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1. Introduction

Personality represents the individual di�erences
in behavior, emotion, and cognition that are a
consequence of genetics and environmental in-
�uences. Personality psychology has developed
a series of attributes, called traits, that success-
fully sum up these individual di�erences. The
most in�uential and widely accepted paradigm
in personality research is the Big Five model
[1] which identi�es �ve stable traits: Extraver-
sion, Agreeableness, Conscientiousness, Emo-
tional Stability, and Openness. Personality
traits are traditionally assessed using scaled self-
reported questionnaires, which are intrinsically
subjective and prone to bias. For this reason,
in recent years, the interest for an automatic as-
sessment of personality has emerged. Promis-
ing opportunities for objective personality in-
ference, are found in brain imaging techniques
such as magnetic resonance imaging (MRI) and
electroencephalography (EEG). Most of the neu-
roscienti�c research has however concentrated
on trying to �nd the biological bases of per-
sonality and few attempts have been made to
develop practical methods for its actual as-
sessment. Concerning personality classi�cation,
EEG signals seem to be the optimal choice com-

pared to other techniques, due mainly to their
high temporal resolution and especially to the
low cost and little invasive instrumentation re-
quired for their acquisition. Literature suggests
that, rather than from EEG baseline activity,
personality might be inferred from situation-
dependent responsiveness. Thus, recent re-
search has concentrated on personality assess-
ment starting from EEG signals recorded in re-
sponse to di�erent stimuli, such as videos induc-
ing a�ective emotions. Speci�cally, most studies
available in the literature have approached the
EEG-based classi�cation task using traditional
processing and feature extraction methods. The
main limitation of this approach is related to the
need of a priori selecting the features to be em-
ployed for classi�cation. In this scenario, deep
learning methods, such as convolutional neural
networks (CNN), could be adopted in order to
automatically identify the more representative
features, even starting from raw signals. To the
best of our knowledge, literature lacks studies
focused on deep learning techniques on EEG sig-
nals for the classi�cation of personality.
The purpose of the present work is to develop a
deep learning-based binary personality classi�-
cation method starting from EEG data collected
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in the public dataset AMIGOS [2]. EEGNet [3],
a state-of-the-art CNN model designed for EEG
decoding, was adopted and 5 independent EEG-
Net models were trained, one for each trait. The
optimal structure and hyperparameters of the
model were validated and di�erent levels of pre-
processing of the EEG data are tested to eval-
uate the model's performance on noisy signals.
Finally, an evaluation of the automatically ex-
tracted features was performed.

2. Materials and methods

2.1. AMIGOS dataset

For the present study, the public AMIGOS
dataset [2] was used. It provides EEG signals
acquired on 40 participants (male = 27, female
= 13, aged 21-40 years, mean age = 28.3), af-
ter stimulating their a�ective response through
selected videos, 16 short emotional videos with
duration of from 1 to 2 minutes, and 4 long
videos with duration from 15 to 20 minutes. The
EEG signals were recorded with the EPOC neu-
roheadset (Emotiv, U.S.A), using 14 channels
and a sampling rate of 128 Hz. Personality traits
were assessed through an online questionnaire
�lled in by each participant. The considered
personality model was the Big-Five personality
traits model while the form used was the Big-
Five Marker Scale (BFMS) questionnaire. For
each of the �ve personality classes (i.e., Extro-
version (E), Agreeableness (A), Conscientious-
ness (C), Emotional Stability (ES) and Open-
ness (O)), a 1 to 7 score was attributed to each
trait.

2.2. Data processing

2.2.1 EEG pre-processing

The present work was focused on the short-video
data. Out of the 40 subjects, 2 were discarded
due to missing self-assessed personality informa-
tion. To test the model performances on dif-
ferent types of input data, three datasets (D1,
D2 and D3) were obtained by applying di�erent
pre-processing approaches on the EEG traces.
For D1, a full pre-processing pipeline was ap-
plied. Speci�cally, EEG traces were �rstly band-
pass �ltered between 0.1 and 45 Hz. Then, bad
channels were visually inspected and removed.
Eye blinks and other artefactual sources were
removed by means of the Independent Com-

Class Personality Trait

(E) (A) (C) (ES) (O)

0 21 19 17 18 18
1 17 19 21 20 20

Table 1: Binary class counts for each personality
trait.

ponent Analysis (ICA). Finally, the eliminated
channels were interpolated, and the signal was
re-referenced to the common average. On D2,
only bandpass �ltering in the frequency range
0.1 - 45 Hz was applied. D3, instead, was band-
pass �ltered between 4 and 45 Hz, to remove
the Delta band and get rid of most of the low-
frequency noise. Both D2 and D3 were stan-
dardized by subtracting the mean and scaling to
unit variance. These two datasets were poorly
pre-processed in order to test the model perfor-
mance on raw data.

2.2.2 EEG segmentation

Each EEG trial refers to an EEG signal acquired
during the presentation of a single short video.
To be able to train the CNN model, all tri-
als were segmented with sliding windows of 3
seconds length with no overlap. This kind of
cropped strategy has been found to be the most
e�ective for CNN-EEG applications since it al-
lows to produce more training samples and it
forces the network to learn more generalized fea-
tures.

2.2.3 Personality binarization

A binarization of the personality trait score was
performed using the mean as separating thresh-
old to form two classes: class 0, encompassing
a low expression of the trait below threshold,
and class 1, encompassing a high expression of
the trait above threshold. The resulting classes
counts are reported in Table 1. Agreeableness
is the only trait that results perfectly balanced
between the two classes, while the other classes
present a slight imbalance.

2.3. EEGNeet model

The standard structure of EEGNet [3] is orga-
nized in three main blocks (Figure 1):
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Figure 1: EEGNet standard structure.

1. Nf temporal �lters of size (1, L) are con-
volved with the EEG traces, where L is the
time length of the �lter. Afterwards, the
output of each temporal �lter is convolved
in space with D depthwise convolution �l-
ters of size (C, 1), where C is the number of
channels of the EEG signal. Finally, batch
normalization is applied before the expo-
nential linear unit (ELU) nonlinearity ac-
tivation. Dropout is also enabled to regu-
larize the model. Finally, an average pool-
ing layer is applied in order to reduce the
sampling rate of the signal.

2. A depthwise convolution of size (1, M),
where M is the length of the �lter, followed
by Np pointwise convolutions of size (1, 1)
are performed. As in block 1, batch normal-
ization, ELU activation, dropout and aver-
age pooling are then performed.

3. A classi�cation softmax layer with N units,
corresponding to the number of classes, is
applied.

The default number of temporal �lters Nf is 8
and the number of spatial �lters per feature map
D is 2. The input shape (1, C, S) of the model
was set to �t the data, where C = 14 is the num-
ber of EEG channels and S = 384 is the number
of samples per window (3 seconds window x 128
Hz sampling rate).

2.4. Model validation

In order to �nd the optimal model con�guration,
the EEG and personality datasets were split into
training, validation and test sets with a 70-15-15
proportion, respectively. Five random strati�ed
splits, one for each personality trait, were im-
plemented to keep a balanced representation of
all the subjects within the sets. Model tuning

was carried out on the training set and tested
on the validation set, with the test set held as a
holdout set for the classi�cation task.

2.4.1 Hyperparameter tuning

The hyperparameters of the network were tuned
using Keras-Tuner with the hyperband algo-
rithm by maximizing the validation accuracy.
All three datasets were used, while the person-
ality trait used was Agreeableness because of its
perfectly balanced classes. The following hyper-
parameters and value ranges were chosen:
� Dropout rate. Values between 0 and 0.7,
with a step of 0.1, were evaluated.

� Dropout type. Choice between the two pos-
sible dropout layers: �Dropout� and �Spa-
tialDropout2D�.

� Learning rate. Values between 10-3 and 10-
5 with log sampling, were considered.

For the batch size, i.e., the number of EEG win-
dows to pass to the network at once, practical
evaluations were made by testing mini batches
of 16, 32, 64, 128, 256 and 512 samples on D3.

2.4.2 Structure optimization

To test the optimal structure, the hyperband al-
gorithm was applied on dataset D3, for the tem-
poral and spatial �lters parameters after �xing
the hyperparameters to the optimal found in the
previous step. The search space de�ned was:
� Temporal �lters. Ranging from 2 to 12.
� Spatial �lters. Ranging from 1 to 8.

Afterwards, a simple grid search was performed
by �xing the number of spatial �lters to 2 and
testing the performance of the model by varying
the number of temporal �lters from 1 to 12 in or-
der to compare the performance of the standard
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structure with other similar structures.

2.5. Training strategy

For classi�cation, the models were trained using
the labeled EEG 3-second windows while a �ve-
fold cross-validation strategy for assessing the
performance and for splitting the dataset was
performed. Speci�cally, a window-wise classi-
�cation was implemented. The model classi-
�es single EEG windows, and its performance
is evaluated based on how well it can predict
the class of the windows.
All models were trained on an NVIDIA GeForce
RTX 2070 GPU in Tensor�ow for 1000 epochs
with an early stopping rule with patience of
20 epochs on the validation loss. The model
weights that produced the best validation accu-
racy were saved and used to evaluate the mod-
els on the corresponding test set. Each EEGNet
model was �t using the Adam optimizer.

2.6. Feature interpretability

The features extracted by the model were ana-
lyzed by visualizing: i) the frequency bands ex-
tracted by the temporal �lters and ii) the to-
pographical maps of the spatial �lters weights.
For this task, EEGNet models with 4 temporal
�lters and 2 spatial �lters were chosen for an
easier interpretation. The most relevant tempo-
ral �lters were identi�ed with an ablation study:
di�erent �lters were deactivated one at a time
and the resulting model was tested in its perfor-
mance. The �lters that alone accounted for a an
accuracy and F1 score above chance classi�ca-
tion, were considered as relevant.
Finally, an attribution algorithm, DeepLIFT [4],
was applied on the best performing standard
EEGNet model. DeepLIFT assigns a contribu-
tion value to each input EEG channel, based on
how much that channel a�ects the �nal predic-
tion. The channels with highest attribution val-
ues should be the ones identifying the brain ar-
eas that most represent the speci�c personality
trait.

3. Results and discussion

3.1. Model validation

3.1.1 Hyperparameter tuning

For the dropout rate, the highest average ac-
curacy was obtained on all three datasets for

dropout values of 0.1. For the dropout type, the
standard �Dropout� layer was selected unani-
mously for datasets D2 and D3, while for dataset
D1, the �SpatialDropout2D� layer was selected
about half of the times. The learning rate as-
sumes several di�erent values over the trials, but
always in the order of 10−5. As for the batch
size, it was found that the higher batch sizes of
256 and 512 samples converged to a more stable
model and had lower variance in classi�cation
accuracy compared to lower batch sizes (Figure
2). This is most likely due to the fact that the
EEG data of D3 are noisy, and the cropped win-
dows are small. A batch size of 256 was chosen
since it is both stable and achieves better accu-
racy than the model trained with a batch size
of 512. The other hyperparameters chosen were
a dropout rate of 0.1, dropout type �Dropout�,
and a learning rate of 0.0001, which maintains
the 10−5 order.

3.1.2 Structure optimization

The �rst search among temporal �lters in the
range 2-12 and spatial �lters in the range 1-8,
showed that the models with the highest possible
number of �lters obtained the highest average
accuracy. This result was expected since increas-
ing the number of �lters increases the number of
trainable parameters and thus, the complexity of
the model and its ability to �t the input data.
However, increasing the number of parameters
also increases the computational cost.
The second grid search performed by �xing the
number of spatial �lters to 2, showed that the
performance tends to increases with the increase
of the temporal �lters until a plateau is reached.
As such, the performance of a model with 4 tem-
poral �lters is comparable to the one with 8 (i.e.,
standard EEGNet structure) or more temporal
�lters as it can be seen in Figure 3.
Since the performance of EEGNet with num-
ber of temporal �lters higher than 8 does not
improve drastically, the standard structure was
chosen for the �nal classi�cation analysis.

3.2. Classi�cation

Average �ve-fold test accuracy (Acc) and F1 re-
sults are reported in Table 2. The best per-
forming models were the ones trained on dataset
D3. The traits with higher accuracy are Agree-
ableness (0.93) and Extraversion (0.92) while the
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Figure 2: Training and validation curves comparison for batch sizes of 16, 64, 256 and 512.

Trait D1 D2 D3

Acc F1 Acc F1 Acc F1

Extraversion 0.76 0.75 0.86 0.86 0.92 0.91

Agreeableness 0.76 0.76 0.89 0.91 0.93 0.93

Conscientiousness 0.79 0.82 0.87 0.89 0.90 0.91

Emotional

Stability
0.78 0.80 0.89 0.89 0.89 0.90

Openness 0.77 0.78 0.83 0.84 0.89 0.89

Table 2: Classi�cation results for EEGNet-8,2.

rest of the traits report slightly lower accuracies.
Interestingly, for D1, the pre-processed dataset,
the accuracies are remarkably lower, in the range
between 0.75 and 0.79. Compared to another
study [5] on the same AMIGOS dataset, which
classi�ed personality by using brain connectivity
features, the present study reports higher accu-
racies for all traits.

3.3. Feature interpretability

By the deactivation procedure, the temporal �l-
ters that resulted most relevant for personality
classi�cation are reported in Table 3. Two tem-
poral �lters for Extraversion, one for Agreeable-
ness and one for Emotional Stability were iden-
ti�ed as relevant. No relevant �lters were iden-

Figure 3: F1 score performance of EEGNet mod-
els with �xed D = 2 and varying number of Nf .

ti�ed for Conscientiousness and Openness. The
interpretation of the frequency response of the
temporal �lters and of the topographic maps of
the two corresponding spatial �lter resulted dif-
�cult. The temporal �lters do not extract clear
frequency bands and, albeit some observed be-
havior was in line with some personality-EEG
correlation studies, drawing a de�nitive conclu-
sion on the most relevant features for personality
prediction is not trivial.
The attribution maps obtained with DeepLIFT
[4], averaged for each trait over all subjects, are
reported in Figure 4. It can be observed that the
frontal area has high positive (red color) or neg-
ative (blue color) contribution for the prediction
of all traits. This result is in line with neurosci-
enti�c studies on personality relating prefrontal
brain activity to personality. Another relevant
observation regards the occipital area that re-
sults as a negative contributor for the predic-
tion of all traits. A possible explanation could
be found in the fact that during the experimen-
tal procedure, subjects are intent in watching
videos. Since the occipital lobe is associated to
the visual cortex, activity is detected from the
occipital electrodes and the network might have
automatically learned to ignore its contribution
as it is not relevant to personality.

4. Conclusions

In this work personality traits were classi�ed
starting from EEG signals. It was demon-
strated that deep learning EEG-based classi�-
cation can be a valid alternative to traditional
classi�cation methods based on manual feature
extraction strategies as the main advantage of
this approach stands in the ability of auto-
matically extracting features. The state-of-the-
art CNN-EEG model EEGNet was successfully
employed for the classi�cation of personality
traits, obtaining the best classi�cation results
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Extraversion Agreeableness Emotional Stability OpennessConscientiousness

Figure 4: Average attribution maps for the �ve personality traits

Trait Active �lter Acc F1

Extraversion

All 0.898 0.884
1 0.673 0.658
2 0.617 0.648

Agreeableness
All 0.887 0.891
4 0.663 0.708

Emotional

Stability

All 0.882 0.888
2 0.687 0.757

Table 3: Relevant �lters identi�ed by the abla-
tion study on EEGNet-4,2 and their correspond-
ing baseline performance with all �lters active.

on the EEG traces of D3, on which only min-
imal pre-processing was performed, demonstrat-
ing that DL-based models trained on raw or min-
imally pre-processed signals can perform better
than models trained on fully pre-processed ones.
Moreover, the best structure and hyperparame-
ters of the model were identi�ed for the personal-
ity classi�cation purpose. In terms of pure clas-
si�cation performance, EEGNet outperformed
other comparable personality classi�cation stud-
ies found in literature. Speci�cally, the best ac-
curacies were obtained for Agreeableness (0.93)
and Extraversion (0.92). Finally, it was shown
how the learned �lters can be analyzed for fea-
ture interpretability purposes.
A limitation of this study resides in the bi-
nary classi�cation formulation. As future step, a
multi-class classi�er could be implemented. The
feature interpretability task remains however the
main limitation. Despite EEGNet allowing to
isolate relevant �lters and areas for the classi-
�cation of the di�erent traits, an association of
speci�c EEG-based features to personality is not
trivial. The temporal �lters in fact, do not ex-
tract clear-cut frequency bands that could be
directly associated to the trait under examina-
tion based on the �lter's contribution to classi-

�cation. For this reason, further investigation
looking into more robust feature interpretability
methods is needed.
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