrated on a sce-
nario where only one asset is traded, and investors are limited to choosing between two
predictors: a sophisticated predictor, denoted as H1, incurring an information cost C,
and a costless naive predictor, H2. While this represents the simplest case, it is crucial to
note that the set of potential predictors, P , can be arbitrarily large.

1Chaotic dynamics manifests when nonlinearities are introduced into a dynamical system, a phe-
nomenon recognized as early as the late 19th century by Henri Poincaré. While grappling with the
"three-body problem" in celestial mechanics, Poincaré noticed that the overall trajectory of three inter-
acting bodies is highly sensitive to their initial positions: a small alteration in the starting conditions can
lead to a significant divergence in the final behavior of the system. This characteristic, now termed "high
sensitivity to initial conditions," is a hallmark of complex systems and forms the basis of deterministic
chaos. Poincaré’s groundbreaking insights have established him as the pioneer of the mathematical field
known as deterministic chaos. Refer to Appendix A for a more comprehensive exploration of this topic.
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This specific case yields a 2-dimensional discrete dynamical system that, despite its sim-
plicity, encapsulates key features of asset price dynamics and trader behaviors, including
chaotic dynamics, high sensitivity to initial conditions, and parameter values (particularly
the intensity of choice β) 2. Moreover, the bidimensional case provides analytical stabil-
ity and bifurcation results, a feat that is challenging or impossible in higher-dimensional
scenarios.

In their subsequent research "Heterogeneous beliefs and route to chaos in a simple as-
set pricing model" (1998) Brock and Hommes introduced a tractable form of evolutionary
dynamics known as Adaptive Belief Systems (ABS) in a simple Present Discounted Value
(PDV) asset pricing model.

In this paper, new types of investors are introduced: rational agents, fundamentalists,
trend followers, contrarians 3, and biased traders 4. All traders have future expectations
that are linear in the variables (information) available at decision time. Along with the
risky asset, a risk-free asset with a risk-free rate rf is introduced, and the agents aim to
maximize expected wealth.

The introduction of these simple predictors may lead, especially when the tendency to
change strategy is high, to dynamics observed in real financial markets where price fluc-
tuations are characterized by sudden changes of phases. Asset prices can either be stable
around their fundamental value (under the Efficient Market Hypothesis) or experience
phases of optimism ("castle in the air") 5, making investors excited and causing prices

2Another characteristic of complex systems is the dependency of trajectories on the parameter values.
In complex systems with non linearities, the overall dynamics are influenced by the values of the param-
eters. Equilibria, cycles, and tori are all functions of the parameters, and their stability is parameter
dependent. Some parameter values may yield equilibria without cycles, while others may introduce cycles,
and so forth. The specific values of parameters where the qualitative behavior of the system undergoes
a change are referred to as "bifurcations." For a more comprehensive treatment, refer to Appendix A.

3A contrarian is an investor who goes against the prevailing market trends. Contrarians typically buy
assets that are currently out of favor or sell assets that are currently popular. The underlying philosophy
is to take positions opposite to the crowd, assuming that market sentiment may lead to overreactions and
mispricing of assets. Contrarian investing is based on the belief that markets are not always efficient and
that opportunities for profit exist when investor sentiment diverges from fundamental values. Contrarians
often seek to capitalize on market reversals and corrections.

4A biased trader is an investor who makes decisions based on a perceived bias or periodic repetition
in asset dynamics. This means that the investor believes there is a pattern or trend in the market that
repeats over time, and they adjust their trading strategy accordingly. The bias could be related to various
factors, such as seasonal patterns, economic cycles, or other recurring trends that the investor identifies
in the market. Investors employing biased trading strategies aim to capitalize on these perceived patterns
to make profitable investment decisions.

5The phrase "castle in the air" is used by John Maynard Keynes to convey the idea that investors often
act optimistically, even when market data contradicts their beliefs or when there’s a lack of fundamental
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to rise, or phases characterized by a crisis, making investors depressed or nervous and
resulting in falling prices.

In 2000, Hommes published "Financial Markets as Nonlinear Adaptive Evolutionary Sys-
tems" in which he described the main features of the Adaptive Beliefs Systems and pre-
sented a possible extension of the model formulated by Hommes himself and Andrea
Gaunersdorfer. The latest version of the model incorporates volatility clustering and fat
tails in the distribution of stock dividends. The key concept behind this extension is the
consideration of risk in assessing profits, assuming that agents are risk averse. The risk
adjusted profits serve as a measure for the performance of the strategies in this updated
model.

In 2002, Carl Chiarella and Xue-Zhong He extended the model proposed by Brock and
Hommes (with the additional contribution of Gaunersdorfer) in their work titled "Asset
Pricing and Wealth Dynamics - An Adaptive Model with Heterogeneous Agents". In this
extension, traders are allowed to have different attitudes toward risk and varying expec-
tations about the expected value of an asset’s price. The researchers demonstrated that
incorporating these diverse perspectives brings the model dynamics even closer to those
observed in the real world.

In 2003, Chiarella and He, in their work titled "Heterogeneous Beliefs, Risk and Learning
in a Simple Asset Pricing Model with a Market Maker", introduced a new version of the
model that incorporates the presence of a Market Maker (MM). The Market Maker’s role
involves clearing the market by buying or selling the risky asset based on whether there
is a negative or positive excess demand for the asset, respectively. After completing all
transactions, the Market Maker adjusts the asset price for the next period in the same
direction as the excess demand. The adjustment process is linear in the excess demand
and is governed by a positive constant parameter known as µ, representing the "speed of
adjustment." This introduces an additional parameter alongside the intensity of choice,
influencing the dynamics of the system.

As a result of the various updates to the original model proposed in 1997, in 2005,
Hommes, along with Hai Huang and Duo Wang, explored the possibilities offered by
these updated models in their paper titled "A robust rational route to randomness in

support for certain asset prices. In this context, it suggests that investors may engage in speculative
behavior, placing value on assets based more on expectations and perceptions rather than on a careful
analysis of intrinsic value or underlying economic fundamentals.
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a simple asset pricing model". Additionally, the authors introduced the possibility for
agents to change their strategies asynchronously. Up to that point, in the proposed mod-
els, all agents were obliged to update their beliefs simultaneously. This asynchronous
updating introduces more complexity to the system dynamics. A new parameter, α, is
introduced, representing the fraction of agents that do not change their strategies and
remain convinced of their beliefs. The authors note that the dynamics generated by the
original model proposed in 1997 is surprisingly close to the one generated by the latest
version of 2005, indicating that the original model serves as a good approximation of the
more complete version.

Given the significance of Hommes’ 2005 model as the culmination of nearly a decade of
research on dynamical systems applied to asset pricing, and considering that subsequent
studies on Adaptive Rational Equilibrium Dynamics (ARED) are primarily grounded in
this version, the upcoming section will present the key aspects of the 2005 model. Fol-
lowing the introduction of the model, analytical and numerical findings regarding the
stability and bifurcations of trajectories will be detailed.

2.2. Model setup

As previously indicated, the objective of this section is to outline the ARED model as
presented in Hommes et al. (2005).

Agents have the option to allocate their funds between a risky asset or a risk-free as-
set, such as a bank account, with a risk-free rate denoted as rf . Let’s introduce the gross
return R = 1 + rf . The variable pt represents the ex-dividend price of the risky asset,
and yt represents the stochastic process of dividends. Denoted as h the trader’s type, the
wealth of an investor of type h at time t+ 1 is given by:

Wh,t+1 = RWh,t + (pt+1 + yt+1 −Rpt)zh,t

where zh,t is the number of shares of the risky asset purchased at time t by traders of type h.

Eh, t and Vh, t represent the beliefs or forecasts at time t concerning the conditional
expectation and volatility of wealth for the next period for the type h investor. These
expected values and volatilities are conditioned on the information available at time t,
which includes past prices and dividends.
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Agents are assumed to be myopic mean-variance maximizer, meaning that zh,t (h=1,2)
solves the optimization problem:

max
zh

{Eh,t(Wh,t+1)−
a

2
Vh,t(Wh,t+1)}

With a>0 representing the aversion to risk, which is assumed to be constant over time
and equal for all investors (Chiarella and He (2002) also treated the case in which the
aversion to risk is a priori different for each type of trader).

The demand for the risky asset by the type h investor is given by:

zh,t =
Eh,t(pt+1 + yt+1 −Rpt)

aVh,t(pt+1 + yt+1 −Rpt)

Assuming that the conditional variance of excess returns is uniform across all agents,
Vh,t ≡ σ2, the expression for zh,t takes on a simplified form:

zh,t =
Eh,t(pt+1 + yt+1 −Rpt)

aσ2

Consider the scenario in which all investors share identical thoughts and beliefs regarding
the conditional expectation Eh,t(pt+ 1 + yt+1 −Rpt), the quantity zs can be introduced:

zs =
Eh,t(pt+1 + yt+1 −Rpt)

aσ2
=

Et(pt+1 + yt+1 −Rpt)

aσ2

It represents the fixed and constant supply of shares per agent in the market.

The equation governing the market equilibrium can be reformulated as:

Rpt = Et(pt+1 + yt+1 −Rpt)− aσ2zs

The quantity aσ2zs represents the market risk premium that investors demand for holding
the risky asset instead of investing in the risk-free asset.

Under the assumption that the "transversality condition" 6 holds, i.e.

lim
k→∞

Et(pt+k)

Rk
= 0

6The transversality condition, a crucial aspect in optimal control theory, serves as a boundary condition
for the terminal values of costate variables. This condition is deemed necessary for infinite horizon optimal
control problems without endpoint constraints on state variables. In financial contexts, it is often referred
to as the "no bubble condition".
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by iteratively applying the market equilibrium equation over time, it becomes possible
to uniquely determine the "fundamental rational expectations (RE) price," commonly
referred to as the fundamental price:

p∗t =
∞∑
k=1

Et(yt+1)− aσ2zs
Rk

As previously discussed in Chapter 1. under the Efficient Market Hypothesis (and the
Rational Expectations Hypothesis), the fundamental price is entirely determined by eco-
nomic fundamentals (the macroeconomic information available in the market). It is the
sum of discounted expected future dividends adjusted by the market risk premium.

For simplicity, dividends over time are assumed to be independent and identically dis-
tributed (IID) with a constant mean E(yt) = ȳ, meaning yt = ȳ + ϵt. In this manner, the
fundamental price becomes independent of time:

p∗ =
∞∑
k=1

ȳ − aσ2zs
Rk

=
ȳ − aσ2zs
R− 1

=
ȳ − aσ2zs

rf

In this model, as previously introduced by Chiarella et al. (2002) and Chiarella and He
(2003), there are three types of investors: the Market Maker (MM) responsible for main-
taining market order; the fundamentalists (h=1); and trend followers (h=2). All traders
share the same expectation for future dividends, denoted by Eh,t(yt+1) = Et(yt) = ȳ, while
they diverge in their predictions for the future price of the risky asset.

A fundamentalist believes that the price tends toward its fundamental value, namely:

E1,t(pt+1) = Et(p
∗
t+1) = p∗

While trend followers believe that the trend observed in the antecedent period will persist
in the following one:

E2,t(pt+1) = Et(p
∗
t+1) + g(pt − p∗) = p∗ + g(pt − p∗)

g > 0 represents the “trend extrapolation” parameter.

At the start of each period t, the price pt is revealed to everyone and the demand zh,t

(h = 1, 2) is updated substituting the expected dividend ȳ and the expected price in t+1

for fundamentalists and trend followers in its expression.
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The aggregate excess of demand for the period t is given by:

ze,t =
2∑

h=1

nh,tzh,t − zs

Where nh,t represents the fraction of type h investors.

The goal of the MM is to provide liquidity. When the excess of demand is positive,
the MM sells shares of the risky asset from his inventory, which occurs when the price is
low. When the price is high, and the excess of demand is negative, the MM buys shares
and adds them to his inventory. After all transactions are completed at the end of period
t, the price is updated proportionally to the recorded excess of demand:

pt+1 = pt + µze,t

Where the parameter µ>0 denotes the “speed of adjustment”.

Thanks to this adjustment procedure, it is possible to observe the phenomenon known as
the "law of demand and supply": prices rise when there is an excess of demand and fall
otherwise.

The key point of this model is the mechanism by which fundamentalists can choose to
change their minds and become trend followers, and vice versa. Namely, how the fractions
nh,t evolve over time. Traders are assumed to be rational (EMH, REH), and they tend to
adopt a strategy that has performed well in the last period.

Let’s define an utility function at time t for each type of investor h:

Uh,t = (pt+1 + yt+1 −Rpt)zh,t + ωUh,t−1

Where ω is a weight parameter.

The utility function represents a weighted average of realized profits, with exponentially
declining weights. For simplicity and analytical tractability, the weight parameter ω is
set to 0. Consequently, the utility simplifies to the last realized profit.

A cost Ch is assigned to each type of investor, representing the expense incurred to
gather information and form conclusions.
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It is widely acknowledged that C1 > C2, as fundamentalists must acquire more informa-
tion (economic fundamentals) compared to trend followers. Without loss of generality, C2

can be set to 0, implying no information cost for trend followers.

After introducing utility functions and information costs, performance functions Πh,t can
be defined to assess the performance of each strategy h. Trivially, Πh,t = Uh,t − Ch. The
strategy with the highest performance function at time t will be regarded as the most
favorable, leading traders to adopt it.

The equation governing the evolution of nh,t is given by:

nh,t+1 = αnh,t + (1− α)
eβ(Uh,t−Ch)∑2
h=1 e

β(Uh,t−Ch)
= αnh,t + (1− α)

eβΠh,t∑2
h=1 e

βΠh,t

Two additional parameters appear in the equation above: α and β.

The parameter α, which falls within the range [0, 1], represents the fraction of investors
that do not change their thoughts and beliefs. As discussed in the previous section, when
0 < α < 1, agents can change their decisions in an asynchronous way—a possibility in-
troduced by Hommes et al. in 2005. If α=1, traders will never change their type, while
the case with α=0 is the one that has been studied since the formulation of these models
in 1997. In this case, investors update their strategy in a synchronized way.

The parameter β is the most crucial parameter in the system as it quantifies the ten-
dency of traders to adopt the strategy with the best performance.

There are two extreme scenarios: β=0 and β = ∞. When β=0, agents are entirely
indifferent to which strategy is the best, and both n1,t and n2,t tend to 1

2
as t tends to

infinity. On the other hand, if β = ∞, at each time instant, (1-α) of the investors adopt
the most performing strategy, representing the extreme scenario in which agents are ex-
tremely anxious and impatient.

Finally, all the equations governing the evolutionary adaptive belief system have been
introduced: pt+1 = pt + µ(n1,tz1,t + n2,tz2,t − zs)

nh,t+1 = αnh,t + (1− α) e
β((pt+1+yt+1−Rpt)zh,t−Ch)∑2

h=1 e
β((pt+1+yt+1−Rpt)zh,t−Ch)
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Changing variables, transitioning from pt to xt = pt − p∗ (deviation of the price from its
fundamental value) and from n1,t and n2,t to mt = n1,t − n2,t (difference of fractions), it
is possible to obtain a 2-dimensional discrete dynamical system:xt+1 = (1− µR

aσ2 +
µg

2aσ2 (1−mt))xt

mt+1 = αmt + (1− α)tanh[β
2
(R− (1− µR

aσ2 +
µg

2aσ2 (1−mt))x
2
t − gzsxt − C − g

aσ2xtϵt+1)]

where ϵt+1 = yt+1 − ȳ is a white noise 7 and C = C1 − C2 (hence C>0).

The system is composed of two parts: a deterministic part and a stochastic part in-
troduced by the white noise term ϵt. To analyze the stability and bifurcations of the
system, it is common to focus on the deterministic part, often referred to as the "deter-
ministic skeleton". This deterministic skeleton is obtained by setting the white noise term
to zero in the original system.

2.3. Analytical results

In this section, we delve into analytical results related to the stability and bifurcations
of trajectories. The presented theorems and their corresponding proofs are based on the
work of Hommes et al. (2005).

The deterministic skeleton of the system is a 2-dimensional discrete dynamical model:

F :

(
xt

mt

)
→

(
xt+1

mt+1

)
=

(
F1(xt,mt)

F2(xt,mt)

)

where F1(x,m) = v(m)x with v(m) = (1− µR
aσ2 +

µg
2aσ2 )− µg

2aσ2m

and F2(x,m) = αm+(1−α)tanh[βw(x.m)] with w(x,m) = 1
2
( g
aσ2 (R−v(m))x2−gzsx−C)

For simplicity and without loss of generality, we exclude the case where α = 1 (investors
never change strategy), set aσ2 equal to 1 for normalization 8, and consider R in the range
(1, 1.2) (corresponding to 0 < rf < 0.2, as it makes no financial sense to have a risk-free
interest rate higher than 0.2).

7A white noise (WN) is a random variable with a zero expected value. It is commonly used to model
the random interference or variability observed in time series data.

8In the general case, we can apply the following transformations: µ
aσ2 → µ̄; β

aσ2 → β̄; aσ2zs → z̄s;
aσ2C → C̄. After these transformations, we have aσ2=1.
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The equilibrium of the system must be found in that (possibly unique) couple of val-
ues E = (x̄, m̄) satisfying F(x̄, m̄) = (F1(x̄, m̄), F2(x̄, m̄)) = (x̄, m̄), leading to a nonlinear
system of two equations in two unknowns. From the first equation F1(x̄, m̄) = x̄ one
gets x̄ = 0, namely p = p∗: at the equilibrium, the price of the asset corresponds to its
fundamental value. For this reason E is known as “fundamental steady state”. Imposing
F2(x̄, m̄) = m̄, knowing that x̄ = 0, it is possible to find the value at equilibrium of m,
m̄ = −tanh(βC

2
). Therefore E = (0,−tanh(βC

2
))

In the preceding section, we assumed that C>0 (setting C2 to 0 without loss of gen-
erality), indicating that being a fundamentalist requires a higher cost than being a trend
follower. It is evident that when β=0, resulting in agents being indifferent to which strat-
egy is better, E = (0, 0) (both fractions are the same and equal to 1

2
). On the other

hand, as β approaches infinity, E tends to (0,−1), signifying that all traders lean towards
becoming trend followers.

A logical explanation underlies this phenomenon: when pt = p∗, both types of investors
forecast the same value for pt+1, leading to E(pt+1) = p∗. Consequently, there is no in-
centive to be a fundamentalist and incur a higher cost for gathering information. As β

increases (approaching infinity in the extreme case), all agents swiftly tend to adopt the
trend-following strategy.

After computing the fundamental steady state E, the next step involves studying its
stability first with zs = 0. This scenario corresponds to a situation where there is no
supply of outside shares, akin to the analysis in Brock and Hommes (1997).

Theorem 2.1. (Stability and bifurcations of fundamental steady state for zs = 0)
Let zs = 0. Let βpd =

2
C
tanh−1(2R

g
− 1− 4

µg
), β∗ = 2

C
tanh−1(2R

g
− 1), E = (0,−tanh(βC

2
))

be the fundamental steady state. Then

1. For 0 < g < R:

• 0 < µ < 2
R
: E is globally stable for all β ≥ 0

• 2
R
< µ < 4

2R−g
: E is locally but not globally stable for all β ≥ 0 (for µ = 2

R
a

2-cycle emerges at infinity)

• 4
2R−g

< µ < 2
R−g

: E is unstable for 0 ≤ β < βpd and locally stable for β > βpd;
E undergoes a (subcritical) period-doubling bifurcation 9 at β = βpd

9This bifurcation occurs when a small change in the parameters leads to the emergence of a new
periodic trajectory from an existing one, with the period doubling compared to the original trajectory.
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• µ > 2
R−g

: E is unstable for any β ≥ 0

2. For R < g < 2R:

• 0 < µ < 2
R
: E is globally stable for 0 ≤ β < β∗ and unstable for β > β∗; E

undergoes a (supercritical) pitchfork bifurcation 10 at β = β∗

• 2
R
< µ < 4

2R−g
: E is locally stable for 0 < β < β∗ and unstable for β > β∗; E

undergoes a (supercritical) pitchfork bifurcation at β = β∗

• µ > 4
2R−g

: E is unstable for 0 ≤ β < βpd, locally stable for βpd < β < β∗ and
unstable for β > β∗; E undergoes a (subcritical) period-doubling bifurcation in
β = βpd and a (supercritical) pitchfork bifurcation in β = β∗

3. For g > 2R: E is unstable for any µ > 0 and for any β ≥ 0

The proof is provided in Appendix B., along with the proofs for all the theorems presented
in this work.

The length of the statement and the consideration of multiple cases are not surpris-
ing, given that the dynamics depend on three parameters: g, µ and β. The theorem
distinguishes between three cases:

1. 0 < g < R (weak trend extrapolation);

2. R < g < 2R (strong trend extrapolation);

3. g > 2R (very strong trend extrapolation);

In the case of weak trend extrapolation, E is globally stable for a small adjustment speed
(0<µ< 2

R
), while it is globally unstable when µ > 2

R
(large adjustment speed), leading to

the emergence of an unstable 2-cycle. This phenomenon is influenced by the adjustment
mechanism, where large values of the speed of adjustment result in an extreme form of
overshooting 11, causing prices to fluctuate significantly. As overshooting dynamics are
not of interest, the case µ > 2

R
will be disregarded.

For a more comprehensive treatment, refer to Appendix A.
10This bifurcation occurs when, after a small change in the parameters, the system transitions from hav-

ing one equilibrium to three distinct equilibria. For a more comprehensive treatment, refer to Appendix
A.

11The term "overshooting" refers to the phenomenon in which economic variables, such as prices
and rates, temporarily exceed their long-run values as a result of the adjustment process following an
exogenous shock. The overshooting model was initially introduced by the German economist Rüdiger
Dornbusch in the 1970s to explain the significant fluctuations observed in the dynamics of exchange rates.
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In the presence of very strong trend extrapolation, E is always unstable for any choice
of µ and β. The case R < g < 2R is particularly interesting, as through a pitchfork
bifurcation E becomes unstable, and two non fundamental steady states can emerge.

Theorem 2.2. (Stability and bifurcation of non fundamental steady states for zs = 0)

Let zs = 0. For R < g < 2R and 0 < µ < 2
R
, let x∗ =

√
C− 2

β
tanh−1( 2R

g
−1)

g(R−1)
,

βNS = 2
C
tanh−1(2R

g
− 1) + g(R−1)

µR(g−R)(2R−1)C
. Then:

1. For 0 ≤ β < β∗ the fundamental steady state E is the unique steady state of the
system

2. For β > β∗ two non fundamental steady states exist: El = (xl, 1− 2R
g
) with xl = −x∗

and Er = (xr, 1− 2R
g
) with xr = x∗. Moreover:

• El and Er are locally stable for β∗ < β < βNS and unstable for β > βNS

• Both El and Er undergo a supercritical Neimark-Sacker bifurcation 12 in
β = βNS for α < 0.6

Following their creation through a supercritical pitchfork bifurcation, the two non funda-
mental steady states are initially locally stable. However, they become unstable through
a supercritical Neimark-Sacker bifurcation as the parameter β increases.

Up to this point, zs has been set equal to 0 to make the system symmetrical with re-
spect to the x-axis. Consequently, El and Er are symmetrical and emerge for the same
value of β = βNS. However, when zs > 0, the system is no longer symmetrical. Therefore,
zs is referred to as the "symmetry-breaking parameter" of the system. In the following
theorem, this case is discussed, with the additional assumption of strong trend extrapo-
lation.

Theorem 2.3. (Stability and bifurcations of fundamental/non fundamental steady states
for zs > 0)

Let zs > 0. For R < g < 2R and 0 < µ < 2
R
, let βsn =

8tanh−1( 2R
g
−1)(R−1)

4(R−1)C+gz2s
,

xl =
zs

2(R−1)
−
√

C− 2
β
tanh−1( 2R

g
−1)

g(R−1)
+ z2s

4(R−1)2
and xr =

zs
2(R−1)

+

√
C− 2

β
tanh−1( 2R

g
−1)

g(R−1)
+ z2s

4(R−1)2

12Bifurcation consisting in the origin of a closed invariant curve from a fixed point, when the fixed point
changes stability due to the presence of a pair of complex eigenvalues with unit modulus. See Appendix
A. for a more exhaustive treatment.
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Then:

1. 0 ≤ β < βsn: the fundamental steady state E is globally stable

2. β = βsn: a saddle-node bifurcation 13 occurs and it exists one and only one non
fundamental steady state

3. βsn < β < β∗: E is locally stable and there exist two non fundamental steady states
El = (xl, 1− 2R

g
) and Er = (xr, 1− 2R

g
) with 0 < xl < xr

4. β = β∗: a trans-critical bifurcation 14 occurs and El coincides with E

5. β > β∗: E is unstable and there exist two non fundamental steady states
El = (xl, 1 − 2R

g
) and Er = (xr, 1 − 2R

g
) with xl < 0 < xr. Moreover, when zs is

positive but small, there exists βr > βsn and βl > β∗ such that

6. Er is locally stable for βsn < β < βr and unstable for β > βr. Er undergoes a
supercritical Neimark-Sacker bifurcation at β = βr for α < 0.6

7. El is unstable for βsn < β < β∗, locally stable for β∗ < β < βl and unstable for
β > βl. El undergoes a trans-critical bifurcation at β = β∗, for which xl = 0, and a
Neimark-Sacker bifurcation occurs in β = βl for α < 0.6

The introduction of zs>0 in the system breaks the symmetry, leading to non-coinciding
values for βl and βr (specifically, βr<βl). This asymmetry results in the occurrence of the
Neimark-Sacker bifurcations for El and Er not happening simultaneously. For detailed
expressions of βl and βr, refer to Appendix B.

In the context of strong trend extrapolation (g > R), where trend followers anticipate
prices to rise faster than the risk-free rate, the fundamental steady state E becomes un-
stable for higher values of β.

An additional significant constraint on the permissible values of g is g < R2 (noting
that R2 < 2R for the given R values). This condition is crucial as it ensures that tra-
jectories remain bounded. Without this restriction, for higher g values, trend followers
could generate substantial profits, leading to the asset price diverging to infinity.

13This expression, also referred to as tangential or fold or blue sky bifurcation, denotes a scenario in
bifurcation theory where two equilibria, one stable and the other unstable, collide and both vanish. For
a more comprehensive exploration of this concept, please refer to the Appendix A.

14This bifurcation, also known as fold bifurcation, represents a scenario in bifurcation theory where two
equilibria, one stable and the other unstable, collide and exchange their stability. Following the collision,
the initially stable equilibrium becomes unstable, and vice versa. For a more detailed exploration of this
concept, refer to Appendix A.
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As highlighted in Hommes et al. (2005), it is conceivable to expand the model to accom-
modate larger g values without compromising trajectory boundedness. This extension
might involve incorporating a stabilizing mechanism to prevent prices from diverging to
infinity. However, such modifications would introduce additional complexity to the model,
making the analysis much more challenging, if not impractical.

Upon assuming R < g < R2, the system, for certain values of the intensity of choice,
may undergo a homoclinic bifurcation 15.

Theorem 2.4. (Homoclinic bifurcation of fundamental steady state for zs = 0)
Let zs = 0, R < g < R2, 1

R
< µ < min{ 2

R
, R−1
g−R

}, 0 < α <
√

µR−1
µg

. Then the funda-
mental steady state E is a dissipative saddle point 16 for any β > β∗ (after the pitchfork
bifurcation). Moreover:

1. for β > β∗ with |β−β∗| small, there is no intersection between W s(E) and W u(E)17

(the unstable manifold of E is attracted by El and Er).

2. for some βh > β∗ a homoclinic bifurcation between the stable and unstable manifold
of E occurs.

3. for β > βh transversal homoclinic orbits 18 of E always exist.

The presence of homoclinic orbits implies the existence of strange (or chaotic) attractors19.
The following theorem can also be seen as a corollary of the previous one.

Theorem 2.5. (Existence of strange attractors)
Let the parameters be fixed as in the previous theorem, then it exists a positive Lebesgue
measure 20 set of values for β in the neighborhood of βh, say (βh − ϵ, βh + ϵ), for which
the dynamics generated by F admits a strange attractor.

15It refers to a scenario in which a limit cycle collides with a saddle point, resulting in an infinite period
cycle. For a more comprehensive treatment, refer to Appendix A.

16Equilibrium point that attracts certain initial conditions while repelling others. In other words, it
can act as both an attractor and a repellor, depending on the initial conditions. For a more detailed
treatment, refer to Appendix A.

17The stable manifold W s comprises the set of initial conditions for which trajectories tend toward
the equilibrium, while the unstable manifold Wu is the set of initial conditions for which the equilibrium
serves as a repellor for trajectories. For further details, refer to Appendix A.

18It a trajectory that connects a saddle point to itself, representing the intersection between the stable
and unstable manifolds of the saddle equilibrium. For further details, refer to Appendix A.

19These attractors are termed "strange" due to their irregular shape, displaying self-similar patterns
and non integer dimensions, characteristics common to fractal sets. The presence of homoclinic orbits
contributes to the emergence of chaotic trajectories. For a more comprehensive discussion, refer to
Appendix A.

20Regarding the set of real numbers R, the Lebesgue measure of a set corresponds to its length.
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Finally, for some sufficiently large values of the intensity of choice chaotic orbits 21 appear.

Also the theorem below can be seen a consequence of the theorem 2.4.

Theorem 2.6. (Existence of chaotic orbits)
Let the parameters be fixed as in theorem 2.4. , if β is sufficiently large then it exists an
invariant Cantor set 22 containing an uncountable set 23 of initial conditions for which
chaotic orbits arise.

In the next section, numerical simulations of the ARED model will be presented along with
visual representations of the equilibria as a function of β. From a financial perspective,
the focus will be on analyzing the most interesting cases, considering various combinations
of the parameters R, g, µ, and β.

2.4. Numerical simulations

This section of Chapter 2. is dedicated to the numerical simulations of the ARED model
across various values of the intensity of choice parameter. The aim is to illustrate how the
dynamics significantly depend on β and how complex and intricate behaviors can emerge
from a system governed by "simple" rules.

As previously mentioned in the preceding section, only specific values of R, g, µ, and
α will be considered, focusing on the most significant ones from both financial and nu-
merical perspectives. Let’s briefly discuss each selection:

• R = 1.1: it is reasonable to assume rf very close to 0 when dealing with daily risk-
free interest rates. However, R must be greater than 1 otherwise, the fundamental
price of the asset p∗ wouldn’t be well defined as it needs to be finite and positive;

• g = 1.15: this configuration ensures that the trend extrapolator satisfies both the
condition R < g < 2R (strong trend extrapolator), leading to the most interesting
cases shown in Theorems 2.1. 2.2. and 2.3. and R < g < R2, a sufficient condition
for Theorems 2.4. 2.5. and 2.6. (existence of chaotic orbits and strange attractors);

21Orbits of the system exhibiting strong dependence on the initial conditions. For a more comprehensive
discussion, refer to Appendix A.

22One of the most popular examples of a fractal set, it represents a perfect set that is nowhere dense.
For a more comprehensive discussion, refer to Appendix A.

23There are various definitions of an uncountable set. One of them states that a set X is (infinite)
uncountable if its cardinality is neither finite nor equal to ℵ0, where ℵ0 represents the cardinality of the
set of natural numbers—a classical example of a countable infinite set. In simpler terms, an uncountable
set contains too many elements to be countable.
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• µ = 1.6: It is an appropriate value for the speed of adjustment since it is contained
in the range ( 1

R
, min{ 2

R
, R−1
g−R

}). This choice is manageable and ensures the presence
of a chaotic regime due to the existence of homoclinic orbits, as stated in Theorems
2.4. 2.5. and 2.6. ;

• α = 0.5: this choice of α ensures that 50% of agents (eventually) change their
strategy according to the adaptive mechanism. It also satisfies the inequalities
0 < α <

√
µR−1
µg

necessary for Theorems 2.4. 2.5. and 2.6. to hold. It is noteworthy
that α is an eigenvalue of the Jacobian matrix computed in the fundamental steady
state E (see the proofs of the theorems in Appendix B.), representing the speed of
convergence when the price moves toward the fundamental value;

• C = 1: without loss of generality C1 can be set equal to 1 and C2 equal to 0,
simplifying the computations;

• aσ2 = 1: as previously discussed, this term can be simplified without loss of gener-
ality;

• zs = 0.01: when it is not null (otherwise the symmetric case is considered), the
outside supply of shares per trader must be positive and "small".

The symmetric (zs = 0) and the asymmetric case (zs > 0) will be discussed separately.

2.4.1. Symmetric case (zs = 0)

(a) Bifurcation diagram in the x-plane (b) Bifurcation diagram in the m-plane

Figure 2.1: Steady states and their stability (green stable, red unstable) depending on β

When zs = 0, with the other parameters held constant, E undergoes a pitchfork bifurca-
tion, occurring approximately at β∗ = 3.09104. This bifurcation leads to the emergence
of two non fundamental steady states, denoted as El and Er.
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Subsequently, both El and Er experience a Neimark-Sacker bifurcation at the same criti-
cal value of β, approximately βNS = 4.18006.

The fundamental steady state E = (0,− tanh(βC
2
)) is globally stable until the pitch-

fork bifurcation takes place. Following the bifurcation, the two non fundamental steady
states, El = (−x, 1− 2R

g
) and Er = (x, 1− 2R

g
), are locally stable until the Neimark-Sacker

bifurcation occurs.

β < β∗ β = β∗ β∗ < β < βNS β = βNS β > βNS

E globally stable pitchfork unstable unstable unstable
El × pitchfork locally stable Neimark-Sacker unstable
Er × pitchfork locally stable Neimark-Sacker unstable

Table 2.1: Stability of the steady states and bifurcations as β increases.

It is evident that chaotic dynamics may emerge when β is large and all steady states (both
fundamental and non fundamental) are unstable. Additionally, Theorems 2.4. 2.5. and
2.6. guarantee the presence of strange attractors, and hence chaotic orbits, for a certain
value of the intensity of choice βh > β∗. This occurs through a homoclinic bifurcation
involving the stable and unstable manifolds of E.

In the following, examples for each possible scenario are provided. But before delving
into that, let’s briefly discuss how the adaptive system functions in practice, considering
the following example.

Consider β=2.5 and the initial state (2, 0.8): a scenario where the initial price is overval-
ued, and 90% of the investors are fundamentalists. In contrast to the (sole, as β < β∗)
fundamental steady state E=(0,− tanh(βC

2
)), approximately (0,-0.8483), the initial state

represents an "extreme" situation.

At time t=0, the initial price p0 = p∗ + x0 is revealed to all investors. As the price
surpasses its fundamental value, fundamentalists expect a decline in the next period:

E1,0(p1) = p∗ < p∗ + x0

while trend followers believe that it will rise again:

E2,0(p1) = p∗ + g(p0 − p∗) = p∗ + gx0 > p∗ + x0
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So the demand for the risky asset will be:

z1,0 = p∗ + ȳ −R(p∗ + x0) = p∗(1−R) + ȳ −Rx0 = −Rx0 = −2.2

for fundamentalists and

z2,0 = p∗ + gx0 + ȳ −R(p∗ + x0) = p∗(1−R) + ȳ + (g −R)x0 = (g −R)x0 = 0.1

for trend followers.

We recall the fact that, by definition, when zs = 0 it follows p∗(1−R) + ȳ=0.

Notice that z1,0 < 0, indicating that fundamentalists will sell the risky asset as they
anticipate its future value to decrease, while z2,0 > 0 reflects the interest of trend follow-
ers in buying the asset.

Given the fractions of fundamentalists n1,0 = 0.9 and trend followers n2,0 = 0.1, it is
evident that the aggregate excess demand for the current period t=0 is negative:

ze,0 = n1,0z1,0 + n2,0z2,0 = 0.9 ∗ (−2.2) + 0.1 ∗ 0.1 = −1.97

Hence, due to the adjustment mechanism:

p1 = p0 + µze,0 = p∗ + x0 + µze,0 = p∗ + 2 + 1.6 ∗ (−1.97) = p∗ − 1.152

Not only will the price in t=1 be lower than the initial price, but it will also fall below the
fundamental value. It is essential to note that this substantial drop is a consequence of
fundamentalists representing the majority (90%) of investors: the positive demand from
trend followers (10% of traders) cannot offset the massive negative demand from funda-
mentalists, resulting in a significant price decline.

In this scenario, fundamentalists were correct: the price has indeed decreased.

Now, considering the performance functions for both fundamentalists and trend followers:Π1,0 = U1,0 − C1 = (p1 −Rp0)z1,0 − 1 = (−1.152− 1.1 ∗ 2) ∗ (−2.2)− 1 = 6.3744

Π2,0 = U2,0 − C2 = (p1 −Rp0)z2,0 = −0.3352
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The fraction of fundamentalists at time t=1 will be higher than in the previous period,
as determined by the formula:n1,1 = αn1,0 + (1− α) eβΠ1,0∑2

h=1 e
βΠh,0

= 0.5 ∗ 0.9 + 0.5 ∗ e2.5∗6.3744

e2.5∗6.3744+e2.5∗(−0.3352) = 0.9499

n2,1 = 1− n1,1 = 0.0501

As a consequence, m at time t=1 will increase:

m1 = n1,1 − n2,1 = 0.9499− 0.0501 = 0.8998

Therefore, the map F transforms the initial state (2, 0.8) into (-1.152, 0.8998). This
procedure is repeated at each step, converging to the fundamental steady state E

(a) Evolution of x (b) Evolution of m

Figure 2.2: Dynamics in the symmetric case when β=2.5 with initial state (2, 0.9)

• β < β∗: This scenario, as illustrated in the previous example, is the simplest possi-
ble. The fundamental steady state E is the unique equilibrium of the system, and it is
globally stable. Investors exhibit a reluctance to change their beliefs, causing the price
to fluctuate around the fundamental value with decreasing amplitude over time. As the
deviation x approaches 0,as previously discussed in this chapter, there’s no advantage in
being a fundamentalist and incurring the cost C for gathering information. The difference
in fractions, m, tends to the equilibrium value − tanh(βC

2
), which is negative for any β > 0

(indicating that there are more trend followers than fundamentalists).

• β = β∗: The dynamics in this scenario are equivalent to the previous one. The fun-
damental steady state has an associated eigenvalue with a unit modulus, coinciding with
the two non-fundamental steady states Er and El, both of which are stable.
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• β∗ < β < βNS: The system exhibits three distinct equilibria: the unstable fundamental
steady state E and the stable non fundamental steady states Er and El. The presence of
multiple equilibria is a key aspect of ARED models, making them of continued interest.
E is a saddle node with one associated eigenvalue (λ2 = α) having modulus strictly less
than one, while the other (λ1 = v(− tanh(βC

2
)), see Appendix B.) is unstable. The stable

manifold W s(E), representing the states attracted to E, is defined by the lines x = 0 and
m = 1 − 2R

g
+ 2

µg
. The system’s behavior is explained by a financial perspective: when

the price is at its fundamental, both types of investors predict the same future price,
leading to no demand for the risky asset. As time passes, the fraction of trend followers
increases, approaching the equilibrium m = − tanh(βC

2
). The stable manifolds W s(Er)

and W s(El) exhibit complex geometries, contributing to high sensitivity to initial condi-
tions for β > β∗. For instance, a neighborhood of (0, 1− 2R

g
+ 2

µg
) contains initial states

attracted by E, Er, or El.

Figure 2.3: Stable manifold of E (lines x = 0 and m = 1− 2R
g
+ 2

µg
), Er (green region) and

Er (white region) when β=4. The manifolds are symmetric with respect to the x-axis

Considering an initial state in a neighborhood of E with x0 ̸= 0, it is initially attracted
by the fundamental steady state. The projection of the state onto the stable manifold
W s(E) is predominant in the early stages. However, as time progresses, the state will
eventually be drawn towards either Er when x0 > 0 or El when x0 < 0. In these cases,
the projection onto W s(Er) or W s(El) becomes predominant. The spiral trend toward
Er (or El) is a result of the complex conjugate eigenvalues associated with Er (or El), as
detailed in Appendix B.
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(a) Orbit converging to Er (b) Orbit converging to Er (zoom)

Figure 2.4: Orbit converging to Er starting from an initial state close to E when β=4

(a) Orbit converging to Er (zoom) when
β=4 (b) Eigenvalues of Er when β=4

Figure 2.5: Spiral trend toward Er when β=4

• β = βNS: both non-fundamental steady states undergo a Neimark-Sacker bifurcation
since their eigenvalues (complex conjugates) have unit modulus. However, they remain
(locally) stable because the Neimark-Sacker bifurcation is supercritical (see Appendix
A.). This means that the convergence to either Er or El is slower than in the previous
case where β < βNS. The stable manifold of E is still represented by the lines x = 0

and m = 1 − 2R
g
+ 2

µg
(and this remains true for any value of the intensity of the choice

parameter), while the stable manifold of Er and El does not show substantial differences
compared to the previous case.
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• β > βNS: This case is particularly intriguing as it gives rise to complex and chaotic
dynamics. Investors are highly likely to adopt the best-performing strategy, becoming
anxious and impatient as the inclination to change their ideas increases. Chaotic orbits
emerge because all the equilibria in the system are unstable, and strange attractors man-
ifest due to homoclinic bifurcations when the stable and unstable manifolds of the steady
states intersect. When |β − βNS| is sufficiently small, two strange attractors coexist: one
encompasses the positive non-fundamental steady state Er and is situated in the positive
semi-plane x>0, while the other encompasses the negative non-fundamental steady state
El and is situated in the negative semi-plane x<0. Orbits around the positive strange at-
tractor represent an optimistic phase of the market, where prices consistently surpass the
fundamental value. In contrast, a pessimistic phase is observed when prices persistently
fall below the fundamental threshold. Both attractors are tangent to the stable manifold
of E.

(a) Orbit converging to the positive strange
attractor when β=4.45

(b) Evolution of x when the orbit is at-
tracted to the positive strange attractor
when β=4.45

Figure 2.6: Strange attractor on the positive semi-plane x>0 when β=4.45

Once again, the stable manifolds of the two strange attractors exhibit a non trivial ge-
ometry, and the dependence on initial conditions is notably high. The regimes are quasi
periodic, signifying that the system will never pass through the same state twice. These
attractors are characterized by non integer (fractal) dimensions; they form Cantor like
sets consisting of uncountable sets of isolated points, meaning they have no length.
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Figure 2.7: Manifold of E (lines x = 0 and m = 1 − 2R
g

+ 2
µg

), the positive strange
attractor (green region) and the negative one (white region) (β=4.45). The manifolds are
symmetric

As β increases, a single strange attractor emerges, encompassing both Er and El: an
endogenous switch between optimistic and pessimistic phases occurs, leading to marked
price fluctuations. The attractor remains tangent to the stable manifold of E and is al-
most globally stable (with the caveat that only orbits starting from W s(E) will not be
attracted by this attractor).

(a) Orbit converging to the unique strange
attractor when β=4.5

(b) Evolution of x when β=4.5

Figure 2.8: Global strange attractor when β=4.5
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These fluctuations arise because trend followers consistently act to perpetuate the cur-
rent trend (whether upward or downward), while fundamentalists aim to guide the price
toward its fundamental value. When trend followers dominate, the price rises (or falls)
continuously until it reaches a peak, where the demand from fundamentalists becomes
sufficient to pull the price back toward its fundamental. This mechanism becomes more
pronounced as the intensity of choice increases, leading to larger price fluctuations.

(a) Orbit converging to the unique strange
attractor when β=5

(b) Evolution of x when β=5

Figure 2.9: Global strange attractor when β=5

In Figure 2.10 the initial state (2, 0) (indicating a price above the fundamental value and
an equal distribution of investors) is considered in all simulations.
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(a) Evolution of x and m when β=4 (b) Evolution of Π1 and Π2 when β=4

(c) Evolution of x and m when β=βNS (d) Evolution of Π1 and Π2 when β=βNS

(e) Evolution of x and m when β=4.5 (f) Evolution of Π1 and Π2 when β=4.5

Figure 2.10: Evolution of x (in black), m (in blue), Π1 (in black) and Π2 (in blue) for
various values of β: β=4 (panel (a) and (b) ); β=βNS (panel (c) and (d) ); β=4.5 (panel
(e) and (f) )
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2.4.2. Asymmetric case (zs > 0)

When zs > 0, with the other parameters fixed, the two non-fundamental steady states
El and Er arise from a saddle-node bifurcation at βsn=3.09015. In the asymmetric case,
Er undergoes a Neimark-Sacker bifurcation at βr=4.11408, while El becomes unstable at
βl=4.24672.

Figure 2.11: Bifurcation diagram in the x-plane

Notice how the dynamics of the system is highly sensitive to the value of the intensity of
the choice parameter when it is in the vicinity of (approximately) 3.09. At βsn=3.09015,
Er and El are generated, while at β∗=3.09104, E and El collide in a trans-critical bifur-
cation, subsequently changing their stability.

(a) Bifurcation diagram in the x-plane (b) Bifurcation diagram in the m-plane

Figure 2.12: Bifurcation diagram in a neighborhood of x=3.09
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β < βsn β = βsn βsn < β < β∗ β = β∗ β∗ < β < βr

E globally stable locally stable locally stable trans-critical unstable
El × saddle-node unstable trans-critical locally stable
Er × saddle-node locally stable locally stable locally stable

β = βr βr < β < βl β = βl β > βl

E unstable unstable unstable unstable
El locally stable locally stable Neimark-Sacker unstable
Er Neimark-sacker unstable unstable unstable

Table 2.2: Stability of the steady states and bifurcations as β increases.

As in the symmetric case, strange attractors and chaotic dynamics around them will
emerge for large values of the intensity of choice parameter, especially for β > βl when
all the steady states are unstable, allowing for the possibility of homoclinic orbits.

• β < βr: this case doesn’t generate significant interest, as either the fundamental steady
state or the non-fundamental steady states are stable, making the global dynamics of the
system equivalent to the one presented in the symmetric case. The case where β is within
the range (βsn, β∗) is notable, as E and Er are stable while El (located in the positive
semi-plane x > 0) is unstable. The lines x=0 and m = 1− 2R

g
+ 2

µg
continue to belong to

the stable manifold of the fundamental steady state.

Figure 2.13: Manifold of E (green region) and Er (blue region) when β=3.0905

• βr < β < βl: the positive non fundamental steady state Er is unstable due to the
Neimark-Sacker bifurcation occurring at βr, while El remains stable. Consequently, the
system exhibits three different types of attractors: the saddle node in E; the stable fixed
point El; and the stable cycle around Er.
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(a) Orbit converging to El and orbit
converging to the stable cycle around
Er when β=4.2

(b) Manifold of E (lines x=0 and
m = 1 − 2R

g + 2
µg ), cycle around Er (green

region) and El (white region)

Figure 2.14: Dynamics and manifolds of the asymmetric system when β=4.2

• β > βl: both Er and El are unstable, allowing the system to potentially exhibit the
presence of strange attractors and chaotic orbits around them. Up to (approximately)
β=4.39288, a chaotic attractor encompasses the positive non-fundamental steady state
Er. Afterward, it disappears. For 4.39288<β<4.55327, there exists a unique strange at-
tractor contained in the negative semi-plane x < 0. In this range, any initial state (not
belonging to W s(E)) will lead the market into a never-ending pessimistic phase charac-
terized by significant price fluctuations below the fundamental threshold.

(a) Orbit converging to the strange
attractor around El when β=4.5

(b) Evolution of x when β=4.5

Figure 2.15: Pessimistic phase when β=4.5
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When β > 4.55327, the strange attractor encompasses both Er and El, signifying an
endogenous switch between optimistic (overvalued prices) and pessimistic (undervalued
prices) phases.

(a) Orbit converging to the strange
attractor when β=4.65

(b) Evolution of x when β=4.65

Figure 2.16: Optimistic and pessimistic phases when β=4.65

In Figure 2.17 the initial state (2, 0) (indicating a price above the fundamental value and
an equal distribution of investors) is considered in all the simulations.
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(a) Evolution of x and m when β=4.2 (b) Evolution of Π1 and Π2 when β=4.2

(c) Evolution of x and m when β=4.5 (d) Evolution of Π1 and Π2 when β=4.5

(e) Evolution of x and m when β=4.65 (f) Evolution of Π1 and Π2 when β=4.65

Figure 2.17: Evolution of x (in black), m (in blue), Π1 (in black) and Π2 (in blue) for
various values of β: β=4.2 (panel (a) and (b) ); β=4.5 (panel (c) and (d) ); β=4.65 (panel
(e) and (f) )
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2.5. Further developments

Recent studies have focused attention on the distribution of quoted asset returns and
prediction functions.

It is well-known that return distributions are not symmetrical, contrary to what is as-
sumed in many models for asset dynamics, such as the Black & Scholes model 24. Notably,
negative returns are more common than positive ones, suggesting that ’bad news’ is more
prevalent than ’good news.’ To replicate the skewness of return distributions, it is recom-
mended to consider the semivariance 25 of returns instead of the variance in the strategy
optimization problem. Consequently, investors should shift from being mean-variance
maximizers to being mean-semivariance maximizers.

In his work ’Mean-semivariance behavior: Downside risk and capital asset pricing’ (2005),
Javier Estrada highlighted reasons why an optimization problem based on mean and semi-
variance is preferable to one based on mean and variance.

Apart from being more correct from a probabilistic and statistical perspective, consid-
ering semivariance allows us to capture the phenomenon in which traders, when going
long, do not dislike upside volatility, but instead, they dislike downside volatility. The
opposite holds when investors go short.

Consequently, it is more accurate to develop a model in which agents react positively
to higher-than-expected returns and negatively to lower-than-expected returns, as op-
posed to a model in which both returns contribute equally to the investors’ risk aversion.

In the updated model, the demand for the risky asset by the type h investor is deter-
mined by solving the optimization problem:

24In the Black & Scholes model proposed in 1973, the dynamics for a risky asset is described by a
Geometric Brownian Motion (GBM), and its Stochastic Differential Equation (SDE) is given by
dSt = rStdt+ σStdWt. In this framework, logarithmic returns in a certain time interval are expected to
be distributed as normal random variables and should not depend on the past. However, real logarithmic
returns deviate from a precisely normal distribution, exhibiting skewness and fat tails. Additionally, they
are autocorrelated over time.

25For a given (real) random variable X, we distinguish between positive semivariance
V+(X) = E((X − E(X))21X≥E(X)) and negative semivariance V−(X) = E((X − E(X))21X<E(X)). The
positive semivariance represents the expected square deviation from the mean for values of X greater
than or equal to the mean, while the negative semivariance is the expected square deviation from the
mean for values of X less than the mean.
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z∗h,t = argmax
zh,t

Eh,t(Wh,t+1)− a
2
V−

h,t(Wh,t+1), zh,t ≥ 0

Eh,t(Wh,t+1)− a
2
V+

h,t(Wh,t+1), zh,t < 0

Obviously, traders are exposed to downside risk when they want to buy the risky asset
and to upside risk otherwise.

Assuming that the conditional semivariances of the excess returns are the same for all the
agents, i.e. V−

h,t ≡ σ2
− and V+

h,t ≡ σ2
+, a simplified expression for z∗h,t is available:

z∗h,t =

z−h,t =
Eh,t(pt+1)+ȳ−Rpt

aσ2
−

,Eh,t(pt+1) + ȳ ≥ Rpt

z+h,t =
Eh,t(pt+1)+ȳ−Rpt

aσ2
+

,Eh,t(pt+1) + ȳ < Rpt

It is reasonable to assume σ2
− ̸= σ2

+, otherwise there would be no distinction between
upside and downside risk, rendering this model equivalent to the original one. In partic-
ular, the case σ2

− > σ2
+ represents a realistic scenario where negative returns (and thus

downside risk) are predominant 26.

With regards to prediction functions, a possible extension of the model is represented
by the case in which trend followers adopt a less naive prediction function. Specifically,
this includes the scenario where chartists consider the so known price rate of change
(ROC) averaged over the last n ≥ 1 time instants.

Introduced in 1993 by Alexander Elder in his book "Trading for a Living: Psychology,
Trading Tactics, Money Management", these predictors were first applied in ARED mod-
els in 2010 in "A new stock market model with adaptive rational equilibrium dynamics"
by Cecchetto and Dercole.

The expected future price at time t+ 1 conditional to the information available at time t

is given by:
E2,t(pt+1) = ptROC2

where the rate of change ROC is defined as

ROC = (
pt
pt−n

)
1
n = (

p∗ + xt

p∗ + xt−n

)
1
n

26We express our gratitude to Fabio Dercole and Davide Radi for the implementation of this model.
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ROC predictors are particularly useful when trend followers are skeptical of extreme price
rates.

An extension of the model can be considered where trend followers, also known as non
linear technical analysts or ROC traders, incorporate the mean between the ROC index
and the unit rate.

E2,t(pt+1) = pt(αR0CROC + (1− αROC))
2

2.6. Counteracting low prices: the uptick rule

It is evident that ARED models attract interest as they reproduce some empirical features
observed in real financial markets, allowing for the presence of multiple equilibria: the
fundamental steady state and the two non fundamental steady states.

The first one is consistently present and remains stable when the intensity of the choice
parameter is small, signifying that investors are not inclined to change their strategy fre-
quently. The emergence of the two non-fundamental steady states occurs when traders
are more likely to update their beliefs, and chaotic dynamics ensue when financial agents
are exceedingly anxious and change their strategy very frequently.

However, the adaptive system analyzed in this chapter, despite being grounded in the
Efficient Market Hypothesis and the Rational Expectation Hypothesis, does not preclude
investors from speculating and influencing the pricing process through their investment
decisions. Notably, fundamentalists consistently invest to guide the price towards its fun-
damental value, although their strategy is tempered by the cost C incurred to gather
information. Conversely, trend followers predict more significant price deviations.

When the intensity of the choice parameter is sufficiently large, analytical and numer-
ical analyses have demonstrated that the system can enter pessimistic phases, leading
to undervalued prices falling below the fundamental. During such phases, the deviation
from the fundamental price can increase as β becomes larger. This is notably observed
when the system is attracted to the negative non-fundamental steady state or the chaotic
attractor encompassing it.

Obviously, pessimistic phases are not desirable, and financial regulators take action to
prevent aggressive speculative strategies where investors massively go short.
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While short selling is not inherently malicious and can enhance market liquidity and
pricing efficiency, its improper use can lead to uncontrolled price declines and acceler-
ate market declines, as witnessed in 1937 27 and 2007. One regulatory tool available to
counter speculative short selling is the so called uptick rule.

Introduced for the first time by the U.S. Securities and Exchange Commission (SEC)28 in
1934 (Rule 10a-1, Security Exchange Act) and implemented in 1938 during the 1937-38
recession, the uptick rule allows traders to open short positions only when the stock price
has risen with respect to the last registered value (uptick).
An alternative version is represented by the zero-plus-tick rule: short selling is allowed
even when the price is equal to the last traded one, but the last observed increment must
be positive.
The uptick rule fell into disuse in the U.S. markets in 2007 but was reintroduced in 2010
(Rule 201) and implemented in 2011 in a new version: if an asset loses at least 10% of its
value in one day, short selling is allowed only if the price is above the current best bid.
In other words, investors may go short only at a higher price than the previous traded.

ARED models provide an excellent framework to assess the (at least theoretical) effective-
ness of the uptick rule: it is sufficient to incorporate the rule into the adaptive mechanism
at each time step.

An exemplary study in this regard is presented by Fabio Dercole and Davide Radi in
their work ’Does the “uptick rule” stabilize the stock market? Insights from adaptive
rational equilibrium dynamics", published in 2020. However, the two authors tested the
uptick rule using the first ARED model introduced by Brock and Hommes in the 90s.

In the following lines, the uptick rule, in its basic version, will be tested considering
the ARED model proposed by Hommes in 2005, which introduces variations such as the
incorporation of a parameter α representing the portion of investors who will update
their strategy, and a slightly different price adjustment mechanism involving the Market
Maker.

27Economic downturn occurred during the Great Depression in the U.S.
28Founded by Franklin Delano Roosevelt in 1934 in response to the Great Depression, it is the agency

in charge of enforcing the law against market manipulation in the U.S. markets.
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2.6.1. Model setup

At each time step t, the current values of the fractions n1,t, n2,t, and the deviation xt are
known. Additionally, the deviation at the previous time instant, xt−1, must be considered.
If xt > xt−1, indicating a price increase, investors face no restrictions on their strategies,
and the standard adaptive mechanism can be applied. However, if xt ≤ xt−1, implying a
price decrease, both fundamentalists and trend followers are restricted from going short.
In other words, zh,t+1 cannot be negative for any type of trader h=1,2. The expression
for zh,t under these conditions is as follows:

zh,t = max{0, Eh,t(pt+1 + yt+1 −Rpt)

aσ2
}

Then at time t three scenarios are possible:

1. xt > xt−1 with no imposed restrictions;

2. xt ≤ xt−1, and fundamentalists are prohibited from going short (this occurs when
xt>0, leading to z1,t<0);

3. xt ≤ xt−1, and trend followers are restricted from going short (this occurs when
xt<0, resulting in z2,t<0);

It is necessary to expand the state space by transitioning from (xt, mt) to (xt, xt−1, z1,t,
z2,t, mt). Within the expanded state space, four distinct regions can be identified:

1. U = {(xt, xt−1, z1,t, z2,t,mt) : xt > xt−1} (no restrictions);

2. Z0 = {(xt, xt−1, z1,t, z2,t,mt) : xt ≤ xt−1, z1,t ≥ 0, z2,t ≥ 0} (negligible restrictions);

3. Z1 = {(xt, xt−1, z1,t, z2,t,mt) : xt ≤ xt−1, z1,t < 0, z2,t ≥ 0} (restrictions only for
fundamentalists);

4. Z2 = {(xt, xt−1, z1,t, z2,t,mt) : xt ≤ xt−1, z1,t ≥ 0, z2,t < 0} (restrictions only for
trend followers);

By applying the uptick rule and thereby restricting investors’ possibilities, the ARED
model transforms into a piece-wise smooth dynamical model. The state space is parti-
tioned, and the function governing the system’s evolution depends on the current state.
In particular:

z1,t =


E1,t(pt+1+yt+1−Rpt)

aσ2 , (xt, xt−1, z1,t, z2,t,mt) ∈ U ∪ Z0 ∪ Z2

0, (xt, xt−1, z1,t, z2,t,mt) ∈ Z1
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and

z2,t =


E2,t(pt+1+yt+1−Rpt)

aσ2 , (xt, xt−1, z1,t, z2,t,mt) ∈ U ∪ Z0 ∪ Z1

0, (xt, xt−1, z1,t, z2,t,mt) ∈ Z2

The ARED model, enhanced with the uptick rule, is expressed as follows:

(xt+1,mt+1) =


G0(xt, xt−1, z1,t, z2,t,mt), (xt, xt−1, z1,t, z2,t,mt) ∈ U ∪ Z0

G1(xt, xt−1, z1,t, z2,t,mt), (xt, xt−1, z1,t, z2,t,mt) ∈ Z1

G2(xt, xt−1, z1,t, z2,t,mt), (xt, xt−1, z1,t, z2,t,mt) ∈ Z2

where G0, G1, G2 represent the functions governing the adaptive systems when the state
belongs to U ∪ Z0, Z1, and Z2, respectively.

Considering the projections of U , Z0, Z1, and Z2 onto the semi-plane (xt, xt−1), it is
evident that:

• The projection of U is {(xt, xt−1) ∈ R2 : xt > xt−1};

• The projection of Z0 is {(xt, xt−1) ∈ R2 : xt = 0, xt−1 ≥ 0};

• The projection of Z1 is {(xt, xt−1) ∈ R2 : xt ≤ xt−1, xt > 0};

• The projection of Z2 is {(xt, xt−1) ∈ R2 : xt ≤ xt−1, xt < 0};

Figure 2.18: Projections of U , Z0, Z1 and Z2 on (xt, xt−1)

Note that Z0 serves as the boundary between Z1 and Z2. Denoting ∂U as the boundary
between U and Z1∪Z2, it is evident that the function generating the considered dynamical
system is discontinuous in ∂U , while in Z0 it is continuous but not differentiable.
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Each function Gi, where i = 0, 1, 2, has its own fixed points, which must be catego-
rized as admissible or virtual. An equilibrium of G0 is termed admissible if it lies in
U ∪ Z0 and virtual otherwise. A fixed point of G1 is admissible if it belongs to Z1 and
virtual otherwise, while a stationary point of G2 is admissible if it is contained in Z2 and
virtual otherwise. Virtual fixed points are not equilibria of the system, and their study is
beyond the scope of this analysis. The fundamental steady state E (belonging to U ∪Z0)
is considered admissible.

2.6.2. Numerical simulations

Numerical simulations are conducted to test the ARED model enhanced with the uptick
rule, aiming to determine the rule’s capability to counteract the occurrence and magni-
tude of undervalued prices (i.e., negative deviations). It is reasonable to infer that the
efficacy of the rule will be contingent on the value of the intensity of choice parameter β.

All other parameters will be set equal to the values considered in the previous section
where the original adaptive system has been analyzed. This choice facilitates a direct
comparison between the two cases. Additionally, it is necessary to assume that:

• The parameter zs must be positive (and relatively small). If zs equals zero, short
selling would be imperative for conducting exchanges. However, when zs is greater
than zero, short selling is not mandatory and can be restricted by the uptick rule;

• During the first iteration, the uptick rule cannot be enforced since there is no prior
deviation available for comparison with the current one, x0. Given the initial pair
(x1, x0), the imposition of the uptick rule begins from the second time step onward.
An alternative approach, as suggested by Dercole and Radi (2020), is to randomly
draw a deviation for comparison with x0—implementing the uptick rule from the
second time step.

The primary consequence of implementing the uptick rule is that the fundamental steady
state E becomes unstable for any admissible value of β. For small values of β, the funda-
mental steady state E transforms into a saddle node coexisting with a stable 2-cycle in the
positive semi-plane where x > 0. The line x = 0 (and consequently the line m = 1−R

g
+ 2

µg
,

which is mapped to x = 0), remains invariant. However, in the presence of two consecutive
null deviations, the uptick rule is invoked, limiting the actions of investors. Nevertheless,
in this scenario, both types of traders request the same amount of shares (zs), which is
positive, thereby rendering the impact of the uptick rule negligible. Consequently, the
excess demand is null, and the price does not deviate from the fundamental value.
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Figure 2.19: Manifold of E (green region) and the 2-cycle (white region) when β=3

(a) Orbit converging to the 2-cycle when
β=3

(b) Evolution of x when β=3

Figure 2.20: Dynamics under the uptick rule starting close to E when β=3

With an increase in the intensity of choice parameter, a global strange attractor emerges,
contained within the positive semi-plane where x>0. Starting from any initial state, the
system enters a perpetual optimistic phase.

The price doesn’t rise indefinitely due to the fact that, at a certain point, it fails to
increase as trend followers expect, leading to losses on their part. Consequently, the
fraction of fundamentalists increases until the negative demand for the risky asset by
fundamentalists (when they can open short positions) becomes sufficient to induce a price
decline.
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(a) Orbit converging to the strange
attractor when β=4

(b) Evolution of x when β=4

Figure 2.21: Dynamics under the uptick rule starting close to E when β=4

As β continues to increase, the positive fluctuations become larger.

Figure 2.22: Evolution of x when β=6

In summary, the uptick rule proves effective in preventing undervalued prices and pes-
simistic phases. However, it does not prevent significant positive price fluctuations, par-
ticularly as investors exhibit a heightened inclination to alter their beliefs and strategies.

In figures 2.23 and 2.24, all simulations consider the initial state (2, 0) (indicating a
price above the fundamental price and an equal distribution of investors).

Primarily, only fundamentalists are constrained by the uptick rule because they consis-
tently attempt to go short, anticipating the price to fall towards the fundamental value.
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(a) Evolution of x and m (without
uptick rule) when β=3

(b) Evolution of x and m (with uptick rule)
when β=3

(c) Evolution of x and m (without
uptick rule) when β=4.5

(d) Evolution of and m (with uptick rule)
when β=4.5

(e) Evolution of x and m (without
uptick rule) when β=4.65

(f) Evolution of x and m (with uptick rule)
when β=4.65

Figure 2.23: Comparison between the evolution of x (in black) and m (in blue) in the
asymmetric case with (right column) and without (left column) uptick rule for various
values of β: β=3 (panel (a) and (b) ); β=4.5 (panel (c) and (d) ); β=4.65 (panel (e) and
(f) )
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(a) (xt, xt−1) when β=2.5 (b) (xt, xt−1) when β=3

(c) (xt, xt−1) when β=3.5 (d) (xt, xt−1) when β=4

(e) (xt, xt−1) when β=4.5 (f) (xt, xt−1) when β=5

Figure 2.24: Evolution of the adaptive system under the uptick rule in the semi-plane
(xt, xt−1) for various values of β: β=2.5 (a); β=3 (b); β=3.5 (c); β=4 (d); β=4.5 (e);
β=5 (f).
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3| Conclusions

The proposed and analyzed Adaptive Rational Equilibrium Dynamics model incorporates
three main features:

• Investors adapt their strategy based on recent past performance;

• A Market Maker is present. The Market Maker balances the excess demand for the
risky asset, updating its price proportionally to that excess;

• Agents update their beliefs asynchronously. At each time instant, only a portion of
traders are willing to change strategy if necessary.

The adaptive system introduces several parameters, including R (gross return), g (trend
extrapolation), µ (speed of adjustment), and α (portion of investors who do not change
their ideas). Only the most plausible financial scenarios have been considered in the nu-
merical simulations.

The intensity of choice parameter, β, plays a crucial role. The system transitions from
stability, with prices tending to the fundamental value for small β, to instability charac-
terized by large price fluctuations, leading to pessimistic or optimistic phases for larger β.
As β increases, the unique and globally stable fundamental steady state becomes unstable,
giving rise to two stable non fundamental steady states. These states become unstable
due to a Neimark-Sacker bifurcation, leading to the emergence of two stable cycles around
them. Strange attractors arise from these closed invariant curves as the intensity of choice
parameter further increases, causing homoclinic bifurcations of stable and unstable mani-
folds of the fundamental steady state. In this scenario, market dynamics become chaotic,
resulting in massive price fluctuations.

When a positive (but "small") outside outside supply of shares, zs, is introduced in-
vestors require a premium for holding the risky asset instead of investing on the risk-free
asset. zs impacts the fundamental price of the asset, p∗, influencing agents’ utilities mea-
sures and the adaptive mechanism itself.
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The main conclusion is that instability and chaos cannot be avoided when β is high,
indicating that investors are too sensitive to utility variations. Limiting the possibili-
ties of agents represents a potential solution. This work considers the enforcement of
the uptick rule as an example of how ARED models are applied in practice. Empirical
evidence from numerical simulations demonstrates that allowing short selling only at a
higher price than the last traded one prevents markets from entering pessimistic phases
characterized by price fluctuations below the fundamental value.

Despite financial agents being limited to either Fundamental or Technical Analysis, the
proposed model recreates several aspects typical of real financial markets. While more
than two types of investors can be considered, such as contrarians and bias traders, this
would require a system in more than two dimensions, making it challenging, if not im-
possible, to treat analytically and numerically.

In more sophisticated models, agents can choose among less naive predictors, such as
non-linear predictors. ROC predictors have been mentioned. Finally, ARED models
can be extended to consider risk measures based on semi-variance of expected returns
rather than variance, incorporating the distinction between upside (higher than expected
returns) and downside (lower than expected returns) risk.
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A| Complex Systems

The objective of this work is to exemplify how complex systems and their theory can
be utilized to model financial phenomena. The presented model explores the interplay
between prices and investors’ strategies, analyzing their mutual influence.

Complex systems are essentially dynamical systems where the variations in the variables
of interest depend on their current values through non linear relationships. The introduc-
tion of non linearities results in complex dynamics characterized by multiple equilibria,
cycles, tori, and strange attractors, along with high sensitivity to initial conditions and
parameters, leading to bifurcations.

This appendix serves as a concise yet comprehensive guide to (a priori non-linear) dy-
namical systems, providing all the necessary notions and tools to better comprehend the
proposed model. Dynamical systems are categorized into continuous and discrete sys-
tems. In continuous systems, a relation between the instantaneous variation of variables
and their values is established (ẋ(t) = f(x(t))), while in discrete systems, the value of
variables for the next period depends on their current values (xt+1 = f(xt)).

For simplicity, only autonomous systems are considered, meaning the variation of vari-
ables depends solely on their current values and not on time. Since the model in question
is a discrete dynamical system (DDS), definitions, theorems, and bifurcations will be pre-
sented in the discrete time framework. It is important to note that identical results hold
in the continuous case.

For further reference, the books "Discrete Dynamical Systems" (2014) by Salinelli and
Tomarelli, and "Elements of Applied Bifurcation Theory" (1998) by Kuznetsov are rec-
ommended.
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A.1. Discrete Dynamical Systems

This section serves as a concise introduction to discrete dynamical systems, introducing
key concepts and fundamental notions.

Definition A.1.1. (State space)
The state space of a system, say X, is the set of all the possible states a system can assume.

In nearly every system, X is assumed to be a closed and bounded (and therefore compact)
subset of Rn.

Definition A.1.2. (Evolution operator)
The evolution operator is a continuous function f : X → X that maps the state of the
system at time t, xt ∈ X, to the state at the subsequent time step, xt+1 ∈ X.

Certainly, it is imperative for the evolution operator to be continuous and to map X into
itself. Notably, it is evident that f does not depend on time.

Definition A.1.3. (Discrete dynamical system)
A discrete dynamical system (DDS) is a couple {X, f}, where X ⊆ Rn is closed and
bounded, f : X → X is continuous. The couple {X, f} is called DDS on X, of the first
order, autonomous, in normal form.

From the definition, it is straightforward to comprehend that the system is entirely de-
terministic. In other words, given the initial state x0 ∈ X, it is possible to determine all
future states of the system through the evolution operator f : x1 = f(x0), x2 = f(x1),
and so forth.

We use fn to denote the evolution operator applied n times, namely xn = fn(x0).
The evolution operator must satisfy two fundamental properties:

1. f 0(x) = x for any x ∈ X;

2. fm+n(x) = fm(fn(x)) for any x ∈ X and m,n ∈ N;

Definition A.1.4. (Linear system, Affine system, Non linear system)
A DDS is said to be linear if the evolution operator f is linear 1, affine is f is (linear)
affine 2, non linear otherwise.

1Function of the form f(x) = Ax+ b with A ∈ Rn×n and b ∈ Rn

2Restricted to functions defined on R, function of the form f(x) = ax+b
cx+d with a, b, c, d ∈ R, of course

c ̸= 0 and x ̸= −d
c
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Definition A.1.5. (Orbit or Trajectory)
Given a DDS {X, f} and an initial state x0 ∈ X, the sequence

Or(x0) = {x0, x1 = f(x0), x2 = f(x1) = f 2(x0), ...} = {x ∈ X : x = fn(x0), n ∈ N}

is called orbit or trajectory corresponding to the initial state x0.

Definition A.1.6. (Phase portrait or Trajectories portrait)
The phase (or trajectories) portrait of a DDS {X, f} is the collection of all the orbits of
the system varying x0 ∈ X.

Of all the possible orbits, stationary and periodic orbits are of particular interest.

Definition A.1.7. (Stationary orbit)
Given a DDS {X, f}, a stationary orbit is an orbit of the type Or(x) = {x, x, x, ...}

x ∈ X is termed an equilibrium of the system. This designation implies that if the system
reaches an equilibrium state, it will remain at that equilibrium indefinitely.

Definition A.1.8. (Equilibrium or Fixed point or Stationary point)
Given a DDS {X, f}, a state x ∈ X is called equilibrium (or fixed point, or stationary
point) for the system if x = f(x).

Calculating a fixed point is straightforward for linear 3 or affine 4 systems, while it is less
trivial and sometimes impossible to compute analytically for nonlinear systems. In such
cases, numerical methods, such as the Newton method 5, are required. However, before
implementing a numerical algorithm, it is crucial to determine the potential existence of
fixed points. The following theorem can be applied in specific cases.

Theorem A.1. (Contraction Mapping Theorem)
Let (X, d) a complete metric space 6 and f : X → X a contraction 7. Then it exists one and
only one x ∈ X fixed point of f . Moreover, for any x0 ∈ X it holds that limn→∞ fn(x0) = x

3In this scenario, the unique fixed point is obtained as the solution to the equation x = Ax + b.
Therefore, x = (I −A)−1b, where it’s important to note that the inverse of (I −A) must be well defined.

4In this scenario, two equilibria arise as solutions to the equation x = ax+b
cx+d . Specifically, the equilibria

are given by x1,2 =
a−d±

√
(d−a)2+4cb

2c .
5Numerical method commonly employed for finding the roots of a function. In this context, the

method is applied to the function g(x) = f(x)− x. A fixed point of f corresponds to a root of g.
6A metric space (X, d) is said to be complete if every Cauchy sequence {xn}n∈N ⊂ X (for any ϵ > 0

there exist m,n ∈ N such that d(xm, xn) < ϵ) is also a convergent sequence (it exists x ∈ X such that
xn → x).

7A contraction is a Lipschitz function with Lipschitz constant less than 1: for any x ̸= y belonging to
X, d(f(x), f(y)) < d(x, y). Precisely, every pair of elements "approaches" each other through the map f .
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In this context, X is assumed to be a closed and bounded (therefore compact) subset
of Rn. Additionally, it is a complete metric space when considering the usual Euclidean
distance in Rn. If it can be demonstrated that f is a contraction, then not only does an
equilibrium exist for the DDS, and it is unique, but furthermore, it can be found (at least
approximately) by iteratively applying the map f infinitely starting from any initial state.

Before delving into the definition of a periodic orbit, it is beneficial to introduce the
concept of definitely stationary orbits.

Definition A.1.9. (Definitely stationary orbit)
Given a DDS {X, f}, if there exists a state y ̸= x such that f(y) = f(x) = x then the
orbit Or(y) = {y, x, x, ...} is said to be definitely periodic.

Definition A.1.10. (Period orbit or Cycle)
Given a DDS {X, f}, if there exists a set of s distinct states {x0, x1, ..., xs−1} ⊂ X satis-
fying

x1 = f(x0);x2 = f(x1); ...;x0 = f(xs−1);

then such a set is called periodic orbit of (minimum) period s or cycle of period s or
s-cycle. s is the period of the orbit, also known as order of the cycle.

Commencing from the state x0 ∈ X that belongs to the s-cycle, the trajectory is given by
Or(x0) = {x0, x1, . . . , xs−1, x0, x1, . . .}. Naturally, fn+s(x) = fn(x) for any n ∈ N. The
states within the s-cycle can be perceived as the s distinct fixed points of the map f s that
are not fixed points of f .

Given that the emergence of a limit cycle is discussed in Chapter 2. its definition is
provided below.

Definition A.1.11. (Limit cycle)
Given a DDS {X, f}, a limit cycle is a cycle in a neighborhood of which there are no other
cycles.

Similar to stationary orbits, definitely periodic orbits are introduced.

Definition A.1.12. (Definitely periodic orbit)
Given a DDS {X, f}, if there exists y ̸= xs−1 such that f(y) = x0 where x0 belongs to a
s-cycle, then the orbit Or(y) = {y, x0, x1, ..., xs−1, x0, ...} is said to be definitely periodic
of period s.
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An illustrative example can be employed to demonstrate all the concepts introduced
above.

Example A.1.1. (Logistic map)
Let’s consider the DDS {X, f}, with X=[0, 1] and f(x) = 3.2x(1− x).

This system is also recognized as the logistic map (with parameter a = 3.2 in this in-
stance), commonly applied in biology to model the evolution over time of the proportion
of a population. A proportion of 1 indicates that the population is at its maximum, while
a proportion of 0 signifies that the population has become extinct.

From the graph below, it is evident that the system has two equilibria: x = 0 and (ap-
proximately) x = 0.688. Subsequently, two stationary orbits, commencing from the fixed
points, are present. Moreover, a definitely stationary orbit exists, as the state x = 1 will
be mapped into the equilibrium x = 0. In terms of periodic orbits, a 2-cycle is formed by
the states x = 0.513 and x = 0.799 (approximately).

Figure A.1: Bisector (blue line), f (green line) and f 2 (red line) in [0,1]

The two equilibria arise from the intersection of f and the bisector, while the states con-
stituting the 2-cycle are the points of intersection between f 2 and the bisector that are not
also intersection points of f and the bisector.
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A.2. Stability analysis

Stationary and periodic orbits represent the simplest trajectories a dynamical system can
generate. However, obtaining these kinds of orbits is often impractical since, in most
cases, they require consideration of an exact initial state (such as the equilibrium or a
state belonging to the cycle), which may be challenging due to numerical approximations
and errors. For example, if the equilibrium in a system is an irrational number, computers
can only handle a rational approximation of it, despite their high precision.

Thus, it becomes crucial to understand the system’s behavior when the initial state is
"close" to the desired position. A desirable dynamic is one in which the state tends to-
ward the equilibrium or cycle. Consequently, the concept of stability (second to Lyapunov)
is introduced.

Definition A.2.1. (Stable and Unstable equilibria)
Given a DDS {X, f}, an equilibrium x ∈ X is said to be stable if for any ϵ > 0 it exists
δ > 0 such that |x0 − x| < δ implies |fn(x0) − x| < ϵ for any n ∈ N. Otherwise the
equilibrium is said to be unstable.

Given the definition, when a fixed point is stable, orbits starting close to the equilibrium
will persist in proximity to it. If the orbits are attracted by the stationary point, then:

Definition A.2.2. (Locally and Globally attractive equilibria)
Given a DDS {X, f}, an equilibrium x ∈ X is said to be globally attractive if for any
x0 ∈ X it follows limn→∞ fn(x0) = x. The equilibrium is said to be locally stable if it
exists η > 0 such that for any x0 ∈ X ∩Bη(x)

8 it follows that limn→∞ fn(x0) = x.

In summary,

Definition A.2.3. (Locally and Globally asymptotically stable equilibria)
Given a DDS {X, f}, an equilibrium x ∈ X is said to be globally asymptotically stable if
it is stable and globally attractive, locally asymptotically stable if it is stable and locally
attractive.

When an equilibrium is both stable and attractive, orbits starting close to it not only
remain close, but the state also tends toward the fixed point. The distinction between
global and local is contingent upon the dimension of the set collecting the initial states
for which the attractiveness property holds.

8With Bη(x) it is denoted the set of all states x0 which are distant from x less than η. In symbols,
Bη(x) = {x0 ∈ X : |x0 − x| < η}
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Notice that if the assumptions of the Contraction Mapping Theorem are satisfied, then
the unique equilibrium is globally asymptotically stable.

Regarding cycles, similar definitions apply: it suffices to consider that states belong-
ing to an s-cycle are fixed points for the map f s. For instance, here is the definition of a
globally asymptotically stable cycle.

Definition A.2.4. (Globally asymptotically stable cycle)
Given a DDS {X, f} and an s-cycle x0, x1, ..., xs−1, then the cycle is said to be globally
stable if the set {x0, x1, ..., xs−1} is globally asymptotically stable for the DDS {X, f s}.

In general, attractive equilibria and cycles represent specific instances of sets that attract
certain initial states, commonly referred to as "attractors" or "attractive sets".

Definition A.2.5. (Attractor or Attractive set)
Given a DDS {X, f}, a set A ⊂ X is called attractor or (locally) attractive set if

1. It is closed;

2. It is invariant 9;

3. It exists an open set B ⊂ X such that A ⊂ B 10 and any orbit starting from a state
belonging to B will be attracted by A 11;

4. It is minimal, i.e. it doesn’t exist a proper subset of A satisfying 1) 2) and 3).

Definition A.2.6. (Basin of attraction)
Given a DDS {X, f} and an attractor A ⊂ X, the basin of attraction is defined as

B(A) = {x ∈ X : lim
n→∞

dist(fn(x), A) = 0}

An attractor (such as an equilibrium) is globally asymptotically stable if the basin of
attraction encompasses the entire space X, almost globally asymptotically stable if the
basin of attraction includes X except for a set with zero measure 12.

A repulsor (or repulsive set) can be considered as the opposite of an attractor.

9Namely, f(A) = A. In simpler terms, all the orbits starting from A will persist within A.
10Now it is evident why A must be closed and B open: B has to completely cover A.
11It is necessary to define the distance between a set and a point external to it.:

dist(x,A) = mina∈Ad(x, a) = mina∈A|x− a|. Notice that, to be well defined, A must be a closed set.
12For instance, points in R, points, lines in R2, points, lines, surfaces in R3 and so on.
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Definition A.2.7. (Repulsor or Repulsive set)
Given a DDS {X, f}, a set R ⊂ X is called repulsor or repulsive set if

1. It is closed;

2. It is invariant;

3. It exists an open neighborhood U of R 13 such that for any neighborhood V of R it
exists x0 ∈ V/R such that fn(x0) /∈ U for infinite many values of n;

4. It is minimal.

A repulsive set R is characterized by the property that orbits starting even close to R will
be moved away from it for infinitely many values of n.

To analyze the stability of an equilibrium, say x, it is helpful to study the dynamics
in a neighborhood of the fixed point. In this neighborhood, the system’s dynamics are
equivalent to those of the linearized system:

f(x̄) = f(x) + Jf (x)(̇x̄− x)

where Jf (x) is the Jacobian matrix 14 of f computed at the equilibrium x.

The criteria outlined in the following lines involve the eigenvalues of the Jacobian matrix
and are known as "first order stability conditions" since they necessitate the computa-
tion of the first order derivatives of f . These criteria will be extensively employed in
the subsequent appendix to analyze the stability of the equilibria of the adaptive system
introduced in Chapter 2.

Theorem A.2. (First order stability condition)
Given a DDS {X, f} where f is at least C1 and a fixed point x ∈ X, let Jf (x) be the
Jacobian matrix of f computed in x. Then if all the eigenvalues of Jf (x) λ1, λ2, ..., λn

have modulus strictly less than 1 (i.e. they all stay inside the unit circle on the complex
plane) then the equilibrium is (at least) locally asymptotically stable, otherwise if at least
one eigenvalue has modulus strictly higher than 1 the equilibrium is unstable.

Extreme scenarios arise when the eigenvalues have unit modulus, requiring the use of the
so known "second order stability conditions" involving second order derivatives.

13Namely, R ⊂ U and X/U is closed
14Given a generic function f : Rn → Rm at least C1 the Jacobian matrix is given by the collection of

all possible partial derivatives of f , namely [Jf ]i,j =
∂fi
∂xj

with i = 1, ...,m and j = 1, ..., n
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However, the computation of the Hessian matrix 15 of f computed at the equilibrium is
anything but trivial. Therefore, only systems for which first order stability conditions are
sufficient will be considered.

For the continuation of the section, it is preferable to introduce the integers n0, n−,
and n+. They represent, respectively, the number of eigenvalues with unit modulus, with
modulus strictly less than 1, and with modulus strictly greater than 1.

Definition A.2.8. (Hyperbolic equilibrium and Saddle point)
Given a DDS {X, f}, an equilibrium is said to be hyperbolic if n0 = 0. A hyperbolic
equilibrium is said to be a saddle point if n−n+ ̸= 0.

Saddle points have the peculiarity that they can be either attractive or repulsive depending
on the initial state.

Definition A.2.9. (Stable and Unstable manifold)
Given a DDS {X, f} and a fixed point x ∈ X, the stable manifold of x W s(x) is the set
of all initial states attracted by the equilibrium, while the unstable manifold of x W u(x)

is the set of all initial states rejected by the stationary point. In symbols

W s(x) = {x0 ∈ X : limn→∞fn(x0) = x}

W u(x) = {x0 ∈ X : limn→−∞fn(x0) = x}

Notice that the two manifold are invariant.

The following theorem is remarkable.

Theorem A.3. (Local stable manifold)
Given a DDS {X, f} and x ∈ X a hyperbolic equilibrium (namely n0 = 0), then the
intersections of W s(x) and W u(x) with a sufficiently small neighborhood of x contain
sub-manifolds W s

loc(x) and W u
loc(x) of dimension n− and n+ respectively.

Moreover, W s
loc(x) is tangent in x to T s, where T s is the generalized eigenspace corre-

sponding to the union of all eigenvalues of Jf with modulo strictly less than 1. Similarly
W u

loc(x) is tangent in x to T u, union of all eigenvalues of Jf with modulo strictly higher
than 1.

15Given a generic function f : Rn → Rm at least C2 the Hessian is given by the collection of all
possible partial second order derivatives of f , namely [Hf ]i, j, k = ∂2fi

∂xj∂xk
with i = 1, ...,m j = 1, ..., n

and k = 1, ..., n. It is clear that generally the Hessian is a tensor of order 3.
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Example A.2.1. (Logistic map)
The same DDS as in Example A.1.1. is considered.

It is straightforward to demonstrate, either through the first order stability condition or a
visual representation, that both equilibria x = 0 and x = 0.688 are unstable. The 2-cycle
{0.513, 0.799} is almost globally asymptotically stable, signifying that any orbit starting
from an initial condition different from the two fixed points tends to the cycle.

In the figure below, a state close to the unstable equilibrium x = 0 (red line) serves
as the starting point for an orbit (black curve) that tends toward the almost globally stable
2-cycle (green lines).

Figure A.2: Example of an orbit of the logistic map tending to the stable 2-cycle

A.3. Bifurcations analysis

Complex systems are dynamical systems characterized by:

1. High sensitivity to initial conditions: trajectories starting from "close" initial states
may significantly differ over the long term;

2. High sensitivity to parameters: evolution operators are continuous in the parame-
ters, but often even imperceptible changes in the parameters can completely alter
the entire dynamics of the system;

3. Presence of strange (or chaotic) attractors (or repellors): attractive (or repulsive)
sets may be characterized by the self-similarity property and non integer (fractal)
dimension.
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The first feature has already been discussed in the previous section. For example, an orbit
starting very close to an unstable equilibrium will diverge from the stationary orbit. In
the presence of a saddle point, two closely situated states may belong, one to the stable
manifold and the other to the unstable one. One trajectory will tend towards the saddle,
while the other will be rejected.

Strange attractors will be introduced and analyzed in the following section.

This section serves as a brief introduction to bifurcation theory. In simple terms, a
bifurcation occurs when a slight change in the parameters leads to a qualitative shift in
the behavior of a dynamical system. In common jargon, the phrase "the straw that broke
the camel’s back" provides a naive example of a bifurcation. There are various possi-
ble bifurcations depending on the dimension of the system, the number of parameters,
and whether time is considered continuous or discrete. In this section, we will focus on
analyzing one-parameter discrete-time bifurcations within the adaptive model.

Definition A.3.1. (Parameter space)
Given a dynamical system, the parameter space A ⊆ Rn is the collection of all possible
admissible parameters.

The parameter set is denoted by A, and a ∈ A represents an n-tuple of parameters. It
is essential to explicitly express the dependence of the evolution operator f on these pa-
rameters. Thus, we denote the evolution operator with parameters a as fa.

To enhance the visualization of bifurcations, consider using a bifurcation diagram.

Definition A.3.2. (Bifurcation diagram)
Given a dynamical system, a bifurcation diagram is a stratification of its parameter space
together with representative phase portraits for each stratum.

For the subsequent definitions, it is necessary to introduce the concepts of the topolog-
ical type of a dynamical system and the topological equivalence between two dynamical
systems.

Definition A.3.3. (Topological equivalence)
Two dynamical systems {X, f} and {Y, g} with X,Y ⊆ Rn, f : X → X and g : Y → Y are
topologically equivalent if there exists a homeomorphism 16 h : Rn → Rn mapping orbits
of the first system onto orbits of the second system, preserving the direction of time.

16A homeomorphism h : Rn → Rn is a continuous function admitting a continuous inverse function.
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Definition A.3.4. (Conjugate function)
Two functions f : Rn → Rn and g : Rn → Rn satisfying f(x) = h−1(g(h(x))) for any
x ∈ Rn for some homeomorphism h : Rn → Rn are called conjugate.

Finally the definition of bifurcation can be stated.

Definition A.3.5. (Bifurcation)
A bifurcation is the appearance of a non equivalent phase portrait under a (even small)
change of the parameters.

Roughly speaking, bifurcations arise from the dependence of equilibria, cycles, and their
stability on the system parameters. Bifurcations are classified as super-critical when a
stable fixed point always exists regardless of parameter values, and sub-critical when this
is not the case. An illustrative example of a trans-critical bifurcation will be presented.

In general, bifurcation diagrams consist of a finite number of regions in Rn where the
phase portraits are topologically equivalent within each region. These regions are delin-
eated by bifurcation boundaries, which are submanifolds of Rn. Introducing the concept
of bifurcation boundaries allows for the definition of the codimension of a bifurcation.

Definition A.3.6. (Codimension of a bifurcation)
The codimension of a bifurcation (codim for short) is the difference between the dimension
of the parameter space A of a dynamical system and the dimension of the corresponding
bifurcation boundary.

Illustrative examples of all the introduced concepts will be provided, along with a discus-
sion of the most significant and common bifurcations. However, before proceeding, one
final definition is necessary.

Definition A.3.7. (Normal form of a bifurcation)
The normal form of a bifurcation is a dynamical system that exhibits that bifurcation,
characterized by a polynomial evolution operator and by the fact that any dynamical system
exhibiting that bifurcation is (at least locally, namely in a neighborhood of the equilibrium)
topologically equivalent to it.

In essence, the normal form of a bifurcation represents the ’simplest’ system that demon-
strates that bifurcation. Any other system in which the same bifurcation occurs can be
reduced, via a homeomorphism, to its corresponding normal form.
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Example A.3.1. (Saddle-node bifurcation)
A saddle-node bifurcation occurs when, as the parameter a ∈ R varies, two equilibria,
one stable and the other unstable,collide and subsequently annihilate. This phenomenon
is associated with the appearance of an eigenvalue λ = 1, and it possesses a codimension
of 1. Such a bifurcation can manifest in a system of any dimension. In one dimension,
the normal form is given by xt+1 = a+ xt ± x2

t , with a ∈ R.
In the case of xt+1 = a + xt − x2

t , the two equilibria x1,2 = ±
√
a are well defined and

distinct when a > 0. They coincide when a = 0, and then for a < 0 they disappear. The
derivative of the evolution operator is trivially df

dx
(x) = 1− 2x. Consequently, the positive

equilibrium x1 =
√
a is locally stable in a right neighborhood of a = 0, while the other

equilibrium x2 = −
√
a is unstable. When a = 0, the unique equilibrium x = 0 becomes a

local saddle node.

Example A.3.2. (Trans-critical bifurcation)
A trans-critical bifurcation occurs as the parameter a ∈ R varies, leading to the collision of
two equilibria—one stable and the other unstable. Subsequently, their stabilities exchange:
the initially stable fixed point becomes unstable, and vice versa. This phenomenon is
associated with the appearance of an eigenvalue λ = −1, and it possesses a codimension
of 1. A saddle-node bifurcation can manifest in a system of any dimension. In one
dimension, the normal form is given by xt+1 = (1 + a)xt ± x2

t , with a ∈ R.
Consider the specific case of xt+1 = (1 + a)xt − x2

t . Two equilibria always exist: x1 = 0

and x2 = a. When a = 0, the two equilibria coincide. Given that df
dx
(x) = 1 + a − 2x,

the first equilibrium is associated with the eigenvalue λ1 = 1 + a, while the second one
is associated with λ2 = 1 − a. Consequently, for a < 0, x1 is locally stable, and x2 is
unstable. The situation reverses when a > 0. When a = 0, the coinciding equilibria at
x = 0 form a saddle node.

Example A.3.3. (Pitchfork bifurcation)
A pitchfork bifurcation occurs as the parameter a ∈ R varies, giving rise to two equilibria
from an existing one, and they assume its stability while the initial fixed point changes it.
This bifurcation has a codimension of 1 and can manifest in a system of any dimension.
In one dimension, the normal form is given by xt+1 = (1 + a)xt ± x3

t , with a ∈ R.
In the super-critical case of xt+1 = (1+a)xt−x3

t , the equilibrium x0 = 0 is always present.
It is locally stable for a < 0 and unstable for a > 0, as its eigenvalue is λ0 = 1+ a. When
a > 0, two additional equilibria arise: x1,2 = ±

√
a. They are stable, at least in a right

neighborhood of a = 0, as they are associated with the eigenvalue λ1,2 = 1− a. Obviously,
when a = 0, the three equilibria coincide, resulting in a locally stable equilibrium.



74 A| Complex Systems

Example A.3.4. (Period-doubling or Flip bifurcation)
A period-doubling bifurcation occurs as the parameter a ∈ R varies, leading to the emer-
gence of a cycle with a period double that of the existing one. This phenomenon is asso-
ciated with the appearance of an eigenvalue λ = −1, and it has a codimension of 1. Such
a bifurcation can manifest in a system of any dimension. In one dimension, the normal
form is given by xt+1 = −(1 + a)xt ± x3

t , with a ∈ R.
Consider the specific case of xt+1 = −(1 + a)xt + x3

t . For the equilibrium x0 = 0, the
associated eigenvalue is λ0 = −(1 + a), which equals -1 when a = 0. Furthermore, x0 = 0

is also a fixed point of the map f 2. Graphically, it can be observed that two other fixed
points of f 2 emerge for a > 0, and they collide with x0 when a = 0. This implies that at
a = 0, a 2-cycle arises from a 1-cycle in x0 = 0 (the stationary orbit).

Example A.3.5. (Homoclinic bifurcation)
A global homoclinic bifurcation occurs as the parameter a ∈ R varies, resulting in the
expansion of a periodic orbit until it collides with a saddle point, causing its period to
become infinite. During this bifurcation, the stable and unstable manifolds of the saddle
point intersect, forming the cycle. Subsequently, after the bifurcation, the cycle disappears.
This type of bifurcation has a codimension of 2 and can be present in a system of dimension
at least 2

Example A.3.6. (Neimark-Sacker bifurcation)
A Neimark-Sacker occurs as the parameter α ∈ R varies, leading to the emergence of a
closed invariant curve from a fixed point when it changes its stability via a pair of complex
conjugate eigenvalues with unit modulus not belonging to −1, 1: λ1,2 = eiθ with 0 < θ < π.
This bifurcation has a codimension of 2 and can be present in a system of dimension at
least 2. In dimension 2, the normal form is given by(

x1,t+1

x2,t+1

)
= (1 + α)

(
cosθ −sinθ

sinθ cosθ

)(
x1,t

x2,t

)
+ (x2

1,t + x2
2,t)

(
cosθ −sinθ

sinθ cosθ

)(
a −b

b a

)(
x1,t

x2,t

)

where θ, a and b are smooth functions 17 of α satisfying 0 < θ(0) < π and a(0) ̸= 0.
The equilibrium at the origin has eigenvalues λ1,2 = (1 + α)eiθ(α). In a neighborhood of
0, it is locally stable for α < 0 and unstable for α > 0. For α = 0, the origin is stable
if a(0) < 0. The case where a(α) < 0 is considered super-critical, as for α > 0, a locally
stable cycle emerges: a centered circumference with radius ρα =

√
− α

a(α)
.

17In simple terms, a function is considered smooth at a point if it is differentiable an infinite number
of times at that point. The notation C∞(X) denotes the set of all functions that are smooth at every
point in the domain X.
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A.4. Strange (or Chaotic) Attractors

Attractors introduced in previous sections, such as stable fixed points, cycles, and tori,
exhibit simple and well known geometries in Rn: points (equilibria), closed lines (periodic
orbits), and bounded volumes (tori).

However, certain dynamical systems admit attractive sets with anything but trivial ge-
ometries, a phenomenon observed in the so called "strange attractors". These attractors
are characterized by fractal geometry. The term "strange attractors" was coined in 1971
by David Ruelle and Floris Takens in their work "On the Nature of Turbulence" , where
they aimed to describe the nature of attractors in fluid dynamical systems. When strange
attractors also exhibit a high sensitivity to initial conditions, commonly referred to as the
"butterfly effect", they are termed chaotic. To delve deeper:

Definition A.4.1. (Chaotic system)
A DDS {X, f} is called chaotic (or it admits chaotic orbits) if:

1. Cycles of any period are dense, namely any open interval contained in X contains
at least one state belonging to a periodic orbit;

2. f is topologically transitive, meaning that for any pair of non empty open sets U, V ⊂
X it exist u ∈ U and n ∈ N such that fn(u) ∈ V ;

3. The system exhibits a high dependence on the initial conditions, i.e. it exists δ > 0

such that for any x ∈ X and ϵ > 0 there exist z ∈ X and n ∈ N such that |z−x| < ϵ

and |fn(z)− fn(x)| > δ.

The following theorem provides sufficient conditions that a 2-dimensional dynamical sys-
tem must satisfy to admit a strange attractor. These conditions will be applied in the
proof of Theorem 2.5. as presented in the second appendix. More comprehensive treat-
ments on this topic can be found in Mora and Viana’s "Abundance of Strange Attractors"
(1993) and Palis and Takens’ "Hyperbolicity and Sensitive Chaotic Dynamics at Homo-
clinic Bifurcations" (1993) .

Theorem A.4. (Strange Attractor Theorem)
Let Fα : R2 → R2 be a 2-dimensional map with real parameter α and let p be a dissipative
saddle point. If the map Fα exhibits a generic homoclinic bifurcation between the stable
and the unstable manifoldof the saddle point at α = αh, then there exists a positive
Lebesgue measure set Ω ⊂ (αh − ϵ, αh + ϵ) such that for any α ∈ Ω the map Fα has a
strange attractor.
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In essence, the occurrence of a homoclinic bifurcation implies the emergence of strange
attractors with positive probability in the parameter space.

Example A.4.1. (Lorenz attractor)
Introduced in 1963 by the mathematician and meteorologist Edward Norton Lorenz in his
article "Deterministic Nonperiodic Flow", it is also known as "Lorenz butterfly" due to
its distinctive shape. It is the chaotic attractor arising from the 3-dimensional dynamical
system in continuous time: 

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

Generally σ is set equal to 10 and β to 8
3

As will become evident shortly, the dimension of the attractor falls between 2 and 3.

Figure A.3: Lorenz attractor visualized in the x− y plane (left), x− z plane (middle) and
y−z plane (right). The orbit around the attractor is non periodic, meaning the trajectory
will not pass twice through the same state, indicating an infinite period.

The French mathematician Benoit Mandelbrot is universally recognized as the founder of
fractal geometry. In his 1967 seminal work "How Long Is the Coast of Britain? Statis-
tical Self-Similarity and Fractional Dimension", Mandelbrot introduced the concepts of
self-similarity and fractal dimension, illustrating how natural shapes, such as coastlines,
exhibit these characteristics 18. He further developed this theory in his book "Fractals:
Form, Chance and Dimension" (1975).

18In his article, Mandelbrot tackled the challenge of measuring the length of the Coast of Britain. The
jagged shape, typical of the coastline, is preserved at any scale: a characteristic feature of fractal objects.
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Mandelbrot is also widely known, even outside the mathematical community, for his study
of the fractal set named after him: the Mandelbrot set, arguably the most famous and
evocative fractal.

Example A.4.2. (Mandelbrot set)
In 1980, Mandelbrot, in his work "Fractal Aspects of the Iteration z → λz(1 − z) for
complex λ,z" , obtained the first detailed image of the Mandelbrot set. Notably, two years
earlier, Robert Brooks and Peter Matelski, in "The Dynamics of 2-generator Subgroups
of PSL(2,C)" , had obtained a simplified version of it. What’s remarkable is that this
intricate object emerges from a seemingly simple mathematical concept: the Mandelbrot
set is the set of all c ∈ C for which the trajectories generated by the system zn+1 = z2n+ c,
starting from the origin of the complex plane, remain bounded. In Mandelbrot’s 1980 work,
it is demonstrated that by applying the transformations z = a(1

2
− x) and c = a

2
(1 − a

2
)

to the system zn+1 = z2n + c, one can obtain the logistic map xn+1 = axn(1 − xn) with
a ∈ [0, 4].

Figure A.4: The Mandelbrot set (left) and its first visualization in 1978 (right).

The self-similarity property and fractal dimension are intricately linked: fractals preserve
their shape at any arbitrary scale precisely because they lack an integer dimension, and
vice versa. Here, three examples illustrate this connection.

Example A.4.3. (Cantor set)
Consider the following transformation of the interval [0, 1]: divide it into three thirds and
remove the middle one. The result is the set [0, 1

3
]∪ [2

3
, 1]. Apply the same transformation

again to the two segments and repeat this process infinitely many times. The result is
the well known Cantor set C. At iteration n, this set is composed of 2n intervals, each
with a length of (1

3
)n. It is immediate to notice that the Cantor set has infinitely many

points (it has the same cardinality as R) and it has no length. Thus, its dimension isn’t
0 (otherwise, it would have a finite number of points) nor 1 (because its length is 0).
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Figure A.5: First steps of the construction of the Cantor set.

Example A.4.4. (Von Koch curve)
Similar to the previous example, the middle third is removed from the interval [0, 1].
However, in this case, it is replaced by the two sides of an equilateral triangle. This
process is repeated infinitely many times, resulting in the Von Koch curve or snowflake.
At iteration n, this curve has a length of (4

3
)n, so its length tends to infinity. Nevertheless,

as it is the countable union of segments, this fractal has no area. Therefore, it doesn’t fit
into dimension 1 (infinite length) nor dimension 2 (no area).

Figure A.6: First steps of the construction of the Von Koch curve.

Example A.4.5. (Menger sponge)
In this case, a cube with a unit side is divided into 27 sub-cubes, and only the 20 cubes
sharing a side with the original cube are retained. The Menger sponge is the fractal
generated by applying this transformation infinitely many times. It is evident that it has
an infinite surface (hence its dimension is not 2) but no volume (thus its dimension is
not 3).

Figure A.7: First steps of the construction of the Menger sponge.
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To determine the proper dimension of these sets, it is necessary to introduce a measure
for sets in Rn that generalizes the common notions of length, area, volume, and so forth.

Definition A.4.2. (s-dimensional Hausdorff measure)
Given a set F ⊂ Rn and a non negative real number s, the s-dimensional Hausdorff
measure of F is given by

Hs(F ) = lim
δ→0+

Hs
δ(F ) = sup

δ>0
Hs

δ(F )

where 0 < δ < ∞ and Hs
δ(F ) is defined as

Hs
δ(F ) =

ωs

2s
inf{

∞∑
j=1

(diamUj)
s : F ⊂

∞⋃
j=1

Uj, diamUj ≤ δ}

with diamUj = sup{|x− y| : x, y ∈ Uj} and ωs = π
s
2 (
∫∞
0

e−xx
s
2dx)−1

With this definition, it becomes possible to define the Hausdorff dimension of a set.

Definition A.4.3. (Hausdorff dimension)
Given a set F ⊂ Rn, its Hausdorff dimension is defined as

dimH(F ) = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) = ∞}

Before stating a theorem that provides sufficient conditions for the existence of a set
characterized by non integer dimension and the self-similarity property, it is necessary to
explain what a collection of similarities is.

Definition A.4.4. (Collection of similarities)
A collection of similarities is a map Ψ : K → K mapping the space of compact sets K into
itself consisting in a collection of I ∈ N similarities {Ψi}i=1,..,I .
Namely, for any compact set K ∈ K we have Ψ(K) = Ψ1(K)∪Ψ2(K)∪ ...∪ΨI(K) where
Ψi(K) = pi + ρiMiK where pi ∈ Rn, 0 < ρi < 1 and Mi ∈ Rn×n is a rotation matrix 19.

A collection of similarities satisfies the so known "open set condition" when there exists
a bounded open set, denoted as U , such that Ψi(U) ⊂ U for any i = 1, ..., I and
Ψi(U) ∩Ψj(U) = ∅ for any i ̸= j.

19When Ψi is applied to a compact set K, it produces the compact set obtained by rotating K through
Mi, scaling it by the factor ρi, and then translating it by pi.
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Theorem A.5. (Hutchinson theorem)
Let Ψ be a collection of similarities satisfying the open set condition. Then it exists an
unique compact set K ∈ K invariant with respect to that collection, namely Ψ(K) = K.
K is called self-similar fractal (Hutchinson fractal) whose Hausdorff dimension dimH(K)

is given by the unique real value s satisfying the equation
∑I

i=1 ρ
s
i = 1.

The theorem can be proven by defining the Kuratowski distance between two sets. With
this distance, K becomes a complete metric space, and Ψ acts as a contraction. Hence,
the Contraction Mapping Theorem can be applied, and the fractal set is the result of
applying the transformation Ψ infinitely many times to any compact set in K.

Definition A.4.5. (Kuratowski distance)
Given two compact sets A,B their Kuratowski distance is given by

distK(A,B) = max{max
a∈A

dist(a,B),max
b∈B

dist(b, A)}

An easier measure of the dimension of a set is provided by the box-counting dimension,
also known as the Minkowski–Bouligand dimension.

Definition A.4.6. (Box-counting dimension)
Given a set F ⊂ Rn, let Nδ(F ) be the minimum possible number of sets with diameter at
most δ required to fully cover F , then the box-counting dimension of F is defined as

dimB(F ) = lim
δ→0+

logNδ(F )

− log δ

However, this limit, and consequently the box-counting dimension, is not always well
defined, while the Hausdorff dimension is always well defined. Nevertheless, when the box-
counting dimension of a set can be determined, it coincides with the Hausdorff dimension.

Example A.4.6. The Cantor set C is invariant under two similarities, both with a coef-
ficient ρ = 1

3
: Ψ1(x) =

1
3
x and Ψ2(x) =

2
3
+ 1

3
x. Consequently, the Hausdorff dimension

s satisfies 2(1
3
)s = 1, leading to dimH(C) = log 2

log 3
≈ 0.6309.

Let Cn be the transformed interval [0, 1] after n iterations. It is easy to observe that
2n subintervals of length (1

3
)n are required to fully cover Cn. Therefore, the box-counting

dimension is given by dimB(C) = limδ→0+
logNδ(C)
− log δ

= limn→∞
log 2n

− log ( 1
3
)n

= log 2
log 3

≈ 0.6309.
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Example A.4.7. (Von Koch curve)
The same reasoning as for the Cantor set holds: both the Hausdorff and the box-counting
dimensions are defined, and they coincide. After n iterations, the resulting set can be
covered with 4n subintervals of length (1

3
)n. Thus, the fractal dimension of the Von Koch

snowflake is given by log 4
log 3

≈ 1.2618. One would obtain the same result by noticing that
the Von Koch curve is invariant under a collection of four similarities with a coefficient
ρ = 1

3
.

Example A.4.8. (Menger sponge)
Similarly, the Menger sponge is invariant under a collection of twenty similarities with
a coefficient ρ = 1

3
. Consequently, the Hausdorff dimension, which coincides with the

box-counting dimension, is equal to log 20
log 3

≈ 2.7268.
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B| Proofs of the theorems

In this second appendix, the proofs for all the theorems presented in Chapter 2. are
provided.

Proof. Theorem 2.1.
the Jacobian matrix Jβ, which depends on the parameter β, is given by:

Jβ(x,m) =

(
∂F1

∂x
(x,m) ∂F1

∂m
(x,m)

∂F2

∂x
(x,m) ∂F2

∂m
(x,m)

)

The Jacobian matrix computed at the fundamental steady state E is then

Jβ(E) =

(
v(−tanh(βC

2
)) 0

0 α

)

since it is diagonal, the two eigenvalues are given byλ1 = v(−tanh(βC
2
)) and λ2 = α. Con-

sidering that 0 ≤ α < 1, the stability of E depends solely on λ1. E is stable if |λ1| < 1.

On the real line −1 < λ1 < 1 is equivalent to 2R
g

− 1 − 4
µg

< tanh(βC
2
) < 2R

g
− 1, or

more explicitly 2
C
tanh−1(2R

g
− 1 − 4

µg
) < β < 2

C
tanh−1(2R

g
− 1). For well defined condi-

tions, it is necessary to ensure that 2R
g
− 1 − 4

µg
> −1 and 2R

g
− 1 < 1, leading to the

parameter restrictions: µ > 2
R
; g > R.

For 0 < g < R and 0 < µ < 2
R
, the equilibrium state E is always stable. This is

because 2R
g
− 1− 4

µg
< tanh(βC

2
) < 2R

g
− 1 holds true for any β.

To determine stability in the range R < g < 2R and 0 < µ < 2
R
, we observe that

points below the line m = 1 − 2R
g

will, after a finite number of iterations, be mapped
above this line and subsequently attracted to the equilibrium state E.
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Let Cm be the collection of all the points (x,m) such that F2(x,m) = m, in symbols:

Cm = {(x,m) ∈ R× [−1, 1] : F2(x,m) = m}

The creation of a 2-cycle at infinity for µ = 2
R

and the occurrence of a doubling-period
bifurcation at β = βpd for µ > 4

2R−g
can be easily verified. This is evident by noting that

the points belonging to the 2-cycle are precisely the two intersections between the line
m = 1 − 2R

g
+ 4

µg
and the collection Cm. Furthermore, it is possible to demonstrate the

instability of the cycle through direct computation.

In the range R < g < 2R and 0 < µ < 4
2R−g

, it is evident that (x,m) with x ̸= 0

forms a non-fundamental steady state if and only if (x,m) represents the intersection
between Cm and the line m = 1− 2R

g
, the value of m for which v(m = and subsequently

F1(x,m) are zero. The first value of β for which this intersection is possible, marking the
occurrence of the pitchfork bifurcation, is denoted as β∗.

Proof. Theorem 2.2.
As zs = 0 and the system is symmetric, it is possible to focus exclusively on the stability
of Er, the positive non fundamental steady state. The analysis of El follows a similar
reasoning.

Fixing the parameters g (between R and 2R) and µ (between 0 and 2
R
), as β ranges

from β∗ to ∞ Er shifts from (0,1− 2R
g

) to (
√

C
g(R−1)

, 1− 2R
g

) along the line m = 1− 2R
g

.

The Jacobian computed at Er is given by:

Jβ(Er) =

(
1 −µg

2
xr

4β
g
(1− α)(R− 1)(g −R)xr α + βµR(1− α)(g −R)x2

r

)

The stability of Er can be determined using the trace-determinant criterion 1

1Method for deducing the position of eigenvalues in the complex plane, and consequently, determining
the stability of an equilibrium. It involves studying the signs of the trace and determinant of the Jacobian.
It is important to note that the method is applicable in a 2-dimensional system, where λ1 + λ2 = trJ
and λ1λ2 = detJ .
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The characteristic equation is

Q(λ) = λ2 − trJλ+ detJ = 0

with
trJ = 1 + α + βµR(1− α)(g −R)x2

r

detJ = α + βµR(1− α)(g −R)(2R− 1)x2
r.

Let λ1 and λ2 be the eigenvalues.

For β > β∗, where xr > 0, it is easy to verify that both trJ and detJ are positive.
It is well-known that λ1λ2 = detJ > 0, indicating that the two eigenvalues remain in the
same part of the complex plane. Moreover, λ1 + λ2 = trJ > 1+α > 1, so the eigenvalues
belong to the right part of C.

When β = β∗, then λ1 = 1 and λ2 = α < 1. Notice that Q(1) > 0 and dQ(1)
dβ

> 0

for any β > β∗, implying that 0 < λ2 < λ1 < 1 when β > β∗ with |β − β∗| small.

This implies that 1 is never an eigenvalue when β > β∗.

It is readily apparent that d(λ1λ2)
dβ

= d(detJ)
dβ

> 0 for β > β∗, and as detJ → ∞ as
β → ∞. Consequently, there exists a critical value βNS > β such that Er is locally stable
for β∗ < β < βNS and unstable for β > βNS.

Let x0 represent the x-coordinate where the Neimark-Sacker bifurcation occurs, and let
J0 = JβNS

(Er). The values of βNS and x0 must satisfy:detJ0 = λ1λ2 = 1

|λ1| = |λ2| = 1

It is possible to verify that:βNS = 2
C
tanh−1(2R

g
− 1) + g(R−1)

µR(g−R)(2R−1)C

x0 =
√

C
g(R−1)+2µRtanh−1( 2R

g
−1)(g−R)(2R−1)

Now the characteristic equation is:

Q(λ) = λ2 − trJ0 + 1 = 0
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where trJ0 =
2R+2α(R−1)

2R−1
.

Consequently, the two eigenvalues are given by:

λ1,2 =
1

2
trJ0 ± i

√
1− (

1

2
trJ0)2

Notice that the two eigenvalues are complex conjugates and can be expressed in polar
form, i.e., λ1,2 = e±iθ.

It is straightforward to deduce that 0 < θ < π
3
; therefore, λ1,2 satisfy the non-resonance

condition 2:

λ1,2 /∈ {ei2π
p
q : p, q = 1, ..., 6}

Moreover, it is clear that d|λ1|
dβ

= d|λ2|
dβ

> 0 for β = βNS.

To ascertain the supercritical nature of the Neimark-Sacker bifurcation, it is necessary
to compute the normal form (refer to Chapter 4.7 in Kuznetsov (1998) for a more com-
prehensive treatment). The first step involves determining the eigenvector q that satisfies
J0q = eiθq, where

q =

(
q1

q2

)
=

(
1
2
µgx0

1− eiθ

)
.

The adjoint eigenvector p, satisfying JT
0 p = e−iθp, is given by

p =

(
p1

p2

)
=

(
(g−R)R(2R−1)2

g(3R−1+α(R−1))
βNSx0(1 + eiθ)

(2R−1)2

4(1−α)(R−1)(3R−1+α(R−1))
(e−iθ − eiθ)

)
.

It can be easily verified that < q, p >= q̄1p1 + q̄2p2 = 1.

Then (
x

m

)
=

(
x0 + q1z + q̄1z̄

1− 2R
g
+ q2z + q̄2z̄

)
Let’s evaluate in β = βNS the function:

H(z, z̄) = p̄1(F1(x0 + q1z + q̄1z̄, 1− 2R
g
+ q2z + q̄2z̄)− x0) + p̄2(F2(x0 + q1z + q̄1z̄, 1− 2R

g
+ q2z + q̄2z̄)− (1− 2R

g
))

2Condition on the eigenvalues to avoid the occurrence of resonance in nonlinear systems.
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Its Taylor expansion in (0,0) is:

H(z, z̄) = eiθz +
∑

2≤j+k≤3

1

j!k!
gjkz

j z̄k +O(|z|4)

With further computation, it becomes evident that the critical real part a(βNS) is negative:

a(βNS) = Re(
eiθg21
2

)−Re(
(1− 2eiθ)e−2iθ

2(1− eiθ)
g20g11)−

1

2
|g11|2 −

1

4
|g02|4 < 0

This holds for 1 < R < 1.2, R < g < 2R ans 0 < α < 0.6.

This implies that the Neimark-Sacker bifurcation at β = βNS is supercritical and a unique
stable closed invariant curve bifurcates from Er for β > βNS

Proof. Theorem 2.3.
For zs > 0 the Jacobian at E is given by:

Jβ(E) =

(
v(−tanh(βC

2
)) 0

− (1−α)βgzs
2

(sech(βC
2
))2 α

)

Also in this scenario (refer to the proof of Theorem 2.1.), the eigenvalues of the Jacobian
at E for zs > 0 are λ1 = v(− tanh(βC

2
)) and λ2 = α < 1. The stability of E can be

ascertained through direct computation.

E is globally stable for 0 ≤ β < βsn: observe that the points below the line m = 1 − 2R
g

will, after a finite number of iterations, be mapped above that line and subsequently at-
tracted by E.

Obviously (x,m) with x ̸=0 constitutes a non fundamental steady state precisely when it
lies at the intersection of the line m = 1 − 2R

g
and Cm. This verification establishes the

outcome of the saddle-node bifurcation at β = βsn.

As β evolves from βsn to infinity, Er traverses the path from ( zs
2(R−1)

, 1− 2R
g

) to

( zs
2(R−1)

+
√

C
g(R−1)

+ ( zs
2(R−1)

)2, 1− 2R
g

) along the line m = 1− 2R
g

.
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The Jacobian at Er is:

Jβ(Er) =

(
1 −µg

2
xr

4β
g
(1− α)R(R− 1)(g −R)(xr − zs

2(R−1)
) α + βµR(1− α)(g −R)x2

r

)

where
trJ = 1 + α + βµR(1− α)(g −R)x2

r

detJ = α + βµR(1− α)(g −R)((2R− 1)2x2
r − zsxr)

Let λ1 and λ2 be the two eigenvalues.

As discussed in the earlier proof, when xr > zs
2(R−1)

, it follows that λ1λ2 = detJ > 0,
signifying that the two eigenvalues remain in the same part of the complex plane.

Furthermore, λ1 + λ2 = trJ > 1 + α > 1, indicating that the eigenvalues belong to
the right part of C.

For β = βsn, direct computation reveals that λ1 = 1 and λ2 = detJ .

zs is considered small when
tanh−1( 2R

g
−1)µR(g−R)z2s

(R−1)(4C(R−1)+gz2s )
< 1. In this scenario it can be demon-

strated that λ2 < 1 for β = βsn.

Notice that Q(1) > 0 and dQ(1)
dβ

> 0 for β > βsn, implying that 0 < λ2 < λ1 < 1

when β > βsn with |β − βsn| small. This, in turn, implies that 1 is never an eigenvalue
when β > βsn.

Since d(λ1λ2)
dβ

= d(detJ)
dβ

> 0 for β > βsn, and detJ → ∞ for β → ∞, there exists βr > βsn

such that Er is locally stable for βsn > β > βr and unstable for β > βr.

Similar reasoning holds for El.

Analytical expressions for βl and βr are available:βl =
2tanh−1( 2R

g
−1)µR(g−R)(2R−1)+g(R−1)

µR(g−R)((2R−1)C+gRzsxl)

βr =
2tanh−1( 2R

g
−1)µR(g−R)(2R−1)+g(R−1)

µR(g−R)((2R−1)C+gRzsxr)

with −x0 < xl < 0 < x0 < xr where The value x0 represents the x-coordinate of equilib-
rium E during the Neimark-Sacker bifurcation when zs=0.
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Therefore βr < βNS < βl. Given the normal form of the Neimark-Sacker bifurcation
depends on zs with continuity, it follows that both El and Er undergo a supercritical
Neimark-Sacker bifurcation, occurring respectively in β = βl and β = βr.

Proof. Theorem 2.4.
It can be demonstrated that the fundamental steady state E is a dissipative saddle fixed
point through direct computation, considering the eigenvalues λ1 = v(− tanh(βC

2
)) and

λ2 = α.

E will be a dissipative saddle equilibrium for β > β∗ if α < 1
1+µ(g−R)

.

This inequality arises from the assumptions on g, R, and µ:

α <

√
µR− 1

µg
<

√
R− 1/µ

g
<

√
R/2

g
<

1

2
<

1

R
<

1

1 + µ(g −R)

After the pitchfork bifurcation, the unstable manifold of E is promptly attracted by El

and Er. Since 0 < λ2 = α < 1 for β = β∗, the dynamical system near the pitchfork
bifurcation can be effectively reduced to the 1-dimensional center manifold. At β = β∗,
the two branches of W u(E) coincide with a portion of the center manifold, forming con-
nections between E and El as well as Er. Consequently, for β > β∗ with |β − β∗| small,
there is no intersection between the stable and unstable manifolds of E.

To gain deeper insights into the properties of the unstable manifold of the fundamen-
tal steady state when β is large, it is insightful to initially consider the extreme scenario
of β = ∞.

In this case F1 remains defined as F1(x,m) = v(m)x while F2 takes the following form:

F2(x,m) =


αm+ (1− α) w(x,m) > 0

αm w(x,m) = 0

αm− (1− α) w(x,m) < 0
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Consider Cr and Cl as the collections of points in the x−m plane where w(x,m) = 0 on
the right and left sides, respectively.Cl = {(x,m) ∈ R− × [−1, 1] : x(m) = −

√
C

g(R−v(m))
}

Cr = {(x,m) ∈ R+ × [−1, 1] : x(m) =
√

C
g(R−v(m))

}

Recall that in the extreme scenario as β approaches infinity, the fundamental steady state
E takes the form E = (0,−1).

In the definition of Cr, x(m) is a decreasing function of m. Since µ < R−1
g−R

, Cr inter-

sects with the line m = −1 at the point P0 =
(√

C
g(R−v(m))

,−1
)
. The segment EP0 lies

on the unstable manifold. Let P−1 =

( √
C

v(−1)
√

g(R−v(−1))
,−1

)
, then F(P−1) = P0. The

first iteration of the segment P−1P0 (excluding the endpoints) is the segment P0P1, where

P1 =

( √
Cv(−1)√

g(R−v(−1))
,−1

)
. The second iteration is the segment P

′
2P2 with

P
′
2 =

( √
Cv(−1)√

g(R−v(−1))
, 1− 2α

)
and P2 =

( √
C(v(−1))2√
g(R−v(−1))

, 1− 2α

)
.

It is evident that for 0 < α < µR−1
µg

, the segment P
′
2P2 lies above the line m = m0,

while for µR−1
µg

< α <
√

µR−1
µg

, P ′
2P2 lies between the lines m = m0 and m = m1 = 1− 2R

g
.

Recall that the line m = m0 belongs to the stable manifold of E.

Concerning the second considered case, let’s examine the third iterate, yielding a seg-

ment P
′
3P3 where P

′
3 =

(√
Cv(−1)v(1−2α)√

g(R−v(−1))
, 1− 2α2

)
and P3 =

(√
Cv(−1)2v(1−2α)√

g(R−v(−1))
, 1− 2α2

)
.

It is evident that P
′
3P3 lies above the line m = m0.

For β large but finite, the unstable manifold of E will closely resemble the unstable
manifold in the extreme case β = ∞.

Let’s consider the case µR−1
µg

< α <
√

µR−1
µg

(similar reasoning holds for 0 < α <
µR−1
µg

). When β = ∞, the iteration of P1P
′
2 through the map F results in the seg-

ment P2P
′
3, which intersects the line m = m0 (the stable manifold of E) at the point

Q∞ =

(√
Cv(−1)(µR−1)√
g(R−v(−1))

(
1
α
− 1
)
,m0

)
.

For β large but finite, the unstable manifold of E closely follows the polyline P0P1P
′
2P2P

′
3P3,

and it transversely intersects the stable manifold m = m0 at some point Q near Q∞.
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This establishes the existence of a transversal homoclinic point between the stable and
unstable manifolds of E when β is sufficiently large.

Thus, by continuity, there exists a critical value βh > β∗ at which the homoclinic bi-
furcation occurs.

Proof. Theorem 2.5.
The application of the Strange Attractor Theorem (see Appendix A) is essential. To
fulfill this requirement, three conditions must be met, as elucidated by Floris Takens in
his paper titled "Abundance of generic homoclinic tangencies in real-analytic families of
diffeomorphisms" .

In particular:

1. F must be real and analytical;

2. The function H(β) = − log |λ1(β)|
log |λ2(β)| must be not constant;

3. The homoclinic tangency is inevitable, signifying a transition in the system from
having no homoclinic points to a configuration with transversal homoclinic points.

In this case, all conditions are satisfied.

Furthermore, the theorem is applied to a (local) diffeomorphism 3. Thus, it is imperative
to demonstrate that F is a (local) diffeomorphism in the region where the homoclinic
bifurcation takes place.

Let S = {(x,m) ∈ R × [−1, 1] : −1 < m < m0} where m = m0 belongs to the sta-
ble manifold of the fundamental steady state E and let S

′
= F(S).

It is essential to establish that F : S → S
′ is a diffeomorphism.

Verification through direct computation confirms that for any p ∈ S, the determinant
of the Jacobian of F is positive. Furthermore, for two distinct points p and q, it is
straightforward to demonstrate that F(p) ̸= F(q), under the condition µ < R−1

g−R
.

3A diffeomorphism is an invertible function that maps one differentiable manifold to another such that
both the function and its inverse are differentiable.
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Consider now the region above the line m = m0.

Let J0 be the collection of all the points where the determinant of the Jacobian of F
vanishes. In symbols:

J0 = {(x,m) ∈ R× [−1, 1] : αv(m) + (1− α)
µg2β

4
(sech[βw(x,m)])2(2R− v(m))x2 = 0}

Verification reveals that J0 exhibits three branches in the strip m0 ≤ m ≤ 1, symmetric
with respect to the m-axis and strictly above the line m = m0, except at the point (0, m0).
Consequently, in a neighborhood where the homoclinic bifurcation occurs, F is locally a
diffeomorphism, allowing the application of the Strange Attractor Theorem.

Proof. Theorem 2.6.
It is necessary to demonstrate that for sufficiently large β, the map F forms a local dif-
feomorphism in proximity to the homoclinic orbit.

From the proof of Theorem 2.4. it is established that for sufficiently large β, a transversal
homoclinic point Q exists. The mapping F transforms Q into a point on the x-axis,
situated strictly below the line m = αm0 + (1− α). Additionally, the second iterate of Q
remains on the x-axis, positioned strictly below the line m = m0 for 0 < α <

√
µR−1
µg

.

Now, J0 reduces to a single point, namely (0, m0). Moreover, as β approaches infin-
ity, J0 converges toward the line m = m0 and the segments of the curves Cl and Cr

situated between the lines m = m0 and m = 1.

It can be established that, except for possibly one value of α (the one leading to
F(Q∞) = (0,m0) as β approaches infinity), F is locally invertible in the vicinity of every
point on the homoclinic orbit passing through Q.

Hence, the unstable manifold intersects the stable manifold at every point along the
homoclinic orbit. This establishes the existence of chaotic orbits for large values of β

attributed to the presence of transversal homoclinic orbits.
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