
Robotic sole Deburring:
from Burrs Identification to
Path Planning from
Human Demonstration

Tesi di Laurea Magistrale in
Mechanical Engineering - Ingegneria Meccanica

Author: Luigi Cacciani

Student ID: 995075
Advisor: Prof. Andrea Maria Zanchettin
Co-advisors: Prof. Paolo Rocco, Ing. Alessandra Tafuro
Academic Year: 2022-23

i

Abstract

The landscape of shoe manufacturing is a complex blend of craftsmanship, technology, and
innovation: tracing its roots back to 7000 BCE, the industry has continuously evolved. In
the contemporary era, the Industry 4.0 framework is reshaping production systems, em-
phasizing the transition from conventional CNC robots, which offer speed and efficiency
but lack of adaptability, to intelligent manufacturing. Footwear manufacturing faces a
critical operation known as sole deburring, the removal of unintended protrusions on the
edges of the sole, called burrs. Sole deburring is traditionally a manual task, undertaken
by skilled workers. This thesis focuses on developing a robust path-planning pipeline
for autonomous robotic deburring of soles. Key problems addressed include the accu-
rate detection and precise segmentation of soles with burrs in industrial settings, dealing
with complexities such as varying lighting, diverse sole appearances, and potential oc-
clusions. Employing Deep Learning approaches, namely Detectron-2 and Pix2Pix, robust
performance across diverse scenarios has been achieved Additionally, a novel, efficient and
automated method for burrs identification in shoe soles has been developed leveraging im-
age processing techniques. Identifying the optimal orientation for the cutting tool during
sole deburring is a complex task traditionally based on human experience. The thesis
introduces a novel solution by teaching the robot this orientation from videos of expert
demonstrations. The pose of the tool in the videos is extracted with a pose estimation
neural network, namely EfficientPose. The final challenge involves the robot’s utilization
of the outcomes from the preceding computations to autonomously formulate an efficient
deburring path. Experimental results showcase the high precision of the developed steps,
underlining the potential of these technologies in advancing the field.

Keywords: Robotic sole deburring, Object detection and segmentation, Burrs identi-
fication, Pose estimation, Learning from Demonstration, Path planning.

Abstract in lingua italiana

La produzione di calzature è una complessa combinazione di artigianato, tecnologia e
innovazione: dalle radici del 7000 a.C., l’industria è in continua evoluzione. Nell’era con-
temporanea, la rivoluzione dell’Industria 4.0 sta ridefinendo i sistemi di produzione, in-
centivando il passaggio dalle tradizionali macchine CNC, che offrono velocità ed efficienza
ma mancano di adattabilità, alla robotica intelligente. Il ciclo produttivo di una calzatura
prevede un’operazione critica nota come sbavatura della suola, ossia la rimozione di mate-
riale indesiderato ai bordi della suola chiamato "bava". La sbavatura è tradizionalmente
un compito manuale, eseguito da lavoratori esperti e specializzati. Questa tesi si concentra
sullo sviluppo di un processo di pianificazione della traiettoria per la sbavatura autonoma
delle suole da parte di un robot. I maggiori problemi affrontati includono la precisa identi-
ficazione e segmentazione delle suole con bave in ambienti industriali, gestendo complessità
come illuminazione variabile, aspetto diversificato delle suole e potenziali occlusioni. Uti-
lizzando approcci di Deep Learning (DL), in particolare Detectron-2 e Pix2Pix, è stato
possibile ottenere un risultato robusto in diversi scenari. Inoltre, è stato sviluppato un
nuovo metodo efficiente e automatizzato per l’identificazione delle bave nelle suole, sfrut-
tando tecniche di elaborazione delle immagini. Individuare l’orientamento ottimale per lo
strumento di taglio durante la sbavatura è un compito complesso, tradizionalmente basato
sull’esperienza del lavoratore. Questa tesi introduce una soluzione innovativa, insegnando
al robot l’orientamento da video di dimostrazioni di esperti. La posizione dello strumento
nei video è estratta con una rete neurale di stima della posa, chiamata EfficientPose.
Infine, è stato studiato l’utilizzo dei risultati delle fasi precedenti per la formulazione
autonoma di una efficiente traiettoria di sbavatura. I risultati sperimentali evidenziano
l’alta precisione di ogni fase sviluppata, sottolineando il potenziale di queste tecnologie
nell’evoluzione del settore.

Parole chiave: Sbavatura robotica delle suole, Rilevamento e segmentazione di oggetti,
Identificazione delle bave, Stima della posa, Apprendimento tramite dimostrazioni, Piani-
ficazione della traiettoria.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Robotic deburring: general overview . 1
1.2 Problem statement and thesis research aim 4
1.3 Thesis structure . 5

2 State of the art 7
2.1 Burrs identification methods . 7
2.2 Path planning for deburring operations . 11

3 Sole segmentation 17
3.1 Object detection and segmentation . 17

3.1.1 Detectron-2 . 18
3.2 Model training for sole segmentation . 22

3.2.1 Dataset acquisition . 22
3.2.2 Training parameters and tested models 24
3.2.3 Evaluation metric: Average Precision (AP) 25
3.2.4 Results . 27

3.3 Deep Learning vs classic Computer Vision Image Processing Techniques
for Sole Segmentation . 28
3.3.1 Simple Global thresholding . 30
3.3.2 Otsu’s method global thresholding 32
3.3.3 Adaptive thresholding . 33

3.4 Reconstruction of occluded sole profiles . 35

3.4.1 Image to image translation . 36
3.4.2 Pix2Pix Architecture . 37
3.4.3 Dataset generation . 39
3.4.4 Implementation details . 41
3.4.5 Results . 41

4 Burrs identification method 45
4.1 Nominal sole profile template extraction 46
4.2 Contour matching algorithm initialization 49
4.3 Contour matching optimization . 51
4.4 Results . 53

5 Tool pose estimation 55
5.1 6D pose estimation from RGB images . 56

5.1.1 Efficient Pose . 57
5.2 Dataset generation . 59
5.3 Training parameters . 62
5.4 Evaluation Metric for Pose Estimation: ADD-S 62
5.5 Results . 63

6 Experimental results 67
6.1 Robotic deburring tool design . 67
6.2 Experimental setup . 68

6.2.1 Reference frames and transformations 70
6.2.2 Path planning pipeline . 75
6.2.3 Results . 82

7 Conclusions and future developments 87

Bibliography 91

List of Figures 99

List of Tables 103

1

1| Introduction

1.1. Robotic deburring: general overview

Shoe manufacturing stands as a complex and dynamic industry, combining craftsmanship,
technology, and innovation meeting diverse preferences and functional needs.

The historical trajectory of shoe production, dating back to 7000 BCE [6] with early san-
dals, showcases a continual evolution toward sophistication. The Middle Ages introduced
the "Turnshoe method", refining techniques for enhanced comfort and durability. The
1500s witnessed the advent of the "hand welted" method, a labor-intensive yet durable
approach still present today in its evolved form, "Goodyear welting". Industrialization in
the mid-18th century marked a significant shift, with sewing machines making their de-
but, even though manual labor persisted. The 1910s brought stitchless shoes, optimizing
the process with mass-manufactured and glued-on soles.

Traditionally, shoe manufacturing demands significant manual labor and skilled exper-
tise, often in challenging work environments. However, the landscape is evolving with
the rise of small-scale, flexible production, aligning with modern customer preferences.
In the contemporary era, smart factories in Industry 4.0 are becoming indispensable for
small-batch, multi-product flexible production systems [41]. The transition from dig-
ital to intelligent manufacturing is pivotal. Industrialized nations prioritize intelligent
manufacturing technology as the advantages of traditional manufacturing diminish. In
today’s market, characterized by small batches and multiple varieties, production lines
must dynamically reconfigure process paths and manufacturing units [23].

In the domain of footwear manufacturing, the process of sole deburring emerges as a
critical operation for ensuring the quality and safety of shoes. A burr, as defined by
[15], is an unintended byproduct during manufacturing, manifesting as small projections
extending beyond the designed workpiece surface and having a relatively small volume. In
the context of shoe sole production, burrs often arise from the injection molding process,
specifically in the creation of outsoles (Figure 1.1). This process involves the interaction
of two molds, each representing half of the sole’s shape. Liquified rubber injected into

2 1| Introduction

this mold assembly solidifies. The confined space between the molds results in the rapid
solidification of this material, giving rise to burrs along the sole’s edges. Due to the direct
integration of the sole into the final shoes, the removal of these burrs, known as deburring,
becomes an imperative quality control measure.

Figure 1.1: Shoe components

Traditionally, skilled human workers have undertaken the meticulous task of deburring,
leveraging their expertise to visually analyze workpieces and identify regions requiring
precise removal. However, the paradigm is shifting with the rapid evolution of automa-
tion and robotics. Conventional CNC robots, designed for repetitive tasks, demonstrate
efficiency for high-volume production but struggle when confronted with the need for
adaptability. The integration of more intelligent robotics represents a paradigm shift
beyond conventional capabilities.

The journey through this innovative realm, however, is not without challenges [54]. The
traditional method, relying on human expertise, is renowned for its adaptability since
every workpiece is crafted. It struggles however when high production rates and low costs
are needed. Conventional CNC robots offer speed and efficiency but lack the ability to
adapt and change in response to different models or required customizations (Figure 1.2).
The emergence of intelligent robotics aims to address these limitations, introducing a
system able to recognize and react.

The transformative landscape of intelligent manufacturing, marked by the integration of
new-generation artificial intelligence (AI) technology, has earned significant attention in
recent years. The paradigms of smart manufacturing (SM) and intelligent manufacturing
(IM) [79] encapsulate the integration of manufacturing and advanced information tech-
nologies. Notably, the evolution of IM, as described by Zhou et al. [39], spans three
stages: digital manufacturing, digital-networked manufacturing, and next-generation

1| Introduction 3

Figure 1.2: Comparison of deburring technologies [54]

intelligent manufacturing (NGIM). The current era, characterized by strategic break-
throughs in AI, is moving into the intelligent stage of informatization, with new-generation
AI technology at its core.

Machine learning (ML) and Deep learning (DL) arise as the core of the transformation.
Sundar Pichai, CEO of Google, has emphasized the pervasive impact of machine learning
across diverse products and services ("Machine learning is a core, transformative way
by which we’re rethinking everything we’re doing"). Machine learning, as a subfield of
AI, stands as one of the most used approaches to drive recent industrial advantages and
commercial applications. The advent of deep learning, a subfield of ML vaguely inspired
by the human brain, has witnessed remarkable advancements and applications across
various domains [66]: it has been successfully applied to diverse problems in areas such as
natural language processing, cybersecurity, business, virtual assistants, visual recognition
and robotics.

Robotics has seen notable advancements through the incorporation of machine learning
and deep learning algorithms, which offer solutions for autonomy and decision-making
[13].

This intersection of intelligent manufacturing, deep learning and robotics frames the back-
drop for exploring intelligent robotic deburring in footwear manufacturing. This thesis
deals with this transition, highlighting potential advantages while addressing associated
challenges. Human expertise remains essential and the coupling with cutting-edge tech-
nologies emerges as a promising avenue for the progress of manufacturing.

4 1| Introduction

1.2. Problem statement and thesis research aim

This thesis focuses on developing a robust path-planning pipeline for the autonomous
robotic deburring of shoe soles. The primary aim is to create a system that can adapt
and operate independently, irrespective of the sole’s position or dimensions.

Key problems addressed in this research include:

1. Detection and segmentation of soles with burrs:

• Accurate detection of the soles with burrs in the work plane

• Precise segmentation of the detected sole

2. Identification of the burrs:

• Identify and delineate regions on the sole that require deburring

3. Cutting tool orientation:

• Determining the orientation of the cutting tool during the deburring process
to ensure efficient material removal

4. Path planning:

• Creating a comprehensive path planning pipeline that incorporates the results
from previous calculations

Detecting and segmenting soles with burrs present unique challenges that demand
both precision and robustness, particularly in the dynamic context of industrial settings.
Achieving high precision is crucial, directly impacting the subsequent burrs identification
step and the deburring path calculation. The complexities of industrial conditions add
several challenges: factors such as varying lighting, diverse sole appearances, and potential
occlusions may introduce unpredictability. The selected method must demonstrate robust
performance, delivering consistent results across diverse industrial scenarios.

Accurate burrs identification is a problem of high interest in the industrial landscape,
where the presence of burrs is an inevitable challenge. While these undesired protrusions
necessitate removal, identifying and locating them can be time-consuming and costly.
Manual deburring traditionally relies on the expertise of skilled workers who visually
inspect the workpiece to discern regions to be removed. This thesis proposes a novel
method for burr identification for shoe soles. Leveraging image processing techniques, the
proposed approach offers an efficient and automated means of precisely identifying burrs.

1| Introduction 5

Since the sole deburring is performed through a cutting tool of a peculiar shape, identi-
fying the optimal orientation for the cutting tool during the operation is a complex
task. Typically, skilled workers rely on their experience and visual judgment to determine
the right pose during the manual deburring process. In this thesis, then, it has been
decided to teach this orientation to the robot from the expert demonstration. The con-
ventional approach involves physically guiding the robotic arm through various deburring
sequences to record the poses. However, this method has limitations, as it restricts the
demonstrator’s freedom and agility in showcasing the optimal deburring technique. In
this thesis, a novel solution is proposed to overcome these challenges: the optimal tool
orientation is extracted from videos of experts performing deburring.

The final challenge tackled involves the robot’s utilization of the outcomes from the pre-
ceding computations to autonomously formulate an efficient deburring path, ensuring
precise spatial alignment and integrating the acquired orientation knowledge.

These aspects are individually examined and described in detail in the subsequent chap-
ters.

1.3. Thesis structure

This thesis is organized into six chapters, each dedicated to a specific aspect of the robotic
deburring study, along with a conclusive chapter summarizing key findings and suggesting
potential future developments:

• Chapter 2: explores the current state-of-the-art works related to burrs identifica-
tion methods and path planning for deburring operations;

• Chapter 3: provides a detailed overview of the proposed solution for sole detection
and segmentation;

• Chapter 4: describes the custom-made method developed for burrs identification;

• Chapter 5: presents the proposed solution for accurately estimating the pose of
the deburring tool during the demonstrated deburring operation;

• Chapter 6: explores the comprehensive path planning pipeline, detailing the inte-
gration of the obtained results and showcasing real-world experiments with a robotic
arm;

• Chapter 7: conclusions and future developments

7

2| State of the art

2.1. Burrs identification methods

A burr is a geometric anomaly that manifests as a material protrusion on the surface of a
workpiece during its manufacturing process, resulting in an extension beyond the initially
specified dimensions. Notably, burrs exhibit a negligible volume relative to the overall
workpiece but remain generally undesirable, although inevitable [14]. Consequently, it is
necessary to employ precise and efficient detection methodologies for the identification of
burrs.

Currently, a diverse collection of methodologies exists for the detection and measurement
of burrs. The selection of the most suitable system is highly application-specific: work-
piece’s features, available instruments and required burr quantities (height, thickness,
volume, hardness, etc.) result in an extensive variety of possible methodologies [14]. One
possible categorization of techniques for the identification and quantification of burrs is
suggested by [16]: burrs measurement methods can be classified into contact and non-
contact methods. Multiple contactless systems are present in literature with lasers and
cameras representing some of the key options. Due to the non-uniformity and consider-
able size variability of burrs, when touch sensors are employed for burr data measurement,
the presence of nearby burrs can disturb the measurement due to the conical shape of
the tracer point. Likewise, when utilizing laser sensors, issues related to interference
and diffraction tend to manifest [45]. Vision systems, together with image processing
techniques, offer a promising solution to address these aforementioned challenges.

Direct measurement of the burrs’ size is performed in [68]. This measurement is accom-
plished by employing a laser displacement sensor (LDS) mounted on the deburring robot.
The schematic configuration is illustrated in Figure 2.1a. A beam of light is directed
towards the workpiece’s surface with burrs, allowing for precise measurement of the dis-
tance ls. By combining this distance with knowledge of the robot’s configuration and the
desired surface location, the burr’s height h is determined through vector operations, as
depicted in Figure 2.1b.

8 2| State of the art

(a) Robot configuration, equipped with LDS. (b) Schematic of the vectors.

Figure 2.1: Robotic setup with LDS [68].

Likewise, in [40] a laser sensor mounted on the robot’s wrist is employed to perform
scanning and measurements of workpiece surfaces that have welding beads. The collected
surface data is then used to extract the center line and measurements of the bead. Building
on the analogy between a welding bead and a burr, the approach described in [46] utilizes
the previously outlined method for burr detection. The adaptation involves matching
the measured shape with a modeled one using the least squares method to derive the
parameters characterizing the burr.

The study proposed by Wulf [81] leverages the temperature variance between burrs and
the steel slab during the cutting process, employing a high-temperature thermographic
camera to detect and discern the burrs based on thermal contrast. Nonetheless, it’s
important to note that the applicability of this approach is constrained to the particular
steel slab cutting process.

One of the prior examples of the employment of visual systems for burrs detection is
represented by [45]. In this approach, a 2D image is captured and subsequently converted
into a binary image, consisting solely of black and white pixels (with intensities of 1 and 0,
respectively). This transformation is achieved through a process known as thresholding,
wherein a threshold value is used to set pixels with intensities higher than the threshold
as 1, while the rest are set to 0 [63]. The contour of the burrs is then extracted, and
pertinent burr data is derived using a deburring model that correlates the derived values
with the burr contours.

Thresholding for detection is exploited also in [51]: image processing techniques are har-
nessed using a charge-coupled device (CCD) camera, which is a sensor capable of con-

2| State of the art 9

Figure 2.2: CCD camera configuration for burrs detection [51]

verting light into electrical charge, enabling the acquisition of high-quality digital images
[7]. This CCD camera is positioned vertically above the surface of the burr specimen to
capture images, together with four mirrors at 45°, as shown in Figure 2.2, which allow to
capture the 3D shape of the burr. The images are rearranged in a 2D configuration and
the thresholding procedure is then applied: pixels corresponding to the burrs are assigned
a zero intensity (depicted as black), enabling the measurement process. An exemplifying
pipeline of the process is depicted in Figure 2.3.

(a) Burrs to be measured (b) Captured image (c) Processed image

Figure 2.3: Threshold image Processing with CCD camera [51].

A comparable approach is suggested in [24], which utilizes a CCD camera for capturing an
image of the workpiece. Subsequently, thresholding is applied to obtain the segmentation
of the burrs in the image. To further refine the detection process, an edge detection
algorithm, specifically the Canny operator [22], is implemented to extract the contours of
the burrs.

The visual system introduced by Tsai [75] offers an illustration of contour matching as
a detection method. This approach involves a comparison between the ideal geometric

10 2| State of the art

profile and the actual one to identify peripheral defects. The assumption in this study
is that irregular burrs exhibit a pronounced variation in curvature, whereas a nominal
profile appears smoother. To execute this, boundary points are chosen from the smooth
segments present in the model containing burrs, and a polygon is generated by connecting
these points (as shown in Figure 2.4). The same polygon is then sought in the nominal
profile, and the two profiles are overlaid. Any disparities between the two images serve to
identify and characterize the burrs.

(a) Object with burrs (b) Model object

Figure 2.4: Contour matching for burrs detection [75].

A recent frontier comprises the use of Neural networks for burrs detection. An example
is provided in the paper by Rahul and Chiddarwar [48], where they address the problem
of domain shift. This issue arises when the dataset is captured from one domain (with
specific conditions of intensity or texture in the images) and the trained model may
struggle to recognize burrs in images from a different domain. To overcome this challenge,
the authors propose a novel dataset augmentation method. In the first step of their
approach, the dataset is augmented by modifying intensities and textures while preserving
the structures of the burr features. This is done to ensure that the network is not biased
towards specific appearances. In the second step, the authors aim to discard potentially
misleading associations between the object of interest and the background. They achieve
this by employing a preventative pseudocorrelation augmentation (PPA) method, which
separates the object from its surroundings. The pipeline of this augmentation method is
illustrated in Figure 2.5.

2| State of the art 11

Figure 2.5: Pipeline for image augmentation [48]

2.2. Path planning for deburring operations

The robotic deburring process comprises two steps: planning and motion execution [53].
In the planning phase, the predominant task is to obtain the robot path, even though
considerations on the tool-path correction and machining parameter estimation are typ-
ically considered in this stage. Subsequently, the motion execution part translates these
planned trajectories into physical deburring actions: mechanical deburring techniques are
employed. To increase accuracy, the incorporation of real-time feedback control through
force measurements can be included [55].

There exist different approaches in the literature to generate a path for robotic deburring.
The three primary ones can be listed as follows [53]:

• CAD/CAM-Based approach: utilizing Computer-Aided Manufacturing (CAM)
software in conjunction with the Computer-Aided Design (CAD) model of the work-
piece, this approach selects the edges requiring deburring and the CAM software
plans, generates, and simulates the tool path. The resultant is often a form of nu-
merical control (NC) code, such as G-code, or robot-specific languages: in the latter
case, the CAM software performs a compilation step [77], so the quality of the robot
program is closely related to the post-processor within the CAM software.

• Sensor/Vision-Based approach: leveraging specialized sensors or vision systems
to detect and interpret critical information about the workpiece’s geometry, the
edges are detected and subsequently the deburring path is defined.

• Teaching through Human Demonstration: entailing the physical guidance of
an operator, the robot records the demonstrated path. The demonstration could be

12 2| State of the art

either direct (like kinesthetic teaching [12], Figure 2.6a, the end-effector is moved
by hand and joint positions are logged), indirect (the robot is directed through
devices like a teach pendant or haptic devices [21]) or non-interactive (the robot is
uninvolved during the demonstration, with methods such as vision systems analyzing
demonstration images [52], as exemplified in Figure 2.6b).

(a) Kinesthetic teaching (b) Observational learning

Figure 2.6: Learning from human demonstration methods [20]

In literature, numerous instances can be found of path planning methods for deburring
operations, employing the previously mentioned approaches. In [44], a vision-assisted
robot offline programming system has been built up: 2D vision cameras equipped with
techniques like the Hough transformation are utilized to identify prominent features on
the workpiece. These identified features then serve as the foundation for constructing the
deburring path. As exemplified in [44] this system recognizes straight lines on the work-
piece. An Off-Line Programming (OLP) system subsequently translates these recognized
features into a deburring path, as visually exemplified in Figure 2.7. Similarly, in [60], a
camera detects the workpiece’s edges useful for path generation. It should be noted that
both methods rely on straight-line recognition only and have been tested on geometrically
simple shapes.

(a) 2D image of the workpiece (b) Hough straight lines (c) Result: the inside line is the
path of the tool

Figure 2.7: Burrs identification pipeline with straight-line recognition [44]

2| State of the art 13

Figure 2.8: Visual representation of the pipeline of "Vision-Based Robot Programming"
[70]

Innovative solutions integrate vision, CAD data, and human demonstration. The ap-
proach proposed in [70] leverages a worker’s expertise to identify the burrs. The pipeline
is represented in Figure 2.8: the deburring path is manually drawn with a pen on the
workpiece and then digitalized through image processing techniques (i.e. Canny edge
algorithm [22]) to find the coordinates in plane x-y. The z coordinate is obtained by
intersecting the x-y path with the CAD model. Similarly, the method presented in [84]
involves manual path drawing on the workpiece, followed by a robot, equipped with an
eye-in-hand camera, tracking and recording the 2D path. The z coordinate is registered
by the robot end effector through a tool, maintained continuously in contact with the
surface.

In the study presented in [71], CAD/CAM and human demonstration approaches are
joint: this process combines CAD/CAM for precise contour extraction from the CAD
model and direct teaching with impedance control to manually select key contact points
on the workpiece. Utilizing an iterative closest point (ICP) algorithm [85] to align the

14 2| State of the art

Figure 2.9: Surface measurement of the workpiece and deviation map between the regis-
tered target and source surface [43]

CAD model’s tool path with the teaching points, a transformation matrix is obtained
to account for positional and orientational errors in the workpiece and the tool path is
corrected accordingly.

In [43] the tool path is taught off-line based on a reference workpiece, manually deburred.
Subsequently, a 3D scan employing a laser-triangulation sensor is conducted online on the
workpiece: relative rotation and translation with respect to the reference (Figure 2.9) are
derived using the ICP algorithm and the tool path is adjusted.

Similarly, [78] proposes an offline teaching on a reference workpiece and adaptation
through a single-point laser displacement sensor (SP-LS) mounted on the end effector
and moved in a set of control points to obtain the 3D measurement.

An improvement is seen in [56], wherein a 3D scan of the workpiece is executed through a
3D camera and then alignment with the CAD model is achieved using convolutional neural
networks, enhancing the robustness of burrs detection [50]. The resultant point cloud is
further transformed into a triangular mesh using surface reconstruction algorithms. A
visual representation of the pipeline is reported in Figure 2.10. The burrs are subsequently
identified through the detection of intersections between the mesh and the plane situated
between the two molds involved in the casting process.

2| State of the art 15

Figure 2.10: 3D model and point cloud alignment for burrs identification [56]

17

3| Sole segmentation

The initial step in automating sole deburring using robotic systems involves precisely
locating the section of the workpiece that needs material removal. In the review of existing
literature, various methods for identifying burrs have been highlighted, each applying
distinct technologies and strategies tailored to specific applications.

In this research, a two-stage approach has been adopted. Initially, deep learning (DL)-
based object detection and segmentation techniques have been employed to identify the
location of the sole and its geometrical features. Following this, image processing methods
have been applied to identify the burrs region and define the deburring tool path.

This chapter is dedicated to the development of the sole detection and segmentation
component within the chosen pipeline.

3.1. Object detection and segmentation

The proposed method for sole deburring relies on image acquisition and processing. Specif-
ically, a Intel RealSense D453i RGB camera is mounted on the robot’s end effector. When
the workpiece with the sole requiring deburring is positioned beneath the camera, a 2D
image is acquired. From this acquired image, a neural network is deployed to perform two
tasks. Firstly, it identifies the precise location of the sole by determining its bounding
box and class label, essentially creating a rectangular boundary around the sole’s position
in the image. Secondly, it carries out the segmentation process, delineating all the pixels
within the image that pertain to the sole.

For these tasks, the chosen neural network architecture is Detectron-2 [80], which is
well-suited to handle the precise object detection and segmentation required for effective
deburring.

18 3| Sole segmentation

3.1.1. Detectron-2

Detectron2 [80] represents an advanced deep learning framework developed by the Face-
book AI Research (FAIR) group. It is built upon Mask R-CNN (MRCNN) [35] and serves
as a robust open-source platform, particularly tailored for computer vision research. Its
core competencies are tasks such as precise object detection, semantic segmentation, and
the identification of key-points within images.

What distinguishes Detectron2 is its versatility and scalability, enabling the training of
diverse models capable of achieving state-of-the-art results in object detection. This
feature, coupled with the computational performance of its models, renders it the optimal
choice for the shoe sole segmentation objective.

CNNs, RCNNs, fast-RCNNs, faster-RCNNS, Mask-RCNNs

An Artificial Neural Network (ANN) [28], also referred to as a Neural Network (NN),
is a computational model inspired by the biological nervous system, particularly the brain,
for data processing tasks. It consists of interconnected neurons organized into layers, as
illustrated in Figure 3.1a. The input layer receives data, the output layer generates results,
and any intermediate layers are referred to as hidden layers. Neurons within the network
become active when the sum of their inputs surpasses a certain threshold, and their
output is computed by applying an activation function to this weighted sum. A visual
representation of how they work is depicted in Figure 3.1b. A neural network "learns"
a task by determining the appropriate weights that establish the correct relationship
between input and desired output.

(a) ANN architecture [28]. (b) Artificial neuron illustration.

Figure 3.1

Convolutional Neural Networks (CNNs) [57] are a specialized category of neural
networks that share a structural foundation with ANNs but are tailored for processing

3| Sole segmentation 19

and analyzing visual data, particularly 2D matrices like images. The input layer holds
the pixel values of the input image. The distinctive architecture of CNNs revolves around
convolutional layers, which are adept at learning features from input data.

Region-Based CNNs (RCNNs) [32] represent an evolutionary step in the realm of
deep learning for object detection purposes. Girshick et al. introduced the novel concept
of region proposals through selective search [76]. R-CNNs generate a set of potential
object regions, called regions of interest, and, subsequently, a pre-trained CNN is applied
individually to each proposal to extract features. Support Vector Machines (SVM) [27]
are then exploited to find the bounding box and the class of every output feature. Its
architecture is displayed in Figure 3.2. While R-CNNs significantly improve object de-
tection accuracy, they are computationally expensive due to the need for external region
proposal methods. Each proposal demands individual CNN computations, and there is no
sharing of processing. Given that these regions frequently overlap, a significant amount
of redundancy is carried out.

Figure 3.2: RCNN architecture [32]

Girshick extended the prior work on R-CNNs by introducing Fast R-CNNs [31]. In
contrast to the approach of applying a distinct CNN to each proposal, Fast R-CNNs
adopted a more efficient strategy. They employed a single CNN to extract features from
the entire image, generating a convolutional feature map. Subsequently, a Region of
Interest (RoI) pooling layer identifies region proposals from this feature map. From the
RoI feature vector, the class and the bounding box of the proposed region are obtained.
Its architectural configuration is depicted in Figure 3.3. Fast RCNN is faster than RCNN
due to the fact that the convolution operation is performed just once on the entire image,
rather than repeatedly on each region proposal. As a result, the principal bottleneck in
Fast R-CNN shifts to the task of identifying the region’s proposals (i.e. selective search
algorithm).

Shaoqing Ren et al. [62] came up with an object detection algorithm that eliminates

20 3| Sole segmentation

Figure 3.3: FastRCNN architecture [31]

the selective search algorithm, developing Faster-RCNNs. Similar to Fast R-CNN, the
image is provided as an input to a convolutional network which outputs a convolutional
feature map. Instead of using a selective search algorithm on the feature map to identify
the region proposals, a region proposal network is used to predict the region proposals.
This network is trained together with the rest of the model. The predicted region proposals
go through a RoI pooling layer used to classify the image within the proposed region and
predict the bounding boxes. Its layout is presented in Figure 3.4.

Figure 3.4: FasterRCNN architecture [62]

Mask R-CNNs [36] extend the capabilities of Faster R-CNNs by introducing a mask
prediction branch, alongside the existing bounding box prediction branch, for image seg-

3| Sole segmentation 21

mentation. Its structure is presented in Figure 3.5. This addition enables Mask R-CNNs
not only to predict the class and bounding box for each region of interest but also the
pixel-level position of the object through an additional fully convolutional network.

Figure 3.5: MaskRCNN architecture [36]

Detectron-2 architecture

Detectron-2 [80] is a state-of-the-art library for object detection and instance segmen-
tation, based on MaskRCNN. The architecture, as schematically represented in Figure
3.6 consists of three main blocks: the Backbone Network, the Region Proposal Network
(RPN) and the ROI heads.

1. Backbone Network allows the extraction of multi-scale feature maps from the
input image

2. Region Proposal Network (RPN) identifies object regions from the multi-scale
features

3. Box and Mask Head predicts the coordinates of the bounding boxes and object
segmentations and the associated classes

The backbone stage integrates a variety of sub-networks, including ResNet, ResNeXt,
Feature Pyramid Networks (FPN). Each of these possesses distinct attributes, making
them well-suited for specific tasks. ResNet [34] deploys residual blocks with skip connec-
tions effectively mitigating the challenges associated with training deep neural networks.
This innovation enables them to learn intricate features with a high degree of accuracy.
ResNeXt [82], an extension of the ResNet framework, further enhances feature extrac-
tion capabilities by introducing the concept of cardinality, which involves incorporating
multiple parallel internal paths or branches within a single block. This approach leads to
improved network accuracy without the need to increase the network’s depth. FPN [47]

22 3| Sole segmentation

Figure 3.6: Detectron-2 architecture [61]

is designed to address the challenges of multi-scale object detection and feature learning.
It achieves this by constructing a feature pyramid, making it particularly effective for
tasks where objects may appear in various sizes.

3.2. Model training for sole segmentation

DL-based object detection and segmentation is a complex task that requires proper selec-
tion of the model to be used and adequate training data. In the next sections the details
of the procedure followed to obtain the sole’s detection and segmentation on Detectron-2
are presented.

3.2.1. Dataset acquisition

Several annotated datasets for object detection and segmentation are available in the
literature [65] but none of them contains the information needed for this study’s purpose.
Therefore, a novel dataset has been created.

A set of 2D images of shoe soles, with and without burrs, has been captured using the
Intel RealSense D453i RGB sensor. To enhance the model’s capacity for generalization,
variability has been introduced in the dataset. This includes capturing samples with vari-
ation in sole orientation and incorporating two distinct background settings. In addition
to these variations, the dataset accounts for the practical scenario in which the sole is at-
tached to a base using rounded clips during the deburring process. Consequently, images

3| Sole segmentation 23

of the sole in this clamped configuration have been integrated into the dataset. In total,
a dataset of 71 images has been obtained, with a resolution of 640x480. For each image
in the dataset, manual annotations have been applied to include both bounding box and
segmentation mask labels:

• Bounding Box Label: this label comprises five numerical values. The first value
designates the class, which in this case is singular (1 as "sole"). The second and
third values represent the coordinates of the box’s center, while the fourth and fifth
values denote the width and height of the bounding box.

• Segmentation Label: this label contains the pixel coordinates that collectively
constitute the mask, delineating the region of the sole in the image.

Samples from the utilized dataset are visually depicted in Figure 3.7, while their corre-
sponding annotations are presented in Figure 3.8.

The dataset has been partitioned into two subsets: training and validation. The train-
ing set comprises 56 images, accounting for approximately 80% of the dataset, and the
remaining 15 images are allocated for testing.

(a) Sole on deburring base. (b) Sole with burrs.

(c) Nominal sole. (d) Background change.

Figure 3.7: Dataset RGB for Detectron-2.

24 3| Sole segmentation

(a) (b)

(c) (d)

Figure 3.8: Dataset bounding box and segmentation annotations.

3.2.2. Training parameters and tested models

With the aim of identifying the best-performing model, an extensive evaluation has been
conducted using three distinct models sourced from the Detectron-2 model zoo (a reposi-
tory of state-of-the-art models for computer vision research [80]). The Residual Network
(ResNet [34]) combined with Feature Pyramid Network (FPN [47]) backbone architec-
ture is chosen for its optimal balance between speed and accuracy. These models are
specifically:

• R50-FPN, built upon the ResNet-50 architecture

• R101-FPN, founded on the ResNet-101 architecture

• X101-FPN, constructed on the more recent ResNeXt [82] network

All the models have been trained in Google Colab for 5000 iterations. During training
the Stochastic Gradient Descent (SGD) optimizer has been employed. The learning rate
for the initial 1000 iterations has been set to 0.0005, followed by a reduction to 0.00025
for the subsequent iterations.

By testing and comparing the performance of these three distinct models, the aim is to
determine which one exhibits the most favorable results in terms of sole segmentation.

3| Sole segmentation 25

3.2.3. Evaluation metric: Average Precision (AP)

To assess and rank the performance of various models accurately and objectively, an
evaluation metric is essential. In this context, the standard COCO (Common Objects in
Context) evaluation metric, available at [8], has been employed. Specifically, the Average
Precision (AP) metric has been chosen, as it is a widely accepted and utilized metric
for evaluating object detection tasks.

The calculation of the Average Precision (AP) metric involves several other key metrics,
including IoU, confusion matrix (TP, FP, FN), precision and recall.

The Intersection over Union (IoU) is a numerical value that falls within the range of
0 to 1. It quantifies the degree of overlap between the ground truth and the prediction.
When the two bounding boxes or segmentations perfectly align, the IoU is 1, indicating
perfect overlap. Conversely, if the two bounding boxes or segmentations do not intersect
at all, the IoU is 0, meaning no overlap. Mathematically, the IoU is computed as the ratio
of the area of intersection between the two bounding boxes/segmentations to the area of
their union, as depicted in Figure 3.9. This calculation provides an objective measure
of how accurately the predicted bounding box/segmentation aligns with the true object
location.

Figure 3.9: IoU definition

Given a threshold, a prediction is considered correct if the IoU between the ground truth
and the prediction is higher than the threshold value. With this definition, more metrics
can be defined as:

1. True Positive (TP) if the model correctly (true) predicted that a bounding
box/segmentation exists in a certain position (positive class)

2. False Positive (FP) if the model incorrectly (false) predicted that a bounding
box/segmentation exists in a certain position (positive class)

26 3| Sole segmentation

3. False Negative (FN) if the model incorrectly (false) didn’t predict a bounding
box/segmentation in a certain position (negative class)

The final parameters required for computing the Average Precision consist of Precision and
Recall. Given the definitions provided by the equations 3.1 and 3.2, Precision signifies
the proportion of correct predictions relative to the total number of predictions, whereas
Recall expresses the proportion of correct predictions relative to the total number of
ground truths, which is equivalent to the sum of true positives and false negatives.

Precision =
Correct Predicitons
Total Predictions

=
TP

TP + FP
(3.1)

Recall =
Correct Predictions
Total Ground Truth

=
TP

TP + FN
(3.2)

A model is considered highly effective when it demonstrates both elevated precision and
recall, meaning it accurately identifies objects while capturing all instances within the
dataset. It’s important to emphasize that precision and recall metrics are intricately linked
to the values of TP, FP and FN, and these metrics vary with the selected Intersection
over Union (IoU) threshold.

Ultimately, the Average Precision (AP) is a numerical value ranging from 0 to 1, and
it’s often expressed as a percentage, spanning from 0% to 100%. AP is defined as the
average precision computed across all recall values at a specific Intersection over Union
(IoU) threshold.

As reported in [65], to compute the Average Precision (AP) for a specific class within a
dataset, it is necessary to first arrange the data entries in descending order based on their
confidence scores. These confidence scores can be either the classifier output probabilities
or Intersection over Union (IoU) scores from the object detection algorithm. The AP is
subsequently determined with the formula:

AP =
n∑

k=1

P (k)∆r(k) (3.3)

Where n is the number of ground truths, P(k) is the precision of the k-th prediction, and
∆r(k) is the variation of recall between steps k and k+1.

3| Sole segmentation 27

3.2.4. Results

The most critical training curves for this study are depicted in Figure 3.10. These include
the accuracy and loss of the masks, as well as the total model loss, encompassing classifi-
cation, bounding box, and mask losses. It is evident from the curves that all the trained
models have reached a plateau in both loss and accuracy, signifying the completion of the
training process.

(a) Legend

(b) Mask accuracy (c) Mask loss

(d) Total loss

Figure 3.10: Detectron-2 training curves

The Average Precision (AP) for the three models under consideration has been computed,
offering a comprehensive assessment of their performance. It’s worth noting that while
IoU thresholds typically range from 0.5 to 0.9 in common scenarios, this study employs
considerably higher thresholds of 0.95, 0.975, and 0.99. The reason behind these elevated

28 3| Sole segmentation

thresholds lies in the specific characteristics of this task and the operating conditions. In
this context, object detection is relatively straightforward due to the presence of only one
sole in each provided image, with the black color of the sole providing a high-contrast
distinction against the bright background. Consequently, false predictions, whether pos-
itive or negative, with lower thresholds are nearly non-existent, resulting in an AP of
100%. This behavior persists up to a threshold of 95%. However, to meet the precise
segmentation requirements of this study, the threshold has been pushed even further to
0.99.

The resulting AP values are shown in Table 3.1.

R50-FPN R101-FPN X101-FPN

IoU = 0.95 100% 100% 100%

IoU = 0.975 91.716% 100% 97.805%
IoU = 0.99 73.440% 71.617% 77.494%

Table 3.1: AP values for trained models varying the IoU threshold.

It can be concluded that while all the models exhibit excellent accuracy, the X101-FPN
model has been selected for the application due to its exceptional performance under these
stringent segmentation demands.

3.3. Deep Learning vs classic Computer Vision Im-

age Processing Techniques for Sole Segmenta-

tion

In the realm of image segmentation, traditional methods have been a well-established
presence, commonly classified into three categories [30]: characteristic features threshold-
ing, edge detection, and region extraction. Feature thresholding-based methods have been
particularly prevalent. The objective of this section is to elucidate the motivation behind
the choice of a deep learning approach in this study, as opposed to the more conventional
thresholding methods, in the analyzed scenario of sole segmentation.

To support this choice quantitatively, a set of 15 images sourced from the Detectron-2
dataset has been utilized for testing. Images both with and without the deburring base
and featuring two distinct backgrounds have been taken into consideration. The testing
process includes evaluation under three distinct lighting conditions: standard, brightened,

3| Sole segmentation 29

and dark. These datasets have been obtained by changing the exposure of the standard
condition in post-processing. Some samples are reported in Figure 3.11

(a) Standard Lighting

(b) Brighter Lighting

(c) Darker Lighting

Figure 3.11: Datasets for segmentation methods performance comparison

The Intersection over Union (IoU) metric, described in Chapter 3.2.3, has been employed
to quantify the segmentation methods’ performance.

Image thresholding is a technique that involves partitioning an image into distinct
regions based on intensity levels. Through the selection of a threshold value, pixels with
intensity levels exceeding this threshold are designated as white (intensity = 1), while
those below the threshold are classified as black (intensity = 0). This binary representation
simplifies the process of detecting and isolating objects of interest within the image.
Mathematically, thresholding can be defined as follows:

ri,j =

1 pi,j ≥ T.

0 pi,j < T.
(3.4)

where ri,j is the resulting intensity of the pixel at coordinates (i,j), pi,j is the intensity of

30 3| Sole segmentation

the pixel from the input image and T is the value of the threshold.

Various techniques exist for image thresholding. For the purpose of this study, three of
them have been tested and compared to Detectron-2’s results: simple global thresholding,
Otsu’s global thresholding and adaptive (local) thresholding.

3.3.1. Simple Global thresholding

Initially, a simple global thresholding approach has been evaluated. A single threshold
value has been determined through a trial-and-error procedure to maximize the arithmetic
mean of the IoU values across the dataset captured under standard environmental lighting
conditions. Subsequently, Detectron-2 and the binarization method using this threshold
have been applied to acquire masks for the dataset under standard lighting conditions,
and the resulting mean IoU has been calculated and reported in Table 3.2.

Mean IoU Simple global thresholding Detectron-2

Standard lighting 97.86% 96.69%

Table 3.2: Performance comparison simple global thresholding and Detectron-2, standard
lighting

The results indicate that, in this scenario, despite both methods achieving a remarkably
high level of performance, the thresholding approach actually surpasses the accuracy of
segmentation achieved by Detectron-2.

Subsequently, both segmentation methods have been assessed on datasets subjected to
modified lighting conditions, specifically, a brighter and a darker lighting scenario.

Mean IoU Simple global thresholding Detectron-2

Brighter lighting 2.90% 96.10%

Darker lighting 30.35% 96.65%

Table 3.3: Performance comparison simple global thresholding and Detectron-2, varying
lighting conditions

The results reported in Table 3.3 reveal that the accuracy of Detectron-2 remains consis-
tent across varying environmental conditions, while the performance of the thresholding
method experiences a significant decline. This disparity can be attributed to the fixed

3| Sole segmentation 31

threshold value, which doesn’t adapt to changes in pixel intensity. In brighter lighting
conditions, the pixel intensities tend to increase. Consequently, some pixels originally be-
longing to the sole may now surpass the threshold and be incorrectly classified as part of
the background. Conversely, in darker lighting conditions, the opposite can occur where
pixels that are part of the background might be misclassified as part of the sole. This
variability in lighting conditions can result in inaccurate segmentation outcomes. An ex-
ample is reported in Figure 3.12.

(a) Standard Lighting: original image, simple global thresholding and Detectron-2 segmentation

(b) Brighter Lighting: original image, simple global thresholding and Detectron-2 segmentation

(c) Darker Lighting: original image, simple global thresholding and Detectron-2 segmentation

Figure 3.12: Simple thresholding and Detectron-2 segmentation in different lighting coni-
ditions

Therefore, it’s evident that simple global thresholding lacks robustness against changing
lighting conditions and cannot be effectively employed in real-case industrial settings.
Detectron-2, instead, shows stable performance in segmentation under all lighting condi-
tions.

An effective approach to address this challenge is to adjust the threshold value dynami-

32 3| Sole segmentation

cally for each new image acquired. Manual adjustment is clearly impractical for real-world
applications, as the system could not autonomously adapt to varying lighting conditions.
Therefore, the focus shifts to methods that can dynamically select the appropriate thresh-
old when processing an image. In this context, two specific techniques, the Otsu method
and adaptive thresholding, have been examined.

3.3.2. Otsu’s method global thresholding

Otsu’s method [58] is designed to automatically determine the optimal threshold value.
It operates under the assumption that an image contains two classes of pixels: the back-
ground and the foreground. Consequently, the grayscale histogram of the image is ex-
pected to exhibit a bi-modal distribution (Figure 3.13), consisting of two distinct peaks.
One peak represents the uniform background color, while the other corresponds to the
color of the object to be detected. The optimal threshold value is computed by minimizing
the variance between these two peaks.

Figure 3.13: Bi-modal grayscale histogram and Otsu’s threshold

The Otsu’s optimal threshold has been found and both the thresholding and Detectron-2
have been tested on the datasets.

Mean IoU Otsu’s global thresholding Detectron-2

Standard lighting 94.82% 96.69%

Brighter lighting 94.94% 96.10%

Darker lighting 92.99% 96.65%

Table 3.4: Performance comparison Otsu global thresholding and Detectron-2, varying
lighting conditions

3| Sole segmentation 33

The outcomes across the datasets, reported in Table 3.4 indicate that thresholding with
the Otsu’s threshold has improved its robustness in response to changes in lighting con-
ditions. However, it now faces a different challenge: the assumption of a bi-modal dis-
tribution may not hold true. In images that feature objects on the background, like the
deburring base or textured surfaces, certain portions of the background are erroneously
categorized as part of the sole’s mask. In contrast, Detectron-2 remains robust to such
background alterations. The result is visible in Figure 3.14

(a) Standard Lighting: original image, Otsu’s global thresholding and Detectron-2 segmentation

(b) Brighter Lighting: original image, Otsu’s global thresholding and Detectron-2 segmentation

(c) Darker Lighting: original image, Otsu’s global thresholding and Detectron-2 segmentation

Figure 3.14: Otsu thresholding and Detectron-2 segmentation in different lighting conidi-
tions

3.3.3. Adaptive thresholding

The final enhancement method examined is adaptive thresholding. Unlike the two
previous techniques, where a single threshold applies to all pixels in the input image,
adaptive thresholding divides the image into multiple smaller regions and determines a
local optimal threshold value based on the characteristics of each region.

The threshold in adaptive thresholding is typically computed using either the arithmetic
mean or the Gaussian mean of pixel intensities within each region. For this study’s testing,

34 3| Sole segmentation

the arithmetic mean has been employed, where each pixel provides an equal contribution
to the threshold value. Additionally, a constant value (which requires tuning) is subtracted
from the mean to fine-tune the thresholding process.

Therefore, the local threshold value T becomes:

T = mean{IL} − C (3.5)

where IL is the local sub-region L of the image and C is a constant.

The adaptive thresholding method has then been tested on the datasets.

The results indicate that while adaptive thresholding offers improved robustness to local
lighting changes compared to simple thresholding or Otsu’s method, it still cannot accu-
rately separate the background from the sole segmentation, as reported in the example in
Figure 3.15.

(a) Standard Lighting: original image, adaptive thresholding and Detectron-2 segmentation

(b) Brighter Lighting: original image, adaptive thresholding and Detectron-2 segmentation

(c) Darker Lighting: original image, adaptive thresholding and Detectron-2 segmentation

Figure 3.15: Adaptive thresholding and Detectron-2 segmentation in different lighting
coniditions

3| Sole segmentation 35

In summary, Detectron-2 has proven to be the optimal approach for this specific appli-
cation, thanks to its robustness against variations in lighting conditions and background
changes. Consequently, it has been selected for the sole segmentation purpose in this
study.

An additional consideration is that Detectron-2, being a neural network, possesses clas-
sification capabilities. While the current model has been trained to recognize a general
class ("sole"), Detectron-2 has the potential to be trained to distinguish various classes
such as right and left shoes or different types of soles. Achieving similar results with
traditional Computer Vision techniques would require additional and complex steps, es-
pecially in identifying and translating into code distinctive features for each class. Hence,
to facilitate future developments, Detectron-2 remains the optimal choice for this study.

3.4. Reconstruction of occluded sole profiles

The segmentation achieved using Detectron-2 [80], described in the preceding chapter, pro-
vides exceptionally precise segmentation identification capabilities when presented with
a 2D image of the sole (as reported by the AP values in Table 3.1). In principle, this
level of segmentation precision would enable the burr identification process. However, an
additional step has been incorporated into the deburring pipeline developed in this study.
This addition is necessitated by the physical working conditions that the robotic system
is bound to encounter, both in the experimental setup for this study and in real-world
industrial scenarios.

During the deburring process, the sole is subjected to a certain level of force. Conse-
quently, it is imperative to secure the sole in place above a fixed base and ensure it
remains immobilized. To maintain the aesthetics of the sole, any solution involving perfo-
ration has been discarded, as this would compromise its final appearance. It’s important
to note that deburring is the final operation performed on the sole before it is glued to
the rest of the shoe. An appropriate approach is to grasp the sole. However, any gripping
system inevitably obstructs a portion of the sole’s surface. These occlusions alter the
segmentation as identified by the object detection algorithm, leading to inaccuracies in
burr identification.

In the experiments conducted in this study, the sole was held in place using four circular
rings positioned at its extremities, tightened with screws, as illustrated in Figure 3.16.

To achieve the complete and precise identification of burrs across the entire sole, the ap-
proach adopted involves the reconstruction of the complete profile. For this purpose, a

36 3| Sole segmentation

Figure 3.16: Sole clamping during experiments

deep learning approach has been selected. Specifically, a Conditional Generative Adver-
sarial Network (cGAN) [38], namely Pix2Pix, has been employed for the task of image-
to-image translation.

3.4.1. Image to image translation

Image-to-image translation, in the context of computer vision, refers to the process of
transforming an input image from one representation or style to another. This transfor-
mation is learned from training data that includes pairs of input and output images. The
objective is to establish a mapping or model that can convert an input image into an
output image. This technique can be applied to various tasks, as exemplified in Figure
3.17, such as changing a summer landscape photo into a winter scene or converting a
horse image into a realistic zebra photograph.

The predominant deep learning approach for this task involves Generative Adversarial
Networks (GANs) [33].

Generative Adversarial Networks (GANs)

A Generative Adversarial Network (GAN) [33] is a deep learning framework designed for
image-to-image translation tasks. It consists of two primary components: a generator (G)
and a discriminator (D).

The generator model (G) has the capability to produce new and realistic synthetic
samples that closely resemble data originating from an existing distribution of samples.
In contrast, the discriminator model (D) is trained to distinguish between the fake

3| Sole segmentation 37

Figure 3.17: Examples of image-to-image translation

Figure 3.18: GANs architecture

data generated by G and real data. Therefore, the training objective for the GAN can
be framed as a two-player min-max game, where the generator (G) aims to minimize the
objective function, while the discriminator (D) strives to maximize it. This adversarial
setup drives the generator to create increasingly convincing samples and the discriminator
to become more expert at differentiating real from fake data.

The basic architecture of GANs is shown in Figure 3.18.

3.4.2. Pix2Pix Architecture

The proposed approach is built upon the Pix2Pix [38] architecture, which is a state-
of-the-art framework for image-to-image translation developed by Isola et al. in 2016.
Pix2Pix is based on conditional Generative Adversarial Networks (cGANs) [49].

38 3| Sole segmentation

Conditional GANs [49] represent a specific type of GAN architecture designed for gen-
erating images with specific attributes or characteristics, conditional generation. Unlike
other GAN models, which produce random images within a given domain, cGANs are
designed to generate targeted images of a particular type based on the provided input.
Pix2Pix operates as a conditional GAN, where a target image is created from an input
image. The generator model takes an input image and produces a translated version. The
discriminator model, on the other hand, receives an input image along with a translated
one and must determine whether the image is real or fake.

The Pix2Pix architecture is composed of two key components: a Generator G and a
Discriminator D. The Generator G utilizes an encoder-decoder network or U-Net with
skip connections, while the Discriminator follows a patch-GAN architecture.

U-Net Generator

Unlike a conventional GAN model, the U-Net generator takes an image as input, and
randomness is introduced through the utilization of dropout layers. These dropout layers
are incorporated during both the training phase and when making predictions.

(a) Encoder-Decoder (b) U-Net

Figure 3.19: Encoder-Decoder and U-Net comparison [38].

The U-Net’s architecture can be conceptually divided into an encoder network followed
by a decoder network. In the typical encoder-decoder configuration (Figure 3.19a) the
generator takes an image as input and applies a downsampling process across several layers
until it reaches a bottleneck layer. Subsequently, the representation is upsampled across
additional layers before producing the final image of the desired dimensions. The U-Net
model (Figure 3.19b) shares similarities with this approach, particularly the downsampling
to a bottleneck and subsequent upsampling to create the output image. However, what
distinguishes the U-Net model is the incorporation of links or skip-connections between
layers of equivalent size in the encoder and decoder. This linkage allows the bottleneck
to be bypassed. For instance, the first layer of the encoder is paired with the same-sized
feature maps as the last layer of the decoder, and these two layers are merged. This

3| Sole segmentation 39

process is reiterated for each layer in the encoder, connecting it with the corresponding
layer in the decoder, thus creating a U-shaped model, as exemplified in Figure 3.20.

Figure 3.20: U-Net architecture

Patch-GAN Discriminator

The discriminator model in the Pix2Pix framework is responsible for evaluating images
from both the source and target domains, determining the likelihood of whether the target
domain image is a real or a generated counterpart.

Therefore, an essential requirement for training the discriminator model is the availability
of an image dataset consisting of paired source and target images. These paired images
serve as the basis for the model to learn the relationships between the two domains.

In contrast to the conventional GAN model, which employs a deep convolutional neural
network to classify entire images, the Pix2Pix model utilizes a PatchGAN. The Patch-
GAN is a deep convolutional neural network designed to classify patches of an input image
as real or fake, rather than making an assessment about the entire image. This approach
allows to capture fine-grained, high-frequency details, improves computational efficiency
compared to evaluating whole images, and results in a model with fewer parameters. The
output of the network is a feature map of real/fake predictions, which can be averaged to
produce a single score.

3.4.3. Dataset generation

The primary objective of the Pix2Pix network is to reconstruct the profile of a sole with
burrs where it is obstructed. In an ideal scenario, this network should be capable of
reconstructing any kind of profile, given that the shape of the burrs is random. The

40 3| Sole segmentation

dataset used for training the Pix2Pix model, then, includes several instances of segmented
soles with burrs, enhancing the model’s ability to generalize across different scenarios.

To train Pix2Pix, the dataset should be structured with pairs of images, where each pair
consists of:

• Ground truth: This image represents the real segmentation of the sole without
any occlusions. Essentially, it is what the model should ideally identify.

• Model input: This image depicts the segmentation of the sole with occlusions,
serving as the input for the model, which needs to reconstruct the unobstructed
profile.

Creating such a structured dataset with a significant volume of images manually can
be time-consuming. To overcome this challenge, a Python script has been developed to
automatically generate occlusions. Ten distinct profiles of soles with burrs have been
used as ground truths to be reconstructed. The script operates by randomly rotating and
translating the ground truth profile within the image domain, ensuring that the entire
profile remains inside the image without being cut off. This step enhances the model’s
generalization capabilities, making it independent of the orientation and position of the
sole within the image.

After generating the ground truths, the script proceeds to create occlusions. Specifically,
ten white circles have been drawn to occlude the black segmentation, simulating the effect
of ring and screw occlusions. The centers of these circles have been placed at random
points along the contour of the sole, and the radius of each circle has been randomly set
within a range of 10 to 30 pixels.

To build the dataset, starting with ten profiles, 25 ground truths have been created for
each profile, and for each ground truth, 40 images with random occlusions have been
generated. As a result, the final dataset comprises 10000 elements. Some examples are
reported in Figure 3.21.

For training and evaluation purposes, the dataset has been divided into training and
validation subsets, with 80% of the elements allocated for training and the remaining
20% reserved for validation.

3| Sole segmentation 41

Figure 3.21: Dataset Pix2Pix

3.4.4. Implementation details

The model has been trained for 30000 steps using the Adam optimizer [42] for both
the generator and the discriminator. The initial learning rate was set to 1 × 10−4 with
the default parameters (exponential decay rates for the moment estimates, specifically
beta_1 = 0.9 and beta_2 = 0.999).

3.4.5. Results

The training curves, which depict the losses of both the generator and discriminator
models, are illustrated in Figure 3.22. Both curves exhibit a plateau behavior, suggesting
that the training has reached its completion.

42 3| Sole segmentation

(a) Generator total loss

(b) Discriminator total loss

Figure 3.22: Generator and Discriminator training losses evolution

Some examples of the predicted reconstruction from the validation dataset are reported
in Figure 3.23. It is visually evident that the model correctly reconstructs the occluded
portions of the profile regardless of the burr’s specific shapes.

3| Sole segmentation 43

Figure 3.23: Pix2Pix result

The model has been subsequently assessed using the occluded segmentation produced by
Detectron-2. The outcome is displayed in Figure 3.24, revealing the model’s inability
to accurately reconstruct the occluded sole’s profile. This unexpected result has been
attributed to the irregularities in the segmentation’s profile from Detectron-2, which ex-
hibits a segmented shape both in areas with real occlusions and those without. The model
interprets these oscillations as small occlusions and attempts to address them, leading to
a blurred incorrect reconstructed profile.

For future developments, then, it is essential to introduce an extra post-processing step
for the segmentation generated by Detectron-2. Specifically, it should be capable of dis-

44 3| Sole segmentation

Figure 3.24: Pix2Pix reconstruction of the segmentation from Detectron-2

tinguishing sections with occlusions from those without. This separation will allow the
smoothing of the profile in areas lacking occlusions, eliminating the oscillating behavior.
The model, then, should be able to correctly reconstruct the occluded portions of the
segmentation.

45

4| Burrs identification method

Up to this point, the project pipeline has followed the sequence described in Chapter 3,
which can be summarized as:

1. Detection of the sole and generation of its corresponding mask through Detectron-2
[80];

2. Reconstruction of the occluded portions of the mask through the use of Generative
Adversarial Networks (GAN), specifically Pix2Pix.

As a result, a meticulous segmentation of the sole with burrs has been successfully
achieved. Given that the ultimate objective is to eliminate these burrs, a novel method
for burrs identification has been developed. Leveraging computer vision and image pro-
cessing techniques, implemented in Python with the aid of the OpenCV library [18], the
nominal profile of the sole can be overlaid onto the profile containing the burrs in their
correct positions. This approach serves to precisely delineate the path that the deburring
tool should follow and, consequently, find the regions that require removal.

A significant achievement lies in the development of a method that demonstrates scale,
position, and orientation independence. This means that the sole with burrs can vary in
size, be oriented in any direction, and be located anywhere within the acquired image,
and the method remains effective.

In a concise overview of the method’s outline, the following steps are employed:

1. Extraction of the nominal profile from an image featuring a sole without burrs;

2. Calculation of the oriented bounding box for this nominal profile (An oriented
bounding box is a rectangle whose edges are not parallel to the basis vectors of
the frame but are instead rotated to align with the object’s orientation [67]);

3. Scaling, rotation, and translation of this bounding box to standardize its size and
position at the origin of the plane. This establishes a "template" of the nominal
profile;

46 4| Burrs identification method

Subsequently, when the segmented image of the sole with burrs is available, the method
proceeds as follows:

1. Calculation of the oriented bounding box for the sole with burrs. The longest edge
of this rectangle determines its size, the rotation angle relative to the horizontal
axis specifies the rotation value, and the center of the bounding box indicates its
position;

2. Scaling, rotation, and translation of the nominal template to match the dimensions,
orientation and center with the bounding box of the sole with burrs.

The details of the aforementioned steps are presented in Chapters 4.1 and 4.2.

However, it’s worth noting that this initial correspondence doesn’t always yield the correct
alignment of the nominal profile within the one containing burrs. Therefore, this initial
alignment serves as a starting point for an optimization process aimed at maximizing the
overlapping area between the nominal profile and the one with burrs. This optimiza-
tion involves fine-tuning the scale, rotation and translation of the nominal profile. It is
described in detail in Chapter 4.3.

It’s noteworthy that this method demonstrates computational efficiency during the opti-
mization search and can attain an overlap percentage (measured as the intersecting area
over the nominal one) exceeding 99.5%.

4.1. Nominal sole profile template extraction

To enable burr recognition, the nominal profile of the sole must be known. In this method-
ology, the nominal profile is obtained through computer vision and image-processing tech-
niques, utilizing a real sole that is free of burrs. This process is carried out using the
Python OpenCV library [18].

The initial step involves capturing an image of the sole. The utilized image is represented
in Figure 4.1. To optimize and facilitate the subsequent processing, the black sole is
strategically positioned against a bright light gray background. This contrast enhances
the ease of extracting a binary image.

Subsequently, OpenCV [18] is employed to conduct contour detection, which involves
identifying the borders of the sole. In this context, a contour represents a collection
of boundary pixels that share the same color and intensity. Following the approach
suggested in [37], to prepare for this contour detection process a thresholding operation
is initially applied to obtain a binary image (Figure 4.2a). In particular, the simple

4| Burrs identification method 47

Figure 4.1: Image of the nominal sole used for profile extraction

global thresholding method has been employed, selecting the threshold that optimizes the
binarization result.

After this thresholding step, the image is transformed into one composed solely of black
and white pixels, effectively highlighting the object of interest, which, in this case, are
the borders of the sole within the image. These object borders are turned black, result-
ing in uniform intensity, and thereby simplifying the contour detection algorithm. The
findContours() [9] function is subsequently utilized to identify the external contour of the
nominal sole (Figure 4.2b).

Subsequent to the contour identification, the oriented bounding box [67] encasing it is
determined using the OpenCV function minAreaRect() [10] (Figure 4.2c). This bounding
rectangle is rotated to minimize its area. As a result, the orientation within the plane of
the profile, as well as its dimensions, are extracted

48 4| Burrs identification method

(a) Binary image

(b) Extracted contour

(c) Oriented Bounding Box

Figure 4.2: Steps for nominal contour extraction

Afterward, the nominal contour undergoes the following transformations:

1. Rotation of the initially oriented bounding box to align its longest side horizontally

2. Translation to reposition the center of the bounding box at the origin of the plane

3. Scaling to ensure the longest side of the bounding box has a unitary length

As a result of these operations, a template representing the nominal profile of the sole is

4| Burrs identification method 49

generated. This template is now ready to be adjusted through translation, rotation, and
scaling to fit precisely within the profile containing the burrs. These adjustments are made
once the position, orientation, and dimensions of the profile with burrs are determined.

4.2. Contour matching algorithm initialization

The segmentation of the sole with burrs has been obtained through Detectron-2 and
Pix2Pix as described in Chapter 3. The objective of the burrs-detection method is to
correctly overlay the nominal profile inside the one with burrs in order to recognize the
regions of the sole to be deburred.

To achieve this, it is crucial to determine the position, orientation, and dimensions of the
sole designated for deburring. In this study, the chosen approach hinges on the use of the
oriented bounding box. To obtain this information, the OpenCV function minAreaRect()
[10] has been employed. The oriented bounding box provides the necessary information
for the transformation of the nominal template.

The nominal template is adjusted through the following steps:

1. Scaling is applied to the template so that the longest edges of both bounding boxes
become equal;

2. The scaled template is subsequently translated to align the centers of the two bound-
ing boxes;

3. Finally, the scaled and translated template undergoes a rotation process to align
with the orientation of the bounding box containing the burrs.

Figure 4.3a serves as a sample to showcase the behavior of the method. Its segmentation
is found through Detectron-2 [80] (as described in Chapter 3) and the previously outlined
steps are carried out in order to determine the initial guess of overlap between the nominal
profile (found in Chapter 4.1) and the profile containing burrs. The final result is shown
in Figure 4.3b.

50 4| Burrs identification method

(a) Starting image with burrs

(b) Initial guess of overlap

Figure 4.3: Output of contour matching initialization stage

To assess the accuracy and effectiveness of the code, the percentage of overlapping
area is introduced. This metric is defined as:

Percentage of Overlapping Area =
Intersecting Area

Nominal Area
· 100 (≤ 100%) (4.1)

so the ratio between the area of intersection between the nominal profile and the profile
with burrs and the area of the nominal profile itself. The ideal position and orientation
of the nominal profile within the profile containing burrs would yield a percentage of
overlapping area of 100%.

It is evident that the positioning of the nominal profile within the profile containing

4| Burrs identification method 51

burrs in Figure 4.3b is not entirely accurate. The percentage of overlapping area, in
this case, stands at only 94.57%. This discrepancy can be attributed to the fact that
the transformations applied to the nominal template are based on data obtained from
the oriented bounding box of the profile with burrs. This bounding box is determined
as the minimum-area rectangle around the contour and is significantly influenced by the
shape and dimensions of the burrs. For instance, in scenarios where burrs are unevenly
distributed around the profile, the center of the bounding box tends to shift towards the
side with larger burrs. Moreover, the orientation of the rectangle can also exhibit variation.
Consequently, the nominal profile with coincident centers and the same orientation may
result in an incorrect overlap.

It is noteworthy, however, that the outcome depicted in Figure 4.3b represents a fortuitous
scenario where burrs are absent from the top and bottom regions of the sole. Consequently,
the bounding box’s longest side inherently provides the accurate scaling and dimensions
of the nominal sole, thereby augmenting the percentage of overlapping area. In cases
where burrs extend to the top and bottom sections of the sole, any inaccuracies in the
scaling of the nominal template would be corrected in the next steps.

To determine the precise positioning of the nominal profile, an optimization procedure is
carried out. The initial location obtained through the bounding boxes’ alignment serves
as the starting point for this search.

4.3. Contour matching optimization

The objective is to maximize the percentage of overlapping area, aiming to find
the accurate position of the nominal profile within the one containing burrs.

The method relies on image processing techniques, the metric needs to be calculated every
time the configuration changes. The optimization in this study, then, relies on a direct
search of the solution. To accomplish this, the nominal profile is systematically scaled,
translated and rotated into various configurations, thus exploring the neighboring space.
The specific transformation that optimizes this objective is then extracted.

The implemented procedure to achieve this goal is the following:

1. Initiate from the position determined by the bounding boxes’ match, as described
in the preceding section, and calculate the initial percentage of overlapping area;

2. Set the ranges and step sizes for scaling, rotation and translation based on the
initial percentage of overlap. A lower overlap percentage corresponds to larger

52 4| Burrs identification method

movement ranges and steps, while a higher overlap percentage entails smaller ranges
and steps;

3. Following each relocation and rescaling of the nominal profile, calculate the new
percentage of overlap. If it doesn’t exhibit improvement compared to the previous
result, implement another transformation step on the nominal profile. However, if
there is an improvement, redefine the ranges and step sizes, making them smaller
than the previous settings. This discovered position then serves as the initial point
for the subsequent search iteration;

4. Continue the procedure until the percentage of overlapping area exceeds 99.5%.
Once achieved, store the final scale, position and orientation and conclude the op-
timization process.

The refinement of the ranges and step sizes after each objective improvement significantly
accelerates the convergence of the process compared to a straightforward global search
method. This adaptive approach optimally balances the search space exploration. When
the overlap is initially low, a wider range ensures finding a better position and a broader
step size speeds up the search. As the overlap percentage increases, precision becomes
more crucial, necessitating a finer refinement with a reduced range and step size. This
fine-tuned approach allows for pixel-level adjustments and small-scale transformations in
the vicinity of the previous step’s location.

It is important to note a significant aspect of the algorithm. The computation of the
Percentage of Overlapping Area (P.O.A.), as defined in Equation 4.1, involves the nominal
area in the denominator. This design choice ensures a variable for maximization, and 100%
indicates the entire nominal contour is correctly positioned within the sole with burrs.
However, a potential issue may arise if the code generated a nominal scale considerably
smaller than that of the sole with burrs. In such cases, the nominal profile might be
entirely immersed in the one with burrs, yielding a P.O.A. of 100%, yet the result is
incorrect due to the small scale.

To avoid this concern, when a scaling range and step are specified, the sole is initially set
to the maximum scale within the range and subsequently downscaled from the maximum
to the minimum scale. Given the continuous updating of the P.O.A. at each step, with
adjustments to ranges and steps based on improvements, the algorithm consistently yields
the optimal overlapping solution with the largest scale possible. This measure ensures that
the algorithm avoids the potential mistake of erroneously considering the nominal profile
too small relative to the sole with burrs, enhancing the accuracy and reliability of the
results.

4| Burrs identification method 53

The iterative process concludes when the percentage of overlap surpasses the 99.5% thresh-
old, guaranteeing an exceptionally high level of precision in burrs identification for the
subsequent robotic deburring operation.

4.4. Results

Starting from the example presented in Figure 4.3b in the preceding chapter, the op-
timization procedure ultimately yields the final outcome illustrated in Figure 4.4. By
applying this optimization method, the percentage of overlapping area improves from
94.57% to 99.63%.

Figure 4.4: Optimized contour matching for burrs identification

From this profile configuration, deriving the segmentation of the burrs is straightforward.
Essentially, the burrs correspond to the area located between the profile with burrs and
the one without them. Therefore, the two contours have been filled with white masks
using OpenCV. To obtain only the white regions of the burrs, the XOR (exclusive OR)
logical operator has been applied. Since the white masks consist of pixels with an intensity
equal to 1, the pixel-wise application of the XOR logical operator allows retaining only
the pixels belonging to either the sole with burrs or the sole without, but not the areas
in common. The result is shown in Figure 4.5.

It is evident how, due to small errors in the image processing process and from the
segmentation of Detectron-2, some areas along the profile are wrongly identified as burrs.
These must be filtered out. In order to retain only the thickest region a morphological

54 4| Burrs identification method

Figure 4.5: Identified segmentation of the burrs

operation [72] has been implemented. Using a 5-pixel square structuring element, an
erosion operation [64] is applied. The structuring element is moved around the image and
a white portion is preserved if and only if all the pixels within the structuring element
have an intensity equal to 1 (white), otherwise it is entirely set to black (background).
This process effectively eliminates small areas previously mistaken as part of the sole,
ensuring that only the thickest physical burrs are retained.

The final result is depicted in Figure 4.6.

Figure 4.6: Identified segmentation of the burrs

55

5| Tool pose estimation

Up to this point in the study, the path planning for the deburring process includes the
positions that the deburring tool must follow, as defined in earlier chapters, specifically
the collection of points composing the nominal profile correctly positioned inside the one
with burrs (Chapter 4.4).

However, for effective deburring, the optimal orientation of the deburring tool during
cutting is crucial. The orientation of the tool plays a fundamental role in the correct
execution of the deburring process on the sole, as the shape of its blade is optimized for
cutting in a specific pose, and the cutting blade is only present on one side of the tool’s
tip. The ideal orientation, therefore, depends on the shape and position of the burr,
particularly the local curvature. The tool should be inclined in a specific way to achieve
an optimal cut.

In this study, the proposed approach involves teaching the optimal orientation to the
robot through human demonstration.

In the field of robotics and automation, learning from demonstration (LfD) [83]
involves allowing a robot to acquire new skills by learning to imitate an expert demon-
strator.

There exist several methods for acquiring demonstrations, broadly categorized into direct
and indirect techniques [26]. In direct demonstration, the learning agent itself performs
the task. Kinesthetic teaching (Figure 5.1a), for example, involves physically manipulat-
ing the robot to guide its movements. On the other hand, indirect demonstration involves
an external agent demonstrating the task. In the case of indirect demonstration by obser-
vation (Figure 5.1b), for instance, a teacher performs the task, and the demonstrations
are recorded through cameras.

For this study, where the goal is to determine the optimal orientation of a deburring tool,
an expert in deburring performs the task. Given the need for high precision in deburring
tasks, especially regarding the small dimension of the tool’s cutting edge and the precise
positioning, direct methods such as kinesthetic teaching may pose challenges. Therefore,

56 5| Tool pose estimation

(a) Kinesthetic teaching [25]

(b) Visual indirect teaching [69]

Figure 5.1

an indirect method has been chosen, where the demonstrator is free to perform deburring
effectively without the constraints of physically moving the robot. Specifically, videos of
experts performing deburring tasks are analyzed, and the pose of the tool is extracted
from these videos. To determine the 6D pose of the tool from the videos, a deep learning
approach for pose estimation from RGB images has been employed.

5.1. 6D pose estimation from RGB images

Pose estimation techniques provide the position and orientation of the detected object
with respect to the camera frame.

Over the years, with the advent of Convolutional Neural Networks (CNNs), artificial
intelligence and deep learning have significantly influenced the field of image processing,
particularly in subfields such as object detection and 6D pose estimation. These deep
learning methods for pose estimation can be categorized into three primary types: 2D-3D
correspondence, direct estimation, and pose refinement.

• 2D-3D Correspondence: In this approach, a neural network is trained to identify
2D key points in an image of the target object. Subsequently, a Perspective-n-Point

5| Tool pose estimation 57

(PnP) [59] algorithm is employed to determine the 6D pose of the object.

• Direct estimation: Direct estimation methods leverage CNNs to predict the pose
of the target object directly. These techniques extend from instance segmentation
models like Mask R-CNN.

• Pose refinement: Pose refinement methods refine the initial pose estimation, im-
proving its accuracy. This refinement step follows the pose predictions made by the
previous two categories.

For the specific objective of this study, EfficientPose [19] has been selected as the network
for deburring tool pose estimation. EfficientPose is a direct estimation method that
extends the segmentation network EfficientDet. It stands out due to its state-of-the-art
performance, simplicity, and relatively low computational cost. Moreover, it also includes
a pose refinement step, making it well-suited for the study’s purposes.

5.1.1. Efficient Pose

EfficientPose [19] is a cutting-edge, supervised learning technique specifically designed for
the estimation of 6D object poses using RGB images. It is widely cited in the literature
for its efficiency, scalability, and exceptional accuracy. It is a one-shot method that per-
forms 2D bounding box detection and full 6D pose estimation. This 6D pose includes the
calculation of 3D rotation (R) and 3D translation (t). Essentially, the 6D pose describes
the rigid transformation from the object’s coordinate system to that of the camera. It is
built upon the state-of-the-art 2D object detection method EfficientDet [74], expanding
its capabilities to include the prediction of object poses. Remarkably, it does so while
preserving the advantageous aspects of the base network and without incurring signifi-
cant additional computational costs. The extension primarily consists of the addition of
two supplementary subnetworks, dedicated to forecasting object translations and rota-
tions, similar to the subnetworks responsible for classifying objects and finding their 2D
bounding boxes.

The two extra subnetworks can be described as:

• Rotation Network: This subnetwork is responsible for predicting a rotation vector
r ∈ R3. To enhance the accuracy of the initial rotation prediction, an iterative
refinement module is introduced. This module takes the current rotation prediction,
rinit, as well as the output of the final convolution layer, before the initial regression
layer. It calculates a ∆r to iteratively refine the rotation prediction. This process
is repeated Niter = 1 + [ϕ/3] times, with each iteration updating the rotation as

58 5| Tool pose estimation

Figure 5.2: EfficientPose architecture

r = rinit +∆r. The intermediate rotation r from each iteration is used as the new
rinit for the next iteration.

• Translation Network: This subnetwork focuses on estimating the translation vec-
tor t ∈ R3. The translation task is divided into two parts. First, it identifies the 2D
center point of the object c = [cx, cy]

T and it estimates the depth tz. The translation
vector t = [tx, ty, tz]

T is obtained through the camera’s intrinsic parameters, using
the formula

xy
z

 =

1/fx 0 px/fx

0 1/fy py/fy

0 0 1

cxcy
1

 (5.1)

where fx, fy are the focal lengths and (px, py) is the principal point.

A schematic representation of EfficientPose’s architecture is shown in Figure 5.2.

The model is scalable thanks to the hyperparameter ϕ, which provides flexibility in ad-
justing the network’s dimensions. This hyperparameter allows for the augmentation of the
number of layers, which can enhance the model’s performance in exchange for increased
computational costs. Furthermore, it also influences the number of iterations used for
pose refinement, granting control over the trade-off between computational resources and
model accuracy.

EfficientPose introduces a significant improvement with a novel 6D augmentation tech-
nique. This technique leverages image rotation and scaling transformations to generate

5| Tool pose estimation 59

additional data for training the network. The key advantage of this approach is its ca-
pacity to reduce the extensive time required for data annotation, enabling the utilization
of smaller initial datasets, and enhancing the network’s ability to generalize from the
available data. Figure 5.3, extracted from the official EfficientPose paper [19], provides a
quantitative demonstration of the superior performance of this network in comparison to
other widely used alternatives. The illustration showcases the ADD(-S) values, a preva-
lent metric for assessing pose estimation algorithms as detailed in Chapter 5.4. These
values are presented across all objects within the Linemod dataset [17].

Figure 5.3: EfficientPose [19]: ADD(-S) Performance on Linemod Dataset [17] and Com-
parative Analysis with Other Pose Estimation Networks

5.2. Dataset generation

In the domain of supervised deep learning methods, dataset annotation plays a funda-
mental role. The quality of the annotations directly influences the quality of the results
achieved: precise annotations are an essential prerequisite for obtaining accurate out-
comes. Given that machine learning models learn the relationship between input and
output data, the creation of a dataset comprising suitable training inputs and their cor-
responding ideal outputs (ground truths) is the only way to ensure the desired behavior
is learned.

When considering pose estimation from RGB data, precise annotations of the full 6D
pose of the target object, in a large volume of images, are required to create an effective
dataset. However, the process of acquiring and annotating such data can be an exceedingly
time-consuming and often costly task.

To address these challenges, this study has opted to use synthetic data to train the

60 5| Tool pose estimation

EfficientPose network. This approach offers the advantage of generating an essentially
limitless quantity of precisely labeled data, significantly reducing the time and effort
needed for the dataset creation. Furthermore, it helps minimize the potential for errors
that might arise from incorrect labeling. By leveraging a set of background images taken
from the real working environment, the 3D model of the tool (the object of interest for
pose estimation, Figure 5.4) has been placed in a predetermined position and orientation
relative to the camera frame. This process results in the creation of a highly accurate
ground truth annotations.

(a) (b)

Figure 5.4: Real manual deburring tool and 3D model used for dataset generation

To create the annotated synthetic dataset used for training and testing EfficientPose,
BlenderProc [29], an open-source framework, has been utilized. BlenderProc enables the
rendering of photorealistic images from generated 3D scenes. By specifying the positions of
the 3D model of the deburring tool and the camera, it is possible to extract the relative 6D
full pose, thereby generating a highly accurate ground truth dataset for pose estimation.

However, when it comes to deploying models trained on synthetic data into real-world
environments the reality gap may be a significant challenge to overcome. This gap refers
to the disparities and inconsistencies that often exist between the synthetic or simulated
data used to train the model and the real-world data these models encounter in practical
applications. Bridging the reality gap is a crucial objective, as it directly affects the
effectiveness and reliability of the model when deployed in real-world scenarios.

To improve the model’s capability to recognize the deburring tool and its orientation
in real-world scenarios, where the tool is manually held by a human hand over the sole
requiring deburring, the dataset’s backgrounds are composed of images featuring soles and
a combination of soles and hands, as exemplified in Figure 5.5. This approach enhances
the model’s robustness in identifying the tool among various elements in the image and
helps narrow the reality gap by making more realistic images, thus improving accuracy.

5| Tool pose estimation 61

(a) (b)

Figure 5.5: Samples of EfficientPose’s dataset background images

Furthermore, for more realism in synthetic images and enhanced accuracy in real-world
scenarios, physical features were attributed to the deburring tool, including surface rough-
ness and a metallic shading effect.

To ensure robust detection under varying lighting conditions, a point light source was
used to generate the synthetic images. This light source is randomly moved in space
for each image, providing the model with exposure to different shadowing and reflection
conditions to improve its adaptability.

Considering the complexity of the pose estimation task, a decision has been made to fix
the camera position within the scene. However, to introduce variability, the tool has been
randomly positioned in every scene. Figure 5.6 shows two samples of random positioning.
Spatial constraints have been imposed on the tool’s position to ensure alignment with
real-world scenarios where the model would be applied, particularly in videos of human
demonstrations of deburring.

(a) (b)

Figure 5.6: Random positioning of 3D model deburring tool

62 5| Tool pose estimation

A total of 10000 scenes have been created, with each scene generating a single image.
Consequently, a dataset of 10000 annotated images has been obtained. This dataset
has been then divided into two subsets: 80% for training (8000 elements) and 20% for
validation (2000 elements). Some examples of elements of the dataset are reported in
Figure 5.7.

(a) (b)

Figure 5.7: EfficientPose’s dataset samples

5.3. Training parameters

The model has been trained for 175 epochs and has been evaluated after every epoch. The
learning rate has been dynamically changed during training using Keras’ ReduceLRon-
Plateau [11] function: large rates quickly adjust the model but can lead to fluctuations,
local minima and divergence; smaller rates avoid these issues but take an excessive amount
of time to improve the model. The learning rate has been set as large at the beginning
and then automatically decreased when the training stagnates. A reduction of 50% has
been imposed after more than 25 epochs of stagnation. The initial and minimum learning
rates have been set at 1e−4 and 1e−7 respectively. The scaling factor ϕ = 0 has been used
since the network must be able to predict the orientation of one single object only, so
there’s no need to oversize the network at the expense of the computational cost.

5.4. Evaluation Metric for Pose Estimation: ADD-S

The most commonly used metric for assessing the performance of a pose estimation net-
work is the ADD, which is related to the Average Distance (AD). It quantifies the average
error made by the model in predicting the pose of an object.

In this context, R and t represent the ground truth, while R̂ and t̂ represent the pre-
dictions generated by the network. Given a set of n points from the 3D model M of

5| Tool pose estimation 63

the object, the AD calculates the average of the pairwise distances between these points,
transformed according to both the ground truth and the network’s predictions (equation
5.4):

AD =
1

n

∑
x∈M

∥(Rx + t)− (R̂x + t̂)∥ (5.2)

A prediction is considered correct if the average distance is below a predefined threshold,
typically set at 10% of the 3D model’s largest dimension. The ADD metric measures the
percentage of correct predictions.

In the case of the deburring tool, which features a handle with rotational symmetry,
the matching between points can become ambiguous due to the lack of visual differences
among multiple orientations. Consequently, the standard ADD metric may encounter
significant challenges and the ADD-S metric is used instead. For symmetric objects the
average distance is computed using the minimum distance between the predicted points
and the ground truth (equation 5.4):

AD − S =
1

n

∑
x1∈M

min
x2∈M

∥∥∥(Rx1 + t)− (R̂x2 + t̂)
∥∥∥ (5.3)

Analogously, the ADD-S represents the percentage of correct poses predicted.

5.5. Results

The results of training EfficientPose with the dataset described in Chapter 5.2 and the
training parameters outlined in Chapter 5.3 are presented.

The evolution of the losses during training and validation and of the AD-S and ADD-S
metrics during training is shown in Figure 5.8.

64 5| Tool pose estimation

(a) Training loss (b) Validation loss

(c) AD-S metric evolution during training (d) ADD-S metric evolution during training

Figure 5.8: EfficientPose’s training and validation curves

The model appears to stabilize at a plateau based on the loss curves, suggesting poten-
tial completion of the training. However, the evaluation metrics AD-S and ADD-S don’t
exhibit a stabilized behavior in the latter part, hinting at possible performance improve-
ments with continued training. Notably, the validation loss tends to increase towards the
end, indicating a potential initiation of overfitting. After experimentation, it has been
observed that the loss consistently increased, and the evaluation metrics showed no im-
provement. Consequently, the decision has been made to conclude the training at 175
epochs.

At the end of 175 epochs, ADD-S achieves a final value of 64.85%, with a peak during
training of 68.7%. An illustrative example of a prediction from the validation dataset is
presented in Figure 5.9, where the green 3D bounding box denotes the annotated ground
truth, and the blue one represents the predicted pose.

Furthermore, the model has been tested on real images, showcasing its capability to gen-
eralize to real-world scenarios without significant performance degradation. As depicted

5| Tool pose estimation 65

Figure 5.9: EfficientPose’s prediction sample from validation dataset

in Figure 5.10, the model successfully identifies the real tool even when partially occluded
by a hand and in the presence of the sole.

(a) Real image (b) EfficientPose’s prediction

Figure 5.10: EfficientPose’s prediction on real image

67

6| Experimental results

In this chapter, all the steps outlined in the preceding chapters are brought together to
accomplish the robotic deburring task. Each step in this study has proven effective in
its required contribution. The ultimate objective is to integrate these diverse outputs
cohesively, enabling to derive the final path, inclusive of both the position and orientation
of the cutting tool. The complete pipeline has been tested both in a simulated environment
and in a real-world scenario.

This chapter offers an in-depth exploration of the processes involved in translating the
outputs of the previously described procedures into commands for the robot, enabling the
effective execution of the deburring task. Specifically, Section 6.1 deals with the design
of the deburring tool for robotic applications, while Section 6.2 provides a comprehensive
description of the steps taken to derive the deburring path intended for the robot con-
troller. The experiments have been conducted using a Doosan A0509 robotic arm in the
Mechatronics and Robotics lab for Innovation (MERLIN [4]) of Politecnico di Milano,
and the results obtained are detailed in Section 6.2.3.

6.1. Robotic deburring tool design

The manual deburring process involves the use of a cutting tool with a design similar to
the one depicted in Figure 6.1. The tool features a metal handle for manual grasping,
and the cutting blade is specifically shaped to facilitate the deburring action.

Figure 6.1: Manual deburring tool

68 6| Experimental results

The objective of this study is to automate this process using a robotic arm. However, con-
ventional grasping of the tool with a gripper is deemed impractical due to the tool’s small
handle dimensions and shape, which prevent precise gripping and pose a risk of slippage
during the task, compromising precision. Furthermore, grasping the tool conventionally
would not provide accurate knowledge of the cutting edge’s exact position.

For the purpose of the experimental validation of the trajectory planning pipeline, a
specialized tool is essential. It allows for simulating the deburring process without the
actual removal of burrs, in contrast to the real deburring operations, which would require
an actuated tool, such as the one offered by ATI automation [1] (Figure 6.2).

Figure 6.2: Robotic deburring tool by ATI automation [1]

Drawing inspiration from the ATI tool to fulfill this requirement, a custom-designed tool
has been developed for attachment to the last link of the robot arm. The design comprises
a base for robot attachment, a rigid body, and a specifically shaped blade. Acknowledg-
ing that a 3D-printed plastic tool might lack the necessary blade strength, the design
incorporates a tool base for robot attachment, within which the manual deburring tool is
securely attached. The final design is illustrated in Figure 6.3.

Specifically, the base features four M6 holes, positioned with centers along a circumference
of 50 mm, aligning with the specifications of the Doosan A0509 robot employed in this
study. The base is 100 mm long and allows the allocation of the manual deburring tool
up to the cutting tip.

6.2. Experimental setup

The experimental setup, illustrated in Figure 6.4, comprises several key elements, in-
cluding the sole requiring deburring, the Intel RealSense RGB camera, positioned with a

6| Experimental results 69

(a) 3D model of the designed tool (b) 3D printed tool

Figure 6.3: Designed tool for testing purposes

suitable support in correspondence of the final joint of the robotic arm, and the robotic
arm itself, equipped with the designed mock deburring tool with the cutting blade at its
tip.

Figure 6.4: Experimental setup

70 6| Experimental results

6.2.1. Reference frames and transformations

Considering the multitude of elements involved in the deburring process and the compu-
tation of the deburring path, the results must be put together and transmitted to the
robot controller, all with respect to the robot’s reference frame. However, it is crucial to
note that outcomes from the preceding steps are referenced in distinct frames.

The relevant reference frames are, therefore, detailed below.

• The acquired image reference frame: a spacial span of pixels, with resolution
640x480. The origin is set at the top left corner. The u axis goes from 0 to 640
from left to right, and the v axis goes from 0 to 480 from top to bottom, as shown
in Figure 6.5.

• The sole reference frame: its origin O is set as the center of the oriented bounding
box around the sole with burrs, x and y are parallel respectively to the short and
long edges of the box. The z coordinate points upward and the y is directed towards
the tip of the sole, as reported in Figure 6.5.

Figure 6.5: Pixel, sole and burrs reference frames

• The burr’s local reference frame: at each point of the nominal profile where a
burr is present, a local reference frame is defined, centered in O’, composed by the z
axis, the tangent and the normal to the profile in that point. The convention used
includes having the z axis pointing upwards and the normal axis pointing outside of

6| Experimental results 71

the sole. The tangent component’s orientation is found accordingly. Some examples
are reported in Figure 6.5.

• The RealSense D435i camera reference frame: centered in the RGB camera and
(x,y,z) axis as reported in Figure 6.6.

Figure 6.6: RealSense D435i RGB camera reference frame

• The deburring tool base reference frame: x and y coincident with the reference
frame of the last joint of the robot, to which it is attached, while the z is directed
towards the TCP (Figure 6.7)

• The deburring tool tip reference frame (Tool Center Point or TCP): the tangent
is directed parallel to the cutting edge, the z axis points downward and the normal
is found accordingly (Figure 6.7)

Figure 6.7: Deburring tool base reference frame and TCP reference frame

72 6| Experimental results

• The robot base reference frame (Figure 6.8)

Figure 6.8: Robot base reference frame

The collection of the acting frames is visually depicted in Figure 6.9.

Figure 6.9: Reference frames for robotic deburring

In order to pass from one reference frame to another, transformation matrices are ex-
ploited. They are visually depicted in Figure 6.11 and described in Table 6.1. They are

6| Experimental results 73

represented as spacial transformation matrices: 4x4 matrices which represent both
the orientation and position of a coordinate system with respect to another. The upper-
left 3x3 submatrix represents the rotation transformation while the first three rows of the
last column represent the translation vector. The last row is always the vector [0, 0, 0, 1].
Examples of possible transformations are shown in Figure 6.10.

Figure 6.10: Simple examples of spacial transformation matrices

Figure 6.11: Visual representation of transformation matrices between reference systems.

74 6| Experimental results

Values Description

Tcam =

1 0 0 −17

0 −1 0 513

0 0 −1 489

0 0 0 1

Camera orientation and po-
sition in the global reference
frame. Fixed.

T ′ =

R1,1 R1,2 R1,3 t1

R2,1 R2,2 R2,3 t2

R3,1 R3,2 R3,3 t3

0 0 0 1

TCP orientation and po-
sition in the burr local
reference frame. Fixed.
(Learned from expert
demonstration)

Tith−burr =

tx nx 0 O′

x

ty ny 0 O′
y

0 0 1 0

0 0 0 1

Burr point position and ori-
entation in sole reference
frame O. Variable (function
of the specific burr point).

Ttcp−tool =

−0.776 −0.629 0 −12

−0.629 −0.776 0 0

0 0 1 −166

0 0 0 1

Tool base orientation and
position in TCP ref. frame.
Fixed.

Tsole =

rot_sole_xx rot_sole_yx 0 pos_solex

rot_sole_xy rot_sole_yy 0 pos_soley

0 0 1 depth_sole

0 0 0 1

Sole center position and
orientation in global ref.
frame. Variable (function of
current position and orien-
tation of the sole).

Table 6.1: Transformation matrices between reference systems.

6| Experimental results 75

6.2.2. Path planning pipeline

All the elements to build the deburring path are now in place. In this paragraph, the
detailed outline of the path planning process is explained. Exploiting the results obtained
in the previous chapters and transformations detailed in the previous section, the complete
path of the tool is derived and communicated to the robot controller for path execution.

Image acquisition and burrs identification

The process initiates with a sole containing burrs, positioned anywhere within the robot’s
operational space.

The RealSense RGB camera captures an image of the sole (Figure 6.12a) when the robot
is in the home position —a known configuration and easily accessible through a command.
This serves as a consistent starting point for each deburring operation.

From the captured image, the segmentation of the sole is performed, as detailed in Chap-
ter 3. Following segmentation, the burrs identification method, outlined in Chapter 4, is
applied. The resulting identification of burrs is presented in Figure 6.12b.

(a) RGB image of the sole with burrs (b) Identified burrs

Figure 6.12: Path planning pipeline: burrs identification

A unique identifier is assigned to each identified burr for tracking purposes. As an illus-
trative example, the top-left burr is chosen for describing the pipeline.

To determine the deburring path within the plane that the deburring tool should follow,
the segmentation of the identified burrs is intersected with the nominal profile. This
results in a collection of points constituting the internal part of the burrs’ contour, as
visually depicted in Figure 6.13.

76 6| Experimental results

(a) Intersection nominal profile and burrs (b) Tool’s trajectory

Figure 6.13: Deburring plane trajectories in image reference system

All the processes related to burrs identification are performed within the acquired image
reference frame, denoted as the (u,v) frame in Figure 6.5. However, the points in the
plane, where the tool should navigate to perform deburring, need to be transformed into
the robot base frame. Notably, the vertical distance z from the camera to the sole is
known and fixed, as each image is taken in the home position of the robot. The vertical
coordinate to be provided to the robot controller, in the robot reference frame, is found
using the transformation matrix Tcam (Table 6.1).

Two transformations are employed:

• From image frame to camera frame: utilizing intrinsic camera parameters
(camera center (cx, cy) and focal lengths fx, fy) and the known depth distance z,
the (x, y) coordinates are obtained from (u, v) coordinates through the following
formulas:

x =
(u− cx)z

fx
(6.1)

y =
(v − cy)z

fy
(6.2)

• From camera frame to robot frame: employing the transformation matrix Tcam

(Table 6.1)

The same transformation is also applied to the identified coordinates of the center of the
sole O in the robot’s reference frame.

6| Experimental results 77

Identification of Burr’s Local Reference Frame

Once the trajectory vector (x, y, z) is determined in the robot frame, the local reference
frame O′ for each point along the identified tool trajectory is found.

Given the typically high number N of elements comprising the trajectory vector, resulting
from numerical calculations, a parameter α is introduced to reduce this number. Specifi-
cally, a total of n = N/α points are considered. Starting from the initial one, every α-th
point is chosen as a control point. These control points are then interpolated through a
NURBS curve of degree 2, with unitary weights.

Next, tangent and normal unit vectors are identified. Numerical derivation is performed
using finite differences with a step size of h = 1 × 10−4, utilizing the Python functions
get_tangent() and get_normal() from the nurbspy library [2]. It is important to note that
the normal vectors point outside the sole, the z-axis points upward, and, consequently,
the tangents rotate clockwise around the sole profile.

The resulting local frames for the top-left burr are depicted in Figure 6.14, where the
tangent vector is represented in red, the normal in blue, and the green dot denotes the
calculated center of the sole.

Figure 6.14: Burr’s local reference frames

78 6| Experimental results

Tool orientation learned from human demonstration

The final element needed to complete the deburring path is the orientation of the tool,
which is learned from a video of an expert human demonstrator. As discussed in Chapter
5, the optimal orientation has been acquired through the EfficientPose [19] network. The
system aims to learn the transformation T’ (Table 6.1), representing the orientation of
the tool center point (TCP) in relation to the burr’s local reference systems. The goal is
to obtain a constant matrix applicable throughout the entire deburring operation.

For experimental purposes, three videos of deburring operations have been recorded,
each showcasing the process with the sole in different positions and on different burrs.
From each video, 116 frames have been extracted. Each frame provides an image to be
analyzed by the trained EfficientPose model, resulting in the 6D pose of the tool’s base
frame relative to the camera frame. Figure 6.15 illustrates predicted poses, represented
as 3D bounding boxes, from examples extracted from the three videos.

Figure 6.15: Tool pose predictions from expert’s demonstration frames

Thanks to the known transformations reported in Table 6.1 the orientation of the TCP
with respect to the burr’s local reference system (T ′) has been found for every acquired

6| Experimental results 79

frame, as schematically illustrated in Figure 6.16. In particular, the applied transforma-
tion is:

T ′ = (TG
ith−burr)

−1 · (Tcam · TTCP−camera_frame) (6.3)

where TTCP−camera_frame represents the output of EfficientPose (the orientation of the
TCP with respect to the camera frame) while TG

ith−burr is the orientation of the local burrs
reference frame in the global robot reference system.

Figure 6.16: Extracted tool pose from video frames in camera and robot reference systems

To obtain the final orientation applied throughout all deburring paths, an arithmetic
mean of the poses has been calculated. It’s important to note that orientations have
been transformed into quaternion representation to accurately perform the average. The
resulting averaged orientation of the TCP frame in the burr’s local reference frame, learned

80 6| Experimental results

from the demonstrations, is given by the rotation matrix:

Rfinal =

−0.986 0.021 −0.167

0.025 0.999 −0.022

0.166 −0.026 −0.986

 (6.4)

This corresponds to Euler angles (XYZ form, in degrees) [178.70 − 9.61 − 178.77].

With this, the path planning is complete, and the robot has a collection of points in space
to follow, along with the local orientation to use at every point of the trajectory based on
the calculated burr’s local reference frame.

Imposed deburring direction

The final operation involves determining the direction of deburring that the robot should
follow to perform the task consistently across all burrs. The chosen approach is to cut
the burrs following a clockwise path. This is achieved through the following steps:

1. Utilize the OpenCV function minAreaRect() to determine the oriented bounding box
of the sole with burrs, and subsequently, extract the center line along its longest
edge.

2. Calculate the enclosing circle of each burr using the OpenCV function minEnclos-
ingCircle().

3. Classify each burr as either "above" or "below" the center line:

(a) If the y coordinate of the circle’s center is less than the value obtained by
substituting the x coordinate of the circle’s center into the equation of the
center line, categorize the burr as "above" (Note: This process is performed in
the image reference system, where the vertical axis increases from the top left
corner to the bottom left corner).

(b) If the y coordinate of the circle’s center is higher than the value obtained by
substituting the x coordinate of the circle’s center into the equation of the
center line, the burr is categorized as "below".

4. For each burr, calculate the variances of the points along the x and y coordinates.
If the variance along x is higher than along y, the burr evolves mainly along the
horizontal direction. If the variance along y is higher, the burr evolves mainly along
the vertical direction;

6| Experimental results 81

5. If a burr is "above", perform the trajectory as follows:

(a) If it evolves horizontally (variancex > variancey), the trajectory goes from the
point with the lowest x to the one with the highest.

(b) If it evolves vertically (variancey > variancex), the trajectory goes from the
point with the lowest y to the one with the highest.

6. If a burr is "below", perform the trajectory as follows:

(a) If it evolves horizontally (variancex > variancey), the trajectory goes from the
point with the highest x to the one with the lowest.

(b) If it evolves vertically (variancey > variancex), the trajectory goes from the
point with the highest yto the one with the lowest.

This ensures that the deburring direction is consistently clockwise for every considered
burr.

For instance, for the top left burr considered as an example, depicted in red in Figure
6.17a, the burr is classified as "above" the center line. The calculated variances along x
and y are

variancex = 1677.48 mm2

variancey = 728.64 mm2
(6.5)

Since the x coordinate varies more (variancex > variancey), the deburring path is per-
formed from the point with the lowest x value to the one with the highest, as visually
represented in Figure 6.17b.

(a) Identified burr "above" the centerline (b) Imposed clockwise deburring direction

Figure 6.17

82 6| Experimental results

6.2.3. Results

To validate the proposed approach, multiple real-world robotic deburring tests have been
conducted in the Mechatronics and Robotics lab for Innovation (MERLIN [4]) of Politec-
nico di Milano University using the setup depicted in Figure 6.4.

To facilitate communication with the robot and execute the calculated trajectory, the
Robot Operating System (ROS) [73] platform has been employed. ROS is a framework
for writing robot software, and it provides tools and libraries for tasks such as hardware
abstraction, device drivers, communication between processes, and package management.
The movesx() function, integrated into the ROS framework for Doosan robots [5], has been
used to execute the trajectory based on the calculated set of points. The robot moves
along a spline curve path that connects the current position to the target position via the
list of provided points of the task space given as input. This function enables smooth in-
terpolation between waypoints, ensuring precise and controlled robotic movements during
the deburring process.

To ensure the robustness and correctness of the planned trajectory, the behavior of the
robot has been initially evaluated in a simulated environment using ROS and Gazebo [3]
(Figure 6.18). Gazebo is a powerful robotics simulator that allows for testing and vali-
dating robotic algorithms in a virtual environment before deploying them to the physical
robot. This simulated testing phase serves as a step to ensure the reliability and safety
of the deburring operations before transitioning to real-world experiments.

Figure 6.18: Simulation environment with Gazebo

6| Experimental results 83

The experimental validation aimed to quantitatively assess the accuracy of the computed
deburring path by comparing it with the path demonstrated by an expert who physically
manipulated the robot (Figure 6.19) to perform the deburring task. Two tests have
been conducted, with the sole positioned randomly on the working plane. In each test,
the trajectory for cutting four burrs has been demonstrated and recorded.

Figure 6.19: Direct demonstration for experimental validation

Due to the challenges associated with accurately positioning the robot during physical
movement, only the in-plane trajectory (x, y) has been considered for comparison. Specif-
ically, the average of the Euclidean distances between the calculated points from the path
planning pipeline and the corresponding points measured from the expert demonstration
has been computed as an evaluation metric.

The results are reported in Tables 6.2 and 6.3 and examples of the compared trajectories
are displayed in Figure 6.20.

84 6| Experimental results

Average distance in mm

Burr 1 8.7

Burr 2 27.1

Burr 3 5.9
Burr 4 35.9

Mean distance 19.4

Table 6.2: First sole experimental validation

Average distance in mm

Burr 1 5.2

Burr 2 7.1

Burr 3 11.5
Burr 4 24.7

Mean distance 12.13

Table 6.3: Second sole experimental validation

(a) (b)

Figure 6.20: Examples of calculated vs demonstrated trajectories

The average calculated distance is 15.8mm. This disparity is attributed to the accumu-
lated errors from previous steps, as well as variations in the accuracy of the calculated
matrices during reference system transformations. Additionally, the precise demonstration
of the path by physically manipulating the robotic arm presented challenges in ensuring
high precision. It is crucial to note that the primary goal of this study is to establish an

6| Experimental results 85

initial deburring path. In practical industrial scenarios, a control algorithm is essential to
compensate for these inherent errors and uncertainties. Despite the observed differences,
the obtained result has been deemed highly acceptable within the context of the study’s
objectives.

87

7| Conclusions and future

developments

This chapter provides a comprehensive overview of the main accomplishments in the study
and outlines potential directions for future development.

The thesis tackles the task of robotic deburring by introducing a complete path planning
pipeline that integrates learning from demonstration, thus mitigating the need for difficult
and specialized coding. The solutions proposed include: sole detection and segmentation,
eventually reconstructing the occluded portions of the profile, burrs identification to iden-
tify the precise segmentation of the regions of material to be removed, and tool orientation
learning from expert demonstrators’ videos

The task of identifying and segmenting the sole has been effectively addressed through the
implementation of Detectron-2 [80], an advanced open-source object detection network
developed by Facebook AI Research. This network, based on Mask Region Convolutional
Neural Network (Mask R-CNN) [36], has been trained on a custom-made dataset. The
dataset comprises RGB images featuring soles, both with and without burrs, presented in
various orientations against different backgrounds. Manual annotations have been applied
to specify the class ("sole"), bounding box, and mask for training purposes. The model
has demonstrated exceptional accuracy in recognizing soles and accurately outlining their
masks under diverse conditions, showcasing robust performance regardless of lighting
conditions, background variations, or orientation within the sole’s plane.

In real-world scenarios, the gripping points during the grasping of the sole can lead to
occlusions in the profile, affecting the precision of the burrs identification step. To address
this challenge, a decision has been made to reconstruct the occluded parts of the identi-
fied profiles containing burrs. Image-to-image translation has been employed, specifically
utilizing Pix2Pix [38], a conditional Generative Adversarial Network (cGAN). The goal
is to reconstruct the profile with burrs, regardless of the shape of the burrs, in instances
where occlusions are present. A custom dataset has then been, featuring ten distinct
profiles of soles with burrs, each subjected to randomly generated occlusions. The trained

88 7| Conclusions and future developments

model effectively reconstructs the occluded profiles presented in the validation dataset.
However, challenges arise when posed in series to Detectron-2, due to irregularities in
the segmentation obtained from the object detection network. The model struggles to
reconstruct occluded portions from this segmentation, misidentifying undulated areas as
occlusions and attempting to reconstruct them. Future works should focus on refining
the obtained profile from Detectron-2, smoothing irregularities specifically in areas with
occlusions, to enhance the accuracy of the reconstruction process.

The burrs identification process follows the achievement of the segmentation of the sole
with burrs. A customized method has been developed, leveraging image processing tech-
niques. Specifically, a template of the nominal profile has been extracted from an image of
the sole without burrs. This template undergoes scaling, rotation, and translation to align
the oriented bounding boxes of the sole with burrs and the nominal profile. Subsequently,
an optimization procedure is executed to precisely determine the overlap of the nominal
profile within the one with burrs. The optimization method employs a direct search ap-
proach, adaptively changing both the search space and steps to speed up convergence and
achieve an accurate final result. The segmentation of the burrs is derived by pixel-wise
subtraction of the mask of the nominal sole from the one with burrs. Following this, a
smoothing operation is applied to eliminate small, non-physical identified burrs.

The optimal orientation for the deburring tool has been acquired through a learning-
from-demonstration approach. Expert demonstrations in the form of videos have been
obtained, and the tool’s pose has been extracted using EfficientPose [19]. This network
is a well-established literature model for 6D pose estimation from RGB images, chosen
for its precision and ease of use. The training was conducted on a customized dataset,
generating ground truths for pose estimation through synthetic data. A virtual scene has
been crafted, placing the 3D model of the tool in a defined position relative to the camera.
To enhance realism and generalization of the results to real-world scenarios, backgrounds
featuring soles and hands have been incorporated and variability in the position of the tool
and lighting have been carried out. The experiments have demonstrated the network’s
capability to identify the tool’s pose even when held by a demonstrator in real-world
videos, showcasing the successful transfer of knowledge from synthetic to real-world data.

Finally, the outlined processes result in the creation of an automated pipeline. This system
begins with a sole with burrs positioned anywhere within the operational space of the
robotic arm, and visible by the camera mounted on the robot’s end effector. Subsequently,
it autonomously computes the entire deburring path to be executed. In the practical
execution of these experiments, a new robotic deburring tool has been designed. This
tool includes a base designed for attachment to the robot that incorporates the manual

7| Conclusions and future developments 89

deburring tool.

Future advancements comprise the incorporation of a force control algorithm to manage
the actual execution of the path and deburring of the sole. This addition aims to refine
the accuracy of the path derived by the pipeline, effectively addressing any errors and
uncertainties inherent in the robotic deburring process. Furthermore, the application of
Detectron-2 enables the classification of various types of soles, including distinguishing
between left and right soles and different model identification. This flexibility allows for
the creation and adjustments of the pipeline to accommodate these variations.

91

Bibliography

[1] Ati automation: Compliant deburring blade. URL https://www.ati-ia.com/

products/deburr/deburring_cdb_main.aspx.

[2] Nurbspy python library. URL https://github.com/RoberAgro/nurbspy.

[3] Gazebo simulator. URL https://github.com/gazebosim.

[4] Merlin: mechatronics and robotics lab of politecnico di milano. URL http:

//merlin.deib.polimi.it/.

[5] Doosan robot: Ros programming manual. URL http://wiki.ros.org/

doosan-robotics?action=AttachFile&do=get&target=Doosan_Robotics_ROS_

Manual_ver0.971_20200218A%28EN.%29.pdf.

[6] How shoes are made – the history of shoemaking, 2020 - August. URL https:

//www.solescience.ca/history-of-shoemaking/.

[7] How a charge coupled devide (ccd) image sensor works, 2023 - Octo-
ber. URL https://www.teledyneimaging.com/media/1300/2020-01-22_e2v_

how-a-charge-coupled-device-works_web.pdf.

[8] Coco detection metric, 2023 - October. URL https://cocodataset.org/

#detection-eval.

[9] Opencv findcontours() function documentation, 2023 - October. URL
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#

ga17ed9f5d79ae97bd4c7cf18403e1689a.

[10] Opencv minarearect() function documentation, 2023 - October. URL
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#

ga3d476a3417130ae5154aea421ca7ead9.

[11] Keras reducelronplateau() function documentation, 2023 - October. URL https:

//keras.io/api/callbacks/reduce_lr_on_plateau/.

[12] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories and keyframes

https://www.ati-ia.com/products/deburr/deburring_cdb_main.aspx
https://www.ati-ia.com/products/deburr/deburring_cdb_main.aspx
https://github.com/RoberAgro/nurbspy
https://github.com/gazebosim
http://merlin.deib.polimi.it/
http://merlin.deib.polimi.it/
http://wiki.ros.org/doosan-robotics?action=AttachFile&do=get&target=Doosan_Robotics_ROS_Manual_ver0.971_20200218A%28EN.%29.pdf
http://wiki.ros.org/doosan-robotics?action=AttachFile&do=get&target=Doosan_Robotics_ROS_Manual_ver0.971_20200218A%28EN.%29.pdf
http://wiki.ros.org/doosan-robotics?action=AttachFile&do=get&target=Doosan_Robotics_ROS_Manual_ver0.971_20200218A%28EN.%29.pdf
https://www.solescience.ca/history-of-shoemaking/
https://www.solescience.ca/history-of-shoemaking/
https://www.teledyneimaging.com/media/1300/2020-01-22_e2v_how-a-charge-coupled-device-works_web.pdf
https://www.teledyneimaging.com/media/1300/2020-01-22_e2v_how-a-charge-coupled-device-works_web.pdf
https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga3d476a3417130ae5154aea421ca7ead9
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga3d476a3417130ae5154aea421ca7ead9
https://keras.io/api/callbacks/reduce_lr_on_plateau/
https://keras.io/api/callbacks/reduce_lr_on_plateau/

92 | Bibliography

for kinesthetic teaching: A human-robot interaction perspective. In 2012 7th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
391–398, 2012. doi: 10.1145/2157689.2157815.

[13] L. Alatabani, E. Sayed Ali Ahmed, and R. Saeed. Machine Learning and Deep
Learning Approaches for Robotics Applications, pages 303–333. 05 2023. ISBN 978-
3-031-28714-5. doi: 10.1007/978-3-031-28715-2_10.

[14] J. Aurich, D. Dornfeld, P. Arrazola, V. Franke, L. Leitz, and S. Min. Burrs—analysis,
control and removal. CIRP Annals, 58(2):519–542, 2009. ISSN 0007-8506. doi:
https://doi.org/10.1016/j.cirp.2009.09.004.

[15] J. Aurich, D. Dornfeld, P. Arrazola, V. Franke, L. Leitz, and S. Min. Burrs—analysis,
control and removal. CIRP Annals, 58(2):519–542, 2009. ISSN 0007-8506. doi:
https://doi.org/10.1016/j.cirp.2009.09.004.

[16] E. Bahce and B. Özdemiṙ. Burr measurement method based on burr surface area. In-
ternational Journal of Precision Engineering and Manufacturing-Green Technology,
8, 06 2020. doi: 10.1007/s40684-020-00228-0.

[17] E. Brachmann. 6D Object Pose Estimation using 3D Object Coordinates [Data].
2020. doi: 10.11588/data/V4MUMX.

[18] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[19] Y. Bukschat and M. Vetter. Efficientpose: An efficient, accurate and scalable end-
to-end 6d multi object pose estimation approach, 2020.

[20] S. Calinon. Learning from Demonstration (Programming by Demonstration), pages
1–8. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018. ISBN 978-3-642-41610-1.
doi: 10.1007/978-3-642-41610-1_27-1.

[21] S. Calinon, P. Evrard, E. Gribovskaya, A. Billard, and A. Kheddar. Learning col-
laborative manipulation tasks by demonstration using a haptic interface. pages 1 –
6, 07 2009.

[22] J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986. doi: 10.1109/
TPAMI.1986.4767851.

[23] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin. Smart factory of industry
4.0: Key technologies, application case, and challenges. IEEE Access, PP:1–1, 12
2017. doi: 10.1109/ACCESS.2017.2783682.

| Bibliography 93

[24] X. Chen, G. Shi, C. Xi, L. Zhong, X. Wei, and K. Zhang. Design of burr detection
based on image processing. Journal of Physics: Conference Series, 1237(3):032075,
jun 2019. doi: 10.1088/1742-6596/1237/3/032075.

[25] A. Colome, A. Planells, and C. Torras. A friction-model-based framework for rein-
forcement learning of robotic tasks in non-rigid environments. Proceedings - IEEE
International Conference on Robotics and Automation, 2015:5649–5654, 06 2015. doi:
10.1109/ICRA.2015.7139990.

[26] A. Correia and L. A. Alexandre. A survey of demonstration learning, 2023.

[27] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
sep 1995. ISSN 0885-6125. doi: 10.1023/A:1022627411411.

[28] R. Dastres and M. Soori. Artificial Neural Network Systems. International Journal
of Imaging and Robotics (IJIR), 21(2):13–25, Sept. 2021.

[29] M. Denninger, D. Winkelbauer, M. Sundermeyer, W. Boerdijk, M. Knauer, K. H.
Strobl, M. Humt, and R. Triebel. Blenderproc2: A procedural pipeline for pho-
torealistic rendering. Journal of Open Source Software, 8(82):4901, 2023. doi:
10.21105/joss.04901. URL https://doi.org/10.21105/joss.04901.

[30] K. Fu and J. Mui. A survey on image segmentation. Pattern Recognition, 13(1):3–16,
1981. ISSN 0031-3203. doi: https://doi.org/10.1016/0031-3203(81)90028-5.

[31] R. Girshick. Fast r-cnn, 2015.

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pages 580–587, 2014. doi: 10.1109/
CVPR.2014.81.

[33] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks, 2014.

[34] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition,
2015.

[35] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. arXiv e-prints, art.
arXiv:1703.06870, Mar. 2017. doi: 10.48550/arXiv.1703.06870.

[36] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn, 2018.

[37] C. Huang, D. Chen, and X. Tang. Implementation of workpiece recognition and
location based on opencv. In 2015 8th International Symposium on Computational

https://doi.org/10.21105/joss.04901

94 | Bibliography

Intelligence and Design (ISCID), volume 2, pages 228–232, 2015. doi: 10.1109/
ISCID.2015.143.

[38] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with
conditional adversarial networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5967–5976, 2017. doi: 10.1109/CVPR.2017.632.

[39] Z. Ji, L. Peigen, Y. Zhou, B. Wang, Z. Jiyuan, and M. Liu. Toward new-generation
intelligent manufacturing. Engineering, 4:11–20, 04 2018. doi: 10.1016/j.eng.2018.
01.002.

[40] B.-H. Kang, J.-D. Kim, J.-Y. Yoo, J.-O. Park, K.-S. Lee, and H.-O. Shin. Robot intel-
ligence and flexibility for smooth finishing of car body. IFAC Proceedings Volumes, 30
(14):303–311, 1997. ISSN 1474-6670. doi: https://doi.org/10.1016/S1474-6670(17)
42739-X. IFAC Workshop on Intelligent Manufacturing Systems (IMS’97), Seoul,
Korea, 21-23 July 1997.

[41] M.-G. Kim, J. Kim, S. Y. Chung, M. Jin, and M. J. Hwang. Robot-based automation
for upper and sole manufacturing in shoe production. Machines, 10(4), 2022. ISSN
2075-1702. doi: 10.3390/machines10040255.

[42] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[43] H. Kosler, U. Pavlovčič, M. Jezeršek, and J. Mozina. Adaptive robotic debur-
ring of die-cast parts with position and orientation measurements using a 3d laser-
triangulation sensor. Strojniški vestnik - Journal of Mechanical Engineering, 62:207,
04 2016. doi: 10.5545/sv-jme.2015.3227.

[44] Z. Lai, R. Xiong, H. Wu, and Y. Guan. Integration of visual information and robot
offline programming system for improving automatic deburring process. In 2018
IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 1132–
1137, 2018. doi: 10.1109/ROBIO.2018.8665148.

[45] K. C. Lee, H.-P. Huang, and S.-S. Lu. Burr detection by using vision image. The
International Journal of Advanced Manufacturing Technology, 8:275–284, 1993. URL
https://api.semanticscholar.org/CorpusID:58944046.

[46] Y. D. Lee, B. H. Kang, and J. O. Park. Robotic deburring strategy using burr shape
recognition. In Proceedings 1999 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Human and Environment Friendly Robots with High Intelligence
and Emotional Quotients (Cat. No.99CH36289), volume 3, pages 1513–1518 vol.3,
1999. doi: 10.1109/IROS.1999.811693.

https://api.semanticscholar.org/CorpusID:58944046

| Bibliography 95

[47] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 936–944, 2017. doi: 10.1109/CVPR.2017.
106.

[48] R. M R and S. Chiddarwar. A causality-inspired data augmentation approach
to cross-domain burr detection using randomly weighted shallow networks. In-
ternational Journal of Machine Learning and Cybernetics, 14, 06 2023. doi:
10.1007/s13042-023-01891-w.

[49] M. Mirza and S. Osindero. Conditional generative adversarial nets. 11 2014.

[50] A. Mohammed, J. Kvam, I. F. Onstein, M. Bakken, and H. Schulerud. Automated
3d burr detection in cast manufacturing using sparse convolutional neural networks.
Journal of Intelligent Manufacturing, 34(1):303–314, 2023.

[51] Y. Nakao and Y. Watanabe. Measurements and evaluations of drilling burr profile.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineer-
ing Manufacture, 220(4):513–523, 2006. doi: 10.1243/095440505X32625.

[52] A. Nguyen, D. Kanoulas, L. Muratore, D. Caldwell, and N. Tsagarakis. Translating
videos to commands for robotic manipulation with deep recurrent neural networks.
pages 1–9, 05 2018. doi: 10.1109/ICRA.2018.8460857.

[53] I. F. Onstein, O. Semeniuta, and M. Bjerkeng. Deburring using robot manipulators:
A review. In 2020 3rd International Symposium on Small-scale Intelligent Manufac-
turing Systems (SIMS), pages 1–7, 2020. doi: 10.1109/SIMS49386.2020.9121490.

[54] I. F. Onstein, O. Semeniuta, and M. Bjerkeng. Deburring using robot manipulators:
A review. In 2020 3rd International Symposium on Small-scale Intelligent Manufac-
turing Systems (SIMS), pages 1–7, 2020. doi: 10.1109/SIMS49386.2020.9121490.

[55] I. F. Onstein, C. Haskins, and O. Semeniuta. Cascading trade-off studies for robotic
deburring systems. Systems Engineering, 25(5):475–488, 2022. doi: https://doi.org/
10.1002/sys.21625.

[56] I. F. Onstein, M. Bjerkeng, and K. Martinsen. Automated tool trajectory generation
for robotized deburring of cast parts based on 3d scans. Procedia CIRP, 118:507–512,
2023. ISSN 2212-8271. doi: https://doi.org/10.1016/j.procir.2023.06.087. 16th CIRP
Conference on Intelligent Computation in Manufacturing Engineering.

[57] K. O’Shea and R. Nash. An introduction to convolutional neural networks, 2015.

96 | Bibliography

[58] N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans-
actions on Systems, Man, and Cybernetics, 9(1):62–66, 1979. doi: 10.1109/TSMC.
1979.4310076.

[59] S. Pan and X. Wang. A survey on perspective-n-point problem. In 2021 40th Chinese
Control Conference (CCC), pages 2396–2401, 2021. doi: 10.23919/CCC52363.2021.
9549863.

[60] F. L. Princely and T. Selvaraj. Vision assisted robotic deburring of edge burrs in
cast parts. Procedia Engineering, 97:1906–1914, 2014. doi: https://doi.org/10.1016/
j.proeng.2014.12.344. "12th Global Congress on Manufacturing and Management"
GCMM - 2014.

[61] A. Rani, D. Ortiz Arroyo, and P. Durdevic. Defect detection in synthetic fibre ropes
using detectron2 framework. I E E E Sensors Journal, 2023. ISSN 1530-437X.

[62] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks, 2016.

[63] P. Sahoo, S. Soltani, and A. Wong. A survey of thresholding techniques. Com-
puter Vision, Graphics, and Image Processing, 41:233–260, 02 1988. doi: 10.1016/
0734-189X(88)90022-9.

[64] K. A. M. Said and A. B. Jambek. Analysis of image processing using morpholog-
ical erosion and dilation. Journal of Physics: Conference Series, 2071(1):012033,
oct 2021. doi: 10.1088/1742-6596/2071/1/012033. URL https://dx.doi.org/10.

1088/1742-6596/2071/1/012033.

[65] A. Salari, A. Djavadifar, X. Liu, and H. Najjaran. Object recognition datasets and
challenges: A review. Neurocomputing, 495:129–152, 2022. ISSN 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2022.01.022.

[66] I. Sarker. Deep learning: A comprehensive overview on techniques, taxonomy,
applications and research directions. SN Computer Science, 2, 08 2021. doi:
10.1007/s42979-021-00815-1.

[67] P. J. SCHNEIDER and D. H. EBERLY. Chapter 11 - intersection in 3d. In
P. J. SCHNEIDER and D. H. EBERLY, editors, Geometric Tools for Computer
Graphics, The Morgan Kaufmann Series in Computer Graphics, pages 481–662.
Morgan Kaufmann, San Francisco, 2003. ISBN 978-1-55860-594-7. doi: https:
//doi.org/10.1016/B978-155860594-7/50014-X.

[68] K. Shimokura and S. Liu. Programming deburring robots based on human demon-

https://dx.doi.org/10.1088/1742-6596/2071/1/012033
https://dx.doi.org/10.1088/1742-6596/2071/1/012033

| Bibliography 97

stration with direct burr size measurement. In Proceedings of the 1994 IEEE Inter-
national Conference on Robotics and Automation, pages 572–577 vol.1, 1994. doi:
10.1109/ROBOT.1994.351238.

[69] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine. Avid: Learning multi-
stage tasks via pixel-level translation of human videos, 2020.

[70] B. Solvang, G. Sziebig, and P. Korondi. Vision based robot programming. pages 949
– 954, 05 2008. doi: 10.1109/ICNSC.2008.4525353.

[71] H.-C. Song and J.-B. Song. Precision robotic deburring based on force control for
arbitrarily shaped workpiece using cad model matching. International Journal of Pre-
cision Engineering and Manufacturing, 14, 01 2012. doi: 10.1007/s12541-013-0013-2.

[72] R. Srisha and A. Khan. Morphological operations for image processing : Under-
standing and its applications. 12 2013.

[73] Stanford Artificial Intelligence Laboratory et al. Robotic operating system. URL
https://www.ros.org.

[74] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object detec-
tion. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10778–10787, 2020. doi: 10.1109/CVPR42600.2020.01079.

[75] D.-M. TSAI‡ and W.-J. Lu. Detecting and locating burrs of industrial parts. In-
ternational Journal of Production Research, 34(11):3187–3205, 1996. doi: 10.1080/
00207549608905084.

[76] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders.
Selective search for object recognition. International Journal of Computer Vision,
104(2):154–171, 2013. URL https://ivi.fnwi.uva.nl/isis/publications/2013/

UijlingsIJCV2013.

[77] A. Verl, A. Valente, S. Melkote, C. Brecher, E. Ozturk, and L. T. Tunc. Robots
in machining. CIRP Annals, 68(2):799–822, 2019. ISSN 0007-8506. doi: https:
//doi.org/10.1016/j.cirp.2019.05.009.

[78] E. Villagrossi, C. Cenati, N. Pedrocchi, M. Beschi, and L. Molinari Tosatti. Flexible
robot-based cast iron deburring cell for small batch production using single-point
laser sensor. The International Journal of Advanced Manufacturing Technology, 92:
1–14, 09 2017. doi: 10.1007/s00170-017-0232-2.

[79] B. Wang, F. Tao, X. Fang, C. Liu, Y. Liu, and T. Freiheit. Smart manufacturing and

https://www.ros.org
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013

98 7| BIBLIOGRAPHY

intelligent manufacturing: A comparative review. Engineering, 7(6):738–757, 2021.
ISSN 2095-8099. doi: https://doi.org/10.1016/j.eng.2020.07.017.

[80] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https:

//github.com/facebookresearch/detectron2, 2019.

[81] C. Wulf and M. Hayk. Automatic residual burr detection on steel slabs by a ther-
mographic system. Stahl und Eisen, 30:36–37, 04 2007.

[82] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations
for deep neural networks, 2017.

[83] Z. Xie, Q. Zhang, Z. Jiang, and H. Liu. Robot learning from demonstration for
path planning: A review. Science China Technological Sciences, 63, 07 2020. doi:
10.1007/s11431-020-1648-4.

[84] H. Zhang, H. Chen, N. Xi, G. Zhang, and J. He. On-line path generation for robotic
deburring of cast aluminum wheels. In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2400–2405, 2006. doi: 10.1109/IROS.2006.
281679.

[85] Z. Zhang. Iterative Closest Point (ICP), pages 433–434. Springer US, Boston, MA,
2014. ISBN 978-0-387-31439-6. doi: 10.1007/978-0-387-31439-6_179.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

99

List of Figures

1.1 Shoe components . 2
1.2 Comparison of deburring technologies [54] 3

2.1 Robotic setup with LDS [68] . 8
2.2 CCD camera configuration for burrs detection [51] 9
2.3 Threshold image Processing with CCD camera [51] 9
2.4 Contour matching for burrs detection [75] 10
2.5 Pipeline for image augmentation [48] . 11
2.6 Exemplification of learning from human demonstration methods [20] 12
2.7 Burrs identification pipeline with straight-line recognition [44] 12
2.8 Visual representation of the pipeline of "Vision-Based Robot Programming"

[70] . 13
2.9 Surface measurement of the workpiece and deviation map between the reg-

istered target and source surface [43] . 14
2.10 3D model and point cloud alignment for burrs identification [56] 15

3.1 ANN architecture and artificial neuron illustration 18
3.2 RCNN architecture [32] . 19
3.3 FastRCNN architecture [31] . 20
3.4 FasterRCNN architecture [62] . 20
3.5 MaskRCNN architecture [36] . 21
3.6 Detectron-2 architecture [61] . 22
3.7 Dataset RGB for Detectron-2 . 23
3.8 Dataset bounding box and segmentation annotations 24
3.9 IoU definition . 25
3.10 Detectron-2 training curves . 27
3.11 Datasets for segmentation methods performance comparison 29
3.12 Simple thresholding and Detectron-2 segmentation in different lighting

coniditions . 31
3.13 Bi-modal grayscale histogram and Otsu’s threshold 32

100 | List of Figures

3.14 Otsu’s global thresholding and Detectron-2 segmentation in different light-
ing coniditions . 33

3.15 Adaptive thresholding and Detectron-2 segmentation in different lighting
coniditions . 34

3.16 Sole clamping during experiments . 36
3.17 Examples of image-to-image translation . 37
3.18 GANs architecture . 37
3.19 Encoder-Decoder and U-Net comparison 38
3.20 U-Net architecture . 39
3.21 Dataset Pix2Pix . 41
3.22 Generator and Discriminator training losses evolution 42
3.23 Pix2Pix result . 43
3.24 Pix2Pix reconstruction of the segmentation from Detectron-2 44

4.1 Image of the nominal sole used for profile extraction 47
4.2 Steps for nominal contour extraction . 48
4.3 Output of contour matching initialization stage 50
4.4 Optimized contour matching for burrs identification 53
4.5 Identified segmentation of the burrs . 54
4.6 Identified segmentation of the burrs . 54

5.1 Direct and indirect teaching examples . 56
5.2 EfficientPose architecture . 58
5.3 EfficientPose [19]: ADD(-S) Performance on Linemod Dataset [17] and

Comparative Analysis with Other Pose Estimation Networks 59
5.4 Real manual deburring tool and 3D model used for dataset generation . . . 60
5.5 Samples of EfficientPose’s dataset background images 61
5.6 Random positioning of 3D model deburring tool 61
5.7 EfficientPose’s dataset samples . 62
5.8 EfficientPose’s training and validation curves 64
5.9 EfficientPose’s prediction sample from validation dataset 65
5.10 EfficientPose’s prediction on real image . 65

6.1 Manual deburring tool . 67
6.2 Robotic deburring tool by ATI automation [1] 68
6.3 Designed tool for testing purposes . 69
6.4 Experimental setup . 69
6.5 Pixel, sole and burrs reference frames . 70

| List of Figures 101

6.6 RealSense D435i RGB camera reference frame 71
6.7 Deburring tool base reference frame and TCP reference frame 71
6.8 Robot base reference frame . 72
6.9 Reference frames for robotic deburring . 72
6.10 Simple examples of spacial transformation matrices 73
6.11 Visual representation of transformation matrices between reference systems. 73
6.12 Path planning pipeline: burrs identification 75
6.13 Deburring plane trajectories in image reference system 76
6.14 Burr’s local reference frames . 77
6.15 Tool pose predictions from expert’s demonstration frames 78
6.16 Extracted TCP pose from video frames in camera and robot reference systems 79
6.17 Imposed clockwise deburring direction . 81
6.18 Simulation environment with Gazebo . 82
6.19 Direct demonstration for experimental validation 83
6.20 Examples of calculated vs demonstrated trajectories 84

103

List of Tables

3.1 AP values for trained models varying the IoU threshold. 28
3.2 Performance comparison simple global thresholding and Detectron-2, stan-

dard lighting . 30
3.3 Performance comparison simple global thresholding and Detectron-2, vary-

ing lighting conditions . 30
3.4 Performance comparison Otsu global thresholding and Detectron-2, varying

lighting conditions . 32

6.1 Transformation matrices between reference systems. 74
6.2 First sole experimental validation . 84
6.3 Second sole experimental validation . 84

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Robotic deburring: general overview
	Problem statement and thesis research aim
	Thesis structure

	State of the art
	Burrs identification methods
	Path planning for deburring operations

	Sole segmentation
	Object detection and segmentation
	Detectron-2

	Model training for sole segmentation
	Dataset acquisition
	Training parameters and tested models
	Evaluation metric: Average Precision (AP)
	Results

	Deep Learning vs classic Computer Vision Image Processing Techniques for Sole Segmentation
	Simple Global thresholding
	Otsu's method global thresholding
	Adaptive thresholding

	Reconstruction of occluded sole profiles
	Image to image translation
	Pix2Pix Architecture
	Dataset generation
	Implementation details
	Results

	Burrs identification method
	Nominal sole profile template extraction
	Contour matching algorithm initialization
	Contour matching optimization
	Results

	Tool pose estimation
	6D pose estimation from RGB images
	Efficient Pose

	Dataset generation
	Training parameters
	Evaluation Metric for Pose Estimation: ADD-S
	Results

	Experimental results
	Robotic deburring tool design
	Experimental setup
	Reference frames and transformations
	Path planning pipeline
	Results

	Conclusions and future developments
	Bibliography
	List of Figures
	List of Tables

