
Designing the Integration of
Conversational AI
with Web Architectures

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria
Informatica

Author: Gianluca Spadone

Student ID: 946286
Advisor: Prof.ssa Maristella Matera
Co-advisors: Marcos Baez, Emanuele Pucci
Academic Year: 2020-21

i

Abstract

Everyone should be enabled to access the Web. Individuals who are blind or have visual
impairments, elderly people, or users who are unable to use their hands or eyes in a specific
context should access the Web. Nowadays, assistive technologies, and in particular screen
readers can help users access Web information through channels that are different from
the visual one, e.g., by voice and hearing; nevertheless, the resulting access paradigm is
very complicated even for those users, e.g., blind and visually impaired individuals, who
spend years and many efforts to learn how to use these technologies. In addition to the
intrinsic complexity that characterize the fruition of Web content through screen readers,
accessibility guidelines are not completely fulfilled in the majority of websites, and this
lack causes severe problems when a screen reader has to interpret and read the website
content. Voice-based conversational assistants, e.g., Alexa, could aid in the discovery of
punctual Web information responding to basic inquiries. However, they are not able to
fully support navigation of a website.

Given these lacks, this thesis aims to provide a new way to access the Web and navigate
it using voice commands. The idea is to enable users to navigate content and services
accessible on the Web by “talking to websites” instead of browsing them visually, by ex-
pressing their goals in natural language and accessing websites through a dialog mediated
by a Conversational Agent (e.g., a voice-based browser plugin or a Web interface). This
paradigm is enabled by a Web platform, the Conversational Web Framework (ConWeb)
that, thanks to the integration of Conversational AI technologies, is able to handle a con-
versational user experience for browsing the Web. The dialogues supported by ConWeb
are based on a set of conversational patterns defined with and for blind and visually im-
paired users. Nevertheless, the framework aims to be accessible and useful to a wide range
of people with varying requirements and situations. The goal of this work is to propose
an approach that can benefit people universally, and has a potential that will impact Web
Engineering in the coming years.

Keywords: Conversational AI, Web architectures, Voice user interfaces

iii

Abstract in lingua italiana

Chiunque dovrebbe avere la possibilità di accedere al Web. Individui con disabilità visive,
persone anziane, o utenti che in un determinato momento non sono in grado di usare i
propri occhi o le mani, dovrebbero averne accesso. Oggigiorno, le tecnologie assistive per
il Web, e in particolare gli screen readers, possono aiutare gli utenti ad accedere al Web in
modo differente da quello visuale, e.g., con la voce e l’udito; tuttavia, risulta essere compli-
cato anche per coloro, e.g., persone senza vista o con disabilità visive, che spendono anni
a imparare come usare queste tecnologie impiegando numerosi sforzi. Inoltre, in aggiunta
alla complessità che caratterizza questi strumenti, le linee guida di accessibilità non sono
quasi mai soddisfatte dalla maggioranza dei siti Web, e questa mancanza causa numerosi
problemi agli screen readers che devono interpretarne il contenuto. Agenti conversazionali
basati sull’utilizzo della voce, e.g., Alexa, possono aiutare a ottenere informazioni dal Web
rispondendo a semplici domande. Tuttavia, questi agenti non sono in grado di supportare
la navigazione su questi stessi siti.

Lo scopo di questa tesi è fornire un nuovo paradigma di accesso al Web per navigarlo
tramite comandi vocali. L’idea è di consentire di navigare il contenuto e i servizi presenti
nel Web "parlando coi siti Web" invece che navigandoli visivamente; esprimendosi in lin-
guaggio naturale e accedendo tramite un dialogo gestito da un Agente Conversazionale
(e.g., plugin di un browser o un’interfaccia Web apposita). Questa idea è possibile grazie
a ConWeb, un framework conversazionale in grado, grazie all’integrazione con Intelli-
genza Artificiale Conversazionale, di gestire un’esperienza di navigazione orientata a una
conversazione con l’utente. I dialoghi supportati da ConWeb sono basati su linee guida
identificate da persone non vedenti e con disabilità visive. Inoltre, il framework vuole
essere accessibile e utile per numerose persone con diverse esigenze. Lo scopo del nostro
lavoro è di proporre un approccio che possa aiutare tutte le persone a poter accedere al
Web e abbia un potenziale per influenzare l’ingegneria del Web negli anni a venire.

Parole chiave: Conversational IA, architetture per il Web, interfacce vocali per gli utenti

Ringraziamenti

Desidero ringraziare la Professoressa Maristella Matera per la sua disponibilità e i suoi
consigli durante lo sviluppo della tesi e per la sua grande passione nell’ambito universitario
e di ricerca.

Ringrazio profondamente la mia famiglia e in particolare i miei genitori che mi sono
stati vicini e mi hanno supportato in questo percorso universitario, sia moralmente che
economicamente.

Ringrazio in particolare Antonella, che mi è sempre stata accanto, ascoltandomi e con-
sigliandomi, soprattutto durante i momenti più difficili.

Ringrazio coloro che hanno partecipato e seguito questo grande progetto, con passione e
perseveranza: Marcos, Emanuele, Cinzia, Antonella, Isabella e Claudia.

Ringrazio infine tutti gli amici, che hanno sempre creduto in me e hanno dimostrato il
loro sostegno durante tutti i bei momenti passati insieme.

vii

Contents

Abstract i

Abstract in lingua italiana iii

Ringraziamenti v

Contents vii

1 Introduction 1
1.1 Context: Conversational Web Browsing . 1
1.2 Scenario and Problem Statement . 2
1.3 Methodology . 4
1.4 Contribution . 5
1.5 Structure of the thesis . 6

2 State of the Art 7
2.1 Web accessibility . 7

2.1.1 Voice-based Assistive Technologies 8
2.1.2 Voice assistants . 9

2.2 Non-visual browsing . 10
2.3 Web exploration tools and NLU technologies 11

2.3.1 Web automation tools . 11
2.3.2 Natural Language Understanding - NLU 12

2.4 Summary . 13

3 Conversational Web Browsing: Approach 15
3.1 Concepts . 15
3.2 Goals and Requirements . 16
3.3 Design Decisions . 19

3.3.1 Conversation-oriented Navigation Tree - CNT 19

viii | Contents

3.3.2 Intent and Entity Recognition . 19
3.3.3 Intent Handlers . 20

3.4 High-level architecture . 20
3.4.1 ConWeb Client . 20
3.4.2 ConWeb Server . 21

4 Conversation-oriented Navigation Tree - CNT 23
4.1 CNT - structure . 23

4.1.1 Extraction of Web Page Content 24
4.2 Annotation format . 26

4.2.1 Conversational Nodes annotation 27
4.2.2 Annotation types . 27
4.2.3 Annotations tag attribute . 28
4.2.4 Annotations limit . 29

4.3 CNT - building . 29

5 Natural Language Understanding - NLU 33
5.1 Intents . 33
5.2 Building the NLU model . 35
5.3 Entity extraction . 35
5.4 Intent selection . 37
5.5 Alternative solutions for NLU integration 38

5.5.1 Intents per content . 38
5.5.2 Multiple Interpreters . 38

6 Intent Handlers: Bots 41
6.1 User-based Requirements . 41
6.2 Dialogue System . 42

6.2.1 Intents mapping . 42
6.2.2 Bots flow: Bot Manager . 43
6.2.3 Navigation Bot - NB . 45
6.2.4 Scaffolding Intents Bot - SIB . 49
6.2.5 Content Reading Bot - CRB . 51
6.2.6 Link Bot - LB . 54

6.3 Interaction-design patterns integration . 55

7 Framework Implementation and Evaluation 57
7.1 Implementation . 57

7.1.1 End-user devices . 59
7.1.2 Presentation Layer . 60
7.1.3 Application and Persistence Layers 61
7.1.4 Data Layer . 66

7.2 Technical evaluation . 66
7.3 User-based evaluation . 67

7.3.1 Study Set-up . 67
7.3.2 Results . 68
7.3.3 Discussion . 70

8 Conclusion and Future Works 71
8.1 Summary and Lessons Learned . 71
8.2 Outputs and Contributions . 71
8.3 Limitations . 72
8.4 Future Work . 72

Bibliography 75

A ConWeb source material and guide 81
A.1 ConWeb setup guide . 81
A.2 ConWeb video-demo . 82

List of Figures 83

List of Algorithms 85

List of Tables 87

1

1| Introduction

1.1. Context: Conversational Web Browsing

Web engineering is always evolving and expanding its content and functionalities. As a
result, Web accessibility is a fundamental priority for each of us, and we must ensure
that we all have this capability without significant differences in navigation experience.
For this reason, people with visual impairments or those who are unable to access the
Web using their hands or eyes must be granted alternative approaches yielding to the
same result. Different users can take advantage from this extended capability: from blind
people [2, 24], to individuals who have to look up information while driving [29] or cooking
[33], or in general when user’s hands and eyes are busy [31], to the elderly who can have
difficulties while using an electronic device [25, 27].

Currently, to some extent assistive technologies can help accessing the Web. However,
a severe issue is that the resulting user experience is the transposition of a linear visual
scanning of Web pages, e.g., from the top to the bottom, into other fruition paradigms,
for example based on the use of voice for conveying the Web page content. Sometimes this
experience can be frustrating. Voice interfaces sometimes suffer from a lack of discover-
ability: unlike graphical User Interfaces, where the interaction can be easily grasped by
recognizing visual cues, users frequently are unaware of what voice interfaces are capable
of or what they can say [10, 36]. The adoption of Conversational voice-based Agents (CAs)
can be a valid path to improve the accessibility of the Web. An example of CA for accessing
Web content and provide simple voice queries is Firefox Voice [8], a Web automation tool
able to serve Web content upon voice requests. By CA we mean a voice assistant who
navigates the site on behalf of the final user. This thesis focuses on the design and
development of a Web platform that enables the automatic generation and the execution
of CAs, that can handle users’ request expressed through voice commands. As a result, the
thesis investigates aspects at the intersection of Web Engineering and Conversational AI,
specifically Conversational Web Browsing, to identify a suitable solution to the previously
highlighted challenges. While a vocal assistant may appear to be a viable solution, several
and intricate concerns regarding how and why it must be built must be taken into account.

2 1| Introduction

Figure 1.1: Illustrative example of Conversational Web Browsing on Wikipedia

More specifically, a parallel study [5] on users’ needs for Web accessibility was conducted
concurrently with this thesis and suggests some design patterns for sustaining the notion
of Conversational Web Browsing.

1.2. Scenario and Problem Statement

Let us consider a scenario in which a person with visual impairments wants to look for
information on Wikipedia (see Figure 1.1). This would be possible thanks through current
assistive technologies, such as screen readers, which is a form of assistive technology that
renders text and image content as speech or braille output [35]. According to the literature
[30], screen readers, for as widely used as they are, have several limitations and issues. For
example, if blind users want to browse a long Wikipedia page, they would be unable to do
that unless they do it in a convoluted and difficult manner. Our aim instead is to browse
a Wikipedia page by dialoguing with a Conversational Agent (e.g., a smart speaker, a
Web-client or a voice-based browser plugin). For example, starting from a home page the
user can be introduced with a short description along with the main organisation of the
website. The user could also at any point get oriented by inquiring about the content
available in a given context, e.g., by uttering “What can I find on this page?”. The user
can then navigate the website by following up on one of the available options (e.g., “I
want to navigate to [...]”). These requests can trigger navigation within or across pages
in the website (e.g., from the Home to an article page). Ultimately, the user can browse
the structure of the content or directly read the available content.

1| Introduction 3

Different scenarios

People with visual
impairments

People who
experience difficulties

with technology

People that are doing
something which
prevents them to
access the Web

voice commands

vocal responses

Vocal assistant

ConWeb
Framework

navigates
the web request/answer

Web

Figure 1.2: Vocal assistant to navigate the Web

As illustrated in Figure 1.2, to enable such interaction, a framework sitting between target
users and the website must be able to identify the offerings and content of the website
that can be accessed through the conversational medium, interpret user requests, and
automatically perform related actions (e.g., click, extract information).

This paradigm is one of the few emerging approaches exploring the integration of con-
versational capabilities into the Web [8, 12, 26]. Previous work explored basic issues
posed by a tight integration of Conversational AI with the Web, related to automating
Web browsing actions to respond to natural language user commands [9], with a focus
on technical feasibility. Our work tries to give a further contribution by discussing how
to support more articulated design patterns for Conversational Web Browsing that are
identified through an extensive user research [5]. Incorporating conversational patterns
is fundamental to support recurrent sequences of human-bot interactions [21] serving ex-
pected browsing tasks. The reason why we want to help people with visual impairments
and improve Web accessibility is to set bases for a new way of using and accessing infor-
mation. Previous works [4] provide an interesting perspective and useful ideas on how to
develop a voice assistant for Web access, following the definition of HTML annotations
to retrieve Web content. As a result, the personal assistants that are the object of this
thesis, aim to solve the mentioned issues and provide the groundwork for a new paradigm
for accessing the Web based on voice commands. As a consequence, this thesis proposes
the design of a platform that supports the access to the Web with voice commands that
capitalize on a recently conducted user studies [5] in order to provide solid foundations
for voice-based accessibility.

4 1| Introduction

1.3. Methodology

The development of a voice assistant capable of solving the aforementioned issues is the
result of numerous tasks and approaches. Our goal is to create a software platform that
demonstrates the feasibility of using voice commands to access the Web. To reach this
goal, we started from the results of an extended user study [5] that identified how to design
conversations for Web browsing by means of several sessions with visually impaired users.
The gained results are analysed and expanded upon in order to determine how to reconcile
that work with the development of the software platform. In particular the design patterns
identified through the user study are translated into architectural choices for the design
of a Web platform focusing on the following aspects:

1. A conversational-browsing model must be built when the website is first accessed, to
index and present to the users the available conversation nodes and the navigation
structures that can sustain conversational browsing.

2. A conversation node does not necessarily correspond to an entire Web page; it can
be a content paragraph, a navigation menu, a link, or any other element in the Web
page that can be presented independently from the others and has a role in the
progressive exploration of the website content.

3. A context representation characterising the navigation status must be handled to
let the users to move easily backward, i.e., along previous conversation nodes, and
forward, i.e., to identify and explore new reachable nodes.

4. To understand browsing-relevant requests from the user utterances, a Natural Lan-
guage Processing (NLP) engine must be adequately trained starting from the website
content.

5. Recognized requests must be matched with navigation and content reading actions
as deriving from the conversational-browsing model.

6. The resulting Conversational Agent should be able to recognise website-specific
requests as well as general scaffolding ones related to auxiliary commands enhancing
the user control on the conversation.

Along with this effort, we examined past works [4] on how to browse the Web using a
conversational assistant and extract information from Web pages by using specific annota-
tions. These annotations are additional HTML attributes that identify the content of the
Web page and allow the voice assistant (particularly the logic behind it) to interpret and
render it vocally. These annotations allow for the creation of appropriate data structures

1| Introduction 5

that allow the framework to manage the navigation and the rendering of the information
on the Web page through the voice-based paradigm. The data structure also guides the
training of a Conversational AI model, which is fundamental to interpret the voice-based
user requests and build related responses. In our work, we will draw inspiration from these
modeling components, and will extend them in order to create new ones with extended
functionality and stability.

Our platform must support browsing on Web pages, which implies requesting the HTML
code from Web server and also enacting navigation actions. Therefore it utilizes a Headless
Browser to retrieve and manage Web content: our framework must be indeed able to
perform navigation without the need for the user to perform actions on the visual layout
of pages.

Our vocal assistant must also be able to understand the user’s intent (the action the user
wishes to perform), which we will refer to as intent in this context, and words relevant to
the context of navigation, which we refer to as entities. To understand the user’s intent
and distinguish it in the content of a Web page and extract relevant entities, we need to
interpret the user utterance and understand it also by voice. It is important to note that
our process for developing the ConWeb platform is based on the results of user researches
and is finally validated by an additional study involving people with visual impairments;
in this way, we aim to produce a viable solution that will have a real influence on Web
access.

1.4. Contribution

Our work, and in particular the developed software framework, aims to be a foundation
for Web accessibility through conversational assistants for everybody without distinctions.
For this reason, we develop a software platform that aims to exhibit a new and different
approach to access online information. We aim at demonstrate how interpreting voice
utterances and subsequently act on Web pages is possible and could lead to a new navi-
gation experience. To interpret user utterances we use Natural Language Understanding
(NLU) APIs to demonstrate how it is possible to integrate Conversational AI in Web tech-
nologies to respond to user requests. This platform follows and brings together various
studies from different fields and real-world cases in order to be developed following the
mentioned guidelines and to be the start of a new way of accessing information. In this
way we want to develop a platform with the goal of helping our target users in browsing
Web through voice commands in an innovative way.

6 1| Introduction

1.5. Structure of the thesis

The thesis is organized as follows:

• Chapter 2: the state of the Art is provided, evaluating different methods for Web
accessibility and the starting points of our work.

• Chapter 3: a more in-depth examination of the difficulties stated, as well as the
relevant aspects of our solution and their requirements are provided. Furthermore
a detailed view of the architecture of our software solution is presented to give a
general view of all of its functionalities and aspects.

• Chapter 4: an explanation of the Conversation-oriented Navigation Tree, one of the
most important aspects of our framework, is provided.

• Chapter 5: an in-depth examination of the adoption of the NLU engine and its
integration in the framework is provided.

• Chapter 6: an explanation of how the software architecture and its components are
designed in accordance with the results of the guidelines and patterns derived from a
user-based research [5] is provided. In particular, a description of how our framework
may take appropriate actions based on the user’s request is provided, with a focus
on the Intent Handlers (components responsible for handling user requests) of our
architecture.

• Chapter 7: an in-depth description of the implementation, including the adopted
technologies, is reported, along with a full explanation of the different components.
An evaluation conducted through a users study with a sample of users with vision
impairments is presented and described.

• Chapter 8: this chapter concludes our work and outlines possible future works.

7

2| State of the Art

Web content is designed to be accessed visually and interacted by keyboard, mouse and
touch, rather than conversed with. A survey on users highlights how browsing the Web
with accessibility tools such as screen readers can be difficult and frustrating and that
Web pages often contain inaccessible content that is expressed only visually or that can
be accessed only with the mouse [7]. In addition to this, a recent study cites how the Web
content is designed to be seen, not heard [37]. Despite these facts, it is certainly possible to
access the Web in ways different than using a mouse or a keyboard, each with its own set
of strengths and weaknesses. In this chapter, after an introduction on Web accessibility,
various methods of accessing the Web are introduced, described, and criticized in order to
focus on their characteristics, as the basis to fulfill our goal of solving existing problems.
Their description aims at showing the main existing problems regarding accessibility and
usability on the Web. Following that, the current state of the Art regarding primary
technologies employed to overcome the existing problems is outlined. A summary of this
content is provided later in this chapter to have a thorough view of the current state of the
Art in Web accessibility and how we intend to develop an alternative method of accessing
information following and extending the presented technologies.

2.1. Web accessibility

The Web is a valuable information resource that practically everyone uses on a regular
basis. However, different people have different ways of accessing the Web, which can
depend on the device they are using, their ability to use it, or any disabilities they may
have. For this final problem in particular, new methods of accessing the Web has been
developed to overcome these difficulties, in other words, make the Web accessible (acces-
sibility). The World Wide Web Consortium (W3C) in particular began projects for the
Web encouraging a high level of usability for people with disabilities.

W3C defines accessibility as the design and development of websites, tools, and technology
so that people with disabilities can use them. In particular, people should be able to:

8 2| State of the Art

• perceive, understand, navigate, and interact with the Web

• contribute to the Web

In addition, Web accessibility encompasses all disabilities that affect access to the Web,
including: auditory, cognitive, neurological, physical, speech and visual. The W3C Web
Accessibility Initiative (WAI) is a solution who develops technical specifications, guide-
lines, techniques, and supporting resources that describe accessibility solutions. In this
way, WAI aims to standardize Web development under guidelines that will allow websites
to be accessible. However, the reality is that Web developers are either uninformed of
accessibility guidelines or prefer to ignore them; as a result, Web accessibility may not
always fulfill its aims, and individuals may encounter a variety of difficulties while brows-
ing. Furthermore, the reality is that 98% of websites do not support full accessibility as
explained in a study [13]. In addition to this, a recent study [34] shows how 68% of users
who require accessibility and find it difficult or not supported will likely leave the website
they are navigating. For the arguments stated thus far, we may conclude that accessibility
is a complex problem that must be handled, especially given the large number of websites
that can be browsed.

2.1.1. Voice-based Assistive Technologies

There exist different methods of accessing Web information in addition to those that rely
on physical devices with hands and eyes. With our research, we specifically focus our
study on employing a new method of Web access while keeping accessibility in mind and
on behalf of our target users.

Screen Readers

One method for accessing the Web, but especially for using a computer for people with
visual impairments, is to use a screen reader. This tool allows users to comprehend the
text on their computer screen and communicate vocally or with a braille device [35].
People with visual impairments frequently use screen readers and are used to their capa-
bilities. For as much as they are accustomed to using them, they lament the numerous
disadvantages that screen readers possess and are open to new technologies (especially
the youngest ones). In particular, screen readers, while capable of reading text on a
screen, are incapable of filtering content in a practical manner, managing navigation, or
enabling the quick deduction that can be derived when visually inspecting a Web page
(even involuntarily). As a result, although being a viable solution, screen readers are now
encountering a slew of issues, especially when it comes to websites with a lot of content

2| State of the Art 9

on a single page; instead we aim at demonstrating how our framework could solve these
kind of issues. Our effort is to provide people with an alternative method of accessing the
Web, which could aid people with visual impairments (in general our target users) and
substitute almost entirely screen readers in retrieving Web content.

2.1.2. Voice assistants

Even though the Web can be accessed using properly configured accessibility tools, it
is also possible to access it using alternative devices that individuals with disabilities
may utilize. Voice assistants, such as Google Assistant, Amazon Alexa or Apple’s Siri,
have achieved significant popularity over the last decade, with more than half of adults
in the United States stating that they have used a voice assistant, as cited in a recent
report [22]. Two exploratory studies show how voice assistants are used by people with
disabilities (especially people with visual impairments) including for unexpected cases
such as speech therapy and support for caregivers [24]. Simultaneously, another study
demonstrates how people with disabilities utilize voice assistants, but they face several
problems when doing so [1]; by misspellings words or misunderstandings. In addition to
this, the use of voice assistants follows predictable patterns; according to multiple surveys
[3, 28], browsing the Web for content such as music and recipes, as well as conducting
simple informational questions, are among the most common use-cases for voice assistants.
Furthermore, we must state that estimates [14–16] imply that a third of all Web searches
are now initiated by a voice inquiry rather than a typed query, showing a significant use of
voice in technologies. On the other hand, while voice assistants can get information from
the Web, they can only do so with simple searches and do not enable pages navigation.
Moreover, the use of voice assistants has a significant impact on how people perceive them,
particularly the notion that the assistant is always listening is an important aspect cited
in recent studies which could change the way people use them [11, 17]. For the reasons
stated thus far, voice assistants, while useful, are normally used for quickly and simple
tasks or as complementary assistants to screen readers but do not support navigation
through Web pages; for this aspect, we want to exploit a new way of accessing the Web
and information in order to allow it to be accessible only through voice but with all
the functionalities as a user may use a mouse and a keyboard and with a fluent flow of
information and control.

10 2| State of the Art

2.2. Non-visual browsing

We have identified what accessibility is and its major issues together with different method
for accessing the Web; however, the way people browse the Web through voice introduces
the literature to the non-visual browsing concept. Our target users while browsing the
Web with voice commands are blind or partially sighted people, elderly people, and people
whose hands or eyes are busy at certain times. As a result, it is critical not only to allow
these target users to acquire access to the Web as they are using a mouse and keyboard,
but also to allow them to explore it in a non-visual manner; in other words, they must be
able to understand, through mental visualization, the structure of Web pages. As a result,
the concept of non-visual browsing evolved as a method of browsing that does not rely
on its graphical interface (GUI). Even with the various tools mentioned in this chapter,
such as screen readers or voice assistants, establishing a mental view of a Web page to
assist the user is a further process that must be examined. A recent study on exploring
challenges to visually impaired people aims to conduct this research so that we could
create an architecture that meets their guidelines [6]. We must increase usability while
browsing the Web in order to improve the user experience for visually impaired individuals
on the Web. The literature concentrated on two primary concepts, in particular:

• Segmentation: which refers to a body of work that focuses on extrapolating Web
entities from online pages. The CSurf browser [20], for example, can extrapolate the
context from a page that is available via a link, allowing it to extrapolate content
from the Web and reveal it to the final user, who may then select whether or not to
follow the proposed link.

• Skimming and summarization: these methods seek to expose the content and ex-
tract the most important information from it. A long text may be difficult to
understand in terms of meaning for a visually impaired individual if not read in
its entirety. As a result, skimming and summarization seek to highlight the most
significant aspects of a complex content. The AcceSS [23] system, for example, em-
ploys a transcoding process that includes summarizing and simplification processes
to make Web pages more usable for non-visual browsing.

We are going beyond typical accessibility by revealing the content and extrapolating it
in a way that traditional accessibility tools such as screen readers cannot. However, for
our needs, this is insufficient since we must go a step further in order to provide effective
navigation within a Web page.

2| State of the Art 11

2.3. Web exploration tools and NLU technologies

Accessing the Web and gathering various types of information is a wide-ranging process.
To comprehend how to retrieve information from online pages and navigate or perform
actions, various elements must be considered and assessed. The literature has progressed
further in offering Web content, for example via voice commands adding more accessibility
to it. To attain this result, developed tools must be able to automate online actions and
supply content in response to voice requests. As a result, we must distinguish between
two major technologies used in our project:

• Web automation tools

• Natural language understanding (NLU)

2.3.1. Web automation tools

Web automation tools aim to obtain information from the Web via voice commands.
They attempt to expose the content of websites by posing questions and answering them
in natural language. The information from Web pages could be seen as content upon
request.

Firefox Voice

In this sense, Firefox Voice [8] is an example of such a system, which aims to provide end-
users with a browser extension that allows them to access Web content and traditional
voice assistant features (setting alarms, timers, asking the weather, and so on) without
relying on any specialized machine learning technique for natural language processing or
information extraction, but rather by leveraging various APIs supported by the Mozilla
Community. Even though retired, Firefox Voice does not support navigation as intended
if we use a mouse and keyboard, instead wishes to explore a website with simple and
fundamental commands supporting different Web element as services available through
voice requests.

CoScriper

CoScripter [19] is a collaborative scripting environment for recording, automating, and
sharing Web-based processes. In this sense could be seen as a base for Web automation
tool to perform actions on the Web. In particular, CoScripter enables the creation of
macros that can be reused to accomplish Web automation processes or activities.

12 2| State of the Art

2.3.2. Natural Language Understanding - NLU

Web accessibility is important, and different approaches could produce varied results.
Conversely, non-visual browsing must be considered in order for the final user to under-
stand the structure of the page. Furthermore, the employment of Web automation tools
as Conversational Agents (or simply by parsing natural language exposed utterances) may
result in the usage of natural language by voice to specify the user intent. CoCo [18] is
an examples of a natural language system that allows users to demonstrate series of Web-
based operations and then invoke them using written natural language commands. In
addition, the usage of conversational technologies could be exploited to extract relevant
information from a user utterance conveyed in natural language using natural language
processing (NLU). It is important to note that Conversational Agents may suffer from
misunderstandings on speech recognition, resulting in incorrect natural language under-
standing as explained in a recent study [32]; in particular, different domain-specific ter-
minology could lead to difficulties in surfacing content whose titles include non-standard
spellings, symbols or other ASCII characters in place of English letters, or are written
using a non-standard dialect. Therefore, this issue must be considered during the devel-
opment of a voice assistant in order to accomplish proper utilization.

Rasa - NLU

An example of NLU is Rasa Open Source, which provides open source natural language
processing (NLP) to turn messages from users into intents and entities. It is based on
lower-level machine learning libraries like Tensorflow and spaCy, and provides natural
language processing software that is approachable and as customizable as proper needs.
Natural language processing is a category of machine learning that analyzes freeform text
and turns it into structured data. Natural language understanding (NLU) is a subset of
NLP that classifies the intent, or meaning, of text based on the context and content of
the message. This is the concept we intend to apply in order to comprehend users intent
and what they expect from an assistance in response to their requests.

Combining Web automation tools and Rasa NLU we want to develop a framework plat-
form in order to comprehend user intent and perform automated actions on the Web
providing content to the final user.

2| State of the Art 13

2.4. Summary

Our analysis leads us to a number of essential concepts that will be useful in our devel-
opment and architectural design. We could specifically express the following:

• Web accessibility is an important factor to consider when providing information from
the Web, given its existing problems and its goals of making the Web accessible.

• For what regards accessibility tools, screen readers are extensively used and a sig-
nificant method of accessing websites; nevertheless, they lack browsing functionality
and many websites do not support them (on in general, do not support accessibility).

• Voice assistants are a legitimate alternative method for quickly and simply querying
on instant information or features (such as alarms, timers and weather queries), but
not for navigating Web pages.

• Non-visual browsing must be considered in order for users to be able to develop
a mental view of the website and not just supply them information on requests
without the approach of navigation.

• Web automation tools are on the right track to discover a new method of accessing
information (for example, Firefox Voice with different features). However, in order
to address the needs of end-users, a more in-depth research on user experience is
required to fully support browsing Web pages.

• Natural language understanding (NLU) is an important aspect of understanding
voice-based commands, and it could be implemented with conversational technolo-
gies, as is the case with the majority of voice assistants, or without a machine learn-
ing approach (like Firefox Voice), but with a matching between the user’s utterance
and the given planned actions.

Following these aspects, we aim to provide our target users with a novel way of accessing
websites information via a Conversational Agent built on a framework that leverages web-
sites content and fulfills user requests in order to simulate mouse and keyboard browsing
at the same time as building a proper mental view of websites structures. Starting with
the challenges of accessibility and analyzing the existing issues, we intend to solve them,
following the non-visual browsing concept, by providing a framework that can conduct
actions on websites (such as Web automation tools) in response to user requests exposed
by voice and interpreted by a NLU (in our case Rasa).

15

3| Conversational Web Browsing:

Approach

This chapter introduces the general concepts of ConWeb, as well as its architectural goals
and requirements. In addition, we explain the approaches of our solution using a high-level
architecture overview and an explanation of the main aspects.

3.1. Concepts

In this section, we will introduce terms and concepts that will help comprehend the overall
perspective of ConWeb. In particular, the framework that serves the vocal assistant must
recognize and manage the user’s input; its understanding will be referred to as the intent.
For example, if users ask for "Tell me about Mars", the intent, which can be referred to
the words "Tell me", is to get them to a specific section of the website concerning a
specific content (in this case "Mars", identified by a word, i.e. entity, "Mars"); this
implies an automatic navigation to that section and the reading of the required content.
If, on the other hand, users ask for "Help", the intent is that they require assistance.
The framework includes all of the logic to generate and manage the dialog system, which
strongly characterizes the assistant; hence, by "framework", "assistant", "Conversational
Agent" or "ConWeb" we mean this logic and all of its properties.

The framework must extract all information from the page and then carry out the ap-
propriate action based on the user intent. In order to analyze users phrases to determine
their intents, the variety of possible requests and Web pages contents must be carefully
examined in order to make the proper decision based on users needs. The fundamental
framework characteristics supporting these analysis are presented in this following in the
form of goals and requirements.

16 3| Conversational Web Browsing: Approach

3.2. Goals and Requirements

The main goal is to help target users (people with visual impairments, old people or
people who are unable to use a device with their eyes or hands at a specific time) to
access information on a website and being able to browse it using a voice-based assistant;
the framework supports the automatic generation of the assistant to provide an alternative
way of accessing the Web.

The following list highlights the requirements we took into account when designing the
framework.

Orientation - generic commands and functionality that every assistant must expose to
facilitate orientation during conversation.

• The assistant must be able to explain to users the current behaviour of the navigation
through voice.

• Users must be able to interrupt, ask and perform actions when they need them
without waiting to the assistant to finish talking.

• Users must be able to use the assistant with reasonable waiting times between
requests.

• The framework must expose a client to be used by final users whose requirements
follow the ones for the ConWeb architecture.

Navigation - offering and interpreting commands through which the user can navigate a
website:

• Users must be able to open a specific website using a voice command.

• The vocal assistant must be able to reveal the page’s content in a logical and un-
derstandable hierarchy to the final users.

• Users must be able to request access to a specific content on the page simply by
asking it.

• Users must be able to differentiate the content of a page using the information
exposed by the assistant and therefore be able to request the preferred one by
asking it with proper words following their natural reasoning.

Reading - offering and interpreting commands for presenting the page content to the user:

• Users must be able to understand how the textual content is structured in a certain
section of the page.

3| Conversational Web Browsing: Approach 17

• Users must be able to ask the assistant to read a certain text and receive an appro-
priate response.

• Users must be able to request the assistant to read various types of paragraphs and
go through them.

• Users must be guided to the reading of paragraphs by the assistant in order to
understand them without many difficulties.

• Users must be able to request if links are present in the text just read by the assistant
and go through them.

• Users must be able to request how many paragraphs are present in the current
section.

Linking - offering and interpreting commands for managing the user vocal selections or
actions to navigate through another page:

• Users must be able to locate the links in a Web page and select them.

• The framework must be able to simulate users’ click on a specific link and forward
them to a new Web page.

• Users must be able to understand when a new Web page is loaded and therefore the
navigation has changed.

Primary navigation commands - responding to the user requests for actions that are
commonly performed in Web browsers (go backwards, return to the main page or request
help):

• If users have not understood what has been spoken previously, they must be able
to ask for it to be repeated.

• Users must be able to request a return to the previous navigation content depending
on the current context.

• In the event of help is required, users must be able to request it.

• Users must be able to request to return to the beginning of the navigation.

• Users must be able to request the content of a Web page if they feel lost.

• Users must be able to ask where they are inside a page.

• The framework must be able to understand positive (yes) requests by users after
having questioned them.

18 3| Conversational Web Browsing: Approach

• The framework must be able to understand negative (no) requests by users after
having questioned them.

The following list, on the other hand, shows the framework’s non-functional requirements.

Non-functional requirements:

• Performance: the assistant must be able to respond to user requests in a reasonable
amount of time. If users want to load a new page the assistant must inform them on
the loading of the new website to prevent misunderstandings. In addition to this,
the assistant and the framework behind it must exploit all the necessary features
to achieve reasonable performance metrics as the final result (a usable assistant) is
thought to give to the user a different way of accessing the Web and being accessible
must also be usable in terms of performance.

• Scalability: the framework behind the assistant must be able to manage different
instances of navigation in order to be used by multiple users.

• Availability: the framework behind the assistant must be developed and eventually
deployed in order to be always available by users, maintaining their navigation
sessions independently on their behaviours.

• Reliability: the framework behind the assistant and in particular the components
responsible of parsing user utterance must understand it with a certain confidence
level in order to avoid errors that could compromise proper usage.

• Maintainability: the framework must be designed with maintainability in mind, so
that future approaches and extensions can be applied easily and with a wide range
of functionalities without compromising its main features. In addition to this, the
framework must be designed in such a way that it can be easily maintained and
controlled while also understanding its own behavior.

• Usability: the assistant must be designed and developed in order to be properly used
by the final user, respecting specific time frames to avoid long waiting times. It also
must expose the main features and limits in order to let the user understand how
to use it and what expect from it. At the same time the client configuration and
usability must be properly developed in order to let final users to use it independently
from the device or place where they are using it.

The previously specified requirements are intended to guide the development and acquire
correct outcomes in order to construct a suitable platform. Based on previous works [4],
our goal is to create a new and fully functional platform with new features and outcomes

3| Conversational Web Browsing: Approach 19

based on users research [5].

3.3. Design Decisions

In this section, we will explain the main aspects and approaches we use to achieve our
goals. Despite their number, the developed voice assistant and framework include compo-
nents and phases that will be examined sequentially. For a complete framework capable
of demonstrating our goal, the following design decisions are required:

• Conversation-oriented Navigation Tree

• Intent and Entities Recognition

• Intent Handlers

3.3.1. Conversation-oriented Navigation Tree - CNT

Our framework must handle user utterances and carry out actions on the Web page
(retrieving and exposing content, navigating through Web structure, and so on). To
perform the aforementioned actions, we require an auxiliary structure that represents the
content of a Web page (properly cleaned with only the content required for our purposes):
the Conversation-oriented Navigation Tree (CNT). Our CNT is a redesigned tree of the
Web page content made of multiple nodes representing different information and from
which we could handle navigation between sections of the website as well as content
retrieval. The CNT is a fundamental structure that is unique to each URL and is defined
in detail in Chapter 4.

3.3.2. Intent and Entity Recognition

With Intent and Entities Recognition, we mean the ability to deduce the user intent
from the given utterance and extract relevant entities (i.e. words relevant to the current
context). To accomplish this goal, we must use a NLU (Natural Language Understanding)
as support and which could distinguish from a list of intents that the user may use, the one
of our interest through Conversational AI and subsequently extract relevant entities. The
way we use NLU to extract user intent has many advantages, particularly the fact that
the classification distinguishes with high confidence differences, the supported intents;
however, there is a trade-off between correctly annotating the page and the number of
intents the user could use in our framework. Chapter 5 goes into detail about this trade-
off; how NLU works and how it is used in our work.

20 3| Conversational Web Browsing: Approach

3.3.3. Intent Handlers

After determining the users intent, it is critical to take the proper action, such as updat-
ing the users navigation context and responding to help them comprehend the current
situation. To achieve this goal, various bots (Intent Handlers) are built, each of which
is in charge of a distinct type of action or CNT node to manage. A full explanation of
all the bots and their scope could be found in Chapter 6. We choose to construct several
bots in order to differentiate all of the users requests and manage them properly. We
follow different Interaction-design patterns Integration coming from a specific user study
[6] in order to achieve our goals on supporting possible user requests. The results of a
rigorous user study include the many ways in which components are produced and why
specific intents are chosen. A full explanation of how we include these behaviours could
be found in Section 6.3. Additionally, there are bots in charge of different types of content
on the page, and further ones are supported to enable scalability for future upgrades and
extensions.

Our solution also includes a properly developed client that can be used and integrated
with the framework application logic. To begin building this platform and making it
accessible from everywhere, we opt to develop the client side on a Web server that could
be accessed from various devices using a specific URL.

3.4. High-level architecture

The architecture of ConWeb is explained and demonstrated in this section. Because
there are numerous components that interact with others, we provide a basic overview
to comprehend a high-level abstraction of its internal architecture and the main pipeline
the user utterance follows; a detailed explanation of all of its components could be found
in Chapter 7. Figure 3.1 illustrates a high-level overview of the framework. We are able
to identify one actor and two major components. The end-user is the actor, and the two
primary components are the ConWeb Client and the ConWeb Server, which are discussed
in the following sections.

3.4.1. ConWeb Client

The final user may use the ConWeb Client to communicate with the framework using
only its voice; in practice, the client understands the user utterance and sends it to the
ConWeb Server, which contains all of the application logic; it then waits for a response.
To interface with the server and control all user configurations (for example which user is

3| Conversational Web Browsing: Approach 21

Figure 3.1: Framework architecture

using the application), the ConWeb Client has its own logic behind its interface. A simple
front-end interaction directly with Speech Recognition/Synthesis APIs is used to permit
vocal interface. In other words, when a user speaks to the client, its recorded voice is
translated into a string using Speech to Text APIs and then transmitted to the ConWeb
Server. The response from this last is received as a string, which is then translated into
speech using Text to Speech APIs and spoken to the user. Finally, the ConWeb Client is
deployed such that it can be accessed by a specific URL address. In this way, the final
user could connect to it via a simple Web browser (for example Firefox or Chrome) and
then the ConWeb Client could enable the user to communicate with it using simple voice
commands.

3.4.2. ConWeb Server

The ConWeb Server is able to communicate with the ConWeb Client through a socket.
When a specific user utterance is received, the Session Handler component is in charge of
managing it. It specifically keeps track of all the different users sessions (such as navigation
context, current page, and so on), therefore it gathers all the essential information to
update them and perform the appropriate actions. A proper decision on a website is
taken every time a user utterance is delivered to the ConWeb Server, however it is crucial
to clarify what happens the first time a URL is opened by a user request (the user performs
a first access to a specific URL). If the user utterance is to open a specific page (URL),
the new URL is loaded and the navigation context is updated with the new page content.
Through a Headless Browser and specific Web APIs the URL is loaded and a new CNT
is created from the HTML annotations on the page. Web page data inferred from the

22 3| Conversational Web Browsing: Approach

CNT is used to train an NLU model. Thus, the NLU model will be able to understand
the user’s utterance on the given page and provide information that will be used by the
Intent Handlers to perform the required actions. The navigation context is then updated
and the control is returned to the user along with an introduction to the new website (it
is crucial to note that after opening a new URL, the framework implicitly assumes that
the user request is an introduction to the new page content).

On the other hand, if the users utterance is a specific request inside a Web page they
are browsing, it is forwarded to a NLU model trained on the specific visited URL. In
Chapter 5, we go over how the NLU model parses the user utterance. After parsing the
utterance, the framework is able to comprehend the user intent (extracting also relevant
entities) and thus execute the proper action; specifically, the selection of the suitable
action based on the navigation context is performed and the information obtained from
the NLU model (intent and entities, i.e. substantives) are essential for this process. The
appropriate Intent Handler is called to conduct the appropriate action; we can distinguish
between the followings:

• Navigation Bot (NB): it finds the content the users are searching in the page and
bring them to it (to the node corresponding to the content).

• Scaffolding Intents Bot (SIB): it performs the appropriate action from the ones that
should be always present during navigation and that have been taken from the users
study [5] (for example go back, repeat, help and so on).

• Link Bot (LB): it is able to open a link and update the navigation context.

• Content Reading Bot (CRB): it is able to read text content and expose it to the
final user supporting different intents (read, select paragraph, go on and so on).

After the bots have taken the proper action, the control is returned to the user. It is im-
portant to note that the Navigation Bot and the Scaffolding Intents Bot are fundamental
components of the framework that represent its main functionalities, whereas the Link
Bot and the Content Reading Bot, while important components, are specific to the type
of element found on the page, and thus other components similar to them (treating a
different type of content) could be added to improve the assistant features in the future.

We presented the high-level pipeline of ConWeb from the point of view of the user utter-
ance. Starting from the ConWeb Client, it is forwarded and analyzed thanks to Intent
and Entities Recognition and subsequently appropriate actions are performed by Intent
Handlers, supporting differnce features with Interaction-design patterns. Later, an answer
is returned to the ConWeb Client and exposed to the final user.

23

4| Conversation-oriented

Navigation Tree - CNT

As previously stated in the preceding paragraphs, we must interact with Web pages in
order to have a vocal assistant which navigates the Web in our place (based on our voice
commands). When we navigate Web pages with a mouse and a keyboard (the same
concept applies if we use a touch screen with a mobile device), we can understand and
recognize their inner content, but this is not the case when we use a vocal assistant. As
a result, we require an auxiliary structure that represents the Web page we are visiting
and can be used by the framework to perform the necessary actions to support our re-
quests. Drawing inspiration from previous works [4], we decide to use a tree structure in a
conversational context to represent our navigation, as explained in the following sections.

The Conversation-oriented Navigation Tree (CNT) is a complex structure that will be
explained further in the following sections. Consequently, an example of how to build a
CNT on a Web page is shown.

4.1. CNT - structure

A CNT is a structure that represents the page’s content. It is created by the framework
using all of the necessary information to maintain the meaning and hierarchy of the
content. In fact, the CNT’s structure is made up of various nodes, each with a distinct
content. The main feature of the CNT is that each node represents its own content, thus,
the page follows a hierarchy between parent and child nodes; in other words, the page is
divided into different sections, each of them is represented by a node. Because a node
may contains additional contents, other nodes representing these contents are created
and linked as children of the previously mentioned outer node which will be the parent.
When a node representing its final content is created, it has no children and represents
the actual content that it is describing. In fact, if a node has children, it only represents
a concept useful for understanding what content their children manage and it lacks any
real content to be used. Only leaf nodes contain the page’s actual content (that could be

24 4| Conversation-oriented Navigation Tree - CNT

a link, a text, an image and so on). To summarize what has been said thus far, nodes can
be classified into three types:

• Root node: the node representing the whole page.

• Parent nodes: nodes that have children and therefore represent the information of
these ones without having any real content.

• Leaf nodes: nodes that do not have any children and represent the final content of
a part of the page (text, image, link and so on).

The CNT structure can be used to represent navigation. Users, with the support of the
vocal assistant, can navigate through the page by simply going from node to node, and
when they come across a leaf node, they could ask the assistant for information on it
(if it is a text to read it, a link to click it and so on). It is important to note that the
CNT structure is created by the framework following various annotations that are present
on the Web page and are taken from a previous work [4] and redesigned to meet our
requirements, as explained better in Section 4.2.

4.1.1. Extraction of Web Page Content

In this section, we exemplify how the content of a Web page can be divided to create a
CNT. Figure 4.1 shows a page from Wikipedia about the solar system. The mentioned
page is particular since it contains a lot of content, so it should be divided into many
nodes with a proper hierarchy to help the user understand it just by hearing the vocal
assistant. In the current example, we could divide the page into three main nodes: 1, 2,
and 3, as shown in Figure 4.1. Node 1 represents all of the important links on the page’s
side (it will have other children nodes, each one representing a single link or a group of
them), node 2 represents the page’s introduction (it will be a leaf node because it does not
contain any additional content other than an introduction text), and node 3 represents
the rest of the page’s content with all of its paragraphs (in this case it will be a parent
node as the content is extensive). The aforementioned example is a design choice, and its
purpose is to help the reader understand how the CNT can be created, however different
decisions can change its structure. Node 3 is, of course, the most complex of the page
because it contains a large number of paragraphs and texts; therefore, to better explain
it, we will only refer to two of its children as shown in Figure 4.2. As we can see from the
example, node 3 has all of its children, as well as nodes 3.4 and 3.5, which are discussing
the "Interplanetary medium" and the "Inner Solar System" respectively. As we can see,
node 3.4 has no further distinction in content and thus could be classified as a leaf node,
whereas node 3.5 has a brief introduction and a subparagraph about "Inner planets". As

4| Conversation-oriented Navigation Tree - CNT 25

1

2

3

Figure 4.1: Wikipedia solar system example

3.4

3.53.5.1

3.5.2
3.5.2.1

3.5.2.2

3.5.2.3

Figure 4.2: Wikipedia content division example

26 4| Conversation-oriented Navigation Tree - CNT

root

321

3.4 3.5

3.5.1 3.5.2

3.5.2.1 3.5.2.2 3.5.2.3 ...

...

.........

Figure 4.3: CNT example

a result, two nodes are created for the previously mentioned content as children of the
node 3.5: 3.5.1 and 3.5.2, respectively. For the same reason as before, node 3.5.1 has
no further content divisions and may be a leaf node, whereas node 3.5.2 has additional
divisions. Figure 4.3 illustrates an example of a section of the CNT for the page described
in this section.

Before concluding the CNT section, it is important to note that the content of the Web
page should be divided to help the user understand properly the content; in this case,
Wikipedia has a well-done division on content, which could be followed; however, different
websites require different approaches.

4.2. Annotation format

The CNT is an important structure that can represent the content of a page and allows
the framework to perform navigation on it based on the final user intent. The framework,
on the other hand, constructs the CNT based on additional information on the page
representing how the content should be managed. The additional information on the
page is added using annotations, which are additional HTML attributes representing how
the framework should manage the annotated content. The annotation must be done
correctly in order for the framework to properly understand the content on the page.

4| Conversation-oriented Navigation Tree - CNT 27

4.2.1. Conversational Nodes annotation

First and foremost, it is critical to comprehend how annotation should be performed
and how the framework will interpret it. According to the previous sections, the page is
divided into different nodes in a hierarchical order, each of which is linked and represented
with annotations. In other words, a properly annotated HTML component represents a
node, and it can contain other nodes by containing other properly annotated HTML
components. It is important to note that the annotation can be performed on existing
HTML components or new ones can be created to group elements or contents according
to the needs.

4.2.2. Annotation types

The annotation should follow specific tags in order to provide the framework with all of
the necessary information. Following the previously specified CNT structure, there are
three main tags to annotate for each piece of content (which will correspond to a node,
the cw prefix stands for Conversational Web):

• cw-description: it refers to a description of the content (node) that will be spoken
by the assistant; as such, it should be used properly in order to follow the proper
way of expressing the content.

• cw-keys: this is a list of substantives that represent the content.

• cw-type: specifies the node type; currently, the node types are navigation, link
and content_reading. The first refers to nodes that have children and thus are
navigation nodes, while the other two are for leaf nodes (content_reading repre-
sents a node which have as content a text to be read by the assistant, whereas link
represents a node which have as its content a link to be navigated through).

Figure 4.4 shows an example of an annotated paragraph, as well as the relationship
between a node and the annotations.

Other types of leaf nodes could exist and be developed (our framework has been properly
developed and studied to support its maintainability), but in order to demonstrate how
to access the Web via a conversational assistant, we focus on the most important ones in
terms of content: content_reading and link.

28 4| Conversation-oriented Navigation Tree - CNT

Figure 4.4: Annotation

<div cw-description="Tell you an introduction to the solar system"
cw-keys="system,solar" cw-type="navigation">

<div cw-attribute="text">
<p> The solar system ... until the end of the galaxy </p>

<p> Another concept ... important for the community </p>
</div>

</div>

Figure 4.5: Annotation attribute

4.2.3. Annotations tag attribute

We have learned how to construct a CNT using annotations; however, we must also provide
the framework with the content of the leaf nodes in order for it to be analyzed. The frame-
work could parse the content of the leaf nodes simply by annotating it in the same way as
described in the previous sections, with the exception of changing the HTML attribute.
Instead of the provided HTML attributes, we only use the custom one: cw-attribute.
This last attribute could be text if the content is a text to be read. Of course, additional
attributes could be added and customized to add more functionality. The main reason
for the framework use of this additional attribute is that there are leaf nodes that may
contain final text to be read by the user but also a lot of non-useful content (ads, images
and so on), therefore the cw-attribute tag can easily identify the final content. In par-
ticular, the framework will identify <p>...</p> tags as text content, therefore multiples
tags could exist together inside an HTML element with the cw-attribute tag. The an-
notation attribute tag is relevant only for content_reading nodes as for link nodes the
useful information is extracted automatically (see Section 6.2.6). Figure 4.5 illustrates an
example with text content.

4| Conversation-oriented Navigation Tree - CNT 29

4.2.4. Annotations limit

We understand that using annotations could be a limitation for the framework and a
challenge for website developers, but their use is critical since website pages vary in terms
of content and structure and thus a properly annotated Web page could be used by
the framework independently of its architecture. A future work or goal is to automate
annotation of Web pages or make the framework capable of extracting important data
without the need of annotations; however, this work will necessitate extensive researches
on Web pages and machine learning techniques that are beyond the scope of this thesis.
Another key point is that Web pages creation should follow common guidelines in order
to provide effective accessibility; annotations want to build a solid groundwork to identify
content on a Web page in order to give complete accessibility to it.

4.3. CNT - building

In this section we present a pseudo-algorithm to illustrate the procedure for building a
CNT given a specific URL. The Algorithm 4.1 shows how a CNT is build starting from a
given URL.

Algorithm 4.1 build_cnt()
Data: URL
Result: CNT structure

1: body <— headless_browser.retrieve_body()
2: root = Node(body)
3: return root

The CNT representation is a root Node containing the body element, extracted with the
function headless_browser.retrieve_body() which will retrieve the element from the
current Web page with all of its content. The recursion for the whole creation is explained
in the initialization of a Node structure as explained in Algorithm 4.2.

30 4| Conversation-oriented Navigation Tree - CNT

Algorithm 4.2 Node()
Data: page_elem /* generic element of the page, at first will be the root

element, subsequently a inner annotated element and so on, until no other

annotated elements are found */

Result: recursion initialization of all CNT nodes

1: children <— retrieveAllChildrenElements(page_elem)
2: for child ∈ children do
3: if child.cw_type == navigation then
4: sub_elements <— retrieveAllChildrenElements(child)
5: for grand_child ∈ sub_elements do
6: children.remove(grand_child) /* remove from all the children, the

ones under the first layer of children */

7: end for
8: end if
9: end for

10: children_nodes = []
11: for child in children do
12: children_nodes.append(Node(child))
13: end for
14: self.node_type = retrieve_attribute(cw-type)
15: self.description = retrieve_attribute(cw-description)
16: self.keys = retrieve_attribute(cw-keys)
17: self.children = children_nodes
18: self.content = retrieve_content()

retrieveAllChildrenElements() is a particular function able to retrieve all Web ele-
ments under a specific one (children) which have a cw attribute. A Headless Browser
and particular APIs can be used to retrieve Web elements. The fundamental issue is that
fetching Web elements does not adhere to the original hierarchy, and many websites do not
follow proper structures when developing their pages. As a result, after retrieving all the
children of a certain element, the code from line 2 to line 9 cleans these children, deleting
any that are grandchildren of the first layer detected, or are on an additional layer that is
not relevant to us. This is because retrieveAllChildrenElements() includes all possible
children (even recursively) without providing us with a correct organization. An additional
problem is that retrieving all the content with retrieveAllChildrenElements() does
not lead to a useful result to be interpreted and build a proper CNT. Therefore we could

4| Conversation-oriented Navigation Tree - CNT 31

state that the first 9 lines of code retrieve the first layer of children given a specific element,
while from line 10 to 13 the children of the given element are initialized (using recursion).
Last lines save in the current node all the necessary attributes retrieved thanks to the
retrieve_attribute() function which retrieves through the Headless Browser needed
tag attributes while retrieve_content() retrieves relevant content (such as texts, para-
graphs and so on).

33

5| Natural Language

Understanding - NLU

We have seen in the previous chapters that understanding the proper intent is necessary
for taking the appropriate action in response to a specific user’s utterance. With the use
of a natural language understanding (NLU), a subtopic of natural-language processing
(NLP) in artificial intelligence that deals with machine reading comprehension, we are
able to achieve this outcome. We need to build an NLU model that could parse user
utterances and extract their intents and entities. The model for recognizing user intent
is built for a specific URL that the user is visiting; this choice is made because the
intents are dependent on the content of the page; therefore, a different URL will have
different content, and thus a different model will be created with these new dependencies.
Furthermore, even if certain intents may be the same for multiple pages, a new model
must be trained each time because it is responsible for selecting the proper intent from all
available ones (the train must be performed using all possible intents), and because some
intents will certainly change, the train must be performed for each new URL. Before diving
into the specifics of how the model is built and utilized, we will discuss and demonstrate
the intents that our framework recognizes.

5.1. Intents

We here describe the intents that our framework understands and how they affect the
user’s request. A careful study on pattern integration, which is addressed in Section 6.1,
is utilized to select the intents to be implemented. The following list summarizes all of the
framework’s intents, divided in different categories, with brief descriptions; a thorough
explanation of how each intent is managed and which action is taken is provided in
Chapter 6.

• Navigation intent (intent related to navigation)

– content : it relates to the request of reaching a specific content on the URL and

34 5| Natural Language Understanding - NLU

could be achieve for example with "Tell me about Mars".

• Content-reading intents (intents related to text content in content_reading nodes)

– read : it relates to the request of reading a specific text the assistant has found
on the current node, for example with "Read me the first paragraph".

– read_paragraphs : it relates to the request of knowing how many paragraphs
are present inside a specific text.

– read_links : it relates to the request of reading all the read links on the current
content_reading node. The intent is also used to select one of these links.

• Scaffolding intents (intents related to default actions during the browsing of a Web
page)

– help: it relates to the request of help.

– page_info: it relates to the request of having information on the content of the
page.

– location: it relates to the request of having information on the current position
inside the Web page the user is visiting.

– repeat : it relates to the request of repeating what the assistant has just said.

– back : it relates to the request of returning to the previous content (i.e. node)
during the navigation.

– top: it relates to the request of returning to the starting point of the user
navigation.

– affirmative: it means an affirmative answer to the previous question asked by
the assistant.

– negative: it means a negative answer to the previous question asked by the
assistant.

The list of intents just stated is the one identified through our integration with the NLU;
specifically, we construct a model on a given dataset and then estimate the user’s intent
from its utterance, resulting in one of the preceding list.

5| Natural Language Understanding - NLU 35

web page relative data

visited web page

intent: content
examples:

Tell me about the solar system
Tell me about Mars
...

intent: help
examples:

Help
I need help
What can I do?
...

...

training data

default training data
 (intent: help

examples: I need help ...)

template.yml

output
NLU

training data
NLU Model

Figure 5.1: NLU model Initialization

5.2. Building the NLU model

We have stated that the NLU model is required to estimate the user’s intent, and that
each model is unique based on the page visited by the user. To understand how a NLU
model is generated, we must first understand how one page differs from the others in
terms of content. To begin training the model, we must first declare all of the intents to
estimate (as previously described), and then offer some examples of data to the NLU in
order for the model to be trained and ready for use. To detect the intent help we must
provide the NLU with instances of sentences relevant to the given intent, such as "Could
you help me?", "Help", "I need help", and so on. The NLU will take care of the rest. In
our framework, all intents are always based on the same training data identified with a
simple template; the only difference is the intent content which varies depending on the
content of the page; for example, in a website page about the solar system, some examples
could be "Tell me about the solar system" or "Tell me about Mars", whereas in another
site about another argument, for instance, a biography, some examples could be "Tell me
the private life" or "Tell me about his works". As a result, each time a new website is
visited, a new model is created and trained on the given data, and each new utterance of
the user is parsed by the NLU model (also known as Interpreter), recognizing the user’s
intent and performing the necessary actions. This process is illustrated in Figure 5.1.

5.3. Entity extraction

Each of the previously described intents could be related to a specific action; however,
the first two intents, specifically the intent content and the intent read, require further
explanation.

36 5| Natural Language Understanding - NLU

intent: content
examples:

Tell me about the solar system
Tell me about Mars
...

training data

<div cw-description="Tell you an introduction to the solar system"
cw-keys="solar,system" cw-type="navigation">

{/* Content */}
</div>

web page content

Figure 5.2: Entities - cw-keys relationship

output
NLU Model

utterance:
 "Tell me about the solar system"

User

 intent: content
 confidence: 0.9

 intent: read
 confidence: 0.06

 intent: help
 confidence: 0.01

 ...

 entities:

solar
system

NLU understanding

Figure 5.3: NLU - output

When our Interpreter extracts content, we must explain how to find the requested content
on our page, thus we must extract useful words in our context. The NLU could assist by
extracting entities for us. Entities are structured pieces of information included within a
user message; hence, if a user requests "Tell me about the solar system", our Interpreter
will understand the utterance’s intent as content and will also add further information
as extracted entities, in this case: "system" and "solar". Subsequently, we could extract
the page’s content using these two extracted entities (how specifically we could find the
requested content is explained with more details in Section 6.2.3).

Our Interpreter has to be trained with proper data to understand our intents and to know
which entities it can extract for us, thus we must include all of the entities available on
the page in the training data. As mentioned in Section 4.2.2, we leverage the cw-keys

present in the annotations to achieve this effect. In other words, each node is represented
by a set of words (annotated in cw-keys), which we utilize as entities in our training
data so that the Interpreter is able to understand when a user requests a specific content
by simply extracting the mentioned words. The relationship between cw-keys and our
Interpreter is shown in Figure 5.2, whereas Figure 5.3 illustrates the output of the NLU
model (Interpreter) given an user’s utterance.

Furthermore, the intent read requires entities to function properly; in fact, each user who

5| Natural Language Understanding - NLU 37

wants to read may request a different content. For the cited intent we employed the fixed
items stated below:

• first paragraph

• second paragraph

• ...

• ninth paragraph

• tenth paragraph

We believe that each separate entity for the intent read should be taken by the above-
mentioned list, allowing for the potential of supporting a wide range of information in-
dependent of the visited website. For this first implementation, we only supported the
specified entities; however, additional entities could be added and supported. A complete
explanation of the read intent could be found in Section 6.2.5.

5.4. Intent selection

NLU is a powerful approach capable of understanding natural language, but it must be
properly utilized to achieve the desired results. When an utterance is passed to the
Interpreter, it is not accurate to claim that an intent is extracted since all intents are
extracted, each with a specific confidence level ranging from 0 to 1. As a result, in our
implementation, we have a Policy component (described with further details in Chapter 7)
that will handle various confidences and choose the appropriate one. It is natural to
believe that the intent with the greatest confidence is the correct one; nevertheless, we
must also consider the extracted entities and the user’s current context; as a result,
a complex component must be constructed and tuned to fulfill our requirements. A
thorough explanation of how this component operates can be found in Section 7.1.3. The
goal of this chapter is to describe how NLU works in our context and how our framework
can interpret the user’s request with all of its content (i.e. entities) by using its outcomes.
We attempted several configurations and models to get the previously described final
result; as a consequence, in the following sections, we exhibit our past implementations
and solutions and explain why they are not suited for our framework.

38 5| Natural Language Understanding - NLU

5.5. Alternative solutions for NLU integration

In this section we show different alternative solutions for the use of NLU withing ConWeb,
which we explored. We also show why we discarded these approaches to follow the one
presented in this chapter.

5.5.1. Intents per content

The first approach (inspired by previous works [4]) used a different intent for each different
content of the page and additional intents for reading. It was a great starting point,
although it had a few issues. At first, it lacks intents of support (such as back, help,
and so on) and we believe that these intents are essential and fundamental to support the
user’s experience, and they are chosen in accordance with the different pattern’s guidelines
as mentioned in Section 6.1. Another issue was that, for what regards the content of the
page, it did not employ entities and only different intents. In other words, for selecting
which content to be reached a different intent is generated. The "intent" is the user’s
goal, and if the goal is to retrieve content, even if the content changes, the intent remains
constant; this is why entities are used. The aim is always the same (retrieving a piece
of content), and the only thing which changes is the content (entities). We opted to
discard this implementation in order to better correspond to the NLU utilization, and
also because entities extraction is a strong approach to searching the information in the
CNT; a thorough explanation can be found in Section 6.

5.5.2. Multiple Interpreters

After introducing entities and new intents, we initially assumed that the best strategy
would be to have various Interpreters for different intents, properly grouped. The reason
behind this choice was that the content of the page varies each time, requiring us to train
our model each time, while the majority of the intents and examples remain constant. As
a result, we created three distinct Interpreters:

• Navigation Interpreter: an Interpreter able to handle the content intent.

• Scaffolding Interpreter: an Interpreter able to handle the intents that should be
always present and not retrained like back, top, help and so on.

• Reader Interpreter: an Interpreter able to handle the intent read.

The Navigation Interpreter is the only one of the above Interpreters that needs to be
trained every time a page is accessed. Each of the defined intents worked as expected,

5| Natural Language Understanding - NLU 39

but the main issue we faced was the out-of-context problem. As previously stated, each
Interpreter provides a list of intents with a specific level of confidence; therefore, when
we fed the user’s utterance to the Interpreters, we got a lot of "false positives". This
occurs when there are few intents (not many for each Interpreter) and the training data
examples for each intent do not change significantly (in fact, the only things that change
in the Navigation Interpreter are the entities). We explored many ways to detect the
out-of-context problem (see if an entity is present to predict the Navigation Interpreter’s
out-of-context), but they did not match our criteria giving us always confidence problems
and "false positives". In fact, the out-of-context problem is well known in NLU, and
having extra Interpreters contradicts proper usage. Having a single Interpreter (as we
implement) is how various NLU approaches were thought, and the out-of-context problem
could be detected by a threshold on the confidence level; the fact that we have different
intents all together helps our Interpreter understand how to differentiate them, rather
than having few intents for each single Interpreter.

41

6| Intent Handlers: Bots

The framework is developed using the guidelines of a users study [5] in order to meet the
need of being a real and valid solution for visually impaired people, providing them with
an alternative and reliable way of accessing the Web. As a result, in this chapter, we
briefly summarize the users study with all of its outcomes and then show how we apply
these findings in our platform through the Intent Handlers.

6.1. User-based Requirements

In the time period from April to September 2021 two students at Politecnico di Milano
performed an extensive user research to understand how users would navigate content and
services accessible on the Web by “talking to websites” instead of browsing them visually,
by expressing their goals in natural language and accessing the websites through a dialog
mediated by a Conversational Agent (CA) [5]. With the help of 26 blind and visually
impaired users, along different sessions of interviews and co-design workshops, they were
able to identify and validate some prominent challenges and some related interaction-
design patterns sustaining the notion of Conversational Web Browsing.

Firstly users were asked them to describe their experience with current voice-based as-
sistive technologies. By using online tools for Conversational Agents rapid prototyping
(e.g., DialogFlow), they were solicited to express their desiderata on the design of novel
Conversational Agents for accessing websites. In the following we illustrate some of the
identified conversation patterns from this work, which mainly refer to the structure of
conversation for Web browsing. These patterns guided us in extending a preliminary ver-
sion of the framework platform to: i) support an incremental, dialog-based exploration
of the website, and ii) grant flexibility in the dialog organization, to fulfil the need of
personalized browsing experiences.
Shaping-up the map of the navigable space. Users claimed that learning the struc-
ture of the website is a crucial initial step when they access a website for the first time.
For this reason, they asked for strategies to identify high-level navigation mechanisms to
support them in understanding the website structure, and fluidly move along the main

42 6| Intent Handlers: Bots

areas (e.g.: “You can browse the main menu, [...]”). To identify how to move along differ-
ent information nodes, they mentioned mechanisms for link predictability (e.g.: “Do you
want to read a preview, or [...]”) and for keeping track of the navigational context (e.g.:
“You are now in the Wikipedia Home Page.”).
Navigating through intelligible and quick mechanisms. Depending on their tasks
and preferences, participants demanded for different navigation strategies. They described
in-depth explorations to narrow down navigation options along the hierarchy of nodes,
but especially punctual, fast-served requests were discussed as a means to locate a desired
content (e.g.: “Tell me about [...]”).
Summarizing and segmenting the page content. The research conversational para-
digms should prevent unwanted and unneeded explorations resulting in poor user experi-
ences. Segmenting contents and highlighting characterizing keywords could help localize
the content of interest (e.g.: “Jupiter is [<short content preview>]. Do you want to know
more or reading something else?”).
Providing access to conversation-scaffolding intents. Users frequently expressed
the need for scaffolding intents to help them identify possible actions at different navi-
gation levels and for the provision of feedback on the system status, such as the use of
landmark cues.

These patterns resulted in a specific methodology for conversation design that we adopted
to structure the dialog system of the ConWeb framework.

6.2. Dialogue System

We learned in Chapter 5 how our framework can comprehend the user’s intent by parsing
its utterance with an NLU model. After understanding the user’s intent, we must take
the appropriate action in response to it. To reach this outcome, there are various Intent
Handlers, which are components (bots) of our frameworks that can perform the appro-
priate action based on the provided intent. Intent Handlers follow the Interaction-design
patterns already described; later in this chapter a explanation on which patterns and how
they have been implemented and mapped is illustrated. There are different bots, each one
handling a particular set of intents and we are going to describe how they are organized
and built to accomplish this goal.

6.2.1. Intents mapping

Since different bots handle distinct sets of intents, Figure 6.1 illustrates a mapping between
all of the intents stated in Chapter 5 and their respective bot. We can observe that there

6| Intent Handlers: Bots 43

content helppage_info location

repeat back

top

affirmative

Navigation Bot
(NB)

Content Reading Bot
(CRB)

Scaffolding Intents Bot
(SIB)

Link Bot
(LB)

negativeread_links

read

read_paragraphs

Figure 6.1: Intents mapping

are four bots, in specific:

• Navigation Bot (NB)

• Content Reading Bot (CRB)

• Link Bot (LB)

• Scaffolding Intents Bot (SIB)

The NB just handles a single intent (which, as mentioned in Section 6.2.3 necessitates
sophisticated behavior), whereas the SIB manages a set of intents (those that should
improve the user’s experience when browsing the Web as default commands). The CRB
handles only intents related to a node of type content_reading (related description could
be found in Chapter 4) which will be explained in Section 6.2.5. The LB, on the other
hand, does not handle a specific intent, but it is tied to the NB; a detailed explanation of
its function is provided in Section 6.2.6.

6.2.2. Bots flow: Bot Manager

Before diving into the specifics of all the developed bots and their actions based on
the selected intent, it is crucial to understand which bot must be invoked based on the
chosen intent and the current navigation context. It is important to understand the flow
regarding the bot selection each time a new utterance from the user is parsed, as well
as why another component, the Bot Manager, is needed. Figure 6.2 illustrates the flow
from the parsing of the user’s utterance (extracting the intent and entities) to the call of
the appropriate bot. At first, we could see that based on the user’s intent, we might call
one of the tree bots: NB, CRB or SIB. It is important to note that the CRB is called

44 6| Intent Handlers: Bots

intent

navigation_bot

bot_manager
link_bot

scaffolding_intents_bot

intent ∈ {"page_info",
"location", "help", "back",

"top", "repeat", "affirmative", "negative"}

node type == "content_reading"

node type == "navigation"

content_reading_bot

intent∈ {"read", "read_links",
 "read_paragraphs"}

call

new_node

new node search

intent=="content"

Response

NLU Model
{NLU - output}

selected intent

intent selection

node type == "link"

Figure 6.2: Bots pipeline

only if the user’s current position in the page is a leaf node of type content_reading

(see Section 4.2.2) where the CRB could perform actions (Section 6.2.5), in other words
a navigation context check is performed. If the SIB is invoked, an appropriate action
(described in Section 6.2.4) is performed and no other actions are required. The NB is
the most challenging aspect since it will understand the content you are looking for and
will discover the corresponding node in the CNT, a better explanation of how the node
is found can be found in Section 6.2.3. However, once we reach the new node, we must
take the proper action based on the type of node. As a result, the Bot Manager selects
the right bot based on the node type:

• NB: the navigation continues, and the node’s content is explained.

• CRB: the node’s content is read or provided.

• LB: the Link Bot is invoked to redirect the user to a new URL.

The actions of all the bots are shown in the following sections, with further information
and explanations providing a comprehensive overview of the provided flow.

6| Intent Handlers: Bots 45

6.2.3. Navigation Bot - NB

The Navigation Bot is the framework’s most significant bot, assisting the user in navi-
gating across the whole CNT. Indeed, we can see from Chapter 4 how the page’s content
is separated into nodes, each of which contains additional nodes with inner content. The
NB key feature is its support for the intent content. In essence, when a user first enters
a new page, it is placed at the root node, and the NB will obtain the description of the
children nodes in order to let the user able to understand the content from the current
position. As a result, the user will be able to select which content to select or, in addition,
request another one that has not yet been presented but the user knows it is present (or
maybe the user wants to check if it exists or not). When a user’s utterance asking for a
specific content is parsed and the intent content is extracted, the NB will bring the user
to the requested node, updating the user’s navigation context (for example, the current
node during navigation) and other necessary structures relevant for the framework. After
having brought the user to the requested node, as explained in Section 6.2.2, the Bot
Manager will select the action to perform depending on the type of node where the user
just landed. If the node is a navigation node (or a parent node), the NB is invoked once
more to explain to the user the contents of its children nodes, as it did previously with
the root node. To summarize the NB features, we could state:

• Bringing the user to the requested node.

• Explain to the user the content of the children nodes of the landing node (i.e. the
node where the user arrived which is the root one if the user just landed in a new
page).

An important specification must be done on how the NB is able to find the correct node
of the whole CNT and could be found in the following.

CNT search

From Chapter 4, we learned how the CNT is constructed and how each node is represented.
The relevant information about its nodes, in particular, are their keys (i.e. the entities
representing the content of each node). The NB searches on the CNT using exactly the
entities extracted from the user’s utterance. In other words, after the user’s utterance has
been parsed by the NLU model and the intent content has been extracted, the entities
from the utterance are extracted and used to search in the CNT for the requested content
(node) using the following procedure:

• A depth first search is performed from the current position until all the CNT from

46 6| Intent Handlers: Bots

the current node is explored. Thus, a structure is built with two elements; the node
and the number of entities detected in that node from the ones specified by the user.
The structure saved is of form: {node, |entities|}

• A check is made to see if there exist at least one node with a matching of entities
strictly greater than 0. If it exists, the node with the most entities is picked (in the
case of several nodes with an equal number of entities, the node encountered first is
chosen, with a priority on the first layer of nodes); if it does not exist, the method
is repeated, beginning from the root node rather than the current one.

The following algorithms show the pseudo-algorithms used for the aforementioned proce-
dure. The Algorithm 6.1 shows how a recursive search is done starting from a specific node
and the population of a structure node_mapping with a map between the encountered
nodes and the matching keys with the entities extracted.

Algorithm 6.1 recursive_cnt_search()
Data: node, entities, node_mapping
Result: node_mapping between nodes and matched keys

1: for n ∈ node.children do
2: counter = 0
3: for entity ∈ entities do
4: if entity ∈ n.keys then
5: counter =+ 1
6: end if
7: end for
8: node_mapping[n] = counter
9: end for

10: for n ∈ node.children do
11: recursive_cnt_search(n, entities, node_mapping)
12: end for

The Algorithm 6.2 instead, using the Algorithm 6.1 performs the whole search starting
from a node and managing also the case in which a node is not found with the first search
and therefore the whole procedure is repeated starting from the root node.

6| Intent Handlers: Bots 47

Algorithm 6.2 search_node_by_entities():
Data: node, entities
Result: node_mapping between nodes and matched keys

1: node_mapping = {}
2: recursive_cnt_search(node, entities, node_mapping)
3: count_max = 0
4: found_node = None
5: for key, value ∈ node_mapping.items() do
6: if value > count_max then
7: found_node = key
8: count_max = value
9: end if

10: end for
11: if found_node ̸= None then
12: return found_node
13: end if
14: node_mapping = {}
15: recursive_cnt_search(root, entities, node_mapping)
16: count_max = 0
17: found_node = None
18: for key, value ∈ node_mapping.items() do
19: if value > count_max then
20: found_node = key
21: count_max = value
22: end if
23: end for
24: if found_node ̸= None then
25: return found_node
26: end if
27: return None

It is important to note that the algorithm just provided is created based on frequent
user experiences when looking for content. All of the information used and the guidelines
followed, in particular, could be summed up in the following points:

• The user usually requests something that has already been presented by the assistant
or is related to it. As a result, the search begins at the current node in the CNT. If

48 6| Intent Handlers: Bots

the user requests something unrelated, it will not be found, and the search will be
repeated from the root node.

• The user normally asks for something presented by the assistant on its first layer
of nodes, for this reason in case of multiple nodes with the same number of entities
the first one encountered is chosen. Even if the search is performed with a DFS
algorithm, the results of the first layer of nodes are stored before all the remaining
ones.

• The framework cannot know the content asked by the user, for this reason the two
searches (one from the current node and the other from the root) are performed
on the entire CNT. It is important to note that the performance impact of these
searches is negligible because the CNT should represent the content of a page, and
even with hundreds of nodes, the performances do not have a significant impact,
and a higher number of nodes indicates an inadequately annotated website or a not
proper developed Web page.

• If a user wants to be more specific in asking for a specific content by using more
words, for example if there exists identical content but with distinct peculiarities,
the Navigation Bot can execute the search using all of the words (entities) provided
by the user, therefore accomplishing its request on the entire CNT.

All the information on the CNT search stated before have meaning only and only if the
annotation of the Web page has been computed or done correctly and in a proper way.
The following points summarize the most significant guidelines to follow when using keys
to annotate the website:

• The keys should be words (entities) that represent the content.

• The keys should be placed to support and follow the hierarchy; the framework will
handle the rest. A node discussing solar planets, for example, should be annotated
using the keys: planets and solar. If the referenced node contains a child node that
discusses Mars, it should be annotated with: planets, solar and Mars. In this way the
user is able to reach the Mars paragraph specifying also "solar" and "planets" even if
there is another node of the website talking about Mars. Of course, the Navigation
Bot can discover the appropriate content even if the annotation hierarchy is not
properly annotated, but it cannot handle limit scenarios like the one stated before
where the are multiple nodes talking about the same content in different places on
the same page.

• The following entities should not be included in the keys: first, second,..., tenth,

6| Intent Handlers: Bots 49

paragraph, help, page, back, top, yes, okay, of course, where, link and repeat. The
rationale for not including these items is the out of context problem, which is
explained in Chapter 5.

6.2.4. Scaffolding Intents Bot - SIB

The Scaffolding Intents Bot (SIB) component is in charge of handling the user’s default
requests, which are identified by the intents already provided. This section explains which
action is executed based on the chosen intent and the current context. Given that the
intent has already been chosen and the bot has been invoked to handle it, we will dive
into the management of all intents. All of these intents has been already presented in
Chapter 5.

Help

The help intent is one of the main ones handled by the SIB. It can be accessed at any
moment by a user who asks assistance. When the SIB is invoked, it returns a specified
answer to the user, triggering the need for assistance. Following then, the client will be in
charge of handling the response and composing a sentence to help the user; specifically,
it will be a description of the assistant’s features and how to use it. The goal of this
intent is to provide users with an exhaustive answer in order for them to correctly use the
assistant.

Page information

The SIB also handles the page_info intent. It, like the help intent, could be invoked
by the user at any moment. When the SIB receives the mentioned intent, it will respond
with a specific answer including the needed information. The description of the first
layer of children nodes is retrieved from the root node and then added to the response.
Finally, the client will be in charge of formulating the response to expose the content of
the descriptions received to the final user. This intent’s purpose is to offer users with a
comprehensive answer about the major content of the current page they are visiting.

Repeat

The SIB handles a simple intent repeat of repeating what the assistant previously stated.
repeat could be invoked by the user at any moment. When the SIB receives the mentioned
intent, it will return the old response that was originally returned during the prior answer.
The purpose of this intent is to allow users to listen again for something they may have

50 6| Intent Handlers: Bots

misplaced or simply wish to listen again. The previous response is saved in a cache
component and will be retrieved by the SIB. A more detailed explanation of how cache
is implemented can be found in Chapter 7.

Top

If users become lost while browsing Web pages, it is essential to return them to the point
where the browsing began. As a result, the SIB manages the intent top. It, like other
intents, can be invoked at any time and will return users to the point where they began
browsing. Specifically, upon receiving the top intent, the SIB will obtain from a cache
component (details of which can be found in Chapter 7) the initial URL specified by users
and redirect them to the indicated one; the current context will be updated. It is critical
to note that the URL to which the intent top redirects is the one specified by the user to
begin navigation. If the user navigates between link nodes, the URL to which the intent
top refers will always be the same (the one stated at the beginning when opening the first
Web page). If, on the other hand, the user opens a new website (without using any links
on the page) and abandons the existing one, the URL to which the intent top redirects
is changed to the one just used.

Affirmative and Negative

The affirmative and negative intents are handled by the SIB and should be invoked
only after the assistant has asked the user a specific question. Obviously, a user could
trigger the intents at any moment, but the assistant’s response will be that it did not
understand because the current context does not require a positive or negative response.
The current assistant supports the question "Do you want to read the next paragraph?"
asked by the CRB when the end of a paragraph is reached. If the SIB is invoked in the
current context on the intent affirmative, the following paragraph will be read, calling
the CRB. If the intent negative is invoked, no action is taken and a simple response is
forwarded to the client.

Back

When users navigates the current page using the CNT, they explore all of the nodes. If
there is the need of going to the preceding nodes, the intent back is triggered. The SIB
can manage the back intent, and when triggered (which can happen at any time), it will
take the user to the previously visited node, updating its current navigation context. The
node queue is made feasible by a list of nodes handled by the framework that keeps track

6| Intent Handlers: Bots 51

of all the visited nodes on the current Web page. When the intent function is invoked
while the user is at the root node, the previously viewed page is loaded and the navigation
context is updated. However, the aim of this intent is to navigate through nodes and not
through pages for which there are links and if needed the intent top.

Location

The SIB can handle the location intent if users get lost while browsing a Web page and
wants to know where they are under a certain URL. When the aforementioned intent
is activated, the SIB will retrieve all the relevant information and forward them to the
client, who will be responsible to formulate an exhaustive response to the user. The SIB,
in particular, will examine the current node type. If the node is a navigation node, the
SIB will retrieve its children’s descriptions, along with the parent’s, and transmit them to
the client. If, on the other hand, the node is of the type content reading, the description
of the node, as well as the type of text that is present, are transmitted to the client. The
link node cannot be used as when users go through it, they are redirected to a new page,
making impossible to activate the intent. Finally, the client will formulate an answer that
describes the current position and what you can do from there (surf children nodes and
which ones or read different type of content).

6.2.5. Content Reading Bot - CRB

In this section, we will go through the Content Reading Bot (CRB), which is in charge
of reading and handling the text on the page. When users land on a content_reading

node, the CRB is triggered; in other words, after asking the assistant to retrieve a specific
content, they are brought to the node regarding the desired content, which is of type
content_reading and subsequently the CRB is called. When the CRB is invoked, it is
first initialized with all of the content of the selected node, specifically all of the text. We
know from the Section 4.2.3 that each leaf node contains a cw-attribute identifying the
content, which value is text, thus the CRB is initialized using this one. The text inside
the text attribute is divided into n paragraphs following the tag <p>...</p>, so that
the CRB can handle them. For this implementation, we limit the number of supported
paragraphs to 10, because we discovered that in our test page of solar system, for a total
of 84 paragraphs divided into 40 nodes, there is an average of 2.1 paragraphs per node,
and the maximum number of paragraphs found in a single node is 6, for these reasons 10
is a sufficient number to cover the majority of cases. Furthermore, the reason why the
number of paragraphs must have a definite maximum number is that a user could utilize
an NLU model to request a particular paragraph, therefore we must train the Interpreter

52 6| Intent Handlers: Bots

bot_manager

link_botcontent_reading_botnavigation_bot

Extract from node
"text".

Extract up to 10 different
paragraphs from the content of

"text".

read 1st paragraph of
"text"

response
call

node type == "navigation" node type == "content_reading" node type == "link"

perform

perform

Figure 6.3: CRB initialization

to comprehend all the numbers and cases to call a specific paragraph. Also, if the number
of paragraphs is too high, it is possible that the annotation on the website was not done
properly; nonetheless, the framework supports scalability, and the number of supported
paragraphs may be easily expanded even if it goes against the hierarchical navigation
principles and the features of supporting navigation by content. To summarize the CRB
initialization when a node of type content_reading is encountered, we could state:

• 1. the attribute "text" from the node is extracted.

• 2. "text" content of multiple paragraphs identified by the tag <p>...</p> is ex-
tracted and saved for a maximum of 10 paragraphs.

• 3. an answer in provided to the user who just landed on the selected node.

The third point emphasizes that an answer is delivered to the user, but how it is formed
necessitates a further explanation. It is assumed that the user wants directly to hear the
content, therefore the text is returned and read by the client. In particular, only the first
paragraph is returned with a final question if the user wants to continue the reading to the
following paragraphs (only if they exist). Figure 6.3 illustrates the flow of the mentioned
steps about the CRB.

What has been stated so far has been the initialization of the CRB for a specific node

6| Intent Handlers: Bots 53

when the user is brought to it, but to continue the reading, the CRB also supports
the intents read, read_links and read_paragraphs, therefore when users are inside a
content_reading node, they can ask to read a specific content, to read all the links which
are present (and have been already read) or to know how many paragraphs are present.
In the following sections we explain better how each intent is managed by the CRB.

Read

The intent read aims at reading the specific content requested by the user. When the
intent read is triggered, it is sent to the CRB along with its entity (thanks to the NLU
model explained in Chapter 5). As a result, the CRB will read and return as text the
exact entity specified by the user. The following entities are supported by the Content
Reading Bot:

• first | first paragraph

• second | second paragraph

• ...

• tenth | tenth paragraph.

The corresponding content will be returned and read by the client, and a question about
reading the next paragraph will be asked (only if it exists). To exit the node and proceed
to another, a user could simply ask for another content or go back with the intent back,
the use of the CRB will not interfere with the other intents due to proper NLU use and a
proper implementation of the Policy component, which is better explained in Chapter 7.

Read links

If the text contains several links, which often happens in Web pages, users can re-
trieve them by using the intent read_links. In particular, when users are inside a
content_reading node (and therefore the CRB has already been initialized), they could
ask to know which links are present in the text that the assistant has just read. In this
manner, the user can select one of the given links and be redirected to the appropriate
page. To select one of the proposed links, users must use the term link to indicate to
the Interpreter that they wish to select a specific one and easily trigger the read_links

intent.

54 6| Intent Handlers: Bots

intent

navigation_bot scaffolding_intents_bot

intent ∈ {"page_info",
"location", "help", "back",

"top", "repeat",
"affirmative", "negative"}

perform

content_reading_bot

intent∈ {"read", "read_links",
 "read_paragraphs"}

intent="content"

read_links

read_paragraphs

extract intent

read all the links

read number of
paragraphs

read 1st paragraph

read 2nd paragraph

read 10th paragraph

...

response

response

response

response

response

response

entity extractedread

selected intent

perform

Figure 6.4: CRB features

Read paragraphs

When the user first lands on a content_reading node, the assistant reads the first para-
graph and then asks if the user wants to read the next one (only if another paragraph is
present). This choice is made for usability using the user’s study guidelines [5], however if
the user wishes to know how many paragraphs are there in the text, the read_paragraphs
intent could be used. The CRB will return the number of paragraphs in the current node,
and users can choose which one they prefer. Figure 6.4 illustrates a flow diagram of the
CRB process including all of its features.

6.2.6. Link Bot - LB

The Link Bot (LB), which is in charge of dealing with nodes of type link, is another
important component of the Intent Handlers. Because the LB is only triggered when the
user lands on a node of type link as a result of the NB, it does not handle any form
of intent. In other words, it is simply responsible for carrying out a certain action in
response to a specified event. When a user arrives at a general node, the following actions
are carried out:

• The node type is checked and depending on the type the corresponding bot is called.

• If the type is link, the LB is called.

• The LB is initialized retrieving from the node the link contained in it. The original
link, is retrieved when the page is loaded checking inside the annotated content or
for additional attributes as the href one.

• A response is then returned to handle a new URL with the one extracted before.

6| Intent Handlers: Bots 55

After these steps has been completed, the new URL is loaded, the navigation context is
updated and a response is returned to users informing them about the new page where
they just landed.

6.3. Interaction-design patterns integration

This section demonstrates how the Interaction-design patterns explained in Section 6.1
are implemented into the framework platform. Table 6.1 displays the mapping between
the patterns and the architecture choices. It is important to note that the architectural
choices may refer to a general architecture structure or a single component; the real
purpose of the table is to provide the reader with an understanding of how the patterns are
integrated and how our platform supports them. The rationale for this is that interaction-
design patterns are abstract in terms of particular architectural decisions, therefore they
might be supported intrinsically in the entire platform architecture. Another significant
observation is that the requirements found for the framework platform from interaction-
design patterns want to achieve the goals of these ones but are affected by technological
limitations or implementation choices; to better understand what form of specific features
are present in the framework the reader could refer to Chapter 6 and Chapter 7.

56 6| Intent Handlers: Bots

Interaction-design patterns Conversational Framework Architecture choices
Shaping-up the map of the

navigable space
CNT implementation is used to be the model of
the website (Chapter 4) and create a mental map
for the user. CNT nodes reflect website content
in order to be available through navigation on the
CNT.

Navigating through
intelligible and quick

mechanisms

The CNT structure represents navigation through
its nodes, made possible by the Navigation Bot (see
Section 6.2.3). In addition, the Link Bot makes it
possible navigating through Web pages (see Sec-
tion 6.2.6).

Summarizing and
segmenting the page content

The CNT structure is made of numerous nodes
which provide content segmentation in order to
have a general view of different contents in a wide
context. In addition, the Navigation Bot (see Sec-
tion 6.2.3) provides description of nodes to let the
user know in advance the content of a section; fur-
ther works aim at retrieving the description au-
tomatically (future works are explained in Sec-
tion 8.4).

Providing access to
conversation-scaffolding

intents

Scaffolding intents are managed by the Scaffolding
Intents Bot (SIB) explained in Section 6.2.4. The
SIB could be triggered at any moment by the inter-
pretation of a user request by the NLU model (see
Section 5).

Table 6.1: Interaction-design pattern Integration

57

7| Framework Implementation

and Evaluation

This chapter dives into the specifics of the ConWeb framework’s implementation. First,
we show a general overview of the technologies used, subsequently we illustrate the entire
implementation as an architecture with different goals than the one described in Chap-
ter 3. Following that, we go through all of the main components of the provided view in
depth, resuming all of the functionalities discussed in the preceding sections. Finally, we
describe the implementation evaluation through our users study with people with visual
impairments after assessing our framework from a technical perspective.

7.1. Implementation

As already described in Chapter 3, the ConWeb platform is organized along different
components which use different technologies:

• Languages:

– Python1 is used to develop the main logic of the ConWeb framework.

– JavaScript and HTML are used to develop the front-end client.

• NodeJS2 is used to extend the front-end client on being deployed on server-side
together with supporting multiple and different connections by various users.

• Rasa3 is used as NLU to parse user utterance and extract information from it,
being an open-source Conversational AI giving us the information we need for our
implementation.

• Selenium4 is used as Web APIs to simulate browsing through a Headless Browser
and retrieve content from Web page elements. Selenium APIs are properly supported

1https://www.python.org/
2https://nodejs.org/it/
3https://rasa.com/open-source/
4https://www.selenium.dev/

58 7| Framework Implementation and Evaluation

END-USER DEVICES
Conversational Agents (Web clients, portable devices)

over network/local

PRESENTATION LAYER
voice-based commands

APPLICATION LAYER
business logic of the application

network

PERSISTENCE LAYER
html objects, data objects

DATA LAYER
document object model (DOM) of the page

Conweb
Server

Conweb
Client

network

 APIs

 APIs

Figure 7.1: Layered architecture

in Python and therefore useful in our context.

• Google Speech Recognition/Synthesis APIs are used to translate voice into text
and text into voice on client side. They result in being the most audible and accurate
speech recognition/synthesis.

• Linux Ubuntu 20.04 Server is used to test the framework and deploy it in order
to be always available.

Figure 7.1 presents a layered organization of the platform architecture, showing how the
different technologies served the implementation of the different layers in the application
stack.

The Presentation Layer provides the ConWeb Client from which the user can communicate
with the ConWeb Server, whereas end-user devices are used by the final user to access the
framework. Instead, the ConWeb Server represents two layers: the Application Layer (all
of the framework’s business logic) and the Persistent Layer (intermediate representation
of HTML objects). The Data Layer, which represents the document object model (DOM)

7| Framework Implementation and Evaluation 59

User

ConWeb Client
Web clients

Portable devices

Figure 7.2: End-user devices

of the Web pages visited by the final user, is the last layer. All of these layers are part
of the overall behavior of the pipeline started by the final user. We will go through each
layer in detail in the following to see how the framework is built and which components
are needed to manage its features.

The source code of the Conversational Web Framework could be found in the following:

• ConWeb Client: https://github.com/spada397/conweb-client

• ConWeb Server: https://github.com/spada397/conweb-server

7.1.1. End-user devices

The first layer, as previously stated, represents the end-user devices for accessing ConWeb
services. To address all possible eventualities, several ways of accessing these services and
hence the Web must be considered. As a result, we have identified two types of devices
as show in Figure 7.2:

• Web clients

• Portable devices

With Web clients, we mean a specific URL that allows access to ConWeb services from any
device using any browsers. Instead, by portable devices, we mean a client like Amazon
Alexa that can be connected to a certain service (like our ConWeb APIs) and thus utilized
anywhere. It is worth noting that mobile devices are included in the Web clients because
they can be connected to our specific URL even if they are portable. The first type
of devices provides extensive control over our services (the keyboard might be utilized
as aid in addition to voice commands, as recommended by users study in Section 7.3),

https://github.com/spada397/conweb-client
https://github.com/spada397/conweb-server

60 7| Framework Implementation and Evaluation

jsHTML

 Google Speech
 Recognition/Synthesis

 APIs

URL

retrieveretrieve

send

{"user": "test_user",
"utterance": "Hello!"}

call

index.js

User
Interface

HTML

request/response

jsUser

Response:
{"res_type": "navigation",

"res_description": "new_url",
"res_object": Obj}

ConWeb Server

response_parser.js

Presentation Layer
 (ConWeb Client)

Figure 7.3: Presentation Layer

whereas a portable device could be beneficial when traveling or being away from a personal
computer. For our implementation, we focus on the first type of devices letting users able
to use it through Google Chrome and Firefox. It is important to note that our solution
includes APIs that could be accessed by any properly setup device in order to support all
the mentioned ways of access.

7.1.2. Presentation Layer

As previously stated, the Presentation Layer refers to the ConWeb Client, which is ac-
cessible via end-user devices and allows communication with the public APIs exposed by
the ConWeb Server. In our implementation, we concentrated on a client available via a
specific URL using Google Chrome and Firefox, where the user could use it and explore
all of the platform’s ConWeb features. The ConWeb Client is implemented in Node.js
and includes simple front-end HTML pages as well as some JavaScript to handle external
APIs queries. Figure 7.3 illustrates the ConWeb Client’s detailed structure. From a end-
user device, the user could request a specific URL to access the services, and the ConWeb
Client will retrieve the necessary files (HTML and JavaScript files) and transmit them
to the interface via its core logic (index.js). The user will be able to utilize a client with
voice commands and keyboard assistance in this manner; a thorough explanation of these
functionalities can be found in Section 7.3. The JavaScript files will be able to record user
voice and, using Google Speech Recognition APIs, translate it into text before sending
it to the ConWeb Client. The ConWeb Client will then send the request to the ConWeb
Server in the form of a JSON Object with two fields: user and utterance. The term
user refers to the current session and user of ConWeb (useful for dealing with concurrency

7| Framework Implementation and Evaluation 61

ConWeb Client

iff URL is requested or page change is detected: call

Application Layer URLPersistence Layer Data Layer{"user": "test_user",
"utterance": "Hello!"}

Response:
{"res_type": "navigation",

"res_description": "new_url",
"res_object": Obj}

ConWeb Server

Figure 7.4: Application and Persistent Layers

requests), whereas utterance refers to the text recognition of the user request. After the
ConWeb Server has parsed and analyzed the user request, a Response Object is returned,
which will be parsed by response_parser.js. The Response Object elements (which are
res_type, res_description and res_object) are required to allow the parser to reconstruct
the response in natural language for being understood by the user. The final response
is then provided to the end-user device, where it is translated into voice using Google
Speech Synthesis APIs.

7.1.3. Application and Persistence Layers

This section introduces the Application Layer and the Persistent Layer, both of which
are components of the ConWeb Server. We will first demonstrate how the two layers are
structured within the ConWeb Server, and then we will go into detail of each of them.
As shown in Figure 7.4 when the Application Layer receives a user request to navigate
the Web on a new URL, the Persistence Layer is called, which retrieves the HTML page
requested by the user from the Data Layer. The Persistence Layer will then handle all of
the data inside proper structures before returning them to the Application Layer, which
will handle them and return the required content to the user. In this manner, if users make
a subsequent request that is related to the page they are navigating, the Persistence Layer
will not be called since the Application Layer will have all of the necessary structured data
for that page, allowing it to generate the answer directly for the users. In practice, the
Persistence Layer is called only when a new page has to be parsed or a change in the page
is detected; the Application Layer has all of the page’s content when the Persistence Layer
returns structured data (CNT). In the following sections, we will dive into the specifics
of the two layers in order to comprehend their main functions.

62 7| Framework Implementation and Evaluation

session
handler

SessionHandler.py

Cache.pyState.py

policy

PolicyManager.pyPolicy.py

cnt

Node.pyCNT.py

bots

crb

CRB.py

lb

LB.py

nb

NB.py

sib

SIB.py

BotManager.py

Response.py

interpreter

RasaInterpreter.py

Rasa Data and
 Config files

Rasa models

Application Layer

Persistence Layer

Presentation Layer

{"user": "test_user",

"utterance": "Hello!"}

Response:

{"res_type": "navigation",

"res_description": "new_url",

"res_object": Obj}

 APIs

Figure 7.5: Application Layer

Application Layer

In this section we dive into the detail of the Application Layer which is shown in Figure 7.5
in a detailed architecture view. As previously stated, the Application Layer is located
between the Presentation Layer and the Persistence Layer (which is only called when
necessary) and is a component of the ConWeb Server. It is specifically developed in
Python 3.8 and includes many modules, which will be discussed in this section following
the real pipeline started upon the return of the user request.

Session Handler Module This module is in charge of managing the current user
session and its navigation context. In particular, SessionHandler.py, upon receiving
a user utterance, determines whether it is a request for a specific URL (opening a new
website) or a request within the current page; this check is made by a simple control on
specific words used by the user and its current navigation context; no NLU is used to
perform this type of check because it is assumed the framework is used to first open a
website and then navigate it. The cnt module is called if the request is to open a new
URL; otherwise, the policy module is invoked to determine which action to do if the
request is within a given URL. If the cnt module is called, subsequently is called the
interpreter module in order to train the Interpreter for the new URL based on the
extracted keys from the CNT. State.py is a particular class that is used to track the
user’s navigation context (current node, current URL, last action performed, and so on),

7| Framework Implementation and Evaluation 63

whereas Cache.py contains some helpful data that may be utilized to speed up various
actions or processes.

CNT Module When a new URL is passed to the session handler, it calls the cnt

module, which is in charge of constructing a new CNT for the newly visited page. To
accomplish this behaviour, it invokes the Persistence Layer to extract information from
the actual Web page and then generate the CNT following the already presented Algo-
rithm 4.1. In particular, to retrieve Web page elements and simulate navigation, the
Persistence Layer is called using also Selenium APIs in an Headless Browser. CNT.py

represents the CNT’s class, whereas Node.py represents the CNT’s node structure.

Policy Module When a new utterance has to be parsed and a correct action needs to
be made on the current Web page, the policy module is called. To begin, it calls the
interpreter module, passing the utterance to be parsed; in this way, the policy module
will have all the intents and entities necessary to understand the user’s goal. Following
that, it calls the bots module arbitrarily in order to conduct the appropriate action
and obtain the answer to forward to the session handler and then to the Presentation
Layer. It is important to note that the correct call to the bots module is determined by
the intent and entities collected, as well as a custom algorithm already briefly described in
Chapter 6. The given algorithm is specified in Policy.py and is resumed in Section 7.1.3.
PolicyManager.py, on the other hand, manages different or other policy files; this way,
for future updates, if a new policy with different behaviors needs to be implemented, it
can be done easily; using entities and intents, one can arbitrarily decide which action or
call to the bots module perform.

Policy algorithm In this section, we will go through how the policy module decides
which action to take given all of the data. After passing the utterance to the interpreter
module, the list of intents with their confidence and entities is returned. As shown in
Algorithm 7.1, we extract the intent with the highest confidence and check to see if
it is one of the read_links or read_paragraphs types. In addition, we check if the
user’s current position is a leaf node of the type content_reading (i.e. last used bot is
an instance of CRB). If both checks pass, the user most likely asked for one of the two
intents inside a leaf node of type content_reading, thus we call the CRB. If not, we check
how many entities have been extracted: if at least one entity has been extracted, the user
most likely requested a specific content or text to be read, so we first check if the entities
extracted are of a CRB (first paragraph, second paragraph,...) and if successful, we call
the CRB. If entities are not of a CRB, they must be of a CNT for construction; thus, we

64 7| Framework Implementation and Evaluation

search for the specific Node (Algorithm 6.2) using the extracted entities and then call the
Bot Manager (explained in Section 6.2.2). If, on the other hand, no entities are detected,
it is likely that the user requested a default action, in this case the SIB is called if the
confidence of the extracted intent is above a given threshold (0.4 in our implementation).
In all other circumstances, the user receives a not_understand response. It is important
to note that the threshold, no matter how low, is intended to exclude intents that are
most likely incorrect; additionally, with our Rasa implementation, all intents are classified
with a high confidence (0.9 in most cases) and a very low confidence for others (0.01); as
a result, we do not handle intents other than the one with the highest confidence and the
value 0.4 wants to include misunderstandings with an high confidence in rare cases.

Algorithm 7.1 handle_utterance()
Data: utterance
Result: call to the proper Intent Handler

1: parsed_utterance = rasa.parse(utterance)
2: selected_output = parsed_utterance[0] /* the output is an array ordered by

confidence*/

3: if selected_output.intent ∈ [read_links, read_paragraphs] and last_used_bot ==

isInstance(CRB) then
4: CRB call
5: else
6: if |selected_output.entities| > 0 then
7: if |selected_output.entities| ∈ CRB_entities then
8: CRB call
9: else

10: new_node = search_node_by_entities(
current_node, selected_output.entities)

11: BOT MANAGER call
12: end if
13: else
14: if selected_output.confidence > 0.4 then
15: SIB call
16: end if
17: end if
18: end if
19: return not_understand

7| Framework Implementation and Evaluation 65

To conclude this digression on the policy module, we note out that the current imple-
mentation with its algorithm is arbitrary and various other implementations might be
done and have been attempted before arriving to the one shown in this chapter.

Interpreter module Another important module is the interpreter one, where the
user’s utterance is passed to be parsed by Rasa APIs. When the user visits a new page,
via a call from the session handler module, the Interpreter for that URL is already
trained. Rasa Configuration files (which specific Rasa Pipeline to utilize by the NLU)
and Rasa Data files (intents with examples of utterances with all possible entities, taken
from the CNT) are used to train the new Interpreter. RasaInterpeter.py represents
the Interpreter class, whose real model is saved in a separate directory. When a user’s
utterance is passed, the appropriate model (depending on the current user and the URL) is
selected and utilized to parse the sentence and return the result in the form of intents,
entities and confidence. It is important to note that each Interpreter is saved in
Cache.py and can be reused even if the user exits the current page (if the page changes
content, the Interpreter need to be retrained).

Bots module This module is in charge of carrying out the appropriate action depending
on the logic of the policy module. In specifically, the policy module will invoke the
appropriate bot module (one of the crb, lb, nb, or sib modules, which represent the
relevant bots) or BotManager.py, which will be in charge of picking the appropriate bot
module if the user has just arrived at a new node. As mentioned in Chapter 6, each bot will
handle different cases, and after completing the desired action, a response will be prepared
and returned to the policy, which will transmit it to the session handler module and,
finally, to the Presentation Layer. Response.py is used to model the response in order to
have a correct structure that the client can understand (the response will contain fields
like res_type, res_description, res_object and so on) and to change the way the agent
will respond based on the needs without changing the logic of the bots module.

All of the modules in this part form the primary framework logic and pipeline, with the
interpreter module utilizing Rasa APIs. It is crucial to note that other interactions
between all the modules exist and are not stated for simplicity; the goal of the imple-
mentation description is to understand the modules’ aims and their major interaction in
order to comprehend the ConWeb business logic.

66 7| Framework Implementation and Evaluation

URLURLApplication Layer parsers

DOM

Data Layer

Persistence
Layer

structured data

Selenium APIs

Figure 7.6: Persistence Layer

Persistence Layer

The Persistence Layer is another important component of the ConWeb architecture be-
cause it is in charge of processing data from the Data Layer. As shown in Figure 7.6,
when necessary (see Section 7.1.3), a URL is sent to the Persistence Layer (specifically,
to the parsers module), which is in charge of getting data from the Data Layer using an
Headless Browser and Selenium APIs. Subsequently, the parsers module is responsible
of transforming the data into proper structures so that the framework can understand
them and build the CNT mentioned in the previous sections. In particular, part of the
Algorithm 4.1 uses Selenium APIs. It is crucial to note that the Persistence Layer could
also be used to handle navigation, namely the opening of new links.

7.1.4. Data Layer

The Data Layer is the last layer of the ConWeb architecture, and it represents the data
(DOM) incoming from the Web. From the Persistence Layer, using an Headless Browser,
it is possible to mimic Web page browsing and retrieve elements from loaded URLs with
specified Selenium APIs (for example, find_elements_by_xpath(), referenced in Algo-
rithm 4.2 as retrieveAllChildrenElements(), helpful for retrieving elements on the
Web page based on the HTML attributes they contain). When the page elements are
retrieved, the procedure is completed while keeping the hierarchy of these elements in
order to allow the framework to have built the CNT.

7.2. Technical evaluation

We performed a technical testing to measure its response time to ensure that it met
performance and usability requirements. In particular, long wait times for training Rasa
Models occur during the deployment and testing of the Conversational Web Framework.
The reason for this delay is that the deployment is done on a virtual machine with only

7| Framework Implementation and Evaluation 67

the CPU enabled for processing and no GPU available, which should be present in order
to minimize the waiting time for Rasa APIs. Table 7.1 illustrates our recently found
performance metrics. When a new page is loaded, a new training must be performed, for
this reason we divided the metrics distinguishing the cases. It is important to note that
the high response time is present only during the opening of a new page and could be
minimized changing hardware configurations. We also added metrics based on pages size
since they are relevant for the response time. It is important to notice that with Response
Time we mean the time from which the final user finish talking to the time when the
assistant responses back and has been obtained as an average value from several executions
of the framework upon different inputs (in particular, 50 executions for Response Time
within a page and 10 executions for Response Time on new page).

Configuration Response Time Response Time
on new page
(with Cache)

CPU: Intel(R) Xeon(R) Silver 4116
2.10GHz, 6 physical cores.

RAM: 16GB
GPU: no

Medium test page size: ∼250KB

32.2ms ∼30sec (9.7sec)

CPU: Intel(R) Core(TM) i7-10875H
2.30GHz, 8 physical cores.

RAM: 32GB
GPU: no

Medium test page size: ∼250KB

30.1ms ∼15sec (8.9sec)

Table 7.1: Response Time metrics

As can be seen, in a real implementation for wide use, including multiple GPUs and a
proper configuration, the waiting time (in particular when loading new pages) could be
acceptable and in range of few seconds.

7.3. User-based evaluation

This section explains how we tested our framework with a sample of blind and visually
impaired users.

7.3.1. Study Set-up

The ConWeb framework is deployed on virtual machines at Politecnico di Milano in order
to facilitate remote testing, and we used Web browsers: Google Chrome and Firefox as

68 7| Framework Implementation and Evaluation

Figure 7.7: ConWeb Client Interface

end-user devices. Figure 7.7 illustrates the interface we utilized for the ConWeb client,
which is accessible via a specific URL. The use of large fonts and particular colors is
intended to assist partially sighted people in using the assistant. To communicate with
the ConWeb server, the final user must first connect to it by pressing the j key and then
holding space so that it could register and transmit its message. Users can stop the
assistant from talking by pressing the f key, and by pressing it again, the assistant will
resume where it left off. The f and j keys are chosen because they are the primary keys
with a little relief, essential for blind or partially sighted people, allowing them to rapidly
find the relevant keys and utilize the client in a proper and easy way.

7.3.2. Results

Using the demo described in the previous section, we conducted users study with four
distinct users, the results of which are presented in the following. It is important to
note that our framework structure and architecture are also the result of the users study
mentioned in this section and it is thus required for proper development.

Camillo, who has been blind since birth, was the first user to test our framework. He
has been fascinated by our work and gave us many different recommendations on how
to better develop our framework and continue our work. He advised us to register and
send the message by pressing and releasing the space key. He also suggested that we use
certain keys (j and k) that provide a little relief for blind people. In addition to this, with
him, we ran into some issues with microphone permissions on its device, authorized via
a pop-up not noticed by screen readers. We spent a significant amount of time resolving
this issue, which demonstrated how screen readers can encounter issues in everyday use.
In fact, pop-up authorization is required to access the client microphone (as a design and

https://conweb.mateine.org/client/voice

7| Framework Implementation and Evaluation 69

security measure), hence we must use browser APIs (in particular Firefox ones). The
pop-up prompted by Firefox (version 97.0) was in an upper layer outside the browser and
hence exceedingly difficult for the screen reader to catch, especially for a blind person
from birth. With Camillo user study we experienced a real issue with screen readers and
also we enrich our framework thanks to his suggestions on how utilize alternative keys
(the one stated in Section 7.3.1) to make the demo more usable and understandable to
the majority of people.

Alessandro, a person who has lost his sight, was the second user to test our framework.
He was pleased to assist us with the development and advised that we make the framework
(particularly the user interface) more customizable in order to fulfill the needs of various
users. In fact, he would rather have an assistant who is comparable to screen readers
than one who is extremely distinct from them. Because everyone has different needs and
preferences, a customizable assistant with a variety of functions is the ideal method to
address the aforementioned issue. The customization might range from the commands
to use and interact with the framework, to the functions exposed, and even the way the
assistant exposes Web content. To conclude this test, Alessandro assisted us from a more
technical perspective in terms of the framework’s usability.

Luca, a blind person from birth, and Chiara, a partially sighted person, were two stu-
dents who were eager to assist us and test the framework. They were fascinated by the
assistant and its capabilities, recommending that we speed up its voice because they are
used to listening to screen readers at a high voice speed. At the same time, they admired
the way the assistant proposed the content, particularly in a different way than a screen
reader, which is very important for a complex website like Wikipedia (often used by stu-
dents). In fact, contrary to Alessandro’s viewpoint, students prefer an assistant different
to a screen reader, and therefore customization is one of our future aims. Students prefer
an assistant who exposes content in a new way, complementing our findings on how to
develop a mental map of the website to aid navigation.

All three user tests were beneficial to our development and provided us with contrasting
results that, in the end, represented the variety of users who could utilize our framework.
To summarize the most relevant outcomes after further examination, we could mention
the following aspects:

• The framework should fall somewhere between a traditional voice assistant (such
as Amazon Alexa, Siri, and others) and a screen reader. In truth, our assistant
wishes to aid people who are browsing online sites, but our target users are people
who are used to dealing with screen readers. In this sense, people want complete

70 7| Framework Implementation and Evaluation

control over what is happening on the website and to be able to traverse it quickly.
As a result, we focused our future development on adding assistance features and
customizations.

• Our framework must be completely configurable in order to suit the criteria of the
preceding point as well as the requirements of other target users (who may use it
while driving or cooking). As a result, even if totally customizable, the default
configuration of our assistant should be completed in order to be an easily usable
device to surf online pages in general. Advanced users, on the other hand, might
customize and exploit it in other ways.

• During development, we focused our efforts on creating a framework capable of
correctly navigating Web pages using voice commands, and users study results val-
idated our efforts. However, as evidenced by users study, we did not prioritize the
construction of the user interface with sufficient aid for visually impaired people.
As a result, in a subsequent development, we focused our resources on designing a
client that can be used by visually impaired people by following their suggestions
(colors and keyboard keys).

• The alternate method of accessing Web page information was well perceived and
confirmed the importance of obtaining website content as a priority regardless of
the limitations mentioned by different scenarios.

7.3.3. Discussion

The results and conclusions of the users study highlight the necessity for a new method
of accessing Web information as well as the importance of considering accessibility when
developing Web content. The structure of the Conversational Web Framework has been
confirmed by visually impaired people, allowing us to expand it further due to its scala-
bility and maintainability. Our expectation of assisting people in accessing the internet
has been thankfully validated not just through users study but also through real-world
realities that anyone can encounter on a daily basis (for example helping people with dis-
abilities on browsing Web or using technologies). The development of the Conversational
Web Framework gives us a new perspective on Web content and development in order to
suit the needs of all types of users, which should be the starting point for any system or
application produced with a wide users base in mind.

71

8| Conclusion and Future Works

In this chapter, we will conclude our study and analyze its limitations and outcomes.
Meanwhile, we want to lay the foundation for future works and novel approaches to the
Conversational Web context based on its limitations and known existing challenges.

8.1. Summary and Lessons Learned

Different people (blind, elderly or people who are unable to use hands or eyes at a specific
moment) may need to access the Web for different information. Even if it is currently
possible thanks to voice assistants or screen readers, the reality is that they can only
do it for simple and quick information queries or without proper navigation (browsing)
they would perceive as if they are using a mouse or a keyboard; in this sense, part of the
navigation is missing for them. As a result, we wish to lay the groundwork for a new
way of accessing information on the Web via Conversational Web Browsing by leveraging
a software platform capable of navigating the Web via voice commands. We discovered
through our evaluation that the need for a platform like the one we built is real and that
it could assist a wide range of target users in accessing information. At the same time,
we discovered how the Web is vast and that it is not fully supported for accessibility,
therefore a significant amount of information cannot be easily accessed. In this way, our
platform aims to not only solve the mentioned problems, but also to make people think
about the issue of Web accessibility and lay a foundation on how to support it.

8.2. Outputs and Contributions

Our work resulted in a software platform for accessing Web information via voice com-
mands; not only a simple client capable of receiving user voice and translating it into
text and conversely, but also a framework capable of retrieving Web page content, under-
standing user input via an NLU, and simulating navigation through the entire page and
different types of content. Our users study highlighted the need of having a new way of
accessing information and navigating it through a mental map. We want to contribute to

72 8| Conclusion and Future Works

the state of the Art by giving end-users a new way of accessing information and laying
the groundwork for accessibility, which is often neglected; always through our evaluation,
we discovered how accessibility is not perfectly developed or supported, causing different
problems in target users, and also how our voice assistant capable of navigating the Web
for the final user could help them in finding information without difficulties.

8.3. Limitations

We evaluated our software platform by users study with three blind and one partially
sighted people, while also developing the platform through users research with 26 volun-
teers [5]. Even if our users study and research provided us with a depth of knowledge and
useful considerations that we did not expect, we must keep in mind that a small sample
of people does not reflect the entire population of users may be utilize our platform. Fur-
thermore, our users study and development focused on blind or partially sighted people;
nevertheless, our target users include elders or people who are unable to use their hands
or eyes in a specific situation; hence, even if the platform might be utilized by them, its
development and research are biased. Even with the consideration done thus far, we aim
to lay the groundwork for a new context of navigation through conversation with different
aspects, and every user we interacted with contributed significantly to the work.

The use of annotations to retrieve content from the Web is one of our work’s primary limi-
tations. Because Web page data is presented in different ways and Web content is created
using different (and sometimes incorrect) guidelines, developing a method for retrieving
Web information useful for our framework would have necessitated a separate study that
would have taken a significant amount of time and resources. For these reasons, we fo-
cused our efforts on testing with the hypothesis of retrieving information from the Web
through annotations and demonstrating that we could achieve our objectives using this
information. In fact, our framework demonstrates the ability to read content and navi-
gate through pages without having to deal with forms, images, sounds, or even complex
websites; in this sense, the developed platform aspires to demonstrate and serves as the
foundation for a more advanced framework that can be extended and always supported
in order to supporting even more the Web.

8.4. Future Work

The essential factors that are significant for future research and development are high-
lighted in the previous section. Therefore, we could list the following as future works:

8| Conclusion and Future Works 73

• Improved annotations or automatic data extraction

• Extended bots

• Additional users study on different target users

• Extended customization

The initial goal is to find a technique to support websites without using annotations,
eventually with an automatic mechanism to annotate Web sites or extract information.
The reason for this is that not only websites pages are diverse from others, but not all
websites support accessibility or annotations (or perhaps do not use resources to incor-
porate them). In this sense, a method for supporting the framework independently from
Web pages could considerably increase its usage and coverage. With the same concept,
the framework and, in particular, the Intent Handlers (bots) in charge of handling various
types of content could be extended to handle other types of information such as explain-
ing pictures, playing music, filling forms, and so on. Moreover, an additional users study
to support other target users could enhance the platform so that it can be utilized by a
wider range of people and in a variety of situations. To conclude, our users study showed
how our framework should be customized to meet users needs. In this sense, another
important future work is to make ConWeb customizable in order to be used by a variety
of people having different needs and preferences.

75

Bibliography

[1] A. Abdolrahmani, R. Kuber, and S. M. Branham. "siri talks at you": An empirical
investigation of voice-activated personal assistant (vapa) usage by individuals who
are blind. In Proceedings of the 20th International ACM SIGACCESS Conference
on Computers and Accessibility, ASSETS ’18, page 249–258, New York, NY, USA,
2018. Association for Computing Machinery. ISBN 9781450356503. doi: 10.1145/
3234695.3236344. URL https://doi.org/10.1145/3234695.3236344.

[2] A. Abdolrahmani, K. M. Storer, A. R. M. Roy, R. Kuber, and S. M. Branham.
Blind leading the sighted: Drawing design insights from blind users towards more
productivity-oriented voice interfaces. ACM Trans. Access. Comput., 12(4), jan 2020.
ISSN 1936-7228. doi: 10.1145/3368426. URL https://doi.org/10.1145/3368426.

[3] T. Ammari, J. Kaye, J. Y. Tsai, and F. Bentley. Music, search, and iot: How people
(really) use voice assistants. ACM Trans. Comput.-Hum. Interact., 26(3), apr 2019.
ISSN 1073-0516. doi: 10.1145/3311956. URL https://doi.org/10.1145/3311956.

[4] M. Baez, F. Daniel, and F. Casati. Conversational web interaction: Proposal of a
dialog-based natural language interaction paradigm for the web. In Chatbot Research
and Design, pages 94–110. Springer, 2020. ISBN 978-3-030-39540-7.

[5] M. Baez, C. M. Cutrupi, M. Matera, I. Possaghi, E. Pucci, G. Spadone, C. Cappiello,
and A. Pasquale. Exploring Challenges for Conversational Web Browsing with Blind
and Visually Impaired Users. In CHI’22 Extended Abstracts. ACM, 2022. ISBN
978-1-4503-9156-6/22/04.

[6] M. Baez, C. M. Cutrupi, M. Matera, I. Possaghi, E. Pucci, G. Spadone, C. Cappiello,
and A. Pasquale. Supporting Natural Language Interaction with the Web. In Proc.
of ICWE 2022 (in print). Springer, 2022.

[7] Y. Borodin, J. P. Bigham, G. Dausch, and I. V. Ramakrishnan. More than
meets the eye: A survey of screen-reader browsing strategies. In Proceedings of
the 2010 International Cross Disciplinary Conference on Web Accessibility (W4A),
W4A ’10, New York, NY, USA, 2010. Association for Computing Machinery. ISBN

https://doi.org/10.1145/3234695.3236344
https://doi.org/10.1145/3368426
https://doi.org/10.1145/3311956

76 | Bibliography

9781450300452. doi: 10.1145/1805986.1806005. URL https://doi.org/10.1145/

1805986.1806005.

[8] J. Cambre, A. C. Williams, A. Razi, I. Bicking, A. Wallin, J. Tsai, C. Kulkarni, and
J. Kaye. Firefox voice: An open and extensible voice assistant built upon the web. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems,
CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450380966. doi: 10.1145/3411764.3445409. URL https://doi.org/10.1145/

3411764.3445409.

[9] P. Chittò, M. Baez, F. Daniel, and B. Benatallah. Automatic generation of chatbots
for conversational web browsing. In Proc. of ER’20, pages 239–249. Springer, 2020.

[10] E. Corbett and A. Weber. What can i say? addressing user experience challenges
of a mobile voice user interface for accessibility. In Proceedings of the 18th In-
ternational Conference on Human-Computer Interaction with Mobile Devices and
Services, MobileHCI ’16, page 72–82, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450344081. doi: 10.1145/2935334.2935386. URL
https://doi.org/10.1145/2935334.2935386.

[11] B. R. Cowan, N. Pantidi, D. Coyle, K. Morrissey, P. Clarke, S. Al-Shehri, D. Ear-
ley, and N. Bandeira. "what can i help you with?": Infrequent users’ experiences
of intelligent personal assistants. In Proceedings of the 19th International Confer-
ence on Human-Computer Interaction with Mobile Devices and Services, Mobile-
HCI ’17, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450350754. doi: 10.1145/3098279.3098539. URL https://doi.org/10.1145/

3098279.3098539.

[12] M. H. Fischer, G. Campagna, E. Choi, and M. S. Lam. DIY assistant: a multi-modal
end-user programmable virtual assistant. In PLDI ’21, pages 312–327. ACM, 2021.

[13] Forbes. How website accessibility affects online businesses in 2019 and how to re-
spond, 2019. URL https://www.forbes.com/sites/ryanrobinson/2019/09/25/

website-accessibility-online-business/?sh=73d1e8f79c19.

[14] Google. Google app voice search insights, 2016. URL https://thinkwithgoogle.

com/consumer-insights/consumer-trends/google-app-voice-search.

[15] I. Guy. Searching by talking: Analysis of voice queries on mobile web search. In
Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’16, page 35–44, New York, NY,

https://doi.org/10.1145/1805986.1806005
https://doi.org/10.1145/1805986.1806005
https://doi.org/10.1145/3411764.3445409
https://doi.org/10.1145/3411764.3445409
https://doi.org/10.1145/2935334.2935386
https://doi.org/10.1145/3098279.3098539
https://doi.org/10.1145/3098279.3098539
https://www.forbes.com/sites/ryanrobinson/2019/09/25/website-accessibility-online-business/?sh=73d1e8f79c19
https://www.forbes.com/sites/ryanrobinson/2019/09/25/website-accessibility-online-business/?sh=73d1e8f79c19
https://thinkwithgoogle.com/consumer-insights/consumer-trends/google-app-voice-search
https://thinkwithgoogle.com/consumer-insights/consumer-trends/google-app-voice-search

| Bibliography 77

USA, 2016. Association for Computing Machinery. ISBN 9781450340694. doi:
10.1145/2911451.2911525. URL https://doi.org/10.1145/2911451.2911525.

[16] G. W. Index. Voice search: A deep-dive into consumer uptake of the voice
assistant technology, 2018. URL https://www.globalwebindex.com/reports/

voice-search-report.

[17] J. Lau, B. Zimmerman, and F. Schaub. Alexa, are you listening? privacy perceptions,
concerns and privacy-seeking behaviors with smart speakers. Proc. ACM Hum.-
Comput. Interact., 2(CSCW), nov 2018. doi: 10.1145/3274371. URL https://doi.

org/10.1145/3274371.

[18] T. Lau, J. Cerruti, G. Manzato, M. Bengualid, J. P. Bigham, and J. Nichols.
A conversational interface to web automation. In Proceedings of the 23nd An-
nual ACM Symposium on User Interface Software and Technology, UIST ’10, page
229–238, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781450302715. doi: 10.1145/1866029.1866067. URL https://doi.org/10.1145/

1866029.1866067.

[19] G. Leshed, E. M. Haber, T. Matthews, and T. Lau. Coscripter: Automating &
sharing how-to knowledge in the enterprise. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’08, page 1719–1728, New York,
NY, USA, 2008. Association for Computing Machinery. ISBN 9781605580111. doi:
10.1145/1357054.1357323. URL https://doi.org/10.1145/1357054.1357323.

[20] J. U. Mahmud, Y. Borodin, and I. V. Ramakrishnan. Csurf: A context-driven non-
visual web-browser. In Proceedings of the 16th International Conference on World
Wide Web, WWW ’07, page 31–40, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 9781595936547. doi: 10.1145/1242572.1242578. URL
https://doi.org/10.1145/1242572.1242578.

[21] R. J. Moore and R. Arar. Conversational UX design: A practitioner’s guide to the
natural conversation framework. Morgan & Claypool, 2019.

[22] NPR and E. Research. The smart audio report (winter 2019), 2020. URL https:

//www.nationalpublicmedia.com/insights/reports/smart-audio-report/.

[23] B. Parmanto, R. Ferrydiansyah, A. Saptono, L. Song, I. Sugiantara, and S. Hackett.
Access: Accessibility through simplification & summarization. In Proceedings of the
2005 International Cross-Disciplinary Workshop on Web Accessibility (W4A), pages
18–25, 01 2005. doi: 10.1145/1061811.1061815.

https://doi.org/10.1145/2911451.2911525
https://www.globalwebindex.com/reports/voice-search-report
https://www.globalwebindex.com/reports/voice-search-report
https://doi.org/10.1145/3274371
https://doi.org/10.1145/3274371
https://doi.org/10.1145/1866029.1866067
https://doi.org/10.1145/1866029.1866067
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1242572.1242578
https://www.nationalpublicmedia.com/ insights/reports/smart-audio-report/
https://www.nationalpublicmedia.com/ insights/reports/smart-audio-report/

78 | Bibliography

[24] A. Pradhan, K. Mehta, and L. Findlater. "Accessibility Came by Accident": Use
of Voice-Controlled Intelligent Personal Assistants by People with Disabilities, page
1–13. Association for Computing Machinery, New York, NY, USA, 2018. ISBN
9781450356206. URL https://doi.org/10.1145/3173574.3174033.

[25] A. Pradhan, A. Lazar, and L. Findlater. Use of intelligent voice assistants by older
adults with low technology use. ACM Trans. Comput.-Hum. Interact., 27(4), sep
2020. ISSN 1073-0516. doi: 10.1145/3373759. URL https://doi.org/10.1145/

3373759.

[26] G. Ripa, M. Torre, S. Firmenich, and G. Rossi. End-user development of voice user
interfaces based on web content. In IS-EUD 2019, pages 34–50. Springer, 2019.

[27] S. Schlögl, G. Chollet, M. Garschall, M. Tscheligi, and G. Legouverneur. Exploring
voice user interfaces for seniors. In Proceedings of the 6th International Conference on
PErvasive Technologies Related to Assistive Environments, PETRA ’13, New York,
NY, USA, 2013. Association for Computing Machinery. ISBN 9781450319737. doi:
10.1145/2504335.2504391. URL https://doi.org/10.1145/2504335.2504391.

[28] A. Sciuto, A. Saini, J. Forlizzi, and J. I. Hong. "hey alexa, what’s up?": A mixed-
methods studies of in-home conversational agent usage. In Proceedings of the 2018
Designing Interactive Systems Conference, DIS ’18, page 857–868, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450351980. doi: 10.
1145/3196709.3196772. URL https://doi.org/10.1145/3196709.3196772.

[29] R. Semmens, N. Martelaro, P. Kaveti, S. Stent, and W. Ju. Is now a good time?
an empirical study of vehicle-driver communication timing. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page
1–12, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450359702. doi: 10.1145/3290605.3300867. URL https://doi.org/10.1145/

3290605.3300867.

[30] A. Sharif, S. S. Chintalapati, J. O. Wobbrock, and K. Reinecke. Understand-
ing screen-reader users’ experiences with online data visualizations. In The 23rd
International ACM SIGACCESS Conference on Computers and Accessibility, AS-
SETS ’21, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383066. doi: 10.1145/3441852.3471202. URL https://doi.org/10.1145/

3441852.3471202.

[31] B. Shneiderman. The limits of speech recognition. Commun. ACM, 43(9):63–65, sep

https://doi.org/10.1145/3173574.3174033
https://doi.org/10.1145/3373759
https://doi.org/10.1145/3373759
https://doi.org/10.1145/2504335.2504391
https://doi.org/10.1145/3196709.3196772
https://doi.org/10.1145/3290605.3300867
https://doi.org/10.1145/3290605.3300867
https://doi.org/10.1145/3441852.3471202
https://doi.org/10.1145/3441852.3471202

8| BIBLIOGRAPHY 79

2000. ISSN 0001-0782. doi: 10.1145/348941.348990. URL https://doi.org/10.

1145/348941.348990.

[32] A. Springer and H. Cramer. "Play PRBLMS": Identifying and Correcting Less Acces-
sible Content in Voice Interfaces, page 1–13. Association for Computing Machinery,
New York, NY, USA, 2018. ISBN 9781450356206. URL https://doi.org/10.1145/

3173574.3173870.

[33] A. Vtyurina and A. Fourney. Exploring the Role of Conversational Cues in Guided
Task Support with Virtual Assistants, page 1–7. Association for Computing Machin-
ery, New York, NY, USA, 2018. ISBN 9781450356206. URL https://doi.org/10.

1145/3173574.3173782.

[34] WebAIM. The webaim million- an annual accessibility analysis of the top 1,000,000
home pages, 2021. URL https://webaim.org/projects/million/.

[35] Wikipedia. Screen reader— wikipedia, l’enciclopedia libera, 2022. URL https:

//it.wikipedia.org/wiki/Screen_reader. [Online; controllata il 7-febbraio-2022].

[36] N. Yankelovich, G.-A. Levow, and M. Marx. Designing speechacts: Issues in speech
user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’95, page 369–376, USA, 1995. ACM Press/Addison-Wesley
Publishing Co. ISBN 0201847051. doi: 10.1145/223904.223952. URL https://doi.

org/10.1145/223904.223952.

[37] J. Zimmerman. Case for a voice-internet: Voice before conversation. In Proceedings
of the 2nd Conference on Conversational User Interfaces, CUI ’20, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450375443. doi: 10.
1145/3405755.3406149. URL https://doi.org/10.1145/3405755.3406149.

https://doi.org/10.1145/348941.348990
https://doi.org/10.1145/348941.348990
https://doi.org/10.1145/3173574.3173870
https://doi.org/10.1145/3173574.3173870
https://doi.org/10.1145/3173574.3173782
https://doi.org/10.1145/3173574.3173782
https://webaim.org/projects/million/
https://it.wikipedia.org/wiki/Screen_reader
https://it.wikipedia.org/wiki/Screen_reader
https://doi.org/10.1145/223904.223952
https://doi.org/10.1145/223904.223952
https://doi.org/10.1145/3405755.3406149

81

A| ConWeb source material and

guide

A.1. ConWeb setup guide

This section provides a basic overview of how to install and utilize the Conversational
Web Framework.
The ConWeb Server and the ConWeb Client are the two primary components. Assume
we are going to install our framework on a certain machine M (Linux Ubuntu 20.04 is
suggested). We may clone the ConWeb Server repository into a folder of our choice, and
then use the pipenv shell command to build an environment in which to install the
required dependencies. We could use pipenv install to install all the dependencies,
however each dependency is specified in the Pip file if needed. To start our server, we
could use the python server.py command in the ConWeb Server’s root folder. It will
listen opening a socket once it is launched.
Following that, we could clone the ConWeb Client to another folder of M and use npm

install to install all the dependencies. Following that, we could launch the client us-
ing the node index.js command. The client will connect to the ConWeb Server via
the socket while also starting its server at localhost:5050/client. Each URL will
serve a separate interface for the demo, such as localhost:5050/client/voice, which
was used in our evaluation. It is possible to map the M machine server so that at a
given URL, M will route the request to localhost:5050 in order to make the client
available from another machine. In our case, the URL we used for our evaluation was
conweb.mateine.org/client/voice, which was mapped to localhost:5050.
The example may be used intuitively with the keyboard and voice, but the client could
have several configurations or even another interface. Furthermore, this appendix is to
guide a future user through the installation and proper usage of the framework; however,
it is always possible to change the configurations.

82 A| ConWeb source material and guide

The source code of the Conversational Web Framework could be found in the following:

• ConWeb Client: https://github.com/spada397/conweb-client

• ConWeb Server: https://github.com/spada397/conweb-server

A.2. ConWeb video-demo

A video-demo has been recorded and made accessible to demonstrate the ConWeb frame-
work’s functionalities and features. The following link will take to a video demonstration
of ConWeb:

• URL: http://matera.faculty.polimi.it/wp-content/uploads/Conweb.mp4

https://github.com/spada397/conweb-client
https://github.com/spada397/conweb-server
http://matera.faculty.polimi.it/wp-content/uploads/Conweb.mp4

83

List of Figures

1.1 Illustrative example of Conversational Web Browsing on Wikipedia 2
1.2 Vocal assistant to navigate the Web . 3

3.1 Framework architecture . 21

4.1 Wikipedia solar system example . 25
4.2 Wikipedia content division example . 25
4.3 CNT example . 26
4.4 Annotation . 28
4.5 Annotation attribute . 28

5.1 NLU model Initialization . 35
5.2 Entities - cw-keys relationship . 36
5.3 NLU - output . 36

6.1 Intents mapping . 43
6.2 Bots pipeline . 44
6.3 CRB initialization . 52
6.4 CRB features . 54

7.1 Layered architecture . 58
7.2 End-user devices . 59
7.3 Presentation Layer . 60
7.4 Application and Persistent Layers . 61
7.5 Application Layer . 62
7.6 Persistence Layer . 66
7.7 ConWeb Client Interface . 68

85

List of Algorithms

4.1 build_cnt() . 29
4.2 Node() . 30

6.1 recursive_cnt_search() . 46
6.2 search_node_by_entities(): . 47

7.1 handle_utterance() . 64

87

List of Tables

6.1 Interaction-design pattern Integration . 56

7.1 Response Time metrics . 67

	Abstract
	Abstract in lingua italiana
	Ringraziamenti
	Contents
	Introduction
	Context: Conversational Web Browsing
	Scenario and Problem Statement
	Methodology
	Contribution
	Structure of the thesis

	State of the Art
	Web accessibility
	Voice-based Assistive Technologies
	Voice assistants

	Non-visual browsing
	Web exploration tools and NLU technologies
	Web automation tools
	Natural Language Understanding - NLU

	Summary

	Conversational Web Browsing: Approach
	Concepts
	Goals and Requirements
	Design Decisions
	Conversation-oriented Navigation Tree - CNT
	Intent and Entity Recognition
	Intent Handlers

	High-level architecture
	ConWeb Client
	ConWeb Server

	Conversation-oriented Navigation Tree - CNT
	CNT - structure
	Extraction of Web Page Content

	Annotation format
	Conversational Nodes annotation
	Annotation types
	Annotations tag attribute
	Annotations limit

	CNT - building

	Natural Language Understanding - NLU
	Intents
	Building the NLU model
	Entity extraction
	Intent selection
	Alternative solutions for NLU integration
	Intents per content
	Multiple Interpreters

	Intent Handlers: Bots
	User-based Requirements
	Dialogue System
	Intents mapping
	Bots flow: Bot Manager
	Navigation Bot - NB
	Scaffolding Intents Bot - SIB
	Content Reading Bot - CRB
	Link Bot - LB

	Interaction-design patterns integration

	Framework Implementation and Evaluation
	Implementation
	End-user devices
	Presentation Layer
	Application and Persistence Layers
	Data Layer

	Technical evaluation
	User-based evaluation
	Study Set-up
	Results
	Discussion

	Conclusion and Future Works
	Summary and Lessons Learned
	Outputs and Contributions
	Limitations
	Future Work

	Bibliography
	ConWeb source material and guide
	ConWeb setup guide
	ConWeb video-demo

	List of Figures
	List of Algorithms
	List of Tables

