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Abstract

The space sector is undergoing rapid growth, especially in near-Earth orbits,
promising unprecedented benefits through integrated space-based services. At the
same time, CubeSats are reshaping deep space by diversifying scientific objectives
and complementing traditional missions. Profiting from this favorable environment,
a surge in deep-space missions dedicated to the exploration and exploitation of the
Solar System is on the horizon. Within this context, small celestial bodies, such as
asteroids and comets, emerge as intriguing targets due to their abundance, proximity
to Earth’s orbit, ancient origins, importance for planetary defense, potential for
resource utilization, and the quest for extraterrestrial life. However, the operation of
a large fleet of spacecraft exploring these deep space bodies poses critical challenges
when approached with the current ground-based paradigm. Driven by the need for
real-time decision-making and cost-effective solutions, technological advancements
are gearing towards autonomous spacecraft operations. Within this context, artificial
intelligence enhancements on computer vision tasks are posed to enrich perception
and spatial comprehension of the surrounding environment, enabling intelligent
spacecraft to operate effortlessly and autonomously. Image segmentation and
visual-based navigation, in particular, are investigated in this manuscript using
neural networks and machine learning approaches. Data-driven image processing
options are also assessed for the future CubeSat mission Milani, which will visit
the Didymos binary system. Milani’s semi-autonomous vision-based capabilities
pave the way for adopting data-driven algorithms in deep space. Assessing the
performance of these techniques is as important as highlighting their drawbacks
and the challenges associated with their development, primarily related to the
availability of high-quality training data. The integration of artificial intelligence
and autonomous capabilities holds the potential to revolutionize our engagement
with minor bodies, shaping the future of space exploration.





Sommario

Il settore spaziale è in rapida crescita, soprattutto nelle basse orbite terrestri,
promettendo vantaggi senza precedenti attraverso servizi integrati. Allo stesso
tempo, i piccoli satelliti stanno rivoluzionando il nostro modo di esplorare lo
spazio profondo, diversificando gli obiettivi scientifici e complementando missioni
tradizionali. Approfittando di questo ambiente favorevole, si prospetta un’ondata
di missioni dedicate all’esplorazione e allo sfruttamento del sistema solare. In
questo contesto, piccoli corpi celesti, come asteroidi e comete, emergono come
intriganti obiettivi per la loro abbondanza, vicinanza all’orbita terrestre, antiche
origini, l’importanza per la difesa planetaria, potenziale sfruttamento delle risorse
e la ricerca di vita extraterrestre. Tuttavia, la gestione di una grande flotta di
veicoli spaziali pone sfide critiche se affrontate con l’attuale paradigma basato sulle
operazioni da terra. Spinti dalla necessità di un processo decisionale in tempo
reale e di soluzioni economicamente vantaggiose, i progressi tecnologici si stanno
orientando verso operazioni autonome dei veicoli spaziali. In questo contesto, i
miglioramenti dell’intelligenza artificiale nell’analisi delle immagini sono proposti per
arricchire la percezione e la comprensione dell’ambiente circostante, consentendo a
dei satelliti intelligenti di operare senza sforzo e in modo autonomo. In particolare,
la segmentazione delle immagini e la navigazione ottica, sono state investigate in
questo manoscritto utilizzando reti neurali e approcci di apprendimento automatico.
Algoritmi basati sui dati sono valutati anche per la futura missione Milani, un piccolo
satellite che visiterà il sistema binario Didymos. Le capacità semi-autonome di
Milani aprono la strada all’adozione di algoritmi basati sui dati nello spazio profondo.
Valutare le prestazioni di queste tecniche è importante quanto evidenziare i loro
svantaggi e le sfide associate al loro sviluppo, principalmente legate alla disponibilità
di dati di addestramento di alta qualità. L’integrazione tra intelligenza artificiale e
capacità autonome ha il potenziale di rivoluzionare il modo in cui interagiamo con
i corpi minori, plasmando il futuro dell’esplorazione spaziale.
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1

Introduction

“Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza”

“Consider your origins:
you were not made to live as brutes,
but to follow virtue and knowledge”

Dante Alighieri, Inferno XXVI

The space sector is experiencing flourishing growth, and integrated, space-based
services will soon benefit humanity at unprecedented levels. The momentum
characterizing the near-Earth space will also benefit outer space. Evidence is
mounting that the near future will be characterized by a large amount of deep-space
missions dedicated to the exploration and exploitation of the Solar System [1–7].

This expansion will be fueled by CubeSats, modular miniaturized spacecraft
made of several units, which are already revolutionizing the way current exploration
of the Solar System is made by diversifying and complementing the scientific
objectives of larger missions [1, 2]. Currently, most miniaturized spacecraft have
thus far been deployed into near-Earth orbits. However, a multitude of interplanetary
CubeSats will soon be employed for deep-space missions as well [2–4, 6, 7]. The
operation of a large fleet of spacecraft in deep space, however, challenges the
current assumptions for ground-based operations. This, coupled with limitations
during critical operations related to two-way communication delays and the push
to reduce costs, boosts the adoption of autonomous technologies.

In this context, small bodies, such as asteroids and comets, represent an exciting
playground for various reasons. Bodies such as near-Earth asteroid (NEA) are
characterized by orbital parameters close to those of Earth, making them accessible
targets even with low-cost and small platforms. As remnants of the ancient building
blocks from which our planets and other celestial objects formed, these bodies
provide insights into the origin of our cosmic neighborhood. Moreover, their study
offers invaluable information regarding potential threats to our planet, the prospect
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for extraction and utilization of extraterrestrial resources, and even the intriguing
possibility of life beyond Earth.

1.1 Context

In 1772, the German astronomer Johann Elert Bode published a formula, referred
to as the Titius-Bode law, that appeared to predict the orbits of all the known
planets (at the time Mercury, Venus, Earth, Mars, Jupiter, and Saturn) while also
anticipating the presence of a planet yet to be discovered between the orbits of Mars
and Jupiter [8]. The formula gained credibility in 1781 after the discovery of Uranus
by William Herschel in a position close to the predicted one. It also motivated the
formation in 1800 of a group of experienced astronomers led by the editor of the
German astronomical journal “journal Monatliche” (Monthly Correspondence) to
search for the missing planet. This group referred to itself as the “celestial police”
[8] and included the astronomer Giuseppe Piazzi, a catholic priest at the Academy
of Palermo, Sicily, who already on the 1st of January 1801 (before actually getting
invited to join), discovered a “star-like moving object”. Initially considered a comet,
the object exhibited bizarre behavior, moving slower than expected and with a
relatively uniform motion. In Piazzi’s words: “...it has occurred to me several times
that it might be something better than a comet” [8].

Piazzi published the discovery in the September issue of the Monthly Corre-
spondence in 1801, naming the body “Ceres Ferdinandea”; Ceres in honor of the
Roman goddess of agriculture, whose oldest temple was in Sicily, and Ferdinandea
in honor of Piazzi’s monarch and patron, King Ferdinand III of Sicily (the latter
name not being accepted by the scientific community). However, at the time
of publication, Ceres was too close to the Sun’s glare for other astronomers to
observe and would have become visible again towards the end of the year, lost in an
unpredictable position in the sky. Interested in this challenge, the mathematician
Carl Friedrich Gauss specifically developed an efficient orbit determination method
to predict Ceres’ reappearance in the sky for everyone to observe [8]. Based on
Gauss’s solution, Ceres was thus observed again at the end of 1801 in the expected
position, and the scientific community verified its discovery, proving the existence
of the missing planet.

As astronomers rushed to observe the missing planet, to much of their surprise,
they ended up discovering other similar bodies. It was then clear that a single
missing planet did not exist but rather a population of smaller and irregular objects
believed to be chunks of the original missing planet. These bodies were observed
from telescopes of the time to be similar to stars, yet distinguishable from them
due to their apparent motions, and similar to comets yet lacking typical cometary
features. To distinguish them from stars, planets, and comets, William Herschel
thus proposed to name them “asteroids”, meaning “star-like, star-shaped” in Greek
[8].

With the realization of the existence of a population of these bodies, our
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comprehension of the Solar System changed forever, transforming it into a vibrant
and complex dynamical system. In addition to the eight known planets, countless
smaller bodies orbit the Sun. From dust grains and small rocks with little gravity
to dwarf spherical-like planetoids, their population is estimated in the millions, with
new bodies being constantly discovered by survey missions, even beyond the Solar
System. Nowadays, bodies such as asteroids, comets, and dwarf planets are usually
classified together as minor bodies or small bodies [9] to differentiate them from
planets. This nomenclature will be used throughout the rest of this manuscript.

While comets have been observed for millennia with the naked eye (especially
when releasing gas and dust in the proximity of the Sun) and have been depicted in
the arts and folklore since generations [10], the history of asteroids observation has
just started since most of them are faint or small and are visible only for a short
amount of time, detectable only with the use of proper instrumentation.

(a) 67P seen from Earth. (b) 67P seen from the Rosetta spacecraft.

Figure 1.1: Image of the comet 67P/Churyumov–Gerasimenko seen from the Very Large
Telescope in 2014 (a) and from the Rosetta spacecraft in 2015 (b). Credits: ESA.

Given the significant constraints posed by Earth-based and space-based tele-
scopes, the investigation of these bodies in close proximity has remained a crucial
endeavor for space exploration. As technological advancements have made this
approach feasible, robotic spacecraft have been employed to approach these bodies,
utilizing either flyby or rendezvous strategies.

A flyby refers to a mission or trajectory in which the spacecraft passes close
to a celestial body or another object, typically at a high relative speed, without
entering orbit around it. During the flyby, the spacecraft’s instruments and sensors
can capture valuable data, images, and measurements as it passes by the target.
This data can include information about the body’s surface features, composition,
atmosphere, magnetic field, and others. Since establishing a long-term orbit around
the body is challenging due to extreme distances, harsh radiation environments,
operational costs, and high velocities, flybys are a reasonable and cheap alternative
to orbiting the body. For this reason, they are the most accessible form of exploration.
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However, because the encounter with the body is bounded in time and space, the
amount and quality of scientific data are severely limited to fully characterize the
body.

A rendezvous refers to a mission or trajectory planned and controlled to keep
a spacecraft around the target body. Because the rendezvous is not limited to a
short amount of time and space, it can significantly enhance the scientific data
that can be generated. This comes at the cost of the complexity and robustness
of the spacecraft, overall mission, and trajectories adopted. In a rendezvous, it is
essential to ensure the spacecraft does not impact on the asteroids as well as that
the spacecraft performs as expected for the entire duration of the mission, with a
considerable impact on the operational costs compared to a flyby.

The history of exploration of minor bodies started roughly 50 years ago, with
an incidental flyby with an unknown asteroid by the Pioneer 10 spacecraft in 1972 .
From that moment onward, thanks to various flyby missions first and rendezvous
missions later, a fair number of bodies have been visited by robotic spacecraft.
These are summarized in Table 1.1 and Table 1.2, divided respectively into flyby and
rendezvous missions. The data about flyby missions has been collected from various
sources 1, 2, 3, [9, 11], while the one about rendezvous missions are specified in
Table 1.2. Landers and other tools/instruments/sub-units of the main spacecraft
have been omitted from the tables for clarity, as well as the numerous projects,
proposed, and planned missions.

Impact missions such as DART and Deep Impact have been designated as flyby
missions for clarity. Also, note that in DART, the mothercraft impacted asteroid
Dimorphos (the secondary body of the 65803 Didymos binary system), while Deep
Impact used an impactor unit that crashed against the comet 9P/Tempel.

Up to September 2023, a total of 37 missions have been successfully executed
using 27 different platforms. The total number of different bodies visited within the
Solar System is 30 , comprised of 7 comets visited with a flyby or impact mission,
16 asteroids visited with a flyby or impact mission, and 7 bodies (5 asteroids, 1
dwarf planet, and 1 comet) visited by a rendezvousing spacecraft. In Figure 1.2,
it is possible to visualize the data from Table 1.1 and Table 1.2 displayed as a
cumulative number of successful missions dedicated to minor bodies exploration
since 1972 .

A mosaic view of most of the minor bodies visited so far is illustrated in
Figure 1.3 from 4, illustrating a variety of irregular shapes and a rich presence of
surface features such as ridges, craters, and boulders.

1https://www.planetary.org/space-missions/every-small-worlds-
mission, last accessed 8th of August, 2023.

2https://en.wikipedia.org/wiki/List_of_missions_to_minor_planets,
last accessed 8th of August, 2023.

3https://en.wikipedia.org/wiki/List_of_minor_planets_and_comets_
visited_by_spacecraft, last accessed 8th of August, 2023.

4https://www.planetary.org/space-images/asteroids-and-comets-
visited-by-spacecraft, last accessed 8th of August, 2023.

https://www.planetary.org/space-missions/every-small-worlds-mission
https://www.planetary.org/space-missions/every-small-worlds-mission
https://en.wikipedia.org/wiki/List_of_missions_to_minor_planets
https://en.wikipedia.org/wiki/List_of_minor_planets_and_comets_visited_by_spacecraft
https://en.wikipedia.org/wiki/List_of_minor_planets_and_comets_visited_by_spacecraft
https://www.planetary.org/space-images/asteroids-and-comets-visited-by-spacecraft
https://www.planetary.org/space-images/asteroids-and-comets-visited-by-spacecraft
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Table 1.1: Previous flyby missions to asteroids and dwarf planets (first half of the table)
and comets (second half of the table) in chronological order of Closest Approach (CA).

Mission Year Body’s name CA [km] Notes

Pioneer 10 1972 Unnamed 8 .85 ·106 Incidental
Pioneer 10 1972 307 Nike 8 .80 ·106 Incidental

Galileo 1991 951 Gaspra 1604 Incidental
Galileo 1993 243 Ida 2410 Incidental
Galileo 1993 243 Dactyl 2410 Incidental
NEAR 1997 253 Mathilde 1212

Deep Space 1 1999 9969 Braille 28 .3
Cassini–Huygens 2000 2685 Masursky 1 .50 ·106 Incidental

Stardust 2002 5535 Annefrank 3079

New Horizons 2006 132524 APL 1 .02 ·105 Incidental
Rosetta 2008 2867 Šteins 800

Rosetta 2010 21 Lutetia 3162

Chang’e-2 2012 4179 Toutatis 3 .2
New Horizons 2015 134340 Pluto 12500

New Horizons 2019 486958 Arrokoth 3538

DART 2022 65803 Didymos 0 Impact
LICIACube 2022 65803 Didymos 56 .7

ICE 1985 21P/Giacobini-Zinner 7800

Vega 1 1986 1P/Halley 8889

Vega 2 1986 1P/Halley 8030

Suisei 1986 1P/Halley 1 .51 ·105

Sakigake 1986 1P/Halley 6 .99 ·106

Giotto 1986 1P/Halley 596

ICE 1986 1P/Halley 31 .00 ·106

Giotto 1992 26P/Grigg–Skjellerup 200

Deep Space 1 2001 19P/Borrelly 2171

Stardust 2004 81P/Wild 240

Deep Impact 2005 9P/Tempel 500 Impactor unit
EPOXI 2010 103P/Hartley 700

Stardust 2011 9P/Tempel 181

Nowadays, the exploration of minor bodies is propelled by one or a combina-
tion of the following motivations [1, 9]: scientific, planetary defense, technology
demonstration, and resource exploitation.

From a scientific perspective, these bodies are thought to enclose valuable
information on the primordial state of the Solar System. As remnants of the
primordial Solar System, they enact a living library of our cosmic history and are
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Table 1.2: Previous rendezvous missions towards minor bodies in chronological order of
arrival.

Mission Year Body’s name Reference

NEAR 2000 433 Eros [12]
Hayabusa-I 2005 25143 Itokawa [13]

Dawn 2011 4 Vesta [14]
Rosetta 2014 67P/Churyumov–Gerasimenko [15]

Dawn 2015 1 Ceres [14]
Hayabusa-II 2018 162173 Ryugu [16]
OSIRIS-REx 2018 101955 Bennu [17]

Figure 1.2: Cumulative number of missions towards minor bodies per year since 1972 , di-
vided into asteroid and dwarf planet flybys, comet flybys, rendezvous, and total. Considering
only the data from 1985 onward, the number of missions per year exhibits a linear trend. A
first-order degree fit of the data generates the coefficients p1 = 0 .7709(0 .7326 ,0 .8092),
p2 = −1523(−1600 ,−1447) and 95% confidence bounds, achieving a Root Mean
Squared Error (RMSE) equal to 2 .0033 and assuming the cumulative number of succesf-
ful missions expressed as p1 ·Year +p2 .

thus fundamental to understanding how planetary systems form [9]. Their extensive
presence poses both a threat to our planet and, at the same time, offers plenty
of opportunities. For example, as they are cheaper to reach, minor bodies present
an exciting opportunity for technology demonstration missions; they can be used
as sandboxs to boost the progress of advanced technologies. From a resource
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Figure 1.3: Visited minor bodies up to September 2022 (excluding Pluto, Ceres, and
Vesta). Original montage by Emily Lakdawalla, The Planetary Society.

exploitation point of view, minor bodies could represent the frontier of a new gold
race for rare metals extraction and additive manufacturing in space [1]. Finally, from
a planetary defense perspective, minor bodies pose a real threat to activities on Earth
and in space. Many techniques proposed to deflect asteroids and comets have only
been theorized or tested in scaled laboratory environments. Only three missions have
ever demonstrated and tested the effectiveness of a deflection technique, all through
the usage of a kinetic impactor: Deep Impact [18] on 9P/Tempel, Hayabusa-II [16]
on Ryugu with small-scale impactor experiments, and more recently DART [19]
on Dimorphos. Advantageously, as the potential destructiveness of a minor body
is proportional to its size, it also makes it easier to observe the most dangerous
ones in time to prepare a deflection strategy accordingly (if any is needed) [20].
Figure 1.4 is an infographic 5 displaying population, energy, and impact frequencies
as a function of the size of the known and unknown population of asteroids.

1.2 Motivation

The current paradigm for exploring small bodies mirrors for most of the operations
an established strategy for interplanetary missions: with open-loop control and
meticulous oversight from the ground, the spacecraft is continuously operated from
a dedicated control center for months or years.

5https://www.esa.int/Space_Safety/A_burst_of_asteroid_activity_
in_Europe, last accessed 21st August, 2023.

https://www.esa.int/Space_Safety/A_burst_of_asteroid_activity_in_Europe
https://www.esa.int/Space_Safety/A_burst_of_asteroid_activity_in_Europe
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Figure 1.4: Population, energy, and impact frequency of asteroids as a function of the
size. Credits: ESA.

This oversight is essential to ensure the spacecraft’s sustained functioning
and prevent collision with the target body. Navigation accuracy holds particular
importance, given these bodies’ intricate gravitational fields and irregular shapes.
Successful maneuvering and trajectory control to avoid collisions demand precise
propulsion systems and navigation algorithms. Moreover, since the spacecraft is
often constrained by limited resources, including fuel, power, computational, and
data storage capacity, mission planners must carefully balance them to ensure
mission success. Traditionally, this has been handled with a ground-based approach,
with a certain degree of reluctance to entrust some of these tasks to onboard
systems due to issues such as reliability, feasibility, and sub-optimality.

Nonetheless, this existing paradigm has inherent limitations. As the distance
from Earth can lead to significant signal delays, real-time spacecraft control cannot
be achieved during critical operations such as landing or sample collection. The turn-
around time also limits the spacecraft’s ability to respond promptly to unexpected
scenarios, which are more frequent around an active, mostly unknown, environment
as the one around minor bodies. Finally, ground-based operations are expensive
and can make up for a substantial portion of the overall cost, curtailing the mission
duration and extent of the scientific data gathered.

The effort to overcome these limitations has stimulated the search for alternative
strategies, with one promising avenue levaring increasing autonomy for spacecraft
operations. This shift would imply delegating more responsibilities to the spacecraft
itself, reducing the dependence on real-time commands from Earth and mitigating
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the issues posed by signal delays.
By incorporating intelligent systems onboard, spacecraft could navigate around

complex environments, make split-second decisions, and react to anomalies more
adeptly. Such a paradigm shift can enhance mission flexibility, accelerate decision-
making, and broaden the scope of scientific observations, all while potentially
trimming overall costs. To achieve this, perception of the surrounding environment
is the starting point for more complex autonomous operations.

When considering the proximity environment of a small body and all the sensors
available on the market, cameras often emerge as the preferred choice due to
their lightweight, compact nature, low power consumption, and low cost. As
a result, using passive cameras, complemented by image processing algorithms,
delivers compelling performance with cost-effective hardware. An increasing variety
of image processing techniques are being developed to enable such capabilities
in the framework of autonomous optical navigation and comprehension of the
surrounding environment about small bodies. Among these, artificial intelligence
approaches exhibit the greatest potential, significantly enhancing accuracy while
demanding only a fraction of the computational resources compared to conventional
approaches.

This transition towards autonomous and intelligent systems is not devoid of
challenges, including the need to develop highly reliable methods, the demand for
substantial and high-fidelity datasets for training, validation, and testing (a challenge
given the limited sample of small bodies that have been thoroughly investigated
in the history of space exploration), the unclear certification procedures, and the
requirements for execution within the constraints of onboard processors in space,
which often exhibit limited absolute performance compared to their terrestrial
counterparts.

1.3 Research questions

This work has been carried out in compliance with the activity of the Stardust-R
network6, under the funding received from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 813644.

The current amount of space debris in orbit, combined with the expected
increase in traffic due to future mega-constellations, will have an unprecedented
impact on the space environment, posing a serious question on its stability and
resilience to any incident or anomalous event. Although statistically less likely to
occur, an asteroid impact would have devastating consequences for our planet.
Thus, Stardust-R addressed the growing need for sustainable exploitation of space,
the resilience of the space environment, the threats and opportunities coming from
asteroids and comets, and the compelling need for properly trained specialists who

6https://cordis.europa.eu/project/id/813644, last accessed 23rd of August
2023.

https://cordis.europa.eu/project/id/813644
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can tackle these issues. The key scientific objectives of Stardust-R are reported
below.

Stardust-R objectives

1. To globally characterize the dynamics of objects around the Earth to
define disposal solutions

2. To correlate spatially and temporally distant events and families of
debris to their parent object

3. To quantify uncertainty in celestial mechanics to accurately predict
the probability of impact and collision and quantify the resilience of
space systems and environment

4. To develop AI tools and methods for space traffic management
5. To define a criticality index for small asteroids to identify the need for

exploration/characterization, the possibility for exploitation, and the
method of deflection

6. To develop a new distribution model for small-size asteroids
7. To develop systems and algorithms to explore and land on minor

bodies with autonomous nano-spacecraft.

These objectives have been addressed via 15 projects developed by 15 Early
Stage Researchers who have been trained in math, physics, computer science, and
aerospace engineering to provide effective solutions to make the space environment
resilient and space exploitation sustainable, learn more about minor bodies and
ultimately protect Earth and our space assets.

As part of the Stardust-R network, the author has been involved as ESR 13 in
the activities of WP7, covering all areas related to the exploration and exploitation
of minor bodies. The author was tasked with activities involving autonomous
Guidance, Navigation, and Control of low-resource systems for the exploration
and exploitation of small bodies. Autonomous deep-space and close proximity
navigation, as well as autonomous orbit guidance and control, are the fundamental
areas of research by ESR 13 in WP7.

Within the Stardust-R framework, the author focused his research on the
development of image processing and autonomous navigation algorithms using
artificial intelligence methods. A set of detailed research questions and objectives
is elaborated to specifically drive the research presented in this dissertation within
the context of the Stardust-R framework.
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Research questions

1. Which strategies could be adopted to create the high-fidelity data-label
pairs required for the supervised learning of data-driven methods?

a) What is the most cost-effective and flexible strategy to generate
data in support of training, validation, and testing of data-driven
algorithms?

b) To what extent can existing open-source solutions be used to
support dataset generation?

2. To what extent can onboard applications benefit from enhanced data-
driven image processing methods?

a) What are the most promising image processing tasks that can
be substituted or augmented?

b) What level of performance can be achieved compared to tradi-
tional approaches?

c) What are the current drawbacks and bottlenecks for their adop-
tions in real missions?

Research objectives

i) Develop a high-fidelity, easy-to-use, flexible tool for generating image-
label pairs to sustain the development of data-driven methods.

ii) Develop a set of techniques that enhance the perception of the sur-
rounding environment using visual images.

1.4 Dissertation overview

This chapter introduces the context, motivation, research questions and objectives,
notation, performance metrics, and personal publications of the research activity
presented in this manuscript. The methodology section in Chapter 2 illustrates
the fundamental theory behind the image processing algorithms, neural networks,
and other machine learning applications developed in this research. Chapter 3
represents the design of the critical data generator tools used throughout the
manuscript. Depending on the application, image processing methods are split into
two main chapters: image segmentation is addressed in Chapter 4, while vision-
based navigation is addressed in Chapter 5. Lastly, in Chapter 6, a generic overview
of the Milani mission is presented together with the design of the semi-autonomous,
vision-based guidance, navigation, and control subsystem of the CubeSat. For
clarity, each chapter is closed with its final remarks and recommendations, while
some general final comments and future works are discussed in Chapter 7. As
data is central in any data-driven model, Appendix A groups all the datasets used
in a standardized format. Figure 1.5 illustrates a graphical representation of the
relationships between the different chapters and key sections of the manuscript.
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1.5 Publications and contribution to the field

During the years of my Ph.D., I had the chance to present my work at several con-
ferences and to publish in peer-reviewed journals, contributed to several proposals,
and actively contributed to several missions and projects related to small bodies
exploration, visual-based navigation, and image processing.

Most of the research activity outcome was already presented in various forms
(i.e., papers, presentations, technical reports). The list of contributions to the field
split among journal articles, conference papers, and datasets is provided below.

Journal articles

[J11] Pugliatti M, Buonagura C, and Topputo F. “CORTO: The Celestial Object
Rendering TOol at DART lab”. In: Sensors (submitted) (Sept. 2023).

[J10] Moreno F, Bagatin AC, Tancredi G, Li JY, Rossi A, Ferrari F, Hirabayashi
M, Fahnestock E, Maury A, Sandness R, Rivkin AS, Cheng A, Farnham TL,
Soldini S, Giordano C, Merisio G, Panicucci P, Pugliatti M, Castro-Tirado
AJ, Fernández-García E, Pérez-García I, Ivanovski S, Penttila A, Kolokova L,
Licandro J, Munoz O, Gray Z, Ortiz JL, and Lin ZY. “Characterization of
the Ejecta from the NASA/DART Impact on Dimorphos: Observations and
Monte Carlo Model”. In: The Planetary Science Journal 4.8 (Aug. 2023),
p. 138. DOI: 10.3847/PSJ/ace827.

[J9] Pugliatti M and Topputo F. “Design and Application of Convolutional
Architectures for Vision-Based Navigation Around Small Bodies”. In: Journal
of Spacecraft and Rockets (submitted) (July 2023).

[J8] Pugliatti M, Scorsoglio A, Furfaro R, and Topputo F. “Onboard state
estimation around didymos with recurrent neural networks and segmentation
maps”. In: IEEE Transactions on Aerospace and Electronic Systems Pre-
Print (June 2023), pp. 1–14. ISSN: 0018-9251. DOI: 10.1109/TAES.
2023.3288506.

[J7] Pugliatti M, Piccolo F, Rizza A, Franzese V, and Topputo F. “The vision-
based guidance, navigation, and control system of hera’s milani cubesat”.
In: Acta Astronautica 210 (Sept. 2023), pp. 14–28. ISSN: 0094-5765. DOI:
10.1016/j.actaastro.2023.04.047.

[J6] Pugliatti M and Maestrini M. “Small-body segmentation based on mor-
phological features with a u-shaped network architecture”. In: Journal of
Spacecraft and Rockets 59.6 (Nov. 2022), pp. 1821–1835. DOI: 10.2514/
1.A35447.

[J5] Pugliatti M, Franzese V, and Topputo F. “Data-driven image processing
for onboard optical navigation around a binary asteroid”. In: Journal of
Spacecraft and Rockets 59.3 (May 2022), pp. 943–959. DOI: 10.2514/
1.A35213.

https://doi.org/10.3847/PSJ/ace827
https://doi.org/10.1109/TAES.2023.3288506
https://doi.org/10.1109/TAES.2023.3288506
https://doi.org/10.1016/j.actaastro.2023.04.047
https://doi.org/10.2514/1.A35447
https://doi.org/10.2514/1.A35447
https://doi.org/10.2514/1.A35213
https://doi.org/10.2514/1.A35213
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[J4] Peñarroya P, Pugliatti M, Ferrari F, Centuori S, Topputo F, Vetrisano M,
and Sanjurjo-Rivo M. “Cubesat landing simulations on small bodies using
blender”. In: Advances in Space Research 72.7 (Oct. 2022), pp. 2971–2993.
ISSN: 0273-1177. DOI: 10.1016/j.asr.2022.07.044.

[J3] Buonagura C, Pugliatti M, and Topputo F. “Image processing robustness
assessment of small-body shapes”. In: The Journal of the Astronautical
Sciences 69.6 (Nov. 2022), pp. 1744–1765. DOI: 10.1007/s40295-
022-00348-6.

[J2] Ferrari F, Franzese V, Pugliatti M, Giordano C, and Topputo F. “Pre-
liminary mission profile of hera’s milani cubesat”. In: Advances in Space
Research 67.6 (Mar. 2021), pp. 2010–2029. DOI: 10.1016/j.asr.
2020.12.034.

[J1] Ferrari F, Franzese V, Pugliatti M, Giordano C, and Topputo F. “Trajectory
options for hera’s milani cubesat around (65803) didymos”. In: The Journal
of the Astronautical Sciences 68.4 (Sept. 2021), pp. 973–994. DOI: 10.
1007/s40295-021-00282-z.

Conference papers

[C23] Pugliatti M and Maestrini M. “A multi-scale labeled dataset for boul-
der segmentation and navigation on small bodies”. In: 74th International
Astronautical Congress, Baku, Azerbaijan. Oct. 2023, pp. 1–8.

[C22] Pugliatti M, Giordano C, and Topputo F. “The image processing of milani:
challenges after dart impact”. In: ESA-GNC conference, Sopot, Poland.
June 2023, pp. 1–15.

[C21] Buonagura C, Borgia S, Pugliatti M, Morselli A, Topputo F, Corradino F,
Visconti P, Deva L, Fedele A, Leccese G, and Natalucci S. “The cubesat
mission future: a preliminary analysis to validate the on-board autonomous
orbit determination”. In: ESA-GNC conference, Sopot, Poland. June 2023,
pp. 1–15.

[C20] Giordano C, Ferrari F, Franzese V, Pugliatti M, Piccolo F, Rizza A, Kohout
T, Dirri F, Longobardo A, C G, Palomba E, Cardi M, Perez-Lissi F, Martino
P, and Carnelli I. “The hera milani cubesat mission”. In: 5th COSPAR
Symposium, 2023. Apr. 2023.

[C19] Pugliatti M and Topputo F. “Boulders identification on small bodies under
varying illumination conditions”. In: 3rd Space Imaging Workshop, Georgia,
Atlanta. Oct. 2022, pp. 1–12.

[C18] Pugliatti M and Topputo F. “Enhanced vision-based algorithms about small
bodies: lessons learned from the stardust-r experience”. In: 2nd International
Stardust conference, STARCON2. Vol. 1. Nov. 2022, pp. 1–2.
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[C17] Pugliatti M, Ferrari F, Piccolo F, Rizza A, Bottiglieri C, Franzese V,
Giordano C, and Topputo F. “Enhanced vision-based algorithms about
small bodies: lessons learned from the stardust-r experience”. In: 2nd
International Stardust conference, STARCON2. Vol. 1. Nov. 2022, pp. 1–2.
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1.6 Notation and conventions

The notation and conventions used throughout the manuscript are herewith intro-
duced. Scalars are indicated with lower-case letters (e. g., a). Vectors are indicated
with bold lower-case letters (e. g., p= [a b c]⊤), while their magnitudes with the
same letter but in regular font (e. g., p = ∥p∥). Estimated quantities are denoted
with the diacritic e , while true ones are with t .

A standardized notation is used across the manuscript to describe the layers
and structure of the neural networks. For simplicity, the notation makes use of
acronyms and naming conventions used in TensorFlow (TF) 2.10. The most popular
layers used are summarized in Table 1.3. Specific notations different than the one
illustrated in this section will be introduced on an as-needed basis.

Table 1.3: Notation used to identify the layers of the architectures in this manuscript.

ID Short name

I Input
O Output
D Dense
C Conv2D

CT TransposeConv2D
UP Upconvolution (Sequential)

E Encoder (Sequential)
L Long-Short Term Memory
F Functional (Sequential)

CC Concatenate
FC Flatten
A Generic activation

LR LeakyReLU
R ReLU
P Pooling2D

DO Dropout

1.7 Reference frames

The most used reference frames are briefly defined hereafter. W is a sun-oriented
reference frame defined as:

• Origin: Centered on the Center of Mass (CoM) of the target body.
• X-axis: Oriented towards the projection of the Sun in the target body’s

equatorial plane.
• Y-axis: Follows from the definition of the X and Z axes.
• Z-axis: Coindient with the north pole of the target body.
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AS is a body-fixed reference frame defined as:
• Origin: Centered on the CoM of the target body.
• X-axis: Defines the equatorial plane with the Y axis.
• Y-axis: Follows from the definition of the X and Z axes.
• Z-axis: Coindient with the north pole of the target body.

UV is an image-based reference frame defined as:
• Origin: Centered on top-left pixel of the image
• U-axis: Horizontal axis that spans the columns of the image.
• V-axis: Vertical axis that spans the rows of the image.

CAM is a body-fixed reference frame defined as:
• Origin: Centered on the principal point of the sensor.
• X-axis: Oppositely aligned with the V axis of the UV reference frame.
• Y-axis: Aligned with the U axis of the UV reference frame.
• Z-axis: Represents the camera boresight, outgoing from the camera.

W

AS

UV

CAM
CAM

Figure 1.6: Simple schematic of the reference frames used in this manuscript. The X, Y,
and Z axes are represented respectively in red, green, and blue for each reference frame.

1.8 Performance metrics

For simplicity, the most common performance metrics considered in this manuscript
are reported here. Specific metrics are introduced contextually on an as-needed
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basis.

1.8.1 Regression

To assess the performance of Image Processing (IP) algorithms with respect to
regression tasks, the following metrics are considered:

εuCoF = CoMu−CoFu ; εvCoF = CoMv −CoFv (1.1)

εnCoF =

√(
εuCoF

)2
+
(
εvCoF

)2 (1.2)

where CoM represents the true CoM while CoF represents the estimated one, also
referred to as Center of Figure (CoF), εuCoF and εvCoF are the centroid pixel error
by coordinates in the image plane, and εnCoF is the distance in pixel in the image
plane between the estimated and true CoM.

εα = εnCoF · ζ
AS

·100 (1.3)

εm = 2ρt · tan
(
ζ ·εnCoF

2

)
(1.4)

where AS is the apparent size of the target body, ρt is the true range from the
target body, and ζ is the instantaneous Field Of View (FOV). εα represents the
εnCoF error expressed as a relative percentage error in angular size with respect to
the size of the target body and εm represents the projection of the εnCoF error in
the image plane expressed in m.

εψ = ψe −ψt (1.5)

ερ = ρe −ρt (1.6)

where ρt and ψt , and ρe and ψe indicate respectively the true and estimated range
and phase angle from the target body, being εψ and ερ the absolute errors of such
quantities.

1.8.2 Object recognition

To assess the performance of the IP algorithms for object recognition and classifi-
cation tasks, the following metrics are considered:

A=
TP+TN

TP+FP+TN+FN
(1.7)

P =
TP

TP+FP
(1.8)
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R =
TP

TP+FN
(1.9)

where A, P , R stand respectively for accuracy, precision, and recall and TP , TN,
FP, FN stands respectively for True Positive, True Negative, False Positive, and
False Negative.

1.8.3 Semantic segmentation

To assess the performance of the IP algorithms for semantic segmentation tasks,
the following metrics are considered:

I oU =
Area of Overlap
Area of Union

= (1.10)

We then define the mean Intersection over Union (mIoU) as the average of the
Intersection over Union (IoU) computed for each class. The former represents a
global segmentation performance metric for each image or dataset, the latter a
metric for each specific layer.

mIoU =
∑
nmasks
i=1 I oUi

nmasks
(1.11)

1.8.4 Neural networks performance

To assess the performance of a neural network, the following metrics and loss
functions are considered:

MAE =
1

N

N

∑
i=1

|̂y i −yi | (1.12)

MSE =
1

N

N

∑
i=1

(̂y i −yi )
2 (1.13)

RMSE =

√√√√ 1

N

N

∑
i=1

(̂y i −yi )
2 (1.14)

where ŷ i represents the predicted values, yi the true or target values, and N is the
number of samples, and the metrics are referred to as Mean Absolute Error (MAE),
Mean Squared Error (MSE), and RMSE. For classification tasks, it is also useful to
define:
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SSCE =−
N

∑
i=1

yi log ŷ i (1.15)

WSSCE =− 1

M

M

∑
j=1

K

∑
i=1

wjyi ,j log ŷ i ,j (1.16)

where wj represents the jth component of the weight vector associated with a
specific class, and Sparse Categorical Cross Entropy (SCCE), and Weighted Sparse
Categorical Cross Entropy (WSCCE).

1.8.5 Navigation and pointing

The performance of the navigation and pointing strategies are evaluated using the
following metrics:

εp = pe −pt (1.17)

εv = ve −vt (1.18)

εθ = acos(uSC ·uB) (1.19)

where pe , ve and pt , vt are respectively the estimated and true position and velocity
components of the spacecraft state vector, uSC and uB are respectively the Line of
Sight (LoS) of the spacecraft’s payload and the LoS to the CoM of the target body.
εp and εv represent the position and velocity estimation errors, while εθ represents
the pointing error. Finally, relative position and velocity errors are defined as:

εrp =
∥pe −pt∥

∥pt∥
·100 (1.20)

εrv =
∥ve −vt∥

∥vt∥
·100 (1.21)
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Methodology

“Artificial Intelligence: the silent evolution of ones and zeros, where algorithms
whisper secrets of innovation, and data paints the canvas of progress, revealing
the future in lines of code.”

ChatGPT-3.5, answering to the prompt: “Write a great quote about AI”

Computer vision refers to the action of acquiring, processing, analyzing, un-
derstanding, and extracting high-dimensional data from the real world sensed via
digital images to produce information [21]. Within this context, understanding
means transforming a visual image into a description of the world that makes sense
and can elicit an appropriate action.

Amazingly, humans and animals do this effortlessly, while computer vision
algorithms are error-prone. Indeed, it is straightforward to develop a mathematical
description of the problem that either does not match realistic world conditions or
proves unreliable. Vision is so difficult partly because it represents an inverse prob-
lem: fully specifying the solution by recovering some unknowns, given insufficient
information of the world sensed through images [22].

A complete and exhaustive history of computer vision and its dominant trends in
each decade can be found in [22], from which the following extracts are considered.
When computer vision started in the early 1970s, it was framed as part of an
ambitious agenda to mimic human intelligence. It was believed that solving “the
visual input” problem would be an easy step along the path to solving more difficult
ones. According to one well-known story, in 1966, Marvin Minsky at MIT asked
his undergraduate student Gerald Jay Sussman to “spend the summer linking a
camera to a computer and getting the computer to describe what it saw” [22, 23].
After decades, a complete solution to this puzzle remains elusive as a testament
to the complexity of the task. A robust trend emerged in the 2000s that would
forever transform the field, embracing data-driven methods and learning approaches
as core components in computer vision algorithms. This trend became a “tidal
wave” in the 2010s due to various favorable factors. This change was primarily
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fueled by the availability of large-scale, high-quality annotated datasets, and the
dramatic increase in computational power from general-purpose algorithms on
Graphic Processing Unit (GPU). Secondarily, the rapid dissemination of ideas
through timely publications on arXiv7, the development of languages and libraries
for deep learning methods, and the open-source nature of many neural network
models contributed to explosive growth in this area [22]. These elements are often
cited as the three pillars that sustained the Artificial Intelligence (AI) revolution
for modern computer vision applications. Albeit the progress made, the dream of
achieving a computer’s ability to describe an image with the same level of intricate
detail and causal understanding as a two-year-old is still challenging to achieve [22].

When considering space applications, a new set of challenges arises on top
of the traditional ones. The low-resolution sensors typically used in navigation
cameras, coupled with the limited computational, memory, and data capabilities
of space-qualified hardware, impose significant limitations on approaches that
otherwise flourish in the classical computer vision domain. For these reasons and
to a certain degree, image processing algorithms for space applications are some
decades behind in terms of development compared to traditional domains.

For example, referring to the three pillars that sustained the AI revolution in
modern computer vision, high-fidelity, large-scale, open-access annotated datasets
are still difficult, if not impossible, to find. At the same time, the capabilities of
radiation-hardened hardware severely undermine the implementation of conventional
deep architectures, which have been investigated for space applications only in
recent years with Machine Learning (ML) approaches [1, 24, 25].

Compared to traditional methods, in which features and algorithms are hand-
crafted, enhanced image processing pipelines implement elements of AI, boosting
performance. The explainability and control over a traditional pipeline’s steps come
at the cost of sub-optimal performance. Enhanced image processing pipelines,
on the other hand, are tuned through data and thus can challenge traditional
assumptions, opening up the design search space of the algorithm. These enhanced
methods can be divided into two groups, as illustrated in Figure 2.1: hybrid and
end-to-end ones. In a hybrid pipeline, only the algorithm is developed including
elements of AI, while the features used to represent images are still hand-crafted.
In an end-to-end pipeline, both features and models are learned through the data,
a coupling that often provides the best performance. These enhancements come
at the cost of having annotated data representative of real-world conditions for
training.

The rest of the chapter is structured in two main parts. First, in Section 2.1, a
generic overview of the traditional image processing methods specifically for space
applications around minor bodies is provided. Then, in Section 2.2, the fundamental
theoretical blocks about ML used in this manuscript are detailed.

7https://arxiv.org/, last accessed 31st of August 2023

https://arxiv.org/
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Figure 2.1: (a) Traditional, (b) hybrid, and (c) end-to-end pipelines. X and Y represent
respectively the input and the output. Adapted from [22].

2.1 Image Processing around small bodies

Since the dawn of space exploration, onboard cameras have been extensively used
for a variety of tasks: as means of scientific investigations to enabling sensors for
precise targeting, navigation, hazard determination, and public outreach. However,
it is only when the data produced by these sensors is made available onboard, after
being processed by an IP algorithm, that a spacecraft can exploit them to increase
its level of autonomy.

Several IP algorithms have been deployed in various exploration missions towards
small bodies. Considering the design of these algorithms and the body’s appearance
in the image as the main property, it is simpler to divide the region of space around
small bodies into three relative regimes: far, medium, and close. These regimes
reflect in an incremental order the vicinity to the target body, the difficulty of the
environment, and the complexity of the IP method. For this reason, they have also
been historically approached in this order, as prudent approaches were preferred
in previous missions, with an incremental increase of the risk over the years as
technology improved, allowing spacecraft to get closer safely.

The far regime extends roughly from the first detection of the body to the
moment it occupies a relatively small area imaged by the sensor. In this regime, no
global structures or local features would be visible. In the medium regime, the body
would start to occupy a considerable portion of the sensor, exhibiting clear global
features (shape outline, large craters, or large geological formations altering the
surface’s appearance) but still lacking the presence of local features such as smaller
craters and boulders. As soon as the body’s appearance saturates the camera’s FOV,
global features cease to be imaged in their entirety while detailed representations
of the surface are detected. Entering the close regime, local features such as
small craters, boulders, and other minor geological features are observed at high
resolution. This regime eventually merges into surface operations for any robotic
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system designed to be stationary or move across the body’s surface. Designing a
vision-based autonomous system for a mission often means a traverse through these
regimes, combining different methods at different stages of a mission. Examples of
the same target body seen at different regimes are illustrated in Figure 2.2. For a
more comprehensive overview of the requirements and needs of different tasks in
these regimes, the reader is redirected to [26].

(a) Far. (b) Medium. (c) Close.

Figure 2.2: Example of Bennu seen from OSIRIS-REx in the far (a), medium (b), and
close (c) regimes. Credits: NASA/OSIRIS-REx team.

What follows is an overview of the state-of-the-art approaches across the
regimes, both with traditional and enhanced IP methods. The overview mainly
focuses on image processing for segmentation and visual-based navigation, as these
are the main tasks investigated in this manuscript with enhanced techniques.

2.1.1 Far regime

This regime is the only one accessible from Earth-based and space-based telescopes.
Lightcurve analysis and simple centroid methods are used to track the body amongst
stars and planets [26]. As the body starts appearing at sub-pixel level, no meaningful
information other than centroid and lightcurve is extracted. The main task that
can be performed in this regime is to keep track of the target body, distinguishing
from other celestial bodies and noise in the sensor to maintain a stable approach in
preparation for the medium regime.

2.1.2 Medium regime

Various techniques can be used in the medium regime as the body develops
distinguishable global features in the images.

From a navigation point of view, centroiding algorithms are considered as a
robust, easy-to-use baseline both for rendezvous [27], flyby [28], and deflection
[29] missions in this regime. The simplicity of these algorithms generally comes at
the cost of low performance, especially when considering high-phase angles and
highly irregular shapes [30, 31]. Over the years, modified centroid algorithms have
also been developed to overcome these limitations by adopting analytic scattering
functions [31–33].
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Another approach to cope with high phase angles is represented by centroid
and apparent diameter methods that use the body’s limb. The state-of-the-art
algorithm of this family is the one introduced in [34], which develops a non-iterative
ellipse fitting to retrieve the position with respect to a body modeled as a tri-axially
ellipsoid. Other important works exist based on limb and ellipse fitting, such as
[30, 35–39] or Lambertian sphere correlation algorithms [40].

By design, the applicability of these methods is limited to spherical-like bodies
only, which is a critical disadvantage considering that most of the minor bodies
are highly irregular. Attempts have been made to assess ellipse fitting performance
with irregular bodies [30, 35]. On the other hand, correlation methods that use
information from the global outline exhibited good performance even with mildly
irregular shapes [40] correlating to spheres and using rough shape models [41, 42].

Deep learning-based methods for relative navigation are becoming increasingly
relevant for this regime [1, 24, 25], in particular related to IP, vision-based navigation,
and control methods. Navigation applications have been recently proposed for AI
enhanced centroiding or position estimation networks considering irregular bodies
[32, 43–45]. Within this area, a variety of works is emerging concerning relative
pose estimation from images [46] with deep neural networks, enhanced centroid and
apparent diameter methods [47], image-based guidance for landing applications on
the Moon [48, 49], and position estimation around small bodies from images [50].

Finally, from a purely IP perspective, a variety of algorithms have been developed
to detect, match, and track image’s features generated by morphological properties
for shape reconstruction purposes around a small-body [26, 51, 52] from the end
of the far to the end of the medium regimes.

Fewer methods have focused so far on image segmentation to discern different
morphological features over the surface of a small body. Image segmentation has
been used to distinguish between plumes and jets from comets and moons in [53],
combining simple pixel-intensity-based methods and geometric considerations. In
[54], a series of advanced image processing techniques for enhanced flyby science
around small bodies are introduced to change the current flyby paradigm and include
a more comprehensive understanding of the environment onboard a spacecraft,
ultimately strengthening the scientific outcome of flyby missions. The authors
in [54] present a methodology for autonomous feature detection supported by
simple filtering and statistical-based classification alongside image segmentation to
distinguish between features, surface, and background pixels.

Deep learning, in the form of simple and easy-to-train UNet architectures, revo-
lutionized image segmentation. In [49, 55–57] these are used to synthesize hazard
maps for selecting safe lunar landing sites. In [58] a thorough comparison between
different architectures is presented for hazard detection. The accuracy of deep-
learning-based methods is also highlighted in [59], which uses a set of five different
Convolutional Neural Network (CNN) architectures to detect geological structures
at varying scales for the Mars Reconnaissance Orbiter mission, demonstrating that
their methodology outperforms other states of the art methods used previously
for the same task and that they could be implemented for onboard applications.
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A more comprehensive and up-to-date survey of deep-learning methods for space
applications can be seen in [24].

2.1.3 Close regime

Finally, considering navigation, features-based methods are usually preferred in
the close-range regime due to the abundance of resolved local features and higher
performance compared to the other techniques presented in the previous sections.

For example, the optical navigation approach of the Rosetta mission, presented
in [60], used small-scale, high-resolution digital models called maplets centered on
specific landmarks of interest scattered across the surface of 67P as reference points
for precise local correlation methods. This approach relied on the simulation of
each maplet at varying illumination, elevation, and albedo modeling. By correlating
these digital representations with their real counterpart extracted from images, the
spacecraft’s position is estimated as the one maximizing the correlation score. It is
noted that this approach has not been executed onboard but heavily relied on a
man-in-the-loop process performed from the ground [60].

A similar approach has instead been developed specifically for an onboard
implementation in the OSIRIS-REx mission [61, 62], exploiting natural features
rendered and correlated thanks to detailed maps generated carefully in previous
mission phases. This technique, called Natural Feature Tracking (NFT), represents
the most advanced form of feature-tracking that has flown and applied to a small
body up to date. On the other hand, relative feature tracking algorithms based on
the Kanade-Lucas-Tomasi method described in [63] in combination with navigation
filters will be adopted in Hera for the most critical phases in the vicinity of Didymos
[40], complementing Lambertian sphere correlation techniques used from further
distances.

Another interesting approach is instead adopted by the Hayabusa-II mission,
using artificial landmarks dropped on the surface of the body as reference beacons
[64]. Being the landmarks retro-reflective, they are easily detected by the cam-
eras after being artificially stimulated by stroboscopic lights timed before image
acquisition. Compared to natural landmarks, feature recognition and matching are
significantly easier.

Finally, many other works in the literature exist regarding absolute and relative
feature-based methods [24, 65–72] using boulders, craters, or other sort of local
features.

For what concern IP and segmentation, typically, the works presented in the
previous section find applications both in the medium and close regimes. The main
challenge is the capability to robustly detect features such as boulders and craters
at different scales (given that these landmarks often exhibit fractal appearance)
and under strongly varying illumination conditions and occultations.
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2.2 Artificial Intelligence

In its broadest definition, AI is the science of developing machines that can act and
make decisions “intelligently”. As illustrated in Figure 2.3, it encompasses both
ML, defined as the capability to train a model to perform tasks without explicitly
programming them, and Deep Learning (DL), considered as the most sophisticated
form of ML that employs deep neural architectures that try to mimic the functioning
of biological brains. It is important to distinguish between these terms, as they are
often misused.

A
RTIFICIAL INTELLIGENCE

M

ACHINE LEARNING

D

EEP LEARNING

Figure 2.3: AI, ML, and DL are different concepts in relation to each other as three
concentric circles.

When considering the concept of learning, there are three distinct paradigms:
• Supervised: A model learns from annotated input-output relationships. The

annotations, referred to as labels, are actively used by the model to learn
an input-output representation. Classification and regression tasks are often
addressed via supervised learning approaches. The drawback of this approach
is the need for annotated datasets, which, depending on the domain, could
be expensive.

• Unsupervised: A model is tasked to find patterns, structures, or relationships
in unlabeled data. In this form of learning, the model learns from the data
without explicit supervision or pre-defined labels. The main goal of this
strategy is to discover hidden patterns, clusters, or representations hidden
within the data. Clustering, association, and dimensionality reduction are
typical unsupervised tasks.

• Reinforced: A model, referred to as an agent, learns to take a sequence of
actions within the environment to maximize a cumulative cost function via
positive or negative rewards. Instead of relying on labeled data, it depends on
trial and error of the agent taking actions within the environment, observing
the resulting state and reward to improve its decision-making policy. Game
playing, robotics, and autonomous systems often use this form of learning.

These three paradigms represent distinct approaches to machine learning, each
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suited to different types of problems and data. The one used in this manuscript is
related to supervised learning.

In supervised learning, various models and architectures can be used for classifi-
cation, regression, and segmentation tasks investigated throughout the manuscript.
The theory behind the main architectures used in this research is illustrated in detail
in an incremental order of complexity in the next sections.

2.2.1 Neural Networks

This section illustrates the core concepts used to properly design and train a neural
network. The concepts presented here are the bases that apply also to other forms
of more complex architectures illustrated toward the end of the chapter.

2.2.1.1 Neurons, weights and biases

A neuron is the fundamental unit at the base of neural networks. Its functioning
is pretty simple since, in its simplest form, the i − th neuron produces an output
based on a biased and weighted sum of its inputs followed by an activation function
re-mapping [22]:

yi = h
(
wT

i xi +bi

)
(2.1)

where wT
i and bi represent the learnable weights and bias of the neuron, xi is the

vector collecting all of the inputs, and h is a non-linear activation function. A
schematic of this simple operation is also illustrated in Figure 2.4 and is loosely
based on the functioning of real neurons in biological systems

(a) Biological neuron. (b) Artificial neuron. (c) Artificial neurons.

Figure 2.4: Schematic of a single biological neuron (a) from 8, single artificial neuron (b)
and irregular computation graphs with multiple neurons (c).

Having defined its most fundamental unit, a Neural Network (NN) can be
represented as a computation graph composed of interconnections between neurons.
Such structure is inspired by similar interconnection between neurons in biological
brains. One such structure is illustrated in Figure 2.5. However, instead of being
organized as an irregular computational graph, NNs are usually organized into
regular consecutive layers. From a mathematical perspective, this is useful for

8https://cs231n.github.io/neural-networks-1/, last accessed 30th of August
2023.

https://cs231n.github.io/neural-networks-1/
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establishing a simple relationship between all the neurons within a layer and its
output:

yl = hl (Wlxl) (2.2)

where xl are the input of the layer, Wl is a weight matrix representing the weights
between each layer’s input to each neuron, and hl is the layer’s activation function,
assuming all the neurons in that layers share the same activation function. Layers
in which a full weight matrix Wl is used are called “dense” or “fully connected”
layers since all of the inputs to one layer are connected to all of its outputs. A
representation of different NN regular architectures is illustrated in Figure 2.5.

(a) Single layer NN. (b) Multi-layers NN.

Figure 2.5: (a) Single layer and (b) multi-layers NN architectures. The networks are
initialized with random weights and biases. The opacity of the connections represents the
weight norm, while different colors represent the sign (negative for red and positive for
blue). Generated from 9.

In its simplest form, a NN can even take the structure of a single neuron as
illustrated in Figure 2.4(b), as has been the case for the perceptron illustrated in [73]
for binary classification. More complex tasks also demand complex architectures.
An architecture is defined as a single-layer feedforward network or multi-layer
perceptron when, as illustrated in Figure 2.5(a), it is composed only of one fully
connected layer between input and output. When multiple layers are used, referred
to as hidden layers, the network is defined as a shallow or deep network, depending
on the number of hidden layers. An example of shallow, multi-layer architecture is
illustrated in Figure 2.5(b).

The entire architecture’s weights and biases define the set of parameters
grouped by θ, also referred to as internal or local. The design of the architecture
and parameters used to train a model defines the set of parameters grouped by Θ,
also referred to as external, global, or hyperparameters of the model. θ are optimized

9https://alexlenail.me/NN-SVG/index.html, last accessed 1st of September 2023

https://alexlenail.me/NN-SVG/index.html
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during training, Θ are the results of arbitrary choices about the architecture or
output of an extensive search grid. A trained architecture can be used in inference
as a function π (parameterized by Θ and θ) that acts on the input X to generate
the output vector Y:

Y = πΘ (X|θ) (2.3)

The optimal sets of θ and Θ may be denoted by a ∗ superscript and are found
via the training and validation

2.2.1.2 Activation functions

Various activation functions are defined in the literature and used in NN. Amongst
them, the most used ones throughout the manuscript are:

Sigmoid =
1

1 + e−x
(2.4)

Tanh =
ex − e−x

ex + e−x
(2.5)

ReLU =

{
x if x > 0
0 otherwise

(2.6)

LReLU =

{
x if x > 0
αx otherwise

(2.7)

Sof tmax =
exi

∑
K
j=1 e

xj
(2.8)

The output of the sigmoid and tanh are bounded respectively between 0 and
1, and -1 and 1. The ReLU is bounded between 0 and +inf, while the LReLU
is unbounded. Finally, the softmax is an activation function that values into
probabilities. The softmax output is a vector representing each possible outcome’s
class likelihoods. For its property, the softmax is often used as an activation function
in the last layer of classification networks used for classification.

The choice of the activation function impacts training time and the robustness
of the network. Each function has its pros and cons, which this section does
not discuss further. ReLU is often used as a preferred function in convolutional
architectures due to its simplicity and low computational cost during training.
However, findings from [74] and from experience hinted that LReLU performs
better than ReLU when considering noisy images while avoiding irreversible neurons
dying during training, which can happen with poor initialization. Thus, whenever
the choice of the activation function is not part of the hyperparameter search, in
this manuscript, either the ReLU or LReLU will be primarily used as the activation
functions.
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2.2.1.3 Loss and metric functions

The loss function is fundamental to compute the mismatch between predicted and
actual labels in a supervised learning setting. As for the activation function, various
loss functions exist depending on the specific task required. Some have already
been introduced in Section 1.8.4. As discussed in the following sections, the loss
function plays a pivotal role in the training of the network and, thus, must satisfy
specific mathematical properties regarding its differentiability. A metric function is
instead used to evaluate the performance of a model without being directly involved
in the training.

2.2.1.4 Backpropagation

Using the building blocks presented in the previous sections, it is possible to assemble
a rudimental neural network. Such a network, however, would be practically useless
without an algorithm to adjust its weights and biases, orienting them in a way that
minimizes the loss function.

The most successful, known, and used form of training relies on the backprop-
agation algorithm, first introduced in [75]. Its simple steps are briefly described
below.

• Step 1 (Forward pass): Training data is propagated through the network,
which is instantiated by a set of weights w and biases b. This pass produces
outputs for each network layer, from input to output.

• Step 2 (Weights and Bias adjustment): weights and biases are adjusted
to reduce the network error.

– Step 2.1 (Error computation): The difference between the predicted
output layer and its expected value is quantified with the use of the
loss function L.

– Step 2.2 (Backward pass): For each set of w,b, the derivative gt
of the error is found with respect to them. The computation of gt
starts from the back of the network (the output layer) and then moves
backward toward the start of the network (the input layer). This is
because gt is simple to compute for the final output layers, which is
directly linked to L. gt can then be computed at each layer using the
next layer’s derivative computation, passing from the back to the start
of the network. The algorithm takes its name from this passage, which
can be seen as the backpropagation of the error, which is possible by
applying the chain rule.

– Step 2.3 (Weights and Biases update): The values of w,b are
adjusted by a negative proportional value of the derivative value gt (for
example, for w this corresponds to wt+1 = wt −αtgt , where α is a
step size parameter called learning rate.

• Step 3 (Repeat): The process is repeated from step 1 with a new set of
wt+1 ,bt+1 .
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Different strategies can be used as stop criteria of this iterative algorithm: a
fixed number of iterations, the value of the loss function on the validation set, or
convergence of the weights and biases.

The computation of the derivatives gt requires the unit activations computed
in the forward pass. However, a typical implementation of a NN could be using
millions of units whose output values must be stored and used during training.

2.2.1.5 Training

The iterative process illustrated in the previous section is at the heart of the usual
training procedure of NN. Depending on the size B of training data flowing at
each iteration, typically, three main variations of gradient descent algorithms are
distinguished: Stochastic Gradient Descent (SGD), Mini-Batch Gradient Descent
(MBGD), and Gradient Descent (GD).

In the SGD, a single training sample (B = 1 )is used to evaluate the loss
function and compute the derivatives gt . However, the directions obtained using
the SGD are characterized by noisy updates. To avoid this, losses and gradients
are usually summed over a small subset of the whole training data grouped into a
batch B =M in what is referred to as MBGD:

LB(w) = ∑
M∈B

Lm(w) (2.9)

g = ∇wLB (2.10)

where B is the batch or mini-batch, and M is its size, comprised between 1 and N,
the latter being the entire dataset size. Finally, if B = N, we refer to the method
as GD.

The MBGD is often the preferred choice since it combines frequent weights and
biases updates with reasonable noise levels during gradient descent. During training,
the batch size B and learning rate α constitute important parameters [76]. Learning
rate schedulers can also be implemented at variable speeds to allow training to
start with larger values that decrease over time, allowing the optimization to settle
quickly into a minimum [22].

Moreover, using batches makes it possible to load and process smaller inputs,
decreasing the computational load and memory while increasing convergence speed,
both of which are issues of the SGD and GD, respectively. The batch size is thus
often a critical design choice when training a CNN.

Traditional gradient descent algorithms are prone to stall when reaching a
flat region in the search space. For these reasons, momentum-based algorithms
have been implemented as extensions of gradient-descent ones. The momentum is
implemented by an exponentially decaying running average of the gradient, which
is compounded and provides a direction update:

vt+1 = ρvt +gt (2.11)
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wt+1 =wt −αtvt (2.12)

Many variations of these optimization schemes have been developed in the
last decades. The most popular ones are Nesterov momentum, Adaptive gradient
AdaGrad, RMSProp, Adadelta. However, the most used one [22] is currently Adam,
which groups elements of all the previous schemes into a unified framework. The
peculiarities of these algorithms are not described in detail in this manuscript.

Important undesirable behaviors to prevent during training are underfitting and
overfitting, illustrated in Figure 2.6.

Predictor variable
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(b) Training episode.

Figure 2.6: Underfitting and overfitting from an output-prediction point of view (a) and
from a loss curve behavior point of view (b).

Overfitting is an undesirable behavior occurring when a model gives accurate
predictions only for training data. It happens because the model has sufficient
complexity to memorize the training data, embedding a representation within the
weights and biases of the network. An overfit model cannot generalize to unseen
data, making it unreliable for inference. Underfit is the opposite phenomenon,
in which a too-simple model cannot learn a fruitful representation of the data.
Underfit can result from a model needing more time for training, more features to
consider as input, or less regularization put in place against overfit. A balanced
network reaches an equilibrium between these opposite behaviors.

As illustrated in Figure 2.6(b), underfit and overfit are not visible from the
behavior of the training loss, but they are instead clear from looking at the behavior
of the validation loss, computed over samples that are not used during training.

Finally, the typical training strategy with gradient-based methods is schematized
in Figure 2.7.

It is good practice to divide the dataset into three different splits of variable
composition referred to as train, validation, and test sets. The model uses the
training set for learning and optimizing θ. Concurrently, during this phase, a
validation set can be used to tune the hyperparameters Θ and to avoid underfitting
or overfitting. The latter case is achieved by training the model to an arbitrary
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Figure 2.7: Generic training framework in a supervised learning setting.

number of epochs large enough so that the model achieves overfitting but then
saving the value of θ that achieves the minimum validation loss. The former is
achieved by saving the values of Θ for which the model reaches the best validation
loss. Finally, the test set is used as representative of deployment conditions to
characterize the model’s performance. For this purpose, the test set is kept
isolated during training and only used in inference. The outcome of the network’s
performance on the test set should not cause a feedback loop to change Θ, as this
could introduce a more subtle form of overfitting, inducing the design to believe
the model is robust for deployment in real conditions while it has simply overfitted.

To train NN, gradient-descent methods based on backpropagation are the
primary method to optimize θ. However, alternative approaches that address its
drawbacks are being actively investigated in the literature. This training strategy is
computationally intensive since it relies on multiple iterations and requires two data
passages over the network. An alternative direct approach that avoids the backward
pass using a regularized least-square method is presented in Section 2.2.3.

As with any data-driven model, it is important to stress that the final perfor-
mance is driven by the quality and capability of the data to represent the real-world
conditions in which a model will be deployed. If the difference between real and
test data is too big, then a domain gap exists between the data used to train and
assess network performance and the environment of the real world. If the data
is corrupted or wrong, a model taking garbage as input will produce garbage as
output.

2.2.1.6 Regularization

Regularization is a set of techniques used to prevent overfitting and improve the
generalization performance of a model. The simplest form of regularization is
achieved by including additional terms in the loss function used during training:

L= LD +LW (2.13)

LW = ∑
k

∥wk∥p (2.14)
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where LD represents the loss component due to the data, and LW defines the
regularization term on the weights. Quadratic or p-norm penalty terms can improve
the system’s conditioning and reduce overfit[22]. To make large weights smaller,
it is possible to set p = 2 , resulting in L2 regularization, while setting p = 1 can
drive some of the weights to zero, resulting in L1 regularization, also called Least
Absolute Shrinkage and Selection Operator (LASSO).

Another form of regularization consists of data augmentation: increasing the
number of training samples by properly perturbing the ones already available. Data
augmentation is widely used for datasets for which it is expensive to generate labeled
samples. Considering images, data augmentation consists of stretching, rotations,
noise addition, cropping, resizing, and flipping, which can change the image’s
appearance. While this is trivial for classification tasks (since the labeled class
associated with the image remains unchanged by the modification over the input),
it requires particular care for regression tasks, as illustrated in Section 3.1.1.5.

Dropout is a powerful regularization technique introduced in [77] based on the
random clamping of the neurons within a layer. By assigning a dropout percentage
to one or multiple layers during each iteration of the training, random neurons
corresponding to that percentage are disabled. Dropout prevents the networks
from specializing specific units to certain tasks or samples, significantly improving
generalization. Dropout is also a form of ensembling since it enables multiple
architectures to live within the same model by exploring randomly activated neural
paths. The rates and layers in which this strategy is implemented can be considered
a model’s hyperparameters, thus needing careful tuning.

2.2.1.7 Transfer learning

Transfer learning is a powerful technique that transfers knowledge learned from a
task by re-using it to boost performance in learning a new and related task. Since
training models, especially deep ones, may require substantial computational power,
an established approach is to use transfer learning to get a fully trained model or
a portion of it. This is then considered for the initial distribution of weights and
biases and is fine-tuned via a new training phase specifically for the task considered.
The fine-tuning may consider only a portion of the model or its entirety, freezing
the weights and biases that shall not be changed during the training for the new
task.

2.2.2 Convolutional Neural Networks

CNN have been first introduced as a succesful application in [78] for digit recognition
and then popularized for image classification in [79]. Since then, they established
themself as the principal state-of-the-art approach for image analysis.

Compared to traditional NNs, CNNs are characterized by deep architectures
excelling in correlating spatial information. The architecture of a CNN augments
that of traditional NN with specific blocks developed for tensorial operations. The
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main difference between conventional NNs and a CNNs lies in the fact that instead
of connecting all the units in a layer to all the units in its preceding layer, CNN
organize each layer into feature maps while conserving spatial information.

Typical convolutional architectures are schematized in Figure 2.8. The most used
ones in this manuscript are hierarchical convolutional architectures (for regression
and classification, exemplified by the architecture in Figure 2.8(a)) and UNet
architectures (for segmentation, exemplified by the architecture in Figure 2.8(b)).
Variants of these architectures are introduced and explained when needed throughout
the manuscript. In contrast, this section describes the most important properties
of CNN architectures with a standardized notation.

Input Convolutional layers

Flattening

Fully connected layer

Neural Network layers Output

l1
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Activation function

(a) CNN for regression or classification.

Input Encoder Decoder OutputHead
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(b) CNN for image segmentation.

Figure 2.8: Schematic of CNN architectures used in this manuscript for regression or
classification (a) and image segmentation (b).

Generically, a typical CNN architecture can be divided into different elements
depending on the architecture considered, as displayed in Figure 2.8:

• Input: The input X represent the w ×h×d tensor representing the batch B
processed by the network.

• Encoder: A sequence of image processing operations (generally represented
by convolutional, pooling layers, and activation functions) is applied to extract
and correlate spatial information while reshaping the input tensor, decreasing
its height and width, and increasing its depth. This network portion encodes
the data into a smaller but richer volume. In a classification/regression type
of architecture, the encoder is represented by the convolutional layers up
to the flattening operations that generate the fully connected layer. This is
similar to a segmentation network based on the UNet architecture, with the
main difference being the lack of the flattening operation.
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• Fully connected layer: in a CNN for regression or classification, the con-
volutional layers need to be interfaced at one point with a traditional NN
portion of the network. A reshape operation is thus required to flatten a
3D tensor into a 1D vector referred to as the fully connected layer, which
constitutes the input layer for the NN in the head of the architecture.

• Decoder: In a hierarchical convolutional architecture, the decoder uses the
highly abstracted representation generated by the encoder to generate a
prediction. This representation is said to be in the latent space and essentially
represents the data in a more meaningful and reduced form. A NN (either
shallow or deep) is implemented to map the connection between the neurons
from the fully connected layer, which embeds spatial information extracted
from the image in the latent space, and the output layer, which expresses the
desired output label of the entire architecture. In a hierarchical architecture,
the decoder and the head often coincide. In a UNet architecture, the decoder
comprises the inverse processing steps of the decoder concatenated with
information from the encoder via skip connections.

• Skip connections: These are connected tensors that flow from the encoder
to the decoder. These connections are peculiar to UNet architectures and
are used to retain spatial information.

• Head: This portion is the final section of the network. In transfer learning,
this is often the only processing portion of a model whose weights and biases
are changed via fine-tuning. In hierarchical convolution architecture, the head
is a portion or the entirety of the neural network layers, which are considered
the decoder section of the network.

• Output: The output Y of the network. Depending on the task, this could
be a tensor, a vector of class probabilities, or a vector of regressed values.

The building blocks of CNN are briefly described hereafter. These blocks
augment those of NN and are tailored to CNN architectures.

2.2.2.1 Convolution

Convolution is a mathematical operation at the core of the functioning of a CNN.
Given a generic tensor I (which could represent an image) and a smaller matrix
K , referred to as “kernel”, the 2D convolution operation between the two can be
performed as:

C (x ,y) = I ∗K =
∞

∑
i=−∞

∞

∑
j=−∞

I (x− i ,y − j) ·K (i , j) (2.15)

where x ,y are spatial coordinates over the input image, and C (x ,y) is the output
of the convolution, also referred to “feature map” or “activation map”. The feature
map is obtained during the convolution by sliding the kernel over the entire input.

Convolution is a classical image-processing operation. Using different kernels,
it is possible to obtain feature maps excited by a particular kernel structure. This is
often called filtering within a traditional IP context. When the components of the
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kernels are explicitly defined, they can be used to highlight edge, blur, or sharpen
the input image, as illustrated in Figure 2.9 using the following kernels:

Identity =

0 0 0
0 1 0
0 0 0

 (2.16)

Edge detection =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (2.17)

Sobel opertor =

1 0 −1
2 0 −2
1 0 −1

 (2.18)

Sharpen =

 0 −1 0
−1 5 −1
0 −1 0

 (2.19)

Gaussian blur =
1

16

1 2 1
2 4 2
1 2 1

 (2.20)

Box blur =
1

9

1 1 1
1 1 1
1 1 1

 (2.21)

(a) Identity. (b) Edge. (c) Sobel.

(d) Sharpen. (e) Gaussian. (f) Box.

Figure 2.9: Feature maps obtained by the application of explicit kernels over the
representation of a Bhoma head guarding the top of the portal to the Tirta Empul temple
in Bali.
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In a CNN, however, the components of the kernels are not defined a-priori and
are considered as weights and biases of the network. By doing so, a great variety of
implicit feature-extracting filters can be designed and combined in the hierarchical
structure of the CNN, applied to images, and then recursively to their feature maps.
Convolution operations are parametrized by padding, stride, and dilation.

Padding refers to the amount of pixels added to the input when the kernel
processes it. This is relevant when a kernel is applied over the edge of the input,
and the missing pixels outside the input must be specified for the convolution to
occur. The stride represents the movement in terms of the number of pixels that
the kernel performs from one convolution to the next. Finally, the dilation rate
expands the kernel by inserting holes between its consecutive elements. In essence,
it represents a convolution with pixel skipping to cover a larger input area. Dilated
convolutions pool over a larger input region using fewer operations and learnable
parameters. Examples of dilated convolutions are illustrated in the architecture in
Figure 4.18 in Section 4.2.2.

The inverse operation of convolution is called deconvolution and is used in the
decoder of segmentation architectures in a similar way in which convolution is used.

2.2.2.2 Pooling

Pooling is an operation to downsample the activation maps generated by convolu-
tions. The most commonly used pooling forms are max and average, in which the
maximum or average values from a specified region are passed to the subsequent
layers. Pooling is essential in the hierarchical structure of CNN to synthesize spatial
information, decreasing the data flow in the deep portion of the network.

2.2.2.3 Flattening

Flattening is a simple reshaping operation that transforms a three-dimensional
tensor into a one-dimensional vector. The primary purpose of flattening is to
unfold the last feature map generated by the convolutional layers into a dense fully
connected layer. This format can be used to interface with traditional NNs.

2.2.3 Convolutional Extreme Learning Machine

An alternative approach to deep architectures and learning via GD exists, which in
some cases has been demonstrated to perform similarly or better. In this section,
an overview of this approach is presented.

2.2.3.1 Introduction to extreme learning

Extreme Learning Machine (ELM) is a theoretical formulation of a learning strategy
first introduced about two decades ago in [80] and later organized more consistently
first in [81] and then in [82]. In these works, ELM theory is applied to single-layer
feedforward networks whose weights and biases are randomly initialized. Training
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uses a Leas Square (LS) method to adjust only the weights of the connections
between a single hidden layer and the output one.

Training happens extremely fast because LS is an order of magnitude faster than
GD. With enough randomized neurons in the hidden layers, a network could generate
a multi-dimensional basis that can be used to map the nonlinear relationship between
input and labels. ELM is demonstrated to perform similarly or better than deep
architectures [80–82], requiring only a fraction of their training time.

At the same time, ELM concepts were being formalized and used, the pivotal
work in [83] stressed the unexpected performance achieved with CNN when using
random weights and biases in the convolutional kernels considering generic computer
vision tasks. The authors in [83] prove that:

1. A surprising fraction of performance in a CNN can be contributed by the
intrinsic properties of the architecture alone and not from the learning
algorithm used (these include settings such as the number of layers, the depth
of the kernels, and the activation functions used).

2. Convolutional pooling architectures can be frequency selective and translation
invariant, even when random weights are used.

3. A methodology that uses randomized CNN to search the hyperparameters
within the architecture design space performs inherently better than traditional
approaches. An order of magnitude speedup in the training process is obtained
by sidestepping the time-consuming learning process and only focusing on
those architectures with superior hierarchical structures.

These two research lines come together in [84], which extends the ELM theory
to CNN with randomized kernels, introducing the concept of Convolutional Extreme
Learning Machine (CELM) for generic computer vision tasks. The convolutional
layers of a CNN are set with random weights and biases up to the fully connected
layer, whose connections with the output layer are treated as an ELM architecture
and solved with a LS method. Similarly to ELM, CELM achieves extremely fast
training and accuracies that may be similar to those of CNN. Since then, several
other works using CELM architectures and training strategies have been presented
in the literature over the past two decades, as summarized by the thorough and
systematic review in [85].

Interestingly, from [85] and to the best of the author’s knowledge, no prior work
has been focused in the past two decades on the adoption of CELM for onboard
IP applications that target celestial bodies. Albeit their application could seem
outdated, they may be well suited when considering the typical scenery imaged by
a navigation camera in the proximity of a small body, which is relatively simple
when compared to other computer vision domains. The background and foreground
are distinguishable, and the surface variations are only due to morphological
characteristics (i.e., craters, boulders, etc.), which only vary under illumination
conditions. This domain is fundamentally simpler than typical computer vision
applications in urban environments, which need to account for many commonly used
objects, where deep architectures are the state of the art [22]. Moreover, previous
findings in [32] already hinted that the filtering capabilities of CNNs on images
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of a small body is the critical element that pushes the performance compared to
traditional methods.

2.2.3.2 Training

In a traditional CNN architecture, convolutional layers are driven by weights and
biases that only influence the kernels used in the convolution operations. On the
other hand, the weights and biases of the neural network portion of the architecture
represent the influence of the neuron connections between the fully connected and
output layers.

For simplicity, when considering CELM, it is important to consider these two
sets of weight and biases separately, as illustrated in Figure 2.10, since depending
on the training strategy used within this manuscript, they will be handled differently.
The former will be referred to as W and b, the latter to β and β0 . The set of
weights and biases of the entire architecture defines the set of parameters referred
to as θ = (W, b, β, β0).
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Figure 2.10: Division between the convolutional and neural network layers in a model
trained using the CELM paradigm.

Apart from the weight distinction, from an architecture point of view, CELM
and CNN can share identical structures. Indeed, the term CELM refers to the
training strategy other than the architecture, but it is often convenient to refer to
a CNN that has been trained using ELM theory directly as a CELM.

In a CELM, once the weights and biases of the convolutional layers are randomly
set at initialization, they are considered frozen during training. On the contrary, β ,
are tuned during training. Given a set of true input-output samples, (X,T), the
forward pass of the input into the network generates a hidden layer output matrix
H right before the output layer:

H=

h(x1 )...
h(xN)

=

h1 (x1 ) . . . hL(x1 )
...

. . .
...

h1 (xN) . . . hL(xN)

 (2.22)

where L is the hidden layer’s size before the output one, and N is the number of
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neurons in the output layer. The training data target matrix is then defined as:

T=

t1...
tN

=

t11 . . . t1m
...

. . .
...

tN1 . . . tNm

 (2.23)

To find the best set of weights β that matches the matrix T, the following
optimization problem shall be solved [84]:

Minimize : ∥β∥22 +C ∥Hβ−T∥22 (2.24)

that is a regularized least square that depends on the C coefficient. Including the
first term regarding the minimization of the weights vector β increases the stability
and improves generalization capabilities [81]. The minimization problem can be
solved efficiently by:

β =

HT
(

I
C +HHT

)−1
T, if N ≤ L(

I
C +HTH

)−1
HTT, if N > L

(2.25)

Since the remaining weights and biases (W, b, and β0 ), are randomly fixed at
initialization and are never changed, there is no need for a backward pass. Only
the forward pass and the LS problem must be processed, making the training much
faster than gradient-based methods.

This advantage does not impact the computational effort at inference compared
to the one of CNNs. It has to be intended instead as a tool that can be exploited
to explore the design space of an architecture before the internal optimization of
its weights and biases. This exploration, which is usually performed via search-
grid methods [22, 85], can instead be performed more extensively thanks to the
exceptionally fast training time of CELM.

2.2.4 Recurrent Neural Networks

While the networks presented in the previous sections are specifically designed
to operate with single feature vectors or images, producing pinpoint estimates,
sometimes it is also helpful to process image sequences, fusing spatial information
and temporal dependencies. For these types of tasks, the most suited form of
architecture is represented by Recurrent Neural Network (RNN) [86].

Using multiple stages, data is processed sequentially in a RNN so that one
stage’s output feeds the following input. Recurrent connections are established
between epochs, allowing information to persist over time. Although the weights
are shared between all stages, each maintains its state and backpropagates its
gradients.

Long-Short Term Memory (LSTM) are a particular family of RNN first intro-
duced in [87] and then popularized in many other works. The design of LSTM is
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specifically thought to avoid the long-term dependency problem typical of tradi-
tional RNN, which performs poorly when a large gap exists between the relevant
information and the point where it is needed. All RNN (when unfolded) can be
represented by a chain of repeating modules, as illustrated in Figure 2.11(a). When
a simple RNN is used, this could be populated by a straightforward structure, or
in the case of LSTM, by a complex architecture composed of several gates that
control the flow of information, as illustrated in Figure 2.11.

Xt

R

Yt

X0

R

Y0

X1

R

Y1

X2

R

Y2

Xt

R

Yt

=

(a) Unrolled RNN architecture.

Xt

Yt

Yt
Yt−1

Ct−1 Ct

(b) Typical LSTM structure, from 10.

Figure 2.11: An unrolled RNN (a) and a zoom over a LSTM unit (b).

As depicted in Figure 2.11(b), the flow of information is controlled by three
gates, represented by σ layers. Note that the cell state C flows almost unperturbed
between all cells, ultimately allowing the LSTMs to perform better than traditional
NNs.

As LSTM are exceptional in image-sequence analyses, they are used in this
research to improve position estimates and to generate velocity estimates from
position sequences.

10https://colah.github.io/posts/2015-08-Understanding-LSTMs/, last ac-
cessed 31st of August 2023.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Data generation

“I put a spatially tessellated void inside a modified temporal field until a
planet developed intelligent life. I then introduced that life to the wonders
of electricity, which they now generate on a global scale. And, you know,
some of it goes to power my engine and charge my phone and stuff.”

Rick Sanchez, S2E6

Access to high-quality data-label pairs is fundamental for data-driven algorithms
trained with supervised learning methods. Unfortunately, due to the limited imaging
of celestial bodies throughout the history of space exploration, there is a practical
constraint regarding the availability of such data for computer vision applications in
this field. This limitation adversely affects the ability to create and train data-driven
algorithms and the capacity to validate their functionality before deployment.

This chapter delves into this issue by showcasing three approaches to address
this challenge with increasing complexity, cost, and fidelity. Firstly, an artificial
environment can generate synthetic yet realistic samples. In this approach, one has
complete control over the environment, allowing for the simple generation of labels.
This represents the simplest form of data generation, with the primary advantage
being its accessibility to a wide range of users due to its cost-effectiveness. However,
it requires a highly accurate modeling of the environment to be effective. While
there is no constraint on the volume of data generated for training, validation
is complex but can be reached by comparing the model’s performance with real
images from previously flown missions.

Another alternative involves using an optical facility equipped with a representa-
tive camera. This setup is helpful to validate the IP, since including a real camera
enables the simulation of a subset of typical errors and enhances the realism of
the environment. This approach also allows for the execution of algorithms on a
representative processor connected to the camera interface.

Lastly, a physical facility provides the most authentic setting, resembling the
actual environment. However, using 3D shape models in robotic facilities or analog
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terrain models can be rigid and costly, often seen as the final stage in an incremental
validation campaign. Data acquired in this setting is precious but rarely shared.

3.1 Synthetic rendering

The Celestial Object Rendering TOol (CORTO) is a tool under development since
Summer 2020 at the Deep-space Astrodynamics Research & Technology (DART)
group11 at Politecnico di Milano. The tool’s objective is to enable the high-fidelity,
flexible, and simple generation of artificial image-label pairs of celestial bodies that
can be used both to design and test IP and visual-based navigation algorithms.
The motivations behind the tool development are multiple and address pressing
issues faced by the authors of this work in research and industrial contexts.

First, open datasets of real imagery of close-up views of celestial bodies such
as planets, moons, asteroids, and comets are scarce. This is due to a combination
of different limiting factors: 1) We currently do not have an extensive sample of
visited bodies in the Solar System, especially concerning asteroids and comets.;
2) The existing datasets are limited by the mission geometry (e.g., in the case of
flybys, often only a single face of the body is imaged at high resolution), posing
stringent viewing and illumination conditions of the existing images; 3) Not all
datasets from previous missions are publicly available (different space agencies have
different dissemination strategies) and even when they are released for use by the
broader engineering community, they are often not released shortly after arrival
due to embargo reasons and priority given to scientific investigations, introducing a
delay into the availability of the images by researchers interested into visual-based
applications.

Second, to design, validate, and test image processing algorithms that use
celestial bodies as targets, a common approach is to generate and use comprehensive
high-fidelity datasets. Due to the lack of control over the viewing and illumination
conditions of real-mission images, creating a digital model of the target body is
often preferred to explore the search space without limitations, both in terms of
design and testing of the algorithm. An established approach is thus to artificially
simulate the visual environment with the fidelity required by the algorithm to
complement the existing data. This can be performed in two ways. When synthetic
datasets are made out for existing and well-known bodies, they can augment existing
images with additional geometric and illumination conditions. On the other hand,
considering bodies that have never been imaged, synthetic datasets can be used to
realistically represent them, providing a powerful tool for mission designers.

Third, as an increasing number of image-processing algorithms are being
explored with data-driven design, a critical drawback exists for their adoption for
space applications. These algorithms are often data-hungry, so their development
clashes with the lack of data that characterizes space applications, particularly minor
bodies. Moreover, supervised methods do not simply need data but also associated

11https://dart.polimi.it/, last accessed 8th of August, 2023.

https://dart.polimi.it/
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labels. For example, reconstructed positioning data from a real mission can be used
to represent the flew trajectory with an estimation error and used as a label for
navigation algorithms. However, applications such as semantic segmentation may
require data (e.g., a pixel-per-pixel classification of the classes of morphological
features of an image) that is far more complex to generate.

Fourth, at the time of development of CORTO, tools capable of artificially
recreating the environment of celestial bodies were neither open-source nor easily
accessible by individual researchers. Given the capabilities these tools unlock, their
access is often regulated via licensing or is generally kept confidential since they
provide a strategic advance. Moreover, their development requires a substantial
investment of time and competencies that may not match that of an image-
processing designer. Consequently, there has been a proliferation of different useful
tools, which has created the effect of isolating communities and avoiding sharing
datasets and tools for image generation. Among the most notable ones:

• Planetary Planet and Asteroid Natural scene Generation Utility (PANGU)[88–
90] is considered the state-of-the-art for rendering celestial bodies. It is a
tool with robust, long-lasting, and documented development designed by
the University of Dundee for the ESA. PANGU supports various advanced
functionalities and is extensively used as the industry standard for ESA
projects involving visual-based navigation algorithms. However, access to the
software is regulated via licenses and often requires direct involvement with
an ESA project as a pre-requisite.

• SurRender [91] is proprietary software by Airbus Defense and Space12 that
has been successfully used in designing and validating various vision-based
applications for space missions in which the company is involved. The
software can handle objects such as planets, asteroids, stars, satellites, and
spacecraft. It provides detailed models of sensors (cameras, LiDAR) with
validated radiometric and geometric models (global or rolling shutter, pupil
size, gains, variable point spread function, noises, etc.). The renderings are
based on real-time image generation in OpenGL or raytracing for real-time
testing of onboard software. Surface properties are tailored with user-specified
reflectance models, textures, and normal maps. The addition of procedural
details such as fractal albedos, multi-scale elevation structures, 3D models,
and distributions of craters and boulders are also supported.

• Space Imaging Simulator for Proximity Operations (SISPO)[92] is an open-
access image generation tool developed by a group of researchers from the
universities of Tartu and Aalto, specifically designed to support a proposed
multi-asteroid tour mission [93] and the ESA’s Comet Interceptor mission
[94]. SISPO can obtain photo-realistic images of minor bodies and plan-
etary surfaces using Blender13 Cycles and OpenGL14 as rendering engines.

12https://www.airbus.com/en/products-services/space/customer-
services/surrendersoftware, last accessed 8th of August, 2023.

13https://www.blender.org/, last accessed 8th of August, 2023.
14https://www.opengl.org/, last accessed 8th of August, 2023.

https://www.airbus.com/en/products-services/space/customer-services/surrendersoftware
https://www.airbus.com/en/products-services/space/customer-services/surrendersoftware
https://www.blender.org/
https://www.opengl.org/
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Additionally, SISPO makes available advanced scattering functions written
in Open Shading Language (OSL) that can be used in the shading tab in
Blender to model surface reflectance, greatly enhancing the output quality.

• The simulation tools illustrated in [95, 96], that implements high-fidelity
regolith-specific reflectance models using Blender and Unreal Engine 515.
The tools can render high-fidelity imagery for close proximity applications,
particularly about small bodies, focusing on the high-fidelity simulation of
boulder fields over their surfaces.

• AstroSym[97], developed in Python to provide a source of images for closed-
loop simulation for Guidance Navigation and Control (GNC) systems for
landing and close-proximity operations around asteroids.

• SPyRender[44], also developed in Python, is used to generate high-fidelity
images of the comet 67P for training data-driven IP methods for navigation
applications.

These challenges motivated the need to develop a simple-to-use, easy-to-learn
tool to enable researchers and students to generate realistic images to train or
test their image processing algorithms. This effort resulted in the development of
CORTO, which has primarily targeted applications around small bodies and the
Moon.

The tool is designed with a modular structure using various software and libraries.
The realism of the final images is intended to reduce the domain gap between
synthetic and real images, providing a powerful tool to a mission designer. This
section describes the main functionalities of CORTO in detail. Great care is also
put into showing the validation of the tool’s output and the applications in which
CORTO is currently being used.

3.1.1 Architecture

CORTO is at the core of the tools developed and used to simulate the visual
environment around celestial bodies. CORTO can be used to generate image-label
pairs both online (with GNC systems connected in closed-loop) or offline (to create
datasets for statistical analysis or design). The tool’s core is the Blender software,
an open-access rendering software that is easy to learn, has a large community, and
supports Python scripting. The main functionalities are handled in Python, while
Matlab, Simulink, and SPICE are used within the tool.

The general architecture of CORTO, as well as its relationship with other tools
and simulators of the DART group, is illustrated in Figure 3.1. The inputs to
CORTO are Scene, Geometry, and Body configuration files, while the outputs of
the tool are images (I ) and labels (L). The tool can be used in open-loop by using
a set of pre-defined configuration files containing all the setup to be used for all the
renderings or in closed-loop by updating only the Scene and Geometry inputs after
the generation and processing of each image. Currently, the tool is not designed

15https://www.unrealengine.com/en-US, last accessed 8th of August, 2023.

https://www.unrealengine.com/en-US


3.1. Synthetic rendering 51

for real-time rendering but focuses on dataset generation and delayed closed-loop
simulations.

Model
Manual

MONET

Model generation

GeometryScene Body

Isyn L2

Noise

Model
TinyV3RSE

In

In

PostProcessGNC

Icam

L1

Simulink
Camera Models

I

I

CORTO

(I, L2)

∆Scene

∆Geometry

Figure 3.1: High-level architecture of CORTO and other tools used at the DART lab.

A critical functionality is the capability to generate labels associated with the
images. These are divided into two groups: L1 and L2 . L1 represent quantities also
used as input in Blender to position the objects in the scene (e.g., the poses of all
the bodies and derivatives quantities such as the range, phase angle, and others).
L2 represent labels generated in Blender during the rendering process (e.g., pixel
classes, depth maps, slope maps, and others). Both sets of labels can be used and
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coupled with images, but it is essential to distinguish between them, as they are of
a different nature.

Below, the flow of how to use the tool is now exemplified, while the core blocks
are explained in detail in the following subsections. The starting point is the Model
generation block in Figure 3.1, which takes as input a rough mesh model saved
as a “.obj” and generates the Body input for CORTO. This block can be used to
augment an existing object into a high-resolution one with morphological features
of interest.

To operate, CORTO needs other inputs, referred to as Geometry, and Scene.
The Geometry input consists of a configuration file in which the poses of the
objects involved in the scene are handled. These include the spacecraft position
(rSC ) and orientation (qSC ), the body position (rB) and orientation (qB), and the
Sun orientation (qS) all in a shared reference system, as it is possible to see in
Figure 3.2. Finally, the Scene configuration file contains data about the camera,
material, and illumination properties of the Sun’s lamp.

The Body, Geometry, and Scene inputs are then read by a Python rendering
script. The script is the core component of CORTO and is used to set up all
necessary configurations for the shading, compositing, and rendering tabs in Blender.
The script manages the renderings and the generation of the image-label pairs,
denoted as Isyn and L2 . An example of scene rendering from CORTO input is
illustrated in Figure 3.2. Note that the Sun’s geometrical settings are commanded
only by its orientation qS and are invariant to its position. For simplicity, it can be
conveniently fixed to the center of the target body.

CoB CoM

CoS
[rSC,qSC ]

[rB,qB]

[qS]

Figure 3.2: Example of scene generation from Geometry input. Position and orientation
of the objects in the scene in Blender (left) and generated image (right).

After generation, images can pass into the Noise model block implemented
in Matlab, which adds artificial noise to the synthetic images Isyn. The noise
can represent camera and environmental disturbances, and its addition can be
selectively turned off. This is particularly relevant when performing Hardware-In-
The-Loop (HIL) simulations since the camera noise can be modeled directly by
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the stimulated camera. For this purpose, the Tiny Versatile 3dimensional reality
simulation environment (TinyV3RSE) facility [98, 99] can be used to include a
camera within the loop of the IP algorithm and to generate noisy images with it.

The output image I after noise addition (either artificially generated or with an
HIL setup) can then follow two routes depending on the open-loop or closed-loop
settings. In an open-loop scenario, the image is saved in a database. In a closed-
loop scenario, the images are transferred to a module in Simulink that acts as a
virtual camera sensor that stimulates a complete GNC subsystem. This approach
uses TCP/IP protocols to transmit images and flag commands that generate the
subsequent spacecraft pose, repeating the entire cycle.

Finally, a postprocessing step can be applied to prepare the image-label pairs to
constitute a dataset. This is especially relevant for data-driven algorithms (that may
require data augmentation, cropping, and resizing) but also applies to traditional
algorithms.

Domain randomization is a powerful technique that allows for a large variation of
the possible image space. In this work, this is intended in terms of the appearance of
the input image. Properly tuning the settings within the rendering, noise modeling,
and postprocessing blocks allows to obtain geometrically identical samples of the
same image with randomized appearance. This technique can be used as a data-
augmentation technique to enable a data-driven model to become robust about
noise, albedo, illumination, material properties, and body position within the input
image.

As explained before, the core capability of CORTO is not only that of generating
high-fidelity images but also of generating labels accompanying such images. What
follows is a set of examples of labels that can be obtained from CORTO. In
Figure 3.3, it is possible to see an image of the Didymos system and associated
pixel labels that could be used for object recognition to distinguish between Didymos,
the primary body, and Dimorphos, its secondary. These masks are obtained at
rendering by properly setting the pass indices of the bodies.

(a) Input grayscale image. (b) Masks w. shadows. (c) Masks w.o. shadows.

Figure 3.3: Image and associated masks for the background (purple), Didymos (green),
and Dimorphos (Yellow) classes.

In Figure 3.4, it is possible to see different labels about craters on the Moon
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and on Ceres generated using high-fidelity texture maps obtained from the Robbins
[100] crater dataset 16 and the Zeilnhofer crater dataset 17.

(a) Moon craters. (b) Ceres craters.

Figure 3.4: Example of images with crater labels obtained in Blender by elaborating a
high-fidelity texture map from the Robbins and Zeilnhofer datasets.

In Figure 3.5, examples of depth-map and slope labels are generated for asteroid
Ryugu and comet 67P.

Finally, in Figure 3.6, it is possible to see different examples of segmentation
maps that can be used generated about small bodies that exploit different pass
indices strategies to obtain multi-layers maps, single class maps (boulders-surface)
and hierarchical ones (background, surface, small boulders, and prominent boulders
divided by single identifiable color codes).

3.1.1.1 Object handling

One of the most critical inputs to CORTO is the shape model of the target body.
Depending on the observation technique used to generate it, available shape models
can be rough (e.g., when observed with radio telescopes from Earth or during a
flyby) or accurate (e.g., when observed during a rendezvous mission).

Each model passes through the Model generation block independently from
the source, following one of three possible paths. If the model is already accurate
for the task considered, it can be passed as it is directly as a “.obj” to CORTO.
However, in many cases, the shape model is not sufficiently accurate for the task
considered. In these cases, manual and procedural modifications are dedicated to
refining the model mesh and introducing morphological features such as roughness,
craters, and boulders over the surface. These are added in Blender, but in principle,
any software capable of modifying a 3D mesh can be used.

16https://astrogeology.usgs.gov/search/map/Moon/Research/Craters/
lunar_crater_database_robbins_2018, last accessed 8th of August, 2023.

17https://astrogeology.usgs.gov/search/map/Ceres/Dawn/Craters/
ceres_dawn_fc2_craterdatabase_zeilnhofer_2020_v2, last accessed 8th of August,
2023.

https://astrogeology.usgs.gov/search/map/Moon/Research/Craters/lunar_crater_database_robbins_2018
https://astrogeology.usgs.gov/search/map/Moon/Research/Craters/lunar_crater_database_robbins_2018
https://astrogeology.usgs.gov/search/map/Ceres/Dawn/Craters/ceres_dawn_fc2_craterdatabase_zeilnhofer_2020_v2
https://astrogeology.usgs.gov/search/map/Ceres/Dawn/Craters/ceres_dawn_fc2_craterdatabase_zeilnhofer_2020_v2
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(a) Input image of Ryugu. (b) Depth map label of Ryugu.

(c) Input image of 67P. (d) Slopes label of 67P.

Figure 3.5: Examples of the depth map and slope labels with asteroid Ryugu and comet
67P.

Figure 3.6: Examples of masks that can be generated for semantic segmentation applica-
tions.
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When manual refinement is performed, details are arbitrarily added over the
surface. For example, the mesh can be thickened, surface roughness can be achieved
using noise elements as textures, and craters and boulders can be introduced using
Blender’s built-in tools. This allows objects to be placed in the desired positions
and appearance. The entire process is manual and artistic, does not allow for
reproducibility, and requires skills from the user in working with 3D objects [101].

Lastly, the model can be procedurally modified by using Minor bOdy geNErator
Tool (MONET) [102] (previously also referred to Procedural Asteroid Generator or
PAG) designed at DART. MONET takes the model as input, automatically refines
and smoothes the mesh, and introduces morphological features such as roughness,
craters, and boulders from user-defined input values. By default, MONET is
capable of realizing two different categories of minor bodies, namely rocky bodies
(characterized by a large number of different-sized boulders on the surface) to
simulate rubble-pile asteroids and comet-like bodies (whose surface exhibits the
alternation of very smooth and rough regions typical of comets). Adjusting the
tool’s settings makes it possible to model the properties of various minor bodies
in a complete procedural approach. The way in which roughness, craters, and
boulders are added to a body is briefly described. A more detailed explanation is
reported in [102].

To generate a rough surface, a material is applied to the body’s mesh, exploiting
the node tree available in the shading editor in Blender. A noise texture is used
into a bump node to displace the object’s surface along the face’s normal while
breaking the uniformity of the surface’s color. An example of surface roughness
achieved with this simple approach is illustrated in Figure 3.7

(a) Noise texture. (b) Simulated roughness.

Figure 3.7: Surface roughness visualized on a model. Noise texture applied on the model
(a). Displacement and bump on the model given by such texture (b).

To generate procedural craters, two different methods have been used. The
first consisted of exploiting an existing crater’s texture to develop its 3D model and
then applying it on the surface of the minor body model thanks to a shrinkwrap
modifier. This method is used in [103] but was best suited for smooth, flat surfaces
and not over irregular terrain patches. The second method, representing the current
baseline, uses a texture map based on the voronoi pattern.

Such patterns are added by a color ramp node with four different shades of
black to obtain the typical effect of an excavation. From this point onward, the
set of operations illustrated in Figure 3.8 is performed using the roughness texture.
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Subtraction is performed between the roughness and the preliminary craters’ texture
to solve an issue regarding the extension of the surface roughness into the cratered
region. This operation generates a hybrid roughness texture in which white circular
areas delimit craters. This hybrid texture is then combined with the preliminary
crater’s texture using the mix node18. Finally, the bump node is exploited to modify
the object’s surface. This approach can be performed multiple times in the node
tree starting from different sizes voronoi textures to generate overlapping craters
of various sizes, positions, and distributions.

Figure 3.8: Craters generation procedure. The operations performed on the textures
are schematically reported, along with the final result depicted on the bottom right. ⊗
represents the mix node and multiplication, while � the bump node.

To distribute boulders over the body’s surface, an approach is designed in
Blender exploiting its native particle system and an add-on tool named rock
generator19. First, a set of boulders is generated using the rock generator. The
maximum number of samples generated is limited by the hardware capabilities to
handle additional meshes. In contrast, the minimum number of samples is limited
by the desired variability in the boulder’s population. Exploiting the Blender’s
particle system (in particular, the portion simulating the “hairs” of an object), it is
possible to sample the previous set of boulders and scatter them across the surface
with randomized orientation, scales, and locations. Note that complex distributions
can also be achieved by using different particle systems, assigning each to different
types or scales of boulders. In the current baseline, three particle systems control
small, medium, and large boulders. In Figure 3.9, examples of the particle system
positioning of the boulders and their final appearance on the body can be seen.

18https://docs.blender.org/manual/en/latest/render/shader_nodes/
color/mix.html, last Access August 20th, 2023

19https://github.com/versluis/Rock-Generator, last access August 20th, 2023

https://docs.blender.org/manual/en/latest/render/shader_nodes/color/mix.html
https://docs.blender.org/manual/en/latest/render/shader_nodes/color/mix.html
https://github.com/versluis/Rock-Generator
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(a) Particle system. (b) Boulders distribution.

Figure 3.9: Boulders generation. Visualization of Blender’s particle system (a) and final
distribution of boulders (b).

Finally, the entire process to perform procedural changes with MONET is
schematized in Figure 3.10

Figure 3.10: Full pipeline in MONET from input 3D model to final refined one.

3.1.1.2 Rendering

The rendering procedure is handled by a Python script but executed in Blender.
Two different engines are used to generate the renderings: Cycles and Eevee. The
former uses path-tracing algorithms and is considered more photo-realistic but
resource-intensive. The latter uses simplified light environments and can render
simpler scenes accurately in a shorter time. Considering the photorealism needed
from the images, the type of labels desired, and the rendering speed with the
available hardware, the user might prefer one of the two rendering engines.

In Figure 3.11, it is possible to see the rendering difference of the same scene
of the Dimorphos asteroid when using Cycles and Eevee.

When building the body properties via the input parameters across the different
shading, compositing, and settings tabs in Blender, it is essential to define the
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(a) Cycles rendering. (b) Eevee rendering. (c) Rendering difference.

Figure 3.11: Example of images generated with different rendering engines in Blender.

requirements of the final image that best reflect the needs of the processing
algorithm that will use such images. These will drive critical choices on the body
properties and rendering settings to be used.

For example, the surface of a celestial body could be rendered using the standard
Principled Bi-directional Scatter Distribution Falloff (PBSDF) implemented in
Blender, combining it with a texture map, or employing ad-hoc scattering laws
coded in OSL, as in [92]. Texture maps, however, are a scientific product of a mission
and might not be available for the body of interest. Moreover, even if available, they
could be generated accurately only for a portion of the body or with offset phase
angles that may introduce spurious shadows into the images, invalidating their
photorealism. At the same time, their high variability and close resemblance to the
real surface albedo may be critical for a feature-tracking algorithm that may prefer
them over a plain mesh surface modeled with a combination of scattering functions.
Another alternative currently under investigation and based on recent works [104]
focuses on assigning single scattering properties to each boulder scattered across
the surface of a model of an artificial asteroid. This option, however, is at this
stage of development computationally intensive and yet to be formalized in the
nominal pipeline of CORTO. On the other hand, if the target application is a
limb-based algorithm (or any other algorithm using global properties), the designer
may neglect texture maps altogether and focus on the global appearance of the
body and the simulation of the correct scattering function.

These considerations are crucial in designing an appropriate artificial environment
for the task considered. The user might consider the pros and cons of each modeling
strategy and select the one that best fits the algorithm-specific objectives and
design. Currently, the surface of the object in CORTO can be simulated using the
standard PBSDF, PBSDF in combination with texture maps, or a set of defined
scattering functions introduced using OSL. Note that these functions are the same
developed in [92] and are the: 1) Lommel-Seeliger, 2) ROLO, 3) Akimov, 4) Linear
Akimov, 5) Lunar Lambert, and 6) Minnaert.
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3.1.1.3 Noise Modelling

Adding noise into the synthetic images generated by CORTO is an important step
to make them more similar to real images acquired by navigation sensors onboard
previously flown missions.

The noise block in CORTO does that with the methodology summarized
in Figure 3.12, which has been adapted specifically for visual-navigation space
cameras from the noise modeling in [22] and in [105]. For this reason, the block is
currently applicable to grayscale images only, and shutter or aperture effects are
not considered assuming typical space cameras.

Optics

ADC

Scene

Gamma/Curve

Sensor

(CCD/CMOS)

Radiometric

Calibration

Camera Body

Sensor Chip

Image Signal Processing

Raw

Processed

Generic blur (1)

Motion blur (2)

Generic noise (3)

γ correction (4)

Dead pixels (5)
Dead buckets (6)
Blooming (7)
Radiation (8)

Figure 3.12: Noise modeling block in CORTO. Adapted from [22]. Different noise sources
are represented in red with the order in which they are applied in the script.

The block is currently implemented in Matlab and the different sources of noise
that the user can parametrize are represented in red in Figure 3.12, spread into 8
different steps. In (1), generic blur is introduced with the use of a Gaussian filter
from the imgaussfilt function, while motion blur is simulated in (2), generating
a specific motion filter with the fspecial function. In (3), generic noise is added
with the imnoise function. In (4), gamma correction is performed over the image
using the imadjust function. After these phenomena are modeled, sensor effects are
introduced in (5), (6), and (7) by altering the pixel values in the images, removing
single pixels, entire rows and columns, or saturating pixel content. Finally, in (8),
radiation effects are introduced simulating randomized lines spanning over the
image saturating pixel’s content.

The different sources of noise illustrated in Figure 3.12 are exemplified on an
image of Dimorphos at low (top), medium (center), and high (bottom) values
in the mosaic image in Figure 3.13 (except for dead pixels, dead buckets, and
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blooming effects, which are illustrated from top to bottom in the second column
from the right).

Figure 3.13: Example of different sources of noise, low-to-high from top to bottom. From
left to right: Generic blur, motion blur, generic Gaussian noise, Gamma correction, sensor
effects (from top to bottom: dead pixels, dead buckets, and blooming), and radiation
effects.

The effects of noise modeling are visualized in histogram form in Figure 3.14.
These effects are important to change the image content of a clean synthetic
sample toward a more realistic one.

(a) Synthetic image after
rendering, without noise.

(b) Synthetic image after
application of noise.

(c) Histogram comparison
with and without noise.

Figure 3.14: Effects of the application of noise to the synthetic images. The binwdith of
the histogram is equal to 1.

Finally, it is mentioned that the noise modeling block can be used in two
pragmatic approaches. First, one could mimic the target noise effects expected
from a specific camera for a pre-designed mission. Second, one could also apply
noise with statistical sampling from a pre-defined distribution to generate datasets
with images with generic and realistic noise that is not typical of any sensor. The
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latter methodology tends to perform better with a data-driven approach in terms of
domain randomization, increasing their robustness and applicability to real images.

3.1.1.4 Hardware-in-the-loop

CORTO can also be used to provide synthetic images to the TinyV3RSE, an
optical testbench facility. TinyV3RSE [98, 99] comprises a high-resolution screen,
a plano-convex collimator lens, and a camera. More details about the facility are
illustrated in Section 3.2.

The facility’s purpose is twofold. First, including an engineering model of the
target camera can be useful in identifying unforeseen bottlenecks and preparing the
correct interface. Second, the camera transforms an otherwise clean Blender image
into a noisy one, with characteristics similar to a real deployment.

A comparison between a synthetic image and its equivalent image captured
within the TinyV3RSE facility is illustrated in Figure 3.15. The two images are
photometrically different (the camera-screen interaction introduces noise, and pho-
tometric calibration is not performed in TinyV3RSE) but geometrically equivalent,
as it is possible to see from the image difference in Figure 3.15.

(a) Synthetic image. (b) Facility image. (c) Synthetic-Facility.

Figure 3.15: Geometric equivalence between synthetic and facility images.

3.1.1.5 Post-processing

A postprocessing block in CORTO adapts the image-label pairs for the specific
target application. This is particularly relevant when developing data-driven image
processing methods, such as convolutional neural networks, that traditionally require
constant size tensors for training, validation, and testing.

The image obtained at rendering often cannot be used directly as input of the
IP methods, especially data-driven ones, for three main reasons. First, the original
image resolution is too high. Due to hardware limitations, image size needs to be
reduced. This is typical of IP methods based on convolutional networks, which
could encounter memory or processing saturation issues if working with images
at native resolutions. Second, the ideal pointing often assumed during rendering
simplifies image generation but causes poor variability of the input-label relationship,
which can cause poor generalization capability of the IP methods in case of real
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pointing conditions. Third, images of celestial bodies are often populated by empty
backgrounds, especially when seen from relatively far away. In these cases, cropping
has been demonstrated to improve performances of the IP methods over the resizing
of the images.

All three issues are addressed together in a unique postprocessing pipeline that
transforms an image and its associated labels from a geometrical and rendering
space referred to as S0 into a new space S2 . A sketch of the pipeline is illustrated
in Figure 3.16. Currently, only labeling changes for the center of mass, center of
brightness, and range from the body are supported, but other labels can be easily
included in the pipeline if needed. Also, the pipeline processes squared images, but
its extension to rectangular ones is trivial.
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Figure 3.16: High-level architecture of the postprocessing pipeline.

The original image obtained after rendering and noise addition is said to be
defined in a S0 space with a resolution Nu×Nv . The image is binarized using [106],
and a simple blob analysis is performed. The N-th biggest blobs are identified and
grouped to form a single object with a bounding box Γ (defined by the top-left
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corner coordinates Γ1 and Γ2 and by the width Γ3 and height Γ4 ). Random
padding of the image outside of the bounding box Γ is performed to transform
the Γ1 ×Γ2 bounding box into a square of resolution γi × γi in S1 space. The
padding is performed by randomly sampling two scalars αu and αv from uniform
distributions, each ranging from 0 to the maximum value that would transform
the rectangular Γ1 ×Γ2 box into a square one of side γi . During padding, no new
pixel content is generated, and the same pixel content from the original image in
S0 is instead retrieved. Also, note that the target size γi of the image in S0 can
be selected by the user as a multiple of the final target size M. Finally, the image
is resized and transformed into a M×M matrix, defined in S2 . Lastly, a final step
can be performed to repeat the random padding process multiple times. This may
be necessary if the user is interested in balancing the dataset’s image appearance
or label distributions and would like to implement different input distributions.

All these steps are part of a data augmentation strategy designed explicitly for
celestial bodies and their interest labels. Traditional data augmentation strategies
turned out to be limiting the capabilities to transform the image-label pairs in a
useful way. It is also mentioned that only the procedure for changing the image is
illustrated in Figure 3.16, but the labels are changed simultaneously to ensure they
can be correctly recovered. For example, performing the S0 → S1 transformation
from S0 to S1 results in a change in the CoB and CoF coordinates:

CoBS1 = CoBS0 −
[
Γ1
Γ2

]
+

[
αu

αv

]
(3.1)

CoFS1 = CoFS0 −
[
Γ1
Γ2

]
+

[
αu

αv

]
(3.2)

while the other labels, such as the CoF-CoM offset, the range from the target
body, the position in cartesian coordinates, or polar coordinates remain unchanged:

δS1 = δS0 (3.3)

ρS1 = ρS0 (3.4)

[X ,Y ,Z ]S1 = [X ,Y ,Z ]S0 (3.5)

[ϕ1 ,ϕ2 ]S1 = [ϕ1 ,ϕ2 ]S0 (3.6)

Performing the S1 → S2 transformation from S1 to S2 the labels are transformed
as follows:

CoBS2 = CoBS1 128

γ
(3.7)
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CoFS2 = CoFS1 128

γ
(3.8)

δS2 = δS1
128

γ
(3.9)

ρS2 = ρS1
128

γ
(3.10)

[X ,Y ,Z ]S2 = [X ,Y ,Z ]S1
128

γ
(3.11)

while ϕ1 and ϕ2 remain unchanged: [ϕ1 ,ϕ2 ]S2 = [ϕ1 ,ϕ2 ]S1 . Note that the
phase angle is a quantity that remains unchanged during the transformations.

Concatenating the transformations S0 → S1 and S1 → S2 and viceversa is
straightforward. S0 → S2 can then be performed on a batch of images if these are
being grouped in a dataset or on a single image if the steps are being processed
onboard while transforming from an acquisition at camera resolution to an image
at a processing resolution. The image-label pairs can be used in S2 for training
purposes, while the image alone can be used in inference. In the latter case, the
labels estimated in S2 can be transformed back to meaningful labels in S0 using
the inverse transformation S2 → S0 .

This is possible because the pipeline has been implemented specifically for
onboard implementation, ensuring non-destructive operations are performed over
the image-label pairs and since all necessary quantities (γ, Γ1 , Γ2 , αu, αv , CoBS0

u ,
and CoBS0

v ) can be easily stored.
Finally, as image-label pairs are often used to estimate a position with respect

to the target body, the necessary transformations to transform the labels illustrated
above into positions are briefly described. When an image is used to extract the
cartesian coordinates [X ,Y ,Z ] in S2 in any reference frame, these are transformed
back to S0 as:

pS0est =
γ

128

XY
Z

S2

est

(3.12)

On the other hand, the same transformation using polar coordinates is:

pS0est = Ω


 ϕ1
ϕ2
ρ γ
128

S2

est

 (3.13)

where Ω represents the trivial transformation function from spherical to cartesian
coordinates. Finally, any IP method working in inference with δ,ρ labels requires a
set of intermediate steps to generate a position estimate. The following optical
observations are generated in inference in S0 :
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ouv ,S0
est =

CoF S0
est,u

CoF S0
est,v
1

=

CoBS0
u + δu

S2 γ
128

CoBS0
v + δv

S2 γ
128

1

 (3.14)

ρS0est = ρS2
γ

128
(3.15)

where δS2u , δS2v , and ρS2 are the output of the IP method while all other variables
are computed and stored during the processing of the image by the pipeline. The
vector of optical observables ouv ,S0

est is then transformed from the UV reference
frame, which expresses pixel coordinates on the image to the Image Plane (ImP)
reference frame using the inverse of the camera calibration matrix K−1 defined
with the notation in [107]:

oImP
est =K−1ouv ,S0

est (3.16)

The oImP
est vector is then transformed into a LoS vector in the CAM reference

frame. Using the range ρS2 , this LoS can be transformed into a position estimate
in the camera reference frame pCAM

est . If the position needs to be expressed in
a different reference frame than the camera one, a change of reference frame is
required. This can be performed using the attitude quaternion of the spacecraft,
assuming it to be known relatively accurately from the attitude determination
process of a Star-tracker and to know the rigid transformation between additional
intermediate frames (such as the ones between spacecraft body reference frame
and camera mounting). Further reference frame transformation can be stacked
together if the transformations between them are known or can be retrieved. The
position estimate into a generic reference frame RF can thus be written as:

pRF ,S0
est = qCAM→RFp

CAM
est (3.17)

where the quaternion qCAM→RF stacks together all the attitude transformations
needed to pass from the CAM to the RF one.

Finally, thanks to the postprocessing strategy just described, generating multiple
versions from the same input image with different image-label pairs is possible.
This can be useful for performing data augmentation for generalization purposes
and implementing domain randomization designs.

3.1.1.6 Reproduce previously flown missions

Recreating images obtained from previously flown missions holds tremendous
potential since it enables direct comparison with previously flown algorithms using
the same type of input images.

For this reason, a tool has been designed to recreate images taken from previous
sensors. The tool uses the available metadata associated with the existing images
to extract the epoch and, combining this with the camera properties and the
spacecraft-body-Sun relative poses, generate a set of inputs that can be used in
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CORTO. The objects poses are retrieved from kernels using SPICE 20. At the current
stage of development, this tool can replicate images taken from missions led by
major space agencies, such as ESA, National Aeronautics and Space Administration
(NASA), and Japan Aerospace Exploration Agency (JAXA).

Note that images reproduced with this tool are accompanied by the same
attitude estimation and positioning errors reflected in the ephemerides. This, in
turn, translates into minor errors in the labels, which need to be considered.

3.1.2 Validation

Validating synthetic images of celestial objects with real ones is crucial in ensuring
synthetic images’ accuracy, reliability, and applicability for various scientific and
operational purposes.

While image histogram comparison is often used as the primary method to
assess the similarity between synthetic and real images [108–110], it represents
the satisfaction of a necessary but not sufficient condition. An image histogram
represents the distribution of the image content across different intensities, but in
doing so, it inevitably brings a loss of spatial information.

For example, in Figure 3.17(c), two images of two different asteroids, namely
Ceres and Vesta, are illustrated with their image histograms overlapped. These
images have been captured by the Dawn [14] mission using the same camera. Albeit
their histograms are similar and exhibit a consistent overlap, it cannot be concluded
that the two images correctly represent the same scenery, showcasing how risky
it is to adopt this criterion alone when assessing image similarity for validation
purposes. The histogram overlap describes a similarity in the pixel content of the
image, which does not reflect a similar spatial distribution of such content.

(a) Image A. (b) Image B. (c) Histograms.

Figure 3.17: Image of Ceres (a) and Vesta (b) along with their overlapping histograms
(c). The binwdith of the histogram is equal to 1.

Albeit it is important to check that similar images exhibit similar histograms,
an approach should be used instead that can better quantify image differences.

20https://naif.jpl.nasa.gov/naif/data.html, last accessed: 8th of August,
2023.

https://naif.jpl.nasa.gov/naif/data.html
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A manual approach would adjust the rendering settings and the relative body-
camera-Sun poses. For instance, Figure 3.18 shows a manually reproduced image of
the Moon seen with a full limb compared to one captured on the Orion spacecraft
with a navigation camera 21. Albeit this approach can yield faithful reproduction of
real images, it demands a significant amount of time and introduces human errors.
To overcome these limitations, a systematic approach is proposed instead in this
section to validate the functionalities of CORTO.

(a) Image A. (b) Image B. (c) Histograms.

Figure 3.18: Real (a) and synthetic (b) manually reproduced images of the Moon along
with their overlapping histograms (c). The binwdith of the histogram is equal to 1.

3.1.2.1 Pipeline

This section proposes a validation pipeline as a systematic approach to evaluate
image similarity considering pixel intensity values and overall image structure.

A schematic of the validation pipeline is represented in Figure 3.19. The pipeline
inputs are the real image and N template images generated using varying settings
in CORTO. These may include rendering, shading, material, surface, and light
properties.

As depicted in Figure 3.19, the first operation involves a normalized cross-
correlation [111] between the N templates and the real image to reduce the camera
poses errors introduced by the state reconstruction, computed as:

γ(u,v) =
∑x ,y [f (x ,y)− f̄u,v ][t(x−u,y −v)− t̄]

{∑x ,y [f (x ,y)− f̄u,v ]2 ∑x ,y [t(x−u,y −v)− t̄]2}0 .5
(3.18)

where (x ,y) denotes the pixel location, f is the real image, t̄ is the mean of the
template, (u,v) are the coordinates of the template center in the real image, and
f̄u,v is the mean of f (x ,y) within the template region. Following this operation,
the images are cropped to maximize the correlation, which is particularly significant
for far-range observations, where the complete silhouette of the body is visible.
The outcome of this process yields N cropped template images along with their

21https://www.nasa.gov/image-feature/orion-gazes-at-moon-before-
return-to-earth, last accessed 8th of August, 2023.

https://www.nasa.gov/image-feature/orion-gazes-at-moon-before-return-to-earth
https://www.nasa.gov/image-feature/orion-gazes-at-moon-before-return-to-earth
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Figure 3.19: High-level architecture of the validation pipeline.

corresponding cropped real images, such that each template has a corresponding
real image with the same resolution. Subsequently, the cropped real and template
images are compared with a Normalized Root Mean Square Error (NRMSE) [112],
computed as:

NRMSE =

√
1
d ∑x ′,y ′ [t(x ′,y ′)− f (x ′,y ′)]2

d
(3.19)

where d represents the number of pixels and (x ′,y ′) denotes the pixel location in
the cropped images. The normalization approach has been selected because the
previous correlation step generates different-sized images. Consequently, the value
of the RMSE is scaled to be independent of the image size for a better comparison.

The first M images (with the lowest NRMSE values) are selected because of
the similarities in pixel intensities. Once the best ideal synthetic images are selected,
accounting for noise inherent to the environment and camera errors is necessary.
Because of this, J different noise combinations are applied to each of the M images.
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Specifically, the considered noise source includes Gaussian noise mean and variance,
blur, and brightness. The assumed noise values are specified in Table 3.1, resulting
in 192 combinations.

Table 3.1: Considered noise values to be applied to the M template images.

Noise type Values

Gaussian mean 0 .01 ,0 .09 ,0 .17 ,0 .25
Gaussian variance 10−5 ,10−4 ,10−3

Blur 0 .6 ,0 .8 ,1 .0 ,1 .2
Brightness 1 .00 ,1 .17 ,1 .33 ,1 .50

As a result, a total of J×M noisy images become available. Lastly, a second
comparison step uses the Structural Similarity Index (SSIM) [113]. This metric is
employed because it considers the structural information embedded in the image,
separating it from the influence of the illumination. The metric is defined as:

SSIM(x ′,y ′) = [l(x ′,y ′)]α[c(x ′,y ′)]β[s(x ′,y ′)]γ (3.20)

where l , c , and s represent the image’s luminance, contrast, and structural terms,
respectively. The coefficients α, β, and γ are all set to 1 to ensure equal contribution.
After evaluation by the SSIM, the L images with maximum SSIM are selected as
the best validation candidate.

3.1.2.2 Results

Using the validation pipeline described in the previous section, the tool’s capability
is validated considering four minor bodies: Ceres, Vesta, Bennu, and 67P. These
target bodies have been selected because their images are readily available and since
they represent a diverse sample in terms of global shape and surface characteristics.

Different strategies to represent the surface are investigated for each body,
referred to as: “OSL” if specific scattering laws (as the one designed in [92] and
presented in Section 3.1.1.2) are used, “PBSDF” if the standard Blender scattering
function is used in the shader (without a texture), and “PBSDF + Texture” if an
existing body texture has been used instead, coupled with the PBSDF.

Table 3.2 summarizes the total number of template images for each combination
considered. Note that some cases are not considered in the pipeline (e.g., Vesta
and 67P with Texture, or Ceres with only OSL or PBSDF) as these settings would
not be considered for representing these bodies, as the texture maps would not be
available or the scattering functions alone would not be capable of yielding the
desired fidelity. The template images from Table 3.2 are obtained by varying the
illumination intensity of the Sun’s lamp while changing the albedo’s properties of
the target body and the scattering function adopted. Finally, it is remarked that
the case of asteroid Bennu has been investigated across all possible reflectance
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models since the existence of a high-quality and low phase-angle texture map of
Bennu allows for such a detailed comparison.

Table 3.2: Number of template images for each combination of target body and scattering
function used to represent the surface.

OSL PBSDF PBSDF + Texture

Ceres - - 693
Vesta 8316 - -
67P 1512 - -

Bennu 2646 686 819

The validation results of the pipeline over these bodies are presented both in
a quantitative way in Table 3.3 and Table 3.4 using the SSIM similarity metric,
and in a visual way in Figure 3.20 and Figure 3.21. The link between the tables
and the mosaic views is represented by the row and column coordinates listed in
the last column of each table. Moreover, Table 3.3 and Table 3.4 provide details
about each sample, including the original name of the image, the key rendering
properties used (the scattering function, from 0 associated to the PBSDF, to 6
following the order illustrated in Section 3.1.1.2, albedo, and Sun’s intensity), the
noise combination (expressed as four components respectively for Gaussian mean
and variance, blur, and Brigthness as in Table 3.1), and the associated SSIM with
the most similar synthetic image.
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Figure 3.20: Mosaic view of synthetic and real images of 67P, Ceres, and Vesta. The first
and third columns represent real images, while the second and fourth ones are generated
using CORTO.
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Table 3.3: Properties of the synthetic images of comet 67P and asteroids Ceres and Vesta. The first four rows correspond to 67P, five to twelve
represent Ceres, and thirteen to twenty refer to Vesta. The last column represents the position as (row, column) coordinates of the synthetic
image in Figure 3.20.

Img Name Rendering Noise SSIM ID

N20160128T002344268ID20F71 4 ,0 .15 ,40 0 .01 ,10−5 ,1 .2 ,1 .00 0.7537 1,1
N20160130T173323717ID20F22 6 ,0 .15 ,30 0 .01 ,10−5 ,1 .2 ,1 .00 0.4421 1,3
W20150316T053347931ID20F13 3 ,0 .5 ,40 0 .09 ,10−5 ,1 .2 ,1 .50 0.9360 2,1
W20160617T102200832ID20F18 5 ,0 .5 ,10 0 .09 ,10−5 ,1 .2 ,1 .33 0.8920 2,3

FC21A0037273_15136172940F1E 0 ,−,4 .25 0 .09 ,10−3 ,0 .8 ,1 .00 0.4430 3,1
FC21A0037405_15157034032F3I 0 ,−,4 .20 0 .09 ,10−3 ,0 .6 ,1 .50 0.3979 3,3
FC21A0037589_15158013232F1I 0 ,−,3 .25 0 .09 ,10−3 ,0 .8 ,1 .00 0.3558 4,1
FC21A0037593_15158020232F1I 0 ,−,6 .50 0 .09 ,10−3 ,0 .8 ,1 .00 0.4973 4,3
FC21A0037978_15163064254F1G 0 ,−,6 .25 0 .09 ,10−3 ,0 .6 ,1 .50 0.2870 5,1
FC21A0038693_15172150728F6G 0 ,−,6 .00 0 .09 ,10−3 ,0 .6 ,1 .50 0.3557 5,3
FC21A0038787_15173122643F1G 0 ,−,1 .50 0 .01 ,10−5 ,1 .2 ,1 .00 0.3379 6,1
FC21A0039042_15176210244F1H 0 ,−,2 .50 0 .09 ,10−3 ,0 .8 ,1 .17 0.6744 6,3

FC21B0003258_11205095604F6C 6 ,0 .5 ,3 0 .09 ,10−3 ,0 .8 ,1 .17 0.7201 7,1
FC21B0003428_11205235222F5C 6 ,0 .5 ,2 0 .09 ,10−3 ,0 .8 ,1 .17 0.8499 7,3
FC21B0003757_11218102757F7D 3 ,0 .5 ,2 0 .09 ,10−3 ,0 .8 ,1 .00 0.7034 8,1
FC21B0003866_11218121551F4D 5 ,0 .5 ,3 0 .09 ,10−3 ,0 .6 ,1 .50 0.8337 8,3
FC21B0004630_11226232738F7D 6 ,0 .5 ,2 0 .09 ,10−3 ,0 .6 ,1 .33 0.6480 9,1
FC21B0005299_11230130409F6B 6 ,0 .5 ,1 0 .09 ,10−3 ,0 .8 ,1 .17 0.8114 9,3
FC21B0005871_11232204234F4B 2 ,0 .5 ,2 0 .01 ,10−3 ,1 .2 ,1 .50 0.6644 10,1
FC21B0006422_11238100914F1B 6 ,0 .5 ,1 0 .01 ,10−4 ,1 .0 ,1 .33 0.8142 10,3
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Figure 3.21: Mosaic view of Bennu. The first column represents real images, while
progressing from the second to the last column, synthetically generated images are
depicted using CORTO with the OSL reflectance models, PBSDF, and PBSDF + Texture,
respectively.
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Table 3.4: Properties of the synthetic images of Bennu. For every real image presented in the first column, three rows provide information about
the corresponding synthetic image properties, namely, OSL, PBSDF, and PBSDF + Texture. The last column represents the coordinate as (row,
column) of the synthetic image in Figure 3.21.

Img Name Rendering Noise SSIM ID

20181211T181336S699_map_specradL2b
6 ,0 .15 ,40 0 .01 ,10−4 ,1 .0 ,1 .33 0.9200 1,2
0 ,−,0 .40 0 .01 ,10−4 ,1 .0 ,1 .33 0.9187 1,3
0 ,−,3 .75 0 .01 ,10−4 ,0 .8 ,1 .00 0.9458 1,4

20181212T043459S572_map_specradL2x
6 ,0 .50 ,20 0 .01 ,10−4 ,1 .0 ,1 .33 0.8054 2,2
0 ,−,0 .60 0 .01 ,10−4 ,1 .0 ,1 .33 0.8046 2,3
0 ,−,6 .00 0 .01 ,10−4 ,0 .8 ,1 .00 0.8958 2,4

20181212T064255S344_map_radL2pan
6 ,0 .50 ,40 0 .01 ,10−4 ,1 .0 ,1 .33 0.7090 3,2
0 ,−,1 .20 0 .01 ,10−4 ,1 .0 ,1 .33 0.7078 3,3
0 ,−,14 .75 0 .01 ,10−4 ,0 .8 ,1 .00 0.8549 3,4

20181212T085936S404_map_iofL2pan
6 ,0 .50 ,40 0 .01 ,10−4 ,1 .0 ,1 .33 0.7131 4,2
0 ,−,2 .00 0 .01 ,10−4 ,1 .0 ,1 .33 0.7165 4,3
0 ,−,23 .5 0 .01 ,10−4 ,0 .8 ,1 .00 0.8459 4,4

20181213T043620S487_map_radL2pan
6 ,0 .20 ,40 0 .01 ,10−4 ,1 .0 ,1 .33 0.7537 5,2
0 ,−,0 .60 0 .01 ,10−4 ,0 .8 ,1 .50 0.7528 5,3
0 ,−,5 .00 0 .01 ,10−4 ,0 .8 ,1 .00 0.8175 5,4

20181215T053926S725_map_iofL2b
3 ,0 .15 ,35 0 .01 ,10−4 ,1 .0 ,1 .33 0.9339 6,2
0 ,−,0 .30 0 .01 ,10−4 ,1 .0 ,1 .33 0.9337 6,3
0 ,−,3 .00 0 .01 ,10−4 ,0 .8 ,1 .00 0.9473 6,4

20181217T033612S897_map_iofL2pan
6 ,0 .45 ,20 0 .01 ,10−4 ,1 .0 ,1 .33 0.8127 7,2
0 ,−,0 .60 0 .01 ,10−4 ,1 .0 ,1 .33 0.8107 7,3
0 ,−,6 .50 0 .01 ,10−4 ,0 .8 ,1 .00 0.8845 7,4
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From the results of the validation pipeline, from a qualitative inspection, it
is possible to determine that CORTO can represent the target bodies as realistic
input for image processing and visual-based applications. Remarkably, the use of
texture maps yields mixed results for the cases of Ceres and Bennu. In particular,
considering all the reflectance strategies for Bennu, the one using “PBSDF +
Texture” turns out to be the one returning the highest similarity scores, as can be
seen by the higher values of SSIM in Table 3.4. On the other hand, the values of
SSIM for the case of Ceres are lower than expected, even when using a texture map
over the surface. This difference is ascribed to the quality of the available textures
and the data they represent (e.g., mostly craters and albedo variations for Ceres
and boulders and albedo variations for Bennu). This indicates that whenever this
information is available at high resolution, it can significantly improve the similarity
of synthetic images.

Moreover, the effect is more relevant when representing boulder fields over plain
and cratered regions. Unfortunately, this form of data is solely available at high
resolution and with the correct illumination conditions only for a limited number
of bodies. Nonetheless, when texture maps are not used, as in the case of Vesta
and 67P, CORTO can represent the appearance of the bodies at global level with a
reasonable level of fidelity.

3.1.3 Case studies

Due to its capabilities, CORTO has been concurrently developed by the author
and used within the DART group since Summer 2020 in various research activities,
projects, and missions.

CORTO has been extensively used and co-developed for the design and validation
of the image processing and visual-based GNC of the Milani CubeSat (see Section 6),
a 6U CubeSat that will visit the Didymos binary system in 2027 as part of the ESA
Hera mission [114]. The tool proved to be critical in the design of the data-driven
algorithms within the image processing of Milani, in the testing of the object
recognition algorithm, and in validating all the visual-based applications of the GNC
subsystem of the CubeSat.

CORTO capabilities have also been used to test the limb-based navigation
around the Moon for the LUnar Meteoroid Impact Observer (LUMIO) mission [115].
LUMIO is a 12U CubeSat that will orbit in a Halo orbit about the Earth-Moon L2
point and is an ASI/ESA mission. LUMIO will perform a scientific investigation
about meteoroid impacts and act as a technology demonstrator for visual-based
navigation techniques.

Additionally, up-to-date CORTO is currently used in different ASI and ESA
projects, most notably the DeepNav [116] and StarNav projects. DeepNav is
currently investigating the design and implementation of deep-learning techniques
for visual-based navigation around small bodies using onboard processors. All
the datasets used within the DeepNav project for the training and testing of the
deep-learning methods have been generated with CORTO and using a HIL setup
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with the TinyV3RSE facility. Finally, StarNav is an ongoing project investigating
star trackers’ image-processing capabilities for close proximity operations about
asteroids and the Moon. The test images for the image-processing algorithms have
been generated using CORTO.

3.2 Hardware-in-the-loop with an optical facility

TinyV3RSE is an optical vision-based algorithm test-bench that has been designed
within the DART lab to promote fundamental research on spacecraft autonomy
and in support of validation of the IP and visual-based navigation algorithms in
which the DART lab is responsible for the design.

TinyV3RSE being a compact, low-cost, versatile HIL setup, it allows simple
camera-in-the-loop testings with noisy images.

3.2.1 Design

TinyV3RSE design results from a continuous and collective effort since the beginning
of 2019. An original facility design has been performed as part of the work illustrated
in [117]. Hardware and software changes have been implemented over the years,
improving the original design, as described in [99, 118, 119]. Finally, software
changes in refined calibration procedures have been perfectioned in [98]. At the
same time as these development activities, the facility proved fundamental as a
validation tool in different projects, missions, and research activities. What follows
is a brief description of the critical design elements of TinyV3RSE, followed by a
detailed description of its core components.

TinyV3RSE comprises three main elements: a screen, a collimator, and a
camera, positioned as in Figure 3.25. When the light emitted by the screen passes
through the collimating lens, it respects the thin lens equation:

1

fcoll
=

1

dr
+

1

di
(3.21)

where fcoll is the collimating lens focal length, di is the distance between the
collimating lens and the image, and dr is the distance between the collimating lens
and the object, i.e., the screen. Recall that fcoll is positive for converging lenses
and negative for diverging ones. Moreover, note that dr is positive when placed
on the left side of the lens and negative otherwise. Finally, di is positive when
the image is generated on the right side of the lens, i.e., a real image is formed,
and negative otherwise, i.e., a virtual image is formed. Figure 3.22 shows the
geometrical configuration under study, which generates a virtual image in this case.

Equation 3.21 can be rewritten to compute the image distance explicitly as:

di =

(
dr

dr− fcoll

)
fcoll (3.22)
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dr

di

fcoll

Figure 3.22: Geometrical configuration for the lens equation of the collimator in the case
considered in TinyV3RSE.

Equation 3.22 shows that the observed object (i.e., the screen) must be placed
at the focal length distance to be seen as from infinity. The perfect design choice
would be for the screen’s image to fit the camera FOV fully. However, to simplify
the design process, the vertical FOV is considered instead since it is smaller than
the horizontal one for the target cameras to use within the facility. Under the
assumption of perfect components’ alignment, the problem can be framed as
outlined in Figure 3.23. Thanks to fundamental geometrical relationships, it is easy
to demonstrate that:

tan
(
θ

2

)
=

hs

2fcoll
(3.23)

where θ is the camera FOV, hs is the vertical screen size, and θ1 = θ2 = θ
2 .

Equation 3.23 links the three components of TinyV3RSE, showing that their design
choice is not arbitrary.

Note that, because of the collimation, the distance between the camera and the
collimating lens dcam is not a design parameter that depends on the collimator focal
length. This parameter is essential to determine the diameter of the collimating
lens [120]. To avoid the camera observing outside of the collimating lens, the
following relation has to be satisfied:

Rcoll ≤ Rcam+dcam tan
(
θ

2

)
(3.24)

where Rcoll is the collimating lens radius and Rcam is the camera lens objective
radius. Moreover, to ensure it works in the paraxial area of the collimating lens,
i.e., where the thin lens equation hypothesis holds, dcam must be chosen as small
as possible.

3.2.2 Components

TinyV3RSE is composed of three main modules mounted on an enclosed optical
table:

1. The camera, rigidly mounted on its mechanical support, which enables
vertical translation, pitch, and yaw mechanical adjustments;
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θ1
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fcoll
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θ2hs

Figure 3.23: Optical configuration of the components of the TinyV3RSE facility.

2. The high-resolution screen, whose orientation is set to ensure that the
screen and the optical plane of the camera are parallel;

3. The collimator ensures that the light coming from the screen and entering
the camera is simulated as coming from infinity (or from a very high distance).
The collimator is mounted on an optical support that can rotate, change
elevation, and be finely adjusted laterally and transversely.

These three modules are visible in the CAD model in Figure 3.24 and in the
real image of the facility in Figure 3.25.

Figure 3.24: CAD model of the TinyV3RSE facility.

Of the three elements, the screen is the only fixed one, while the camera-
collimator setup may change depending on the camera properties and as for the
considerations performed in Section 3.2.1.

3.2.2.1 Camera

TinyV3RSE has been used with various cameras, depending on the specific project’s
needs. However, the most used one has currently been the Basler acA1300-22gm
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Figure 3.25: Real image of the TinyV3RSE facility.

(CS-Mount)22 with a 12mm C series fixed focal length lens23. The key data-sheet
characteristics of the camera assembly are a focal length of 12 mm, a resolution
of 1280 pixels × 960 pixels, a pixel size of 3 .75 µm × 3 .75 µm, and a sensor
size of 4 .9 mm × 3.6 mm. The camera FOV is 22 .6 ◦× 17 ◦. The camera is
mounted on a dedicated assembly composed of three parts. The first one is a
vertical translation stage ensuring vertical assembly control. The second one is a
goniometer enabling pitch and roll. The third and last part is a custom mounting
adapter to interface between the camera and the optical assembly. In Figure 3.26,
it is possible to see a close-up view of the camera assembly pointed towards the
collimator. As explained in Section 3.2.1, the distance between the collimator and
the camera is kept as small as possible.

3.2.2.2 Screen

The screen is represented by a Galaxy S7 smartphone24 with a resolution of
2560 pixels × 1440 pixels, a pixel size of 44 .1 µm × 44 .1 µm and a screen size
of 112 .9 mm × 63 .5 mm. As for the camera and collimator, the screen is mounted
on a dedicated assembly composed of two parts. The first is a translational stage,
enabling movements of the screen on a plane parallel to the optical one. The second
one is a screen holding mechanism that enables re-orientation by changing four pins
disposed close to the screen’s corners. The choice to use a commercial smartphone
as a screen presents several advantages. First, regarding the sizing of the facility,

22https://www.baslerweb.com/en/products/cameras/area-scan-cameras/
ace/aca1300-22gm-cs-mount/, last time accessed: August 23th 2023

23https://www.edmundoptics.com/p/12mm-c-series-fixed-focal-length-
lens/14949/, last time accessed August 23th 2023

24https://www.displaymate.com/Galaxy_S7_ShootOut_1.htm, last time ac-
cessed August 23th 2023

https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1300-22gm-cs-mount/
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1300-22gm-cs-mount/
https://www.edmundoptics.com/p/12mm-c-series-fixed-focal-length-lens/14949/
https://www.edmundoptics.com/p/12mm-c-series-fixed-focal-length-lens/14949/
https://www.displaymate.com/Galaxy_S7_ShootOut_1.htm
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Figure 3.26: Close-up view of the camera and collimator assemblies.

having a compact, high-resolution screen makes it possible to position it within a
limited distance from the camera-collimator assemblies, thus ultimately ensuring
a compact facility. This is an advantage both in terms of laboratory space and
portability and eventual external testing since the optical test bench could easily be
moved as carry-on luggage to a different location. Having a smartphone as a screen
also makes it simple to set up the interfaces with the server. The smartphone is,
therefore, a commercial, hence low-cost solution, which also possesses interesting
properties in terms of image contrast. The OLED screen does not suffer from
screen bleeding phenomena typical of Liquid Crystal Displays (LCDs) and exhibits
a high contrast between inactive and active pixels. This is of particular interest in
rendering the pitch-black background of a celestial scene before considering camera
noise. The smartphone as a screen solution also exhibits a drawback, given by
the screen resolution. Some facilities designed in the past seem to abide by an
empirical sampling law for which each pixel of the sensor is to be stimulated at
least by four pixels of the screen (or 1:2 if considered linear) [40, 121]. This is to
ensure a continuous representation of the environment to the sensor and to satisfy
the Nyquist sampling theorem. However, at the time of the facility design, a higher
resolution screen than the one considered had not been identified from existing
commercial smartphones. The current setup has roughly a 1:1.43 ratio between
sensor and screen pixels. It is also observed that this phenomenon did not seem to
have played an important disturbance in the performance of the algorithms tested.
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3.2.2.3 Collimator

When using a camera with characteristics similar to the Basler acA1300-22gm
camera, the collimator used is a 2" diameter N-BK7 plano-convex lens (AR Coating:
350 - 700 nm)25 with a focal length of 200 mm. The collimator is mounted on
a dedicated assembly composed of a roto-translational stage and a post holder,
which is used to gain vertical alignment between the collimator and the camera.

Considering the screen and camera characteristics and using Equation 3.23, the
camera should be placed at 211 .7 mm to perfectly fit the screen’s vertical dimension
with the vertical length of the camera’s FOV. Because of that, the collimator has
been chosen with a trade-off study among the plano-convex lenses available as
off-the-shelf components. The selected one has been chosen to maximize the
observed portion of the screen while avoiding vignetting. Note that when an image
is displayed on the screen, it has the size of 112 .9 mm× 63 .5 mm. By taking
out the calculation with the camera FOV and a collimating distance of 200 mm
under the hypothesis of perfectly aligned optical components, a coarse estimation
gives that only 80 mm×60 mm of the screen is covered by the facility camera
FOV. Thus, the image taken by the facility camera is just a portion of the image
displayed on the screen. This must be considered when operating and calibrating
TinyV3RSE.

The characteristics of the collimator are tightly coupled with the ones of the
camera; thus, the design can be easily adopted by using Equation 3.23 depending
on the setup considered.

3.2.3 Functional workflow

In terms of interfaces, the screen and server are directly connected to a power
outlet while the camera is exchanging data and power via a Power over Ethernet
(PoE) cable. Virtual scenes are rendered on the server using CORTO and then
sent to the screen via a Wi-Fi or USB. The server is also responsible for activating
the camera, receiving and eventually processing the preferred IP algorithm for the
images obtained. The screen, collimator, and camera are all enclosed in a box
that is closed during the collection of the images. This is done to ensure that
proper illumination conditions are met and that artifacts are not introduced on the
screen due to external conditions such as reflections, exterior lighting, or shadows
of personnel working next to the facility.

In Figure 3.27, the functional workflow used to generate images with the facility
is illustrated. The starting point is the simulated world, in which the physical and
geometrical properties of the celestial bodies of interest are simulated in the virtual
environment in CORTO. Choosing a rendering software to do so is convenient since
it enables sampling of such a virtual environment, assuming a particular camera
model is positioned from a specific point of view. A rendering of a scene can thus

25https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3279,
last time accessed August 23th 2023

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3279
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be seen as a sampling of this simulated synthetic environment through the physical
model of the camera. As it is possible to see from 3.27, this is done twice for any
given camera position: The first time to generate an image representative of what
the mission camera would be seeing and the second time to get the scene to be
projected on the screen at the proper resolution. These are, respectively, the “Ideal
Mission Image” and “Screen Image” illustrated in 3.27. Once the screen image is
projected, it will stimulate the collimator and camera, which will capture this scene
with the real sensor properly positioned, given that a successful calibration ensures
the correct alignment of all the components of TinyV3RSE. A final step is required
to transform the image captured with the sensor in the facility to an equivalent
version of the one caught in the virtual environment. This step is fundamental
since, apart from calibration errors, these two images should be geometrically
equivalent yet photometrically different. The synthetic one has been generated
with an ideal camera model, with no noise and perfect environmental conditions,
while the image from the facility encompasses noise and all phenomena typical
of a sensor reading. The difference between these two images also represents the
same domain gap between real and synthetic images, which TinyV3RSE aims to
reproduce for validation.

TinyV3RSE

Simulated World

Ideal Mission Image

Facility Image

Screen Image

Figure 3.27: Functional workflow in TinyV3RSE.

3.2.4 Calibration

Before using TinyV3RSE, it is essential to perform several calibration procedures to
ensure all the components are aligned and performing with the desired accuracy. A
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thorough review of the most sophisticated calibration in TinyV3RSE is illustrated
in [98].

First, a calibration is required to find the intrinsic camera matrix of the equivalent
pinhole model for the camera mounted in the facility [122]. Second, the calibration
is necessary to take into account the camera-collimator distortion introduced by
the lenses. Radial and tangential distortions follow the standard approach in [123].
Other representations can capture distortion, losing the physical interpretation,
such as in [124–126]. Lastly, calibration is necessary to estimate the misalignment
among the components in the facility. Significant angular errors, if not quantified,
would be reflected in the performance of the IP algorithms, nullifying the effort of
a validation facility such as TinyV3RSE.

These problems are addressed in a sequential calibration procedure. First, the
camera mounted on the facility is calibrated with the algorithm proposed in [127] to
find the equivalent pinhole camera model. Then, the alignment of the screen with
respect to the camera assembly is estimated by displaying on the screen a series
of checkerboards with different orientations, as shown in Figure 3.28, following a
similar procedure illustrated in [126]. Through additional cross-hair and other useful
patterns, the camera-collimator-screen set is centered and aligned via refinements
of the optomechanical elements of TinyV3RSE.

Figure 3.28: A picture of the TinyV3RSE test bench during calibration while using a
checkerboard pattern.

At the end of the procedure, the camera intrinsic matrix, the radial and
tangential distortion coefficients, and the facility misalignment are estimated. A
more detailed description of the most up-to-date calibration procedures used in
TinyV3RSE is found in [98, 118]. Finally, It is remarked that at the current stage,
photometric calibration is not performed in TinyV3RSE.
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3.3 Hardware-in-the-loop with a terrain analog facility

Physical setups such as one that uses 3D printed shape models within robotic
facilities or terrain analog resembling the actual environment are valuable for HIL
experiments. A variety of these facilities exists [66, 128–131] and are currently
operated around the world at various capacities to validate IP and vision-based
algorithms. Their main advantages lie in the accurate photometric acquisitions made
possible by the natural scattering of the light from an analog material stimulated
by the artificial lamps and a real-time simulation framework (no waiting time for
rendering the scene). Their main drawback is the high operational costs, the large
resources needed to be invested in the design and maintenance, and the rigid setup,
which poses geometrical constraints (self-occlusions, self-shadowing, range of the
simulation limited to the size of the facility, lighting conditions).

For these motivations, these facilities are often used only in the final stages of an
incremental validation campaign. De facto, data acquired with this setting is rarely
available outside of the environment, with few notable exceptions of open-access
datasets [69, 132].

The capability to accurately detect surface morphological features such as craters
and boulders at different scales on the surface of small bodies is of paramount
importance for a variety of vision-based applications around small bodies, such as
the ones presented in Chapter 4 and Chapter 5. The development of this capability,
however, is hindered by significant challenges: the environmental conditions due to
the irregularity of the bodies, properties, and distribution of the features, rapidly
changing illumination conditions, and most importantly, the lack of publicly available
datasets for training, validation, or testing.

This latter challenge is addressed by the tools illustrated in the previous sections,
and it is further augmented in this one with the detailed description of a setup
used at Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) to create
a general-purpose open-access dataset designed to simplify the access to labeled
data about small bodies.

3.3.1 Facility

The Robotic Innovation Center (RIC), part of DFKI, operates a terrain analog
facility to test free-climbing robotic systems and demonstrates their mobilities. The
facility is roughly 15 .0m×10 .3m wide and 4 .4m high, with a total testing area of
about 146 .5m2 . A curtain can be mechanically lowered from the ceiling to make
a dark environment representative of space conditions. A studio lamp can then be
used within the facility to simulate the Sun’s illumination conditions. A sizeable
unused volume exists on top of the facility, given that there is a distance of about
12 m between the top of the facility and the ceiling. The surface has been built
using real data from the south polar craters on the Moon and images from the
Apollo missions and is composed of three continuous paths with 25◦, 35◦, and 45◦

slopes and two flat areas at the top and at the bottom. Obstacles such as boulders
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can be attached at predisposed screw points distributed at regular intervals on the
terrain to provide challenging surface conditions for locomotion systems. Finally, a
sandy substrate is also simulated with fine-grained material (<1 mm) in the lower
part of the facility. A Vicon tracking system 26 is mounted surrounding the facility
from above. Finally, in the lower section, a dedicated space serves as a control
center containing Vicon’s servers and a working station. A 2D map of the facility
seen from above is visible in Figure 3.30 while some examples of the views of the
terrain are visible in Figure 3.29.

Figure 3.29: Example of views of the facility with simulated lighting conditions.

Usually, the facility simulates surface interactions to test the robotic systems
developed at RIC. However, as part of a collaboration with DFKI, it has been
exploited in a dedicated activity for visual-based applications.

For simplicity, as illustrated in Figure 3.30(b), the facility is divided into five
different regions whose boundaries are designed to separate the three sloped areas
at the center and the flat ones at the top and bottom. From R1 to R5 each region
corresponds to a surface area of roughly 26 .7m2 , 34 .0m2 , 39 .1m2 , 22 .5m2 , and
25 .9m2 . Within these regions, 14 large craters have been manually identified and
assigned an ID for referencing. Additionally, for this activity, a boulder field has
been created with spare boulders on the lower portion of the terrain (in region R1 ).

26https://www.vicon.com/, last accessed 12th of September 2023.

https://www.vicon.com/
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(a) Heightmap of the facility. (b) Naming convention.

Figure 3.30: Heightmap of the facility (a) with isolines (plotted at every 0 .05 m intervals).
Representation of the naming convention for the regions and large craters of the facility
(b) used in this section.

Since a digital terrain model of the facility exists, it is possible to develop a
digital twin of the real analog terrain in Blender using CORTO. This is crucial to
create an artificial environment in which it is possible to generate artificial labels
that go beyond the reconstructed pose provided by the Vicon system. Some possible
labels are illustrated in Figure 3.31. Several calibration procedures are necessary to
link the real facility with the artificial one, as illustrated in Section 3.3.4.

(a) Craters. (b) Depth. (c) Slopes.

Figure 3.31: Examples of labels obtained with the artificial environment of the terrain
analog facility: (a) semantic segmentation labels for craters, (b) depth map, (b) slope
map.

3.3.2 Data collection setup

Exploiting the current design of the facility at the RIC and the free available space
above the terrain, a drone is used as an image-collecting device to generate the
dataset samples. A commercial drone is a cost-effective option for positioning
a camera across the facility without installing other complex equipment. The
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complete setup used to generate the dataset is illustrated in Figure 3.32.

Figure 3.32: Schematic of the setup used in the facility to generate the dataset.

The setup uses the facility and other additional components:
• Drone: A commercial drone (The DJI-mini SE 27) is used as a tool to

position cameras around the facility. The drone is flown manually through
a dedicated controller and is equipped with the following components, as
illustrated in Figure 3.33:

– Propeller guards: They guarantee safe operations and avoid damage
to the curtain, the Vicon cameras, or any other element within the
facility. As a drawback, the guards lower the drone performance in terms
of battery time, shortening the usable flight time with each battery.

– 3D-printed Vicon tracker stand: A rigid 3D-printed support structure
is attached to the drone for positioning four Vicon markers to allow
the detection and tracking of the drone within the facility 28. This
3D-printed structure demonstrated essential to increase the visibility
of the trackers to the Vicon cameras, increasing the number of poses
correctly generated within the facility during each flight.

– GoPro Hero-4: A GoPro camera is rigidly attached to the structure of
the drone (on the bottom part) to acquire videos with nadir pointing
during each flight. By default, the drone is also equipped with a gimbal-
stabilized camera. Both cameras can record RGB videos at different
framerates, resolutions, and FOV.

27https://www.dji.com/id/mini-se/specs, last accessed 11th of September, 2023.
28The author would like to personally thank Houssemeddine Jebali at DFKI for having modeled

and printed the support for the markers.

https://www.dji.com/id/mini-se/specs
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• Calibration chessboard: A rigid 7×10 calibration chessboard with 35 mm
squares and Vicon markers attached to it.

• Sun lamp: A studio lamp to qualitatively simulate illumination conditions
from the Sun.

• Vicon system: A Vicon motion tracking system with cameras surrounding
the facility from above.

• Calibration stand: A tripod supporting the drone during the calibration
procedures.

• Calibration landmarks: Visual landmarks used to perform manual calibration
in the facility with the Vicon system, the drone, and the calibration stand.

• Boulders region: portion of the facility where a boulder field is artificially
simulated specifically for this activity. The boulder field is created with spare
boulders not currently mounted within the terrain.

• Main surface: the main portion of the facility with craters, boulders, slopes,
and regions with sand.

• Take-off pad: safe region for drone take-off and landing during each flight.

(a) Top view of the Drone. (b) Bottom view of the Drone.

Figure 3.33: Top (a) and bottom (b) view of the drone used to generate the dataset.

3.3.3 Data generation

With 18 flights of the drone within the facility, the dataset is generated with varying
camera properties and illumination conditions. Each flight is executed manually
following a predefined flight path. First, the drone traverses the R2 region across
the X axis until arriving at the R5 region. Then, the drone is moved across the R5

region, spanning the R4 −R3 −R2 region from top to bottom until the boulder field
in R1 is reached. The drone is then moved in a horizontal-vertical cross pattern to
mimic a descending trajectory. After this passage, the drone is moved once again
over the R2 −R3 −R4 region with a random motion. The duration of each flight
is approximately five minutes from take-off to landing. Figure 3.34 illustrates all
the reconstructed positions of the drone during each flight. Note that the drone is
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flown visually from the control center within the facility during each flight. This is
due to the absence of a GPS signal within the building, making it impossible with
the current commercial setting to program any predefined path planning algorithm
to automatize flight operations.

Figure 3.34: Visualization of all the 18 flights used to generate the dataset.

During each flight, video streams, log files from the DJI onboard software,
and Vicon data are recorded as raw data. In particular, two streams of videos are
recorded simultaneously: one with the integrated DJI camera of the drone and
another one with the GoPro rigidly mounted under the bottom structure of the
same. The GoPro is considered the primary data-collection sensor. In contrast, the
DJI camera is regarded as an opportunistic sensor, given an issue encountered with
the self-stabilized gimbal of the DJI camera, which does not make it possible to
perform a rigid hand-eye extrinsic calibration, as it is illustrated in subsection 3.3.4.

Each of the flights is executed with different camera settings (resolution,Frames
Per Second (FPS), and FOV) and illumination conditions. The camera settings
used to generate the videos are summarized in Table 3.5. The first three (A, B,
and C) represent the settings used for the GoPro, while the latter two (D and E)
are the settings used for the DJI sensor. For each of the GoPro settings, six flights
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Table 3.5: Characteristics of the different camera settings used to generate the dataset.

ID Resolution [px] FPS FOV [deg]

A 1920 ×1080 120 Wide (170)
B 2704 ×1520 50 Medium (127)
C 1920 ×1080 120 Narrow (90)
D 1920 ×1080 50 Wide (83)
E 2720 ×1530 50 Wide (83)

are executed, varying the illumination conditions and positioning the Sun lamp in
different locations around the facility (the lamp is positioned three times in R1 with
a left-center-right configuration pointing towards the center of the facility and then
three times in R5 with the same configuration), generating a total of 18 flights.

3.3.4 Calibration

Several calibration procedures are necessary to correctly collect the samples for
the dataset, some of which are performed exclusively for this activity. The Vicon
system is assumed to be calibrated; thus, its calibration procedure is not presented.

To link the digital model of the facility with the real one, the reference frame of
the Vicon system is exploited as an intermediary. Three trackers are positioned at
prominent features in the real facility while the Vicon system records their positions.
The positions of the three trackers are then matched in the digital model of the
facility. The transformation from the facility and Vicon reference frames can then
be easily reconstructed. Since this is a rigid transformation, the calibration is
performed only once. This procedure is referred to as the facility-facility calibration
since it allows to transform of a position in the real facility (recorded with the
Vicon) into a position in the digital facility.

Several data streams are collected from different systems and sensors during
each flight. The video streams, the Vicon data, and the flight log data internally
recorded by the DJI software must be synchronized. This procedure is referred to as
time synchronization and is a laborious task that is performed in a semi-automatic
way. To achieve time synchronization, a particular abrupt relative motion needs to
be performed during each data-collection event (typically at the beginning) between
the drone, the chessboard pattern, and the Vicon system. This is necessary to
generate a noticeable and time-limited event that can be recognized by the corners
of the chessboard extracted from the camera videos and the poses of the drone
recorded with the Vicon. During each flight, this is performed by a sudden sharp
movement across the X direction in the facility above the calibration chessboard
shortly after take off. During calibration (when the drone is kept stationary), this
is achieved by manually moving the calibration pattern in a detectable way both by
the drone cameras and the Vicon system.
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Currently, the time synchronization is performed only between the video streams
and the Vicon system. Also, since these operate at different FPS (100 for the
Vicon system, 50 or 120 for the GoPro, and 50 for the DJI camera), the time
synchronization accuracy varies depending on the combinations of the three elements.
The time synchronization is performed manually by determining the shared intervals
in which all three data streams detect the abrupt motion and then allowing a
window of frames around this event to be considered as a candidate solution for the
synchronization. The proper synchronization is determined as the one achieving
the smallest error with the extrinsic calibration procedure illustrated hereafter.

The extrinsic calibration, also referred to as hand-eye calibration, is necessary
to find the two unknown transformations. During this calibration, the drone is
positioned vertically on the calibration stand within the facility, which allows simple
tracking of its pose by the Vicon system. The chessboard calibration pattern is
then manually moved within the FOV of the drone’s camera, ensuring the Vicon
system correctly tracks its markers. During this procedure, the drone’s camera
performs n acquisitions of the chessboard pattern, which should be detected by its
m corner points of the checkerboard pattern of the calibration chessboard.

During such procedure, the Vicon system, referred to as V , tracks drone C
and chessboard CH markers. The purpose of the calibration is to find the set of
unknown transformations TD

C and TCH
CH2 . TD

C represents the CAM reference frame
in the DRONE reference fram. TCH

CH2 represents the transformation between
the CH∈ frame representing the 2D printed chessboard expressed in the CH
reference frame. Since both TD

C and TCH
CH2 are rigid transformations, once they

are found in the extrinsic calibration procedure, they are assumed constant during
each flight. This assumption is not true for the DJI camera of the drone, whose
gimbal motion makes the transformation time-dependent. To solve for these two
unknown transformations, the coordinates of a point Xi in CAM are expressed in
the calibration setup as:

Xi = TC
D ·

(
TV
D

)−1
TV
C (t) ·

(
TCH
CH2 ·pi

)
(3.25)

where pi represents the homogeneous coordinates of the corners of the chessboard
pattern, TV

C (t) is the only time-varying transformation during calibration, while all
others are rigid transformations. Using the coefficients extracted from the intrinsic
calibration about tangential and radial distortions, the point Xi are deformed as:

pj =

1 0 0 0
0 1 0 0
0 0 1 0

 ·Xi (3.26)

x =
pj ,1
pj ,3

y =
pj ,2
pj ,3

r2 = x2 +y2
(3.27)
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x
′
= 2p1xy +p2

(
r2 +2x2

)
y

′
= p1

(
r2 +2y2

)
+2p2xy

(3.28)

where x
′
and y

′
represent the coordinates of the points after applying tangential

distortion.

x
′′
= x

(
1 +k1 r2 +k2 r

2
2 +k3 r

3
2

)
y

′′
= y

(
1 +k1 r2 +k2 r

2
2 +k3 r

3
2

) (3.29)

where x
′′

and y
′′

represent the coordinates of the points after application of
radial distortion. The projection of the point on the image, given the sets of
transformations described above, can thus finally be expressed with the use of the
intrinsic matrix K as:

pk = K

x ′
+x

′′

y
′
+y

′′

1

 (3.30)

The prediction of the points pk in UV frame performed with the chain of
transformations described above can then be confronted with its detection from the
images with a simple edge detection algorithm. The difference between the two is
used to compute a metric εext which is affected by the two unknown transformations
TCH
CH2 and TD

C .

εext =
∑n

√(
∑m (pk −pext)

2
)

N
(3.31)

where pext are the points extracted from images, N is the number of images used in
the calibration procedures, and m is the number of points in the chessboard pattern.
Using εext as a score function and expressing the two unknown transformations in
the previous equation are TCH

CH2 and TD
C as a seven elements vector made of origin

coordinates and quaternion:

TD
C → vDC = [x0 y0 z0 q0 q1 q2 q3 ] (3.32)

TCH
CH2 → vCH

CH2 = [x0 y0 z0 q0 q1 q2 q3 ] (3.33)

an optimization problem is set in Matlab using fmincon with sequential quadratic
programming solver and imposing the equality constraint q20 + q21 + q22 + q23 −
1 = 0 . At convergence, the optimization generates two estimates for the two
transformations used for its corresponding flights until the εext metric results in an
error of a few pixels.

The extrinsic calibration procedure is performed for each camera setting before
each flight. Once the transformations are solved, they express the camera position
in the facility reference frame, exploiting the rigid transformation between the Vicon
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and Facility reference frames. This is fundamental in reconstructing the chain
of transformations that allow the positioning of a sensor in Blender to recreate
image-label pairs in the artificial environment.

The results of one of the extrinsic calibration procedures are illustrated in
Figure 3.35 and Figure 3.36. The mean calibration error achieved for εext for the
specific calibration illustrated is 2 .79 px.

Figure 3.35: Reprojected calibration patterns extracted during the extrinsic calibration
procedure for one of the flights. The colors represent the εext achieved for each pattern.

(a) Histogram of εext . (b) Cumulative distribution.

Figure 3.36: Histogram (a) and cumulative distribution (b) of εext for the extrinsic
calibration with the patterns illustrated in Figure 3.35.

Finally, to perform radiometric calibration, black and white images are recorded
with the different camera settings in representative illumination conditions encoun-
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tered during flights. This data can be optionally used to calibrate the level of dark
noise and other camera effects in the two sensors used for the data collection.

3.3.5 Preliminary results

The total size of the raw data collected (composed of videos, log files of each flight,
and Vicon data) by the 18 flights and the calibration procedures is about 105 Gb.
The final dataset will be further processed from this raw data and subdivided into
three levels of increasing complexity:

• Level 0: Images only. Single images alone or in sequence can be considered
at this level to perform a qualitative assessment of the functioning of image
processing algorithms with realistic images.

• Level 1: Images + Poses. Images are accompanied by full poses recon-
structed via the Vicon system and using the transformations estimated using
the extrinsic calibration procedure. At this level, the dataset can be used to
perform quantitative assessment for visual-based navigation algorithms.

• Level 2: Images + Poses + Image Labels. Images are accompanied
by fully reconstructed poses and label masks such as the ones illustrated in
Figure 3.31. The labels are generated in a digital twin of the facility in which
the drone poses are reproduced in Blender using raytracing.

All calibration data will also be available to anyone interested in using the raw
data with their personalized calibration algorithms. A random sample of images
from one of the flights is illustrated in Figure 3.37

3.4 Final remarks

This chapter illustrated an in-depth overview of the strategies used in this research to
generate data for IP algorithms. The absence of data is particularly challenging when
considering small bodies for which only a limited statistical sample of observations
exists. Three strategies have been illustrated: one using an artificial environment
to generate synthetic renderings, one HIL setup exploiting a high-resolution screen
in an optical facility, and one HIL setup exploiting a terrain analog facility with
slopes, craters, and boulders. What follows is a list of final remarks.

• CORTO is a comprehensive and versatile tool for generating synthetic images
of celestial bodies, facilitating the development and validation of image
processing and navigation algorithms for space missions. Its capabilities span
rendering, noise modeling, hardware-in-the-loop testing, and post-processing,
enabling researchers and engineers to simulate realistic scenarios and assess
algorithm performance.

• The validation pipeline in CORTO utilizes metrics like normalized cross-
correlation and structural similarity via SSIM, ensuring the tool’s accuracy
and reliability compared to images from previously flown missions.

• CORTO has demonstrated its utility in various case studies and projects,
including CubeSat design, lunar missions, and deep learning applications.
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Figure 3.37: Six samples of images captured by the GoPro during one of the flights with
ID = B. The brightness of the images is artificially adjusted with γ = 0 .7 for visibility
purposes.

• While the tool covers various aspects of celestial body simulation, it can be
significantly improved for various applications (use of thermal and infrared
sensors, simulation of planets and atmospheric effects, coma effects for
comets, and Earth-based applications).

• It is the long-term aim of the CORTO developers to make the tool open-access
for any interested researcher to use and develop.

• TinyV3RSE represents a low-cost, versatile, and easy-to-use optical testbench
to validate the functioning of IP algorithms with camera effects.

• The terrain analog facility at the RIC in DFKI represents an interesting
opportunity to generate a dataset with slopes, craters, boulders, and sandy
regions. Although the facility is often used to test the locomotion of robotic
systems, it can be easily adapted for visual-based applications.

• A simple drone setup with data-collecting sensors has been implemented to
generate a dataset with morphological features typical of small bodies under
varying illumination conditions.
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• While the required data collection has been successfully performed, its pro-
cessing into the dataset in level 1 and level 2 is currently under development.

• The drone setup was demonstrated to be highly versatile but with drawbacks.
Manually flying the drone in a stable trajectory without a GPS signal proved
challenging, especially in the proximity of cratered regions.

• The integrated camera of the drone was demonstrated not to be useful for
calibration due to the impossibility of having it rigidly mounted with respect
to the Vicon trackers attached to the drone. Future works could consider a
dedicated drone designed with a payload bay allocating a variety of sensors
(altimeter, lidar, cameras with different FOV) rigidly mounted with respect
to the drone, simplifying the calibration procedure and allowing the collection
of data from multiple sensors.





4

Segmentation

“Indeed, many movies about artificial intelligence are so divorced from
scientific reality that one suspects they are just allegories of completely
different concern.”

Yuval Noah Harari, 21 Lessons for the 21st Century

Small bodies are characterized by a variety of shapes with different physical,
orbital, composition, and surface properties. These are only roughly observed from
ground-based and space-based telescopes and require further close-up investigations
from visiting spacecraft.

In particular, surface morphological features such as color variations, craters,
and boulders become visible only relatively close to the body. These features could
enable crucial autonomous capabilities onboard spacecraft if robustly detected
under varying illumination conditions.

Craters and large boulders can be used as landmarks for navigation, as performed
with the human-in-the-loop approach described in [60], or for autonomous onboard
scientific acquisitions, commanding the spacecraft pointing and acquisition of
valuable scientific data based on the appearance of selected features in the images.
Autonomous landing systems would benefit from an advanced comprehension of
the touchdown site. Detecting slopes, cratered regions, and large boulders would
prove crucial in performing real-time hazard estimation, potentially providing the
capability onboard for autonomous landing site selections.

This chapter addresses the detection of these features as an image segmentation
task performed using DL architectures. Semantic segmentation can be defined
[22] as the capability to perform both object recognition and accurate boundary
segmentation at pixel level. Crucially, semantic segmentation can be considered a
transformation of the image content from pixel intensity to class belonging. This
transformation is powerful since the segmentation map makes available a more
complex source of information for an onboard system to act on.
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Many techniques have been developed in the past decades to perform image
segmentation with small bodies, most notably using traditional IP methods [53]
during flybys and DL ones [24, 49, 54–59], as already discussed in Section 2.1.2.
The aforementioned works, however, showcased three major inconveniences that
are addressed in this chapter.

First, they do not fully appreciate the complexity of the classes of features
existing on a small-body surface, often not considering more than three meaningful
layers or focusing only on safe-unsafe pixel classification. Second, most do not
include uncertainty quantification metrics, which could be paramount for a real
operational scenario, as illustrated in [133]. Third, they often require extensive
manual preparation of the data since (apart from [49, 55, 133] which use digital
terrain maps and [58] which actively exploits ray-tracing capabilities) large, realistic,
annotated datasets are rarely available. This is a significant deficiency for high-
performing data-driven methods demanding a large amount of annotated data to
produce reliable architectures capable of working in real mission scenarios.

In this chapter, image segmentation applications with DL architectures are
illustrated. First, the problem is framed as a multi-layer segmentation task to
distinguish between several morphological features. Then, the focus is shifted to
the robust segmentation of boulders scattered across the surface of small bodies,
to be used mainly for navigation purposes. Finally, a comprehensive, multi-purpose
image segmentation dataset is illustrated that combines the lessons learned from
the design of these architectures.

4.1 Multi-layer segmentation

Small bodies exhibit a variety of surface morphological features that, being difficult
to extract from images, are often not considered. In this section, UNet architectures
are used to generate predicted masks over the surface of small bodies that distinguish
between five different taxonomic classes of morphological features: background,
surface, crater, boulder, and terminator region. Figure 4.1 shows an example of
this mask.

Figure 4.1: Complete image of the small-body model of Lutetia (a), surface(b), boul-
ders(c), craters (d), and terminator region(e) layers and true segmentation mask (f).
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The masks are obtained in CORTO exploiting the ray-tracing of the Cycles
rendering engine in Blender, assigning different pass indices to the different layers
of a model, as illustrated in detail in [101] and in Section A.1.1.

Exploiting the automatic labeling capability of an artificial environment in
Blender, a dataset of segmentation masks referred to as DS1 is generated for
various bodies. More details about this dataset can be found in the appendix
in Section A.1.1. DS1 is composed of five sets: four made of synthetic images
generated in CORTO (DSD−1

1 , DSD−2a
1 , DSD−2b

1 , and DSD−3
1 ), and one made of

real images that have been manually labeled (DSD−4
1 ). DSD−1

1 is used for training,
validation, and testing and is made of image-mask pairs of seven different bodies.
DSD−2a

1 , DSD−2b
1 , and DSD−3

1 are only used in inference and are made using
two bodies that have never been seen during training. DSD−3

1 is the only dataset
that simulates an acquisition during a flyby trajectory, assessing the segmentation
capabilities in such a scenario. Finally, DSD−4

1 is made of a small set of images
manually labeled by the author in [101].

4.1.1 Convolutional architectures

To perform multi-layer image segmentation, a CNN architecture based on the UNet
structure is adopted (See Section 2.2.2).

First, the encoding layers of the UNet are trained as a conventional CNN
for a classification task. The task is formulated as the work in [103], explicitly
developing an encoder capable of extracting features of interest from small-body
images. The classes correspond to the names of the target bodies, thus linking the
body’s appearance (and its surface features) with its class. The network input is a
grayscale image of the target body, while the output is a vector of 7 elements, each
representing the softmax probability of the image belonging to that specific class.

The architecture of the encoder is illustrated in Figure 2.8(a), its design is
summarized in Table 4.1 while the hyperparameters considered during training are
reported in Table 4.2. Once the encoder has been trained, it is embedded into the
UNet for the final image segmentation task.

A thorough hyperparameter search based on a refined search-grid approach
determines the best network. The Leaky Rectified Linear Unit (Leaky ReLU) is
used in all the convolutional layers of the CNN while the Rectified Linear Unit
(ReLU) is used in all the layers of the neural network portion of the CNN apart
from the last one, the output layer, which uses the softmax activation function.

As illustrated in Table 4.1, the CNN architecture is divided into four portions,
respectively, from top to bottom: input, convolutional layers, neural networks layers,
and output. The results of convolution and activation at each depth of the CNN
are copied in the encoding layers of the UNet while stacked in the decoding layers
of the same.

The encoder can also be designed with different strategies. For example, in a
previous iteration in [134], transfer learning is used on a pre-trained MobileNet-V2
architecture, a well-known flexible architecture [135] that had been previously
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Table 4.1: Architecture of the CNN considered as classifier. The total number of
parameters is 1 ,474 ,951 (5.62 MB), all of which are trainable.

ID Layer type Output Shape Parameters Connections

I InputLayer (B, 128, 128, 1) 0 C1

C1 Conv2D (B, 128, 128, 16) 160 LR1
LR1 LeakyReLU (B, 128, 128, 16) 0 P1
P1 MaxPooling2D (B, 64, 64, 32) 0 C2
C2 Conv2D (B, 64, 64, 32) 4640 LR2

LR2 LeakyReLU (B, 64, 64, 32) 0 P2
P2 MaxPooling2D (B, 32, 32, 64) 0 C3
C3 Conv2D (B, 32, 32, 64) 18496 LR3

LR3 LeakyReLU (B, 32, 32, 64) 0 P3
P3 MaxPooling2D (B, 16, 16, 128) 0 C4
C4 Conv2D (B, 16, 16, 128) 73856 LR4

LR4 LeakyReLU (B, 16, 16, 128) 0 P4
P4 MaxPooling2D (B, 8, 8, 256) 0 C5
C5 Conv2D (B, 8, 8, 256) 295168 LR5

LR5 LeakyReLU (B, 8, 8, 256) 0 P5
P5 MaxPooling2D (B, 4, 4, 256) 0 DO1

DO1 Dropout (B, 4, 4, 256) 0 FC
FC Flatten (B, 4096) 0 D1
D1 Dense (B, 256) 1048832 DO2

DO2 Dropout (B, 256) 0 D2
D2 Dense (B, 128) 32896 O

O Output (B, 7) 903

Table 4.2: Hyperparameters of the CNN used for training.

Parameter Value

Batch size 200
Optimizer Adam

Activation function ReLU, LeakyReLU, and Softmax
α parameter of the LeakyReLU 0.3

Convolution kernel size 3x3
Pooling kernel size 2x2

Dropout value (DO1) 0.2
Dropout value (DO2) 0.2

Loss metric SCCE
Accuracy metric accuracy

Epochs 100



4.1. Multi-layer segmentation 103

trained for different tasks and types of images that are entirely different from the
one associated with small-bodies. Instead, in [101], the authors experimented with
a custom-made encoder to potentially increase the performance and reduce the
network’s size. The work presented in this section reflects the one performed in
[101].

The efficacy and simplicity of the UNet architecture has already been proven both
in the broader computer vision domain [136] and in various space applications [49,
55, 58, 133, 134], representing the state-of-the-art approach for image segmentation
[22].

The schematic of the UNet architecture used is illustrated in Figure 2.8(b), its
design is summarized in Table 4.3, while its hyperparameters are listed in Table 4.4.

Table 4.3: Architecture of the UNet considered in this section. The total number of
parameters is 1 ,225 ,413 (4.67 MB), 832 ,613 (3.18 MB) of which are trainable and
392 ,320 are not.

ID Layer type Output Shape Parameters Connections

I InputLayer (B, 128, 128, 1) 0 E1

E1 Encoder (B, 128, 128, 16) 160 E2, CC4
E2 Encoder (B, 64, 64, 32) 4640 E3, CC3
E3 Encoder (B, 32, 32, 64) 18496 E4, CC2
E4 Encoder (B, 16, 16, 128) 73856 E5, CC1
E5 Encoder (B, 8, 8, 256) 295168 UP1

UP1 Sequential (B, 16, 16, 128) 295424 CC1
CC1 Concatenate (B, 16, 16, 256) 0 DO1
DO1 Dropout (B, 16, 16, 256) 0 LR1
LR1 LeakyReLU (B, 16, 16, 256) 0 UP3
UP2 Sequential (B, 32, 32, 64) 147712 CC2
CC2 Concatenate (B, 32, 32, 128) 0 DO2
DO2 Dropout (B, 32, 32, 128) 0 LR2
LR2 LeakyReLU (B, 32, 32, 128) 0 UP4
UP3 Sequential (B, 64, 64, 32) 36992 CC3
CC3 Concatenate (B, 64, 64, 64) 0 DO3
DO3 Dropout (B, 64, 64, 64) 0 LR3
LR3 LeakyReLU (B, 64, 64, 64) 0 UP5
UP4 Sequential (B, 128, 128, 16) 9280 CC4
CC4 Concatenate (B, 128, 128, 32) 0 DO4
DO4 Dropout (B, 128, 128, 64) 0 LR4
LR4 LeakyReLU (B, 128, 128, 128) 0 CT1

CT1 Conv2DTranspose (B, 128, 128, 128) 36992 DO5
DO5 Dropout (B, 128, 128, 128) 0 CT2
CT2 Conv2DTranspose (B, 128, 128, 256) 295168 DO6
DO6 Dropout (B, 128, 128, 256) 0 O

O Conv2DTranspose (B, 128, 128, 5) 11525

The architecture in Table 4.3 is divided into five portions, from top to bottom:
input, encoder, decoder, head, and output. The encoder is constituted by the
frozen convolution layers of the CNN architecture in Table 4.1 while the decoder
is generated by stacking such layers with new upsampling layers taken from the
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pix2pix29 architecture in TF.
The contracting portion of the network (encoder) is composed of a succession

of convolution, Leaky ReLU activation functions, and max-pooling layers, which
progressively increase in depth and reduce in size (i.e., height and width). The
expansive portion (decoder) is made by a combination of transpose convolution
(light-red and light-pink blocks in Figure 2.8(b)), Leaky ReLU, and upsampling
layers of reducing depth and increasing size. This symmetric nature is what gives
the network its characteristic “U” shape and name. The output of the convolutional
layers of the encoder is copied and stacked in the corresponding layers of the
decoder, as represented by the blue arrows in Figure 2.8(b). Moreover, the lack of
a fully connected layer in the middle is a network characteristic.

The input is represented by a grayscale image, the output by a preliminary
128×128×5 tensor which is processed as final output to be a 128×128 image
whose pixel values span from 0 to 4, each corresponding to a specific layer of the
small-body. These are, from 0 to 4: background, surface, crater, boulder, and
terminator region. In Figure 4.2 it is possible to see an exploded view of the output
portion of the UNet before and after the application of the argmax function. Each
of the five layers that makes the output tensor is a 128 ×128 matrix containing
unbounded float values. Each pixel of the matrix represents a scalar score for that
pixel belonging to that specific layer, the score being visualized with a jet colormap
in Figure 4.2; the higher the score (red), the higher the chance of that pixel
belonging to that class, vice-versa for lower scores (blue). By applying the argmax
function, the 128 ×128 ×5 tensor is reduced to a 128 ×128 matrix where each
pixel can assume a value from 0 to 4 (i.e., the values representing the morphological
classes) so that the output matrix represents the predicted segmentation mask.
Note that the colors used for each class, from the viridis colormap, which is visible
in Figure 4.2, are the same that used for the remainder of this section when defining
the multi-layer segmentation masks.

Three variations of the same UNet architecture are investigated, referred to
as UNet Synthetic (UNetS), UNet Synthetic Augmented (UNetAS ), and UNet Real
(UNetR). The three architectures share the same structure described in Table 4.3,
differing only by their weights and biases, which are the results of different training
strategies. UNetS is trained using DSD−1

1 , composed only of synthetic images.
UNetAS and UNetR are trained using DSD−4

1 , composed only of real images. At
initialization of UNetAS , transfer learning is performed by sharing the same weights
and biases of UNetS. UNetAS starts its training with knowledge acquired by the
architecture with synthetic images only. It uses this knowledge for a new training
phase with real image-label pairs. On the contrary, UNetR starts with a randomized
set of weights and biases, not exploiting the previous training episodes with synthetic
images. The choice to keep the three architectures identical is made as a proof of
concept to remove architectural differences and to isolate the contribution caused

29https://www.tensorflow.org/tutorials/generative/pix2pix, last accessed
on 15th of March 2022.

https://www.tensorflow.org/tutorials/generative/pix2pix
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Figure 4.2: Exploded view of the 128 ×128 ×5 output tensor before it is processed
to generate the output mask. The color of the layers illustrated in this figure is used to
represent all the segmentation masks.

by transfer learning and different training strategies.
As for the CNN classifier, a thorough hyperparameter search based on a refined

grid-search approach defines the best three UNet networks. The Leaky ReLU is
used in all the convolutional layers, the ReLU is used in all the layers of the neural
network portion of the CNN apart from the last one, the output layer, which uses
the softmax activation function.

Table 4.4: Hyperparameters used in training of the UNet.

Parameter UNetS UNetAS UNetR

Batch size 50 70 70
Optimizer Adam

Activation function ReLU, LeakyReLU
α parameter of the LeakyReLU 0.3

Convolution kernel size 3x3
Pooling kernel size 2x2

Dropout values (DO1-DO4) 0.2 0.6 0.1
Dropout values (DO5-DO6) 0.4 0.6 0.1

Weight Background 0.09 0.09 0.09
Weight Surface 0.09 0.09 0.09
Weight Craters 0.45 0.35 0.35

Weight Boulders 0.23 0.33 0.33
Weight Terminator 0.14 0.14 0.14

Loss metric WSCCE
Accuracy metric mIoU

Epochs 100 1500 1500
Learning rate 1 .3 e−3 1 .0 e−6 1 .0 e−3

Finally, an additional hybrid architecture, referred to as UNet Hybrid (UNetH),
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making use of mixed prediction between UNetS and UNetAS is investigated. This
was prompted by the observation that the automatically-labeled boulders in DSD−1

1

tend to robustify UNetS in the detection of small-to-medium size boulders (see
Figure 4.7), while the manually-labeled ones in DSD−4

1 have a similar effect on
UNetAS for large boulders (see Figure 4.14), as it is possible to see in Figure 4.3. In
an attempt to combine the strength of these two networks, their predictions are
combined as illustrated in Figure 4.4.

(a) Detection by UNetS. (b) Detection by UNetAS .

Figure 4.3: Same scene of Bennu surface with an overlay of the boulders detected by
UNetS (a) and UNetAS (b).

UNet
A
S

UNetS

Figure 4.4: Hybrid architecture UNetH which uses the contribution of multiple networks
for a qualitatively more realistic segmentation.

UNetH is realized by running the same input image twice through the same
architecture, instanced by different weights and biases representing UNetS and
UNetAS . This architecture generates two sets of 128 ×128 ×5 raw outputs for
each input image. As illustrated in Figure 4.4, the 1st, 2nd and 5th layers
(corresponding respectively to background, surface, and terminator region) are
predicted entirely by UNetS. The prediction of the 3rd layer is performed by
UNetAS , since it seems better at detecting craters from real images. Finally, the
4th layer, the one predicting the boulders, is computed as a weighted mix between
the predictions from UNetS and UNetAS using the following equation:
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lUNetH
4 = log10 (γ) · lUNetS

4 +(1 − log10 (γ)) · l
UNetAS
4 (4.1)

where γ is a weighting parameter set to vary between 1 and 10 to mix the
contribution of the two predictions. Since no reference ground truth mask is
generated for this scenario, its performance is only assessed qualitatively.

4.1.2 Uncertainty quantification

In this section, a preliminary step towards the inclusion of uncertainty quantification
in the pixel class prediction by the UNet is attempted. This is done by leveraging
prior efforts on the topic from [137], which introduces a methodology to quantify
uncertainty from predictive entropy, and the from [133], which showcases how such
uncertainty could be operationally used for robust, safe landing-site selection. The
approach to generate uncertainty maps is schematized in Figure 4.5.

θ1

θp

Figure 4.5: Architecture to generate the uncertainty maps.

Predictive entropy can model both aleatoric and epistemic uncertainty [137],
the first caused by environmental variability and the second by the model. The
approach described in [137] exploits Bayesian inference and the non-deterministic
nature of the network architecture (achieved by incorporating dropout) to quantify
the uncertainty as predicted entropy. Both phenomena can also be applied to
UNetS, UNetAS , and UNetR.

Considering only one architecture for simplicity, the same instance of weights
and biases θ is used, and the input image is run P times without changing them
(P = 20 in this analysis). Because dropout is extensively used in the architectures,
the output to the same image changes at each iteration as the dropout changes the
active connections used across the network. Note that the weights and biases are
the same at each prediction, but the dropout randomly nullifies some connections;
hence θp represents the same instance of the network with some connections
randomly removed. This produces P×128 ×128 ×5 output tensors, considering
the raw outputs before applying the argmax function (see Figure 4.2). From these
multiple sets of raw outputs, the uncertainty is computed as pixel-wise predictive
entropy as [137]:

Ĥ [y|x] =−
K

∑
i=1

[
1

P

P

∑
p=1

softmax(yi ,p|x,θp)

]
· log

[
1

P

P

∑
p=1

softmax(yi ,p|x,θp)

]
(4.2)
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where x and y are respectively the vector of input and output of the network
for each pixel, K is the number of classes over which the predictive entropy is
computed (K = 5 in this study), p is referred to the p-th sample considered and
finally softmax(yi ,p|x,θp) is the probability that the network assigns the pixel to the
i-th class during p-th sample given the input x and obtained with a set of weights,
biases, and dropout combination provided by θp.

Nominally, the network prediction is generated using the argmax function, as
illustrated Figure 2.8(b). However, the softmax function is used instead to generate
Ĥ [y|x]. By applying this approach to the prediction of the class of each pixel,
an uncertainty map is generated accompanying each segmentation map. The
uncertainty map is visualized with an inferno colormap (from black representing low
uncertainty to yellow representing high uncertainty), as illustrated in Figure 4.5.

The uncertainty is exploited to assign pixels associated with high uncertainty to
a 6 th additional layer (a sort of extra layer that highlights unstable predictions in the
segmentation map that might be avoided). This is implemented easily by setting a
global threshold (quantified as a scalar between 0 and 1, which scales between the
minimum and maximum values of predicted entropy for each image) and moving
the pixels above this threshold into the extra 6 th layer of the segmentation map.
The validation datasets of DSD−1

1 and DSD−4
1 are used to select an appropriate

value for such a threshold. The threshold is selected to maximize the mIoU for
all images in the validation sets, which is then used in inference only on images
from the test sets. The threshold is found to be equal to 0 .91 , 0 .54 , 0 .48 , and
0 .23 respectively for the UNetS (on DSD−1

1 ), UNetS (on DSD−4
1 ), UNetAS (on

DSD−4
1 ), and UNetR(on DSD−4

1 ).

4.1.3 Results

This section illustrates the performance of the segmentation architectures on the
test sets of DS1 .

4.1.3.1 Segmentation over DSD−1
1 , DSD−2

1 , and DSD−3
1

The performance of UNetS over the synthetic datasets is summarized in Table 4.5.
It is remarked that the mIoU over DSD−1

1 drops from ∼ 60% on the validation
set to ∼ 56% on the test set, which is also the highest value of mIoU achieved
across all synthetic test sets. Albeit this drop in performance, the network shows
good generalization capabilities when it is tested with new models that have never
been encountered during training (DSD−2a

1 and DSD−2b
1 ) and in a flyby scenario

with an unknown body(DSD−3
1 ).

Comparing the performance presented in Table 4.5 (that reflects the one in
[101]) with the one of a previous iteration in [134], a slight drop is observed. Since
both works use the DS1 dataset, the difference is solely attributed to the networks.

By design, the UNet architecture presented in this section has a considerably
smaller encoder (4105 parameters) than the one used in [134] (about 1 .8106



4.1. Multi-layer segmentation 109

Table 4.5: Summary of the mIoU of the UNetS for the different test cases expressed as a
percentage.

Test case Background Surface Craters Boulders Terminator Mean

D-1
min 11.11 70.05 0.16 1.08 0.27

mean 88.16 91.57 14.09 28.34 57.52 55.93
max 100.00 99.54 100.00 81.06 100.00

D-2a
min 71.36 43.01 0.17 1.16 0.10

mean 95.91 91.63 10.68 19.97 44.67 52.57
max 99.82 97.31 100.00 58.46 100.00

D-2b
min 6.25 71.09 0.03 2.79 0.09

mean 88.05 91.60 9.20 23.35 60.50 54.54
max 100.00 99.18 100.00 59.28 100.00

D-3
min 30.61 1.11 0.48 2.13 0.41

mean 94.08 73.63 11.91 16.53 58.19 50.87
max 100.00 98.88 47.62 50.21 100.00

parameters). This trend is also observed for the whole architecture. Moreover, the
architecture presented in this section is trained from scratch using solely small body
images from DS1 . On the contrary, the one in [134] is fine-tuned from a previously
trained model on completely different images than the ones typical of small bodies.

Since the performance is observed to be slightly worse or similar to that in [134],
it can be concluded that the encoder’s specialization with small body features did
not seem to have brought relevant advantages, albeit a smaller architecture has
been used.

In Figure 4.6, it is possible to see the cumulative values of IoU and mIoU across
all datasets. In particular, it is observed that the capability of the UNet to detect
background, surface, and terminator regions accurately boosts the mIoU. On the
other hand, the network’s worse performances in robustly detecting craters and
boulders seem to be the critical element in dragging down the mIoU.

A mosaic is illustrated in Figure 4.7 with input images, true, and predicted
masks for DSD−1

1 .
In Figure 4.8 it is possible to see the network performance in a flyby scenario,

which is an interesting application to enhance its scientific return [54]. It is possible
to appreciate the increased accuracy in the detection of boulders as the camera
gets closer to the body, as well as the overall difficulty in robustly detecting craters.

It is also commented that the shape model of Thisbe used in DSD−2b
1 and

DSD−3
1 is designed to challenge the network by positioning two nested craters

over the viewing face of the body during the flyby. This feature has never been
seen during training and has been introduced to assess the network generalization
capabilities. As it is possible to see from the mosaic in Figure 4.9, the double crater
is robustly identified only in a few cases, while single craters are identified more
robustly in the same dataset. Finally, it is also commented that network predictions
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(a) DSD−1
1 .

(b) DSD−2a
1 .

(c) DSD−2b
1 .

Figure 4.6: Cumulative mIoU and IoU (coloured) for each class of the UNetS on the test
set of DSD−1

1 (a), DSD−2a
1 (b), and DSD−2b

1 (c).

are unstable from considerable distances from the target body, while they become
significantly more robust closer to the surface. This behavior is expected when
features occupy only a few pixels in the input image.

4.1.3.2 Segmentation over DSD−4
1

The performance of UNetS, UNetAS , and UNetR over the dataset made of real
images, DSD−4

1 , are summarized in Table 4.6.
As expected, the worst-performing network is UNetS, since it has been trained

only over synthetic images. The drop in performance hints at the existence of a
domain gap between synthetic and real images. This seems particularly relevant
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Figure 4.7: Mosaic of 15 × 3 triplets showing input (left), true mask (center) and
predicted mask (right) for test dataset of DSD−1

1 by UNetS. See Figure 4.2 for the legend
of the layers.

for craters and boulders and only marginally for the terminator region.

Performance is recovered with UNetAS and UNetR, with the first performing
slightly better than the second, as it is possible to see from the mosaics in Figure 4.10.
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Figure 4.8: Cumulative mIoU (black) and IoU (coloured) for each class of the UNetS in
test set of DSD−3

1 as function of time (top). Distance from the asteroid as a function of
time (bottom).

From the former, it is possible to appreciate the poor performance of UNetS in
detecting craters, hinting at the unrealistic crater modeling in the synthetic images
of DS1 .

The poor performance of UNetS with real images justifies the existence of
UNetAS and UNetR. Indeed, these two networks are designed for operative scenarios:
use the few real images that could be downlinked to the ground once a spacecraft
arrives at the target body to train them. Indeed, DSD−4

1 is made only by as little
as 50 images (from 4 different bodies) that, using data augmentation, are virtually
increased to 200 images. This also reflects the original methodology in [136],
which used data augmentation on a severely limited set of only 30 images available
for training for a biomedical application.

The remaining question remains whether or not to perform bootstrap learning
by using a pre-trained network with synthetic images (UNetAS ) or to solely rely on
limited real images for (UNetR). Looking at the performance achieved by the two
networks, the bootstrap strategy delivers better results.

Figure 4.11 displays the mIoU of the validation curve during training of the
three best final instances of the architectures UNetAS and UNetR. From this figure,
it is possible to appreciate a faster and smoother convergence by UNetAS to a higher
performance plateau than the one reached by UNetR. It is also observed that since
the early phases of the training, UNetAS is advantaged by the training experience
of UNetS, starting from higher values of mIoU. These same values are reached by
UNetR only after 150 −200 epochs.
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Figure 4.9: Mosaic of 19 × 3 triplets showing input (left), true mask (center), and
predicted mask (right) for the test set of DSD−3

1 by UNetS. See Figure 4.2 for the legend
of the layers.
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Table 4.6: Summary of the mIoU for DSD−4
1 for the different test cases expressed as a

percentage.

Test case UNetS UNetAS UNetR

Background
min 1.16 1.14 15.95

mean 69.84 76.79 74.00
max 92.19 98.53 98.28

Surface
min 59.18 73.90 67.71

mean 82.00 88.33 83.58
max 93.00 96.84 96.21

Craters
min 0.04 1.06 0.30

mean 12.63 56.94 49.47
max 100.00 100.00 100.00

Boulders
min 0.09 2.78 1.65

mean 4.59 67.42 65.31
max 20.00 100.00 100.00

Terminator
min 1.28 3.33 6.04

mean 24.64 55.68 52.68
max 100.00 100.00 100.00

Mean 38.74 69.03 65.01

(a) Predictions by UNetAS . (b) Predictions by UNetR.

Figure 4.10: input (left), ground truth (center), and predicted (right) masks in the best
(top), average (middle), and worst (bottom) cases of the test set of DSD−4

1 by UNetAS
(a) and UNetR (b). See Figure 4.2 for the legend of the layers.

These results justify the preference for the bootstrap training strategy, the
importance of defining a synthetic dataset, and how a small, manually labeled
dataset of real images can tune a network to perform in an operational scenario.
The predictions of UNetS, UNetAS , and UNetR are visualized one next to each other
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Figure 4.11: Validation mIoU for the three best training of UNetAS and UNetR. (Top)
global view, (bottom-left) zoom on the higher values of mIoU, (bottom-right) zoom early
on in the training.

with test images of DSD−4
1 in Figure 4.12.

4.1.3.3 Segmentation with hybrid architecture

Applying UNetH to DSD−4
1 , the segmentation maps illustrated in Figure 4.13 are

generated, from which a qualitative assessment of UNetH can be performed.
As commented before, large boulders (as the ones manually labeled on DSD−4

1 )
are better predicted with lower values of γ, and vice-versa for small boulders (as
the ones automatically labeled on DSD−1

1 ). This is intended as γ weights the
contribution of UNetS and UNetAS in predicting this layer.

The approach implemented with UNetH benefits from the simplicity of training
with only synthetic images and from dedicated fine-tuning performed on selected
features such as craters and boulders. This could be efficient in an operational
scenario by deploying an architecture trained with synthetic images of the assumed
surface before arrival and progressively fine-tuning it with data acquired in the
first phases of the mission. By relying on a well-characterized architecture with
synthetic images, mission designers can always weigh its contribution dynamically
by varying γ depending on the confidence in the different architectures for the
specific operational range considered. Ultimately, γ can prioritize various boulders’
sizes depending on the scenario.
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Figure 4.12: Mosaic of 10 × 2 quintuplets showing input image(left), ground truth
(center) and predicted mask (from left to right) of UNetS, UNetAS , and UNetR. The latter
three predictions are highlighted in red. See Figure 4.2 for the legend of the layers.

4.1.3.4 Uncertainty quantificaton

Finally, the uncertainty maps created with the methodology presented in Sec-
tion 4.1.2 are illustrated in this section using the test set of DSD−4

1 . First, the
usage of the uncertainty maps to substitute semantic pixels is illustrated in Fig-
ure 4.14 on predictions from UNetAS . The red pixels represent those in the 6 th

layer, corresponding to the uncertain class.
The masks enhanced by the 6 − th layer contain uncertain pixels only at

the boundaries between different classes. Since pixel classification is only being
challenged on the borders, the operational inclusion of uncertainty does not bring
relevant improvement. When the mIoU is evaluated on the enhanced maps, the
network’s overall performance improves only marginally. The maximum change is
represented by a positive 1 .4% variation on mIoU. Finally, it is also commented
that a test case where the second most probable class substitutes the uncertain
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(a) UNetH on sample 1.

(b) UNetH on sample 2.

(c) UNetH on sample 3.

Figure 4.13: Example of hybrid predictions from UNetH with different weights. From
left to right, top to bottom γ changes from 1 to 10. See Figure 4.2 for the legend of the
layers.

pixels has also been investigated but provided limited gains in performance. A
larger sample of the uncertainty maps generated by UNetS, UNetAS , and UNetR is
illustrated in Figure 4.15, showcasing that the networks generate similar uncertainty
predictions.
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Figure 4.14: Mosaic view of UNetAS input (1st column), true and predicted masks (2nd
and 3rd), uncertainty map (4th) and enhanced predicted mask (5th) for four samples of
DSD−4

1 . Red pixels belong to the 6 th layer of highly uncertain pixels. See Figure 4.2 for
the legend of the layers.
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Figure 4.15: Mosaic of 20 samples from the test set of DSD−4
1 showing input (1st

column), true mask (2nd column) together with predicted mask and uncertainty map pairs
of UNetS, UNetAS , and UNetR (from left to right in the red rectangle). See Figure 4.2 for
the legend of the layers.
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4.2 Boulders segmentation

The robust identification of boulders on the surface of small bodies can impact both
features-based navigation methods and hazard detection and avoidance algorithms
for landing applications. Moreover, as highlighted in the previous section, previously
designed pipelines struggle to segment boulders at different scales, requiring hybrid
predictions.

To address these limitations, this section focuses on the robust image segmen-
tation of boulders at different scales and under varying illumination conditions.

4.2.1 Training strategy

An incremental training strategy of 4 steps involving different architectures and
training paradigms is designed to develop a robust image segmentation network.
The strategy is intended to efficiently accompany the design of the final architecture
by incrementally training some of its portions using different datasets. The dataset
used for this activity is described in detail in Section A.1.2 and is referred to as DS2 .
DS2 is made of three datasets: DSDS1

2 , DSDS2
2 , and DSDS3

2 . DSDS1
2 is made

by image-label pairs of single procedural boulders imaged over a spherical surface
and is used for regression and segmentation. DSDS2

2 is made by image-label pairs
of multiple boulders scattered across the shape model of Didymos [138]. Lastly,
DSDS3

2 is made by image-label pairs of real images in which boulders are manually
labeled. This is the same set used in the previous section as part of DSD−4

1 .
The overall training process is schematized in Figure 4.16.

Encoder - CELM

Encoder - CNN

UNet

UNet

Te
DS1

1
, T e

DS1

2

Te
DS1

1
, T e

DS1

2

Te
DS2

1
, T e

DS2

2
, T e

DS3

3

Te
DS1

1
, T e

DS1

2

Regression

Segmentation
TrDS1 , V DS1

TrDS2 , V DS2

step1

step2

step3

step4

Figure 4.16: Schematic of the training procedure adopted in this section.

CELM theory is used in step1 to expedite the architecture design search of
an encoder, which is further refined in step2 as a conventional CNN. Similarly to
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the strategy presented in the previous section, the encoder is trained over a proxy
regression task on the DSDS1

2 dataset to predict the Center of Brightness (CoB)
of single boulders appearing in the images. The CELM framework is exploited as
an effective tool to efficiently explore the architecture design space. Figure 4.17
showcases an example of how to use global metrics to discern between different
architectures (out of the 1134 combinations considered) as a function of the
performance in combination with the hyperparameters chosen.
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Figure 4.17: Parallel-plot showing the dependencies between the different hyperparameters
illustrated in Table 4.7 and the network performances. The lines are colored by four quality
metrics related to the performance: excellent, high, medium, and low.

Once a first exploration is performed, the best-performing architecture of the
pool of the ones tested is chosen for implementation and is generally referred to as
the CELM-encoder. The total time needed to train the 1134 architectures with
the CELM paradigm and the hardware available is equivalent to 48 .3 hours. On
average, 13 .93% of the time is spent on the forward pass of the validation tensor,
81 .32% on the forward pass of the training tensor, while the remaining 4 .75% is
spent solving the least square equation (See Eq. (2.25)). The time saved exploring
the architecture design space with CELM, irrespective of the hardware used during
training, can be crucial to fast forward and ease the overall training.

In step2 , the weights and biases of the single best-performing encoder are
optimized via a standard CNN training using MBGD. During this step, the ar-
chitectural elements are frozen while the weights and biases of the kernels are
optimized, varying the batch sizes (64, 128, 256, 512) and learning rates (10−4 ,
10−3 , 10−2 ). Each setup is initialized and runs randomly two times for short
epochs for 24 training episodes. The best-performing ones are selected based on
the error achieved over the validation split during the entire training and are re-run
while increasing the epochs. The loss function used to train the network is the MSE.
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The final setup is achieved using a batch size B of 32 samples, with a learning rate
l r of 10−4 , and a dropout rate in the fully connected layer of 0 .2 .

Note that the training time of the best-performing architecture for 200 epochs
using the MBGD method required a total of 9504 .7 s, while the equivalent training
time with a CELM would have taken on average 153 s per architecture (spent
primarily on the forward pass to generate H for the training and validation sets).
The total training time to find the best learning rate and batch size combination in
step2 is roughly 24 h. Should all the 1134 architectures have been trained using
the MBGD, considering the encoder as a CNN, the exploration of the architecture
design space would have resulted in a much more computationally expensive process.

A partial training of the UNet for segmentation is then performed in step3 using
DSDS1

2 , which is further refined in step4 with the use of the DSDS2
2 dataset.

step3 exploits the CNN-encoder refined from the previous step and inserts it
into a larger architecture designed for segmentation. A UNet [136] architecture is
considered for such a task. Similarly to [134], the UNet is trained by incrementally
increasing the epochs while testing various combinations of dropout values, batch
size, learning rate, and depth of the decoder layers. A WSCCE is used as a loss
function, while the mIoU is used as a metric. The weights for the WSCCE loss are
computed from statistical analysis of the pixel content in the masks of the training
set of DSDS1

2 . As 3 .99% of the pixels are boulders while 93 .01% are not, the
complement of these values are used respectively as weights of the non-boulder and
boulder classes. The best-performing architecture has been found with a dropout
equal to 0 .2 , a batch of 256 , a learning rate of 0 .001 , and decoder depths of
192 ,96 ,48 ,and 24 . The total training time spent to find out this setup equals
18 .9 hours.

Finally, in the fourth and last step of the training, the same procedure illustrated
in the previous step is repeated using the DSDS2

2 dataset. In this case, the training
of the UNet is not initialized from scratch but starts from the set of weights and
biases found in the previous step to help the network plateau at higher values
of the mIoU on the validation set. This allows the network to achieve better
performance and generalization capabilities than it would by starting from scratch,
as exemplified by the results in the previous section. The WSCCE loss function uses
weights corresponding to 27 .52% and 72 .48%, respectively, for the non-boulder
and boulder classes. The final architecture is trained over 400 epochs with a
learning rate of 0 .001 and a batch size of 16 . The total training time spent to
find out this setup is equal to 12 hours.

This incremental approach ultimately allows better generalization and improved
performance of the final UNet compared to a training executed from scratch
considering only step4 . The entire training to obtain the final IP network took
roughly 103 hours30 from start to finish.

30Using a Tesla P100-PCIE 16Gb GPU, with a 27.3 Gb of RAM in Google colab
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4.2.2 Convolutional architectures

The encoder is designed as a sequence of cells Ci operating tensor batches, each
composed of a combination of dilated convolutions, activation functions, and pooling
layers, as exemplified in Figure 4.18. In these architectures, dilated convolutions
are investigated for their beneficial effects in augmenting the receptive field of the
kernels as well as their observed capability to boost segmentation performance
[22, 139, 140]. Dilated convolution with rates 1, 2, and 3 are investigated in the
architectures. The outputs of the convolutions at different dilation rates are stacked
together as illustrated in Figure 4.18.
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Figure 4.18: Schematic of the architecture of the encoder with dilated convolutions.

The architecture with the best capacity is found by defining a set of rules to
build up the encoder. Assuming a constant kernel size of 3 ×3 and an exponential
depth expansion coefficient equal to 2 , different architectures are generated by
varying the pooling strategy P , the initial depth of the network d0 , the total number
of cells n, the activation functions A, the kernel initialization strategy Kd , and the
number of random runs for each architecture Nr with the combinations illustrated
in Table 4.7. The regularization parameter C is varied for each architecture as
10−3 ,10−2 ,10−1 ,1 ,101 ,102 ,103 . By combining these parameters, a total of
1134 different architectures are generated.

The setup achieving the best performance in predicting boulder’s CoB in the
images is chosen as the champion architecture to be considered in the next steps
of the training and is represented in bold in Table 4.7.

Both CELM and CNN share an identical architecture, the only difference being
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Table 4.7: Summary of the hyperparameters used in this section to search for the optimal
architecture of the encoder (represented in bold).

Name Values

P mean, max
d0 4 , 5 , 16
n (3,4,5)d0=4 , (4,5,6)d0=8 , (5,6,7)d0=16

A NReLU, ReLU, LReLU, ELU, tanh, sigmoid, none
Kd RandomUniform (-1,1), RandomNormal (0,1), Orthogonal
Nr 3

the training strategy adopted. The encoder architecture is summarized in Table 4.8.
On the other hand, the segmentation architecture is illustrated in Table 4.9.

4.2.3 Results

This section illustrates the performance of the encoder and segmentation architec-
tures introduced in the previous section on the test sets of DS2 .

4.2.3.1 Performance of the encoder

The performances of the two encoders are illustrated in Table 4.10 for the two test
sets of DSDS1

2 using as metric the coordinates of the error in the CoB estimation
as εCoB = CoBe −CoBt .

As expected, the error of the CNN is lower than the one of the CELM, albeit the
difference is small. It is also observed that both encoders exhibit limited variability
between the two test sets of DS2 .

For curiosity, the histograms of the distributions of βu, βv , Wu and Wv (only
between the last hidden layer and the output layer), are illustrated in Figure 4.19(a)
and Figure 4.19(b).

Both sets of weights are normally distributed. However, it is noted that those
of the CNN exhibit a variance one order of magnitude smaller. It is not clear if
this difference can directly influence the performance or if better generalization
capabilities of the CELM could have been reached with smaller values of β (in
theory, lower values of the regularization term C had been used on the validation
set during training of the CELM that should have lowered β, but they did not cause
better performance on the validation set).

4.2.3.2 Performance of the UNet

The performances of the best UNet architecture generated after step3 and step4
are summarized in Table 4.11 respectively on the test sets of DSDS1

2 , DSDS2
2 , and

DSDS3
2 .
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Table 4.8: Detailed architecture of the encoder, made of 3 ′527 ′040 parameters (13.45
MB), all of which are trainable.

ID Layer type Output Shape Parameters Connections

I InputLayer (B, 128, 128, 1) 0 C11,C12,C13

C11 Conv2D (B, 128, 128, 16) 160 CC1
C12 Conv2D (B, 128, 128, 16) 160 CC1
C13 Conv2D (B, 128, 128, 16) 160 CC1
CC1 Concatenate (B, 128, 128, 48) 0 A1
A1 Activation (B, 128, 128, 48) 0 P1
P1 Pooling (B, 64, 64, 48) 0 C21,C22,C23

C21 Conv2D (B, 64, 64, 32) 13856 CC2
C22 Conv2D (B, 64, 64, 32) 13856 CC2
C23 Conv2D (B, 64, 64, 32) 13856 CC2
CC2 Concatenate (B, 64, 64, 96) 0 A2
A2 Activation (B, 64, 64, 96) 0 P2
P2 Pooling (B, 32, 32, 96) 0 C31,C32,C33

C31 Conv2D (B, 32, 32, 64) 55360 CC3
C32 Conv2D (B, 32, 32, 64) 55360 CC3
C33 Conv2D (B, 32, 32, 64) 55360 CC3
CC3 Concatenate (B, 32, 32, 192) 0 A3
A3 Activation (B, 32, 32, 192) 0 P3
P3 Pooling (B, 16, 16, 192) 0 C41,C42,C43

C41 Conv2D (B, 16, 16, 128) 221312 CC4
C42 Conv2D (B, 16, 16, 128) 221312 CC4
C43 Conv2D (B, 16, 16, 128) 221312 CC4
CC4 Concatenate (B, 16, 16, 384) 0 A4
A4 Activation (B, 16, 16, 384) 0 P4
P4 Pooling (B, 8, 8, 384) 0 C51,C52,C53

C51 Conv2D (B, 8, 8, 256) 884992 CC5
C52 Conv2D (B, 8, 8, 256) 884992 CC5
C53 Conv2D (B, 8, 8, 256) 884992 CC5
CC5 Concatenate (B, 8, 8, 768) 0 A5
A5 Activation (B, 8, 8, 768) 0 P5
P5 Pooling (B, 4, 4, 768) 0 FC

FC Flatten (B, 12288) 0 DO
DO Dropout (B, 12288) 0 O

O Dense (B, 2) 24578

As for the encoder, the network performs similarly in Te1 and Te2 , indicating
that the two test sets do not offer different conditions for the network’s capability.
While the mIoU is very high for the test sets in DSDS1

2 , the same is not valid for
the ones in DSDS2

2 and DSDS3
2 . Indeed, a large population of multiple boulders

seems to challenge the capabilities of the UNet, which is lower than the one trained
with single boulders in step3 . This is also substantiated by the WSCCE (which is
two orders of magnitude higher than in the previous case, indicating a difficulty
encountered during training that did not specialize the network for high performance
when segmenting multiple boulders). Similar trends are observed for the other
metrics, A and MIOU.

Nonetheless, the performance achieved by such a network is an improvement
of the ones presented in Section 4.1. Specializing only for boulder segmentation
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Table 4.9: Detailed architecture of the UNet, made of 5’510’066 parameters (21.02 MB),
1’982’306 of which are trainable (7.56 MB).

ID Layer type Output Shape Parameters Connections

I InputLayer (B, 128, 128, 1) 0 E1

E1 Encoder (B, 128, 128, 48) 480 E2, CC4
E2 Encoder (B, 64, 64, 96) 41568 E3, CC3
E3 Encoder (B, 32, 32, 192) 166080 E4, CC2
E4 Encoder (B, 16, 16, 384) 663936 E5, CC1
E5 Encoder (B, 8, 8, 768) 2654976 CT1

CT1 Sequential (B, 16, 16, 192) 1327872 CC1
CC1 Concatenate (B, 16, 16, 576) 0 DO1
DO1 Dropout (B, 16, 16, 576) 0 A1

A1 Activation (B, 16, 16, 576) 0 CT2
CT2 Sequential (B, 32, 32, 96) 498048 CC2
CC2 Concatenate (B, 32, 32, 288) 0 DO2
DO2 Dropout (B, 32, 32, 288) 0 A2

A2 Activation (B, 32, 32, 288) 0 CT3
CT3 Sequential (B, 64, 64, 48) 124608 CC3
CC3 Concatenate (B, 64, 64, 144) 0 DO3
DO3 Dropout (B, 64, 64, 144) 0 A3

A3 Activation (B, 32, 32, 144) 0 CT4
CT4 Sequential (B, 128, 128, 24) 31200 CC4
CC4 Concatenate (B, 128, 128, 72) 0 DO4
DO4 Dropout (B, 128, 128, 72) 0 A4

A4 Activation (B, 32, 32, 72) 0 O

O Conv2DTranspose (B, 128, 128, 2) 1298

Table 4.10: Performance of the encoders on the test sets of DSDS1
2 .

Encoder Dataset µεuCoB [px] µεvCoB [px]

CELM Te1 16.36 11.46
CELM Te2 16.30 11.36
CNN Te1 7.01 7.30
CNN Te2 7.06 7.40

made it possible to develop a better network. When a single boulder is imaged over
the surface, the network is observed to detect its presence robustly under various
illumination conditions.

Figure 4.20, Figure 4.21, and Figure 4.22 showcase random samples of input
images, true and predicted masks of test images from DSDS1

2 , DSDS2
2 , and DSDS3

2 ,
respectively.

The very high performances of the network when considering isolated boulders
are reflected in the well-predicted masks in Figure 4.20. Such capability is also
partially transferred to the subsequent architecture trained over multiple boulders
scattered across the surface. As it is possible to see in Figure 4.21, the network can
correctly predict many boulders with varying geometric and illumination conditions.
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(a) CELM encoder. (b) CNN encoder.

Figure 4.19: Distribution of β (a) and w (b) in the last layer of the CELM-encoder
(a) and CNN-encoder (b). The y-axis shows the relative probability of each bin using a
bindwidth of 0 .01 (a) and 0 .001 .

Table 4.11: UNet performance on the test sets of DS2 .

Dataset µ(WSCCE ) [−] µ(A) [%] µ(MIOU) [%]

DSDS1
2 Te1 7.4 10−3 99.19 90.78

DSDS1
2 Te2 9.6 10−3 99.20 91.03

DSDS2
2 Te1 1.59 10−1 82.22 66.09

DSDS2
2 Te2 1.6 10−1 81.98 66.04

DSDS3
2 Te3 2.8 10−1 62.53 33.26

Figure 4.20: Samples of the input image (top), true mask (middle), and predicted mask
(bottom) from the UNet trained in step3 on test images of DSDS1

2 .

It is also noted that the true masks exhibit challenging conditions in which a dense
boulder’s presence makes the surface almost entirely covered. This reflects actual
environmental conditions, such as the ones encountered in Ryugu and Bennu.
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Figure 4.21: Samples of the input image (left), true mask (center), and predicted mask
(right) from the UNet trained in step4 on test images of DSDS2

2 .

From the predicted masks in Figure 4.21, it is also possible to observe an
incorrect network behavior over the edge of the body. The network incorrectly
predicts boulders’ presence in this region, driving down its performance. This seems
to happen as the ray-tracing algorithm in Blender correctly labels true boulders
over the projection of the edge in the image plane even when only a few pixels are
observed over the very edge of the body, as it is also possible to observe from the
true masks in Figure 4.21. Such a labeling mishap may have promoted the network
to classify the entire edge of the target body as a boulder, which is an unwanted
behavior. The same phenomenon is not observed over the terminator region of
the body since the shadows nullify the boulder’s label in the mask (the mask of
the boulder is obtained as a multiplication between the boulder’s object and the
illumination condition, so shadowed portions of a boulder are not labeled in the
true masks used for training).

Lastly, the final UNet is tested to predict boulders on real images from previously
flown missions. First of all, as it is possible to see in Figure 4.22, it is commented
that the noise levels from real sensors do not pose particular challenges to the
network in terms of generalization. Albeit the network has been trained without a
tailored noise setup modeling any specific camera, the network performs similarly in
all types of images considered. Also, note that images from DSDS3

2 are captured
with different sensors and illumination conditions, all factors that are not impacting
the performance.

Is it thought that thanks to the injection of artificial noise as well as thanks to the
particular care that has been put into the design of domain randomization strategies
in the generation of DSDS1

2 and DSDS2
2 , the network developed generalization

across a variety of changes in the input space. The only case in which this has
been observed to generate minor artifacts is visualized in the mosaic in Figure 4.22,
in the second column, third-row sample.

Finally, it is remarked that the current masks in DSDS3
2 were inappropriate

for this specific design. These are the same masks used in Section 4.1, manually
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Figure 4.22: Samples of the input image (left), true mask (center), and predicted mask
(right) from the UNet trained in step4 on test images of DSDS3

2 .

labeling the prominent boulders in a limited set of 50 images from previously flown
missions.

Contrarily to the UNet illustrated in Section 4.1, in this section, the training
strategy put in place made it possible for the architecture to detect a larger boulder
presence in the images correctly. The network can detect many more boulders than
the one represented in the ground truth, making them unreliable. This ultimately
proves a challenge for Bennu and Ryugu since there is a risk of predicting boulder
fields as uniformly spread features all over the surface. Instead, the desired behavior
would be somewhat in between being able to predict small-size boulders on the
surface and distinguish them clearly from large, prominent ones embedded between
them. This ultimately poses a challenging labeling problem that remains to be
addressed.

4.3 Multi-scale segmentation with domain random-
ization

Building on errors and observations commented in the previous sections about the
design of DS1 and DS2 and the impact they had on network performances, a
multi-purpose, multi-scale labeled dataset for boulder segmentation and navigation
about small bodies is briefly discussed in this section.

This dataset, referred to as DS3 , is fully characterized in [141] and briefly
described in Section A.1.3. Its focus is centered on addressing the issues reflected
in network performance with real images highlighted in Section 4.1 and Section 4.2
while focusing on two crucial aspects: domain randomization and scaling.

Domain randomization means operating over the grayscale images so that
variability can be introduced in the input data to design robust and reliable data-
driven IP methods. The purpose of the dataset is thus not to represent the
conditions of a specific navigation camera but rather to present to the algorithms
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a dataset in which camera noise, scattering properties, and illumination conditions
are varied for each sample. This should enable the algorithms to become agnostic
of these factors and instead learn fundamental geometrical relationships to be used
for inference.

Scaling is explored by having the same regions of the image available at
different resolutions and by exploiting the boulder’s population at different sizes.
Like domain randomization, the idea is to enable methods using this dataset to
become scale-agnostic.

A sample of the dataset’s image-label pairs is illustrated in Figure 4.23. DS3 is
not limited to segmentation applications but is specifically designed for navigation
purposes. For example, a few natural, easy-to-detect landmarks over the surface of
a small body could be used onboard, substituting the human-in-the-loop approach
illustrated in [60] while addressing the template-matching and illumination draw-
backs of the NFT method illustrated in [61, 62]. For this reason, 15 prominent
boulders scattered across the surface of the target body are identified with unique
layers, while two layers identify the body’s surface and all the smaller boulders.

In Figure 4.24, it is possible to see the relative frequency of appearance of each
mask layer for the entire dataset. Both surface and minor boulders are always
visible for each dataset sample, while each of the 15 prominent boulders appears
with different frequencies. Note that Figure 4.24 represents two curves at the same
time: the one with all the 47502 images of the dataset (“All”) and the one that
only focuses on the images labeled as 00000j_005 (“Only full”), as illustrated
in Figure A.12. Such subdivision is performed since certain users (specifically
those wanting to work on navigation with full views of the target asteroid) may be
interested in using only such a subset of images. In contrast, others (e.g., those
interested in segmentation) may instead be interested in using all images to increase
the size of the training set.

In Figure 4.25, it is possible to see the relative and cumulative frequency of
the appearance of multiple prominent boulders in the same image, which may be
an interesting property for navigation purposes. Once again, the two cases of full
dataset and full images are reported for completeness. The difference between the
two is minor, with a natural tendency to have less prominent boulders visible in
cropped images than in full ones.

Finally, in Figure 4.26, it is possible to see the histograms of the probability of
appearance as a function of the number of pixels of the different layers illustrated
in Table A.10. As expected, background and surface layers take a large portion of
the image content, their areas being roughly one order of magnitude higher than
that of boulder pixels. Furthermore, when considering differences between minor
and prominent boulders, it is observed that the former occupies an area roughly
one order of magnitude higher than the latter.

Albeit the dataset has yet to be used directly to train and test any data-driven
IP algorithm, future works will use it to address the challenges and improvements
highlighted in this chapter.
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Figure 4.23: Mosaic view of a sample of the DS3 dataset with the input grayscale images
and segmentation labels.

Figure 4.24: Relative frequency of appearance of each layer.
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Figure 4.25: Relative (continue) and cumulative (dashed) frequency of appearance of
prominent boulders.

Figure 4.26: Probabilities of the different layers as a function of the area in pixel they
each occupy in the masks. The binwidth in the histograms is 5000 samples for the first
three subplots and 500 for the last.

4.4 Final remarks

In this chapter, an in-depth overview of the capabilities of DL networks for image
segmentation tasks over the surface of small bodies has been extensively discussed.
What follows is a list of final remarks.
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• Image segmentation techniques that are correctly implemented and embedded
onboard a spacecraft unlock the capabilities for various applications in the
proximity of small bodies. These include but are not limited to:

– Autonomous scientific acquisitions: Being capable of perceiving the
presence of features of interest, such as craters and boulders, can be used
onboard to autonomously control the spacecraft pointing and to perform
autonomous smart acquisitions with scientific payloads. Specific features
could be prioritized, and their presence in the sensor of a navigation
camera can be used to derive a spacecraft’s primary pointing. Increasing
the system autonomy with smart scientific acquisitions would also reduce
the overall data to downlink to the ground.

– Hazard detection: The capabilities of robustly detecting large craters
and boulders can increase the perception of the hazardousness of the
terrain for landing applications, providing real-time capabilities for safe
touchdown and landing site selections.

– Navigation: The light-invariant and intensity-agnostic properties of
segmentation masks can substitute onboard rendered templates of
selected landmarks for feature-based navigation methods. This approach
is further explored in the next section.

• A new methodology is developed in CORTO to generate automatically labeled
datasets for the semantic segmentation of small bodies, exploiting the ray-
tracing capabilities of Blender and using simple image processing methods.
Such methodology is fundamental in allowing the training of DL methods in
the image segmentation task, which is addressed in this chapter using UNet
architectures.

• Three datasets have been used across the chapter: DS1 , DS2 , and DS3 . A
relevant domain gap between real and synthetic images is observed in DS1 .
This gap influences the performance of networks solely trained on synthetic
samples and is observed to be particularly relevant for craters and boulders,
whose modeling and photorealism are subsequently improved in the synthetic
datasets of DS2 and DS3 .

• The last iteration of the datasets presented, DS3 , is a multi-scale labeled
dataset tailored for boulder segmentation and navigation. It primarily fo-
cuses on addressing the issues reflected in network performance with real
images highlighted in Section 4.1 and Section 4.2 while focusing on do-
main randomization and scaling. Instead of representing the conditions of
a specific navigation camera, the dataset represents distribution samples of
camera noise, scattering, and illumination properties used to generate the
samples. Such properties should enable the algorithms using the dataset to
become agnostic to these factors and instead learn fundamental geometrical
relationships. Scaling is also explored by having the same regions of the
image available at different resolutions (2x) and by exploiting the boulder’s
population with different sizes.

• Segmentation networks are successfully trained with bootstrap strategies



134 4. Segmentation

mixing large datasets of synthetic samples with small ones of real samples.
This approach has proven efficient in making the network reach a higher
plateau, shortening the training time, and improving generalization capabilities.
The bootstrap strategy can also naturally be adapted for operations in
real missions. The appearance of an unknown body can be assumed and
represented with synthetic data to develop the bulk of network capabilities,
which can then be tuned shortly after arrival using a limited amount of real
samples collected in the first phases of a mission. Data augmentation is a
crucial tool to increase the number of real samples for training. At some
capacity, this approach has already been extensively used in OSIRIS-REx [61,
62] with an extensive collection of data before the touchdown event and can
benefit real implementations of data-driven algorithms.

• By relying on well-characterized architectures trained with synthetic im-
ages, mission designers also have the option to weigh the contributions at
architecture levels, mixing prediction from synthetic-based and real-based
architectures. An example is showcased by the hybrid UNetH architecture,
which combines its predicted output between twin architectures instantiated
by different weights and biases. This hybrid approach could be useful in in-
creasing the Technology Readiness Level (TRL) of DL applications, deploying
networks with trusted capabilities that mission designers can confidently use
in combination with unstable architectures.

• The specialization of the encoder for small body features did not bring relevant
overall network performance advantages, indicating that larger, unspecialized
networks can be used at the beginning of training.

• The ability of the network to generate an uncertainty metric that accompanies
the predicted mask is explored as an additional skill. This could be useful in
locating and isolating uncertain regions in the segmentation masks, eventually
labeling the uncertain pixels as part of an extra layer. However, as these
regions are often detected between class boundaries, the strategy implemented
is observed to bring only marginal improvements in segmentation performance.
The same has been observed when substituting the uncertain pixels with the
second most probably class. As this capability is essential in increasing the
confidence in DL methods for these applications, it should be considered a
crucial step towards the operational application of these methods.

• Networks specialized in boulders segmentation are also investigated under
various illumination conditions with single and multiple boulders. Both single
and multiple boulders are robustly detected, but the latter exhibit challenging
conditions in dense regions since their presence covers the surface almost
entirely. Also, an incorrect behavior is observed when predicting boulders over
the edge of the body. This happens as the ray-tracing algorithm in Blender
correctly labels true boulders over the projection of the edge in the image
plane, even when only a few pixels are observed. Such a labeling mishap
may have promoted the network to classify the entire edge as a boulder,
an unwanted behavior. The same phenomenon is not observed over the
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terminator region.
• The masks associated with true images from previously flown missions in DS1

and DS2 exhibited a significant drawback. Since only the most prominent
boulders are labeled in these masks, networks trained over synthetic images
can detect many more boulders than the ones represented in the ground
truth.

• Noise levels from real sensors do not pose particular challenges to the network
regarding generalization. Albeit the network has been trained without a
tailored noise setup modeling any specific camera, the network performs
similarly in all types of images considered. It is thought that thanks to the
injection of artificial noise and the particular care that has been put into the
design of domain randomization strategies in the generation of the datasets,
the networks developed generalization across a variety of changes in the input
space.

• Complex training strategies have been investigated to take care of network
learning. These often resulted in higher performance plateaus and better gen-
eralization capabilities, yielding overall better networks. These findings hint
at network designers’ need to approach training with incremental approaches
using bootstrap strategies rather than end-to-end training.

• Finally, it is commented that network capabilities shall always be assessed
with real datasets, as domain gaps with synthetic ones represent a significant
source of errors for real applications. In this sense, the design of networks
exploiting large synthetic datasets goes hand-in-hand with the quality and
capability of such datasets to represent realistic conditions. Often, this can
only assessed by inspecting network performance with real images, both
qualitatively or quantitatively.





5

Navigation

“And, when you want something all the uni-
verse conspires in helping you to achieve it.”

Paulo Coelho, The Alchemist

Relative optical navigation about a minor body is a challenge that can be tackled
with different approaches. In this chapter, three navigation approaches around
small bodies that make use of ML techniques are investigated. Navigation is
addressed using regression, classification, and segmentation networks, considering
both grayscale images or segmentation maps created with the networks illustrated
in the previous chapter. Convolutional, correlation, and recurrent approaches are
all investigated in this chapter to generate position estimates.

In doing so, two main frameworks are investigated: end-to-end architectures
generating position estimates from input images and intermediate ones generating
optical observables that need further (traditional) processing to generate position
estimates. The former often uses centroid coordinates quantities expressed in
the image plane and the predicted range to generate position vectors. Centroid
coordinates are either represented as expected CoM coordinates (also referred to
as CoF) or as correction vectors in the image plane between CoB and CoM (also
referred to as δ).

Lastly, navigation approaches that use hand-crafted features or end-to-end
strategies designed explicitly for benchmarking with the baseline IP of the Milani
mission are presented in Section 6.6.

5.1 Convolutional architectures for navigation

This section investigates different strategies for using convolutional architectures
to generate position estimates using single images of small bodies.

Four different types of architectures are investigated using various training
strategies. To generalize network performance, four different small bodies repre-
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senting different irregular shapes are chosen: 65803 Didymos (D), 103P/Hartley
(H), 21 Lutetia (L), and 67P/Churyumov–Gerasimenko (P). For each of these
bodies, five different labeling strategies that can be used to generate a position
estimate are investigated. These are:

• (δ,ρ)-UV : The estimated difference in image plane between the CoB and the
CoM and the range extracted from images are used to generate a position
vector in CAM frame, that can be transformed in W or AS by simulating
onboard attitude determination from a star-tracker alongside the assumption
of knowledge of the rigid body transformations. The transformation from
image quantities to position vectors is the same as the one illustrated in
Section 3.1.1.5. This strategy investigates how a feature vector with geometric
quantities extracted directly from the image can generate a position vector
in the CAM frame.

• (ϕ1 ,ϕ2 ,ρ)-AS: The estimated position in polar coordinates around the
target body expressed in the AS reference frame. This strategy investigates
the image-label mapping using a reference frame fixed to the asteroid shape.
The purpose is to examine if a mapping can be efficiently established by
a network exploiting local (craters and boulders) or global (body’s outline)
features whose appearance varies under different illumination conditions.

• (X ,Y ,Z)-AS: The estimated position in cartesian coordinates around the
target body expressed in the AS reference frame. The aim of this strategy is
similar to the previous one, with the main difference that spherical coordinates
are investigated in substitution to cartesian ones. The former has the
advantage of clearly decomposing the position estimate between cross-track
and boresight axes, which could benefit a vision-based system.

• (ϕ1 ,ϕ2 ,ρ)-W : The estimated position in polar coordinates around the target
body expressed in the W reference frame. This strategy investigates the image-
label mapping using a reference frame fixed to the illumination conditions.
The purpose is to examine if a mapping can be efficiently established by
a network exploiting local (craters and boulders) or global (body’s outline)
features whose appearance varies under different rotational states of an
irregular body.

• (X ,Y ,Z)-W: The estimated position in cartesian coordinates around the
target body expressed in the W reference frame. The aim of this strategy is
similar to the previous one, with the main difference that spherical coordinates
are investigated in substitution to cartesian ones, with the expected benefits
described before.

For improved handling of the labels, whenever the (ϕ1 ,ϕ2 ,ρ) labels are consid-
ered, the azimuth angle ϕ1 is transformed in the adimensional (sinϕ1 ,cosϕ1 ) pair.
The estimation vector is thus made of three elements for all labeling strategies but
the (ϕ1 ,ϕ2 ,ρ) one, which comprises four elements.

For each target body, a dataset of 17500 images is generated with the five
different labeling strategies and used for training, validation, and testing. More
details about the dataset properties and generation methodology are discussed in
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subsection A.2.1.
The work presented in this section investigates three major questions regarding

the usage of convolutional architectures for position estimation tasks: 1) While
CNN are superior over complex sceneries, can simpler methods perform better
when it comes to analyzing images of small bodies in the medium regime? 2) As
suggested in [83], can a methodology be developed to bootstrap the training of
CNN exploiting the capability of CELM to identify the most promising architectures?
and 3) Which is the best labeling strategy and reference frame, and to what extent
do they influence the performance and simplicity of training when considering the
position estimation task around small bodies?

5.1.1 Training strategy

As illustrated in the previous section with the training of segmentation architectures
and their encoders, a complex incremental training strategy is adopted, exploiting
the fast training time of CELM to find optimal architectures to be trained as CNNs
in a typical bootstrap strategy.

Hierarchical convolution architectures are generated following an established
methodology to find the optimal set of Θ for each body and labeling strategy.
A schematic of the overall procedure is illustrated in Figure 5.1 and is further
described in detail in the rest of the section.

At first, many CELM architectures are initialized with a hierarchical structure
as in [83], which is constructed procedurally. Going deeper from the input layer
to the fully connected layer, the starting 128 × 128 × 1 image is squeezed; its
size si is halved as a function of the depth level i as si = 27−i while its depth is
doubled starting from an arbitrary value of 16 in the first layer. Each depth level i
comprises the consecutive application of a convolution, activation function, and
pooling operation. The convolutions are performed with 3 ×3 kernels while the
number of kernels nkeri used at each depth is set to increase exponentially as:

nkeri = 23+i nker0 = 1 (5.1)

where i represents the depth level, such that nker1 = 16 is the starting depth in the
first layer. Consequently, the number of weights and biases at each depth level of
the encoder can be determined as follows:

nWi = 9nkeri nkeri−1 , nbi = nkeri (5.2)

Network depths from 1 to 5 are explored. These correspond to a cumulative
number of parameters in the convolutional portion of the networks, respectively
of 160 , 4800 , 23296 , 97152 , and 392320 . After the convolutional portion of
the network, a fully connected layer is generated, whose size can be determined as:

nf ci = s2i n
ker
i (5.3)
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CNN
d = {1, 2, 3, 4, 5}
Kd = {Random Uniform, Random Normal, Orthogonal }
A = {nReLU, rReLU, hyperbolic tangent, none}
P = {Mean, Max}

N = {64, 128, 256 }
lr = {10−1, 10−2, 10−3, 10−4, 10−5 }
Epochs = 300

C = {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}
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Figure 5.1: Schematic of the overall training, validation, and testing strategy adopted to
find the best convolution architectures.
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Similarly, the number of weights and biases of the head can be determined
since the fully connected layer is directly connected with the output layer:

nβi = nf ci no , nβ0i = no (5.4)

where n0 is the number of neurons composing the output. Using this methodology,
various architectures can be generated by varying hyperparameters Θ. Considering
the combination of those illustrated in Table 5.1 (in particular d , Kd , A, and P)
a total of 120 different hierarchical convolution architectures are generated. For
each kernel distribution strategy, a random initialization is executed three times,
effectively instantiating 360 training episode for each of the four bodies and five
labeling strategies for a total of 7200 training instances.
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Table 5.1: Sets of Θ explored for CELM and CNN methods.

Parameter Symbol Description Possible values
Number of layers d Number of hidden layers in the

architecture
1, 2, 3, 4, 5

Kernel distribution Kd Random distribution of the
weight and biases of the kernels

Random Uniform (-1,1),
Random Normal (0, 1),
Orthogonal

Activation function A Activation function used after
the convolution operation

Normalized Rectified Lin-
ear Unit (nReLU), ReLU,
tanh, none

Pooling strategy P Pooling strategy after the acti-
vation function

Mean, Max

Regularization coef-
ficient

C Regularization coefficient of
Eq. (2.25)

10−4 , 10−3 , 10−2 ,
10−1 , 100 , 101 , 102 ,
103 , 104

Batch size B Batch size used in the MBGD 64, 128, 256
Learning rate l r Learning rate used in the MBGD 10−1 , 10−2 , 10−3 ,

10−4 , 10−5



5.1. Convolutional architectures for navigation 143

A five layers architecture is illustrated in Table 5.2 for simplicity.

Table 5.2: Example of a five layers architecture with a three neurons output layer, made
of 392 ′320 parameters (1.5 MB).

ID Layer type Output Shape Parameters Connections

I InputLayer (B, 128, 128, 1) 0 C1
C1 Conv2D (B, 128, 128, 16) 160 A1
A1 Activation (B, 128, 128, 16) 0 P1
P1 Pooling (B, 64, 64, 16) 0 C2
C2 Conv2D (B, 64, 64, 32) 4640 A2
A2 Activation (B, 64, 64, 32) 0 P2
P2 Pooling (B, 32, 32, 32) 0 C3
C3 Conv2D (B, 32, 32, 64) 18496 A3
A3 Activation (B, 32, 32, 64) 0 P3
P3 Pooling (B, 16, 16, 64) 0 C4
C4 Conv2D (B, 16, 16, 128) 73856 A4
A4 Activation (B, 16, 16, 128) 0 P4
P4 Pooling (B, 8, 8, 128) 0 C5
C5 Conv2D (B, 8, 8, 256) 295168 A5
A5 Activation (B, 8, 8, 256) 0 P5
P5 Pooling (B, 4, 4, 256) 0 FC
FC Flattening (B, 4096) 0 O
O Dense (B, 3) 12291

For each training instance, once the forward pass of the CELM is executed, the
LS optimization problem is run nine different times with different regularization
terms C . The training set is used to determine all possible values of β depending
on C , while the validation set is used to determine the best value of Cand is
discussed in Section 2.2, is essential to avoid overfitting. Including the different
values of Cconsidered from the validation sets, a total of 7200 × 9 = 64800
training episodes are therefore executed with this strategy.

By design, this large amount of training episodes are addressed using CELM
theory, essentially using a single-shot regularized least square formula (Eq. (2.25))
instead of the iterative and time-consuming MBGD strategy for a conventional
CNN. Because the training time of CELM is orders of magnitude faster than the
one of the CNN (∼ 1s compared to ∼ 600s, on average for the task considered),
with the use of CELM networks, it is possible to explore the architecture space
to find those that seems inherently more suitable for the task at hand. This is
motivated by the fact that a large portion of a network’s performance appears to
be attributed to its design [83], which is often neglected nor sufficiently explored
given the long training time required by iterative GD methods.

For each dataset, given the navigation task at hand, the best CELM network
is defined as the one achieving the minimum positioning error εrp (defined in
Section 1.8.5) on the test set while its parameters Θ are saved. A CNN is then
initialized with these hyperparameters and trained with a MBGD varying B and l r as
per the values illustrated in Table 5.1, performing three runs for each combination
of learning setup. This corresponds to 45 training instances for each body-labeling
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strategy and 45 ×5 ×4 = 900 training episodes.
For each case, the CNN is trained for 300 epochs while the best value on the

validation loss is used to instantiate the weights and biases of the best possible
realization of the CNN to use at inference. Each training episode of the CNN takes
roughly 600 s31, fot a total of 7 .5 hours for each body-labeling strategy considered
and 7 .5 ×5 ×4 = 150 hours to train all the 900 CNN architectures. The set of
Θ found for the best CELM and CNN architectures is summarized in Table 5.3.

Table 5.3: Best sets of Θ∗ found during training and used in inference.

ID Body Θ∗
CELM Θ∗

CNN

d Kd A P C B l r

D1 D 5 RandomUniform tanh Mean 10−1 64 10−3

H1 H 5 Orthogonal relu Mean 101 256 10−4

L1 L 5 RandomNormal tanh Mean 10−2 64 10−3

P1 P 5 RandomNormal tanh Mean 10−2 64 10−3

D2 D 5 Orthogonal nrelu Mean 101 64 10−3

H2 H 5 Orthogonal relu Mean 101 64 10−3

L2 L 5 Orthogonal relu Mean 101 64 10−3

P2 P 5 Orthogonal nrelu Mean 101 64 10−3

D3 D 5 Orthogonal none Max 10−2 64 10−3

H3 H 5 Orthogonal nrelu Mean 101 64 10−3

L3 L 5 Orthogonal relu Mean 101 64 10−3

P3 P 5 Orthogonal nrelu Mean 101 64 10−3

D4 D 5 Orthogonal relu Mean 102 64 10−3

H4 H 4 Orthogonal relu Mean 101 64 10−3

L4 L 5 Orthogonal nrelu Mean 101 64 10−3

P4 P 5 Orthogonal nrelu Mean 101 64 10−3

D5 D 5 Orthogonal nrelu Mean 101 64 10−3

H5 H 5 Orthogonal relu Mean 101 64 10−3

L5 L 5 Orthogonal relu Mean 101 64 10−3

P5 P 5 Orthogonal relu Mean 101 64 10−3

Two additional hybrid setups are also investigated, referred to as Hybrid Convo-
lutional Extreme Learning Machine (HCELM) and Hybrid Convolutional Extreme
Learning Machine 3 (HCELM3 ). In HCELM, transfer learning is used to combine
the weights and biases of the kernels from the encoder of a previously trained
CNN architecture with a new training episode that interests only the head of the
network, which is trained using the LS method as in the CELM paradigm. Similarly,
HCELM3 considers as initial architecture for training the best-performing one given
a specific reference frame (among the UV, AS, and W reference frames) and

31Using a Tesla P100-PCIE 16Gb GPU, with a 27.3 Gb of RAM in Google Colab https:
//colab.research.google.com/, retrieved 13th of September, 2023.

https://colab.research.google.com/
https://colab.research.google.com/
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then tune its last layer using the LS method, as in HCELM. In Figure 5.2, the
schematic difference between the architectures used in this section is illustrated.
It is highlighted that CELM, CNN, HCELM architectures share the same global
structure, populated by different weights and biases.

Forward-Propagation

Back-Propagation

MBGD

∆(W,b) W,b

Forward-Propagation

Back-Propagation

MBGD

CELMCNN

HCELM
∆(W,b)

Forward-Propagation

Figure 5.2: Schematic of the main differences between CELM, CNN, and HCELM
architectures.

All four architectures are considered to work with normalized input and output,
which has been observed to improve the overall performance. While CELM are
trained with the entire dataset at once, CNN architectures are trained using batches
B. In the case of CNN architectures, this was due to hardware limitations, while
the number of 7500 images for the training set similarly comes from hardware
limitations related to matrix inversion in the CELM training. Adam is used as an
optimization algorithm to train the methods requiring MBGD.

5.1.2 Results

The four architectures, referred to as CELM, CNN, HCELM, and HCELM3 , are
trained over all datasets of DS4 with the set of hyperparameters Θ detailed in
Table 5.3.

At inference, they are applied over the test sets of DS4 , and their performance
is characterized using the metrics defined in Section 1.8.1 and Section 1.8.5. For
simplicity, a shared colormap is used in this section to distinguish between the four
methods: Purple, blue, green, and yellow are used respectively for the CELM, CNN,
HCELM, and HCELM3 architectures.

5.1.2.1 Global

From Figure 5.3, Figure 5.4, and Figure 5.5 global performance in terms of εrp
are summarized for all cases considered. From these plots, it is possible to draw
important considerations on the effects of labeling strategy, reference frame, and
training strategy.
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In Figure 5.3, the box plot is organized from top to bottom in macro-groups
of five (depending on the labeling strategy adopted) and then in clusters of four
(based on the network). The reader can also consult Table A.12 to understand the
reference frame, body, image processing method, and labeling strategy adopted for
each value represented on the vertical axis of Figure 5.3.

Focusing on the influence of the reference frame and labeling strategy (δ,ρ)
outperforms all other approaches considered by a large margin. This could be
motivated by the fact that being the labels δ,ρ quantities that can be directly
extracted from images they make it simpler for the networks to learn relatively
straightforward image-label representations. It is also observed that better perfor-
mance is achieved using W rather than AS. This hints at the significant impact of
illumination conditions on learning a target body representation within a network.
The size of the training set could also cause this; increasing it, the performance of
AS-based networks may improve. Nonetheless, this points toward the AS labeling
as being the most inefficient form for position estimation between the two. Lastly,
the choice of the coordinate systems (cartesian or polar) is observed to play a minor
effect on performance.

Considering the (δ,ρ) strategy, it is remarkable that the CELM method performs
similarly to all other networks, which is not observed in different labeling strategies.
Once again, this hints at the simple representation form of this labeling strategy,
which seems approachable with simple approaches. Overall, CNNs outperforms all
architectures for each body and labeling strategy considered.

A more concise representation is reported in Figure 5.4. Once again, it is possible
to appreciate the much better performance achieved with the (δ,ρ) labeling strategy
than the others for all bodies considered. In such a case, the performance of CELM
is similar to that of the CNN. While the former has a mean εrp of 2.58, 8.63, 5.60,
5.02 (respectively for D, H, L, and P), the latter generates position estimates
only 1.68, 4.11, 1.68, and 1.63 times better. Apart from H, this means that only
a very marginal performance gain is achieved with the use of a CNN rather than
a CELM. This does not hold when comparing CELM and CNN performances for
other labeling strategies, which show much wider gaps.

From Figure 5.4 it is also possible to observe a trend depending on the shape
considered: simpler, regular shapes such as the one of D are better exploited for
navigation than highly irregular ones such as L, P and H.

Figure 5.5 reports in a stacked histogram plot the share for each dataset
associated with the best IP method. While the CNN is always the best candidate,
HCELM consistently scores as the second-best method across all datasets considered.
Moreover, the CELM is considered the best third option only in the case of the (δ,ρ)
labeling strategy. This graphic representation is possible because the geometric
points considered across the test sets are the same.

Finally, Figure 5.6 reports metrics assessing the impact on the global positioning
error caused by errors in the boresight direction. To do so, the metric µ( ερεp 100) is
defined to represent the mean percentage of the whole positioning error attributed
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Figure 5.3: Box plot of εrp for all cases considered.
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Figure 5.4: Summary plot of the mean εrp values achieved by all possible combinations of
the dataset and architecture investigated in this section.

Figure 5.5: Shares of the best IP method across different datasets.

to the error in the boresight direction. Representing this metric in Figure 5.6(a),
it is possible to observe different values corresponding to the different cases. In
particular, it is possible to observe that the performance is heavily influenced by
the adopted labeling strategy.

In the (δ,ρ) strategy, the error in the radial direction contributes almost entirely
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(a) µ( ερεp 100) for different cases.

(b) µ(ερ) for different cases.

Figure 5.6: Plots of the µ( ερεp 100) (a) and µ(ερ) (b) values for the different cases
considered.

(> 90%) to the entire positioning error. Significant contributions are also observed
whenever cartesian coordinates are used ( 40 −60%). Lastly, whenever spherical
coordinates are used, a small contribution is observed (< 40%).

It is important to note that the relative contributions illustrated in Figure 5.6(a)
must be put into perspective with absolute positioning performance, as the ones
illustrated in Figure 5.6(b) and in Figure 5.3. For example, even though the
percentage of the error in the radial direction is very high in the (δ,ρ) strategy,
the total positioning error is very low compared to the other strategies. At the
same time, it is observed that the range is reconstructed with similar performance
whenever using the (δ,ρ) or spherical coordinates, as both strategies explicitly list
the range from the target body among the components to estimate.

5.1.2.2 (δ,ρ) labeling strategy

Since the labeling strategy based on (δ,ρ) seems the best performing one, the
navigation performance of this strategy is further addressed in this section.

In Figure 5.7 the histograms of the εnCoF and ερ metrics in S2 space are
illustrated. When considering D, the CELM shows a much larger mean error in
εnCoF than the other methods while only a smaller variability both in terms of means
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and variance is observed in ερ.

Figure 5.7: Normalized histograms of the εCoF (left) and ερ (right) on different bodies
with IP methods considered. Binwidth is 0 .2 px for εCoF and 0 .25 km for ερ.

The fundamental failure mechanism for which the CELM method performs
worse than the CNN for this body is caused by a large mean error in the estimated
CoF coordinates. When considering L and P , the difference between the histograms
of the various methods is more subtle since only minor variations in the mean
and variance are observed across the different methods. On the other hand, when
considering H, it is possible to see that the CNN is much more accurate both in
the CoF and range estimates than all other methods. The hybrid CELM performs
better in the range estimate (with similar variance than the CNN) but does not
perform at the same level as the CNN in the CoF estimate.

In Figure 5.8, the error ellipses of the CoF coordinate in S2 spaces are illustrated
together with the error ellipse (dashed dark ellipse) that would have been obtained
by not correcting the CoB with a data-driven scattering law implemented by the
IP. It is also observed that differently than all other ellipses, the CELM ellipse with
D is not centered in the zero error point, thus introducing a bias that is causing
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the larger mean error already observed in Figure 5.7.

Figure 5.8: Error ellipses in UV frame and S2 space on different bodies with IP methods
considered.

In Figure 5.9, a representative case of the position error of the CELM in
CAM reference frame for the L body is illustrated with the CNN method. The
error in the boresight direction is one order of magnitude higher than on the other
axes. This result is expected from optical-based navigation systems. Therefore, the
error in the range estimate from the body is the major contribution to the error in
the position estimate when using this labeling strategy. Since most of the error
comes from the radial direction, including the attitude error from a star-tracker,
performance is not expected to vary significantly.

(a) XY coordinates. (b) Boresight direction.

Figure 5.9: Position error in CAM reference frame in XY coordinates (a) and boresight
direction (b).

Lastly, a visualization of a sample of 200 images from the test set in S2 and
the CoF prediction by the different IP methods is illustrated in Figure 5.12.
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(a) XY coordinates. (b) Z coordinate.

Figure 5.10: Histograms of the position error in CAM frame. XY coordinates (a) and
boresight direction (b). The binwidth of both histograms is 100m.

Figure 5.11: εrp as function of ρt with the different values of γ used in the postprocessing
to pass from S0 to S2 .
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Figure 5.12: Sample of CoF estimates on images from the test set of DS4 with CoB
(red) and CoM (green) visualized.
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5.2 Segmentation and Navigation

Correlation methods are often employed to reconstruct the pose of a camera by
attempting to match a real observation with a synthetic one, representing the body
outline or local patches of the surface depending on the relative distance. The
synthetic observation, often called a template, is generated via a model rendered
onboard (but in some cases [60] it can also be rendered on-ground) via an artificial
environment that controls the relative body-camera-Sun poses. Because these
poses are affected by errors, multiple combinations are rendered simultaneously.
Thus, the more complex the model and rendering procedure adopted, the more
computationally expensive it is to run the technique onboard.

A significant source of errors in correlation methods is caused by the artificial
simulation of the interaction between the surface material and illumination condi-
tions, which are challenging to replicate in a fast way onboard a spacecraft using an
artificial environment, especially considering the simultaneous generation of multiple
templates. Illumination conditions have a strong influence over pixel-intensity-based
metrics used for correlation when considering grayscale visual images. Moreover, it
may be necessary to initialize correlation methods in a convergence basin as close
as possible to the actual solution.

Exploiting segmentation maps such as the one illustrated in chapter 4, it
would be possible to overcome some limitations while reducing the computational
complexity. The advantage of using segmentation maps in place of grayscale images
is twofold: simple, low-resolution models can be considered for online rendering,
and at the same time, pixel-intensity variations due to illumination conditions do
not play a direct role in the correlation.

In the following sections, a methodology is explored that uses segmentation
maps and a correlation scheme for navigation purposes. The proposed architecture
employs a hybrid segmentation-classification-regression scheme for two target bodies:
D and H, chosen to be representative of regular and irregular minor bodies.

5.2.1 Architecture

An onboard architecture is proposed to estimate a spacecraft’s position taking as
input grayscale visual images. The architecture is divided into three portions, as
illustrated in Figure 5.13.

The first portion addresses the segmentation task using a UNet architecture
as illustrated in chapter 4. The purpose of this portion is to transform grayscale
pixel intensity to semantic meaning, deconstructing image pixel content into
categories, which can later be used for navigation. The classes considered by the
proposed architecture are background, surface, boulders, and craters, similar to
those illustrated in Section 4.1. In the second portion, a rough position estimate is
generated by solving a classification task with a CNN. The classifying network’s
primary purpose is to significantly reduce the parameter’s search for the subsequent
step. The third and last portion performs a discrete classification using an algorithm
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based on a Normalized Cross Correlation (NCC) metric. This section refines the
rough solution provided by the CNN and is necessary to increase the accuracy of
the architecture.

Segmentation

position

position

Rough

classification

Fine

classification

Figure 5.13: Macro-steps of the proposed method for small-body navigation with
segmentation maps.

Classification has been preferred over regression to generate rankings between
the predicted classes based on their correlation scores. This was motivated by the
desire to investigate class distributions in the predictions and have a smaller dataset
not to disperse the position labels. The CNN used to solve the classification task
performs a twofold task. First, as a robust navigation method that can roughly
locate the spacecraft around the body. Second, as a proxy of an onboard rendering
engine, since its parameters embed the appearance of the segmentation maps used
to represent the target body in a variety of geometric and illumination conditions.

Previous works also preferred classification over regression. For example, in
[142], the position of a spacecraft with respect to the Moon is estimated using a
CNN trained over images distributed across different classes over a digital terrain
map. In [143] an interesting geolocation application is illustrated using a dynamic
resolution grid of classes around Earth’s surface to locate an image depending on
its content. An interesting point illustrated in [143] is the possibility of grouping
images that correlate the most due to their similarity, even from different geographic
locations.

The classification framework, however, has one major drawback: by design,
it cannot achieve high accuracy, which is tied to the total number of classes
considered, their size, and the amount of data needed to represent them. Each
class size bounds the maximum error, posing a significant limitation in performance
that is overcome easily with the adoption of the subsequent NCC step.

The regions considered for classifications are illustrated in Figure 5.14. A
total of 1176 volumes are carved for each body around a spherical shell in the
AS reference frame. Each region is defined in polar coordinates by intervals of 15
deg for the equatorial and azimuth angle and 0 .1 Blender Unit (BU) intervals for
the range. For clarity, only the innermost and outermost of the 1176 classes are
illustrated in Figure 5.14.
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Figure 5.14: Structure of the 1176 classes distributed over the spherical shell. The blue
and cyan are the innermost and outermost classes from the small body. The red and
orange are the top and bottom classes with the maximum elevation value. In between,
the other classes are not shown for clarity.

5.2.1.1 Rough classification

The classification task is addressed using a CNN. The hyperparameters search has
been divided into two parts following an approach highlighted in [144] and adopting
the philosophy described in [76]. In the first one, without any regularization in
place, an optimal set in the parameter space for the learning rate, batch size, B, and
depth of dense layers is performed for a concise amount of epochs. After optimal
regions of these parameters are identified, epochs are increased, and regularization
is introduced in the form of dropout rates and image shifts. This process is
repeated by refining the parameter space alongside reducing the number of cases
and increasing the training epochs. The whole procedure considers global metrics
for both training and validation accuracy as well as the convergence speed. The
most promising ensembles of the network are then fine-tuned.

The same architecture is used for Didymos D and Hartley H and uses as
input segmentation maps generated in CORTO with the methodology described
in Section A.2.2, generating the dataset DS5 . The weights and biases used are
the ones achieving maximum accuracy on the validation sets. The outcome of the
hyperparameter tuning for the best architecture is summarized in Table 5.4, while
the architecture is illustrated in Table 5.5.

The standard definition of accuracy turned out to be limiting in comprehensively
describing the more complex behavior of the classifier. In the specific classification
task considered, spatial proximity between classes is essential but not encoded with
the class label. In a traditional classification task, the classes may be defined by
different objects, animals, or instances of a larger group, but they would still exhibit
characteristic features that would make them different and distinguishable. However,
in the task considered, classes next to each other do not represent different species
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Table 5.4: Hyperparameters of the CNN architectures used in this section.

Parameter Value

Optimizer Adam
Loss function Sparse Categorical Cross Entropy

α (MobileNetV2) 0.35
Dropout rate (1) 0.3 (Didymos), 0.15 (Hartley)
Dropout rate (2) 0.5

Learning rate 0.0005
β1 0.9
β2 0.999

Pixel shift 5
Batching strategy mini-batch

Batch size B 128
Steps per epoch 339
Training epochs 100

Table 5.5: Architecture of the CNN considered for classification. The total number of
parameters is 725’880 (2.8 MB), of which 14’080 are not trainable.

ID Layer type Output Shape Parameters Connections

I InputLayer (B, 128, 128, 1) 0 F1

F1 InputTransform (B, 128, 128, 3) 0 F2
F2 MobileNetV21280 .35 (B, 4, 4, 1280) 410208 A1
A1 Global average (B, 1280) 0 DO1

DO1 Dropout (B, 1280) 0 D1
D1 Dense (B, 128) 163968 DO2

DO2 Dropout (B, 128) 0 O

D1 Dense (B, 1176) 151704

of objects but the same object image from a slightly different perspective and with
varying illumination conditions. Thus, the case of a wrong classification next to the
correct class shall not be easily dismissed as a completely wrong classification since
it indicates the encoder’s capability to provide a wrong solution spatially close to
the correct one. A metric considering the proximity between classes is therefore
designed to account for this distance.

The Inter-Class Distance (ICD) is defined as the minimum number of classes
that shall be passed through that connect a given point P in class A with another
point Q in class B. A movement from one class to another is allowed if the two
share a face, an edge, or a vertex. To illustrate how the ICD works, it is easier to
think of it when considering the classes distributed over a 3 ×3 cube (as a classical
Rubik’s cube), as illustrated in Figure 5.15.

Such a cube is composed of 27 smaller cubes that can represent classes.
Consider now a point in the center class (where the spherical joint of the Rubik’s
cube is hidden). From this point, each of the remaining 26 classes can be reached
with a single jump between them. Because of the characteristic topology of the
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spherical shell of classes considered, only one of the 3 scenarios in Figure 5.15
is encountered when starting the count of the number of jumps between classes.
From each of the 1176 classes of the spherical shell considered for classification,
the ICD is evaluated with all the other 1176 −1 classes and stored in an upper
triangular matrix.

(a) Central class. (b) Lateral class. (c) Edge class.

Figure 5.15: Various examples to illustrate the concept of ICD from the blue cube: blue
(ICD0), red (ICD1), green (ICD2). (a) central class surrounded by 26 ICD1. (b) lateral
class surrounded by 17 ICD1 and 9 ICD2. (c) edge class surrounded by 11 ICD1 and 15
ICD2.

The classification accuracy is then defined considering the ICD metric. The
a[ICDn] is the accuracy over the classes with an ICD equal to n while the notation
a[ICDn+] and a[ICDn−] are used for the cumulative accuracy, taking into account
all classes respectively above or within a distance of ICDn.

5.2.1.2 Fine classification

In a correlation procedure, an image is taken as a sample from the real environment
and confronted with a set of templates saved in a database or rendered onboard.
Controlling the parameters generating the templates (mainly camera-body-Sun
poses and material properties), it is possible to iteratively maximize the similarity
between the actual image and the synthetic templates. The template maximizing
the similarity can then be used to estimate the relative pose of the camera. Different
metrics can be used to assess this similarity. In the architecture presented in this
section, a correlation metric derived from [145] is adopted:

γ =
∑i j(Ri j ∗Ti j)√
∑i j R

2
ij ∗∑i j T

2
ij

(5.5)

Since segmentation maps are used for correlation, the albedo difference between
the template and the real map does not play a direct role. It could do so indirectly
if the segmentation method used is not robust enough to varying illumination
conditions. For this reason, the formula in [145] has been modified to avoid such
sensitivity. Note that the correlation metric is computed in the spatial domain and
not in the frequency one for practicality.
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Assuming the correlation is executed onboard, the model used for the template
renderings is simpler than the one used to emulate the real segmentation maps
processed from images taken in the environment. In practice, this is obtained by
relaxing the rendering settings, changing the material properties and the mesh
structure, removing the terminator layer, and considering only the biggest boulders
identified in the images. For comparison, a rendering of the real segmentation map
takes roughly 15s, while the rendering of the simplified model is executed in 0 .3s
considering a Cycles CPU rendering in Blender 32. This test has been performed
to understand the gain in computational time with respect to the rendering of
full masks and is not representative of the computational time required on a
space-qualified processor.

Other assumptions that have been taken are that the illumination conditions
are known and that the correlation search space is only driven by variations in
R−θ−ϕ components. The pointing is assumed to be ideal, even though the CNN
can accommodate non-ideal pointing.

With the described setup, an iterative correlation algorithm is used. As a starting
point, the predicted class from the CNN and all the classes immediately next to it are
used to define the initial intervals of the search space. A random distribution of an
arbitrary set of 100 points is then generated in polar coordinates within this region,
and the correlation coefficients between real and template maps are computed using
Eq. (5.5). The point with the highest correlation is saved, and a new iteration
is performed by reducing the search space interval of each component to 1/3 of
the original one. The new interval is used, and the procedure is repeated for three
iterations, ensuring that the point with the absolute best coefficient survives from
one iteration to the next. An example of a real segmentation map (also containing
small boulders) and the subsequent onboard-generated segmentation ones during
the three iterations of the correlation procedure are represented in Figure 5.16.

Figure 5.16: Comparison between the real segmented maps (Left) and the template ones
with maximum correlations at the first three iterations. The correlation coefficient varies
from left to right from 0.58, 0.69, and 0.75, while the error from 281, 111, and 21 m,
respectively.

Variants of the algorithm with different interval reduction strategies, in Cartesian
coordinates, and pixel-intensity-based metrics have also been tested but did not
yield significant improvements.

32Performed using an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
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Whenever an image is taken from a distance larger than 1 .35D0 (D0 represent-
ing the distance at which the body saturates the sensor’s FOV), a series of simple
image processing tasks is performed to transform the image appearance to one
suitable for the CNN. As illustrated in Section 3.1.1.5, cropping, down-sampling,
and re-scaling are used. The primary assumption underlying this is that apart from
scaling, the appearance of the bodies does not differ significantly due to perspective
changes given by different ranges-FOV configurations. This is necessary since the
CNN is only trained within a limited envelope, represented by the 1176 classes
illustrated in Figure 5.14.

5.2.2 Results

This section illustrates the results accomplished by the architecture on the four
test scenarios detailed in the DS5 dataset described in Section A.2.2 and whose
properties are reported in Table A.14. For consistency, the results of an additional
scenario about Didymos, DSD−4

5 , are presented in Section 6.6.2 instead.
For simplicity, in all datasets but in DSD−3

5 , the segmentation maps used are
the true ones, while in DSD−3

5 the predicted ones with the UNet described in [134]
are used. The CNN performances over classification are assessed with datasets
DSD−1

5 , DSD−2
5 , DSD−3

5 , and DSD−4
5 , while the NCC performance is evaluated

with DSD−5
5 .

5.2.2.1 Test set

The performances of the CNN using the ICD metric over the test sets of DSD−1
5

are summarized in Table 5.6

Table 5.6: CNN performances expressed with the ICD metric for dataset DSD−1
5 .

Metric D H
a[ICD0 ] 75 .94 68 .60
a[ICD1 ] 23 .96 31 .28

a[ICD2+] 0 .08 0 .12

It is possible to see that roughly 99 .92% and 99 .88% of the classifications
happen in the correct class or within one class from the correct one. Very few cases
(four and six, respectively) happen in classes much further away from the correct
ones. Moreover, illumination conditions have been observed to be relevant for
Didymos prediction with an ICD1 , while the same cannot be said for Hartley. This
demonstrates that the CNN can reduce the search space of the estimated position
by grouping almost all cases in or next to the correct class and a considerable
number of cases in the correct one.
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5.2.2.2 Reduced maps

In this test set, the camera poses and the illumination conditions are the same
as DSD−1

5 . Three subsets are obtained for each body by selectively removing
features from the segmentation maps. This is a useful test to assess their impact
on the network’s performance and hints at which features are used the most by the
networks to predict position classes. In the first subset, both craters and boulders
are removed from the segmentation mask (“no features”). In the second subset, only
craters are removed (“no craters”), while in the third one, only boulders are removed
(“no boulders”). Table 5.7 and Table 5.8 summarize the cumulative accuracies for
D and H.

Table 5.7: CNN performances expressed with the ICD metric for the DSD−2
5 dataset on

D.

Metric No features No craters No boulders

a[ICD0−] 2 .2 66 .2 5 .1
a[ICD1−] 11 .8 97 .5 21 .0
a[ICD2−] 20 .2 97 .8 29 .6
a[ICD3−] 37 .5 98 .4 45 .7
a[ICD4−] 57 .3 98 .7 60 .9
a[ICD5−] 72 .8 99 .0 74 .6
a[ICD6−] 88 .1 99 .7 90 .5
a[ICD7−] 100 .0 100 100

Table 5.8: CNN performances expressed with the ICD metric for the DSD−2
5 dataset on

H.

Metric No features No craters No boulders

a[ICD0−] 60 .8 69 .1 61 .8
a[ICD1−] 99 .3 99 .8 99 .4
a[ICD2−] 99 .5 99 .9 99 .6
a[ICD3−] 99 .6 99 .9 99 .6
a[ICD4−] 99 .6 99 .9 99 .7
a[ICD5−] 99 .6 99 .9 99 .7
a[ICD6−] 99 .6 99 .9 99 .7
a[ICD7−] 100 .0 100 100

Interestingly, different phenomena are observed for each body. For what concern
D, a mildly irregular body, features such as craters and boulders heavily influence
the performance. A considerable drop in performance seems primarily caused by
the absence of boulders since performance is still high in the “no craters” case but
is very low in the “no boulders” case. This hints at the extensive reliance of the
network on feature patterns identified in the maps as the primary mechanism to
perform position-classification.

On the other hand, for what concern H, a highly irregular body, craters and
boulders seem equally important features. Their absence causes a mild drop in
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performance, hinting at their presence not being the primary mechanism used by
the network to perform position-classification.

These interesting results indicate the network being flexible as a global-based
and feature-based method. Architectural differences are removed because the
network design used for both cases is the same. These results indicate the network’s
ability to specialize on the outline of H, relying less on surface features when an
irregular target body is considered. On the other hand, the network specializes in
using surface features whenever the target body presents a regular outline, which
could not provide sufficient unique information for position estimation, as in the
case of D.

5.2.2.3 Predicted masks

Dataset DSD−3
5 is generated by taking the images associated with the masks of

DSD−1
5 and evaluating them over the UNet described in [134]. The purpose of

this test is to demonstrate that the CNN can be trained with the true masks and
that it can then be deployed for a real application and still work fine with the
predicted masks, demonstrating that only a small domain gap exists between the
assumed and actual conditions. As it is possible to see from Table 5.9, high values
of a[ICD1−] have been retained by using real masks.

Table 5.9: CNN performances expressed with the ICD metric for the DSD−3
5 dataset on

D.

Metric D H Metric D H
a[ICD0 ] 52 .5 48 .1 a[ICD0−] 52 .5 48 .1
a[ICD1 ] 38 .3 48 .9 a[ICD1−] 90 .8 97 .1
a[ICD2 ] 0 .8 1 .4 a[ICD2−] 91 .5 98 .5
a[ICD3 ] 1 .4 0 .3 a[ICD3−] 93 .0 98 .8
a[ICD4 ] 1 .4 0 .2 a[ICD4−] 94 .3 98 .9
a[ICD5 ] 1 .6 0 a[ICD5−] 95 .9 99 .0
a[ICD6 ] 2 .1 0 .1 a[ICD6−] 98 .0 99 .1
a[ICD7 ] 2 . 0 .9 a[ICD7−] 100 100

5.2.2.4 Normalized Cross-Correlation

Dataset DSD−5
5 is a subset of DSD−1

5 made by 1000 random masks of D and H
to which the NCC method described in the previous section is applied. The mean
positioning error achieved is 63 .49 m for D and 301 .06 m for H. In Figure 5.17,
it is possible to see the relative percentage error with respect to the true range
εrp as a function of the true range in adimensional space for both bodies. The
mean relative percentage error is 1 .31% and 2 .07% for D and H. The normalized
distance of the two bodies (the distance at which the FOV is saturated by the
body) is, respectively, D0 = 4 .81 km and D0 = 14 .41 km.



5.2. Segmentation and Navigation 163

(a) D. (b) H.

Figure 5.17: Relative percentage error as a function of the range ρt from (a) Didymos
(D) and (b) Hartley (H). The normalized range D0 corresponds to ρt = 1 BU.

In Figure 5.18 and Figure 5.19, the relative positioning percentage error εp is
also illustrated in its components in CAM frame. From these figures, it is possible
to observe how, in this case, all components have errors in the same order of
magnitude, contributing equally to the total positioning error. Moreover, opposite
biases are observed for εXp and εYp in Figure 5.19, which is not observed for the
error in the boresight direction.

(a) εp by components for D. (b) εp by components for H.

Figure 5.18: εp by components in CAM frame as function of the range ρt from (a)
Didymos (D) and (b) Hartley (H).

Considering the overall performance, the NCC algorithm proved to work as
expected. However, it is reported that the maximum NCC coefficient does not
perfectly match with the minimum error location, as it is possible to see from
one of such correlation cases in Figure 5.20. This issue may be caused by the
absence of the minor boulders in the segmentation mask rendered online and shall
be addressed in a real implementation.



164 5. Navigation

(a) Histograms of εp for D. (b) Histograms of εp for H.

Figure 5.19: Histograms of εp by components in CAM frame for (a) Didymos (D) and
(b) Hartley (H). The binwidth used is of 5 m in (a) and 25 m in (b).

Figure 5.20: Example of the NCC coefficient as a function of the error from iteration 1
(orange), 2 (blue), and 3 (teal).

5.3 Recurrent architectures for navigation

Finally, in this section, the possibility of using image sequences in combination with
RNNs is investigated, addressing two major questions: 1) To what extent can short
sequences of images improve the position estimate obtained from a single image?
and 2) Can RNN perform the same tasks as a Kalman Filter (KF) and be used to
generate a position-velocity pair from image sequences?

5.3.1 Training strategy

To obtain the position and/or velocity estimates from a RNN, a training methodology
is designed and divided into two main parts, as illustrated in Figure 5.21.
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In the first one, CELM architectures are trained to generate position estimates
using segmentation maps of Didymos as input. The best architecture is selected
and used in inference on a vast test dataset to generate sequences of position
estimates, constituting the input for training the RNN. In the second part, an
ensemble of RNN is designed and trained to take as input variable sequences of
the position estimates previously generated with the best CELM architecture with
the goal of either improving the same position estimate or generating a velocity
estimate. The sequence of position estimates generated with the CELM can use
only optical observables or complement them with rangefinder Light Detection And
Ranging (LiDAR) data.

CELM - Training

Background Surface

CraterBoulders

Train: 7500
Valid: 5000

800 ICs

7 ICs

Test: 48411

Y = πΘ∗

CELM
(X|θ∗CELM)

CELM - TestingTrain: 76800

Valid: 9600

Test: 9600

CELM - Dataset

πΘ∗

CELM

Y → pW
est

Shards generation

RNN - Dataset

12500

(p, v, pv, pl, vl, pvl)

RNN - Training

X

θ
∗

CELM

Figure 5.21: Sketch of the combined training strategy for the CELM and RNN architec-
tures.

After a sequence of N position vectors is obtained onboard, the RNN is used
to analyze it and produce an estimated state vector valid for the Nth instance.
This is either made up of only position (p, pl), velocity (v , v l), or both (pv ,
pvl) components. The l indicates whether or not LiDAR data has been used in
generating the position with the CELM. In inference, the CELM and RNN are
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sequentially applied after a first passage by a UNet that is used to generate the
segmentation masks from visible grayscale images, using the procedure illustrated
in Section 4.1, schematized in Figure 5.22.

(δ, ρo) = πΘ∗

CELM
(X|θ∗CELM)

Y = πΘ∗

RNN
(X|θ∗RNN)

pCAM
est
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t 1
· ·
· tN

CELM

RNN

Figure 5.22: Sketch of the combined architectures in inference.

5.3.1.1 CELM training

Using the DS6 described in Section A.2.3 made of 12500 segmentation mask
and position labels, 600 different convolutional architectures are trained using
the CELM paradigm. The training methodology of the CELM is illustrated in the
schematic in Figure 5.23.

Each CELM architecture is designed with a hierarchical convolution structure
as the one presented in Section 5.1. While going deeper into the network towards
the fully connected layer, the starting 128 ×128 ×1 tensor is squeezed; its size
is halved while its depth is doubled as a function of the depth level following a
power law from 24 to 28 . Each level comprises the consecutive application of
convolutions, activation functions, and pooling operations. The convolutions filters
are made by 3 ×3 kernels. Having defined a procedural set of rules to generate
each architecture, an ensemble of them is produced with the set of hyperparameters
Θ illustrated in Table 5.10.

Table 5.10: Sets of Θ explored for the CELM architectures.

Symbol Possible values

d 1, 2, 3, 4, 5
Kd Random Uniform (-1,1), Random Normal (0, 1), Orthogonal
A nReLU, ReLU, tanh, none
P Mean, Max
C 10−4 , 10−3 , 10−2 , 10−1 , 100 , 101 , 102 , 103 , 104
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d = {1, 2, 3, 4, 5}
Kd = {Random Uniform, Random Normal, Orthogonal}
A = {nReLU, ReLU, hyperbolic tangent, none}
P = {Mean, Max}

(

Θ
1, · · · ,Θ600

)

Find Θ
∗

CELM
, θ∗

CELM
,β∗

×5

CELM - Training and Validation

Background Surface

CraterBoulders

Training: 7500

Validation: 5000

CELM - Training

CELM - Dataset

Figure 5.23: Sketch of the first part of the training with the CELM. Training and
validation split of the DS6 dataset are represented by the black and green points in the
W reference frame around Didymos. The dataset comprises segmentation maps generated
by a camera at these points.

Considering all the possible combinations in Table 5.10, a total of 120 differ-
ent architectures are generated. To further extend the exploration, the random
initialization of each kernel distribution is executed 5 times, producing a total of
600 architectures to train. As in Section 5.1, different values of the regularization
term Care used with the validation set. The best architecture, πΘ∗

CELM
, has been

initialized using a Random uniform distribution of the kernels and is illustrated in
Table 5.11.

Using the output of the CELM, the position is generated following the same
procedure illustrated in Section 3.1.1.5 and schematized in Figure 5.22, transforming
δ,ρ into a LoS vector in the CAM reference frame and then using assuming to
use the attitude quaternion from the star-tracker and the known rigid rotation
between the inertial reference frame used by the Star-tracker and the W frame.
As in Section 5.1, no attitude error is simulated in this process. The estimated
position in W frame is thus computed as:

pWest = qCAM→W ·pCAM
est (5.6)

where pCAM
est is the estimated position in the camera frame and qCAM→W is the

quaternion that rotates from the CAM to W frame. In this paper, ρ is either
estimated from the images (ρo) or with the use of a rangefinder LiDAR sensor (ρl ).
The latter is simulated with the addition of normally distributed noise on the true
range ρt between CoM of Didymos and the spacecraft as:
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Table 5.11: Example of a five layers architecture with a three neurons output layer, made
of 392 ′320 parameters (1.5 MB).

ID Layer type Output Shape Parameters Connections

I InputLayer (B, 128, 128, 1) 0 C1
C1 Conv2D (B, 128, 128, 16) 160 A1
A1 nReLU (B, 128, 128, 16) 0 P1
P1 MeanPool2D (B, 64, 64, 16) 0 C2
C2 Conv2D (B, 64, 64, 32) 4640 A2
A2 nReLU (B, 64, 64, 32) 0 P2
P2 MeanPool2D (B, 32, 32, 32) 0 C3
C3 Conv2D (B, 32, 32, 64) 18496 A3
A3 nReLU (B, 32, 32, 64) 0 P3
P3 MeanPool2D (B, 16, 16, 64) 0 C4
C4 Conv2D (B, 16, 16, 128) 73856 A4
A4 nReLU (B, 16, 16, 128) 0 P4
P4 MeanPool2D (B, 8, 8, 128) 0 C5
C5 Conv2D (B, 8, 8, 256) 295168 A5
A5 nReLU (B, 8, 8, 256) 0 P5
P5 MeanPool2D (B, 4, 4, 256) 0 FC
FC Flattening (B, 4096) 0 O
O Dense (B, 3) 12291

ρl = ρt +σl ·Ω (5.7)

where Ω is a normal random distribution function, and σl is the LiDAR standard
deviation measured as σl =

√
σ2h +σ

2
s , σh being the contribution by the instrument

uncertainty (assumed to be 1 m as an educated guess from the DLEM rangefinder
LiDARs from Jenoptik 33) and σs the uncertainty provided by the deviation of the
small-body shape (σs = 13 .63 m) due to irregularities from a sphere centered in
the CoM with a radius equal to the mean value of 392 .48 m.

Note that the current modeling of the LiDAR simplifies the observation ac-
quisition by only introducing noise in the measurement while disregarding other
significant effects. In a real LiDAR, other sources of error like range-dependent
noises, pointing contributions, shape uncertainty effects, and correlation between
different sources of errors would further degrade LiDAR performances. A simplified
modeling of the LiDAR is therefore adopted for what concerns the analysis presented
in this section.

5.3.1.2 RNN training

The RNN is designed after a thorough hyperparameters search using a combination
of LSTM cells and a single layer of neurons. The RNN takes as input a sequence
of N previously estimated positions obtained with the best CELM identified in the

33https://www.jenoptik.com/products/lidar-sensors-technologies/
laser-rangefinders/oem-modules-system-integration/dlem, last accessed 27th
of October 2022.

https://www.jenoptik.com/products/lidar-sensors-technologies/laser-rangefinders/oem-modules-system-integration/dlem
https://www.jenoptik.com/products/lidar-sensors-technologies/laser-rangefinders/oem-modules-system-integration/dlem
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first part of the training and produces the current estimate of the position, velocity,
or both, with and without the use of LiDAR. The entire training procedure of the
RNN is illustrated in Figure 5.24.
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Figure 5.24: Sketch of the second portion of the training with the RNN.

Using the train and validation shards of DSR
6 with the properties illustrated in

Table A.17 in combination with the six different labeling strategies (p, v , pv , pl ,
v l , pvl), an extensive hyperparameter search for the definition of the best RNN
architectures is performed.

Each RNN is generated in TF using a number of LSTM cells driven by nlstm
parameter. As an activation function of the cells, a hyperbolic tangent is used while
a sigmoid is used as a recurrent activation function. The LSTM cells are followed
up by a single layer made up of nne neurons, which uses the ReLU as an activation
function. The hyperparameter search serves the purpose of identifying the values
of nlstm, nne , as well as m and l r , that characterize the best performing RNN
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architecture on the validation set. All the values of hyperparameters tested during
training of the RNN are illustrated in Table 5.12 while a generic RNN architecture
is illustrated in Table 5.13.

Table 5.12: Sets of Θ explored for RNN training.

Symbol Description Possible values

l r
Learning rate of

10−3 ,10−4 , 10−5

Adam optimizer

m
Batch size for

128, 256, 512, 1024
gradient descent

nlstm
Number of LSTM cells

4, 16,64, 256
used in the RNN

nne
Number of neurons used

4, 16, 64, 256
in the RNN architecture

Table 5.13: Example of a generic RNN architectures. The number of parameters is
omitted as it varies with nlstm and nne .

ID Layer type Output Shape Connections

I InputLayer (B, 5, 3) L
L LSTM (B, nlstm, 6) D1

D1 Dense (B, nne , 6) R1
R1 ReLU (B, nne , 6) D2
D2 Dense (B, 6) O
O ReLU (B, 6)

Adopting the methodology illustrated in [144] , recommending an iterative
framework with incremental exploration of the hyperparameter space, with the
empirical findings from [76], stressing the importance of gradual changes and global
perspective while performing hyperparameters tuning, a 5 steps iterative grid-search
is performed using adam optimizer with default settings and MSE as loss function.
The number of parameters is reduced at each step, while epochs are increased to
keep a consistent computational effort throughout different steps. A tournament
training is thus performed using the best mean position and/or velocity errors as
global metrics, using the εrp and εrv metrics defined in Section 1.8.5.

The best-performing architectures are obtained by repeating this methodology
for each of the six labeling strategies considered for the RNN. Their characteristics
are summarized in Table 5.14.
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Table 5.14: Best hyperparameters Θ∗ of the RNN for each labeling strategy.

Label p v p,v p v p,v

LiDAR No No No Yes Yes Yes
Name Rp Rv Rpv Rpl Rvl Rpvl

∆T [s] 150 3600 3600 150 3600 3600
N 30 5 5 30 5 5
l r 10−2 10−3 2 ·10−4 10−3 10−3 10−3

m 128 256 128 64 256 64
nlstm 16 128 128 256 512 256
nne 16 64 512 32 512 256

5.3.2 Results

In this section, the position and velocity onboard reconstruction results are illustrated
for the test sets of DS6 . For a better interpretation, a consistent color scheme and
notation is adopted. The performance of the RNNs is characterized by a palette of
blue colors of the jet colormap while the CELMs ones by red colors of the same
colormap, as it is possible to see from the legends in Figure 5.3 and Figure 5.27.
Also, the performance related to the CELM are annotated as Ci , the ones related
to the RNN as Ri , and the i representing the labeling strategy. The metrics used to
assess the position and velocity reconstruction are Equation 1.20 and Equation 1.21
defined in Section 1.8.5.

In Table 5.15, it is possible to see a summary of the performance of the
various methods with different labeling strategies on two different test sets. Te1
represents random short trajectories designed around the Didymos asteroid, while
Te2 represents specific closed orbits about Didymos referred to as Close Proximity
Orbit (CPO)s, as illustrated in Section A.2.3. The coupling between LiDAR data
and optical observables is beneficial in terms of performance, which is one order of
magnitude better than estimates generated with optical observables alone. It is
also noted that the RNNs reconstruct a better estimate whenever they are solely
focused on the position or velocity, as in the p, v , pl , and v l cases, and not in the
mixed labeling strategies such as in the pv and pvl cases.

In Figure 5.25, the distributions of εrp and εrv are illustrated with box plots
for the various labeling strategies on both test sets (Te1 first and Te2 second).
For completeness, in Figure 5.27, it is possible to see the same data generating
cumulative performance plots (Te1 solid and Te2 dashed) as well as histogram
plots in Figure 5.26.

From these figures, it is possible to appreciate better the same trends iden-
tified by the global metrics in Table 5.15. In particular, the order of magnitude
improvement in the performance when considering the LiDAR, the capability of the
RNN to reconstruct the velocity, especially with data from the LiDAR, and finally
the capability of the RNN to improve the position estimate, albeit only marginally,
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Table 5.15: Performance of the state reconstruction by CELM (C) and RNN (R) with
different labeling strategies. The values expressed are the µ(εrp) or µ(εrv) and their
corresponding (σ).

Labels Dataset C R R

p
Te1 2.69 (2.15) 1.28 (1.25) -
Te2 2.70 (2.01) 1.30 (0.87) -

v
Te1 - - 31.86 (27.75)
Te2 - - 33.67 (29.29)

pv
Te1 2.67 (2.05) 2.74 (1.66) 34.46 (28.82)
Te2 2.69 (2.00) 2.74 (1.67) 41.16 (33.12)

pl
Te1 0.24 (0.21) 0.22 (0.44) -
Te2 0.26 (0.18) 0.18 (0.12) -

v l
Te1 - - 4.07 (3.54)
Te2 - - 5.57 (7.71)

pvl
Te1 0.23 (0.20) 0.90 (0.68) 4.72 (4.71)
Te2 0.26 (0.18) 0.87 (1.66) 6.25 (7.90)

Figure 5.25: Box plot of the position (top) and velocity (bottom) reconstruction error.

as it is possible to observe by comparing Cp or Cpl with Rp or Rpl . Finally, it is
also commented that the training and validation envelopes chosen for the RNN
demonstrated to have been chosen adequately for the testing conditions.

Finally, it is interesting to observe the reconstructed states of the CPOs of
the Te2 in the W reference frame both in the position and velocity phase spaces
respectively in the scatter plots in Figure 5.28 and Figure 5.29. First, an oscillation



5.3. Recurrent architectures for navigation 173

Figure 5.26: Histogram performance of the position (left) and velocity (right) reconstruc-
tion error. The binwidth from top to bottom, left to right, are 0 .05 , 1 , 0 .01 , and 0 .1 .

compatible with the rotational state of Didymos is observed to impact the estimated
position in the radial direction in Figure 5.28. This seems to be caused by position
estimates by Cp, also reflected in Rp. These oscillations are visible in the close-up
view of the CPO trajectories projected in the XY plane of the W reference frame in
Figure 5.28. Second, using LiDAR data, as in the Rpl and Cpl , generates estimates
much closer to the true CPOs. The oscillation phenomenon is still present but
limited in amplitude due to the LiDAR capability to generate a better estimate.

Generating the same visualization in the velocity phase space, Figure 5.29 is
obtained. It is possible to see that the estimates without the LiDAR (Rv ) are
much more loosely related to the true CPOs in velocity phase space, while the ones
obtained with the LiDAR (Rvl) are indeed much more adherent to the true ones.

Additionally, two interesting phenomena are observed. First, by comparing the
training interval in Figure A.21 with the testing one of the various CPOs, it is
possible to see that CPO1 is the only one that is not entirely contained within
the training envelope. In particular, two regions, with positive and negative values
of Vy , are observed outside the training envelope. This has been a deliberate
design choice to test RNN generalization capabilities. Second, of the two groups
of trajectories in the velocity phase space of CPO1 divided by the sign of Vy , it
is possible to see that only the ones with positive Vy get reconstructed well in all
three components. Interestingly, the ones with negative Vy are reconstructed well
only in the X and Z components, as visible from the XY view in Figure 5.29.
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Figure 5.27: Cumulative performance of the position (left) and velocity (right) recon-
struction error.

From these results, a twofold conclusion is drawn. First, RNN architectures
can be used to improve the reconstruction of the position vector using a sequence
of images. This improvement, however, is negligible, especially considering the
case in which LiDAR data is used. Second, regarding the velocity, the RNN cannot
generate an accurate estimate using only optical observables, which prompts the
use of LiDAR data to decrease the positioning error in the radial direction. When
optical observables are complemented by LiDAR data, the RNN can accurately
reconstruct the velocity. This is partially true outside the training envelope, showing
promising generalization capabilities. Finally, non-mixed predictions were simpler
and more accurate when considering a mixed labeling strategy in which the position
and velocity are estimated by the RNN.
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Figure 5.28: True and estimated positions by Cp, Cpl and Rp, Rpl . The size of the points
is proportional to εrp.
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Figure 5.29: True and estimated velocities by Rv and Rvl . The size of the points is
proportional to εrv.
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5.4 Final remarks

In this chapter, three navigation approaches around small bodies that make use
of AI techniques are investigated in detail. In particular, navigation is addressed
using regression, classification, segmentation, and methods, considering as input
both grayscale images or segmentation maps, exploring end-to-end “from image to
position” and intermediate “from image to observables” pipelines with convolutional,
correlation, and recurrent approaches.

Particular emphasis has been put on the importance of architectural choices,
complex bootstrap training methodologies, labeling strategy, and reference frames
used. What follows is a list of final remarks.

• An extensive analysis is performed for convolutional architectures, investi-
gating the impact of three different reference frames, five different labeling
strategies, four different irregular bodies, and four architectures with the
purpose of:

– Investigating whether simple convolutional architectures trained with
the CELM paradigm can perform similarly to CNNs regarding space
images of small bodies in the medium regime.

– Developing a methodology that uses CELM fast training time to explore
the architecture design space of CNNs

– Determining the best labeling strategy and reference frames for position
estimation tasks with convolutional architectures.

• The analysis resulted in tens of thousands of different architectures being
explored with various training instances and concluded that:

– CELM-trained networks can be considered a valid alternative only when
using the (δ,ρ) labeling strategy. Their performance are similar to those
of CNN, especially when regular shape bodies are considered. Overall,
CNNs outperforms all architectures considered.

– CELM can be successfully and efficiently used to explore the architecture
design space of CNNs. Combining exploration with a first pass to find the
best possible architectures and exploitation with a second one dedicated
to optimizing their weights and biases guarantees efficient and robust
network development. This training framework can be adapted for a
real mission case to use the resources available for training and reduce
costs efficiently.

– It is found that the coupling between IP method and labeling strategy
plays a fundamental role. In particular, the (δ,ρ) labeling strategy is
the simplest and most efficient form of label representation for position
estimation. This is attributed to a direct link between estimated labels
and input images. The positioning error with such a strategy suffers the
highest in the radial direction. Regarding the other ones considered, no
significant difference is observed between polar and cartesian coordinates.
At the same time, the choice of the reference frame plays a considerable
role, the W being preferred over AS. This is attributed to the influence
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of illumination conditions over the global shape of the body.
• A classification-correlation architecture is developed using segmentation maps

as input. The approach is advantaged by using simple, low-resolution models
for online rendering and the correlation not being affected by local pixel-
intensity variations due to illumination conditions and albedo modeling. The
architecture is performed with a three parts structure: A UNet converts
grayscale images to segmentation maps, which are used by a CNN to perform
classification to identify the rough position of the spacecraft around the body
in the W reference frame. Lastly, this is refined with an iterative correlation
scheme based on a NCC metric.

• The classification CNN demonstrated its capability to generate robust, rough
predictions in or next to the correct classes, with illumination conditions
considered relevant in the Didymos case but not in the Hartley one.

• Features such as craters and boulders were pivotal for the network trained
on Didymos, a mildly irregular body, hinting at its features-based disposition
developed during training. Contrarily, the global outline of Hartley, an
irregular body, turned out to be the most important feature used by the
network in predicting a class, hinting at its global-based disposition. Both
results indicate that the network is flexible enough to specialize with patterns
of local features and the shape outline, depending on the properties of the
target body.

• The NCC-based algorithm performs well in refining the position estimate
around the target bodies, with a minor issue caused by the maximum NCC
metric not scoring close to the location of the minimum position error.

• A set of RNN architectures is designed and trained with various sequences of
position estimates obtained from optical observables of segmentation maps
extracted by CELM, optionally complemented with LiDAR data in the radial
direction. This activity has been motivated by the interest in investigating:

– To what extent can short sequences of images improve the position
estimate obtained from traditional convolutional approaches applied to
single images?

– Can RNN perform the same tasks as a KF and be used to generate a
position-velocity pair from image sequences?

• Investigating different combinations of labeling strategies, mixed use of LiDAR
data in the boresight direction, and assessing the performance within and
outside the nominal training envelope, the following findings have been found:

– Using a sequence of position estimates, a RNN improvement is marginal
in increasing the accuracy of the position estimate.

– The coupling between LiDAR data and optical observables is beneficial
in terms of performance, which is one order of magnitude better than
estimates generated with optical observables alone.

– A RNN can successfully generate accurate velocity estimates from
position sequences, but only with the use of LiDAR data. This is
also partially true outside the training envelope, showing promising
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generalization capabilities.
– In all RNN architectures considered, a single three-value position or

velocity vector estimate has proven to be more accurate than a combined
six-value position and velocity vector.

– An oscillation compatible with the rotational state of Didymos is ob-
served to impact the estimated position in the radial direction.

• The RNN architectures do not have an a-priori initialization of the state,
which could be relevant for autonomous operations. On the other hand, the
environment dynamic is embedded in the data used for training of the RNN.
While an update of the dynamic in a KF could be implemented with a simple
parameter change or by a different implementation of a given dynamical
model, in the case of the RNN it could require new training.

• Different dynamical settings could be used to verify the generalization capa-
bility of the RNN.

• The LiDAR is assumed to be available irrespective of the range from the
asteroid, which is an assumption that may be invalid depending on the specific
hardware considered. Including the simulation of a duty cycle of the LiDAR,
which could be activated only below a predetermined distance, would be
interesting.

• The LiDAR is represented with a too-optimistic modeling. The assumptions
adopted in this chapter could be revisited to increase the model’s fidelity.
Additional noise sources and a different modeling strategy could be adopted
to represent the sensor observation more realistically.

• It is noted that in both centroiding-based and spherical coordinates strategies
illustrated in Section 5.1 and Section 5.3, most of the error is generated
along the radial direction. On the other hand, the convolutional network
in Section 5.1 based on cartesian coordinates and the correlation strategy
illustrated in Section 5.2, distributes the error across all axes.

• Compared to traditional approaches, AI-based solutions have been demon-
strated to improve both centroiding and positioning performance with respect
to onboard implementations.

• Considering positioning performance, Section 5.1 illustrates how convolution
architectures, with the proper labeling strategy, can achieve relative posi-
tioning errors εrp between 2% and 3% for D, H, L, and P, as illustrated in
Figure 5.3 and Figure 5.4. These values are solely generated by the IP, before
the eventual application of filtering techniques or recurrent architectures. The
latter are investigated in Section 5.3 for D, demonstrating to improve the
relative positioning error from 2 .7% to 1 .3% or from 0 .25% to 0 .20%
when complementing optical observables with a LiDAR in the boresight direc-
tion. These onboard position reconstruction performance can be compared
with other traditional IP approaches presented in Section 6, such as those
based on IP + filtering, which use the COB and SSWCOB IP algorithms. For
example, comparing the performance illustrated in Figure 6.28, conveniently
represented with a 1% error line, it is possible to appreciate the higher
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performance of the AI-enhanced methods whenever the COB method is used.
On the other hand, similar results are achieved only by combining the IP
output of the SSWCOB with filtering capabilities.

• Navigating using segmentation maps, classification networks, and correla-
tion schemes is investigated for D and H in Section 5.2. The classification
framework provides only a rough position (as it will be illustrated in Fig-
ure 6.42(a), with an error of 9 .92%) which is further refined by one order of
magnitude by the normalized cross-correlation scheme, passing to εrp values
of 1 .31% for D and 2 .07% for H. The navigation performance based on the
correlation method with segmentation masks is only marginally better than
that of the best AI-centroid methods. Comparing these results with Stereo
Photo Clinometry (SPC), the performance with respect to ground-based
applications is unmatched, as SPC is capable of generating cm-level position
reconstruction errors [146], which are about two to three orders of magnitude
lower compared to the few percentage error reported in this work. However,
a better performance is reported considering onboard SPC implementations,
such as the one in [147], which achieve in the best and worst case scenarios
values of relative positioning error between 8 .7% and 24%.

• Considering the centroiding performance in the image plane, AI-based cen-
troiding estimates are generated with an error between 1 px and 2 px, as
reported in Figure 5.7 for 1024×1024 images. A comparison of this perfor-
mance with a traditional one is illustrated by the error ellipses in Figure 5.8
with the unscattered CoB case, given that from the analysis in [30] (Figure
16 and Figure 17 of [30]) and [35], the CoB can be considered a traditional
and robust center-finding algorithm for irregular bodies. Further comparing
these error ellipses with those presented in Figure 6.36(c), demonstrates the
jump in accuracy whenever convolutional architectures are used instead of
unscattered IP methods, data-driven scattering ones, and NN architectures.

• The results obtained are also compared with other external works. For
example, both the Lambertian sphere correlation algorithm presented in
[40] (see Figure 12 of [40]) and the scattering CoB function in [27] (See
Figure 5, Figure 6, and Table 3 of [27]), exhibits errors in the order of
tens of pixels. This is comparable with the performance of the WCOB
and NN approaches (See Figure 6.36), which have an error one order of
magnitude higher compared to CNN approaches. Note that both [27, 40]
assume 1024×1024 images and trajectories that are comparable with those
analyzed in Section 5.1 and Section 6.4.1.

• Finally, the results presented in this section seem coherent with the ones
presented in other relevant works adopting convolutional architectures around
small bodies for centroiding and position reconstruction [43, 44].
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Milani

“The dinosaurs became extinct because they didn’t have a space program.”

Larry Niven

Of all the population of minor bodies, NEA are characterized by orbital parameters
close to those of Earth, making them accessible targets even with low-cost and
small platform missions. CubeSats, which are modular miniaturized spacecraft
of several units (1 unit being a box of side 10 cm), are revolutionizing the way
Solar System exploration is made by diversifying and complementing the scientific
objectives of larger missions [1, 2, 7]. CubeSats can be exploited as opportunistic
payloads to be deployed in situ once the main spacecraft has reached its target.
This approach is adopted in the Asteroid Impact and Deflection Assessment (AIDA)
collaboration between the NASA and the ESA to study and characterize an impact
with the Didymos asteroid system [148].

As part of this collaboration, NASA launched the Double Asteroid Redirection
Test (DART) kinetic impactor spacecraft [19, 149], whose impact with the secondary
asteroid of 65803 Didymos has been observed by LICIACube in 2022 [150]. In
October 2024, ESA will launch the Hera mission to investigate the dynamical and
geological properties of the binary system [114, 151]. Hera will release two 6U
deep-space CubeSats, named Juventas [152] and Milani [153, 154], to map and
characterize the system. They will be the first interplanetary CubeSats to execute
long-term operations in the proximity of a binary asteroid system. The nominal
duration of both missions is set to 90 days, with a backup option for a further
90-day extension.

This chapter details the work performed on the architecture design and perfor-
mance analysis of the semi-autonomous vision-based GNC subsystem of Milani in
the two main operative phases of the mission.



182 6. Milani

Figure 6.1: High-level overview of the Hera mission. Credits: ESA.

6.1 Mission overview

Milani is a 6U CubeSat that the Hera mothercraft will release in the Didymos
environment in early 2027 after an earlier characterization of the binary system.
The Didymos system consists of a primary and a secondary, respectively Didymos
and Dimorphos, also called Didymos (D1) and Dimorphos (D2) in the rest of the
chapter. The former is estimated to be an irregular, spherical-like body with a
diameter of 780 m, while the latter is currently modeled as a tri-axial ellipsoid
with a major axis of 170 m.

The main scientific and technological objectives of the Milani mission are to:

Characterize the Didymos binary system. This includes supporting Hera in
determining the system’s extrinsic properties, characterization of the asteroids’
surfaces, evaluation of space weathering phenomena, and characterization of the
crater created by DART. This objective will be achieved by a global mapping of
D1 and D2 with high-resolution images of both bodies with the ASPECT payload
[155].

Estimate the gravity field. The range and range-rate measurements exchanged
between Milani and Hera via the Inter-Satellite Link (ISL) are exploited to estimate
the gravity field in the asteroid environment.

Characterize the dust environment. This includes detecting inorganic materials,
volatiles, and light organics within the asteroid environment and deep space. The
VISTA sensor will fulfill this objective [156].

Demonstrate ISL communication with Hera. This targets the capability
of communicating with a data-relay spacecraft for payload and platform data
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transmission in deep space with a CubeSat.

Demonstrate the use of CubeSat technologies in deep space. This includes the
capability of flying a CubeSat in an asteroid environment, determining the position
with vision-based methods, and showing the use of miniaturized technologies in a
harsh environment.

To accomplish these objectives, Milani is designed with orbital and attitude
control capabilities. The platform is a 6U CubeSat with deployable solar arrays. In
addition to ASPECT, VISTA, and the ISL antennas, Milani will be equipped with
a wide FOV navcam, a LiDAR, two Sun Sensor (SS), a Star Tracker (STR), an
Inertial Measurement Unit (IMU), thrusters and a set of Reaction Wheel (RW).

Figure 6.2: Artistic representation of the Milani CubeSat. Credits: Tyvak International.

The mission consists of several phases, which are: 1) ejection from the mother-
craft and commissioning; 2) transfer to the operational phase, where the CubeSat
is accompanied to achieve operational orbit; 3) the Far Range Phase (FRP), where
the system is characterized from large distances; 4) the Close Range Phase (CRP),
where the system is characterized from closer distances with high-risk flyby arcs; 5)
the EXperimental Phase (EXP) where the CubeSat will orbit on a Sun-Stabilized
Terminator Orbit (SSTO); 6) a decommissioning phase where Milani will either be
injected into a heliocentric graveyard orbit or will attempt a soft landing on D2.

The two main operative phases of the mission are the FRP and CRP, which are
strongly influenced by the effect of the binary system gravity and Solar Radiation
Pressure (SRP) perturbation [153, 154]. Milani’s trajectories in these two phases
develop as passively safe hyperbolic arcs, represented in Figure 6.3. The trajectories
are illustrated in the convenient W reference frame, which is centered on D1, with
the Z -axis aligned with its spin axis, and the X and Y -axes co-planar with the
orbital plane of D2, with the X -axis following the projection of the Sun in such
plane.

The FRP and CRP last 21 and 35 days, respectively. The FRP alternates 3 and
4-day arcs, while in the CRP there are also 7-day arcs with corrective maneuvers
in the middle, as the CubeSat gets significantly closer to the system than in the
FRP. The portions of an arc in the CRP before and after the correction maneuver
are referred to as a and b, respectively. The FRP exhibits symmetrical arcs that
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develop within 9-14 km from D1, while the CRP is constituted by asymmetrical
arcs with a range of 3-22 km from the system.

Note that for simplicity, the same color code associated with each arc of the
FRP and CRP illustrated in Figure 6.3 will be used across the chapter to represent
properties and performance of various algorithms on specific arcs.

(a) Arcs of the FRP. (b) Arcs of the CRP.

Figure 6.3: Milani’s arcs in FRP and CRP. Gray lines represent projections into the X-Y,
X-Z, and Y-Z planes.

Milani’s GNC subsystem is designed as a semi-autonomous vision-based system
with the primary purpose of generating a reliable, simple, and accurate primary
pointing to provide to the Attitude Determination and Control System (ADCS)
during the different scenarios of the mission. To do so, Milani’s GNC exploits
strategies based on IP algorithms extracting optical observables from images of the
binary system.

The GNC and ADCS are two separate but deeply interconnected subsystems.
Together, they form the Attitude and Orbital Control System (AOCS), which is
responsible for the full six-degree-of-freedom orbital and attitude navigation, guid-
ance, and control of the CubeSat. Since the GNC system generates autonomously
an onboard primary pointing profile as output for the rotational motion, and since
it does not have onboard autonomy on the translational guidance and control, the
system is defined as semi-autonomous. The overall architecture of the AOCS is
represented in Figure 6.4, where the connections between the GNC, the ADCS and
the rest of the system are visualized.

Both the GNC and IP have been developed by the DART34 at Politecnico
di Milano using Simulink 2020a35 for its simplicity and the capability to convert
high-level rapid prototyping code in Matlab/Simulink as C-code via auto-coding.
This proved fundamental for fast iterations between the design of the algorithms
and their integration with the onboard software. The IP software is set to run

34https://dart.polimi.it/, last accessed: 27th June 2022.
35https://www.mathworks.com/products/simulink.html, last accessed: 27th

June 2022.

https://dart.polimi.it/
https://www.mathworks.com/products/simulink.html
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Figure 6.4: High-level architecture of the AOCS system of Milani. The areas highlighted
in blue are the focus of this chapter.

on-demand within Milani’s NavCam DM3730 processor whenever a new image is
available. Currently, the IP is designed in Simulink36 to be easily interfaced with
the rest of the GNC. Exploiting the auto-coding capabilities of Simulink, the IP
code is translated into C and deployed as onboard software.

The Milani consortium is composed of entities and institutions from Italy, Czech
Republic, and Finland. The consortium prime is Tyvak International, which is
responsible for the whole program management and platform design, development,
integration, testing, and final delivery to the customer. Politecnico di Torino has
worked on the requirements definition, thermal analysis, radiation analysis, and
debris analysis. Politecnico di Milano is responsible for mission analysis and GNC.
Altec supports the ground segment architecture and interface definition. The
Centro Italiano per la Ricerca Aerospaziale (CIRA) is responsible for the execution
of the vehicle environmental test campaign. HULD contributes to the development
of mission-specific software. VTT is the main payload (ASPECT) provider, and it is
supported by the following entities dealing with ASPECT-related development: the
University of Helsinki (for the calibration), Reaktor Space Lab (for the development
of the Data Processing Unit), Institute of Geology – the Czech Republic Academy
of Science (scientific algorithms requirements and testing), and the Brno University
of Technology (scientific algorithms development). Finally, INAF-IAPS is the

36https://www.mathworks.com/products/simulink.html, last accessed: 18th
November 2021.

https://www.mathworks.com/products/simulink.html
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secondary Payload (VISTA) provider.
The Milani mission has been characterized by a fast development cycle through-

out its design. Phase 0 took place during proposal preparation in the Spring of
2020. The Milani team successfully passed the Preliminary Design Review (PDR)
in Summer 2021 and the Concurrent Design Review (CDR) in Spring 2022, and it
is currently in phase D, as of Summer 2023.

6.2 Image Processing of Milani

Milani’s onboard navigation strategy relies on optical observables of D1 extracted
from images and then used in an onboard Extended Kalman Filter (EKF). A robust,
simple, and accurate IP method is needed. For the case of Milani, information
must be extracted from D1 for navigation, but at the same time, D2 must be
clearly distinguished in the image for pointing purposes. This derives from D1
being the optimal target for navigation purposes since it is the largest, most visible,
and regular body of the binary system. At the same time, D2 is the mission’s
scientific focus, and therefore it is essential to distinguish it from D1 for dedicated
acquisitions.

Moreover, the IP uses data-driven functions, pivoting on the fact that new data
about the system could be provided before by the DART and Hera missions. The
AOCS subsystem suite is currently designed to host a NavCam (21 ×16 deg FOV,
with a 2048 ×1536 pixels wide sensor mounted co-axially to ASPECT), a lidar,
Sun sensors, a star-tracker, and an inertial measurement unit. The IP will run in
the embedded DM3730 processor of the NavCam.

The IP software comprises 5 blocks, as illustrated in Figure 6.5. The input to
the IP is a set of data (images, readings from other sensors, variables from higher
systems) and configuration parameters (tuning coefficients of the IP functions).
The output of the IP is a state vector containing optical observables and quantities
extracted from images whose elements are summarized in Table 6.1.

State

Data & Configuration

State

Machine

PreProcessing

Observables

Extraction

PostProcessing

Blobs

Characterization

Figure 6.5: High-level architecture of the IP.
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Table 6.1: Output vector of the IP.

Name Symbol Description

number of bodies f Number of bodies detected in the image
CoF of D1 (CoF )D1

Estimated Center of Mass of D1 37

CoF of D2 (CoF )D2
Estimated Center of Mass of D2

phase angle Ψ Estimated phase angle from D1
range ρ Estimated range from D1

ip mode γip Operative mode of the IP

consistency flag ν1 Consistency flag on the output of the IP
asteroid detection ν2 Detection flag of a body in the image

The PreProcessing and PostProcessing blocks handle the interface between
the IP and the rest of the onboard software, performing internal logic checks and
generating validity or other types of flags. The State Machine is the decision-
making core of the IP. Based on the validity and operative flags communicated
from outside or generated internally, it decides which of the four operative modes
γip summarized in Table 6.2 to use.

Table 6.2: Operative modes γip of the IP, from the lowest to the highest.

Mode Description

NOP No operations are performed.
COB The CoF is estimated as the centroid of the blobs of pixels associ-

ated to D1.
WCOB A data-driven scattering law based only on optical observables is

used to generate the CoF by correcting the CoB.
SSWCOB A data-driven scattering law based on optical observables and data

from the SS is used to generate the CoF by correcting the CoB.

The last three are associated with the choice of the main algorithm to use in the
Observables Extraction block, while the first is a mode in which no operations are
performed. The algorithmic core of the IP resides in the Blobs Characterization and
Observables Extraction blocks, which sequentially process an image and generate
optical observables to be used by the rest of the GNC. The task of the Blobs
Characterization is to generate low-level optical observables from a simple blob
analysis while also distinguishing between D1 and D2. The task of the Observables
Extraction is to further process the image content around D1 to generate a more
sophisticated set of observables.

37Assuming a homogeneous body, a correct estimate of the CoF would coincide with the CoM.
A shift exits if considering a non-homogeneous mass distribution, irrespective of the accuracy of
the estimate of the CoF.
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6.2.1 Blobs Characterization

Once an image is received by the IP, the first meaningful block in which algorithmic
operations are performed is the Blobs Characterization one. This block serves a
twofold purpose: to distinguish between D1 and D2, and to generate low-level
optical observables. The Blobs Characterization flowchart is illustrated in Figure 6.6.

The starting point is the image generated by the navcam, which, in the
simulation environment, is generated in Blender38 using CORTO, according to the
expected noise characteristics.

At first, the image is binarized using the Otsu method [106] (default choice)
or via an arbitrary binary threshold. Morphological operations are then applied to
the binary image via a user-defined structuring element in the form of a kernel.
Opening, closing, or no operation can be performed on the images, providing great
flexibility during operations since the kernel can be easily updated as a configuration
parameter of the IP. This step reduces the number of detected blobs in the image,
which is helpful in the following blob analysis. The analysis is performed only
on the group of pixels larger than a predefined threshold (this is done to remove
minor image artifacts) and generates several geometric properties of interest for
each blob: e.g., area, bounding box (Γ ), centroid coordinates (CoB), eccentricity
(e) and major axis length (δ) of the ellipse fitted to the blob of pixels with the
same second-order moment. These elements are used to generate a feature vector
associated with each blob of pixels.

The feature vectors extracted from the blob analysis are then used to perform
object recognition in the image and distinguish between D1 and D2, as well as
detect the total number of bodies. The object recognition algorithm is designed as
follows:

1. The blobs of pixels are ordered in ascending order based on their areas.
2. The blob with the biggest area is labeled as D1. Its key geometric properties

are saved. All other blobs are listed as potential candidates of D2. This is
possible assuming that in nominal operation conditions, the blobs of pixel of
D1 is always expected to be larger than the one of D2.

3. Γ , the bounding box around D1, is expanded by an arbitrary factor in all
directions in the image plane. The expanded bounding box Γ ex is created,
represented by the blue dashed rectangle in Figure 6.6.

4. The remaining blobs of pixels which are within Γ ex are removed from the list
of D2 candidates. These could be false positive identifications of D2 given
by local areas in the terminator region of D1.

5. The biggest blob outside Γ ex is therefore labeled as D2. Its key geometric
properties are saved.

6. The number of asteroids detected in the image, f , and the centroid of
D2, (CoF )D2

, are passed as output of the IP while the other geometrical
properties about D1 are passed to the Observables Extraction block.

38https://www.blender.org/, last time accessed 15th of July 2022.

https://www.blender.org/
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Figure 6.6: High-level architecture of the Blobs Characterization block of the IP. The
red arrows represent the output of the block that constitutes the components of the state
vector.

Note that the CoF of D2 is designed to be equivalent to its CoB . This could
not be the case (depending on the operative mode γip) for the CoF of D1, as it is
illustrated in the next section.

Due to the geometrical configuration of D1, D2, and Milani, several phenomena
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can occur that impact the visibility of D2. In particular, D2 could be occluded by
D1, in the shadow region created by D1, outside of the FOV of the navcam, or in
front of D1, occluding portions of it. The latter is the most challenging scenario
for the current object recognition algorithm. Some examples of D2 recognition in
these scenarios are illustrated in Figure 6.7, together with their associated Γ and
Γ ex to exemplify the performance of the algorithm.

Figure 6.7: Object recognition examples in the Didymos system. Top-right is an example
of correct detection of D2, while all other cases are examples of wrong identifications. The
top-right and bottom-left cases are missed detections (false negatives). The bottom-right
is a false positive identification since a small region of the terminator of D1 gets wrongly
identified as D2. The blue and red bounding boxes are associated with D1 and D2,
respectively.

6.2.2 Observables Extraction

This block takes as input the Region Of Interest (ROI) of the image around D1
identified by Γ ex , its geometrical properties computed in the Blobs Characterization
block, and external data to compute high-level optical observables with algorithms
that are more sophisticated than a simple blob analysis. The architecture of the
Observables Extraction block is schematized in Figure 6.8.

Independently from γip, the range from D1 is estimated by using a simple
apparent diameter relationship:

ρ=
RD1

tan
(
δ·ζ
2

) (6.1)
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Figure 6.8: High-level architecture of the Observables Extraction block of the IP.

where RD1 is the radius of D1 in meters, δ is the major axis length of the blob of
pixels, and ζ is the sensor’s instantaneous FOV.

The remaining block output is computed based on the operative mode γip.
These are entangled with the three main algorithms that can be used to calculate
the CoF of D1 and the phase angle Ψ : the Center Of Brigthness (COB), Weighted
Center Of Brigthness (WCOB), and Sun-Sensor Weighted Center Of Brigthness
(SSWCOB). Each constitutes a branch within the Observables Extraction block, as
illustrated in Figure 6.8.

6.2.2.1 COB

The COB algorithm is a simple, traditional, robust, and well-known method used to
estimate the centroid of an object by its center of brightness. The CoB is computed
over the binary image in the blob analysis performed in the Blobs Characterization
block using the following equation:

CoBu =
∑
N
i ,j=1 Ii jui j

∑
N
i ,j=1 Ii j

CoBv =
∑
N
i ,j=1 Ii jvi j

∑
N
i ,j=1 Ii j

(6.2)

where Ii j is the logic value that determines if the pixel (ui j ,vi j) is illuminated or not,
whereas CoBu and CoBv are the components in pixel of the CoB. The centroid
is effectively calculated in the previous block of the Blobs Characterization and
then passed forward. Note that in this chapter, the notation CoB refers to the
centroid of the blobs of pixels, while COB refers to the algorithm branch illustrated
in Figure 6.8.

The COB branch does not generate an estimate of Ψ , but generates only
an estimate of the CoF of D1. Doing that with the simple centroid formula in
Eq. (6.2), introduce a bias given by the irregular shape of the asteroid and the
phase angle. To overcome the latter, analytical scattering laws can be used [31,
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33]. In the case of the IP of Milani, to overcome this limitation and provide an
accurate estimate of the CoM under different geometric conditions while taking
advantage of the observation of the system well after the end of the design phase
of the algorithm, data-driven scattering laws are applied as variants of the COB.

6.2.2.2 WCOB

The WCOB corrects the CoB by a scattering law derived empirically through
data from the target irregular body. The main goal of the WCOB is to generate
a correction vector on the image plane that pushes the CoB towards the CoM,
assuming a body with constant density. The magnitude and orientation of the
correction vector are based solely on geometric observables extracted from images
that are used to fit three different data-driven functions. All observables used by
the WCOB are rotation and translation invariant.

To design, train, and validate the data-driven functions, a global dataset is
generated, referred to as DB0 . The properties of this dataset have varied during
different phases of the mission design, as illustrated by the different versions in
section A.3.

The purpose of DB0 is to collect a significant statistical sample of synthetic
images generated with CORTO of the Didymos binary system seen from different
geometric and illumination conditions. These are tuned to reflect the expected
conditions that will be encountered during the FRP and CRP but are also generic
enough to be representative of a mission designed to actively observe a small body
from the illuminated side.

The WCOB is constituted by two pipelines, as it is possible to see in Figure 6.9.
These are responsible for the computation of the magnitude and orientation com-
ponents of the correction term to apply to the CoB of D1. The starting points
are two ROIs around D1 taken from the grayscale and binary version of the image
corresponding to Γ ex .

Flowing first on the pipeline computing µ (the left one in Figure 6.9), it is
possible to determine using the samples in DB0 that a relationship exists between
the eccentricity of the blob of pixels associated to D1 and Ψ . To describe this
relationship, a second-order polynomial is used to fit the data represented in
Figure 6.10 in the least square sense:

Ψ(e) = p2e
2 +p1e+p0 (6.3)

where p0 , p1 , and p2 are coefficients evaluated from the fit, while e is the
eccentricity of the blob of pixels associated with D1. As illustrated in Figure 6.10,
the Ψ estimated with Equation 6.3 would be capable of providing a rough estimate
which is more precise at higher values of the phase angle.

Following a similar approach, it is also observed that a relationship could be
defined between Ψ , δ, and the difference between the CoF and CoB, the latter
being the magnitude of the correction term µ. The relationship is described well by
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Figure 6.9: Schematic of the WCOB algorithm. The red arrow represents the output.
The green ones are the configuration parameters needed by the data-driven functions.

a fifth-order polynomial surface, which is once again fit in the least squares sense
using the samples of DB0 :

µ(Ψ ,δ) = ∑
i=0 ,··· ,5
j=0 ,··· ,5
i ·j≤6

pi jΨ
iδj (6.4)

Switching to the second pipeline of the WCOB algorithm, Φ is computed
starting from the ROI of the grayscale image around D1. A filter is applied to
exacerbate differences between the soft and sharp gradient over the terminator and
edge of the asteroid. To do so, a Sobel filter is used. Once the activation map
of the Sobel filter is generated, an arbitrary factor is used to threshold the map
by a fraction of the maximum value present in it. The generated binary map is
then analyzed, and the CoB of the largest blob of pixels associated with the region
on the edge of D1, is computed. This is referred to as eCoB (edge CoB) and
is used to provide information about the lighting conditions on the asteroid. The
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Figure 6.10: Ψ function (solid red) and 3σ value (dashed red) together with all datapoints
of DB0 (blue).

Figure 6.11: µ function (red surface) vs Ψ and δ for all datapoints of DB0 (blue).

CoM, CoB and eCoB are illustrated in one case in Figure 6.9. From this figure,
it is possible to see that the line connecting the eCoB with the CoB can be used
to estimate the orientation of the line connecting the CoB with the CoM, which
represents the ultimate orientation at which the correction term of the WCOB
method should aim. The eCoB is then used with the CoB of D1 to compute
an orientation in the image plane, referred to as η. Once again, by plotting the
estimated orientation η with the true one Φ for the samples in DB0 , a relationship
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can be seen between these quantities, as illustrated in Figure 6.12. The following
equation represents this relationship:

Φ(η) = ∑
i=1 ,··· ,4

ai sin(biη+ ci ) (6.5)

Figure 6.12: Φ function (solid red) and 3σ value (dashed red) together with all datapoints
of DB0 (blue).

Now that both µ and Φ have been computed from the image, they are combined
in the following equation:[

CoFu
CoFv

]
=

[
CoBu

CoBv

]
+ω ·µ(Ψ(D),δ) ·

[
cos(Φ(D))
sin(Φ(D))

]
(6.6)

where ω is a weighting factor used to tune the magnitude of the correction term.
It is immediate to understand that when ω = 0 the WCOB degenerates into the
COB. By default, a value of ω = 1 is used for all geometric conditions, but in
general, this parameter could be optimized or varied in real time depending on the
operative conditions.

6.2.2.3 SSWCOB

A similar approach is employed by the SSWCOB, with the significant difference
that data from the SS is combined with data extracted from the image. The
main advantage lies in the high accuracy that can be achieved in predicting Ψ ,
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which is better than the one extracted from the image, positively influencing the
performance of the whole branch.

As for the WCOB, the main goal of the SSWCOB is to generate the same
correction vector on the image plane that pushes the CoB towards the CoM.
Oppositely from the WCOB, a large portion of the functionalities and quantities
extracted from the image are substituted by data from the Sun Sensor. This
simplifies the algorithm but makes it dependable on additional sensors. The
architecture of the SSWCOB method is illustrated in Figure 6.13.

Ψ

µ

Φ

(CoF )D1

SS
uv
los

SSlos

θ

CoM

CoBlos

CoB

Γ
ex

CoB, δ,SSlos CoB,Γex,SSuv

los

∑

i,j pijΨ
i
δ
j

pij
Ψ

CoB+ ω · µ·
cos(Φ)
sin(Φ)[ ]

Figure 6.13: Architecture of the SSWCOB algorithm. The red arrow represents the
output of the algorithm.

As for the WCOB, two pipelines are identified for the determination of µ and
Φ. Flowing first from the µ pipeline, data retrieved from the Sun sensor is used to
compute Ψ . The IP receives the line of sight vector of the Sun direction in the
CubeSat reference frame estimated by the Sun sensor. Using known rigid rotation
matrices and assuming to know the attitude quaternion from the ADCS subsystem,
the CoBlos and SSlos are transformed in the same reference frame. The angle θ
between these two lines of sights is therefore computed and related to Ψ as:

Ψ ≈ π−θ (6.7)

This formula is an approximation of Ψ since the computation is performed
from the CoB (available from the image) and not from the CoM (unknown at
the moment of the estimation). As for the WCOB, once Ψ is determined, µ is
computed by applying Equation 6.4.

Switching now to the pipeline to compute Φ, the projection of the line of sight
of the Sun in the image plane is used, SSuv

los . This quantity, centered on the CoB
of D1, is used to provide an orientation from which the angle Φ is computed.
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Having determined both µ and Φ, the same formula used in the WCOB is now
applied to determine the correction term to apply to the CoB of D1:[

CoFu
CoFv

]
=

[
CoBu

CoBv

]
+ω ·µ(Ψ ,δ) ·

[
cos(Φ(D))
sin(Φ(D))

]
(6.8)

with respect to Equation 6.6, now only the orientation function Φ is dependant
on dataset quantities from DB0 .

6.3 Guidance, Navigation, and Control subsystem of
Milani

The GNC of Milani can be described as a semi-autonomous, vision-based subsystem
with the main task to provide a primary pointing to the ADCS. During most of
the mission, this coincides with the pointing of the payload deck of the CubeSat,
corresponding to the face on which navcam, LiDAR, and ASPECT are co-axially
mounted. However, in selected circumstances, it may be desired to direct one of
the ISL antennas towards Hera or to achieve a different pointing.

Furthermore, the GNC estimates the spacecraft state, intended as its position
and velocity in the inertially fixed ECLIPJ2000 reference frame, centered on the
system barycenter. In addition to being used for navigation purposes, this estimate
can generate the primary pointing from simple geometric considerations.

The GNC capabilities are enabled by the advanced functioning of the IP. How-
ever, by design, the GNC subsystem does not have authority over the translational
guidance and control computed from the ground and uplinked to the CubeSat.
A dedicated thrusters management module handles the execution of the loaded
maneuvers.

The architecture of the GNC is composed of 5 blocks, as illustrated in Fig-
ure 6.14, whose tasks are similar (by shared design choices) to those already
presented for the IP in Section 6.2. The first is the PreProcessing block, which
performs initial checks on the input variables to ensure their validity. These include
freshness checks to ensure that incoming signals have been updated recently and
integrity checks to verify that the values are received within expected intervals.
After that, the State Machine determines the appropriate operative mode based on
predefined logic. Then, the Navigation and Guidance blocks follow, in which optical
observables and onboard ephemerides are used to compute the desired pointing
profile. The validity of the navigation and guidance output is verified in the Health
check block before being provided to the rest of the system as an output state
vector.

The functionalities of the GNC are defined by five different operative modes
γgnc , briefly described in Table 6.3. These are also devised to communicate the
status of the GNC to other systems.

The modes are selected using a series of truth tables that inspect logic conditions
based on the input signals and the checks computed within the PreProcessing
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Figure 6.14: High-level architecture of the GNC.

Table 6.3: Operative modes γgnc of the GNC.

Mode Description

Drift This mode is triggered when an issue has been detected
in Navigation or Guidance blocks. In such a case, neither
output of these blocks is considered reliable.

Navigation The best navigation strategy is targeted for execution. The
output of the Guidance block is unreliable.

Guidance The best guidance strategy is targeted for execution. The
output of the Navigation block is unreliable.

Nominal Both Navigation and Guidance blocks are executed targeting
the best possible strategy. Their outputs are considered
reliable.

Asteroid Search Ephemeris-based navigation is targeted whenever possible.
The guidance of the primary pointing is designed to re-
acquire the target in the FOV.

block. In all cases, the default mode is always the simplest; if the necessary
conditions are met, the system automatically advances to more complex ones.
The only exception is represented by the Asteroid Search mode, which is intended
as a contingency option and, therefore, requires ground intervention and is not
autonomously activated onboard. It is also noted that the highest reachable mode
can be limited from the ground using a set of configuration parameters.

A generic overview of the GNC design before CDR is briefly illustrated in [157],
while a detailed version is described in [158]. The following sections briefly describe
the functioning of the Navigation and Guidance blocks.
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6.3.1 Navigation

In the Navigation block, the state of the CubeSat with respect to the asteroid
system is estimated. The algorithms used in this block are driven by three different
navigation sub modes γnav : Navigation keep last, Navigation from ephemerides,
and Navigation from EKF.

In Navigation keep last, the navigation solution is not updated, and the previous
solution produced is kept as output. In Navigation from ephemerides, ephemeris
data provided from the ground and stored as Chebyshev polynomial coefficients
are interpolated to estimate a navigation solution. Lastly, in Navigation from EKF,
the navigation solution is provided by the onboard EKF, which relies on optical
observables from the IP as well as ranging data from the LiDAR to generate a state
estimate.

The onboard implementation of the EKF uses a dynamical model accounting
for the point-mass gravitational effects of D1, D2, and the Sun, as well as for the
SRP, which is modeled with a simple cannonball model. The SRP acceleration
is split into a deterministic and a stochastic component. A stochastic residual
acceleration is also included [158] to account for other uncertainties in the dynamic
model.

The equations of motion of the filter are propagated using a Runge-Kutta 4 th

order integrator, while the State Transition Matrix (STM) is computed onboard
using a second-order approximation. The filter is designed to take as input the
CoF of D1 and the range measurement from the LiDAR. Other measurements
are discarded at the current design stage since they are not considered sufficiently
reliable. The measurement update of the CoF is set to 30 minutes while the range
from the LiDAR is set to five minutes, if available. Both the IP and LiDAR work
within a specific range envelope from D1: the former is designed to work between
3 and 23 km, while the latter is assumed to work below 5 .5 km. Measurements are
considered to be affected by Gaussian random noise with 0 mean and a standard
deviation of 15 m for the LiDAR (accounting both the error due to the sensor and
the uncertainty of the shape), and 40 px, 20 px, and 15 px respectively for the
COB, WCOB, and SSWCOB. More details about the filter are described in [158].

6.3.2 Attitude Guidance

By choice, Milani does not possess onboard translational guidance and control
capabilities. These otherwise traditional capabilities of a GNC subsystem are
demanded and computed on the ground and then uplinked to the CubeSat. On
the other hand, the attitude guidance profile of the primary pointing is generated
onboard. This task is performed within the Guidance block and can be executed by
five different strategies: Guidance keep last, Reference, Tracking, Predicted, and
Search pattern.

In Guidance keep last, the last computed guidance solution is used. In Reference,
the guidance is obtained from ground-based information, either by following a
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specified pointing profile or interpolating ephemerides data. In Tracking, data
from the IP is used to track the target asteroid and keep it at the center of the
navcam FOV. A fixed inertial pointing is kept while waiting for new IP data. In
Predicted, the position estimated by the EKF is combined with the ephemerides
of the target body to compute a pointing solution. While in Tracking, the target
must be detectable by the IP, which limits it to either D1 or D2, in Predicted, it
can be any geometric point in the system. Finally, in Search pattern, a contingency
guidance strategy is implemented to recover the target body in the navcam FOV
after it has been lost. In this strategy, the primary pointing is computed by following
a profile obtained from a predefined map while traversing the space, avoiding a
Sun-exclusion cone. When the target is positively detected, the guidance strategy
automatically switches to Tracking.

6.4 Performance

A set of extensive analyses has been performed to validate the design of the
IP and GNC with a twofold objective: to confirm the expected behavior of the
systems during nominal and off-nominal events (in particular attitude and orbital
maneuvers, sensor faults, missing input data, and other contingency scenarios),
and to assess compliance with performance requirements. This campaign has been
carried out throughout the development of the mission from phase 0 in the Summer
of 2020 to CDR in the Summer of 2022. This campaign consisted of both open-
loop and closed-loop high-fidelity simulations performed in Matlab/Simulink, with
the simulation framework developed by the DART group for proximity operation
scenarios.

In the remainder of this section, a small subset of illustrative examples of the
performance achieved by IP and GNC is illustrated, as listed below:

1. A global static assessment of the performance of the object recognition
algorithm.

2. A global static assessment of the IP is presented for both the FRP and CRP
phases of the mission.

3. An example of a typical pointing performance assessment is illustrated on
arc 4b of the FRP.

4. An example of a typical position estimation performance assessment is
illustrated on arc 4b of the FRP.

Arc 4b of the FRP is chosen since it represents a challenging traverse over the
Didymos environment in which the CubeSat gets very close to the system.

6.4.1 Performance of the IP

In this section, the performance of the IP is assessed using the DS7 and DS8

datasets described in section A.3.
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6.4.1.1 Object recognition

The performance of the object recognition algorithm illustrated in Section 6.2.1
are assessed for the dataset DS7 and its subsets (DSDB0

7 , DSFRP
7 , and DSCRP

7 )
using the metrics defined in Section 1.8.2.

The values of accuracy, precision, and recall are reported in Table 6.4 for the
three datasets39. First, it is possible to see that the conditions in which D2 is
observed are well balanced among the different splits of DS7 . By dataset design,
D1 is always visible in the samples of these datasets. Thus, the metrics are essential
in evaluating the correct detection of D2.

Table 6.4: Performance of the object recognition algorithm.

Metric DSDB0
7 DSFRP

7 DSCRP
7

A 91.20 87.39 86.15
P 99.85 99.95 99.83
R 89.27 85.86 81.77

From a performance perspective, the object recognition is capable of recognizing
D2 with high precision (≥ 99 .83 in all datasets) but with a medium-high recall
(81 .77 ≤ R ≤ 89 .27). Therefore, the object recognition algorithm is characterized
by a low rate of FP and a high rate of FN detection of D2.

Such performance is a consequence of the algorithm design, which for robustness
is based on the concept of an expanded bounding box rejecting regions of the
terminator of D1 from being wrongly labeled as D2. However, this step also
introduces a high rate of FN whenever D2 is transiting above D1. This behavior
has been noted and accepted once it has been observed to impact minimally over the
performances of the other IP algorithms, and with the philosophy not to complicate
the design of the algorithm.

The only rare scenario in which the IP algorithms have been observed to be
significantly impacted by the disturbance generated by D2 is when the two bodies are
as far away as possible from each other, and their edges are connecting, generating
an integrated blob of pixels much greater than expected.

6.4.1.2 Centroid, phase angle, and range regression

This section discusses the performance of the Observables Extraction block of the
IP. The assessment is focused on the (CoF )D1

, Ψ , and ρ output of the IP thus
excluding the (CoF )D2

from the analysis. Performance is assessed both on DS7

and DS8 , in this order, considering the metrics defined in Section 1.8.1.
The SSWCOB is evaluated without introducing any error in the attitude

knowledge nor in the line of sight reading from the Sun Sensor, which is therefore
39note that the object recognition algorithm does not require a training set, thus DB0 is used

as a test set in this case
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modeled as an ideal sensor. This choice has been made to have the SSWCOB
being purely evaluated from an IP perspective and at the best of its capability. For
a more realistic evaluation, its performances shall be modeled with multiple sets of
errors both in the attitude and sensor readings.

First, a series of histograms illustrate the distributions of εnCoF , εψ, and ερ in
the DSFRP

7 and DSCRP
7 datasets 40.

From the histograms in Figure 6.15, it is possible to appreciate the beneficial
effect of the scattering laws of the WCOB and SSWCOB in increasing the accuracy
of the CoF estimate. In Figure 6.16, it is possible to see that Equation 6.7,
although an approximation, is capable of estimating Ψ much more accurately than
the estimate generated from the image alone. This result has been expected and
is reflected in the performance of the WCOB and SSWCOB methods: with an
accurate Ψ , the resulting µ is estimated better since both the WCOB and SSWCOB
are evaluated over the same δ for each image.

(a) DSFRP
7 (b) DSCRP

7

Figure 6.15: Histograms of the εnCoF errors of the COB, WCOB, and SSWCOB. The
width of the bins is set to 1 pixel.

Looking at the histograms of ερ in Figure 6.17, it is possible to conclude that
the range is estimated with a considerable bias and a high standard deviation. This
makes the predicted range unreliable for standalone use, e.g., triggering an event or
another functionality outside the IP. The range error is also represented as function
of relative percentage error with respect to the true range in Figure 6.18.

Another interesting visualization of the performance is visible in Figure 6.19,
depicting the distributions of εuCoF and εvCoF in the image plane, together with their
error ellipses. It is possible to visually appreciate what the previous histograms have
already illustrated: a trend in the increase of the accuracy passing from the COB
to the WCOB to the SSWCOB. It is also possible to note the different orientations
of the ellipses from DSFRP

7 to DSCRP
7 and a bias in the CoF estimate by the

COB method in the DSCRP
7 , which is explained by the nature of its asymmetrical

40Note that the same color code is used across this section to distinguish the performance of
the COB, WCOB, and SSWCOB
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(a) DSFRP
7 (b) DSCRP

7

Figure 6.16: Histograms of the εψ errors of the WCOB, and SSWCOB. The width of
the bins is set to 1 ◦ and 0 .05 ◦ respectively, for the WCOB and SSWCOB.

(a) DSFRP
7 (b) DSCRP

7

Figure 6.17: Histograms of the ερ errors. The width of the bins is set to 20 m.

(a) DSFRP
7 (b) DSCRP

7

Figure 6.18: Histograms of the relative percentage error of ερ. The width of the bins is
set to 0 .5%.



204 6. Milani

Table 6.5: Performance metrics of the COB, WCOB, and SSWCOB in the DSFRP
7 and

DSCRP
7 datasets.

DSFRP
7 DSCRP

7

Metric COB WCOB SSWCOB COB WCOB SSWCOB

εnCoF

µ [px] 27.00 10.60 5.87 38.46 12.69 6.96
σ [px] 17.05 7.08 3.62 25.52 8.69 4.41

εuCoF

µ [px] -2.47 1.12 -0.41 -34.70 -0.64 0.66
σ [px] 29.66 7.28 3.71 28.38 8.69 4.73

εvCoF

µ [px] -2.22 -2.10 -0.75 -6.74 1.95 -0.58
σ [px] 11.37 10.49 5.58 8.67 13.22 6.52

εψ
µ [deg] n.a. -1.41 -0.23 n.a. -0.95 -0.31
σ [deg] n.a. 7.03 0.15 n.a. 6.12 0.21

ερ
µ [m] -45.19 -45.19 -45.19 -37.08 -37.08 -37.08
σ [m] 302.64 302.64 302.64 225.30 225.30 225.30

trajectories, as illustrated in Figure 6.3. The parameters of the error ellipses in
Figure 6.19 are reported for completeness in Table 6.6.

(a) DSFRP
7 (b) DSCRP

7

Figure 6.19: Error ellipses in image plane of εuCoF and εvCoF for the COB, WCOB, and
SSWCOB methods. A 99% confidence interval is used to draw the ellipses.

Figure 6.20(a) and Figure 6.20(b) illustrate the best method for each phase
identified as the one achieving the smallest εnCoF . The points on the DSFRP

7 and
DSCRP

7 datasets associated with the best methods are represented in a phase space
with Ψ t and ρt . In the DSFRP

7 the COB, WCOB, and SSWCOB are considered
the best respectively for 8 .71%, 22 .94%, and 68 .35% of the cases. In the
DSCRP

7 the COB, WCOB, and SSWCOB are considered the best respectively for
the 8 .18%, 22 .18%, and 69 .64% of the cases above 4 km. From Figure 6.20(a)
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Table 6.6: Parameters of the error ellipses from Figure 6.19.

DSFRP
7 DSCRP

7

Parameter COB WCOB SSWCOB COB WCOB SSWCOB

X0 [px] -2.47 1.12 -0.41 -34.70 -0.64 0.66
Y0 [px] -2.22 -2.10 -0.75 -6.74 1.95 -0.58
a [px] 93.89 32.20 17.85 86.55 40.23 19.88
b [px] 21.86 21.53 9.75 24.92 26.18 14.24

θe [deg] 197.00 101.83 67.87 185.85 95.77 82.31

and Figure 6.20(b) is also possible to see a clear preference for the COB method
whenever Ψ t is low. Applying a data-driven scattering law in these cases seems
unfruitful compared to a simple CoB estimate.

(a) DSFRP
7 (b) DSCRP

7

Figure 6.20: Scatter plot of the method with the smallest εnCoF as a function of the
range and phase angle in DSFRP

7 (a) and DSCRP
7 (b).

It is also interesting to visualize in Figure 6.21 the same plot in the phase space
only for those points below 4 km, which are outside the training envelop of the
WCOB and SSWCOB methods. It is possible to see that in this range, there are
points outside this envelope that are still providing better solutions than the COB
method, but also that the COB method is the preferred option whenever the body
saturates the FOV of the NavCam below 4 km. The latter is an artifact given by
the ideal pointing to generate the images since saturated images tend to have a
centered CoB .

Figure 6.22 and Figure 6.23 attempt to represent the points in position space
for the DSDB0

7 in which the WCOB is better than the COB and the SSWCOB is
better than the WCOB, using as metric the εnCoF error. From both figures, it is
immediately clear that the WCOB is exceptional in reducing substantial errors in a
wide range of phase angles from medium to high, being the illumination from the
Sun coming from the X-axis. At the same time, it is possible to see that the gain
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Figure 6.21: Scatter plot of the method with the smallest εnCoF as a function of the
range and phase angle in DSCRP

7 for the points below 4 km.

of the SSWCOB over the WCOB is less remarkable if not in the areas at very high
phase angles while is being consistently spread across various points in space for
smaller improvements.

(a) COB-WCOB (b) WCOB-SSWCOB

Figure 6.22: 3D view of the scatter plot of the error between the COB and WCOB
(a) and WCOB and SSWCOB (b) in the DSDB0

7 dataset. The color metric used is the
difference between the εnCoF errors.

In Figure 6.24 and Figure 6.25, it is possible to see the performance of the
methods as a function of time during the first two arcs of the FRP and CRP,
together with the values of ρt and Ψ t .
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(a) COB-WCOB (b) WCOB-SSWCOB

Figure 6.23: Top view of the scatter plot of the error between the COB and WCOB
(a) and WCOB and SSWCOB (b) in the DSDB0

7 dataset. The color metric used is the
difference between the εnCoF errors.

The estimate of Ψ by the WCOB seems to degrade with low values of Ψ t .
Indeed, around days 2 and 5 .5 of the FRP and days 2 .5 and 3 .75 of the CRP it
is possible to see the COB outperforming all methods in points in which there are
low values of Ψ t . On the other hand, the error on the range varies with ρt with an
expected trend, being affected more from ρt than Ψ t .

While for most of the phases, low values of Ψ t are associated with low values
of ρt and vice-versa, around day 3 of the CRP an interval of time is visible in which
this is not true. In this interval, the performance of ρ follows the trend driven by
ρt . Being the range estimated using δ, as described in Equation 6.1, it is possible
to conclude that this parameter is capable of providing a robust estimate in the
face of challenging illumination conditions. This is a consequence of a geometric
property of the fitted ellipse in the image plane: assuming a constant distance
while facing D1 with varying phase angles, the variability of δ would be negligible.

Finally, from Figure 6.25, it is also possible to see a limitation of data-driven
approaches of important consequences from an operational point of view: outside
their training envelope, the methods cannot be used. Because this scenario may
happen, the COB is designed to replace the WCOB and SSWCOB whenever
conditions for their applications are not met.

The performance of the IP are also presented for a different iteration of the
trajectories in the FRP and CRP, considered in the DS8 dataset. The performance
of the various IP modes in the two testing datasets of DSFRP

8 and DSCRP
8 in

terms of εα, εψ, and ερ are summarized in Table 6.7.
From the values of εα, similar conclusions to those already discussed in the

previous part of the section can be drawn about the difference in performance
between COB, WCOB, and SSWCOB.

For completeness, the performance of εα for the three strategies over the entire



208 6. Milani

Figure 6.24: Performances of the COB, WCOB, and SSWCOB as function time during
the first two arcs of the FRP.

Figure 6.25: Performances of the COB, WCOB, and SSWCOB as function time during
the first two arcs of the CRP. Points below 4 km are omitted for the WCOB and SSWCOB.

FRP and CRP datasets are illustrated in Figure 6.26. Note that globally, both
the SSWCOB and WCOB perform better than the COB. However, as discussed
previously, local spots exist that are not true. These are linked to cases at low phase
angle, when D1 is fully visible. In such cases, applying the scattering law is less
effective than the simple CoB. It is also noted that the performance improvement
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Table 6.7: Performance metrics of the IP strategies in the DSFRP
8 and DSCRP

8 datasets.

DSFRP
8 DSCRP

8

Metric COB WCOB SSWCOB COB WCOB SSWCOB

εα
µ [%] 9.75 2.93 2.06 10.90 3.36 2.12
σ [%] 6.09 2.21 1.29 7.49 3.00 1.40

εΨ
µ [deg] n.a. 0.99 0.35 n.a. 1.03 0.31
σ [deg] n.a. 6.96 3.68 n.a. 6.40 3.67

ερ
µ [m] 333.12 333.12 333.12 539.44 539.44 539.44
σ [m] 426.33 426.33 426.33 614.65 614.65 614.65

is negligible in absolute terms, as the error on εα in these cases is less than 1%.

(a) DSFRP
8

(b) DSFRP
8

Figure 6.26: εα for different IP strategies in the DSFRP
8 and DSCRP

8 datasets.

6.4.2 Performance of the GNC

In this section, the performance of the pointing and position reconstruction of
the GNC are assessed over the DS8 dataset described in section A.3. For this
assessment, the arc 4b of the FRP is selected as a typical example of performance
assessment using the metrics defined in Section 1.8.5.

The simulations used considered closed-loop scenarios in Matlab/Simulink.
Surrogate models simulate the ADCS and the actuators. The former follows
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the primary pointing provided by the GNC with a realistic profile that considers
maximum Sun exposure for the solar panels and control of the Solar Array Drive
Assembly (SADA). Inside the surrogate model, the estimated angular velocity and
spacecraft attitude are affected by Gaussian noises of 0 .01 deg/s and 30 arcsec,
respectively, at 1σ. Similarly, the true pointing error and pointing stability are
modeled perturbing the target attitude with a tuned Gauss-Markov process noise
having a sigma of 46 arcsec and characteristic time of 2s. Lastly, the estimated
Sun direction, being fed directly into the GNC, keeps the sensors’ accuracy, namely
3 .67 deg at 1σ on each axis. The initial conditions to initialize the filter are
assumed to be available onboard after an uplink phase.

6.4.2.1 Pointing

The pointing performance is evaluated using different guidance strategies and IP
modes to figure out the best-performing one, as illustrated in Figure 6.27.

Figure 6.27: Pointing error for each combination of guidance and IP modes for one of
the arcs of the FRP.

The pointing strategies using the EKF outperform all the others considered.
Overall, the Predicted WCOB and Predicted SSWCOB are the ones performing
best in this scenario, followed by Tracking WCOB and Tracking SSWCOB. For most
of the arc, the strategies based on the COB algorithm give significantly worse results
than the ones based on other IP techniques. The error using the Reference strategy
increases considerably over time. This is caused by the accuracy of the onboard
ephemerides, which degrades as time goes by because of uncertainties. From a
pointing perspective, if Reference is used as a nominal strategy for the pointing,
D1 could be lost by the navcam FOV towards the end of the arc, coinciding with
the CubeSat getting closer to the system.

Towards the end of the arc, the pointing error increases for all strategies
considered but the COB-based ones. This was expected from the static performance
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assessment in the previous section since, in these cases, D1 will be imaged at close
distance and low phase angles, the latter being an optimal condition for the COB.

6.4.2.2 Position estimation

The onboard position reconstruction error εp is illustrated in Figure 6.28. Three
different phases are identified for the strategies using the EKF. At first, after
initialization, the error rapidly decreases at the beginning of the arc, showing quick
convergence of the EKF. This phase is followed by one in which the errors display
a steady but constant increase and terminate by a phase in which a rapid drop
is observed towards the end of the arc. On the other hand, the error with the
Reference strategy, using the ephemerides stored onboard, shows a steady but
constant increase throughout the arc.

Figure 6.28: Position estimation error for each combination of navigation and IP modes
for one of the arcs of the FRP. The curve of 10% and 1% of the true range ρt from D1
are represented by black dashed lines. The 10% curve represents the target requirement
for the performance of the onboard navigation.

The accuracy of the IP method used consistently affects the performance of
the EKF, which in all cases is considered to perform better than the reference
scenario. Lastly, it is also noted that the different trends between the EKF error in
Figure 6.27 and the Predicted one in Figure 6.28 is attributed by the error having a
large component in the boresight direction. Since this does not actively contribute
to the pointing error, different trends are observed between εθ and εp.

6.5 Towards flight operations

Towards the end of the design phase, to prepare the IP for flight operations,
incremental tests have been executed to validate its robustness and functioning.
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This section illustrates these tests, showcasing the stress they put on the IP pipeline
and phenomena to be expected during flight operations.

The assessments are focused on the IP, since, as illustrated in the previous
section, it is the main driver in the performance of the GNC.

6.5.1 Images-in-the-loop

An image-in-the-loop campaign has been performed in [119] exploiting the TinyV3RSE
facility as HIL setup to mimic the acquisition of real-world, noisy images. The facil-
ity is setup with a representative navcam (the default Basler camera in TinyV3RSE,
see Section 3.2) to generate the datasets DS7 illustrated in Section A.3.

First, images are rendered in CORTO varying essential parameters such as the
relative positions of D1, D2, Milani, and the asteroids’s shapes. This provides
a vast dataset with a comprehensive set of possible geometrical configurations
and uncertain-before-arrival asteroid parameters. Second, images are acquired in
TinyV3RSE with diverse exposure time and blur to understand the behavior of
the IP in these untested settings. Figure 6.29 and Figure 6.30 display a sample of
facility images acquired with different exposure times and blur.

(a) 1 ms. (b) 4 ms. (c) 7 ms.

(d) 10 ms. (e) 50 ms.

Figure 6.29: Facility images with different exposure times.

The testing campaign focused only on the performance of the WCOB, since it
is the most complex from an algorithmic point of view and since it includes steps
that are also shared with SSWCOB and COB, making it possible to generalize
performance.

Synthetic images reproduced in CORTO are projected into the TinyV3RSE
screen, acquired by the camera, and then corrected to compensate for facility errors
estimated during TinyV3RSE’s calibration. Whenever possible, the IP is run for
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(a) σblur = 0.77 pixel. (b) σblur = 1.47 pixel. (c) σblur = 2.60 pixel.

Figure 6.30: Facility images with different blur levels.

each dataset on its facility and synthetic version. This allows to properly evaluate
the impact of the hardware on substantially geometrically equivalent images.

The main results for the different test cases of DS7 are discussed below, while
a summary of the performance metric statistics is illustrated in Table 6.8, while
in [119] it is possible to consult a comprehensive set of histograms and boxplots
detailing the performance for each dataset.

Table 6.8: Summary of the results. The mean µ and standard deviation σ of the
estimation errors are reported for each test case. The nomenclature used for the test cases
is: ScaledAxesDatasetσblur[px]

ExpTime [ms].

εu [px] εv [px] εnCoF [px] εΨ [deg] ερ [m]
Test case µ(σ) µ(σ) µ(σ) µ(σ) µ(σ)

DS10.77
1 -1.13 (20.3) -8.57 (23.2) 22.2 (23.1) 9.18 (6.92) 621.9 (522.2)

DS10.77
4 -1.06 (19.1) -8.54 (22.2) 21.2 (22.0) 9.14 (6.84) 614.2 (525.6)

DS10.77
7 -1.34 (18.8) -7.34 (21.5) 20.6 (21.2) 8.97 (6.86) 611.8 (527.6)

DS10.77
10 -1.03 (18.1) -8.03 (21.6) 20.4 (21.0) 8.93 (6.75) 598.1 (520.4)

DS10.77
50 0.07 (7.27) -4.85 (13.0) 10.7 (11.4) -0.56 (6.45) 97.3 (304.0)

DS11.47
7 -0.08 (17.6) -8.39 (18.5) 19.5 (18.5) 8.30 (6.85) 617.3 (525.9)

DS12.60
7 1.91 (17.9) -8.74 (18.3) 20.0 (18.4) 7.18 (6.90) 651.1 (532.9)

xyzDS10.77
7 0.64 (15.6) -4.86 (18.1) 17.5 (17.0) 8.94 (6.86) 1096 (642.7)

xyDS10.77
7 0.86 (13.2) -5.36 (20.5) 17.4 (17.9) 10.4 (7.13) 751.1 (539.1)

zDS10.77
7 0.42 (19.3) -4.17 (17.2) 19.6 (17.4) 8.39 (8.62) 894.9 (672.4)

DS20.77
7 -1.41 (16.5) -6.19 (22.2) 20.5 (19.7) 9.95 (6.64) 471.6 (495.2)

FRP0.77
7 -0.28 (6.51) -2.59 (7.68) 8.78 (5.56) 9.82 (6.44) 604.0 (483.2)

CRP0.77
7 5.15 (8.23) -1.19 (12.2) 12.5 (9.36) 10.3 (6.08) 420.5 (368.6)

The impact on the algorithm performance is minimal for short exposure times,
from 1ms to 10ms in the TinyV3RSE setup used. Increasing the exposure time
causes the performance of the facility images to be similar to that of synthetic images.
The low impact of the exposure times is attributed to the binarization procedure
executed at the beginning of the IP pipeline. The binarization step performs
consistently and robustly at varying exposure times, given that the threshold is
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autonomously selected onboard using Otsu’s method [106].
From Table 6.8 it is possible to observe that the u and v components of the

CoF are generally estimated well, as the median of the error is close to 0 , while a
significant bias is visible for Ψ and ρ. The binarization step again explains this:
facility images show a higher intensity variability with respect to synthetic images,
and therefore, a higher binarization threshold is usually selected using Otsu’s method.
As a result, more pixels are cut out from the binary image, resulting in a smaller
blob of pixels associated with D1 than the synthetic one considered during training
of the fitting coefficients. This phenomenon is pivotal in explaining the bias that
is introduced in the range and phase angle, which are directly dependent on the
characteristics of this blob. In particular, the range is determined from the blob’s
semi-major axis. Therefore, a smaller blob leads to an overestimation of the range.
The phase angle, instead, is estimated from its eccentricity. Since the additional
pixels that are cut out from the facility images are usually grouped around the
terminator region of the asteroid, the eccentricity of the binarized blob tends to
increase, resulting in a higher estimate of the phase angle, as per Equation 6.3.

These effects are appreciable in Figure 6.31, where the difference between a
facility-binarized image and a synthetic-binarized one is shown, together with the
CoB of the two blobs and the corresponding fitted ellipses. The gray area is the
one that is retained in the binarized synthetic image but discarded in the binarized
facility image. As explained before, this leads to a shift of the CoB (the blue/red
dot) away from the CoM and to a fit with an ellipse with different properties. The
blue ellipse, obtained from the fit of the binarized facility image, is characterized
by a smaller semi-major axis and a higher eccentricity with respect to the synthetic
one.

From this analysis, it can be concluded that the primary mechanism affecting
the performance of the IP is driven by a difference in the geometrical properties
of the blob of pixel of D1 caused by the binarization algorithm acting differently
at different exposure conditions. In general, this phenomenon causes biases in the
performance of the IP whenever facility images are used and caution towards the
proper tuning between the properties of the datasets used during training and the
setup that will be used during the mission for acquisition.

Concerning the different blur levels, the IP proved robust, showing minimal to
no impact on performance caused by increased blur levels. The only appreciable
trend is in the error on the u component of the CoF, which tends to spread more
as the blur level increases.

A variety of phenomena has been observed concerning the different D1 scaling
across xyz , xy , and z axes. These are varied with ±5% of their nominal values
from [138].

Considering CoF performance, the WCOB improves when scaling all the body
axes and the xy axes. This can be explained by considering that for a smaller body,
the CoB will be closer to the CoM, which reduces the need for corrections. Indeed,
when only the xy axes of the body are scaled, the u component of the CoF error is
smaller, while the v component behaves similarly to the nominal case. Recall that,
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Figure 6.31: Comparison between the blobs of pixels obtained from the binarization of a
facility and synthetic image. The fitted ellipse and CoB resulting from the blob analysis
are also shown.

since in the DS7 dataset the spacecraft elevation is limited between ±45 deg and
no boresight rotations are implemented, changes in the x and y axes of the body
reflect mainly on the u direction of the image, while changes in the z axis of the
body reflect mainly on the v direction of the image. Indeed, when scaling the z
axis, the performance in the u direction is worse than the nominal case, while the
error in the v direction is smaller.

Considering the phase angle, the only observed main effect has been a slightly
wider distribution spread in the performance when considering scaling of the z axis.
The range estimation, however, results significantly impacted by the shape change,
especially when considering changes on the z axis. This is expected as the scaling
will make the body appear considerably smaller in the image, introducing a bias on
the semi-major axis used in Equation 6.1 to compute the range from D1. Finally,
it is commented that scaling has coherent effects both on synthetic and facility
images.

Finally, the performance is assessed for the datasets representing nominal orbits
in Milani, exhibiting the same trends discussed above.

Testing the WCOB under various conditions by considering different geometrical
configurations and hardware settings with an equivalent camera model of the one
that will be used on Milani gives more confidence about the robustness and reliability
of the algorithm for flight operations. The results show the algorithm’s robustness
in all the considered test cases. Indeed, the algorithm can provide good estimates of
the CoF coordinates, even in challenging conditions. Instead, the ψ and ρ estimates
are more sensitive to hardware effects and have shown biased results. Nevertheless,
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they are of secondary interest outside of the IP since they are just an internal
byproduct and are not currently used directly for navigation purposes. However,
the bias introduced by the Ψ is causing degraded performance in the CoF estimate,
which is reflected by the greater variance of the CoF error distribution with facility
images. All these effects can be considered by specific tuning via datasets made
of images more similar to the ones that will be encountered during nominal flight
conditions and with the acquisition setup that will be used during flight. Also, the
possibility of using TinyV3RSE-generated images can be investigated to close the
domain gap between acquisition and design datasets.

6.5.2 Hardware-in-the-loop

A qualitative assessment has also been performed with an engineering model of
Milani’s navcam. The purpose of this activity has been to test IP performance with
the engineering model of the navigation camera to test the robustness of the IP to
the proper characteristic noise of the camera and different illumination conditions
on the asteroid.

An image of the engineering model of the navigation camera mounted within
the TinyV3RSE facility is illustrated in Figure 6.32. A 3D-printed support has
been designed specifically for the camera to allow easy mechanical interface in the
facility. An example of the image projected on the screen in TinyV3RSE and the
image acquired from the camera is illustrated in Figure 6.33. Note that due to the
unavailability of the proper collimator lens, geometric equivalence was not reached
during this test, as the image captured appeared bigger than it should have. For
this reason, the test represents only qualitative assessment. Nonetheless, it was
fundamental to characterize for the first time the interfacing with the navigation
camera, its noise characteristics, and the photometric response of the images that
could be acquired during flight operations, the latter being an essential aspect of
the performance of the IP, as illustrated in Section 6.5.1.

It is also commented that during the design process of the mission, the sensor
properties changed from a 2048 ×1536 px grayscale sensor to an RGB one of
equivalent resolution. A performance assessment has been conducted to test the
functionalities of the different IP strategies to work with images after the application
of Bayer filtering, but without applying interpolation or demosaicing to keep the
computational cost of the algorithm low. The IP demonstrated adequate flexibility
in this case, which has also been tested during the HIL qualitative assessment. This
was possible given the expected albedo variations on the body and the natural color
of the body (grayish) that would activate the RGGB pattern of the Bayer’s filter
mostly homogeneously.

6.5.3 Training and testing during flight

As part of the nominal objectives of the mission, Milani will conduct an Autonomous
Optical Navigation experiment (AutOpNav). AutOpNav is an opportunistic tech-
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Figure 6.32: Engineering model of the navcam of Milani mounted within the TinyV3RSE
facility.

nology demonstration experiment whose goal is to characterize Milani’s optical
navigation during flight and its capability to support autonomous navigation in
close proximity of the Didymos system.

To do so, an on-ground infrastructure is proposed to compare and replicate the
outcome of the onboard algorithms. The concept of the experiment is illustrated
in Figure 6.34. Its core consists of the on-ground asynchronous and opportunistic
collection of the onboard data from the IP, navigation algorithms, and sensors.
On the ground, the data is used to demonstrate the performance of the onboard
algorithms. To validate the filter’s performance, the Milani trajectory’s ground-
based solution is used as a reference. Then, a fictitious trajectory maneuver is
computed based on the onboard navigation filter’s solution, compared with the one
produced by the flight dynamics team. In this way, the experiment also evaluates
the accuracy obtained with a fully autonomous guidance cycle.

The IP performance can be validated using the optical navigation images that
are downlinked to perform the nominal Orbit Determination (OD) process for the
CubeSat. No additional images need to be downlinked for the experiment. To
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(a) Screen image.

(b) Facility image.

Figure 6.33: Example of an image of the Didymos system projected on the screen in
TinyV3RSE (a) and acquired by the engineering model (b).

avoid further burden on the data volume to be downlinked, real images used for
the OD will be complemented with synthetically generated ones rendered at the
reconstructed poses of the CubeSat to simulate the correct activation frequency
of the onboard IP. These images can be used directly or as seen in TinyV3RSE,
where an engineering model of Milani’s NavCam could be used.

Setting up the infrastructure for the execution of the experiment will open up
a set of possible related activities that could benefit the mission and widen the
scope of the experiment. For example, real data from the spacecraft could be used
to test the performance of alternative IP and navigation algorithms. Data from
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Figure 6.34: Proposed high-level concept of operations for the AutOpNav experiment.

DART and Hera could also be used before Milani’s release or during its mission
to tune the parameters of the data-driven algorithms. The former option would
provide valuable initial insight into the performance of Milani’s onboard algorithms
with actual images of Didymos.

The AutOpNav experiment is designed to be carried out at the Navigation
Experiment Operation Centre (NEOC), where the AutOpNav experiment team will
retrieve the spacecraft telemetry and ground operation products from the CubeSat
Mission Operation Centre (CMOC) Supervision Level. The team will be a user of
such data, similar to the science teams, without interfering with the operations of
Hera.

The NEOC will acquire and store the incoming data from CMOC and process
them in a dedicated processing station. Different functional levels are envisioned. At
the highest level, telemetry data about the reconstructed state of the onboard filter
and the IP output will be compared to their reconstructed ground truth to generate
error metrics, which will validate navigation performance and achieve. Additional
levels are devised that complement available data with artificial ones generated
in a dedicated rendering station and/or obtained in the TinyV3RSE facility. The
preliminary functional architecture of the NEOC is reported in Figure 6.35.
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Figure 6.35: Proposed high-level architecture of the NEOC.

6.6 AI enhancement

Over the course of the research activity performed during the Ph.D., the Milani
mission and the Didymos binary system have always been considered the natural
case study. This section summarizes the most attractive applications of data-driven
and AI approaches that could benefit the Milani mission. The nature of the baseline
IP of Milani resonates positively with AI methods, allowing for simple and direct
comparisons.

6.6.1 Comparison with NN and CNN

Adopting the same methodology used to design the data-driven IP of Milani, NN
and CNN architectures are investigated, presenting the work in [32]. The scope is
to understand what kind of performance gain would be possible by implementing
other data-driven methods using the same input of the baseline algorithm for the
mission, represented by the COB and WCOB. DSDB0

7 is used for training and
validation, while the performance of AI-based methods are assessed on test sets
represented by the DSFRP

7 and DSCRP
7 datasets.

While WCOB, NN, and CNN are all data-driven methods, they exhibit sub-
stantial differences. Both the WCOB and NN work on a set of explicitly selected
features extracted from images with traditional techniques. While the WCOB
acts on these features using explicit hand-crafted relationships fitted through data,
the NN approach uses implicit relationships embedded in the network and learned
through the data. On the other hand, CNNs do not use as input the same features
vector as WCOB and NNs, but instead, learn a representation of the feature vector
(in the form of the fully connected layer) via its convolutional layers adjusted during
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training.
This reflects a different usage of the data of DS7 by different methods. In the

WCOB, a scattering law is empirically derived from data and applied to the CoB
estimate. The data is needed to tune the fitting coefficients of a few core functions
used in the scattering law, while most of the functionalities in the pipeline retain
a traditional approach. Similarly, both NN and CNN need data, which is used
more efficiently to optimize their internal structure, namely to find optimal sets of
weights and biases.

The NN architecture is designed to use an input the feature vector illustrated
in Section A.3.1, while the CNN uses cropped and resized versions of the images
acquired by the navigation camera. A 80/20% partition of the DSDB0

7 trains and
validates the AI methods.

As it is possible to see in [32], different architectures have been trained and
tested. However, to simplify the discussion, only the most relevant ones are reported
in this section. These are the NN represented in Table 6.9 and the CNN represented
in Table 6.10.

Table 6.9: Architecture of the NN. The total number of parameters is 21 ,347(0.08
MB), all trainable.

ID Layer type Output Shape Parameters Connections

I Input (B, 14) 0 D1
D1 Dense (B, 32) 480 D2
D2 Dense (B, 64) 2112 D3
D3 Dense (B, 128) 8320 DO
DO Dropout (B, 128) 0 D4
D4 Dense (B, 64) 8256 D5
D5 Dense (B, 32) 2080 D6
O Dense (B, 3) 99

Both the NN and CNN have been trained using Adam optimizer, and the
MSE as error metric with a batch size of 32 samples, ReLu/Sigmoid as activation
functions. The NN has been trained for 500 epochs with a learning rate of 0 .02 ,
while the CNN has been trained over 60 epochs with a learning rate of 0 .05 . More
details on the training can be seen in [32].

6.6.1.1 Results

Figure 6.36 summarizes the performance of the different methods over the testing
dataset DSFRP

7 using the same familiar plots used to illustrate the performance
of the IP of Milani in Section 6.4.1. The performance on DSCRP

7 is omitted for
clarity but can be consulted in [32].

From Figure 6.36, it is possible to see that WCOB and NN achieve similar
performance, better than the COB method, while the CNN outperforms all the
methods considered. A NN operating with a similar set of inputs than the ones of
the WCOB does not improve the performance in a relevant way. The WCOB method
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Table 6.10: Architecture of the CNN. The total number of parameters is 1 ,438 ,659
(5.5 MB), all trainable.

ID Layer type Output Shape Parameters Connections

I Input (B, 128, 128, 1) 0 C1
C1 Conv2D (B, 128, 128, 32) 320 P1
P1 MaxPooling2D (B, 64, 64, 32) 0 C2
C2 Conv2D (B, 64, 64, 64) 18496 P2
P2 MaxPooling2D (B, 32, 32, 64) 0 C3
C3 Conv2D (B, 32, 32, 128) 73856 P3
P3 MaxPooling2D (B, 16, 16, 128) 0 C4
C4 Conv2D (B, 16, 16, 256) 295168 P4
P4 MaxPooling2D (B, 12, 12, 256) 0 FC
FC Flatten (B, 16384) 0 D1
D1 Dense (B, 64) 1048640 DO
DO Dropout (B, 64) 0 D2
D2 Dense (B, 32) 2080 O
O Dense (B, 3) 99

being fully explainable means that it can be deployed with much more confidence
than a NN on a flying mission because its main blocks are well-understood, robust,
and known in the literature. On the other hand, if much higher accuracy is sought,
the CNN can outperform all other methods considered.

Globally, the COB is the best for only 3 .40% of the images and mostly at
lower phase angles. The WCOB and NN are the best in the low-to-medium and
medium-to-high intervals of phase angles, ranking best respectively in 7 .30% and
5 .14% of the cases. Finally, the CNN is considered the best-performing method
across various conditions. 84 .17% of the images in DSFRP

7 is performed with the
smallest εnCoF error with this method.

The difference in performances between WCOB, NN, and CNN are explained
by the type of input and methods adopted. The NN approach works with explicit
features determined from traditional IP, the WCOB uses a subset of these and
one filter, while the CNN uses a large set of filters and an implicit features vector
which are not defined a-priori but determined through training. The NN proves
that the information extracted from filters is optional to achieve good performance.
A simple feature vector is enough to achieve the same performance of the WCOB,
meaning that the intricate non-linear relationship between input and output that
can be established with a NN could easily substitute the various steps required by
the hand-crafted WCOB pipeline. On the other hand, the CNN demonstrates a
boost in performance that hints that extracting spatial information from the image
is a key functionality in generating a better implicit feature vector. In between,
the WCOB method proves that traditional IP functions, the application of a single
filter, and a few explicit features extracted from the image are enough to obtain
good results in the contexts of a complex, hand-crafted IP pipeline.
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(a) Histograms of εnCoF . (b) Histograms of εψ.

(c) Error ellipse. (d) Best methods.

Figure 6.36: Histograms of the εnCoF (a) and εψ (b) of different methods. The binwidth
is set to 1 pixel and 1 deg, and probability is used as normalization. (c) Error ellipse
in the image plane of εuCoF and εvCoF with a 99% confidence interval. The points are
omitted for clarity. (d) Scatter plot of the method with the smallest εnCoF as a function of
the range and phase angle. All the plots are illustrated for DSFRP

7 .

6.6.1.2 Explainability analysis

The similarity of the performance between NN and WCOB has motivated the
explainability analysis illustrated below. This analysis is conducted to understand
which optical observables can be generated by the blob analysis within the Blobs
Characterization block are meaningful to generate the desired output. This is useful
for a twofold purpose: to better explain the underlying implicit pipeline of the
NN method and to understand if the proper set of parameters has been identified
during the design of the WCOB.

The explainability analysis is performed using SHAP values [159], which are
briefly explained. These implement a game theory approach that breaks down the
contribution given by each player to the results of a game. Analogously for the
case considered in this section, SHAP values quantify the contribution of each
feature on the model prediction, independently from its complexity. They follow
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a formulation and statistical properties, which are discussed in detail in [159]. In
a nutshell, SHAP values give an interpretation of the impact of a given feature,
exploring all the possible model predictions generated by a coalition between such
a feature and the remaining ones. However, doing so for all possible combinations
would not be tractable, so approximations and samplings are necessary, as explained
in [159]. The SHAP values can then be used as a proxy to visualize the impact of
a given feature on the model prediction. The higher the SHAP value in magnitude
for a particular feature, the higher its effect on the output.

The SHAP values of a sample of 2500 random cases from DSDB0
7 of the NN

predictions are computed with a kernel explainer. From Figure 6.37 it is possible to
see from a global perspective the impact of each feature by looking at the mean of
the absolute SHAP values.

Figure 6.37: Stacked histogram of the mean absolute SHAP values of the NN output for
each element of the input feature vector.

Ψ is mostly driven by Γ4 , e, and δm. Of these features, only the eccentricity e
is range invariant. In contrast to the WCOB, the NN seems capable of synthesizing
a more accurate Ψ estimate when combining the eccentricity with the height of
the bounding box and the minor axis length. This hints that it would be possible
to slightly improve the Ψ estimate more than that of the WCOB when considering
multiple optical observables. Such a new formulation’s complexity must be balanced
against the expected improvement. On the other hand, the CoF estimate is driven
in the u component by the CoBu and Γ4 while in the v component by CoBv and
Γ4 . This hints at a possible relationship found by the NN between CoF and CoB
and Γ4 components. The NN may have learned to correlate a correction between
CoF and CoB and to scale it properly as a function of the range from the body by
exploiting Γ4 as a proxy for the range. Also, this case reflects a possible change
in the features selected in the WCOB method. Alternatively, the SHAP values
are illustrated case by case for the three outputs of the NN2 . In Figure 6.38, it is
interesting to observe the correlation effects of combinations of low-high features
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and low-high SHAP values. For example, it is possible to observe how the CoFu
and CoFv are largely influenced by the CoBu and CoBv , respectively. However,
The former shows polarization between SHAP values and feature values: low values
of the CoBu tend to output low values of CoF and vice-versa. However, the same is
not true for the CoBv , which makes sense since the geometry of the problem (and
consequently the Ψ) is affecting the estimate mostly around the CoFu component,
given how the dataset DS7 is generated. Another interesting effect of taking note
of is the behavior of Γ3 and Γ4 for the CoF: in both components, high values of
Γ3 are related to low values of the CoF components, while high values of Γ4 are
related with high values of the CoF components.

(a) SHAP values for CoFu. (b) SHAP values for CoFv .

Figure 6.38: SHAP values of the input features of the NN method for the CoFu (a) and
CoFv (b) outputs, colored by the feature’s value.

Finally, the SHAP values are analyzed for the Ψ estimate in Figure 6.39. It is
very interesting to observe that the major contribution to the output is in order
γ4 , eccentricity, length of the minor axis, and perimeter (as seen in Figure 6.37).
These parameters show a strong polarization between feature values and SHAP
values. Of these quantities, the eccentricity is the only range invariant. High
eccentricity values correspond to high values of phase angle and vice-versa, the
same relationship exploited in the WCOB method (see Figure 6.10). It is then
interesting to observe that also γ4 , the length of the minor axis and perimeter
could be exploited efficiently in the phase angle estimate, as high values of phase
angle are correlated with low values of perimeter and minor axis length and higher
values of γ4 and vice-versa. All these quantities can be considered a proxy of the
eccentricity, although they are not range-dependent.
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Figure 6.39: SHAP values of the input features of the NN method for the Ψ output,
colored by the feature’s value.

6.6.2 Navigation with segmentation maps and CNN

This section briefly illustrates the results of the approach presented in Section 5.2
for a close-proximity scenario about Didymos represented by the DSD−4

5 dataset.
These results demonstrate how a deep-learning architecture performing classification
can be used for navigation using segmentation maps as input.

Dataset DSD−4
5 is made by 432 samples of Didymos imaged with a 1024 ×

1024 , 16 ×16 deg FOV sensor from a portion of the Milani’s operational orbit.
Images are taken every 10 minutes with ideal pointing in a 3-day loop for 432
image-mask pairs.

The results of classification portion of the architecture described in Section 5.2
are represented in polar coordinates in Figure 6.41, while the estimated positions
are superimposed on the actual trajectory in Figure 6.40.

A relevant portion of the trajectory happens outside the [0 .65 − 1 .35 ]D0

interval considered during training. Whenever the range exceeds this interval’s
upper limit, the images are scaled according to the postprocessing presented in
Section 3.1.1.5. The proposed architecture performs well in predicting the equatorial
angle θ and range ρ but fails to accurately predict the azimuth angle ϕ. This
is due to the classes chosen for this variable, which turned out to be too broad
(developing around ±15 deg) for the target orbits considered.

As it is possible to see in Figure 6.41 and Figure 6.40, the reconstructed
trajectory exhibits significant errors. This is caused by the nature of the CNN
architecture, designed to predict the position as a classification task, generating
a coarse estimate. For completeness, the error of the reconstructed trajectory is
illustrated in Figure 6.42.

From Figure 6.42(a), it is possible to see a high relative percentage error
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(a) XY view.

(b) YZ view.

Figure 6.40: Close-proximity orbit example around Didymos (red) and estimated positions
with the CNN (blue). The trajectory is illustrated in the W reference frame, with the X
axis pointing towards the Sun.

with respect to the true range ϵrp as a function of the range. The mean relative
percentage error is 9 .92%. Comparing the performance illustrated in Figure 6.42(a)
of the classification portion with the one in Figure 5.17(a) which includes the NCC
portion, is possible to see the improvement generated by the combined methodology.

Finally, from Figure 6.42, it is possible to see that the high error is caused by
significant contributions in the X and Y components in the CAM reference frame.
Moreover, the error on the Z axis is believed to be lower due to the postprocessing
strategy illustrated in Section 3.1.1.5, which artificially augments the number of
classes for inference, increasing their resolution and thus the performance of the
estimation in the boresight direction.

6.6.3 Testing the IP after DART updates

By design, Milani’s IP has been structured as a pipeline that uses coefficients to
express data-driven scattering laws. These coefficients can be changed throughout
different mission phases and through data obtained from other spacecraft (DART,
Hera, and Juventas). This choice was made early on during the project since the
design phase of the algorithm had to cope beforehand with unforeseen changes.
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(a) Equatorial angle.

(b) Elevation angle.

(c) Range.

Figure 6.41: Predicted (blue) and true (red) equatorial (a), elevation (b), and range (c)
values as a function of time for the close-proximity trajectory.

In October 2022, the DART spacecraft arrived and successfully impacted
Dimorphos. Moments before impact, it acquired crucial images about the system’s
appearance. This proves a vital opportunity to test the IP with updated data about
the system, particularly the shape of D1.

Before the arrival of DART, D1 was expected to be a top-shaped, mild irregular
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(a) εrp error. (b) εp divided by components in CAM.

Figure 6.42: Positioning error of the CNN represented as εrp as function of ρt and divided
by components in CAM reference frame.

body with a volume equivalent diameter of 780 ±30 m. Its principal axes were
estimated to be 832 m± 3% m, 838 m± 3%, and 786 m± 5% and were
computed using radar observations [138, 160]. After DART, a new estimate
of the shape of D1 returned a more oblate body with principal axes equal to
849 m±5 .6 m, 851 m±5 .6 m, and 620 m±5 .6 m [161], the last axis suffering
the biggest variation.

6.6.3.1 Challenges

A preliminary assessment using an updated version of the shape model of D1 was
done after the DART impact. When new datasets were generated with the updated
shapes, the entire pipeline worked as expected, apart from the WCOB method,
which suffered a major drop in performance. This is caused by the data-driven
function Ψ defined in Equation 6.3, used to estimate the phase angle from the
eccentricity of the ellipse fitted with the same normalized second central moment
to the blob of pixels associated to D1.

When considering the original scale of D1 before DART arrival from [138]
(sz = s0 ), a second-order polynomial proved to be sufficient to represent the Ψ-e
relationship, as illustrated in Figure 6.43. Such a relationship was also tested for a
variation of the scale across the z-axis up to ±5 % of the original value s0 [119],
as also discussed in Section 6.5.1 and proved to cause only minor fluctuations in
the performance.

However, as it is possible to see in Figure 6.43 when considering higher values of
oblateness, a clear functional relationship cannot be established anymore, considering
eccentricity as the sole parameter. A specific interaction between the ellipse fit and
oblate objects causes this. Increasing the oblateness of the body passing from a
sphere, to D1 with sz = s0 , to D1 with sz = 0 .78s0 (the value observed by DART),
the eccentricity passes from having one to multiple minima. When considering a
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spherical object, the eccentricity of the fitted ellipse monotonically increases with
the phase angle, as it is possible to see from Figure 6.45.

Because the top-shaped model of D1 prior to DART was relatively regular, this
relationship could be established and exploited. However, when considering a highly
oblate object, the minimum eccentricity is no longer associated with the object’s
projection at low phase angles. Given the irregularity of the object, a considerable
offset may be present, and the minimum eccentricity is achieved with a proper
combination of phase angle and point of view that does not necessarily occur at
low phase angles.

(a) Nominal values. (b) Excess values.

Figure 6.43: Phase angle Ψ as a function of the eccentricity of the blob of pixels
associated with D1 for different values of scaling across the z-axis sz for 5000 images
randomly distributed about D1. s0 represent the scale of D1 before the DART mission
update.

Figure 6.44: Phase angle Ψ as a function of the eccentricity of the blob of pixels
associated with D1 with sz = s0 compared with a spherical body with and without D2.
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Figure 6.45: Mosaic of different views of a sphere (left), D1 with sz = s0 (center),
and sz = 0 .78s0 (right) at different equatorial angles θ (from left to right 120 , 90 ,
60 ,30 , and 0 deg). The red curve represents the fitting ellipse with the same normalized
second-order moment.

The local irregularities over the shape of D1 and the presence of D2 in the
images act purely as disturbances. This is visible from Figure 6.44, which illustrates
what happens when a spherical body is substituted to D1 and subsequently when
D2 is removed from the rendering software.

In conclusion, when considering more oblate shapes for D1, the eccentricity
alone cannot be used as a parameter to predict the phase angle Ψ directly from
images, invalidating the original design of the IP. To solve this issue, a significant
update is needed on the phase angle estimation function defined in Equation 6.3
that cannot be fixed by simply adjusting the fitting coefficients. It is noted that
this issue arises in the WCOB method only and that it is caused by an unforeseen
change in the scale across the principal axis passing by the poles of D1, sz , that has
suffered a 22% change from new observations of the system, against the predicted
5% value considered as a requirement during the design phase.

To investigate alternative approaches, a dataset referred to as DS10 is used,
consisting of images and feature vectors fx , as illustrated in Section A.3.4. Note
that images have been rendered at the resolution and range comparable to Hera’s
mission and assuming usage for Hera’s navigation camera, but the results can be
generalized for Milani’s navcam. As a first step, to understand the importance
of the variables that can be extracted onboard, a Principal Components Analysis
(PCA) analysis is performed on the components of fx . In Table 6.11, the elements
of fx are ordered in decreasing roles of importance according to the RRelieF metric



232 6. Milani

Table 6.11: Output of the PCA: features of fx ordered in descending order using the
RRelieF metric.

Feature RRelieF

νD1
e 1.8487e-03
νD1
ext 1.5718e-03

log10 (ν3 ) 1.3916e-03
ν4 1.1676e-03

log10 (ν
edge
area ) 9.5524e-04
νD1
circ 8.6640e-04

νedgee 6.0699e-04
log10 (ν

edge
per ) 5.4506e-04
νedgeext 2.3647e-04

tanh(ν1 ) 7.1865e-05
tanh(ν2 ) -2.9021e-05
νedgecirc -2.3132e-04

log10 (ν
D1
area) -3.6348e-04

log10 (ν
D1
per ) -1.0600e-03

[162]. Note that e is still considered the most important feature, as in the original
relationship in Eq. (6.3).

6.6.3.2 Proposed approaches

Three different methods are investigated in substitution of Equation 6.3: Polynomial
Chaos Expansion (PCE), features-based NNs, and image-based CNNs.

PCE, and arbitrary Polynomial Chaos (aPC), have been introduced and exploited
for uncertainty quantification. However, recently PCE has been proven to be an
effective technique also in other fields, e.g., it has been used to successfully
propagate all-in-once a bundle of trajectories in a deterministic setting [163]. A
wider use for PCE in data-driven approaches can be devised since it shows some
useful properties. As a matter of fact, PCE (and aPC) can be used as an effective
interpolation method, not requiring to define a-priori the interpolant functions but
selecting them automatically starting from the input samples, so that they possess
spectral convergence with respect to the input variables. Furthermore, the same
input samples can be used to find the generalized Fourier coefficients, exploiting
the least-squares approximation technique. A more detailed overview of the theory
behind the PCE can be found in [164], while the focus of this section is set to its
application for the problem at hand.

Practically,PCA is performed on the training dataset of feature vectors fx
associated with every image, constituting the input for PCE. The output of the
PCA is then fed to aPC to build the orthogonal basis since feature distribution is
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not known a-priori [164].
The phase angle Ψ is then estimatd as :
1. All the features extracted from the images fx are used as inputs for the PCA

to find the principal components coefficients C , and the explained variance s;
2. Principal components are computed as ξ = Cfx and sorted by their explained

variance;
3. The first dth variables are used to estimate the statistical raw moments and,

in turn, the polynomial basis coefficients a
(k)
l , and the basis polynomials

4. The principal components associated to the first M = 4000 images are used
to compute the PCE coefficients cα

During testing, the predicted values are then obtained by using the following
equation over 500 samples :

x̂(ξ) = ∑
α∈Λp,d

cαψα(ξ) (6.9)

where x̂(ξ) is the quantity of interest, Λp,d is a set of the multi-index of size d and
order p defined on nonnegative integers, ξ = [ξ1 , . . . ,ξd ] is the set of input random
variables, in which each element ξi is an independent identically distributed variable.
The basis functions {ψα(ξ)} are multidimensional spectral polynomials [164].

This methodology is referred to as PCE-Full. An alternative one, referred to
as PCE-Res, can be devised to perform the PCA only on the first d-th features,
following the sorting order given by point 2. This approach can help the IP when
performed onboard since it reduces the number of features that should be extracted
from each image. Moreover, as it is possible to see in [164], considering up to
nine features from fx yields the minimum variance for both PCE-Full and PCE-Res.
This value is thus considered for comparing PCE-based methods and the others.

For what concerns the NN approach, a hyperparameter search is performed
varying the number of hidden layers, the number of neurons, and the activation
function of a simple feed-forward NN using the Matlab regression learner application.
The first and last layers of the network are made, respectively, of 14 and 1 neurons.
During training, PCA is enabled on the input variables. As the output of the
hyperparameter search, the best architecture is made of three hidden layers, made
respectively of 124 , 8 , and 46 neurons, all using ReLU as an activation function.
Similarly to Section 6.6.1, the NN is used mainly to investigate whether or not
a network as a universal interpolation function can yield better results than a
polynomial interpolator such as PCE.

Images-based CNNs architectures are also investigated in the form of CELM and
CNN (see Section 2.2.2 and Section 2.2.3). The purpose is to determine whether
or not a better estimate can be performed directly over the images by using implicit
features, randomized, and optimized kernels in the convolutional layers. This also
hints at the appropriateness of the 14 features selected to represent each image as
fx .
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The same training strategy illustrated in Chapter 5 is adopted to train the CELM
and CNN. 540 hierarchically organized convolutional pooling architectures are
generated and trained using the CELM paradigm. The large volume of architecture
is the result of a thorough architecture design search involving the weights and
bias initialization strategy (Random, uniform, orthogonal), the type of activation
function (none, ReLU, leaky ReLU, tanh, sigmoid), the pooling strategy (mean or
max), the number of sequences of convolution, activation function, and pooling
(from 2 to 6), and the values of the regularization parameter of the least-square
problem (from 0.0001 to 10000 in increasing order of magnitudes).

After finding the optimal architecture setup, the architecture is trained as a
traditional CNN using MBGD methods varying the value of batch size (B), learning
rate, and epochs. The best-performing architecture is then selected as the one
represented by the weights and biases at the minimum value of mean squared error
on the validation set. The architecture of the CNN (which up to the fully connected
layer FC is shared with the one of the CELM) is summarized in Table 6.12 using
TensorFlow 2.10 notation.

To enable a fair comparison between all methods considered, the first 4000
samples of DS10 are always considered for training while the remaining 500 and
500 samples are considered respectively for validation and testing.

6.6.3.3 Results

In Figure 6.46, a comparison of the histogram errors of the different methods using
εψ as metric is visualized. The original performance of the WCOB with the tuning
coefficient obtained with the procedure illustrated in Section 6.2.2.2 considering
only νD1

e is also represented for completeness.
The performance of all methods is also summarized in Table 6.13 in a quanti-

tative form, reporting for each method the mean, variance, Q67 , and Q95 values.
Considering both Figure 6.46 and Table 6.13, the alternative approaches can be
divided into three main groups. The first is represented by the WCOB and CELM,
performing poorly, as expected for both cases. The second one is represented by
the PCE-based methods and the NN, both achieving similar performance (also,
similar w.r.t the original formulation of the WCOB with the more regular shape
before DART, see Table 6.5 and Table 6.7). Finally, the third group is represented
by the CNN, which considering the small variance in the εΨ error, outperforms all
previous methods.

Of the different methods considered, the CNN performed the best, hinting
that added filtering capabilities and the end-to-end approach played a role in
generating more successful feature vectors, as previously seen in Section 6.6.1. On
the other hand, PCE has demonstrated to be an excellent alternative even outside
its traditional field of application, retaining similar performance with respect to the
previous implementation of the IP and against NN approaches. It is also noted that
the PCE implementation was limited to 3rd-order polynomials with symmetrical
expansions. Differential expansions could have provided better performance.
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Table 6.12: Architecture of the six layers CNN. The max pooling strategy and the
normalized ReLU are used. The networks has a total count of 2 ,884 ,737 parameters
(11.0 MB).

ID Layer type Output Shape Parameters Connections

I InputLayer (B, 128, 128, 1) 0 C1
C1 Conv2D (B, 128, 128, 16) 160 A1
A1 nReLU (B, 128, 128, 16) 0 P1
P1 MaxPooling2D (B, 64, 64, 16) 0 C2
C2 Conv2D (B, 64, 64, 32) 4640 A2
A2 nReLU (B, 64, 64, 32) 0 P2
P2 MaxPooling2D (B, 32, 32, 32) 0 C3
C3 Conv2D (B, 32, 32, 64) 18496 A3
A3 nReLU (B, 32, 32, 64) 0 P3
P3 MaxPooling2D (B, 16, 16, 64) 0 C4
C4 Conv2D (B, 16, 16, 128) 73856 A4
A4 nReLU (B, 16, 16, 128) 0 P4
P4 MaxPooling2D (B, 8, 8, 128) 0 C5
C5 Conv2D (B, 8, 8, 256) 295168 A5
A5 nReLU (B, 8, 8, 256) 0 P5
P5 MaxPooling2D (B, 4, 4, 256) 0 C6
C6 Conv2D (B, 4, 4, 512) 1180160 A6
A6 nReLU (B, 4, 4, 512) 0 P6
P6 MaxPooling2D (B, 2, 2, 512) 0 FC
FC Flatten (B, 2048) 0 D1
D1 Dense (B, 512) 1049088 DO1

DO1 Dropout (B, 512) 0 D2
D2 Dense (B, 512) 262656 DO2

DO2 Dropout (B, 512) 0 O
O Dense (B, 1) 513

Table 6.13: Performance comparison between the methods considered for estimating Ψ
with the updated shape.

Metric WCOB PCE-Full PCE-Res NN CELM CNN

µ [deg] 8.349 0.666 0.580 0.899 -1.453 0.854
σ [deg] 25.026 9.168 9.560 8.472 17.145 4.832

Q67 [deg] 24.963 3.447 3.863 3.169 6.310 2.690
Q95 [deg] 35.029 16.651 16.869 15.433 26.161 8.724
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Figure 6.46: Histogram comparison between the methods considered in this section for
estimating Ψ . Binwidth is 2 deg.

Ultimately, PCE will be considered for onboard implementation in place of
Equation 6.3 given its simplicity, flexibility, and satisfactory level of performance
compared with the other methods analyzed.

6.7 Related works

The material presented throughout this chapter is an exhaustive but concise overview
of the most important works related to the Milani mission, with a particular focus
on its IP and GNC subsystems. These activities have spanned without interruptions
from Winter 2019 until Summer 2023, covering the entire duration of the Ph.D.
activity.

For simplicity, this manuscript does not report a significant portion of the
contributions to the Milani mission. Other contributions to Milani that focus on
different aspects that may interest the reader are briefly discussed below.

The same process of designing close-proximity operations in a binary asteroid
system that has been applied in Milani is discussed at length in [154] while the
preliminary mission analysis and design of the GNC of Milani, which constituted
the proposal and phase 0 design, are illustrated in [153]. The design pipeline
adopted for the mission, both for the mission analysis, image processing, and GNC
subsystems, is illustrated at a high level in [165].

Overviews of the mission status at different stages have also been presented
in [157, 166] while the first in-depth publication of the IP and GNC has been
presented in [158]. In [167, 168] and most importantly in [169], the important
relationships between the trajectory design process, orbit determination, and flight
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operations constraints and requirements are described in detail.
In [119], the IP is tested with images-in-the-loop using the TinyV3RSE facility

and a representative camera for Milani. Similar tests, but also including the GNC
running on a representative processor, have been discussed in [170]. Finally, the
interested reader is also directed to [155, 156] for details about the VISTA and
ASPECT payloads of the Milani CubeSat.

Finally, working on a real mission proved a unique opportunity to testbench
data-driven and ML algorithms on a scenario of interest with real implications. This
duality between work performed for the mission and research focused on how ML
algorithm could be exploited to improve performances has proven very valuable. To
maximize such analyses, the Milani mission and the Didymos system, in general,
have often been considered target scenarios for many of the research applications
investigated during the Ph.D.

For example, in [171, 172], a Milani-like CubeSat was assumed to simulate
landing and bouncing trajectories in Blender over the crater’s region of Dimorphos.
D1 has been considered as the target body for the works focused on semantic
segmentation in [101, 104, 134, 141] while Milani and the Didymos system have
been considered as test cases in [32, 173, 174] to test ML approaches for IP and
navigation purposes. Finally, in [175], object recognition algorithms that use ML
approaches have been investigated as alternatives to the algorithm presented in
Section 6.2.1.

6.8 Final remarks

In this chapter, an in-depth overview of the Milani mission, the design of its
onboard IP and GNC subsystems, the possible enhancement obtained by using ML
approaches, and the challenges faced towards real operations have been extensively
discussed. What follows is a list of final remarks.

• Milani is a 6U CubeSat that will visit the Didymos binary system in 2027. As
part of its objectives, it will perform a technology demonstration experiment,
showcasing the capability of its semi-autonomous vision-based navigation
subsystem.

• The advanced functionalities of the IP pipeline of Milani are based on hand-
crafted data-driven scattering functions that generate phase angle, range, and
centroid estimates. These functions are explicitly defined within a complex
IP pipeline, and their coefficients are tuned by using datasets of images of
the system in representative conditions.

• The choice to employ mixed data-driven functionalities with traditional ones
has been motivated by the irregular shape of D1 and by the expected simplicity
of adapting the algorithm to its actual shape once it is imaged, first by the
DART in 2022, and then by Hera in 2027.

• The reference data-driven approach has been investigated against ML ones
based on NN, CNN, CELM and other data-driven ones such as PCE. Ex-
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plicit features-based methods always performed substantially worse than
implicit ones based on convolutional architectures. In general, it has been
observed that performances are substantially boosted when extensive filtering
capabilities are applied to the input images.

• Following a substantial update over the shape of D1 ( 22% change over the z
axis compared to an expected worst-case scenario of 5%), a core functionality
of the reference IP pipeline of Milani in estimating the phase angle suffered
a drastic drop in performance. A relevant change had to be made in the
pipeline to address this issue. This proved an essential lesson learned for
data-driven methods and a consideration for future works. It is noted that the
change was well outside the requirements and that even an entirely traditional
pipeline would have suffered from extensive re-design.

• Having tested the IP pipeline under various conditions by considering different
geometrical configurations, hardware settings, noise characteristics, and shape
updates gives more confidence in the robustness and reliability during flight
operations. These activities proved fundamental in incrementally validating
the design of the IP and GNC.
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Conclusions

“The most exciting phrase to hear in science, the one that
heralds new discoveries, is not ’Eureka!’ but ’That’s funny...’ ”

Isaac Asimov

This chapter groups together the main findings of the research activity illus-
trated through the manuscript. The key technical findings are reported in the
final remarks section at the end of each chapter. This chapter reports only the
main high-level conclusions that answer the research questions introduced in Sec-
tion 1.3. The chapter’s concluding section also briefly comments on future works
and improvements.

7.1 Conclusions

1→Which strategies could be adopted to create the high-fidelity data-label
pairs required for the supervised learning of data-driven methods?

This question has been answered in Chapter 3. The absence of data is par-
ticularly challenging for small bodies, for which only a limited sample of visual
images from previously flown missions exists. Moreover, the availability of the
images, the constrained geometric and illumination conditions, and the limited size
of the datasets pose stringent limitations for developing data-driven algorithms.
Additionally, it is highlighted the significance of the quality of the labels, which is as
important as the quality of the input images. In some cases, as for image segmen-
tation, labels are not even readily available in the existing datasets. To counteract
these issues and to be able to generate datasets in support of data-driven methods,
three different strategies have been adopted: one using an artificial environment to
generate synthetic renderings, one HIL setup exploiting a high-resolution screen
in an optical facility, and one HIL setup using a terrain analog facility with slopes,
craters, and boulders. Manual labeling of existing images has also been explored as
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a possibility. However, it has not proven a flexible strategy for generating a large
dataset with the necessary labels, especially when considering a segmentation task.
1.a→What is the most cost-effective and flexible strategy to generate data
in support of training, validation, and testing of data-driven algorithms?

The use of an artificial environment resulted in the most flexible and cost-
effective strategy to generate a large number of image-label pairs inexpensively.
The design of such an environment resulted in the development of an ecosystem of
tools for data generation, having CORTO at its core. CORTO is a comprehensive
and versatile tool whose capabilities span rendering, noise modeling, hardware-
in-the-loop testing, and post-processing, enabling researchers and engineers to
simulate realistic scenarios. The tool proved critical in allowing uninterrupted image
generation capabilities over four years, enabling work across research, project, and
mission activities. Since the absence in the literature of reliable image similarity
metrics for celestial body images, validation of the images remains an open point.
Nonetheless, histogram comparison, RMSE, and SSIM metrics have been used to
validate CORTO capabilities, providing satisfying results for use by onboard image
processing algorithms. The other HIL setups proved too rigid for image generation
for ad hoc activities and are regarded as more suitable for dataset generation instead,
which is particularly useful for validation activities, expanding the capabilities of
CORTO.
1.b→To what extent can existing open-source solutions be used to support
dataset generation?

Blender and Python have proven fundamental in enabling a development free
of license restrictions for CORTO and the other tools illustrated in Chapter 3. In
particular, Blender has proven to be an exceptional and competent tool for this
specific application. However, as Blender is usually not adopted for this particular
use, several limitations have been encountered. For example, material parameters or
environmental settings are often expressed for usage by an artistic community and
not an engineering one. This often creates a gap in the interfaces and capabilities of
the tool that needs to be approached with an inventive perspective. This mentality
has proven fundamental in finding ad hoc solutions and tricks that could work when
simulating small body images (for example, the hair particle system used to scatter
boulders over the surface randomly). Fortunately, this inventiveness is supported
by many tutorials and by the extensive and vibrant community of developers using
Blender. Image validation has been tackled but remains an open, existing drawback
of CORTO illustrated in this work, shared among all other celestial body rendering
tools.
2→To what extent can onboard applications benefit from enhanced data-
driven image processing methods?

This question has been answered in Chapter 4, Chapter 5, and Chapter 6 with
the development and application of various networks for different image processing
tasks.
2.a→What are the most promising image processing tasks that can be
substituted or augmented?
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Image segmentation, visual-based navigation, parameter estimation, object
recognition, and shape classification have been addressed as promising tasks that
can be enriched by machine learning and data-driven approaches. The most exciting
of these has been identified in image segmentation and visual-based navigation.
Segmentation enables a complex understanding of the surrounding environment,
which can be greatly exploited onboard for various tasks such as, but not limited to,
autonomous scientific acquisition and tracking, hazard detection, and navigation.
Navigation enables the autonomous positioning of the spacecraft around a small
body, which is a critical capability to avoid collision with the same and to allow
autonomous, cost-effective operations.
2.b→What level of performance can be achieved compared to traditional
approaches?

ML approaches have been reported to consistently perform better than tradi-
tional ones, confirming an established trend in the general computer vision domain.
In particular, those using hand-crafted features have been observed to perform bet-
ter than traditional ones but are consistently outperformed by those using learned
features. Regarding the type of architectures investigated, CNNs consistently
outperforms all others. CELM-trained networks have demonstrated to be valid
alternatives only in a limited number of cases, specifically when regular shapes
are being considered. Nonetheless, CELMs proved pivotal in establishing a robust
bootstrap training methodology widely adopted to efficiently explore the architec-
ture design space of the networks. In general, complex training strategies have
been investigated to take care of network learning, resulting in higher performance
plateaus and better generalization capabilities. Concerning navigation tasks, the
choice of the labeling strategy and reference frames used has proven to be funda-
mental in defining more straightforward, learnable mappings between images and
labels. As typical for optical systems, the positioning error suffers the most in the
radial direction, which can be lowered by complementing optical observations with
data from range-finders sensors such as LiDARs. Interestingly, CNNs have proven
flexible and robust both as local and global features-based methods. This indicates
that CNNs are flexible enough to specialize with patterns of local features and
the shape outline, depending on the properties of the target body. Increasing the
number of images used for the position estimation (in combination with recurrent
architectures) has improved the position estimate only marginally while allowing for
velocity estimations only with the inclusion of LiDAR data. Moreover, noise from
real images does not seem to affect the network’s robustness significantly. This was
attributed to the domain randomization strategies put in place and, in some cases,
by the choice of the activation functions. Finally, some of these architectures made
use of pieces of already existing open-access networks repurposed for the tasks at
hand. On a generic note, many architectures are being increasingly made freely
available for generic-purpose computer vision applications. The use of these highly
performing architectures for space applications could be efficiently exploited both
for semantic segmentation and relative navigation.
2.c→What are the current drawbacks and bottlenecks for their adoptions
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in real missions?
Albeit the improvement in the performance, several limitations and drawbacks

have been identified by the use of the aforementioned data-driven methods. Input
images always require resizing to be efficiently used by the available hardware for
training and inference. This drop in resolution from image acquisition affects the
performance. The quality of the dataset generates a significant portion of the
network performance. For this reason, particular care has been put not only in the
network design but also in the dataset properties and quality of the inputs. In a
certain sense, the pipeline of the algorithm includes the dataset, whose design shall
not be overlooked too quickly. These factors have been extensively addressed in
this manuscript. In some cases, relevant domain gaps have been observed between
networks trained on synthetic images tested in inference on real images from
previously flown missions. These have been particularly relevant for segmentation
tasks that relied on manual labeling. The assessment of the domain gap is still
an open point when performed directly on images and has often been assessed
only indirectly as a byproduct of the network’s performance with real images. The
explainability of the performance has also been briefly investigated for NNs, but
remains another open point for future investigations, especially for CNNs. The
current approach adopted in this work has been based on the extensive testing
of the network capabilities with inference tests designed to characterize network
performance in scenarios never seen during training. This common-sense approach
has proved fundamental in better understanding network capabilities. However,
it lacks a mathematical foundation that could encourage the adoption of the
methods described in this work for actual implementations. Moreover, hardware
implementations have not been addressed in this manuscript, which focuses on
characterizing the potential performances without considering the compatibility of
the designed networks on existing space-qualified hardware for image processing.
Finally, it is commented that the adoption of ML methods in real operations for
interplanetary missions is still in its infancy. With this respect, two paradigms have
been investigated across the manuscript, each with its pros and cons: generalization
and specialization. In a generalized approach (such as in the case of a segmentation
network), it is convenient to develop a robust network that can learn shared surface
features from a large dataset of body shapes, geometric, and illumination conditions.
In this approach, the task is learned from a variety of training episodes, which
can be sampled from distributions of artificial models. This approach is powerful
since it does not assume an a-priori detailed knowledge of the target body but
requires extensive training that can be performed before arrival. On the other
hand, in a specialized approach, a-priori knowledge of the target body’s appearance
is required, at least at some preliminary level. This is necessary to generate a
representative artificial environment for a tailored dataset. This approach is more
readily applicable to navigation tasks that are focused on a particular body’s target.
This modeling can be performed with the data acquired in the preliminary phases
of a mission, exploiting a similar approach as the one of the Hera, Milani, and
OSIRIS-REx missions.
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7.2 Recommendations for future work

Suggestions for possible future works are briefly discussed. From a data generation
perspective, the lack of shared testbench datasets does not help to characterize
and compare the performance between different researchers, each operating with
their own tailored datasets. In particular, open access to trained networks, datasets,
and data-generation tools shall be encouraged to allow direct comparisons and
performance assessment on shared test benches. With this respect, only three of the
ten datasets illustrated in this work are currently being made publicly available. This
is the first important yet limited step towards an open-access format, which shall be
pursued in future works. The alternative development with Unreal Engine should
also be investigated for what concern CORTO and the use of Blender. It would be
interesting to explore what kind of capabilities currently implemented in CORTO
could be replicated with Unreal Engine and assess what kind of improvements
could this rendering software bring compared to Blender. Manual labeling has been
experimented with but has proven tedious and problematic. A possible exciting
opportunity would be to combine the knowledge and capability of the scientific
community with the engineering one. This possibility has not been explored in this
work but will be actively sought in future ones. Uncertainty quantification has been
preliminary addressed both for segmentation and regression tasks (the latter are
not reported in the manuscript) and is strongly believed to play a pivotal role in
extending the network’s capabilities. Uncertainty quantification could also play a role
in fast forward the adoption of these methods in real operation scenarios, increasing
the confidence in mission designer for their deployments onboard. Finally, the
deployment of the architectures illustrated in this work on space-qualified processors
still needs to be addressed. This represents a necessary step to demonstrate their
applicability for a real mission.





A

Datasets

“Data that is loved tends to survive.”

Kurt Bollacker

Throughouh this manuscript, different datasets have been generated to design,
validate, and test data-driven image processing algorithms. To avoid lengthening
the discussion in the main corpus of the work, in this chapter, the main properties
of these datasets are detailed. In Table A.1, it is possible to see a summary of
all the datasets used. The datasets are divided into three groups: segmentation,
navigation, and milani.

Table A.1: Summary of all the datasets used in this manuscript.

Section Name References Available online

Section 4.1 DS1 [101]
Section 4.2 DS2 [104, 176] ✓

Section 4.3 DS3 [141] ✓

Section 5.1 DS4 [177]
Section 5.2, Section 6.6.2 DS5 [134]

Section 5.3 DS6 [174]

Section 6.4, Section 6.6.1 DS7 [32, 178]
Section 6.4 DS8 [158]

Section 6.5.1 DS9 [119]
Section 6.6.3 DS10 [164] ✓



246 A. Datasets

A.1 Segmentation datasets

A.1.1 DS1

This is the dataset used in [101]. DS1 is made of three datasets that can be
divided into two groups: synthetic and real.

A.1.1.1 Synthetic

To generate datasets of synthetic images with an abundant and diverse presence
of morphological features, an approach has been developed in [101] based on the
artificial enhancement of existing shape models. The approach can be divided into
two phases. First, an enhanced shape model is generated from an existing “base”
model of a known small body. Second, said model and its byproducts are used to
generate image-mask pairs to be used for segmentation.

Starting from the model enhancement portion, the first step consists in getting
the rough shape models (i.e., the “base” models) of 9 real small-bodies from existing
databases 41,42. The models chosen are 67P/Churyumov–Gerasimenko, (101955)
Bennu, (65803) Didymos, (6489) Golevka, 103P/Hartley, (8567) 1996 HW1, (10)
Hygiea, (21) Lutetia, and (88) Thisbe which are referred in the rest of the section
by their short names.

Their low-resolution meshes are then modified to generate higher-resolution
ones. At the same time, surface roughness is simulated with texture displacement.
Artificial craters are then applied on the models as different objects by using the
shrinkwrap modifier in Blender43. Each crater is generated in Blender by extracting
a height map from a real texture map of existing craters on Earth 44 and applying
it as texture displacement on a planar mesh. Random scaling on all three axes
of the crater’s mesh is applied for each instance to generate multiple and diverse
craters, which are then manually stitched on the shape models. The number of
craters added on each model following this procedure is summarized in Table A.2.

Boulders generation follows a similar procedure. The Rock Generator add-on in
Blender is used to generate a large, random set of rocks with varying characteristics.
Each element is grouped in one of three classes depending on their qualitative size:
small, medium, and large. The number of boulders is illustrated and summarized in
Table A.2 for each model. The population of boulders is then applied with Blender’s
particle system. Different than craters, boulders are positioned automatically by
the particle system, whose randomization parameters can be adjusted to obtain
the desired effects. Following this procedure, the enhancement portion of the
framework generates three models for each small body:

• Clean model: It is a model with a simplified mesh, represented by the base
models without surface texture.

41https://sbn.psi.edu/pds/shape-models/
42https://3d-asteroids.space/
43https://www.blender.org/
44https://tangrams.github.io/heightmapper/

https://sbn.psi.edu/pds/shape-models/
https://3d-asteroids.space/
https://www.blender.org/
https://tangrams.github.io/heightmapper/
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Table A.2: Summary of the craters and boulders added to each model in DS1 .

Base Model Craters no. Boulders no.
small medium large

67P 2 500 - 5
Bennu 3 1000 250 10
Didymos 4 800 30 5
Golevka 2 800 - 40
103P 3 5000 30 5
HW1 2 2000 40 5
Hygiea 5 1500 100 5
Lutetia 5 1000 350 -
Thisbe 5 1000 - 20

• Crater model: It is a model with a refined mesh, texture, and craters. The
craters are laid on the mesh but are not merged. This is fundamental in
distinguishing each crater with its own individual identifier for the ray-tracing
rendering engine.

• Full model: It is a model of the asteroid with textures, craters, and boulders.
Different than the previous model, the craters are now fully merged into
the mesh. Similarly to craters, boulders are not merged to obtain unique
identifiers for the ray-tracing rendering engine.

These models are used in the second portion of the approach, the generation
of the image-mask pairs, to produce labeled datasets. Each segmentation map is
represented by a 5 layers mask. From (0) to (4) these are: (0) Background, (1)
Surface, (2) Craters, (3) Boulders, and (4) Terminator region.

The clean model is used to generate the ground truth of the terminator region
with a dedicated image processing pipeline in Matlab, illustrated in Figure A.1. First,
a Canny edge extractor [179] is applied, providing both the sharp edge between
small-body and background space and the gradual one visible in the terminator
region. To avoid considering spurious edges, an acceptance mask is computed
which exploits the asteroid pass index mask which does not account for shadows.
However, this binary image would not exclude the body-space edges obtained via
the Canny extractor. To avoid including them, the boolean acceptance image is
eroded using a morphological operation with a circular structuring element [180].

The background, surface, craters, and boulders masks are easily generated
using the Cycles ray-tracing rendering engine in Blender and exploiting different
identifiers assigned to these features. This approach has been inspired by the work
of [181]. Craters masks are obtained from the crater model while surface and
boulders are obtained from the full model.

Once all 5 raw masks are generated, they need to be hierarchically stacked
together to avoid pixels overlapping between classes. Intuitively, the hierarchy
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Figure A.1: Extraction of terminator region from the clean model.

used in order of decreasing priority is terminator, boulders, craters, surface, and
background.

Finally, the grayscale image is a byproduct generated from the full model. The
raw grayscale image obtained from rendering in Blender is further modified with the
addition of artificial noise in Matlab. Gaussian noise with mean 0 .1 and variance
0 .0001 is added to each image, followed up by a 2D Gaussian smoothing kernel
with a standard deviation of 0 .1 .

The image-mask pairs are then generated with random camera positions around
each body sampled uniformly in a spherical shell whose radius spans [0 .4D0 ,1 .3D0 ],
D0 being the approximate range at which the body fills the FOV of the camera
(assumed to be 10 ×10 deg). D0 is computed as:

D0 =
Γ

2 tan FOV
2

(A.1)

where Γ represents the maximum length of the shape model. For simplicity, an
ideal pointing to the CoM of the body is assumed. This assumption is expected to
have no significant impact on the performance of the network at inference time. In
fact, real images acquired by the onboard sensor could go through a pre-processing
centering step before being fed to the neural network.

For each acquisition, the Sun’s direction is selected randomly in an angular range
from the camera boresight of ±90 deg. In such a way, a variety of illumination
conditions are considered for a realistic case scenario in which a small body is seen
from full to partial illumination conditions.

Following this methodology, the datasets summarized in Table A.3 are generated.
DSD−1

1 is the only one used for training, validation, and testing and it is made by
7 out of the 9 available models. Two bodies, HW1 and Thisbe, are reserved for
testing in DSD−2

1 and DSD−3
1 . Also, DSD−3

1 represents a flyby scenario, which is
of interest for the application of segmentation algorithms with unknown bodies. In
particular, this scenario is characterized by a large excursion in the FOV occupancy
of the target, even outside the envelope used during training. The characteristic of
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all synthetic datasets are summarized in Table A.3 while the ones of DSD−1
1 are

detailed in Table A.4.

Table A.3: Summary of the synthetic image-mask pairs split of DSD−1
1 , DSD−2

1 , and
DSD−3

1 .

Dataset Models Train Validation Test

DSD−1
1

67P, Bennu, Didymos, Golevka,
103P, Hygiea, and Lutetia

11500 1050 1050

DSD−2a
1 HW1 - - 1500

DSD−2b
1 Thisbe - - 1500

DSD−3
1 Thisbe - - 56

Table A.4: Summary of the synthetic image-mask pairs constituting the training, valida-
tion, and test sets of DSD−1

1 .

Models Train Validation Test

67P 1350 150 150
Bennu 1850 150 150
Didymos 1750 150 150
Golevka 1500 150 150
103P 1500 150 150
Hygiea 1850 150 150
Lutetia 1700 150 150

Total 11500 1050 1050

Finally, another dataset referred to as DSC−1
1 , is used to train the encoder.

DSC−1
1 is composed of the same images of DSD−1

1 but is made using different
labels. Instead of having segmentation masks as labels, the body’s names are
considered to constitute 7 different classes. The dataset split is illustrated in
Table A.5.

Table A.5: Summary of the synthetic dataset DSC−1
1 .

Dataset Models Train Validation Test

DSC−1
1

67P, Bennu, Didymos, Golevka,
103P, Hygiea, and Lutetia

10880 2720 -
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A.1.1.2 Real

A small dataset of real images from previously flown missions is also generated,
referred to as DSD−4

1 . This is comprised of 200 images randomly selected from
Hayabusa I [13], Hayabusa II [16], Osiris-Rex [17], Dawn [182], NEAR Shoemaker
[12] respectively of (25143) Itokawa, (162173) Ryugu, (101955) Bennu, (4) Vesta,
and (433) Eros.

A selected set of 50 images from these missions is downloaded, cropped, or
resized to snippets of 256 x 256 grayscale images. These have been manually
labeled by the authors of [101] using the labelbox online tool 45. In order to cross-
validate the labeling and simplify it, some common rules have been established so
that, for example, only the largest and more meaningful boulders are labeled. The
labeling has been performed by two persons, each working on a 60% split of the
original dataset, thus creating an overlap subset that is used as a test-bench to
assess possible biases introduced by different individuals. Finally, each of the 50
manually-labeled image-mask pairs is flipped and rotated thus creating the final
set of 200 pairs. The split used for training, validation, and test is illustrated in
Table A.6.

Table A.6: Summary of the real image-mask pairs split of DSD−4
1 .

Dataset Models Train Validation Test

DSD−4
1 Eros, Itokawa, Vesta, Bennu 140 40 20

A.1.2 DS2

This is the dataset used in [104] and fully characterized in [176]. DS2 represents
an extensively annotated dataset about boulders on the surface of small bodies seen
from varying illumination conditions. DS2 is constituted by three main datasets,
referred for simplicity as: DSDS1

2 , DSDS2
2 , and DSDS3

2 .
DSDS1

2 is composed of synthetic images of single instances of boulders po-
sitioned on a procedural-varying quasi-spherical surface. Its main purpose is to
represents a single instance of a boulder positioned on the surface of a generic small
body. DSDS2

2 is also composed of synthetic images, however, multiple instances
of boulders are scattered across the surface of an enhanced shape model of the
primary body of the (65803) Didymos asteroid. This is done to represent realistic
boulder distributions scattered across a generic regular shape body. Finally, DSDS3

2

is composed of a small set of real images manually labeled from previously flown
missions toward asteroids (25143) Itokawa [13], (162173) Ryugu [16], and (101955)
Bennu [17]. Its purpose is to represent real boulder populations scattered across
the surface of existing small bodies. DSDS3

2 coincides with DSD−4
1 .

45https://labelbox.com/, last time accessed: 20th of October, 2023.

https://labelbox.com/
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Table A.7: Summary of the splits of DS2 .

Name Acronym DSDS1
2 DSDS2

2 DSDS3
2

Training Tr 30181 20095 -
Validation V 5044 5044 -

Test
Te1 5044 5044 -
Te2 5000 5000 -
Te3 - - 300

Total - 45269 35183 300

Range [BU] [2.1,10.4] [3.9,13.0] -
Azimuth [deg] [-80, 80] [-80, 80] -
Elevation [deg] [-30,30] [-30,30] -

Each of the datasets of DS2 is divided into training, validation, and test sets
as summarized in Table A.7. The main difference between the two test sets Te1
and Te2 lays in the balance of the distributions of the phase angles considered.
Te1 exhibits images sampled with a balanced distribution, while Te2 represents
images sampled with randomly displace phase angles acquired from a cloud of poses
around the target body. The DS2 dataset and all its subsets are openly available
at https://zenodo.org/record/7107409.

A.1.2.1 DSDS1
2

The image-label pairs of DSDS1
2 are created using a unitary radius high-resolution

spherical mesh to represent the small body, while boulder meshes are generated
randomly using the Rock generator add-on in Blender. A set of 30 meshes,
illustrated in Figure A.2, is used to represent archetype shapes of boulders, which
are then singularly positioned on the surface of the body with random orientation,
scaling, and albedo.

Figure A.2: The 30 archetype shapes representing single instances of boulders in DSDS1
2 .

From top to bottom, the ice, river, and asteroid classes are shown.

https://zenodo.org/record/7107409
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In order to simulate camera positions, a random cloud of points is generated
around the single boulder’s position, while illumination conditions are also varied
randomly. During acquisition the attitude is assumed to be ideal, pointing towards
the center of the boulder. Images are rendered at a resolution of 256 ×256 pixel,
but are then post-processed in CORTO with random cropping to 128 ×128 size
images with the addition of artificial noise. Post-processing is fundamental in
making sure the boulders are not always centered in the images. Both boulders
and surfaces are simulated utilizing an Akimov scattering law implemented in the
shading tab of Blender. At each acquisition, the characteristics of the surface of
the body are varied randomly to simulate different roughness that perturbate the
environment around each boulder. With this setup, a total of 45269 image-label
pairs are rendered for DSDS1

2 .

Note that the masks of the boulder and surface are obtained thanks to the
Cycles rendering engine in Blender and are generated both with and without
shadows. Figure A.3 represents a sample of image-label pairs of DSDS1

2 after
rendering and after post-processing.

Finally, Figure A.4 displays the camera poses during image acquisition, while
Figure A.5 illustrates the main properties of the geometric quantities of DSDS1

2 .

A.1.2.2 DSDS2
2

The procedure adopted to generate the image-label pairs of DSDS2
2 is in part

similar to the one illustrated for DSDS1
2 . The main differences are in the number of

boulders positioned on the surface of the body, the size of the rendered images in
(128×128), and the lack of random cropping during post-processing (only artificial
noise is added to the rendered images). During rendering, instead of placing a single
boulder, multiple ones are positioned on the surface of the enhanced Didymos shape
model to represent a realistic boulders distribution. Once again, as in DSDS1

2 ,
both lighting, scale, albedo, and intensity variations are randomly set to obtain
a generalized dataset. A sample of image-label pairs of DSDS2

2 is represented in
Figure A.6.

Finally, Figure A.7(a) displays the camera poses during image acquisition, while
Figure A.7 illustrates the main properties of the geometric quantities of DSDS2

2 .

A.1.2.3 DSDS3
2

Finally, the DSDS3
2 dataset is generated starting from 75 , 256 × 256 cropped

images which show clear boulders presence that has been manually labeled in [101].
Each image-mask pair is then subdivided into 4 128 ×128 smaller ones to reach
a total of 300 samples. By design, this dataset only contains the masks of the
largest boulders, as is visible in the sample in Figure A.9.
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Figure A.3: Sample of image-label pairs of DSDS1
2 . From left to right: 256 × 256

grayscale renderings in Blender, masks without shadows, masks with shadows, followed
by 128 × 128 noisy and randomly cropped grayscale images, and relative masks with
shadows.

A.1.3 DS3

This is the dataset presented in [141]. Its geometrical properties are summarized
in Table A.8 and illustrated in Figure A.10 and Figure A.11 while the dataset
generation has been discussed already in Section 4.3. The DS3 dataset is available
for download at https://zenodo.org/records/8406581.

Table A.8: Properties of DS3 .

Parameter DS3

Range [BU] [3 .648 ,14 .587 ]
Azimuth [deg] [0 ,180 ]
Elevation [deg] [−30 ,30 ]

https://zenodo.org/records/8406581
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(a) Top-view. (b) 3D view.

Figure A.4: Visualization of DSDS1
2 in position phase-space in W reference frame. (a)

top-view and (b) 3D view.

Figure A.5: Main geometric properties of DSDS1
2 . The binwidth is set to 0 .2 BU and 1

deg, and probability is used as normalization.

To generate the image-label pairs of DS3 , a three-step procedure is adopted.
• Step1 : Generation of the rendering inputs. All the geometric and physical

conditions that will be used to render the image-label pairs are generated for
10000 samples.

• Step2 : Rendering. The image-label pairs are rendered in Blender assuming
a 1024 ×1024 pixel wide sensor with a FOV of 16 deg.

• Step3 : Post-processing. The image-label pairs obtained after the rendering
stage are extensively post-processed, performing data pruning, data augmen-
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Figure A.6: Sample of image-label pairs of DSDS2
2 . 128 ×128 noisy grayscale images

(left) and relative boulder masks (right).

(a) Top view. (b) 3D view.

Figure A.7: Visualization of DSDS2
2 in position phase-space in W reference frame. (a)

top-view and (b) 3D view.

tation, and data adaptation to organize the dataset for usage by the most
relevant data-driven IP algorithms.

In the following sections, each of these steps is described in detail.

A.1.3.1 Rendering inputs

10000 randomly distributed camera positions X ,Y ,Z are generated around the
asteroid in a semi-spherical shell, as illustrated in Figure A.10. The points are
randomly displaced using the intervals in Table A.8.

For each position around the asteroid in the W reference frame, the camera
pointing is offset by the quantities Xo ,Yo ,Zo , which is compounded on the ideal
pointing towards the CoM of the asteroid. This is enforced to have the asteroid
appear across the entire image. Additionally, two separate random rotations are
used for each sample to change the orientation of the camera pointing across the
boresight axis (θb) and the rotation of the asteroid about the Z-axis (θa).
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Figure A.8: Main geometric properties of DSDS2
2 . The binwidth is set to 0 .2 BU and 1

deg, and probability is used as normalization.

Figure A.9: Sample of image-label pairs of DSDS3
2 . 128 ×128 real grayscale images

(left) and relative boulder masks (right), manually labeled in [101].

Finally, surface properties (represented by the albedo of the surface as , the
albedo of the boulders ab, and the intensity of the Sun’s lamp ISun) are also changed
for each sample to perform domain randomization over the appearance of the body
within each image under different illumination conditions. Note that in generating
ab, a relationship is established with as . First, a multiplicative coefficient is drawn
from a standard uniform distribution between 0 .7 and 3 . Such coefficient is then
multiplied by as to obtain ab:

ab = rand(0 .7 ,3) ·as (A.2)
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(a) Top-view. (b) 3D view.

Figure A.10: Visualization of DS3 in position phase-space in W reference frame. (a)
top-view and (b) 3D view.

Figure A.11: Main geometric properties of DS3 . The binwidth is set to 0 .2 BU and 1
deg, and probability is used as normalization.

This value of ab is the base value for the albedo of the boulders. In the next
section, it will be detailed how the albedo of each boulder a′b is changed from the
input value ab. Finally, note that the range interval from the asteroid is chosen
such that once the FOV saturation distance between the camera and the body is
computed (D0 ), the range is set to vary between D0

2 and 2D0 .
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A.1.3.2 Blender setup

For the DS3 dataset, Didymos is selected as target body. The base shape model is
considered from [138], which corresponds to the shape before DART’s [19] impact.
This simple model is artificially enhanced with boulders of various sizes, shapes, and
distributions scattered across the surface using the functionalities of the Blender’s
particle system.

As for the works in [101, 104, 134, 176], and similarly to DS1 and DS2 , the
boulders population is handled by the particle system with the settings presented
in Table A.9, divided by the Ice, River, and Asteroid classes of the rock generator
add-on.

Table A.9: Settings of the particle system in Blender to generate the boulder’s population.

Size & Class Ice River Asteroid

Small 2500 2500 2500
Medium 200 200 200

Large 5 5 5

The first two sizes in Table A.9 (Small and Medium) are indicated as “minor
boulders” while the latter size (Large) is indicated as “prominent boulders”. Differ-
ently from DS1 and DS2 , DS3 specializes in the properties of the large boulders as
prominent surface features that can also be exploited as landmarks for vision-based
navigation.

For this reason, while the 8100 minor boulders are all rendered with the same
pass index, the 15 prominent boulders have unique layers assigned to them. The
IDs of the layers obtained during rendering are summarized in Table A.10.

Table A.10: Description of the layers in the segmentation mask of DS3 .

Layer ID Description

0 Background
1 Surface
2 Minor boulders

3-17 Prominent boulders

Once the particle system is used to generate the boulders population over the
surface of Didymos, the model is considered complete and remains unchanged
throughout the entire rendering procedure. This ensures that the same geometrical
distribution of the surface features is seen across the dataset from different images
and points of view.

While the geometrical distribution is not changed, the appearance of the surface
and the boulders is varied to achieve domain randomization on the input images.
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To achieve such an effect, scattering laws are applied to the surface and each
boulder, whose albedo is adjusted singularly. To realize such a level of detail, the
albedo of each boulder is set by modifying ab from the input txt as follows:

a′b =max

{
ab+ rand(−0 .5 ,0 .5)σb

0 .03
(A.3)

where σb is an arbitrary parameter set to 0 .35 . Note that the random value used
to modify each boulder is not saved during rendering. Finally, ISun sets the intensity
of the Sun’s lamp for each sample. All these parameters, together with the artificial
noise added in Step3 , ensure domain randomization over the appearance of the
boulders, which should translate into robustness and generality in the data-driven
IP methods that will be using the DS3 dataset.

A.1.3.3 Post-processing

After rendering the 10000 samples, extensive post-processing is performed. First,
artificial noise is introduced to the images. The purpose of this step is not to
emulate a specific camera but rather to generate noise with varying characteristics
to develop a noise-agnostic IP method. The noise pipeline is developed in Matlab
and is composed of the following steps applied in this order to each image:

• A Gaussian filter is used over the image to simulate a generic blur. The
kernel is generated with σ = 0 .5 .

• Motion blur is simulated over the image by setting a variable length in pixels
and an orientation equal to 0 deg.

• Gaussian noise is added with a variable mean and a variance of 0 .0001 .
• A variable γ correction is applied to the image.
Other effects, such as dead buckets, dead pixels, blooming, or radiation effects,

are not simulated. In the pipeline, the noise added to the rendered images is
represented by a static and a dynamic component. The static has parameters that
stay the same for the entire dataset, while the dynamic changes for each sample.
The dynamic components of the noise correspond to the pixel length of the motion
blur (sampled with a uniform distribution between 0 .1 and 2), the mean value
of the Gaussian noise (sampled with a uniform distribution over the exponents
between 10−4 and 10−1 , and the gamma correction coefficient (sampled with
a uniform distribution between 0 .9 and 1 .1). After adding noise to the samples,
each image-label pair is split into five sub-samples, as illustrated in Figure A.12 for
image 00000j .

This strategy is also referred to as the “5-way split”. The first 4 subsamples are
cropped from the original image, while the fifth one is obtained through a resize of
the original image. The purpose of the 5-way split is twofold. First, to perform
data augmentation of the samples. Second, to obtain different regions imaged
at different scales and resolutions. After the split, a statistical characterization is
performed to remove spurious cases. These include 2498 cases in which the image
content is below a predefined threshold. A final pruning is also performed over the
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Figure A.12: Example of the 5-way split performed over an original image 00000j .

masks of the prominent boulders with an area below a predefined threshold. This
turned necessary from previous findings in DS2 . At the end of this pruning, the
split transforms the 10000 original dataset of 1024 ×1024 image-label pairs in
one made of 47502 samples at a resolution of 512 ×512 , which is closer to the
typical size used for training convolutional networks.

Finally, a data preparation step is included to extend the applicability of the
dataset. Indeed, up to this stage, only 2D masks have been handled as labels.
However, some techniques may require different standards. In particular, the dataset
format for the prominent boulders is made functional for You Only Look Once
(YOLO) [183] architectures. To accomplish this, the masks of the prominent
boulders are converted as lists of connected vertices and saved as .txt files.

A.2 Navigation datasets

A.2.1 DS4

This is the dataset used in [177]. The dataset is constituted by image-label pairs.
Its geometrical properties are summarized in Table A.11. The camera poses are
illustrated in Figure A.13 while dataset statistics are illustrated in Figure A.14.

In DS4 , four small bodies (Didymos D, Hartley H, Lutetia L and 67P P) are
considered, sharing the same camera poses. Adopting the same methodology used
in DS1 , artificial morphological features such as boulders and craters are added to
the reference shape model of these bodies. These are considered only as sources
of disturbance. Since each dataset is composed of the same set of points across
different bodies, scaling is applied to each body to make sure that different bodies
are all filling the FOV around 5 km.
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Table A.11: Properties of DS4 .

Parameter DSTr
4 DSV

4 DSTe
4

Number of images 7500 5000 5000
Range [km] [5, 30] [5, 30] [5, 30]

Azimuth [deg] [-90, 90] [-90, 90] [-90, 90]
Elevation [deg] [-45, 45] [-45, 45] [-45, 45]

(a) Top-view. (b) 3D view.

Figure A.13: Visualization of DS4 in position phase-space in the W reference frame. (a)
top-view and (b) 3D view.

To generate the input grayscale images, a camera with a 10×10 deg FOV and
a sensor of 1024 ×1024 pixels is considered. All images are rendered assuming
the ideal pointing towards the CoM of each body. The camera position associated
with each image is encoded as a label using five different strategies. The first one
consists of saving the optical observables linked to geometrical quantities that can
be directly extracted from images. These are:

δ = CoF−CoB , ρ (A.4)

where δ is the difference in pixels between the CoB and CoF of the body projected
in the image plane and ρ is the range from the CoM. These quantities can be used
to generate a position estimate in the camera frame, which can be transformed
in W or AS by simulating onboard attitude determination from a star-tracker
alongside the assumption of knowledge of the rigid rotation between the inertial
fixed reference frames used by star-tracker and the W or AS frames. The procedure
to do so is fully explained in Section 3.1.1.5.

The second and third label encodings are represented by the spacecraft position
respectively in spherical and cartesian coordinates in the W frame. Similarly, the
fourth and fifth encodings are represented by spherical and cartesian coordinates in
the AS frame.
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Figure A.14: Main geometric properties of DS4 . The binwidth is set to 0 .2 km and 1
deg, and probability is used as normalization.

By combining the four different small bodies with these five different labeling
strategies, a total of 20 image-label subsets are explored in DS4 . To navigate easily
among these datasets, the shared notation represented in Table A.12 is adopted. A
sample of the dataset is visible in Figure 5.12.
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Table A.12: Notation used for the DS4 dataset.

ID Body Frame Labels Notation

1 D - δ,ρ D1
2 H - δ, ρ H1
3 L - δ, ρ L1
4 P - δ, ρ P1
5 D AS ϕ1 ,ϕ2 ,ρ D2
6 H AS ϕ1 ,ϕ2 ,ρ H2
7 L AS ϕ1 ,ϕ2 ,ρ L2
8 P AS ϕ1 ,ϕ2 ,ρ P2
9 D AS X ,Y ,Z D3
10 H AS X ,Y ,Z H3
11 L AS X ,Y ,Z L3
12 P AS X ,Y ,Z P3
13 D W ϕ1 ,ϕ2 ,ρ D4
14 H W ϕ1 ,ϕ2 ,ρ H4
15 L W ϕ1 ,ϕ2 ,ρ L4
16 P W ϕ1 ,ϕ2 ,ρ P4
17 D W X ,Y ,Z D5
18 H W X ,Y ,Z H5
19 L W X ,Y ,Z L5
20 P W X ,Y ,Z P5

A.2.2 DS5

This is the dataset used in [173]. The dataset is constituted by image-label pairs,
where images are represented by segmentation masks. Its geometrical properties
are summarized in Table A.14. The camera poses are illustrated in Figure A.15
while dataset statistics are illustrated in Figure A.16.

Didymos (D) and Hartley (H) are considered in DS5 as representative of
regular and irregular small bodies. For simplicity, Dimorphos, the secondary body
of the Didymos binary system, is not considered in the renderings. A camera
sensor with a FOV of 10 ◦ is assumed, and the space around each shape model is
normalized based on the distance at which the maxim bounding box of the model
touches the edges of the image. This normalization distance is referred to as D0 .
Considering the shape models of the two bodies and the camera’s characteristics,
D0 = 4 .81 km for Didymos and D0 = 14 .41 km for Hartley.

Spherical shells around each body in the AS reference frame are obtained
enforcing the geometric constraints in Table A.14. From these shells, a total of
1176 regions are carved in polar coordinates. Intervals of 0 .1 BU, 15 deg, and
15 deg are considered respectively for the range, equatorial and elevation angles
(R−θ−ϕ), generating respectively 7 macro-classes for range and elevation angles
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(a) Top-view. (b) 3D view.

Figure A.15: Visualization of DS5 in position phase-space in the AS reference frame.
(a) top-view and (b) 3D view.

Figure A.16: Main geometric properties of DS5 . The binwidth is set to 0 .2 BU and 1
deg, and probability is used as normalization.

each and 24 macro-classes for the equatorial angle, for a total of 7×7×24 = 1176
classes. Some of these classes are illustrated in Figure 5.14. For each class, varying
illumination conditions are reproduced, assuming the Sun’s direction to lie within
the equatorial plane and with admissible phase angles between ±90 ◦. The pointing
is considered ideal. The splits between training, validation, and test sets are
summarized in Table A.13.

Tr1 comprises 7 image-mask pairs per class (taken at the center of the class
in polar coordinates) with 7 equally spaced phase angles. V1 and Te1 are taken
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Table A.13: Number of images per test case for each small-body shape.

Set Number of images SC position Sun orientation

Tr1 8232 Centered (Class) Regular
Tr2 35280 Uniform (Class) Uniform
V1 1500 Uniform (All) Uniform
V2 4704 Uniform (Class) Uniform
Te1 5000 Uniform (All) Uniform
Te2 432 Trajectory Trajectory

with randomly selected positions satisfying the spherical shell constraints and with
random illumination conditions. Tr2 and V2 sets are obtained by selecting 30 and
4 random positions within each class with random illumination conditions. Finally,
Te2 is made by regularly sampled positions taken from a 3-day orbit representative
of an operational scenario around Didymos from the Milani mission.

Table A.14: Properties of DS5 for D and H. H does not have samples for DSD−4
5 ,

which is only considered a case for Milani’s proximity operations around Didymos.

Parameter DSD−1
5 , DSD−3

5 DSD−2
5 DSD−4

5 DSD−5
5

Number of images 5000, 5000 15000, 15000 432, n.a. 1000, 1000
Range [BU] [0.65, 1.35] [0.65, 1.35] [0.77, 3.34] [0.65, 1.35]

Azimuth [deg] [-180, 180] [-180, 180] [-180,180] [-180, 180]
Elevation [deg] [-45, 45] [-45, 45] [-15, 15] [-45, 45]

The image-mask pairs are generated synthetically and processed using CORTO.
Both are 128 × 128 pixel wide, and the images are in grayscale. At the same
time, the segmentation masks assume five different discrete levels corresponding
respectively to the background, body surface, craters, boulders, and terminator
region. The procedure to generate the masks is the same as the one illustrated in
Section A.1.1 for DS1 .

A.2.3 DS6

This is the dataset used in [174]. It is divided into two portions, one used by the
CELM architecture and one used by the RNN one.

A.2.3.1 CELM dataset

Following the same procedure illustrated to generate DS1 and DS5 , a dataset
of 12500 segmentation maps around the primary of the Didymos binary system
is generated using CORTO. Each segmentation map is composed of 1024 ×
1024 pixels, each representing a specific morphological feature with a value from
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0 to 3: Background (0), surface (1), craters (2), and boulders (3). The main
properties of the dataset are illustrated in Table A.15.

Table A.15: Properties of DS6 .

Parameter DSTr(C)
6 DSV (C)

6

Number of images 7500 5000
Range [km] [5, 30] [5, 30]

Azimuth [deg] [-85, 85] [-85, 85]
Elevation [deg] [-50, 50] [-50, 50]

The range interval is always chosen to have the body resolved by the FOV of
the simulated sensor, which is 10 × 10 deg wide. The segmentation maps are
rendered assuming ideal pointing. They are accompanied by a set of labels that
can be extracted from the image and can be used to establish the position of a
spacecraft w.r.t the asteroid. Using the best-performing strategy illustrated in [177],
the (δ,ρ) labels are used. Each image is thus associated with a three components
vector: The first two components represent the estimated correction in pixel in
the image plane between the CoB and the projected CoM (also referred to as δ or
scattering correction), while the third component is the range ρ from the CoM of
Didymos.

Using the same preprocessing pipeline described in detail in Section 3.1.1.5
(without the inclusion of noise in the segmentation maps), data augmentation is
performed on the input, and each map-label pair is transformed into a 128 ×128
matrix with the asteroid not necessarily appearing centered in the frame but rather
randomly displaced in it. Input and labels are also normalized in preparation for
training.

The characteristic of the points in DS6 is chosen as a reasonable assumption
for a realistic proximity scenario and is based on previous experience gained on the
design of the proximity operations of the Milani mission. The camera poses of DS6

are illustrated in Figure A.17 while dataset statistics are illustrated in Figure A.18.

A.2.3.2 RNN dataset

Using the dynamical model illustrated in [154] and the propagator tool developed to
design the CPO of Milani, a dataset of position-velocity pairs is generated for DS6 .
The dynamical model considered three main accelerations: the gravity of Didymos,
the third-body effect of the Sun, and the solar radiation pressure. Differently
than the model in [154], the gravitational acceleration caused by Dimorphos, the
secondary body of the Didymos binary system, is not modeled. The gravity of
Didymos is modeled as a point mass for regions above 1 .1 km and using a polyhedra
model below this range. This threshold is clearly illustrated in the perturbation
analysis in [154]. Also, instead of having the position of Didymos and the Sun
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(a) Top-view. (b) 3D view.

Figure A.17: Visualization of DS6 in position phase-space in the W reference frame. (a)
top-view and (b) 3D view.

Figure A.18: Main geometric properties of DS6 . The binwidth is set to 0 .2 km and 1
deg, and probability is used as normalization.

resolved precisely using ESA’s Hera mission kernels as in [154] at any given time,
both Didymos and the Sun positions are assumed at a fixed epoch to simplify the
analysis, and allow an adequate comparison between the different CPOs.

In such an environment, trajectories are designed using a strategy consisting of
ballistic arcs patched together at maneuver points [169], called waypoints. Each
ballistic arc between two consecutive waypoints is based on a step-wise differential
correction procedure and is the result of an iterative targeting problem. First,
initial conditions are set that determine the ballistic trajectory to be flown by the
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spacecraft. These include the position of the two waypoints, the initial epoch,
and the time of flight between waypoints. Second, a restricted two-body problem
Lambert’s solver is used to find a suitable first guess solution for the initial velocity.
Third, the initial state is propagated forward using the dynamical model. The
deviation between the actual endpoint and the desired one is used to compute a
correction term on the initial velocity generated at the previous step. The last step
is iterated until the discrepancy between the two end states is below an arbitrarily
defined threshold. More details about the differential correction scheme can be
seen in [154, 169].

Using such a scheme in combination with the dynamical model, a total of
144411 trajectory points scattered across Didymos are generated. These are
divided into two main groups, made of 96000 and 48411 points.

The first comprises short pieces of open trajectories computed from 800 Initial
Condition (IC)s randomly distributed across the position and velocity phase space,
as illustrated in Figure A.19 and Figure A.21. These trajectories are obtained from
a forward propagation with a fixed timestep of 150 s for a total of 120 steps. Note
that the training, validation, and test splits in Table A.16 are divided consistently
in different random trajectories so that respectively 640 , 80 , and 80 ICs are used
for each split. The main properties of the dataset are illustrated in Table A.16,
while the histogram distributions are illustrated in Figure A.20 and Figure A.22

Table A.16: Properties of DS6 .

Parameter DSTr(R)
6 DSV (R)

6 DSTe(R)
6

Number of images 76800 9600 9600
Range [km] [5, 30] [5, 30] [5, 30]

Azimuth [deg] [-85, 85] [-85, 85] [-85, 85]
Elevation [deg] [-50, 50] [-50, 50] [-50, 50]

The second group, made of 48411 points, comprises closed trajectories from
7 different ICs, which include intermediate maneuvers. Closed trajectories are
obtained by simply constraining the first and last waypoints to be the same, using
the differential correction scheme used in [154] and described before. This dataset
is made of 48411 points, which are entirely used for testing. The CPOs described
in this dataset are representative of possible geometries to be used in the proximity
of a small body and, in particular, are representative of real CPOs, which can
be adopted around the Didymos asteroid [154]. The geometries are arbitrarily
chosen from experience gained on the Milani mission as well as loosely inspired
from geometries seen in previous missions around small bodies such as in [184].

Once the position-velocity pairs have been determined from the dynamical
model for all datasets, segmentation maps are generated for each of the 144411
trajectory points of DSR

6 . Each map is then used in inference for the best CELM
obtained in the previous section to generate 144411 ×2 position estimates (with
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(a) 3D view. (b) XZ view.

(c) YZ view. (d) XY view.

Figure A.19: Visualization of DS6 in position phase-space in the W reference frame.

the use of ρo or ρl , see Section 5.3).
After this passage, the entire dataset is transformed into a sequence of fixed-

interval position-velocity pairs expressed in W reference frame. It is noted that
computing the position estimate apriori greatly simplifies and speeds up the training
of the RNN while retaining its capability to be developed for an onboard application.

Each of the 807 different trajectories considered for the RNN is divided into
multiple shards defined by three parameters: the time interval between position
estimates ∆T (which is a multiple of 150 s), the total number of position estimates
N from the CELM to be used to generate an estimate with the RNN, and the
initial sample of the shard from the original trajectory j . In this paper, 5 possible
combinations of (∆T ,N) are investigated, as illustrated in Table A.17, while j is
rolled forward until there are enough points in the trajectory to generate a shard of
N samples. For simplicity, the test sets are divided into Te1 and Te2 , respectively
representing the random shards within the training envelope generated by the 80
ICs, and the ones of the 7 CPOs illustrated in Figure A.19 and Figure A.21.
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Figure A.20: Main properties of DS6 in the position-phase space. The binwidth is set to
0 .2 km and 1 deg, and probability is used as normalization.

Table A.17: Number of shards in each train, validation, and test sets for each possible
combination investigated.

∆T N Train Validation Te1 Te2
150 5 74240 9280 9280 48303
150 30 58240 7280 7280 47628
1800 5 46069 5760 5760 47104
3600 5 15337 1920 1920 45796
5400 3 30685 3840 3840 46432
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(a) 3D view. (b) XZ view.

(c) YZ view. (d) XY view.

Figure A.21: Visualization of DS6 in velocity phase-space in the W reference frame.

Figure A.22: Main properties of DS6 in velocity-phase space. The binwidth is set to
0 .002 m/s and probability is used as normalization.
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A.3 Milani datasets

A.3.1 DS7

This is the dataset used in [32, 178]. The dataset is a mixed-input one, constituted
both by images and feature vectors. Its geometrical properties are summarized in
Table A.18. The camera poses are illustrated in Figure A.23 while dataset statistics
are illustrated in Figure A.24.

Table A.18: Properties of DS7 .

Parameter DSDB0
7 DSFRP

7 DSCRP
7

Number of images 10000 12102 16020
Range [km] [4.0, 14.0] [8.7, 14.0] [2.1, 11.0]

Azimuth [deg] [-95.0, 95.0] [-70.0, 69.5] [-86.0, 74.6]
Elevation [deg] [-45.0, 45.0] [-39.4, 33.6] [-12.9, 16.8]

D1 is observable [%] 100 100 100
D2 is not observable [%] 19.04 11.12 14.62

D2 separated from D1 [%] 73.40 76.54 61.62
D2 close to D1 [%] 7.56 12.35 13.76

DS7 is divided into three subsets: DSDB0
7 , used for training and validation,

DSFRP
7 and DSCRP

7 , used for testing. All datasets represent imaging conditions
around the Didymos binary system. DSDB0

7 represents a statistical sample of images
of the system seen from different points of view. It comprehends randomly generated
points in the W reference frame with the properties illustrated in Table A.18. During
the generation of the images, the angular position of the D2 with respect to D2 is
changed randomly, constraining D2 to be tidally locked with D1. Instead, DSFRP

7

and DSCRP
7 are obtained by sampling the FRP and CRP trajectories of the Milani

mission every 150 s while using the bodies ephemerides.
For simplicity, ideal pointing towards the CoM of D1 is assumed, and the images

are obtained with the NavCam without the application of artificial noise. Moreover,
the X axis of the NavCam is aligned with the equatorial plane of the binary system,
assuming that the Z axis represents the boresight direction and the X and Y axes
are, respectively the ones associated with the longest and shortest size of the sensor.
The shape models of D1 and D2 are enhanced versions of the baseline models from
[138], processed with procedural changes and re-mesh to simulate roughness and
albedo variations with cloud and Voronoi patterns. A 10 m crater is also added on
D2.

Due to the geometrical configuration of D1, D2, and Milani, several occultation
phenomena can happen that act as a disturbance in the images.

Finally, the images of DS7 are also used to extract 12-component feature
vectors from geometrical quantities extracted from the images. These components
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(a) XY view. (b) 3D view.

Figure A.23: Visualization of DS7 in position phase-space in the W reference frame. (a)
top-view and (b) 3D view.

Figure A.24: Main geometric properties of DS7 . The binwidth is set to 0 .2 km and 1
deg, and probability is used as normalization.

correspond to the bounding box Γ = [ Γu , Γv , Γw , Γh ] represented by its upper-left
corner coordinates and its width and height, the eccentricity e, minor and major axis
lengths, respectively δm and δM , and orientation θ of the ellipse fitted to the blobs
of pixel associated with D1 with the same second order moment, the perimeter p,
area A of the blobs of pixels associated to D1, the circularity c , computed as 4πA

p2
,

the equivalent diameter δeq of the circle which has the same area of the blob of
pixels, and the coordinate of the CoB of the blobs of pixels associated with D1.
These quantities can be used in substitution of the images to represent them.
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A.3.2 DS8

This is the dataset used in [158]. The dataset is constituted by image-label pairs.
Its geometrical properties are illustrated in Table A.19 while the datasets statistics
and camera poses are represented in Figure A.26 and Figure A.25. The dataset
is generated with the same setup of DS7 illustrated in Section A.3.1, the main
difference being an update in the CRP trajectory.

Table A.19: Properties of DS8 .

Parameter DSDB0
8 DSFRP

8 DSCRP
8

Number of images 36400 12102 20164
Range [km] [3.0, 22.0] [8.7, 14.0] [2.4, 21.3]

Azimuth [deg] [-92.0, 92.0] [-70.0, 69.5] [-82.0, 90.5]
Elevation [deg] [-42.0, 42.0] [-39.4, 33.6] [-10.0, 20.0]

D1 is observable [%] 100 100 100
D2 is not observable [%] 19.15 11.54 17.21

D2 separated from D1 [%] 72.41 76.17 68.75
D2 close to D1 [%] 8.45 12.29 14.04

(a) Top-view. (b) 3D view.

Figure A.25: Visualization of DS8 in position phase-space in the W reference frame. (a)
top-view and (b) 3D view.



A.3. Milani datasets 275

Figure A.26: Main geometric properties of DS8 . The binwidth is set to 0 .2 km and 1
deg, and probability is used as normalization.

A.3.3 DS9

This is the dataset used in [119]. The dataset is constituted by image-label pairs.
Its geometrical properties are illustrated in Table A.20 while the datasets statistics
and camera poses are represented in Figure A.28 and Figure A.27.

Table A.20: Properties of DS9 .

Parameter DSDS0
9 DSDS1

9 DSDS2
9 DSFRP

9 DSCRP
9

Number of images 10000 5000 2840 4032 4032

Range [km] [4.0, 14.0] [4.0, 14.0] [4.0, 14.0] [8.7, 14.0] [2.1, 11.0]

Azimuth [deg] [-95.0, 95.0] [-95.0, 95.0] [-95.0, 95.0] [-70.0, 69.5] [-86.0, 74.6]

Elevation [deg] [-45.0, 45.0] [-18.0, 18.0] [-45.0, 45.0] [-39.4, 33.6] [-12.9, 16.8]

As of DS8 , the dataset is generated with the same setup of DS7 illustrated
in Section A.3.1, the main difference being the camera’s properties. In DS9 , the
camera is not modeled as the Milani’s camera, but rather following the specification
of the Basler camera mounted by default within the TinyV3RSE facility, illustrated
in Section 3.2.

The camera poses of DSDS0
9 , DSDS1

9 , and DSDS2
9 are set randomly. DSDS0

9 is
used for training, while DSDS1

9 and DSDS2
9 are used for testing. DSDS1

9 represents
random conditions different than DSDS0

9 while DSDS2
9 represents challenging

conditions in which D2 is overlapping partially or totally with D1. These cases are
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(a) XY view. (b) 3D view.

Figure A.27: Visualization of DS9 in position phase-space in the W reference frame. (a)
top-view and (b) 3D view.

Figure A.28: Main geometric properties of DS9 . The binwidth is set to 0 .2 km and 1
deg, and probability is used as normalization.

explored since they tend to worsen the algorithm’s performance. Finally, DSFRP
9

and DSCRP
9 are test cases sampled every 150 s from the first two arcs of the FRP

and CRP of Milani. In these datasets, the only modification made to the trajectory
is to slightly scale the range to compensate for the different FOV of the mission
camera employed with respect to Milani’s navigation camera.

Exploiting DSDS1
9 , three additional datasets are generated sharing the same

geometric conditions. In the first one, the dimensions of the body along all directions
have been reduced by 5%. In the second set, only the z direction of the body
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frame has been scaled by 5%, thus increasing the oblateness of the body. Finally,
in the last set, the oblateness has instead been reduced by scaling only the x and y
axes of the body by 5%. These values have been selected from [138].

All the datasets, except DSDS0
9 , have been acquired using TinyV3RSE to

test the performance of the algorithms. DSDS1
9 has been acquired with different

camera settings to study the effect of the exposure time and the blur on algorithm
performance. The exposure time has been set to span from highly under-exposed
images to highly over-exposed ones. In particular, five values have been tested:
1 ms, 4 ms, 7 ms, 10 ms, and 50 ms. Furthermore, after fixing the exposure
time, images with three levels of blur have been acquired, characterized by an
increasingly wider point-spread-function with σblur equal to 0 .77 , 1 .47 and 2 .60
pixel. Samples of images of DSDS1

9 are illustrated in Figure 6.29 and Figure 6.30.

A.3.4 DS10

This is the dataset used in [164]. The dataset is a mixed-input one, constituted
both by images and feature vectors. Its geometrical properties are summarized in
Table A.21. The camera poses are illustrated in Figure A.29 while dataset statistics
are illustrated in Figure A.30.

Table A.21: Properties of DS10 .

Parameter DSTr
10 DSV

10 DSTe
10

Number of images 4000 500 500
Range [km] [10, 40] [10, 40] [10, 40]

Azimuth [deg] [-120, 120] [-120, 120] [-120, 120]
Elevation [deg] [-30, 30] [-30, 30] [-30, 30]

(a) XY view. (b) 3D view.

Figure A.29: Visualization of DS10 in position phase-space in the W reference frame.
(a) top-view and (b) 3D view.
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Figure A.30: Main geometric properties of DS10 . The binwidth is set to 0 .2 km and 1
deg, and probability is used as normalization.

Once again, the rendering procedure is similar to the one illustrated for DS7 ,
with few substantial differences. Images are rendered in Blender using CORTO
and the Cycles rendering engine at 1024 ×1024 pixels with a FOV of 5 .5 deg.
These conditions are representative of the onboard Hera’s navigation camera. The
images are also rendered with an ideal pointing towards the CoM of D1 and with a
random boresight rotation. Domain randomization is applied by adding a variable
artificial noise to each image and by changing the albedo and coefficients of the
scattering law used at each acquisition.

The same geometric conditions for the renderings are used to generate different
versions of the DS10 dataset with different scaling of the Didymos model across
the z-axis sz .

To generate the feature vector associated with each image, the images of the
DS10 dataset with sz = 0 .78s0 are passed through the IP of Milani. These steps
generate intermediate geometrical features that are guaranteed to be generated
onboard the CubeSat. Each image is then associated with 14 components feature
vector. The components can be divided into three main groups: associated directly
with the blob of pixels of D1 (fD1 ), associated with the blob of pixels of the edge
region of D1 (fedge), and combined properties between fD1 and fedge (fcomb).

fD1 = [log10 (νarea), log10 (νper ),νcirc ,νext ,νe ]D1 (A.5)

fedge = [log10 (νarea), log10 (νper ),νcirc ,νext ,νe ]edge (A.6)
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To compose fD1 and fedge the area (νarea), perimeter (νper ), circularity (νcirc),
extent (νext), and eccentricity (νe) are put together. On the other hand, to
compose fcomb, more complex relationships are used based on previous experience.
ν1 is evaluated as the ratio between the perimeter of the blob of pixels of D1 and
the sum of the perimeters of the multiple edge regions detected in the image. ν2
is evaluated as the ratio between the perimeter of the blob of pixels of D1 and
the sum of the areas of the multiple edge regions detected in the image. ν3 is
computed as a summation over the entire image of the normalized activation map
after the application of a Sobel filter to the image. Finally, ν4 is computed as the
ratio between the eccentricity of the blob of pixels of D1 and the eccentricity of
the edge region. These components are then put together as follows:

fcomb = [tanh(ν1 ), tanh(ν2 ), log10 (ν3 ),ν4 ]
comb (A.7)

Finally, for each image, the feature vector of 14 elements is composed as fx =
[fD1 , fedge , fcomb]. It is emphasized that the full DS10 datasets with sz = 0 .78s0
and sz = s0 are made publicly available for the interested readers at the following
link together with the values illustrated in Section 6.6.3.3, and the expansion
coefficients for the aPC and PCE: https://zenodo.org/record/7962714

https://zenodo.org/record/7962714
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HCELM3 Hybrid Convolutional Extreme Learning Machine 3.
UNetH UNet Hybrid.
UNetR UNet Real.
UNetS UNet Synthetic.
UNetAS UNet Synthetic Augmented.

ADCS Attitude Determination and Control System.
AI Artificial Intelligence.
AIDA Asteroid Impact and Deflection Assessment.
AOCS Attitude and Orbital Control System.
aPC arbitrary Polynomial Chaos.
ASI Agenzia Spaziale Italiana.
AutOpNav Autonomous Optical Navigation experiment.

BU Blender Unit.

CDR Concurrent Design Review.
CELM Convolutional Extreme Learning Machine.
CMOC CubeSat Mission Operation Centre.
CNN Convolutional Neural Network.
CoB Center of Brightness.
COB Center Of Brigthness.
CoF Center of Figure.
CoM Center of Mass.
CORTO Celestial Object Rendering TOol.
CPO Close Proximity Orbit.
CRP Close Range Phase.

D1 Didymos.
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D2 Dimorphos.
DART Deep-space Astrodynamics Research & Technology.
DART Double Asteroid Redirection Test.
DFKI Deutsches Forschungszentrum für Künstliche Intelligenz.
DL Deep Learning.

EKF Extended Kalman Filter.
ELM Extreme Learning Machine.
ESA European Space Agency.
EXP EXperimental Phase.

FOV Field Of View.
FPS Frames Per Second.
FRP Far Range Phase.

GD Gradient Descent.
GNC Guidance Navigation and Control.
GPU Graphic Processing Unit.

HCELM Hybrid Convolutional Extreme Learning Machine.
HIL Hardware-In-The-Loop.

IC Initial Condition.
ICD Inter-Class Distance.
ImP Image Plane.
IMU Inertial Measurement Unit.
IoU Intersection over Union.
IP Image Processing.
ISL Inter-Satellite Link.

JAXA Japan Aerospace Exploration Agency.

KF Kalman Filter.

LASSO Least Absolute Shrinkage and Selection Operator.
Leaky ReLU Leaky Rectified Linear Unit.
LiDAR Light Detection And Ranging.
LoS Line of Sight.
LS Leas Square.
LSTM Long-Short Term Memory.
LUMIO LUnar Meteoroid Impact Observer.

MAE Mean Absolute Error.
MBGD Mini-Batch Gradient Descent.
mIoU mean Intersection over Union.
ML Machine Learning.
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MONET Minor bOdy geNErator Tool.
MSE Mean Squared Error.

NASA National Aeronautics and Space Administration.
NCC Normalized Cross Correlation.
NEA near-Earth asteroid.
NEOC Navigation Experiment Operation Centre.
NFT Natural Feature Tracking.
NN Neural Network.
nReLU Normalized Rectified Linear Unit.
NRMSE Normalized Root Mean Square Error.

OD Orbit Determination.
OSL Open Shading Language.

PANGU Planetary Planet and Asteroid Natural scene Generation Utility.
PBSDF Principled Bi-directional Scatter Distribution Falloff.
PCA Principal Components Analysis.
PCE Polynomial Chaos Expansion.
PDR Preliminary Design Review.
PoE Power over Ethernet.

ReLU Rectified Linear Unit.
RIC Robotic Innovation Center.
RMSE Root Mean Squared Error.
RNN Recurrent Neural Network.
ROI Region Of Interest.
RW Reaction Wheel.

SADA Solar Array Drive Assembly.
SCCE Sparse Categorical Cross Entropy.
SGD Stochastic Gradient Descent.
SISPO Space Imaging Simulator for Proximity Operations.
SPC Stereo Photo Clinometry.
SRP Solar Radiation Pressure.
SS Sun Sensor.
SSIM Structural Similarity Index.
SSTO Sun-Stabilized Terminator Orbit.
SSWCOB Sun-Sensor Weighted Center Of Brigthness.
STM State Transition Matrix.
STR Star Tracker.

TF TensorFlow.
TinyV3RSE Tiny Versatile 3dimensional reality simulation environment.
TRL Technology Readiness Level.
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UNet U-Shaped Network.

WCOB Weighted Center Of Brigthness.
WSCCE Weighted Sparse Categorical Cross Entropy.

YOLO You Only Look Once.
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This manuscript was typeset in LATEX. The style was inspired by Dr. Gianmario
Merisio’s doctoral dissertation Engineering ballistic capture for autonomous inter-
planetary spacecraft with limited onboard resources (2023).
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