
Scuola d’ingegneria industriale e dell’informazione

Tesi di Laurea Magistrale in Space Engineering

Active thermal control for a
balloon-borne telescope

Author: Marco Modé

Politecnico di Milano - Advisor: Michèle Lavagna

Universität Stuttgart - Advisor: Mahsa Taheran

21 December 2021

Student ID: 944437

Acknowledgements

It has been a hard journey. I did a lot of sacrifices to reach this achievement, which
is the crowning of all the work I did in my life until here. I want to dedicate this first
page to the people which contributed to this goal and helped me to make it happen.
First and foremost, I would like to thank my family for giving me this opportunity and
for the huge support along these five years. You helped me a lot to keep up with my
goals and you backed me up during the hard moments. I would not be here without
all the efforts you put on me.
I would like to thank my friends of Cherif which I consider as my family too. We shared
so many things together and I’m enthusiastic of sharing with you also this moment.
Whenever I needed you, you were always by my side.
I would like to thank the person which shared with me this journey, from the beginning
to the end. We went through all the happiest and hardest moments together. You
made me become a better person, I hope the best for you.
As last I would like to thank my supervisors for guiding me during this work. In par-
ticular I would like to thank Mahsa, which has been a great teacher and friend to me.

È stato un viaggio duro. Ho fatto tanti sacrifici per raggiungere questo traguardo,
che è il coronamento di tutto il lavoro che ho fatto nella mia vita fino a qui. Voglio
dedicare questa prima pagina alle persone che hanno contribuito a questo obiettivo e
mi hanno aiutato a realizzarlo.
Innanzitutto vorrei ringraziare la mia famiglia, per avermi dato questa opportunità e
per l’enorme supporto durante questi cinque anni. Mi avete aiutato molto a tenere
il passo con i miei obiettivi e mi avete sostenuto nei momenti difficili. Non sarei qui
senza tutti gli sforzi che avete speso per me.
Vorrei ringraziare i miei amici di Cherif che considero come una seconda famiglia.
Abbiamo condiviso tante cose insieme e sono felicissimo di condividere con voi anche
questo momento. Ogni volta che ho avuto bisogno di voi, eravate sempre al mio fianco.
Vorrei ringraziare la persona che ha condiviso con me questo viaggio, dall’inizio alla
fine. Abbiamo vissuto insieme tutti i momenti più felici e quelli più difficili. Mi hai
fatto diventare una persona migliore, spero il meglio per te.
Infine vorrei ringraziare i miei supervisori per avermi guidato durante questo lavoro. In
particolare vorrei ringraziare Mahsa, che è stata per me una grande insegnante e amica.

i

ii

Abstract

The aim of this dissertation is to design, implement, integrate and test the thermal
controller software, for the STUDIO payload, in the context of the stratospheric astron-
omy mission ESBO-DS (European Stratospheric Balloon Observatory - Design Study)
[1]. It is a project, funded under the European Union’s Horizon 2020 programme, that
paves the way for an astronomical observatory infrastructure based on stratospheric
balloons. A central part of the project is the development of the flightworthy proto-
type STUDIO, which is scheduled to fly in 2022. STUDIO payload would be working
at around 40 km altitude and therefore it is necessary to have a precise and reliable
thermal control system.
The software is required to be developed on Linux Operating System in an object-
oriented manner, integrated with the Flight Software Framework. It is a component-
based framework, developed by IRS (Institute of Space Systems) [2], which contains
useful and re-usable core components and functionalities for the software components
to build.
The thermal analysis has been completed in 2019 but the thermal simulation is still
to be finalized. Therefore, the equipment currently selected in terms of sensors and
heaters will probably change in number and placement. For this reason, the software
is designed to be flexible. It allows to delete or add components easily and in any
moment.
This work is split in two parts: the implementation of the device handler component,
for the communication with physical devices, and the implementation of the thermal
controller component. These two main classes are developed and tested independently.
Then they are integrated and tested as a whole system. The software on the Arduino
sensor board has been fixed and improved within this project It was not meant to be
an objective of this work but it revealed to be a bottleneck for the proceeding of the
other components tests.
The final tests for the validation of the system are not done yet. The following opera-
tions shall be concluded before these tests: the finalization of the thermal simulation,
the development of the firmware for the power switcher communication interface, the
set-up of the ground system and STUDIO telescope in IRS clean room.

iii

iv

Abstract (Italian version)

Lo scopo di questa tesi è progettare, implementare, integrare e testare il software di
controllo termico, per il payload di STUDIO, nell’ambito della missione spaziale ESBO-
DS (European Stratospheric Balloon Observatory - Design Study) [1]. Si tratta di un
progetto, finanziato nell’ambito del programma Horizon 2020 dell’Unione Europea, che
apre la strada a un’infrastruttura di osservazione astronomica basata su palloni stratos-
ferici. Una parte centrale del progetto è lo sviluppo del prototipo qualificato per il volo
STUDIO, che dovrebbe volare nel 2022. Il carico utile di STUDIO lavorerebbe a circa
40 km di altitudine e quindi è necessario disporre di un sistema di controllo termico
preciso e affidabile.
Il software deve essere sviluppato su sistema operativo Linux attraverso la program-
mazione orientata agli oggetti, all’interno del FSFW (Flight Software Framework). È
un framework basato su componenti, sviluppato da IRS (Istituto di Sistemi Spaziali)
[2], che contiene modelli utili e riutilizzabili per i componenti software da costruire.
L’analisi termica è stata completata nel 2019 ma la simulazione termica deve ancora
essere finalizzata. Pertanto, le apparecchiature attualmente selezionate in termini di
sensori e riscaldatori, probabilmente cambieranno in numero e posizionamento. Per
questo motivo, il software è progettato per essere flessibile. Consente di eliminare o
aggiungere componenti facilmente e in qualsiasi momento.
Questo lavoro è diviso in due parti: l’implementazione del componente per la comu-
nicazione con i dispositivi fisici (device handler) e l’implementazione del componente
di controllo (thermal controller). Queste due classi principali sono sviluppate e testate
in modo indipendente. In seguito sono integrati e testati come un intero sistema. Il
software responsabile della scheda Arduino Micro per la gestione dei sensori è stato
corretto e perfezionato all’interno di questo progetto. Non sarebbe dovuto essere un
obiettivo di questo lavoro ma si è rivelato un collo di bottiglia per il proseguimento dei
test degli altri componenti.
I test finali per la validazione del sistema non sono ancora stati effettuati. Prima
di questi test devono essere concluse le seguenti operazioni: la finalizzazione della
simulazione termica, lo sviluppo del firmware per l’interfaccia di comunicazione del
commutatore di potenza (power switcher), la configurazione del sistema di terra e del
telescopio STUDIO nella camera bianca dell’instituto IRS.

v

vi

Contents

Nomenclature ix

1 Introduction 1
1.1 ESBO-DS . 1

1.1.1 STUDIO . 2
1.2 Software development . 3

1.2.1 Software Engineering tools and methods 3
1.2.1.1 Object-Oriented Programming 3
1.2.1.2 Components . 4
1.2.1.3 Frameworks . 4
1.2.1.4 Abstraction and Generalisation 5

1.2.2 The Flight Software Framework 5
1.2.2.1 FSFW Components 6
1.2.2.2 FSFW Interfaces . 6
1.2.2.3 FSFW Core . 6

1.3 Thesis objectives and motivation . 7
1.4 Outline . 8

2 Thermal Controller design 10
2.1 Thermal analysis results . 10
2.2 Components choice and philosophy . 12

2.2.1 Sensors . 12
2.2.2 Heaters . 13
2.2.3 Thermal Control System model 14

2.3 Architecture of the software . 15
2.3.1 Requirements . 15
2.3.2 Software components description 16
2.3.3 Flowchart . 16

3 Device handler implementation 19
3.1 FSFW core concepts . 20
3.2 Cookie . 22
3.3 Communication interface . 23

3.3.1 Arduino sensor board code . 25
3.3.2 Interface initialization . 27
3.3.3 Device communication . 29

3.4 Device handler . 31
3.5 Software development and test plan . 34

vii

4 Thermal Controller implementation 36
4.1 Sensor . 37
4.2 Heater . 38
4.3 Thermal component . 40
4.4 Thermal controller . 44
4.5 Power Switcher . 47
4.6 Software development and test plan . 48

5 Tests and results 50
5.1 Device handler . 50
5.2 Thermal controller . 53

6 Conclusion 57
6.1 Future work . 57

References xi

viii

Nomenclature

Acronyms

ESBO-DS European Stratospheric Bal-
loon Observatory - Design Study

FDIR Fault Detection, Isolation, and Re-
covery

FSFW Flight Software Framework

FW Filter Wheel

ID Identity Document

IDE Integrated Development Environ-
ment

IF InterFace

IRS Institut fur Raumfahrt-Systeme
(Institute of Space Systems)

OO Object-Oriented

OOP Object-Oriented Programming

OS Operating System

PIFH Polyimide Insulated Flexible
Heater

RTOS Real Time Operating System

SOA Service Oriented Architecture

SPC STUDIO Payload Computer

STUDIO Stratospheric Ultraviolet
Demonstrator of an Imaging Ob-
servatory

TBD To Be Decided

TIP Threat Intelligence Platform

TMB Temperature Measurement Board

UV Ultra-Violet

ix

x

Marco Modè – Master thesis

1 Introduction

1.1 ESBO-DS

ESBO-DS stands for European Stratospheric Balloon Observatory - Design Study. It
is a Research Infrastructure project, funded under the European Union’s Horizon 2020
programme, that paves the way for an astronomical observatory infrastructure based
on stratospheric balloons[1].
The astronomical observations are today divided into three areas:

• ground-based astronomy with the help of stationary telescopes;

• air-supported astronomy with airplanes or balloons;

• orbital astronomy in the form of space telescopes.

Ground-based astronomy enables larger and more light-sensitive optics, but it is af-
fected by limits due to Earth’s atmosphere. On the other side, spacecrafts provide
access to optimal observing conditions but they are less flexible and more expensive
compared to air-supported astronomy. The airborne option is a trade-off between the
previous: the anomalies caused by atmosphere are not completely eliminated but it is
convenient for some astronomical applications, in particular in the far infrared wave-
length region and in some parts of the ultraviolet.
Formerly, in 2016, ORISON started a feasibility study for a balloon-based research
platform [3]. Consequently, this work has been pursued by ESBO-DS project which
has the objective of creating a European research infrastructure to fly ballooing-based
telescopes to altitudes of 30 to 40 km with regular flights, exchangeable instruments,
and open access to observation time.
ESBO-DS is carried out by a consortium of five European partners from the scientific
community and industry:

• The Institute of Space Systems (IRS) at the University of Stuttgart, Germany
[2];

• The Swedish Space Corporation [4];

• The Institute for Astronomy and Astrophysics at the University of Tübingen,
Germany [5];

• The Max Planck Institute for extraterrestrial Physics, Germany [6];

• The Instituto de Astrofísica de Andalucía, Spain [7].

In particular, the work performed in this thesis has been carried out at IRS in Stuttgart.

21/12/2021 – 1 INTRODUCTION 1

Marco Modè – Master thesis

1.1.1 STUDIO

In 2018, the construction of the flightworthy prototype STUDIO (STratospheric Ul-
traviolet Demonstrator of an Imaging Observatory) begun. It is a central part of the
ESBO-DS project.
The main components of STUDIO, represented in Fig. 1, are the helium balloon, the
gondola, the scientific payload (a telescope with 50 cm aperture and instruments for
the ultraviolet and visible spectral ranges) and the peripherals required for operations.
The task of STUDIO is the search for compact stars, in other words the remains of
former stars in which nuclear fusion no longer takes place, as well as possible radiation
bursts from these. The prototype is scheduled to fly in 2022. It will allow testing of
critical technologies and the deliver of the firsts scientific observations.

Figure 1: STUDIO gondola. One solar panel is not shown for better visibility of the
payload. Most electronics and service systems are located on the gondola floor. [8]

STUDIO payload would be working at around 40 km altitude. It will be exposed to
extreme environmental conditions during the ascent and at its operating altitude. On
the one hand, the ambient temperature fluctuates during the ascent and reaches lows
of -60 °C, and on the other hand, the solar radiation heats up to +85 °C. Combined

21/12/2021 – 1 INTRODUCTION 2

Marco Modè – Master thesis

with an almost complete vacuum, this puts a strain on the structure and the scientific
instruments. In order to minimize these and other problems, the temperature of the
various instruments must be continuously monitored and, if necessary, controlled.

1.2 Software development

The software development in this project is carried out in C++ language in the con-
text of the Flight Software Framework [9] built by IRS. It will be exploited for the
development of the whole on-board software of STUDIO. The programming has been
done in Linux Ubuntu operating system.
In Sec. 1.2.1, a brief summary of software engineering methods and techniques applied,
is given. Than the Flight Software Framework is presented in Sec. 1.2.2.

1.2.1 Software Engineering tools and methods

Two main software engineering subtopics are here discussed:

• development methods, dealing with the organization of the software development
process;

• design and implementation techniques, dealing with the application of program-
ming languages and paradigms to efficiently solve a certain problem.

The focus is mainly on the second point. The objective is to identify techniques to
allow a better development of software in terms of time, quality and efficiency. For
this reason, principles like decomposition and abstraction, as well as methods to allow
code reuse, are introduced.
The evolution of implementation techniques is twofold. Firstly, there are program-
ming languages and language features which are intended to improve efficiency and
code reuse. Secondly, OOP techniques allow to construct large software from existing
standardized parts. This technique of developing software applications by combining
pre-existing and new components is called component-oriented programming . In par-
allel, it was noticed that re-usability does not happen automatically when using OOP
techniques. Instead, classes and objects must be designed for reuse, which leads to
software frameworks development. Any software component by itself is worth nothing
without a dedicated framework supporting this component.

1.2.1.1 Object-Oriented Programming This concept is the basis of the pro-
gramming paradigm applied in this project. The idea of object-orientation is to merge
data structures, called attributes, and functions, called methods, in a single logical
unit which is called object. Some relevant features are described in the terminology of
the C++ programming language.
It is important to create objects with a clear physical meaning in order to simplify the
understanding. For example, an object-oriented embedded controller may consists of
the following objects: sensor objects, controller objects (they implement the controller
algorithms) and actuator objects. In this way, the data and functionalities of these

21/12/2021 – 1 INTRODUCTION 3

Marco Modè – Master thesis

physical objects are well distinguished.
A class is the definition of a certain type of object. An object is the result of the
concrete instantiation of a given class. Multiple instantiations may be done exploiting
a parametrized constructor.
A central concept of object orientation is encapsulation of data and functionality. It
enables the separation of private and public elements of a class. In this way, some
sources of complexity are hidden and some typical programming errors, as coupling of
classes or unwanted access to inner workings, are avoided.
Another main feature of OOP is inheritance. A child class inherits from the parent
class all its attributes and methods. These could be possibly extended and refined by
overriding. This is a main driver for code reuse.
Dynamic dispatch ensures that an external caller actually executes the child class code
even if it has a reference of the parent’s class type only. It is a technique that allows
an object to select the code of a method at run-time.
In C++ the interfaces shall be implemented, as distinguished objects, using abstract
classes with pure virtual functions. Interfaces are a more powerful technique for code
decoupling than simple encapsulation. Firstly, an object implementing different in-
terfaces provides specific views to different callers, only exposing relevant information
for each. In addition, a caller can access different objects with the same interface
uniformly.

1.2.1.2 Components As mentioned above, instead of implementing certain fea-
tures over and over again, a company with domain expertise sells a ready-to-use piece
of software. Developers assemble a number of such pieces to form applications, which
are supposed to be built faster and more reliable, as components are already checked
and tested. It is important to stick to the objective of maintaining the maximum gen-
erality possible but without increasing the complexity. Components require a certain
environment for the execution, be it an entire operating system or a plug-in-capable
application. This environment may be viewed as a framework for component execu-
tion.

1.2.1.3 Frameworks Firstly the common interfaces, called protocols, and algo-
rithms of a given program are individuated. Then, good abstractions of them are
created in order to form a framework to develop similar applications. This has the
important implication that frameworks are always intended for a certain domain, they
are not general-purpose. Frameworks typically evolve in the following steps:

• white-box framework, it can be used to develop similar applications, but it re-
quires a deep understanding of the inner workings of the framework;

• black-box framework, it hides the inner workings of the framework from the
application developer. One variant to do so is by plugging software elements or
plug-ins, into existing framework containers. Thus, the programmer only needs
to know the required plug-in interfaces to create a customized software.

21/12/2021 – 1 INTRODUCTION 4

Marco Modè – Master thesis

The use of the framework is based on the concept of inheritance. Unfortunately,
this requires a rather deep knowledge of the base class and the circumstances under
which the subclass is called. It needs to describe the techniques for components to
communicate. There are two fundamental ways of communication: synchronous and
asynchronous. All communication between components in a real-time system must be
asynchronous. There are two main techniques to do so [9]:

• message queues, the caller puts its request in a message, which is read and han-
dled by the receiving component when appropriate;

• shared memory, a component writes information to a shared memory region,
where it is read out by the receiver at another point in time.

1.2.1.4 Abstraction and Generalisation All of the aforementioned techniques
promote some form of abstraction or generalisation. Abstraction in computer science
means to hide currently unneeded details of the abstract element to the user. A named
function or subroutine is an abstraction. Generalization means to group similar con-
cepts and form a single entity capable of handling these cases, eventually by providing
parameters. Both concepts are essential to manage complex programs and are often
used in conjunction. Abstraction helps programmers to focus on the essentials, gener-
alisation avoids duplicates. Both have a certain cost, therefore they must be employed
carefully.

1.2.2 The Flight Software Framework

The work done at IRS on the FSFW and the choice to implement it in the STUDIO
on-board computer, are motivated by the capability of the framework to reduce dra-
matically the costs, even with the constant increase of complexity.
The FSFW aims for a component-based software architecture. A well-defined set of
components interact by making use of a lightweight component framework, the FSFW-
Core, which ensures real-time capable information exchange between components. The
FSFW introduces abstraction layers in order to allow portability of the software to
different environments. Moreover, to reduce coupling between components, a set of
common interfaces both for inter-component and ground communication is defined.
The architecture of the FSFW is represented in Fig. 2.

Figure 2: FSFW architecture. [9]

21/12/2021 – 1 INTRODUCTION 5

Marco Modè – Master thesis

1.2.2.1 FSFW Components The FSFW employs four different classes of com-
ponents [9]:

• Device handler components, they handle the communication between computer
and physical components;

• Controller components, they perform the control algorithms;

• Subsystem components, including assemblies, they represent the engineering con-
cept of a spacecraft subsystem and a redundant set of equipment;

• Ground service components, they provide specific functionalities for ground in-
teraction.

The FSFW supplies component templates for these four classes containing the func-
tionalities selected after a work of domain analysis, generalisation and abstraction.
The component templates are implemented as abstract base classes.

1.2.2.2 FSFW Interfaces The FSFW defines interfaces for each functionality and
ensures access is possible using the message-based software bus of the FSFW-Core.
Every component is an object, the FSFW provides interface definitions in the form of
standard OO interfaces. The recurring features of these interfaces are [9]:

• Actions, they are sporadic, finite and externally triggered activities for device
handler components and for commanding from ground;

• Modes, they define the permanent behaviour of subsystems and equipment. A
common interface to read and set the component mode is provided;

• Health, the interface allows to read and modify the health state;

• Parameters, the interface simplifies the reading and adjusting of on-bard param-
eters;

• Memory, the interface unifies the way in which device handler components make
local and global memory accessible.

1.2.2.3 FSFW Core The Core of the framework support the execution and allow
the interaction between components. The elements of the core layer are represented in
Fig. 3.

Figure 3: FSFW core. [9]

21/12/2021 – 1 INTRODUCTION 6

Marco Modè – Master thesis

It delivers the following functionalities [9]:

• Communication: it is a major task of the core. Three methods of asynchronous
information exchange are provided in order to ensure real-time execution of com-
ponents: a message-based interface through a software bus, the possibility to
distribute events, a data pool for the exchange of periodic data.

• Execution: the FSFW Core provides software elements and interfaces to schedule
components, either on a periodic basis or in fixed time slots.

• Clocks and Timer: a common clock source in different formats along with facili-
ties to manage and set the on-board time are delivered. Timers to measure time
intervals are provided too.

• Data containers: the Core provides containers to store and modify run-time
adjustable data of components.

The FSFW-Core makes use of the underlying real-time operating system (RTOS) for
most of these functionalities. As mentioned before, in order to avoid hardware depen-
dency, functionality is accessed via interfaces only.

1.3 Thesis objectives and motivation

In Sec. 1.1.1, it is stated the necessity of a thermal controller for the STUDIO payload.
The objective of this thesis is to design, implement, integrate and test the thermal
controller software components. This includes a central controller and software com-
ponents to collect temperature sensor values and command heaters correctly, including
fault detection of heaters. The software is required to be developed in the Flight Soft-
ware Framework which is introduced and described above in Sec. 1.2.
Since 2019, detailed thermal analysis has been done, and based on that, the overall
thermal design is decided upon. While many components are protected with passive
thermal controller, there are also several components that require active heating using
heaters. The number and type of heaters are determined. The list and placement of
the temperature sensors are also determined and given. It is highlighted that sensor
and heaters number and placement is not finalized yet. Consequently, it is a specific
requirement for the thermal controller software to be easily configurable in terms of
parameters and components.
The sensors are handled by an Arduino board which has already been programmed in
Arduino IDE. It is necessary to define the communication between this sensor board
and the FSFW. Similarly, the communication between the framework and the heater
board should set-up.

21/12/2021 – 1 INTRODUCTION 7

Marco Modè – Master thesis

1.4 Outline

The work in this project is structured as following:

• Chapter 2 shows the results of the thermal analysis. The equipment chosen,
regarding sensors and heaters, are introduced and described. Following, the
model of the thermal controller software is presented along with the introduction
of the main components.

• Chapter 3 presents the work done for the development of the device handler
components and its implementation in the FSFW. In this part, it is set-up the
communication between the sensor and heaters board with the framework.

• In Chapter 4, the controller component is finalized. Firstly, the existing build-
ing blocks provided by the framework are analyzed. Then, the whole process
of implementation of the controller code is described. A critical aspect is the
integration of the power switcher component.

• Chapter 5 reports the result of integration of all the software parts and testing
with the real hardware. The tests planned and executed are illustrated and the
results, along with the faced criticalities, are shown.

• Chapter 6 concludes the thesis with final considerations about the work done.
The main criticalities are resumed and, lastly, personal opinions on the next steps
to face are given.

21/12/2021 – 1 INTRODUCTION 8

Marco Modè – Master thesis

21/12/2021 – 1 INTRODUCTION 9

Marco Modè – Master thesis

2 Thermal Controller design

As mentioned in Sec. 1.3, the thermal analysis of the STUDIO prototype has already
been completed in 2019 [10]. The results are shown hereafter. The thermal simulation,
instead, is still to be finalized. Below, the physical components chosen for the thermal
control system and the control logic selected are described.
In the second part of the chapter, the software architecture of the thermal controller
is introduced. The development of the main software components is then addressed to
the next chapters.

2.1 Thermal analysis results

The thermal analysis has been carried out through the software ESATAN-TMS [10][11].
Firstly, the temperature ranges required by the different equipment of the prototype
are displayed in Table 1. Furthermore, the environment thermal loads are reported. It
is highlighted that the limit values for the loads are identical on different parts of the
prototype.

Table 1: Components temperature requirements1[10]

Temperature range allowed [◦C]
Operational Non-operational

Components min max min max

Telescope
Optical Tube Assembly −23 30 −50 40
M2 Focusing Mechanism −23 30 −50 40

TIP Platform
M3 Tip/Tilt Platform −20 80 TBD TBD

Platform Baseplate
UV Filter Wheel −10 50 − −

UV Detector Assembly TBD 55 −40 55
UV Proximity Electronics −44 75 −44 75

Visible Filter Wheel −10 50 − −
PCO edge 10 40 −10 60

VIS Electronics −60 TBD TBD TBD

Environment loads min max min max

DST Pointing System −40 85 −40 85
SSC Battery box (x2) −40 85 −40 85

SSC Battery box + iridium −40 85 −40 85
Avionics −40 85 −40 85

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 10

Marco Modè – Master thesis

Four different cases have been simulated: two hot cases in which all power settings
are in nominal operative condition and two cold cases, in which all power consumers
are off. For each of the two categories, an analysis case, both for launch at sunset
and sunrise, has been simulated. The problem with ESATAN is that it is not capable
of turning on or off any power for a specific time step. So, the heating cases are a
conservative upper estimate and the two non-heating cases are a lower estimate. So,
in the two hot cases, all the nominal thermal loads and heaters are set to “on”. On the
other side, all the heaters and thermal loads are set to “off” in the two cold cases.
The results of the thermal analysis are shown in Table 2. After the simulation three
critical components are identified: the telescope tube, the M1 (primary) mirror, which
has same requirements on temperature range of the telescope tube, and the M2 mirror.
The table represents the minimum and maximum temperatures that they reach, in the
cases in which it is critical in terms of temperature limits. It is highlighted that the
temperatures obtained in the simulation must be compared to the operational ranges
in Table 1.

Table 2: Thermal analysis results [10]

Case Telescope tube M1 mirror M2 mirror

Sunrise no heating

Min [◦C] −41 - -
Max [◦C] −13 - -

Sunset no heating

Min [◦C] −42 - -
Max [◦C] −12 - -

Sunrise heating

Min [◦C] −23 −20 −20
Max [◦C] 13 −2 −6

Sunset heating

Min [◦C] −30 - -
Max [◦C] 14 - -

The telescope tube exceeds the operational ranges in all analysis cases apart of the
one with launch at sunrise and all the nominal thermal loads and power consumers
switched on. In this case, for all three components, the temperature limits are re-
spected. Nevertheless, the margin for the minimum temperature is too low.
In conclusion, in order to avoid any problem, these three components should be ac-
tively thermal controlled. Furthermore, it is reasonable to choose the launch at sunrise
such that the components have the chance to heat up at the beginning.

1Some values for the temperature ranges are not displayed because they weren’t considered during
the thermal analysis. These values are not critical for the thermal simulation.

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 11

Marco Modè – Master thesis

2.2 Components choice and philosophy

As a result of the thermal analysis, the hardware for sensors and heaters has been
previously selected. As already mentioned in Sec. 1.3, the number and placement of
sensors and heaters is still to be finalized after the thermal simulation of the prototype.
Anyway this is not matter of this work. The software is developed in order to be
easily configurable, in any moment of the project, in terms of temperature ranges and
components number and placement.

2.2.1 Sensors

After the thermal analysis (Sec. 2.1), the measuring system for temperature, air pres-
sure, humidity and structural data for STUDIO payload has been developed [12]. The
focus for this work is on the temperature sensors, as this is essential for thermal moni-
toring. Anyway, the device handler component has been programmed in order to read
and store also environmental and orientation data from the sensor board. This addi-
tional work has been done for future steps of the project.
The result of this work is shown hereafter in Fig. 4. The main components are:

• Temperature Measurement Board (TMB1, TMB2, TMB3, TMB4) based on the
LTC2983 [13] and use of PT1000 [14] measuring resistors;

• the BME280 [15] which provide environmental measurement;

• the BNO055 [16] which provide orientation measurement;

• Arduino Micro [17] as micro-controller.

The system now has a total of:

• 36 measuring channels for temperature from the 4 TMB;

• 3 measuring channels each for air humidity, pressure and again temperature from
the BME280;

• 3 measuring channels from the BNO055, for the three axis of orientation, each
for Acceleration, Gyroscope, Magnetometer, Linear Acceleration, Euler Angles.

The system can be expanded. If possible, tried and tested components were used.
The data is transmitted to the STUDIO payload computer every 1.6 seconds. This is
sufficient for the STUDIO thermal controller to work. The components are placed in
housings and attached to the STUDIO gondola. All cables used are low in outgassing.
The use of plugs makes the system flexible.

It is a prototype that is still pending validation. On the one hand, the hardware
must be validated by means of tests in the thermal vacuum chamber; on the other
hand, the software has not been adequately tested for long-term stability and suscepti-
bility to errors. Changes to the software may also be necessary due to the still missing

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 12

Marco Modè – Master thesis

Figure 4: Sensor board. [12]

integration into the STUDIO payload computer. The use of only one micro-controller
for the entire sensor system must also be viewed critically. The temperature measure-
ment is particularly important for STUDIO, other measured values are not required in
real time. For this reason, it would make sense to use a separate micro-controller for
temperature measurement in order to simplify the software and increase its stability.
In this context, an expansion to a redundant system would also make sense in order
to increase the reliability. However, this can be implemented with little effort.

The Arduino is programmed using the platform’s own programming environment Ar-
duino IDE 1.8.13 in a C-like environment programming language. The code developed
for the management and reading of the sensor is briefly discussed in Sec. 3.3.1. A
part of this work is to implement a component of the thermal controller software, the
device handler, responsible of the communication between the Arduino board and the
FSFW.

2.2.2 Heaters

Similarly to the sensors, the number and placement of heaters is not finalized. This
is not a problem for the software, which is designed, as required, with an high degree

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 13

Marco Modè – Master thesis

of flexibility. From the result of the thermal analysis in Sec. 2.1, it is clear that there
are not strong requirements on the heaters properties. It has been chosen a Polyimide
Insulated Flexible Heater (PIFH) [18].
These heaters are thin, flexible, quick and highly precise in providing heat where
needed to reduce operating costs. They add minimal weight to the entire process.
Their polyimide construction provides fast and efficient thermal transfer and uniform
thermal performance. They have optimal vacuum stability certified by the NASA
outgassing ASTM-E595 [19].
The current placement of the heaters is described in Table 3. The heaters model with
he associated power and voltage is reported. The positions selected are related to
the components introduced in Table 1 and discussed durig the tehrmal analysis. This
configuration will be tested and validated in clean room. After the thermal simulations,
the final configuration will be chosen in terms of heaters number and placement. In
this current configuration, some heaters on the TIP are added to ensure safe operations
of the payload.

Table 3: Heaters placement.

Position Power Voltage Model Comments

On telescope

M2 actuator 1 10 W 28 V KHLVA-101/10 Integrated by OS
M2 actuator 2 10 W 28 V KHLVA-101/10 Integrated by OS
M2 actuator 3 10 W 28 V KHLVA-101/10 Integrated by OS

On TIP

VIS 10 W 28 V KHLVA-102/5-P Combined for one power line
VIS 10 W 28 V KHLVA-102/5-P Combined for one power line

UV FW 7.5 W 28 V KHLVA-103/2-P Combined for one power line
UV FW 7.5 W 28 V KHLVA-103/2-P Combined for one power line
VIS FW 7.5 W 28 V KHLVA-103/2-P Combined for one power line
VIS FW 7.5 W 28 V KHLVA-102/5-P Combined for one power line

VIS 7.5 W 28 V KHLVA-102/5-P Contingency heater
VIS 7.5 W 28 V KHLVA-102/5-P Contingency heater

2.2.3 Thermal Control System model

The logic selected for the thermal control system is a basic closed-loop control system.
It is represented in Fig. 5. The control required is simple. Therefore, there is no
reason to complicate the thermal controller. The working principle is based on the
acquisition of the temperature data measured by the sensor board. If the temperature
is confined within the range given, no control action is required. Contrarily, the heaters
are switched on or off in case of the temperature is too low or too high respectively. It is
highlighted that the final temperature ranges for the control system will be given after

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 14

Marco Modè – Master thesis

the thermal simulation, when the equipment choice and placement will be concluded.
As for the equipment, the software is required to be customizable easily and directly.

SENSORS IF

T > T_MAX

T_MIN < T < T_MAX

T < T_MIN

HEATERSON

HEATERSOFF

OK

OUT OF RANGE

Figure 5: Thermal Control System model.

2.3 Architecture of the software

In this section, the objectives and requirements for the software, already discussed
above, are briefly resumed. It is then introduced the software architecture and its
main components. Then, it is presented a flowchart of the whole code.

2.3.1 Requirements

The main requirements identified for the thermal control software are:

• Auto-stabilization; the thermal controller shall stabilize automatically the ther-
mal state on the preset temperature ranges. It requires n support by ground.
Nevertheless, a communication channel with ground could be easily implemented,
in order to allow a customization of the software.

• Distributed control; the defined spots to control in Sec. 2.1 shall be monitored
and controlled independently. Therefore, each spot is equipped with its own
sensor, heater and the selected redundancy. No thermal modules components
are considered: these components are designed to monitor and control different
part of the satellite as one whole unit.

• FSFW employment; as mentioned above, it is required to implement the code in
the framework exploiting the tools described in Sec. 1.2.1.

• Code flexibility; it is required to keep the physical component used and the
related data, as the temperature ranges, abstract. In this way, when they will
be finalized after the thermal simulation of the prototype, it would be possible
to add in the software as many components as needed.

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 15

Marco Modè – Master thesis

These are the drivers for the whole development of the software.

2.3.2 Software components description

The main components which are developed in this project, with the aim to build the
thermal control software, are:

• the device handler;

• the thermal controller.

They are implemented exploiting the FSFW templates discussed in Sec. 1.2.2. Re-
garding the device handler, the component template is well defined and it is expanded
in Sec. 3. On the other side, the controller is implemented through the combination
of different building blocks. That’s because every controller has a specific purpose
which is very different from that of another controller. For this reason, a lightweight
controller template is provided with few common interfaces. It is then completed with
the involvement of additional blocks. This is exhaustively discussed in Sec. 4.

2.3.3 Flowchart

A summarizing flowchart of the thermal control software is represented in Fig. 6. It
is a simple extension of the control logic modelled in Fig. 5. The device handler, as
mentioned above, is the component of the code that communicates directly with the
physical equipment, as sensors and heaters in this case. The controller component
does several tasks beyond the implementation of the control algorithm. In particular,
it checks the state of the physical equipment and, depending on it, it does different
actions, like switching operative modes or failure management (FDIR) if necessary.
If any data sent from the sensor board are corrupted, they are identified in the device
handler and they are excluded. If the related sensor keeps to send corrupted data, a
failure may have happened. This situation is simply handled by relying on the redun-
dancy of the sensors. Similarly, when a heater doesn’t work properly, it is switched
off and set to non-operative mode by the controller. Its tasks are transferred to the
redundant heater in the same position, which is set to operative mode and switched
on when necessary.
All these operations of health check and mode set-up are handled by the controller.
Every time a failure happens, the FDIR component is informed with a message. It au-
tomatically executes the common routine, informing the components affected and the
ground station. Consequently, depending on the case, different solutions are adopted
in order to recover the failure or, at least, to secure the affected components.

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 16

Marco Modè – Master thesis

SENSOR BOARD -
DEVICE HANDLER

CHECK SENSOR
HEALTH

OK ERROR

FDIR

CHECK HEATER
HEALTH

OK ERROR-

IF

T > T_MAXT < T_MIN

HEATER BOARD -
DEVICE HANDLER

(POWER SWITCHER)

T_MIN < T < T_MAX

HEATER

ON

HEATERREDUNDANT
HEATER

ON

REDUNDANT
HEATER

OFFOFF

CONTROLLER

Figure 6: Flowchart2.

2After the check of the heater health, if the heaters are working properly, redundancy is not
employed (dashed lines). Viceversa, if the heaters fail, the redundancy is employed (dotted lines).

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 17

Marco Modè – Master thesis

21/12/2021 – 2 THERMAL CONTROLLER DESIGN 18

Marco Modè – Master thesis

3 Device handler implementation

As already mentioned, the FSFW provides the core functionality required to handle
the equipment. Each equipment is managed by a dedicated software component, the
device handler, whose purpose is to control and monitor the equipment’s status and
communication [9]. It represents the equipment internally and for the ground segment.
This choice brings the following advantages:

• device handlers explicitly control and monitor interaction with the device;

• device handlers encapsulate knowledge of specific properties such as initialization
commands, the communication protocol and measurement representations;

• device handlers are the single source of state knowledge of the equipment, they
determine the health state;

• state information along with measurements and command data are exchanged in
a disciplined manner. This makes fault management more explicit and simple.

It is important to highlight that device handlers are on the same hierarchical level of
controller components. The device handler is a single software component. In this
project, it is developed differently for sensors and actuators.
It is remarked that, in this chapter, just the device handler related to the sensor board
is described in details. The heater one will be very similar but it is still not completed
since, as explained better in Sec. 4.5, the firmware for the power switcher communica-
tion interface shall be concluded before.
In addition to the device handler component, other two software components are in-
cluded:

• the Communication Interface;

• the Cookie.

They are fully explained here below. Their objective is to assist the device handler
tasks. Before, some concepts related to the FSFW core are introduced. They are
needed to understand the development of the software components.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 19

Marco Modè – Master thesis

3.1 FSFW core concepts

Data Pool Data pool is a typical element of embedded control software in general
and flight software in particular [9]. The basic idea is to provide a possibility for
exchange of periodic data with blackboard logic. If only the most recent value is
of interest, it is reasonable to provide a single location for this value and cyclically
overwrite the current value with a newer one. As sensor and actuator data have a very
short time of usage, the data pool is the main mechanism for exchanging control data
between components.
It is implemented in the FSFW Core which, as represented in Fig. 2, communicates
with every component. It is based on a shared memory mechanism with the following
features:

• each variable is identified with a unique ID;

• the data pool allows storage of vectors and single variables;

• access is type-safe and thread-safe;

• a thread trying to overwrite parts of a set of variables is blocked if the set is
currently read out, in order to avoid inconsistency;

• a flag for the validity of the variable is assigned to each entry;

• the data pool provides commit-and-rollback semantics for write access.

In the mission configuration file, this unique ID for each data pool variable is defined,
and the variable or vector is mapped with its type and dimension, to allocate the
required memory.

Events Events are aperiodic incidents in a system [9]. The FSFW provides an event
manager, which is responsible of events distribution. It receives event messages gen-
erated by components and forwards them to those components that registered for a
matching set of events. Components are capable of throwing events at any time. An
event message contains the following information:

• a unique event ID;

• a severity field, it defines the priority of the event;

• the reporter ID, it is the ID of the component associated at that event;

• two parameter values, they are employed to send additional information about
the event.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 20

Marco Modè – Master thesis

Objects As already introduced in Sec. 1.2, the software is composed by assembling
different objects, also referred to as components. Every object included in the code
is defined in the configuration with a unique ID. These objects could have a physical
meaning, as the sensors, heaters, redundancies, switches, as well as they could be non-
physical, as the device handler, the communication interface, the cookie, the power
switcher or the thermal controller, which in this case is a simple implementation of the
logic represented in Fig. 5.
All these independent objects, such as the cookie, the communication interface, the
device handler and the thermal controller are instantiated using a factory. It is a part
of the FSFW which manages the objects of the whole software exploiting the object
manager. The instantiation takes place through parametrized constructors which are
defined in the class of each object.
The flexibility required for the code is here satisfied: whatever are the number and the
features of the objects to include in the thermal control system, in terms of sensors
and heaters, they can be easily defined here at any moment.

Return Values Some methods belonging to these objects are designed to return
values which are then exploited by other methods, objects or even ground operator. In
order to distinguish these variables unequivocally, an ID associated with the class for
this specific purpose, is added to the return values.For example, the device handler and
the thermal controller are both assigned with an ID in the mission configuration, which
differentiates a RETURN_FAILED message sent from each of them for the operator
on the ground.

Polling Sequence The FSFW is capable of individual scheduling of components [9].
The components are executed periodically within a fixed time period. This a common
scheduling scheme in the RTOS, which is also here exploited in a linux environment.
The components become executable by implementing the ExecutableIF, which man-
dates the implementation of the performOperation method. This method is called by
task objects, which manage cyclic execution. The periodicity of the execution is not
defined by the component itself, but it is defined by the task periodicity defined in the
mission configuration. The components itself maintains all attributes and parameters
unmodified until the end of the time period. For reason of efficiency, multiple com-
ponents can be grouped in one task, which then execute in the same period and with
the order defined. Any form of periodic execution is allowed by the FSFW. Parallel or
quasi-parallel execution could be implemented as the communication is thread-safe.
Regarding the device handler, the execution schedule is more constrained by the equip-
ment requirements. For this reason, it is necessary to optimize the scheduling. This
situation is handled with the help of the polling sequence table [9]. The FSFW imple-
ments a dedicated tasking interface, called FixedTimeslotTaskIF, which allows adding
components in time slots with a fixed execution time. It enables the precise scheduling
of the four communication interface methods.
In the mission configuration file, the InitMission function defines the period tasks to
be executed with the related time period and execution order. Regarding this project,

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 21

Marco Modè – Master thesis

two period tasks are defined: one for the device handler and one for the controller.
As mentioned before, the device handler task is defined through the FixedTimeslot-
TaskIF with a slot of 3.2 seconds. This time represents twice the time needed by the
Arduino sensor board to measure and send periodically the data obtained (Sec. 3.3.1).
The precise scheduling of the internal tasks of the device handler is stated in the
pollingSequence function. This design step has been a critical step. The solution
adopted is described below in Sec. 3.4. The controller task is instead defined with
the PeriodicTaskIF with the same time period. The time slot value is not a critical
choice, therefore it is basically selected in order to have same time period of the device
handler.

3.2 Cookie

The cookie component should be inherited by the FSFW class CookieIF. It can be
used to store all kinds of information about the communication, like slave addresses,
communication status or communication parameters. It is used to identify different
connection over a single communication interface. In addition, the cookie state is used
in the device handler base class as an indicator of the communication step a device is
in.
In this case only one device is connected to the controller, for this reason the address
is unique and there is no need to use the cookie for that. The constructor is therefore
empty. The only task handled by this component is the initialization of the Linux serial
port for the communication interface. The cookie transfers this information between
the different methods within the device communication.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 22

Marco Modè – Master thesis

3.3 Communication interface

The communication interface component is created to decouple the device communi-
cation from the device handler. Thus, the device handler is not dependent on any
specific interface and it can be reused.
This component should be developed through inheritance as represented in Fig. 7.

Communication Interface

This is the communication
interface component developed
for this project.

HasReturnvaluesIF
Interface which defines the
template for the methods
which return values as
output.

SystemObject
Class of the FSFW which
automates the insertion into
the ObjectManager and the
management of the object ID.

DeviceCommunicationIF

initializeInterface()

sendMessage()

getSendSuccess()

requestReceiveMessage()

buildCommandFromCommand()

readReceivedMessage()
Parent class of the communication
interface provided by the FSFW.
The 5 abstract methods listed above are
inherited.

Figure 7: Communication Interface parent classes.

The main parent class is the DeviceCommunicationIF class of the FSFW. It works
with the assumption that received data are polled by a component [9]. This class
provides calls to initialize the interface (open/close) and it defines fours steps for the
device communication. Its flowchart is represented in Fig. 8. The five methods here

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 23

Marco Modè – Master thesis

discussed and shown in figures are tackled individually in the sections below.
The DeviceCommunicationIF of the FSFW is itself child of another class: the interface
HasReturnvaluesIF. It simply defines the template for the methods which return values
as output (Sec. 3.1). Furthermore, it defines the two main variables to return:

• RETURN_OK, returned when the execution of the method is successful;

• RETURN_FAILED, returned when any type of error happens during the exe-
cution of the method.

The communication interface component of the thermal controller, developed in the
context of this project, is not only child of the class DeviceCommunicationIF as already
stated, but it is also child of the class SystemObject. This class of the FSFW automates
the insertion into the ObjectManager and the management of the object ID.
Before describing the class methods, it is necessary to provide a quick explanation of
the Arduino sensor board software. This is done in the next section (Sec. 3.3.1).

initializeInterface

sendMessage

getSendSuccess

requestReceiveMessage

readReceivedMessage

Figure 8: Communication interface flowchart.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 24

Marco Modè – Master thesis

3.3.1 Arduino sensor board code

As mentioned before, the development of the software for the sensor board is not part
of this work. This software has been analyzed because it embeds the info necessary to
initialize the interface for the communication with the device handler.
The process of measurement is not explained here. It is described the process of
data sending from the sensor board to the the on-board computer: the STUDIO Pay-
load Computer (SPC). The physical interface between the two hardware is a USB 2.0
connector (Fig. 4). These data are sent as serial output with a cycle time of 1600
milliseconds. The baud rate selected for the communication is 115200 bps. The SPC
requires to receive this output as raw binary data. Consequently, the communication
interface shall implement a method to decode these data in order to check them and
use them in the thermal controller.
The structure of the data sent is here described. As already clarified in Sec. 2.2.1, the
sensor board sends three different structures of data related to the three different type
of measurement: temperature, environmental data, orientation. Each measurement
channel sends its own measurement. In case the channel is not connected to any sen-
sor, therefore is not operative, a default array of data is sent. In this way the controller
can easily recognize which channel are not operative.
The four temperature boards, each one with nine measurement channels, send a to-
tal of 36 arrays of measurement. Each array is structured as in Table 4. Two char
variables are included to define the beginning and the end of the array, in order to
distinguish clearly each array with respect to the others. The variable Type represents
the type of measurement which is always 1 for temperature measurement. The variable
SPCCnNumber defines the unique ID of the measurement channel. It is:

• 1 to 9 for the first TMB;

• 11 to 19 for the second TMB;

• 21 to 29 for the third TMB;

• 31 to 39 for the fourth TMB.

Each temperature board number is defined and associated with a specific pin on the
Arduino board. The TMBs are connected to the pins from 4 to 7. Knowing the
measurement channel, it is possible to identify the sensor associated and therefore the
location and control action to apply if needed. The Value_Cnt defines the number of
measurement registered in the array. Regarding the TMB, only the last measurement
is sent and it is overwritten at each measurement cycle. Consequently this variable is
always 1 for temperature measurements. The float variable Temperature contains the
temperature value measured at each loop in Celsius degrees. Lastly, the Timestamp is a
variable which defines the exact time instant, in milliseconds, in which the measurement
is done with respect to the start of the program. It exploits the function millis of
Arduino IDE. Each variable is associated with its corresponding size in terms of bytes.
It is needed to allocate the necessary space in a buffer array which stores these data
sent by the Arduino board.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 25

Marco Modè – Master thesis

Table 4: Temperature data structure.

[ChStart] Type SPCChNumber Value_Cnt Temperature Timestamp [ChEnd]

char uint8_t uint8_t uint8_t float unsigned long char
8 bytes 1 byte 1 byte 1 byte 4 bytes 4 bytes 8 bytes

As already mentioned, even if it is not interest of the thermal controller, also
environmental and orientation data are read and stored in the context of this project.
This is done for further usage by other flight software components.
The array of environmental data has a similar structure to the temperature one. It
is shown in Table 5. The three BME280 boards are connected to the Arduino board
with the pins from 8 to 10. Each board provides a measurement of pressure, humidity
and temperature. Therefore, the Type is in this case:

• 2 for pressure [hPa];

• 3 for humidity [%];

• 1 for temperature [°C].

The SPCCnNumber is:

• 41 to 43 for the first BME280;

• 51 to 53 for the second BME280;

• 61 to 63 for the third BME280.

In this case the Value_Cnt is still 1 for each measurement channel because, as for
temperature measurement, just the last measuremnt is sent and then overwritten at
the next cycle. The variable Value contains the measurement value of environment. It
has the same format for the three different channels.

Table 5: Environmental data structure.

[ChStart] Type SPCChNumber Value_Cnt Value Timestamp [ChEnd]

char uint8_t uint8_t uint8_t float unsigned long char
8 bytes 1 byte 1 byte 1 byte 4 bytes 4 bytes 8 bytes

The array of orientation data is shown in Table 6. The BNO05 board, as mentioned
in Sec. 2.2.1, features five different types of measurement: Acceleration, Gyroscope,
Magnetometer, Linear Acceleration, Euler Angles. Therefore the Type is here:

• 4 for acceleration measurement [m/s2];

• 5 for gyroscope measurement [◦/s];

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 26

Marco Modè – Master thesis

• 6 for magnetometer measurement [µT];

• 7 for linear acceleration measurement [m/s2];

• 8 for Euler angles measurement [◦].

Each type of measurement is provided on the three axis of the reference frame. The
SPCChNumber, then, is:

• 81 to 83 for acceleration measurement;

• 91 to 93 for gyroscope measurement;

• 101 to 103 for magnetometer measurement;

• 111 to 113 for linear acceleration measurement;

• 121 to 123 for Euler angles measurement.

The Value_Cnt for orientation data is 9. This is because the variable Value is an array
of nine measurements in which the first character represents the newest measurement.
Then the last eight measurements, in order of time, are recorded in the array and
at each measurement cycle they are translated one step down in the array. In the
Timestamp variable, the nine time instants related to the measurements are collected.

Table 6: Orientation data structure.

[ChStart] Type SPCChNumber Value_Cnt Value{9} Timestamp{9} [ChEnd]

char uint8_t uint8_t uint8_t float unsigned long char
8 bytes 1 byte 1 byte 1 byte 36 bytes 36 bytes 8 bytes

The whole packet of data is composed by a total of 2580 bytes.

3.3.2 Interface initialization

The function initializeInterface is the first method of the Communication Interface class
(Fig. 8). It is a virtual function of the base class DeviceCommunicationIF, therefore
it must be overriden in the derived class of the thermal controller. This is the same
for the four methods for device communication which are virtual functions too. The
prototypes in the component header are indeed all overrides of the base class.
This method provides the set-up of the interface for the communication. The serial
communication interface through which data are transferred is a Linux serial port. In
typical UNIX style, serial ports are represented by files within the operating system.
These files usually pop-up in /dev/, and begin with the name tty* [20]. This file for
the serial port is configured with particular attention for some parameter.
Firstly, the serial port is opened. The device path is identified on the Linux terminal.
Then, a new termios structure, which is called ’tty’ for convention, is created and

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 27

Marco Modè – Master thesis

configured as in [20]. The required libraries are included. The main parameters to set
are shown in Table 7.

Table 7: Serial port parameters.

Parameter Command Explanation

Baud rate - input
Baud rate - output

cfsetispeed(&tty, B115200)
cfsetospeed(&tty, B115200)

The serial port baud rate is
set by calling the functions
cfsetispeed, for the imput,
and cfsetospeed, for the

output. The baud rate for
the communication is
defined in the Arduino
sensor board code. It is
115200 bps. Here it is
defined accordingly.

VMIN tty.c_cc[VMIN] = 255

This parameter represents
the number of bytes which
the Linux serial port shall
wait for in the read() call.
The upper limit of bytes to

read in one call is 255
bytes, which is less then
the total of 2580 bytes
sent. Consequently, the
parameter is fixed as 255
and the read() call shall be
repeated enough times to

receive all the data.

VTIME tty.c_cc[V TIME] = 0

This parameter specifies a
time-out from the start of
the read() call. Setting it
to zero, there is no time
block. Therefore it makes
the read() call always wait
for the bytes defined above.
It could block indefinitely.

The cookie component, which ID is provided as input of this method, is necessary
to store the integer number representing the serial port here opened. This number is
exploited by the methods related to the device communication.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 28

Marco Modè – Master thesis

3.3.3 Device communication

The four methods implemented for the device communication are briefly described in
Table 8.

Table 8: Device communication methods.

Method Description

sendMessage It is used to send data to the physical device by
implementing and calling related drivers or functions.

getSendSuccess It sends confirmation that the data in sendMessage()
was sent successfully.

requestReceiveMessage
It requests reading data from a device. It is assumed
that it is always possible to request a reply from a

device.

readReceivedMessage
This function is used to read the received data from

the physical device by implementing and calling related
drivers or functions.

In this project, the aim of the device handler is to read the data received by the
Arduino sensor board. There is no further communication. For this reason, the first
three methods are just returning RETURN_OK without doing anything in their rou-
tine. The fourth methods, instead, is programmed properly in order to read the packet
of data sent by the Arduino board.
Firstly, the buffer arrays for data reading are initialized. Since these buffers have a
size of 255 bytes, 11 buffers are needed to read the whole packet of data. Nevertheless,
as a result of the tests which are explained in Sec. 5, it is chosen to block the reading
until three whole packets of data are sent. It takes more time but it ensures the FSFW
to read correctly at least one whole packet among all these bytes. It means that the
total bytes to read are 7740. This choice is due to the fact that the component exe-
cution in the FSFW, as already mentioned in Sec. 3.1, is periodic. This is a reason of
synchronization error during the reading. Therefore, 31 buffers of 255 bytes needs to
be initialized to allocate the required space for reading.
These buffers are set to zero with memset() function. This is done to overwrite what-
ever data has been read the cycle before. It prevents to keep any corrupted data and
it allows to identify which channels are not read for any reason.
Then, the read() call is repeated for all these buffers to store the three whole packets of
data as explained above. The resulting arrays are concatenated then in a single array
of 7740 bytes with the function copy(). The objective, then, is to identify a full and
not corrupted packet of measurement in this buffer. A control loop is performed on
the buffer array for this reason. The logic is very simple and it is represented in Fig. 9.
The check is performed in order to ensure that the whole packet starts exactly from
the first channel measurement and it ends with the last channel measurement.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 29

Marco Modè – Master thesis

i = 0

while (i < 7740)

OK

NO

i = i +1

if (buffer[i + 3] = ' S ')

OK

NO

if (buffer[i + 9] = ' 1 ')

OK

if (buffer[i + 27*35 + 9] = ' 39 ')

OK

if (buffer[i + 27*35 + 22] = ' E ')

OK

if (buffer[i + 27*45 + 91*13 + 9] = ' 122 ')

OK

OK

OK

if (buffer[i] = ' [')

if (buffer[i + 27*45 + 91*14 + 9] = ' 123 ')

if (buffer[i + 27*45 + 91*13 + 86] = ' E ')

end

i = first index

NO

NO

NO

NO

NO

NO

Figure 9: Buffer control loop.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 30

Marco Modè – Master thesis

As result, the presence of the whole packet is checked and the address of the first
index is identified and returned as output. The address of the first index of the whole
buffer array is returned too. These two parameters are then employed in the device
handler component to recover the packet of data read which is then checked, interpreted
and saved in the data pool for the thermal controller. The logic employed in the control
loop above could be refined or detailed more. However, the tests demonstrate that it
is enough.

3.4 Device handler

The Device Handler component is inherited from the FSFW DeviceHandlerBase class.
This base class is itself child of other classes and interfaces. All the parent classes are
represented in Fig. 10. Most of them are interfaces which define common functionalities
for software components. A brief description of each class is given. For the Device-
HandlerBase, the main methods inherited are listed. In particular, the scanForReply()
and interpretDeviceReply() are highlighted because they are of primary interest for this
project. A description of the methods is reported in Table 9. Besides the ones already
introduced in Fig. 10, two other methods are inherited and implemented in the device
handler.

As already mentioned above, the two methods scanForReply and interpretDeviceRe-
ply require the biggest part of the work. They are crucial in order to achieve the device
handler requisites.
In this project, the scanForReply checks the packet validity just in terms of packet
length. This is due to the fact that in the Communication Interface, as described in
Sec. 3.3.3, a control loop on the packet received is already implemented. Therefore, if
the packet received has a length of 7740 bytes, corresponding to the length of three
measurement packets, is valid. It means that the communication interface has read
the message correctly. In this case the function returns APERIODIC_REPLY. This
is the output to return if a valid packet, which has not been requested by any com-
mand, is received and it should be handled anyway. Differently, the function returns
LENGTH_MISSMATCH.
The following step is the interpretation of the message received. After the check of
the structure of the message, its content is analyzed and then managed accordingly.
Firstly, three structures for the different measurement data (Table 4, Table 5, Table 6)
are initialized in the header. Then, one whole packet of measurement data is copied in
these structures byte per byte. The address of the first byte is provided by the control
loop in the Communication Interface. All the 2580 bytes are in this way decoded. This
procedure is performed within a for-loop exploiting the function memcpy().
In succession, the variables with the temperature value and the timestamp are saved
in two arrays in the data pool. In this way, they can be accessed by the thermal con-
troller component. The other data, as well as environmental and orientation data, are
decoded for further use. They are not employed by the thermal controller.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 31

Marco Modè – Master thesis

Device Handler

This is the device handler
component developed for
this project.

HasHealthIF
It provides means for
convenient management of
the health state of a
component.

HasModesIF
It provides external access
to a component’s mode.
In principle, a MODE_OFF
and a MODE_ON, as well as
SUBMODE_NONE are
provided by default.

ExecutableObjectIF
The interface provides a
method to execute objects within
a task. The performOperation
method, that is required by the
interface is executed cyclically
within a task context.

ReceivesParameterMessagesIF
Child class of HasParametersIF. This
interface is used by components which
have modifiable parameters. Each
parameter has a unique parameter ID.

DeviceHandlerIF

This is the Interface used to
communicate with a device
handler. It includes all
expected return values,
events and modes.

HasReturnvaluesIF
Interface which defines the
template for the methods
which return values as
output.

SystemObject
Class of the FSFW which
automates the insertion into
the ObjectManager and the
management of the object ID.

HasActionsIF
Interface for component
which uses actions. Actions,
in the sense of this interface,
are activities with a
well-defined beginning and
end in time.

DeviceHandlerBase

doStartUp()

doShutDown()

buildTransitionDeviceCommand()

buildNormalDeviceCommand()

buildCommandFromCommand()

fillCommandAndReplyMap()

scanForReply()

interpretDeviceReply()
Parent class of the device handler
provided by the FSFW. The 8 abstract
methods listed above must be
implemented in the device handler.

Figure 10: Device Handler parent classes.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 32

Marco Modè – Master thesis

Table 9: Device Handler methods.

Method Description

doStartUp

This is used to let the child class handle the transition from
mode _MODE_START_UP to MODE_ON. Device

handler commands are read and can be handled by the child
class. It should also send a reply accordingly.

doShutDown
This is used to let the child class handle the transition from

mode _MODE_SHUT_DOWN to
_MODE_POWER_DOWN.

buildNormal-
DeviceCommand

It builds the device command to send for normal mode.
Different commands can built, depending on the submode.

buildTransition-
DeviceCommand

It builds the device command to send for a transitional
mode. It is used by doStartUp() and doShutDown() as well

as doTransition().

doTransition It performs the transition to the main modes (MODE_ON,
MODE_NORMAL and MODE_RAW).

buildCommand-
FromCommand

It builds a device command packet from data supplied by a
direct command.

fillCommandAnd-
ReplyMap

This is used to let the base class know which replies are
expected. There are different scenarios regarding this:

normal commands, periodic unrequested replies, aperiodic
unrequested replies.

scanForReply

It scans a buffer for a valid reply. This is used by the device
handler to check if the data received are valid packets. It

only checks if a valid packet starts with the correct character
and if the structure is coherent. No information check is

done. Errors should be reported directly, the base class does
not report any error based on the return value of this

function.

interpretDeviceReply

It has the objective of interpreting a reply from the device.
This is called after scanForReply() finds a valid packet, it
can be assumed that the length and structure is valid. This
routine extracts the data from the packet into a Data Set

and then either sends a TM packet or stores the data in the
data pool depending on external commands.

setNormalDatapool-
EntriesInvalid

It sets all data pool variables, that are updated periodically
in normal mode, invalid

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 33

Marco Modè – Master thesis

3.5 Software development and test plan

The development and testing of the device handler software component can be resumed
in the following steps:

1. Writing and testing of a C++ file to initialize the interface for the communication
with the Arduino board. This step includes the study of Linux serial port and
Arduino environment.

2. Inclusion in the C++ file of the code piece necessary to read and decode the
measurement packet. At this stage the data are printed to the monitor after the
decoding to check the results. The corrupted data are identified visually and the
code is corrected.

3. Rearrangement of the file in order to obtain a continuous and periodic loop of
data reading and decoding.

4. Transfer the code obtained in the environment of the FSFW. The components
are built with the tools of the framework. Additional tasks and functionalities
are added exploiting the FSFW.

5. Test the whole device handler software component within the FSFW. The reading
from the sensor board is here tested.

6. Integration with the controller component and test of the whole thermal control
software within the FSFW employing the STUDIO ground system set-up.

7. Placement of the actual temperature sensors and heaters on STUDIO telescope,
located at IRS clean room, and integration of the system toward a fully-operational
system.

The execution and results of these test are discussed in Sec. 5.

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 34

Marco Modè – Master thesis

21/12/2021 – 3 DEVICE HANDLER IMPLEMENTATION 35

Marco Modè – Master thesis

4 Thermal Controller implementation

The controller is the central element of this work. It monitors sensor values, applies
control laws and calculates output values for actuators. As already mentioned, the
FSFW provides a lightweight template with some common interfaces. In addition,
some domain-specific building blocks are delivered in order to support the assembly of
the control system.
All the components employed in this work are presented in Fig. 11. Each one is
explained separately in this chapter. The logic selected for the thermal control is
based on the concept of auto-stabilization: the control is performed automatically by
the system without the need to communicate with ground. Therefore the development
of the components is quicker. Nevertheless, a custom stabilization with continuous
interaction with ground could be easily included in this software. Each spot to control
is associated to a thermal component. Each thermal component is linked with its own
sensor, heater and redundancies. This is due to the fact that each spot to control is
handled independently, as required.

Sensor

Device
Handler

Sensor Heater

Thermal
component

Controller

Power
Switcher

CONTROLLER

Device
Handler

Heater

Figure 11: Thermal Controller components.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 36

Marco Modè – Master thesis

4.1 Sensor

The temperature sensor component represents the physical sensor in the controller
component. Its main tasks are:

• reading of the temperature data saved by the device handler;

• check of the validity of the temperatures.

It is called within the routines of the thermal component and the controller.
It is child of the FSFW building block called AbstractTemperatureSensor. The process
of inheritance is represented in Fig. 12.

Temperature Sensor

Temperature sensor
component implemented in
this project.

HasHealthIF
It provides means for
convenient management of
the health state of a
component.

ExecutableObjectIF
The interface provides a
method to execute objects within
a task. The performOperation
method, that is required by the
interface is executed cyclically
within a task context.

ReceivesParameterMessagesIF
Child class of HasParametersIF. This
interface is used by components which
have modifiable parameters. Each
parameter has a unique parameter ID.

SystemObject
Class of the FSFW which
automates the insertion into
the ObjectManager and the
management of the object ID.

AbstractTemperatureSensor

getTemperature()

isValid()

resetOldState()

getParameter()

doChildOperation()

performHealthOp()
performOperation()

Parent class of the temperature sensor
provided by the FSFW. The 5 abstract
methods listed above must be
implemented in the sensor. The last two
are not implemented in the child but they
are directly called from the parent.

Figure 12: Temperature sensor parent classes.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 37

Marco Modè – Master thesis

As represented, the AbstractTemperatureSensor parent class is itself child of some
common interfaces provided by the framework.The functions inherited by the child are
the first five as written in figure. The first four are virtual functions which must be
implemented, while the doChildOperation() method is the main function to implement
in the child component. Furthermore, the setInvalid() method is created to assist
doChildOperation(). Basically, the doChildOperation() method checks if the tempera-
ture values measured are within the limits defined. These limits are defined for each
thermal component as {−1000◦C,+1000◦C}. They can be modified independently
from the others in any moment. If they are within the limits, the measurement is set
as valid with a flag in the data pool. Contrarily, it is set as invalid.
The last two methods written in figure are not implemented by the child class. This
is because they do not need any modify. Therefore, the controller child class calls
them directly from the sensor parent class. They both call the method handleCom-
mandQueue() which is not implemented too in the child class. This is because no
communication with ground is needed in this system. In case it is considered neces-
sary, the method shall be overridden and modified according with the requirements.
The performOperation() calls then the child doChildOperation() method to check the
temperature values validity.
The tasks of this component within the controller are clarified in the following sections.

4.2 Heater

Similarly to the temperature sensor, the heater component represents the physical
actuator within the controller. Its main tasks are:

• health monitoring of the heaters and the redundancies;

• monitoring of the heaters internal state;

• switch of heater internal state;

• switch from faulty heaters to redundancies.

Firstly, a breakdown of the component is given. The methods inherited by the heater
are represented in Fig. 13. In addition to the heater parent class, some functionalities
are inherited by one its friend class: the RedundantHeater class. These functionalities
are exploited when the heater created is designed as a redundancy. As in the other
cases, other common interfaces of the FSFW are inherited through the heater parent
class.
These methods are designed to do different operations with respect to the internal
state of the heater, or, in case of failure, of the redundancy. The internal state of the
heater could be:

• ON;

• OFF;

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 38

Marco Modè – Master thesis

• PASSIVE;

• STATE_WAIT_FOR_SWITCHES_ON;

• STATE_WAIT_FOR_FDIR;

• FAULTY;

• WAIT;

• STATE_EXTERNAL_CONTROL.

Heater
Heater component
implemented in this project.

HealthDevice
It is a component of the
device handler class which
encloses some common
operation of health monitoring.

ReceivesParameterMessagesIF
Child class of HasParametersIF. This
interface is used by components which
have modifiable parameters. Each
parameter has a unique parameter ID.

Heater

initialize()

set()

clear()

doAction()

getParameter()

performOperation()
Parent class of the heater
provided by the FSFW. These six methods
are implemented by the heater class. The
performOperation() is in this case directly
inherited called from the child class.

HasHealthIF
It provides means for
convenient management of
the health state of a
component.

ExecutableObjectIF
The interface provides a
method to execute objects within
a task. The performOperation
method, that is required by the
interface is executed cyclically
within a task context.

SystemObject
Class of the FSFW which
automates the insertion into
the ObjectManager and the
management of the object ID.

RedundantHeater

This is a friend class of the
heater component. It
implements some common
functionality for the
redundancies.

Figure 13: Heater parent classes.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 39

Marco Modè – Master thesis

As for the temperature sensor, these methods are called by the thermal component
and controller. The methods set() and clear() have the objective of assisting the switch
action of the physical heater. They both call the doAction() method to carry out the
action selected. The method set() imposes the action:

• SET, if the heater is healty; the doAction() method consequently switches on the
heater through the power switcher and changes the internal state;

• CLEAR, if the heater is FAULTY; the doAction() method consequently switches
off the heater through the power switcher and changes the internal state.

On the contrary, the method clear() imposes the action CLEAR whatever is the con-
dition of the heater. This method is implemented, indeed, with the aim of forcing the
heater to switch off in particular cases. For example, it is employed to force the switch
off at the beginning, in order to ensure the correct start of the software with internal
state OFF. The performOperation() method, instead, checks the internal state of the
heater and the state of the switch. It is highlighted that each heater or redundancy
is associated with a unique switch with the parameterized constructor. As result of
this check, different actions of the power switcher are triggered and the internal state
is modified. The actions triggered here are several, even because there are different
checks and actions for each internal state of the heater. The objective of these actions
is to trigger the power switcher in order to have a switch state coherent with the in-
ternal state and the needs of the system.
As for the temperature sensor component, the employment of these methods within
the whole controller logic clarifies the component tasks.

4.3 Thermal component

The thermal component is the main building block of the controller. It represents a
specific spot on the satellite to control thermally. Each thermal component is asso-
ciated with one temperature sensor, one heater and the redundancies. It is designed
to include until two additional sensors and heaters as redundancy. The structure of
the redundancies is the same of the main components, both for sensors and heaters.
This is done not only for simplicity but also to ensure same functionalities also for the
redundancies. The initialization of each thermal component is performed with a pa-
rameterized constructor within the thermal controller component. This initialization is
done equally for both the temperature sensors and heaters. It is highlighted that these
sensors and heaters components represent the equipment in the controller component.
Nevertheless, the communication with the physical equipment occurs through different
components, the device handlers.
The main tasks of the thermal component are:

• check of the temperatures through the sensor component methods;

• execution of the control algorithms;

• command the control action to the actuators;

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 40

Marco Modè – Master thesis

• manage the redundancy switch and the mode change;

• monitor the feedback of the control actions.

The structure of the component is represented in Fig. 14. A brief description of the
parent classes and the inherited methods is given.

Thermal Component

This is the thermal
component class developed
for this project.

CoreComponent

setTargetState()

setLimits()

GetHeaterRequest()

getState()

checkLimits()

getIgnoredState()
performOperation()

This is the parent class of the thermal
component. The methods inherited are
listed above. The functions highlighted in
blue are called both from the child and
parent class.

HasParametersIF
This interface is used by components
which have modifiable parameters.
Each parameter has a unique
parameter ID.

ThermalComponentIF

This is the interface provided by the
framework for thermal component. It
provides the initialization of parameters
as the thermal component state, state
request, priority and heater request.

Figure 14: Thermal component parent classes.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 41

Marco Modè – Master thesis

The last four methods are highlighted because they are not overridden in the child
component. The thermal component, indeed, is slightly different from its parent. It
considers non-operational state of the system and non-operational low and high tem-
peratures as parameters. For this reason, the methods inherited by the child need just
a little extension of the parent functionalities. This is realized calling the parent classes
directly within the child routines for these four methods, in order to avoid to rewrite
the same thing. Then, the needed addition of code is included.
As always, other methods are inherited besides the ones listed in figure. These are the
inherited methods which are implemented in the child component.
Apart of the usual common interfaces, the parent CoreComponent has a dedicated in-
terface: the ThermalComponentIF. It provides the definition of many inherited meth-
ods. Furthermore, it contains the initialization of some paramount parameters for the
control tasks:

• the thermal component state; it is a combination between: operational and non,
out of range, low, high, ignored and unknown;

• the state request; it can be: heating request, ignore request, operational or non
operational request;

• the priority; it is distinguished between: safe, idle, payload and max priority;

• the heater request; the options are: request ON/OFF, emergency request ON/OFF,
heaters don’t care.

The tasks carried out by these methods are here explained. Most of the methods in-
herited are enclosed and executed within the performOperation() routine. It is briefly
resumed in the flowchart in Fig. 15.
The first step of this method is the call of the heater component function performOp-
eration(), which is described above in Sec. 4.2. It is called also for the redundancies,
if they exist for the specific component. Therefore in this step, the operations already
described, related to the heaters switch and the internal state change, are executed.
Then, the second step is the call of the performOperation() method of the CoreCompo-
nent parent class. This encloses almost all the inherited functions belonging to thermal
component. Firstly, it recalls the getTemperature() method of the sensor, component
described in Sec. 4.1, in order to recover the temperature measurements. Then, if
the temperature values are declared as valid, the control algorithm is executed. The
validity is checked before by the sensor doChildOperation() method. This is shown in
the next section. Here, the getState() method is called. It compares the temperature
measurements with the operational and non operational limits. These parameters, as
mentioned at the beginning of this section, are initialized in the constructor and are
customizable for each component in any moment independently with respect to the
others. As result, the thermal component state is here defined. The function check-
Limits() is then called to do a check exploiting the monitoring functions provided by
the FSFW. Consequently, the GetHeaterRequest() method is executed. Similarly to
the previous function, it compares the temperature measurements with the operational

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 42

Marco Modè – Master thesis

and non operational ranges in order to compute the heater request. The limits defined
in the design rule thus the decision of switching on or off the heaters and redundancies.
The heater request is then returned to the thermal component routine.

performOperation()

IF heater exists

IF redundant
heater exists

performOperation()

HEATER

REDUNDANT
HEATER

Heater component
methods

performOperation()CORE
COMPONENT

yesno

yesno

IF heating

set() clear()

yes no

IF dual

set() clear()

yes no

Heater component
methods

RETURN
heater request

Figure 15: Thermal component - performOperation() method flowchart.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 43

Marco Modè – Master thesis

The third step consists of defining of the heater actions which are then executed
at the beginning of the next loop, exploiting the power switcher. Whether or not
it is requested to heat, different actions are ordered to the heater. These actions
are executed through the methods set() and clear() of the heater component. An
additional possibility is included: it can be set, with the dual mode, to provide the
heating with both heater and redundancies switched on. This can be exploited in case
a faster heating is required.
In the end, the method returns the heater request which has been computed within
the loop. It could be exploited by the controller component. The methods which have
been not discussed yet are executed in other parts of the software. They support and
monitor the control loop.

4.4 Thermal controller

The Thermal controller is the main class, inherited from the controller base class,
that exploits all the tasks and building blocks described above in order to obtain the
required objectives. It inherits from the classes represented in Fig. 16. As already
mentioned, the ControllerBase class provided by the FSFW is a lightweight template
which implement some basic functionality. Other functionalities are included through
inheritance of some common interfaces already seen in the previous components.
The initialize() method is employed to support the initialization of the objects and to
define the starting mode and sub-mode of the controller. They are defined respectively
as MODE_NORMAL and HEATER_REDUNDANCY. It means that the controller
is in a normal operative mode and the redundancy is expected for the equipment. In
order to support the mode management, the checkModeCommand() and the startTran-
sition() methods are developed.
The performOperation() method of this component is the main method of the whole
section. It encloses the execution of all the routines described above. Before describing
the method, it is remarked that all the classes designed within the thermal controller
are instantiated in this component. It means that all the sensors, heaters, redundancies
and thermal components selected in the design are here defined and initialized with
their own set of parameters. As mentioned, the thermal component is not a "physical"
equipment. It represents a spot to control thermally which is associated with dedi-
cated real sensors, heaters and redundancies. All these components are stored in lists
of objects exploiting the std::list routine of C++. It helps to organize the software
objects and to shorten the code. This structure respects the requirement of flexibil-
ity related to the software development. Indeed, any number and type of component
could be added easily and in any moment without affecting the controller behaviour.
All the parameters, related to the components instantiated, are initialized through the
parametrized constructor of this controller component. Two data sets are defined for
this component: one for the sensor data and one other for the thermal component
data. These spaces are used to manage the periodic data used by the code and to
communicate with the data pool. The temperature data are transferred from the data
pool to the sensor data set.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 44

Marco Modè – Master thesis

Controller

This is the controller
component developed for
this project.

HasHealthIF
It provides means for
convenient management of
the health state of a
component.

HasModesIF
It provides external access
to a component’s mode.
In principle, a MODE_OFF
and a MODE_ON, as well as
SUBMODE_NONE are
provided by default.

ExecutableObjectIF
The interface provides a
method to execute objects within
a task. The performOperation
method, that is required by the
interface is executed cyclically
within a task context.

HasReturnvaluesIF
Interface which defines the
template for the methods
which return values as
output.

SystemObject
Class of the FSFW which
automates the insertion into
the ObjectManager and the
management of the object ID.

ControllerBase

initialize()

handleCommandMessage()

performControlOperation()

checkModeCommand()

startTransition()

performOperation()

Parent class of the controller provided
by the FSFW. The methods listed
above are inherited by the child class.

Figure 16: Thermal controller parent classes.

The performOperation() method has the structure defined in Fig. 17. Firstly, for
each sensor instantiated, the performHealthOp() method is called. It is inherited from
the FSFW temperature sensor component. It does some basic task of command queue
handling. In the second part of the function, the own sperformOperation() method
of the FSFW ControllerBase class is called. It does some basic task of command
handling as well. As already mentioned, the controller is required to perform its work
autonomously with respect to the ground station. Therefore, it should not handle
any command in normal conditions. The next step is the call of performOperation()
method for each sensor component. The function is already explained in Sec. 4.1.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 45

Marco Modè – Master thesis

It recovers the temperature measurement and it checks the validity of these values
through the doChildOperation() method. The data are handled by the sensor data set.
As last step, the performOperation() method of the thermal component is called. Its
working and objectives are already clarified in Sec. 4.3. It implements the control logic
independently on each part of the satellite. The data collected in this routine are stored
in the component data set. As mentioned in Sec. 3.1, this loop is executed periodically
with a time interval of 3.2 seconds. This value is selected in order to synchronize the
execution of the controller component with the device handler component. This is
done to avoid problems during the reading of the measurements and the transfer of
these data.

performHealthOp()

performOperation()

performOperation()

performOperation()

for each
SENSOR

for each
SENSOR

for each
COMPONENT

SENSOR

SENSOR

CONTROLLER
BASE

COMPONENT

sensor
data

component
data

Figure 17: Thermal controller - performOperation() method flowchart.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 46

Marco Modè – Master thesis

4.5 Power Switcher

This is a particular component which is developed separately to assist the controller
tasks. As already mentioned, when the heaters are commanded to switch on/off, the
power switcher steps in and implement this action, communicating with the heater
board through the device handler.
The heater board, as stated before, is an Arduino Micro. It has 12 switches, all
switched off at the beginning. Each switch is described by one number between 1 and
12. Writing one number between 1 to 12, the correspondent switch is turned on. If
I want to turn it off, I need to rewrite the same number. If it is written something
which is not a number between 1 and 12, an error message is returned. In this case,
the numbers are communicated through the interface with a simple ASCII format.
The initialization of the interface of the device handler has the same format of the
sensor device handler. The only difference is that the communication is flowing on the
opposite way. Therefore, instead of the routine read(), the function write() is exploited
to send the switch commands. The power switcher is designed in order to know the
switch states and update them after each action performed. They are stored in the
data pool such that they can always be accessible.
The structure of this component is represented in Fig. 18.

PowerSwitcher

This is the child of the Power
Switcher class developed for
this project.

PowerSwitchIF

This interface defines a
connection to a device that is
capable of turning on and off
switches of devices identified
by a switch ID.

HasReturnvaluesIF
Interface which defines the
template for the methods
which return values as
output.

PowerSwitcher

sendSwitchCommand()

sendFuseOnCommand()

getSwitchState()

getFuseState()

getSwitchDelayMs()
Parent class of the power switcher
provided by the FSFW. The abstract
methods listed above must be
implemented in the child class.

Figure 18: Power Switcher parent classes.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 47

Marco Modè – Master thesis

4.6 Software development and test plan

The development and testing of the thermal controller software component has a plan
similar to the device handler (Sec. 3.5). It is resumed in the following steps:

1. Analysis of the framework components and the functionalities provided. Writing
of the code directly within the FSFW, component by component;

2. Test the controller reading of measurement data which are saved in the data pool
by the device handler;

3. Test the execution of all the functionalities of the controller components;

4. Development of the power switcher component and integration within the code;

5. Test of the whole integrated software component within the FSFW

6. Integration with the device handler component and test of the whole thermal
control software within the FSFW employing the STUDIO ground system set-
up;

7. Placement of the actual temperature sensors and heaters on STUDIO telescope,
located at IRS clean room, and integration of the system toward a fully-operational
system.

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 48

Marco Modè – Master thesis

21/12/2021 – 4 THERMAL CONTROLLER IMPLEMENTATION 49

Marco Modè – Master thesis

5 Tests and results

In this section, the tests planned and performed are described. The main criticalities
encountered are here discussed and the solutions adopted are presented. The tests for
the device handler and the controller component are described in two separate sections.
It is remarked again that the device handler developed is related to the sensor board.
The heater device handler is not completed yet, because the power switcher shall be
concluded before and it’s not responsibility of this work.

5.1 Device handler

The strategy for the development of this component with the related tests is presented
in Sec. 3.5. The main criticalities are encountered in this part. They could be resumed
in the following points, which are then extended here below:

• initialization of the interface;

• reading of the sensor data from the Arduino board with the test code out of the
framework;

• reading of the sensor data from the Arduino board integrated with the FSFW.

The first problem discussed is related to the complexity of initialization of Linux serial
ports. This includes the complexity of dealing with Linux environment and Arduino
hardware. A key point is the definition of the parameters VMIN and VTIME de-
scribed in Table 7. They are designed in order to control blocking of the read() call.
In order to test the communication, the computer is connected to the Sensor board.
The set-up is presented in Fig. 19. In Fig. 20, the Sensor board with the Arduino
Micro is shown in detail. In order to simplify these initial tests, only the first tem-
perature board with two temperature sensors is connected. This allows to reduce the
complexity. The demonstration of a correct reading for a couple of sensors is enough
to validate initially the software. Adding other sensors does not change the behaviour
of the communication. For this reason, this same set-up is exploited also for the next
tests until the end in which all the real components are integrated.

After the successful initialization of the communication interface, the device handler
test code is written in Eclipse IDE environment. This leads to the second criticality
described, which revealed to be the most difficult to solve. After a long period of tests,
the code was reading a corrupted structure of data. It turned out that the most prob-
able source of these errors was due to the software developed for the Arduino sensor
board (Sec. 3.3.1). This problem revealed to be the biggest because it was a bottleneck
for the progress of the whole project. Indeed, without having the possibility of reading
correctly the data, it was impossible to complete the device handler and, even worse, to
test the controller. Due to the delays in the whole mission planning, this situation has
been tackled within this project even if it should have been not part of this work. As

21/12/2021 – 5 TESTS AND RESULTS 50

Marco Modè – Master thesis

pointed out by the Arduino software developer in [12], this version of the code has not
completed yet the validation. Furthermore, the missing integration with the STUDIO
hardware could have revealed the need to modify the software. After a deep analysis
of the Arduino software, in particular with respect to the structure of data sent as
serial output, many errors are found related to the storage of the measurement data in
this structure and to the initialization of the default array of data for the empty ports.
The sensor code is then fixed and improved in this project. It has been tested as well
the long-term stability of the serial output. These tests on the device handler code has
led, therefore, to the demonstration of the Arduino sensor board code. It still needs
the validation in a simulated environment after the integration with the real prototype.

The third main criticality occurred during the tests of the device handler within the
FSFW environment. Basically, the reading resulted perfect for the test code but it was
always corrupted for the device handler component of the framework. This problem is
related to the particular tasks execution within the framework. It is discussed in the
polling sequence paragraph of Sec. 3.1. The reading with the test code in the Eclipse
environment happens automatically in a synchronous way: the reading is done period-
ically, in a while() loop, coupled with the time period of the serial output. Contrarily,
the reading within the FSFW is executed with a fixed period selected by the developer.
It is uncoupled with respect to the Arduino serial output. The first solution tried is a
tuning of the time periods of task execution. This is done experimentally by tests and
it resulted in an improvement of the reading, which presented less corrupted values,
but it was still wrong. The final choice for the execution period is described in Sec. 3.1.
A logical solution is to increase the time of read() call to multiple of the serial output
time period, to allow a sort of synchronization between sensors and the device handler.
The second solution tried, which successfully led to fix this problem, is a change of the
structure of the buffer array for data reading. As already explained in Sec. 3.3.3, it is
chosen to extend the reading to an amount of bytes correspondent to three packets of
data. It was tested before the reading with a total of bytes equal to two packets of
data, nevertheless errors were still present. The objective of this modify is to allow the
device handler to read at least one full packet of measurement data, from the beginning
to the end. Indeed, the criticality was that the device handler wasn’t succeeding to
start the reading from the first byte of the serial output. Since the device handler is
interested just in one whole packet of measurement data, sent periodically, a control
loop is performed at the end of the communication interface component, in order to
satisfy the device handler. The control loop is represented above in Fig. 9.

At this point, the first five steps of the plan described in Sec. 3.5 are completed.
However, the set-up with STUDIO ground system and telescope, is not ready yet. It is
planned to be done soon, when the thermal simulation is finalized and the equipment
choice is completed. For matter of time, the results of these tests are not included in
this document.

21/12/2021 – 5 TESTS AND RESULTS 51

Marco Modè – Master thesis

Figure 19: Sensor board set-up.

Figure 20: Sensor board.

21/12/2021 – 5 TESTS AND RESULTS 52

Marco Modè – Master thesis

5.2 Thermal controller

The steps for the thermal controller development with the associated tests are described
in Sec. 4.6. This part of the work presented less problems during the tests even if the
development of the code has been far more complex. The main problem presented
here is that the tests on the controller has been delayed due to the errors on the
device handler. After solving this criticality, as described in the section above, all the
components exploited to build the thermal controller, along with the device handler
component, are integrated within the FSFW and the whole execution is tested. Apart
of minor errors, this test succeeded.
The power switcher though is built independently on this work. It is remarked that
the firmware of its interface board is under development, and that is why the basic
functionality of switching on/off is only tested within this project. These tests are
performed through a digital voltmeter[21] as represented in Fig. 18. A detailed image
of the heater board and of the switch board is given respectively in Fig. 22 and Fig. 23.
Further tests should be done regarding the power switcher integrated with the thermal
controller component. The robustness of the thermal control with respect to different
conditions must be validated. Tests with the real equipment, heating the sensors to
different temperatures, shall be performed.
As already mentioned in the section above, the final validation with STUDIO ground
system and telescope is planned to be done soon but the results will be not included
in this document for matter of time.

21/12/2021 – 5 TESTS AND RESULTS 53

Marco Modè – Master thesis

Figure 21: Power switcher set-up.

Figure 22: Heater board.

21/12/2021 – 5 TESTS AND RESULTS 54

Marco Modè – Master thesis

Figure 23: Switch board.

21/12/2021 – 5 TESTS AND RESULTS 55

Marco Modè – Master thesis

21/12/2021 – 5 TESTS AND RESULTS 56

Marco Modè – Master thesis

6 Conclusion

The main contribution of this work is the development of the thermal control software
for the balloon-borne telescope on STUDIO prototype [1]. The whole work has been
based on an existing component-based software framework: the Flight Software Frame-
work. It is designed and built in order to satisfy the requirements listed in Sec. 2.3.1.
The result can be resumed in the development of two main software components:

• the Device Handler;

• the Thermal Controller.

Additionally, the software of the Arduino sensor board has been corrected and im-
proved in this work. It was a bottleneck for the proceeding of the tests, therefore it
required to be fixed within this project.
The OOP within the FSFW is quite complex and difficult to comprehend. The frame-
work is huge and it takes a lot of time to obtain a sufficient understanding of it, before
starting to work. Furthermore, an high level of competences related to hardware and
to software development were needed for this work.
The set-up of the communication interface, in particular, revealed to be the most criti-
cal part of this work. This is due to the complexity of creating a stable communication
link between two different devices. This is usual for the set-up of new hardware com-
munication interfaces. Anyway, this work allows to address the hardware dependency
only on this specific communication interface component. In this way, the next mis-
sions could re-use the same software for the thermal control system, just adapting it
to new requirements and hardware. When the communication interface for a specific
hardware is set-up, within the FSFW, it becomes very easy to re-use it for other de-
vices, as for the heater board in this project.
The programming skills achieved during this work are transferable on software devel-
opment of generic aerospace systems and more. Therefore, the knowledge of space
systems engineering could be combined with these software engineering skills to model
completely a space system program, as for the thermal control system in this case.

6.1 Future work

In this paragraph, a few directions for the development and final implementation of
this work are given. They are resumed in the following list:

• the thermal simulation of the prototype shall be finalized; consequently, the
number and placement of sensors and heaters shall be selected and implemented
in the thermal controller component;

• the hardware must be validated by means of tests in the thermal vacuum cham-
ber;

• the complete power switcher component, after the development of the firmware
of its interface board, shall be integrated within the whole software and tested;

21/12/2021 – 6 CONCLUSION 57

Marco Modè – Master thesis

• all the software components shall be integrated with the real hardware and val-
idated with STUDIO ground system and telescope located at IRS clean room.
These tests are already planned.

The operations needed to fully validate the software are therefore not much. Thanks to
the software design choices, the implementation of final equipment within the thermal
controller component is quick and easy. The final tests on the hardware and integrated
system will identify the last problems or criticalities to work on, in order to improve
and validate the software.

21/12/2021 – 6 CONCLUSION 58

Marco Modè – Master thesis

21/12/2021 – 6 CONCLUSION 59

References

[1] I. o. S. S. University of Stuttgart. European Stratospheric Balloon Observatory -
Design Study. Online; accessed 13 October 2021.

[2] U. Stuttgart. Institut fur Raumfahrtsysteme (IRS) - Universitat Stuttgart. On-
line; accessed 25 October 2021.

[3] J. L. Ortiz Moreno, T. Mueller, R. Duffard, et al. “ORISON, a stratospheric
project”. In: 41st COSPAR Scientific Assembly. Vol. 41. July 2016, PSB.1-31–
16.

[4] SSC. Swedish Space Corporation: Home - SSC. Online; accessed 25 October 2021.
[5] U. Tubingen. Institut fur Astronomie und Astrophysik. Online; accessed 25 Oc-

tober 2021.
[6] M. P. Institute. Max Planck Institute for extraterrestrial Physics: Home. Online;

accessed 25 October 2021.
[7] I. de Astrofisica de Andalucia. Instituto de Astrofisica de Andalucia - CSIC.

Online; accessed 25 October 2021.
[8] A. Pahler, M. Ångermann, J. Barnstedt, et al. “Status of the STUDIO UV

balloon mission and platform”. In: Ground-based and Airborne Telescopes VIII.
Vol. 11445. International Society for Optics and Photonics. 2020, 114451Y.

[9] B. Bätz. “Design and implementation of a framework for spacecraft flight soft-
ware”. In: (2020).

[10] ESBO-DS. Thermal Control Simulations. Last version 20 June 2021. 2021.
[11] I. Aero. ESATAN-TMS thermal modelling suite. Online; accessed 14 October

2021.
[12] L. Willwand. “Design and setup of an in-situ measurement system for environ-

mental and structural conditions during a scientific balloon mission”. In: (2020).
[13] L. TECHNOLOGY. LTC2983. Online; accessed 27 October 2021.
[14] Baumer. PT1000. Online; accessed 27 October 2021.
[15] BOSCH. BME280. Online; accessed 27 October 2021.
[16] BOSCH. BNO055. Online; accessed 27 October 2021.
[17] Arduino. Arduino Micro. Online; accessed 27 October 2021.
[18] OMEGA. Polyimide Insulated Flexible Heaters. Online; accessed 27 October

2021.
[19] W. A. Campbell Jr, R. S. Marriott, and J. J. Park. “Outgassing data for selecting

spacecraft materials”. In: (1984).
[20] mbedded.ninja. Linux Serial Ports Using C/C++. Online; accessed 9 November

2021.
[21] Wikipedia. Voltmeter. Online; accessed 19 December 2021.

xi

	Nomenclature
	Introduction
	ESBO-DS
	STUDIO

	Software development
	Software Engineering tools and methods
	Object-Oriented Programming
	Components
	Frameworks
	Abstraction and Generalisation

	The Flight Software Framework
	FSFW Components
	FSFW Interfaces
	FSFW Core

	Thesis objectives and motivation
	Outline

	Thermal Controller design
	Thermal analysis results
	Components choice and philosophy
	Sensors
	Heaters
	Thermal Control System model

	Architecture of the software
	Requirements
	Software components description
	Flowchart

	Device handler implementation
	FSFW core concepts
	Cookie
	Communication interface
	Arduino sensor board code
	Interface initialization
	Device communication

	Device handler
	Software development and test plan

	Thermal Controller implementation
	Sensor
	Heater
	Thermal component
	Thermal controller
	Power Switcher
	Software development and test plan

	Tests and results
	Device handler
	Thermal controller

	Conclusion
	Future work

	References

