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Abstract

Motor speech impairments are often the first symptoms in several neurodegenerative dis-
eases. In particular, articulatory errors such as apraxia of speech and/or dysarthria are
the most typical initial symptoms of non-fluent/agrammatic variant primary progressive
aphasia (nfvPPA), a disorder that progressively debilitates the production of speech. The
evaluation of motor speech deficits is still based on perceptual and subjective judgments
of clinicians. Dynamic speech MRI (dsMRI) is a non-invasive technique able to image
the entire vocal tract and its change over time with high contrast and high temporal res-
olution, while participants speak in the scanner. The objective of this work is to develop
an automatic vocal tract segmentation tool (VTS-tool) by leveraging recent advances in
deep learning models (advanced UNets) and dsMRI images to extract the contouring of
the main articulators. Specifically, the following articulators were automatically identi-
fied: the upper and lower lips, the soft and hard palate, and the tongue with epiglottis.
Moreover, we implemented a simple spatial measure to follow the change of articulators
over time. We used a dataset composed of 970 dynamic MRI images from 4 young control
subjects and 1 nfvPPA patient, representing the mid-sagittal view of their vocal tract
during the repetition of specific speech stimuli. First, we provided a manual annotation
of the contouring of the main articulators under the supervision of an expert radiologist.
These manual segmentations were used to train and test 95 networks composed by the
combination of 5 UNets and 19 singular and compound loss functions. Their accuracy was
assessed by Dice, Hausdorff Distance and Global Consistency Error metrics. A statistical
analysis based on Kruskal Wallis Test was used to identify the three best networks among
the 95 tested and a subject-one-out cross validation was conducted to test their generaliz-
ability. The best networks showed good metrics results: a median Dice of 0.92, a median
Hausdorff Distance of 0.32 and a median Global Consistency Error of 0.0011. Cross val-
idation results also demonstrated that these networks achieve good generalizability and
don’t suffer from overfitting problem. Best networks were all built with compound loss
functions made by three or four losses, proving the superiority of multiple losses compared
to double or singular ones.
Keywords: UNet, vocal tract segmentation, compound losses, dynamic speech MRI
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Abstract in lingua italiana

I disturbi motori del linguaggio sono spesso i primi sintomi di molte malattie neurode-
generative. In particolare, gli errori articolatori come l’aprassia del linguaggio e/o la
disartria sono i sintomi iniziali più tipici dell’afasia progressiva primaria con variante
non fluente/agrammatica (nfvPPA), un disturbo che debilita progressivamente la pro-
duzione del linguaggio. Ad oggi la valutazione dei deficit motori del linguaggio si basa
sulla valutazione percettiva e soggettiva dei clinici. La risonanza magnetica dinamica
del parlato (dsMRI) è una tecnica non invasiva in grado di visualizzare l’intero tratto
vocale e il suo cambiamento nel tempo durante il parlato, con un contrasto elevato e
un’elevata risoluzione temporale. L’obiettivo di questo lavoro è sviluppare uno strumento
di segmentazione automatica del tratto vocale (VTS-tool) sfruttando i recenti progressi
nei modelli di deep learning (UNet avanzate) e le immagini dsMRI per estrarre il con-
torno dei principali articolatori. Nello specifico sono stati identificati automaticamente
i seguenti articolatori: le labbra superiori e inferiori, il palato molle e duro e la lingua
con l’epiglottide. Inoltre, abbiamo implementato una semplice misura spaziale per moni-
torare l’andamento degli articolatori nel tempo. Abbiamo utilizzato un dataset composto
da 970 immagini dsMRI di 4 giovani soggetti di controllo e 1 paziente nfvPPA, che rapp-
resentano la vista medio-sagittale del loro tratto vocale durante la ripetizione di specifici
stimoli vocali. In primo luogo, abbiamo fornito un’annotazione manuale del contorno dei
principali articolatori sotto la supervisione di un radiologo esperto. Queste segmentazioni
manuali sono state utilizzate per addestrare e testare 95 reti formate dalla combinazione
di 5 UNet e 19 funzioni di perdita singole e composte. La loro accuratezza è stata valutata
dalle metriche Dice, Hausdorff Distance e Global Consistency Error. Un’analisi statistica
basata sul test di Kruskal Wallis è stata utilizzata per identificare le tre migliori reti tra le
95 testate ed è stata condotta una subject-one-out cross-validazione per testarne la gen-
eralizzabilità. Le migliori reti hanno mostrato buoni risultati: un valore mediano di Dice
di 0.92, un valore mediano di Hausdorff Distance di 0.32 e un valore mediano di Global
Consistency Error di 0.0011. I risultati della cross-validazione hanno anche dimostrato
che queste reti raggiungono una buona generalizzabilità e non presentano problemi di
overfitting. Le migliori reti sono state tutte costruite con funzioni di perdita composte



formate da tre o quattro elementi, dimostrando la superiorità delle funzioni di perdita
multiple rispetto a quelle doppie o singole.
Parole chiave: UNet, segmentazione del tratto vocale, funzioni di perdita composte,
risonanza magnetica del parlato



v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1
0.1 Clinical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.3 Thesis aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 State of the Art 7
1.1 Dynamic MRI of human speech production . . . . . . . . . . . . . . . . . . 7
1.2 Image segmentation based on deep learning methods . . . . . . . . . . . . 8

1.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 9

2 Materials and Methods 15
2.1 Dataset realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Data collection in video format and protocol description . . . . . . 15
2.1.2 GUI realization and frames extraction . . . . . . . . . . . . . . . . 17
2.1.3 Manual segmentation of images . . . . . . . . . . . . . . . . . . . . 19

2.2 Dataset preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Dataset visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Hausdorff Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Dice Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Global Consistency Error . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 Overall Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.5 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . 30



vi | Contents

2.4 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Distribution-based losses . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Region-based losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 Compound losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 Other losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.5 Loss functions behaviour comparison . . . . . . . . . . . . . . . . . 38

2.5 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 Ruthven-UNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 QT-UNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.3 IM-UNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.4 IM-UNet with attention block . . . . . . . . . . . . . . . . . . . . . 48
2.5.5 CEL-UNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Networks Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 55
2.6.1 Statistical tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6.2 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Post processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8 Vocal Tract Segmentation tool (VTS-tool) . . . . . . . . . . . . . . . . . . 58

3 Results 61
3.1 Networks results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Dice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2 Hausdorff Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.3 Global Consistency Error . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.4 Overall Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.1 Networks Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.2 Best Networks Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Cross Validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Post processing results of control subjects . . . . . . . . . . . . . . . . . . 76

3.4.1 Metrics results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.2 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.3 Segmentation output . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Post processing results of patient . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.1 Metrics results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.2 Segmentation output . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Vocal Tract Segmentation tool results . . . . . . . . . . . . . . . . . . . . . 85

4 Discussion 87



4.1 Loss functions results analysis . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Architectures results analysis . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Best networks results analysis . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Patient results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Post processing results analysis . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Vocal Tract Segmentation tool results analysis . . . . . . . . . . . . . . . . 90

5 Conclusion and future development 91

Bibliography 93

A Appendix A 97

List of Figures 99

List of Tables 103

List of Symbols 105

Acknowledgements 107





1

Introduction

0.1. Clinical Context

Speech articulation is the most complex motor activity humans perform, demanding pre-
cise spatio-temporal coordination of more than a hundred muscles. These finely coordi-
nated movements modify the shape of the vocal tract to produce distinct speech sounds.
To produce fluent speech, each component needs to be combined with movement of other
articulators in an independent fashion [1]. Articulation requires precise motor planning
and motor execution and is subserved by a neural network of cortical and subcortical
structures [2]. A schematic representation of the anatomy of interest of the vocal tract is
depicted in Figure 1. Following the path of the air from outside to inside you meet the
upper and lower lips, tongue and hard palate, velum (or soft palate), epiglottis and vocal
cords. The dark pink part is the overall vocal tract, which is the portion filled with air.
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Figure 1: Schematic representation of vocal tract anatomy assessed via https://www.

britannica.com/science/phonetics

Difficulties with articulation are called motor speech impairments and may be the first
symptoms of several neurodegenerative diseases including non-fluent/agrammatic vari-
ant primary progressive aphasia (nfvPPA), corticobasal syndrome (CBS), progressive
supranuclear palsy (PSP), amyotrophic lateral sclerosis (ALS) and Parkinson’s disease
[3], [4]. In particular, motor speech impairments are the most common features of
nfvPPA, a clinical syndrome most commonly caused by frontotemporal lobar degener-
ation (FTLD)-tau pathology [5]–[7], manifesting as progressive apraxia of speech (AOS)
and/or dysarthria and/or grammatical impairments [8]. In speech production models AOS
results from damaged/noisy speech motor program representations, leading to inconsis-
tent speech patterns, consonant and vowel distortions, and alterations to the prosodic and
temporal dimensions of speech (motor planning impairment) [9]–[12]. Dysarthria (and its
subtypes) lead to a wide range of speech profiles, which include distortions and speech
rate impairments, but as a motor execution impairment, occurs in consistent patterns [3].
Motor speech impairments remain difficult to identify and quantify by non-expert clini-
cians. Currently diagnosis relies on perceptual and subjective judgment of expert Speech-
Language Pathologists (SLPs). Automatic acoustic analysis of speech production errors
can eventually provide additional objective and quantifiable information if used in tan-

https://www.britannica.com/science/phonetics
https://www.britannica.com/science/phonetics
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dem with methodologies able to add pathophysiological information. Linking the vocal
tract’s shape alterations with clinical and acoustic speech evaluations has the potential
of better defining the anatomical changes of specific articulation deficits. It also might
provide an effective tool for diagnosis and monitoring of neurodegenerative diseases while
clarifying and characterizing the origin of speech production errors. However, existing
methods to measure or image speech articulation are intrusive and/or cannot provide
direct measurements or complete visualization of the dynamics of the entire vocal tract.
MRI sequences have several advantages over other existing instrumental approaches that
either have limited spatial coverage of the vocal tract (ultrasound, electropalatography),
are invasive (cine x-ray and optical coherence tomography), or alter articulatory kinemat-
ics (electromagnetic articulography). In particular an innovative MR technology, dynamic
speech MRI (dsMRI) offers a unique opportunity for fast, direct, non-invasive, real-time
visualization of the changes in the vocal tract, including the deeper articulatory struc-
tures, while individuals produce speech in the MRI [13]–[17]. Technical difficulties in
implementation, image processing and analysis have so far limited its application to clin-
ical populations [13]–[17]. Recently, advances in the developmental of fast MR imaging
sequences have finally helped in significantly improving the temporal resolution of the
acquired images using parallel and multiplane imaging techniques [17]–[20].

Despite these important advances, the analysis of these data poses significant challenges
mainly in the developing of standardized and automatic post-processing techniques. In
general, because of the number of articulators involved in the speech production and the
overall complexity of their anatomy, there are still no gold standard datasets or annota-
tions available and this makes difficult to evaluate the performance of proposed automated
analysis. The existing techniques used to analyze real time MRI images to investigate
speech properties and anatomy can be summarized in four classes as presented in a review
paper from Ramanarayanan et al. 2018 [21].

1. Basic decomposition or matrix factorization techniques : this class of techniques
operates at the whole image level in order to obtain spatio-temporal basis functions
of the articulators’ movement associated to linguistic gestures;

2. region of interest (ROI)-based : this class of techniques is based on the manual de-
marcation of the regions of interest of which variation can provide useful information
regarding linguistic or clinical questions;

3. grid-based : this class of techniques is based on a reference coordinate system that
is superposed a sagittal view of vocal tract to facilitate the calculation of the vocal
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tract area functions by the identification of points of intersection between soft tissue
and gridlines;

4. contour-based : this class of techniques is based on the extraction of all the tissue
boundaries belonging to structures recruited during speech production and provides
more detailed anatomical information.

The classification described above is based on the following parameters:

1. processing method;

2. type of output information;

3. auxiliary or prior information necessary to apply the method (e.g. manual labelling,
anatomical atlas, prior knowledge);

4. complexity of the implementation;

5. abstraction level of the output information.

Each of this approach presents its advantages and disadvantages but overall the choice
of methods and analysis depends on different factors, and most important on the specific
research goal. In this thesis, we focus on the last class of methods in order to develop
an automated image-segmentation tool to extract the surfaces of the main articulators
that are critically involved in speech production. Using this tool, we aim to extract
objective and quantitative metrics that can provide useful information to detect motor
speech impairments and follow the progression of the disease over time.

0.2. Data Collection

This thesis is integrated into the larger exploratory research study, conducted by a multi-
disciplinary team from Department of Neurology and Department of Radiology of Univer-
sity California San Francisco (UCSF). This study consists of the enrollment of 10 young
and 20 older healthy controls as well as 15 nfvPPA patients from active projects at the
UCSF Memory and Aging Center (MAC) and the Language Neurobiology Laboratory
(ALBA). Participants are trained first outside of the MR scanner by an SLP who will
rehearse with the patient the entire study procedure.
The speech stimuli provided are structured hierarchically to include alternating and se-
quential diadochokinesis tasks, single syllable and polysyllabic words, and orally read
paragraphs. The priority is given to words and stimuli that have been found to elicit
errors in patients with neurodegenerative articulatory disorders. This includes high travel
words for which the tongue must articulate to the front and then to the back of the mouth
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(topcop), multiple repetitions of polysyllabic words, and connected speech. By including
multiple instances of each consonant, consonant cluster and vowel, a wide range of per-
missible articulatory movements in Standard American English is recorded. Here below
the entire protocol used [22]:

1. diadochokinesis alternating and sequential motion rates (pa, ta, ka and pataka) as
fast and as clearly as possible for 10 seconds;

2. reapeted trials of polysyllabic word repetition: Microscopic, Segregation, Artillery,
Catastrophe, Banana;

3. repeated trials of fast and clear repetition of a two syllabe word with high articula-
tory travel: Topcop;

4. CVC words to elicit vowels rom across the vowel quadrilateral space: Heat, Hot,
Hurt, Hoot, Hat, Head, Hit, Hub;

5. grandfather passage reading.

After training, all participants will undergo MRI on a 3T Siemens Prisma scanner equipped
with a 64-channel head/neck array where they will repeat the speech stimuli during the
MRI acquisition. Pre-recorded audio and video instructions and stimuli will be delivered
via headphones and the participants’ audio responses will be recorded simultaneously with
the MRI acquisition at a sampling frequency of 16 kHz using a FOMRI III optoacous-
tic fibre-optic microphone with adaptive noise cancellation algorithms. Additional audio
post-processing will be performed off-line to reduce the additional scanner noise with de-
noising algorithms [23]. A mid-sagittal slice for dynamic speech MRI will be acquired
during the speech stimuli with a 2D radio-frequency-spoiled radial gradient (RF-spoiled
radial GRE) sequence with the following parameters: TR = 2.2 msec, TE = 1.4 msec,
flip angle = 4deg, FOV 210x210x10mm3, pixel size = 1.6 x 1.6 mm2, bandwidth = 1500
Hz/pixel. This sequence was implemented in the Department of Radiology at Univer-
sity Medical Center Freiburg [24] and optimized for the 3T scanner at UCSF. The use of
higher magnetic fields (3T rather than 1.5T) allows to gain higher signal to noise ratio and
better image contrast for segmentation analysis. The acquisition produces approximately
25 frames of a mid-sagittal view per second, or 1500 frames per participant per minute of
speaking.
Reconstruction of the images consists of inverse 2D Fourier transformation of the raw
data, by using 25 subsequent projections with a sliding-window technique to increase
temporal resolution [24]. The reconstruction process will be conducted off-line in Matlab
by using virtual machines, with 8 Intel Xeonare (2695 MHz) CPUs.
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The study was approved by the UCSF Committee on Human Research and all subjects
will provide written informed consent.

0.3. Thesis aim

The purpose of this thesis is to develop an automatic image-segmentation method, exploit-
ing a deep learning approach, to define and extract the contours of the main articulators
that contribute to the production of speech sound. This is the first step to better define
the anatomical and physiological basis of motor speech errors. The identification of such
errors is essential for early differential diagnosis of nfvPPA, when speech-language and
pharmacological treatments are most effective, and for disease progression monitoring.
For this thesis we used data available from the group of the young healthy subjects to
train and test our models and from a nfvPPA patient to test the generalizability of the
best models obtained. Unfortunately, because of the restrictions due to the COVID-19
pandemic, only four control subjects and one patient were able to complete the study
protocol. Both images and audio have been recorded but, as the scope of the thesis, only
images data have been used.
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1.1. Dynamic MRI of human speech production

Several techniques are available to investigate the anatomy of vocal tract and its rela-
tion to speech production or speech disorders [21], such as X-ray microbeam (XRMB),
electropalatography (EPG), electromagnetic articulography (EMA), and ultrasound. The
main limitations of these techniques are that they are invasive (the first three), none of
them are able to provide a complete view of the vocal tract, and they are not able to
provide a high anatomical spatial resolution. On the other hand, magnetic resonance
imaging (MRI) is a not invasive technique and it is able to provide a full view of the
vocal tract including structural/morphological characteristics of speakers with high spa-
tial resolution. Moreover, with the introduction of fast sequence MRI (dynamic MRI),
it has been possible to overcome the limitation of the lower frame rate of classical MRI
technique and improve temporal resolution. The limitation of this technique is related to
the higher cost, and the reduced accessibility compared the other techniques. Moreover,
as the subjects lie supine in the scanner, the effect of gravity due to this position is some-
thing that needs to be taken in consideration although previous studies showed that it has
minimal effect for speech production analysis. Data collected from RT-MRI have crucial
application in linguistic theory, speech modelling and clinical research, as explained in the
previous chapter.
In Figure 1.1, we show an example of the vocal tract of a subject acquired with the dy-
namic MRI sequence. It is a mid-sagittal view of the head and the neck in which each pixel
has an intensity of grey that is proportional to the softness of the body tissue represented.
Specifically, the softer the tissue the lighter the grey color and vice-versa.
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Figure 1.1: Mid-sagittal view of the vocal tract acquired with the dynamic MRI sequence.

1.2. Image segmentation based on deep learning meth-

ods

Image segmentation consists of the splitting of an image into disjointed areas according
to some features. This means that features are consistent or similar within the same area
and different from the others. Particularly, image segmentation belongs to the category of
semantic segmentation that is the process of attributing a label to each pixel of an image
[25].
Until recently, this task has been addressed using traditional computer vision and machine
learning techniques. The introduction of deep learning has brought into the table more
accurate and efficient methods to solve these kind of problems. These techniques are useful
when dealing with huge amount of data, such as medical images [26]. The management of
these data is becoming increasingly possible thanks to improvements in devices capabilities
such as GPUs power, memory capacity, power consumption. Compared to traditional
segmentation methods, whose segmentation speed was fast but whose accuracy was poor,
deep learning methods achieve superior results in terms of accuracy. Moreover, these
techniques require less expert analysis since neural networks need only to be trained
rather than programmed and they show greater flexibility. Networks can be retrained with
different datasets in order to adapt to different use cases. Another important advantage of
deep learning techniques compared to traditional methods is the automatic recognition of
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underlying patterns and the automatic feature extraction from data. Some disadvantages
of deep learning techniques regard the long time necessary to train networks, the power
consumption and the necessity to have huge amount of data in order to obtain satisfactory
results.
One of the most representative families of deep learning based on artificial neural networks
is constituted by Convolutional Neural Networks.

1.2.1. Convolutional Neural Networks

A convolutional neural network (CNN) is an artificial neural network commonly used to
analyze visual images. CNNs work by making up of neurons with learnable weights and
biases. They are specialized in processing data with a grid-topology such as images, and
lean on the linear mathematical operation of convolution, which is generally denoted as
follows, in the two-dimensional case [27]:

S(m,n) = I(m,n) ∗K(m,n) =
∑
i

∑
j

I(i, j)K(m− 1, n− j), (1.1)

The first element is the image input I(m,n) with grid space [m × n] while the second
element is the kernel/filter K(m,n) composed of a series of [m × n] parameters called
weights wij ∈ W and bias b. Each kernel is related to a neuron that computes this
operation and applies its activation function σ to obtain the output, called feature map and
denoted by S(m,n). Each convolutional layer is the basic unit of CNN and is characterized
by three fundamental aspects [27]:

• sparse interactions : also referred as sparse connectivity or sparse weights, the CNNs
kernels have a much smaller number of weights than the input size. This reduces
the overall computational cost due to the impossibility to fully connect each input
value to each neuron. This type of approach causes each neuron to act on a local
region of the input and constitutes a hyper-parameter called receptive field (kernel
size) which generally involves K(m,n) → K(l, v), with l ≪ m and v ≪ n. The
kernel is applied to the entire input by sliding it through the input dimensions with
a given stride;

• parameter sharing : this aspect consists in using the same weights for all kernels that
span the input, in order to keep small the total number of parameters and reduce
the net complexity;

• equivariant representation: the particular form of parameter sharing gives the con-
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volution layer the property to change its output in the same way its input changes.
f(x) is equivariant to a function g(x) if f(g(x)) = g(f(x)).

The weights update of the various kernels, belonging to the network different layers,
encloses three steps which are described taking into account a net composed of two layers
with respectively (W1, b1) and (W2, b2) as parameters and activation function σ. I is the
input, O is the prediction and Y is the ground truth.

• forward propagation: in the first step the input A0 undergoes to the network con-
figuration to produce the output out as depicted in Fig 1.2. At first the input a0

is convoluted with the weights and bias of the first layer and the product (Zl) is
evaluated by the activation function [27]. This is repeated also for the second layer
generating a chain like [28]:

Forward pass:

Z1 = I ∗W1 + b1

A1 = σ(Z1)

Z2 = A1 ∗W2 + b2

O = σ(Z2)
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Figure 1.2: Forward propagation chain of one convolutional layer. Figure adapted from
[28]

.

• loss assessment : once the net obtains the prediction from the forward propagation,
the error between the latter and ground truth must be evaluated to provide the
network the directions along which it has to improve. Trying to minimize the loss
function L means to find an optimal set of weights and biases such that the prediction
O is as close as possible to the ground truth Y , and for doing this the method of
gradient descent is used. This approach allows to find the global minimum or an
acceptable equivalent local minimum of the surface generated from the loss function
optimization along the directions provided by the gradient ∇. The loss choice is of
crucial importance for the network convergence to the optimal solution and must be
accurately performed. During the training of a network, the assessment of a given
loss function is performed by the metric, which tells the behaviour of the function
during epochs [27], [28];

• back-propagation: in the last phase the effective weights and biases update is com-
puted from the output loss function to the first layer. Back-propagation works the
other way around, first updates the gradients of the various layers according to the
loss gradient of the previous layers and the local gradient, and then proceeds to
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update the parameters according to the learning rate λ as the following chain:

Gradients update:

∇Z2 = ∇L · σ′(Z2)

∇b2 = ∇Z2

∇W2 = AT
1 · ∇Z2

∇Z1 = ∇A1 · σ′(Z1)

∇b1 = ∇Z1

∇W1 = IT · ∇Z1

Parameters update:

W1NEW
← W1 − λ · ∇W1

b1NEW
← b1 − λ · ∇b1

W2NEW
← W2 − λ · ∇W2

b2NEW
← b2 − λ · ∇b2

In the particular case of CNNs, the back-propagation can be seen as a convolution
with spatially-flipped filters. Moreover the optimization suffers from the gradient
vanishing/exploding problem which can limit/exaggerate learning [27], [28].

This three steps are continuously repeated until the network converges to the optimal
solution and the combination between proper loss function and framework greatly affects
the final performance.
Summarizing, CNNs are preferable with respect to Feed Forward Neural Networks because
the full connectivity of the latter ones produces a huge amount of parameters to be learnt.
As a consequence, the learning process is greatly slowed down and the network risks to
overfit. Moreover, since CNNs have only the encoding path that progressively reduces
the dimension of the input, they are mainly used for classification tasks rather than for
segmentation tasks.

UNet

For segmentation tasks the most used networks are UNet, which are u-shaped CNN made
by basically three components [29]. The first is the encoding path, where the net encom-
passes a deeper analysis of the topological space with a high receptive field; here the input
grid-size is down-sampled and dilated to multiple feature maps. Then the bottleneck of
the net tries to manipulate this information for a first general learning, allowing decoding
path to efficiently synthesize the knowledge into the output classes. In the UNet generally
the encoding path and bottleneck employ convolution, while decoding path uses deconvo-
lution (transpose-convolution). This last operation learns the parameters in the same
way as convolutional levels, but its final task is to obtain a result that is topologically
the most similar to the up-sampled parallel map, and report the information necessary
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to complete the objective, reducing the output; here the output is up-sampled and com-
pressed to fewer feature maps. The presence of the decoding path provokes a significant
increase of the number of parameters to be updated and the gradient vanishing problem.
To overcome this problem skip connections between encoding and decoding layers are
introduced. UNet are specifically employed for segmentation tasks due to the presence
of the deconvolution path that performs upsampling, allowing to obtain an output with
the same dimensions of the input. Eventually, it is necessary to find a trade-off of the
network depth because the greatest is the depth the more information is extracted from
the input but the higher is the overfitting risk.

A couple of applications of UNet on vocal tract segmentation task is reported below.

Erattakulangara et al. proposed a method based on identifying the entire surface cov-
ered by air [30]. They fed the network with MRI images and the corresponding manual
segmentations, which constitute the ground truth images. In Figure 1.3 , adapted from
[30], it’s possible to see the input of the network, which is a mid-sagittal MRI image, and
the output, which is the airway segmentation (represented as a binary mask). As can
be clearly seen, the network used is a U-Net because it has an encoder-decoder structure
together with inter-layer connections.

Figure 1.3: Representation of UNet architecture adapted from [30]

In this work 100 MRI images from 10 different subjects were used to train, validate and
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test the network. During training a binary cross-entropy loss function was used, while
the metric adopted was Dice similarity coefficient. This method provided quite similar
results compared to the manual segmentations.

The other work was the one of Ruthven et al. that proposed a supervised method to obtain
a complete segmentation of all the main articulators, in order to analyse their shape, size,
motion and position in a more accurate manner [31]. The authors conducted their study
using 392 MRI images from 5 different subjects. The ground truth segmentations were
obtained manually by performing a pixel-wise labelling of all the images. They labelled 6
regions, thus obtaining 6 classes: head (including upper lip and hard palate), soft palate,
jaw (including lower lip), tongue (including epiglottis), vocal tract and lower incisor tooth
space. The authors built a network similar to the original UNet (Figure 1.4) and trained
it using a cross-entropy loss function that was weighted in order to compensate for class
imbalance. Moreover, they used two metrics to evaluate the performance of the network:
Dice similarity coefficient and the Hausdorff distance.

Figure 1.4: Representation of UNet architecture adapted from [31]

The two metrics obtained good results when comparing the automatic segmentation pro-
vided by the network and the manual one. They also tested the network on different im-
ages (not included in the considered dataset) obtaining satisfactory results. This means
that the network achieved a good generalizability. This work constitutes the starting
point for our thesis project.
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This chapter is organized in three main stages:

1. the first stage consists in the description of the main steps needed to obtain and
organize the dataset;

2. the second stage consists in the description of the core elements of a neural network:
metrics, losses and architectures together with the procedure used to select, train
and evaluate networks that are built to accomplish the automatic segmentation on
the aforementioned dataset;

3. the third stage consists in post-processing of the segmentations obtained and the
description of the Vocal Tract Segmentation tool (VTS-tool).

2.1. Dataset realization

2.1.1. Data collection in video format and protocol description

As mentioned in Chapter Introduction, the preliminary stage of the cross-sectional study
that will be conducted by a multidisciplinary team from Department of Neurology and
Department of Radiology of University California San Francisco (UCSF), implies the
recruitment of 10 young and 20 older healthy subjects (controls) to evaluate its feasibility.
But, due to pandemic issues, data from only 4 subjects of the young group were actually
collected. Moreover, the first two subjects underwent the entire protocol while the other
two only a portion of it. Also the only patient analysed underwent only a portion of the
entire protocol.
Here below the protocol version used in clinical practise during acquisitions:

1. repeat PA for 10 sec;

2. repeat TA for 10 sec;

3. repeat KA for 10 sec;

4. repeat PATAKA for 10 sec;
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5. subject asked to SWALLOW for 10 sec;

6. repeat MICROSCOPIC for 10 sec;

7. repeat SEGREGATION for 10 sec;

8. repeat ARTILLERY for 10 sec;

9. repeat CATASTROPHE for 10 sec;

10. repeat BANANA for 10 sec;

11. repeat TOPCOP for 10 sec;

12. repeat WELCOME for 10 sec;

13. COUNT for 10 sec.

Each point of the protocol is referred to as task. An acquisition consists in a subject
performing only one of these. Each acquisition was conducted using the 3T Siemens
Prisma scanner and it produced approximately 25 MRI frames of a mid-sagittal view per
second of speaking. Since tasks last 10 seconds, each acquisition contains a total number
of frames equal to 250, grouped in a single video (extension .avi). Actually each video
lasts about 14 seconds so the maximum number of frames available is 354.
Three tasks among the available ones were chosen, for each subject, trying to guarantee the
greatest possible variability in vocal tract motions. This way, 12 videos were considered
to train and test the networks while 3 videos, coming from the patient, were used to
evaluate the generalizability of the best networks. The 15 considered videos can be seen
in Table 2.1, where it’s reported the Subject ID, the task, their attendance to the entire
protocol or not and the belonging to patient or control group.
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Table 2.1: List of videos used for the generation of the dataset. The ’Entire protocol’ col-
umn highlights whether the complete tasks protocol is available for the subject identified
in the ’Subject ID’ column.

Subject ID Task Entire protocol Control/Patient

1 SEGREGATION YES Control
1 MICROSCOPIC YES Control
1 TOPCOP YES Control
2 MICROSCOPIC YES Control
2 SEGREGATION YES Control
2 TOPCOP YES Control
3 PATAKA NO Control
3 MICROSCOPIC NO Control
3 WELCOME NO Control
4 PA NO Control
4 KA NO Control
4 COUNT NO Control
5 SEGREGATION NO Patient
5 MICROSCOPIC NO Patient
5 TOPCOP NO Patient

2.1.2. GUI realization and frames extraction

A simple graphical user interface (GUI) was developed in Python 3.7.9 to extract the
desired number of frames from videos and to create and organize the dataset. From the
interface it’s possible to select Dataset directory, the video and the desired number of
images until a maximum of 354 (given by the temporal resolution in acquisition phase).
Images are extracted equally spaced such that the entire variability of vocal tract move-
ments can be captured. Then they are saved in the specially created folder Images in
correspondence of the appropriate sub-folder, reporting the task name. Other two fold-
ers are created simultaneously with the folder Images : Video, containing the video and
Segmentations, which will be filled with the corresponding manual segmentations. These
three folders are all included in the parent folder which indicates the subject. A schematic
representation of the dataset organization described is depicted in Figure 2.1.
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Figure 2.1: Dataset organization; each subject belongs to a folder with its own identifi-
cation code, which contains the videos, the video frames and the manual segmentations
performed on them, divided by the tasks performed by the subject.

Moreover, the interface informs the user about:

• the selection of a new subject with respect to the ones already present;

• the selection of a new task of a subject already present;

• the selection of the same subject and task giving the possibility to increment the
number of frames previously extracted, always in equally spaced manner.

The number of frames extracted from videos is different among the five subjects, specifi-
cally: 280 frames for subject 1, 240 frames for subject 2, 150 for subject 3, 150 for subject
4, 150 for subject 5. So the total amount of frames used to train and test the networks is
equal to 820, while 150 frames were used to evaluate their generalizability.
Images are in .tiff format because their quality is the prior characteristic that must be
preserved. They are named with the same rules of videos but with the addition of the
number of the image itself (e.g. s00001_tSEGREGATION_n01_f61.tiff, where s stands
for subject, t for task, n for number and f for frame). An example of an image is provided
in Figure 2.2. As can be seen it is a mid-sagittal view of the vocal tract and it consists



2| Materials and Methods 19

of a set of pixels distributed within a grid of dimensions 256× 256. Each pixel has values
between 0 (black colour) and 256 (white colour).

Figure 2.2: Example of MRI image extracted from video.

2.1.3. Manual segmentation of images

All images were segmented manually under the supervision of an expert radiologist that
solved some critical issues. He also segmented directly some slots of images. The manual
segmentation was performed using 3D Slicer to obtain the ground truth segmentations
and it took approximately 15 minutes for each image. Taking into account that the total
number of images to be segmented were 970 and the onset of fatigue of the operators
after about 20/25 images, it took approximately 250 hours to complete the segmentation
process. As can be seen in Figure 2.3, 7 regions of interest were identified:

1. Upper Lip (UL) coloured in green;

2. Hard Palate (HP) coloured in yellow;

3. Soft Palate (SP) coloured in soft brown;

4. Tongue and Epiglottis (TO) coloured in light blue;

5. Lower Lip and Jaw (LL) coloured in red;

6. Head (HE) coloured in orange;

7. Background (BK) that is the whole remaining region coloured in black or dark grey.



20 2| Materials and Methods

Figure 2.3: Example of a manually segmented image, with the 7 visible regions

The ground truth segmentations have the same dimensions of the images and were saved
with their own name but in .nrrd format (e.g. s00001_tSEGREGATION_n01_f61.nrrd).

2.2. Dataset preparation

Since manual segmentation was performed by 5 different operators, the correspondence
between label name (e.g. UL) and label value (e.g. 1) needed to be checked and, if
necessary, corrected. Specifically, label name is the one assigned by the user during
manual segmentation, label value is a value between 1 and 7 that is assigned automatically
to each label, by 3D Slicer, according to the order followed during segmentation. The
correspondence established a priori is: UL identified by 1, HP by 2, SP by 3, TO by 4,
LL by 5, HE by 6, BK by 7.
Since images pixels assumed values between 0 and 256, they needed to be normalized
between 0 and 1 to obtain better performances. A min-max normalization was applied
using 0 as minimum value and the 90th percentile (about 130) as maximum value. This
decision was taken because only few pixels overcame that value and it was possible to
obtain slightly larger values of the normalized pixels. This normalization was performed by
Medical Images Dataloader, which is a general-purpose dataloader for Tensorflow 2.x that
supports many medical image formats (https://github.com/mrossi93/med_dataloader).
Checked segmentations and images were processed by dataloader that allows to split the
dataset into Training, Validation and Test sets according to some percentages that were
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established to be 80%, 10% and 10% respectively.

2.2.1. Dataset visualization

In Figure 2.4 can be seen the 7 classes separately, infact the Neural Network will produce
7 predictions starting from one single image, one for each class.

Figure 2.4: Manual segmented classes visualization. From left to right: Background,
Upper lip, Hard palate, Soft palate, Tongue and epiglottis, Lower lip and jaw, Head

Manual segmentations are defined as crisp, which means that their pixels can assume
either 0 value (purple) or 1 value (yellow). Segmentations predicted by the Neural Network
are instead defined as fuzzy because their pixels can assume any value between 0 and 1.
Moreover, non zero pixels belong to the so called foreground, whereas zero pixels belong
to the so called background.

2.3. Metrics

Assessing the accuracy and quality of segmentation algorithms is of great importance; seg-
mentation performance is carried out by the metric, which compares the images predicted
by the network (predictions) to the manually segmented images (labels), considered as
ground truth.
Metrics should have specific requirements:

• accuracy : it is affected by delineation of the contours and segmented dimension;

• sensitivity : it refers to all those aspects that can destabilize it, such as outliers,
the number of segmented objects, the imbalance of classes (number of pixels of the
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foreground are imbalanced with respect to the pixels of background);

• efficiency : it is a concept closely related to the processing time that is often a limit
and does not allow a theoretically functioning metric to function at the computa-
tional level.

Different metrics have different operating methods and focus on different aspects: some
of them focus more on accuracy aspects than others, for example. They are also affected
differently by the aspects of sensitivity. For these reasons metrics to be used must be
carefully selected. To correctly choose the metrics, the guidelines provided by [32] were
used, as depicted in Table 2.2, adapted from [32]. In this table there is a synthesis of
some segmentation properties, explained below, and the corresponding recommended or
not recommended metrics.

• Outliers exist : they are small points or regions segmented outside the correct area;

• small segment : foreground area is significantly smaller than the background one;

• complex boundary : some segments have a non-regular shaped complex boundary;

• low densities : predictions are not solid areas but have some little empty spaces;

• low segmentation quality : predictions have low overlap with the ground truth;

• contour is important : contour of segmentation is of high importance;

• alignment is important : alignment between prediction and segmentation is more
important than the contour;

• recall is important : necessity to include all the ground truth area in the prediction,
regardless of borders and possible false positives;

• volume is important : magnitude of segmented region is more important than bound-
ary and alignment;

• general shape & alignment : general shape and alignment is more significant than
the exact shape and alignment.

Properties that are most inherent to the considered task are: Small segment, Complex
boundary, Low densities, Contour is important. Then, among the metrics that meet the
necessary criteria, the most uncorrelated ones were identified, consulting the correlation
matrix presented in the Figure 2.5, adapted from [32], so as to quantify in a complementary
way the goodness of the segmentations.
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Figure 2.5: Correlation between metrics adapted from [32]. Red cell stands for inverse
correlation, blue cell for direct correlation. The strength of correlation is denoted by the
colour intensity and the cell value.

Following these considerations, Hausdorff Distance (HD), Dice coefficient (DICE) and
Global Consistency Error (GCE) were chosen as appropriate metrics.

2.3.1. Hausdorff Distance

The Hausdorff Distance (HD) belongs to the class of spatial distance based metrics and
it’s a min-max distance between two sets of points. Its dissimilarity measurement takes
into account the position of each point in each set and, for this reason, it is used to
quantify the precision of the prediction’s spatial position and boundaries with respect
to the ground truth; due to this approach, HD suffers a lot from outliers and above all
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it has a high computational cost, which in most cases leads necessarily to its indirect
calculation, in order to preserve the efficiency. To better explain the Hausdorff Distance
the definition of directed HD (dHD), evaluated by a set of points G (belonging to the
ground truth) towards a set of points P (belonging to the prediction), is mandatory and
denoted by hG→P (G,P ). Considering that g ∈ G and p ∈ P , in the primary step all
the distances between g1 and all the points pi of P must be calculated and the minimum
selected (nearest neighbor). This procedure must be repeated for all points gi of G and
once all the minimum distances were obtained, the greater is the directed HD. As regards
the directed HD from P to G, hP→G(P,G), the process takes place in the same way, but
it’s important to note that the two dHDs are not symmetrical, as shown in Equation (2.1a)
and Equation (2.1b) .


hG→P (G,P ) = max

g∈G
min
p∈P
||g − p||,

hP→G(P,G) = max
p∈P

min
g∈G
||p− g||,

(2.1a)

(2.1b)

The overall HD is instead symmetric and obtained from the maximum between (2.1a)
and (2.1b), as shown in Equation (2.2).

HD(G,P ) = max(h(G,P ), h(P,G)), (2.2)

As regards image segmentation, points and sets of the formula are respectively pixels and
images. As mentioned before, the direct calculation of HD is not very efficient due to
these reasons:

• point set size (pixels/voxels belonging to the segmented area/volume): as long as
it can reach very high values in some cases (e.g. MRI of the whole body includes
images with 10 million pixels), it can lead to unreasonable runtimes;

• grid size (whole pixels/voxel including background): as long as it can be much
greater than the size of the point set, it adds to the processing a considerable
number of pixels that could be avoided;

• sparsity and Density of the points: they can affect in a different manner but a sparse
set is preferable to a dense one;

• generality: the algorithm used to compute HD must be able to deal with all use
cases.

Taha et al.[33] proposed an optimized algorithm called Early Break Technique and de-
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veloped by SciPy. It considers all the aspects listed above to evaluate the dHD. For the
scope of this thesis a computation function based on the SciPy framework was therefore
implemented and adapted to work with rank 3 tensors [34].
The metric was expressed in HD unit [HDu] which, in real space, can assume any value
between 0 (ideal prediction) and∞ (very bad prediction). However, considering the space
that can be occupied by two objects, the contribution to dHD is limited to the grid space.
It was possible to find a maximum dHD to normalize the [HDu] in a range between [0,1].
To do this, the set of starting points belonging to the ground truth (G), and all the points
of background (B) were considered and, by means of the distance transform map (dtm),
each pixel of the set was labelled with the distance value from the nearest null pixel, using
the Euclidean distance as distance metric. Once the map was obtained, the maximum
distance value, which represents the furthest point bfg from the set G, was selected. Then
the dHD between the set and the furthest point was evaluated as in (2.3a). The opera-
tion had to be repeated also considering P as the starting set, evaluating bfp with (2.3b)
and, once both the most distant points were found, the maximum had to be chosen to
normalize the overall HD.
This last procedure was feasible on a theoretical level, but not on a practical level, en-
tailing a high computational cost to be added to the one already present. To overcome
this problem, the evaluation of the maximum point was made in the pre-processing phase,
limiting it only to the set knowable a-priori, that is the ground truth. Furthermore, since
the dataset is made up of several segmentations, the average space occupation of all the
labels of the same type was used as a set of G points, in order to have a set of bfg points
for all the labels equal to the number of classes that make up the segmentation. The final
normalization is shown in Equation (2.4). This procedure leads to an overestimation of
the error, which however is acceptable.

{
bfg = maxhG→bfg(G, bfg),

bfp = maxhP→bfp(P, bfp),

(2.3a)

(2.3b)

||HD(G,P )|| = HD(G,P )

bfg
, (2.4)

Furthermore, HD does not suffer from the class imbalance problem, being a distance
measure, and so does not need a weighted mean between classes, but just a sample mean.
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2.3.2. Dice Coefficient

Sørensen-Dice coefficient (DICE) is one of the most used metrics in clinical segmentation
works and belongs to the class of overlap based metrics. From a graphic point of view,
DICE considers all the elements correctly predicted (small blue square) and relates them to
the maximum number of correct predictions (big blue squares) as can be seen in Figure 2.6.

Figure 2.6: Graphics behaviour of DICE coefficient. Blue areas are those considered.

This metric can be calculated either through the four cardinalities or through direct
formulas.
Regarding the first approach, considering that both the label G (ground truth) and the
prediction P are crisp, the (2.5) is used to evaluate the four basic cardinalities

mij =

|X|∑
r=1

f i
g(xr)f

j
p (xr), (2.5)

where |X| denotes the number of pixels of each segmentation, f i
g(xr) = 1 if xr ∈ G, f i

p = 1

if xr ∈ P and mij represent respectively TP if m11, FP if m10, FN if m01 and TN if m00.
These four cardinalities reflect the degree of overlap between label and prediction and
produce the confusion matrix [32]. DICE evaluated in this way is given by:

DICE =
2TP

2TP + FP + FN
, (2.6)
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But, since in our segmentation task the labels were crisp while predictions were fuzzy, it
would have been necessary to manually assign a threshold to correctly calculate the four
values.
To avoid manual thresholding, the second approach, based on a direct formula, was used
[35]:

DICE =
2|G ∩ P |
|G|+ |P |

, (2.7)

From computational point of view, the implementation of DICE was divided into numer-
ator and denominator. The numerator 2|G ∩ P | of (2.7) was evaluated by a pixel-wise
multiplication (Hadamard product) between ground truth and prediction, followed by the
sum reduction of the resulting matrix. In order to quantify |G| and |P | the pixel values
of each matrix were summed. Considering that DICE doesn’t suffer from class imbalance
and that seven classes were present, the overall dice was obtained as:

DICE =
1

C

C∑
c=1

2
∑N

i=1 g
c
ip

c
i∑N

i=1 g
c
i +

∑N
i=1 p

c
i

, (2.8)

where G = {G1, G2, ..., G7} are ground truth segments, P = {P 1, P 2, ..., P 7} are predic-
tion segments, gci ∈ Gc and pci ∈ P c are pixel values and N is the number of pixels into
the grid space. The DICE values fall into a range between [0,1], where 0 represents bad
overlapping and 1 the best overlapping.
This metric is positively correlated at 52% with HD, so using both, it was possible to
quantify the goodness of the predictions based on the overlap and boundaries, having a
broader and more robust evaluation criterion and providing complementary information
content.

2.3.3. Global Consistency Error

Global Consistency error is the last of the three metrics that were used in this study
and belongs, like the DICE coefficient, to the overlap based metrics. This metric is able
to focus particularly on the overlap of small portions of the images and it takes into
account also the amount of true negatives. As previously said, these metrics can be
expressed either directly or through the four basic cardinalities. In the direct calculation
we consider the ground truth (G), the respective prediction (P) and the term R(S, x),
which represents the set of all the pixels belonging to S that are in the same region of x.
So it is possible to define two non-symmetrical errors E at pixel x as:
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E(G,P, x) =

|R(G, x)\R(P, x)|
|R(G, x)|

,

E(P,G, x) =
|R(P, x)\R(G, x)|
|R(P, x)|

,

(2.9a)

(2.9b)

and from a graphical point of view as Figure 2.7. The GCE is hence defined as the
minimum of the average of the two errors evaluated on all pixels of the image and is given
by:

GCE(G,P ) =
1

N
min

{
N∑
i=1

E(G,P, xi),
N∑
i=1

E(P,G, xi)

}
, (2.10)

Figure 2.7: Graphical meaning of GCE components. Yellow and purple areas are those
considered.

The second approach, based on cardinalities, is the one which was used in this work
to reduce the computational cost of the direct one. Furthermore, considering that seg-
mentations are made of seven classes and this method suffers from the problem of class
imbalance, the overall GCE was obtained using a weighted mean among classes:

GCE =

∑C
c=1wc

1
N
min

{
FN(FN+2TP )

TP+FN
+ FP (FP+2TN)

TN+FP
, FP (FP+2TP )

TP+FP
+ FN(FN+2TN)

TN+FN

}
∑C

c=1wc

(2.11)

To avoid special cases in which the two terms of the GCE were undefined (e.g. TP+FN
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= 0), an epsilon was added. Computational optimization given by the use of cardinalities
involved the necessary selection of a threshold to bring fuzzy predictions to a crisp domain.
To do this, the distribution of pixels in the various predictions was evaluated, selecting
0.8 as the optimal threshold. GCE values fall between [0,1] where 0 means the best and
1 the worst prediction. Eventually, it is not highly correlated with both the two previous
metrics, keeping complementary information.

2.3.4. Overall Metric

In order to evaluate the quality of the segmentations, it was necessary to introduce an
overall metric (OM) that could combine all the information provided by DICE, GCE and
HD. Since the quality of predictions increases when DICE → 1 while GCE,HD → 0, the
final metric was obtained as follows:

OM = (1−DICE) +GCE +HD (2.12)

This metric summarizes the aforementioned described ones and it was used for evaluating
the overall goodness of networks and architectures used.

2.3.5. Precision and Recall

Two more metrics were used to evaluate the segmentations after the post-processing,
together with the four just described. They are Precision and Recall defined as follows:

Precision =
TP

TP + FP
(2.13)

Recall =
TP

TP + FN
(2.14)

2.4. Loss Functions

Loss function is a fundamental element, on which the trend of predictions largely depends.
Its primary purpose is to guide the network during training towards a configuration of
parameters (weights and bias) such that the output (prediction) is as similar as possible
to the ground truth. For this reason their choice is of crucial importance, since not all
loss functions can consistently achieve the best performances. As said in Subsection 1.2.1,
loss function surface must have a global minimum, or at least a local one, that minimizes
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the differences between prediction and ground truth.
Up to now there are many specialized loss functions for different tasks, and in the case of
segmentation they can be divided into three fundamental classes, based on their operating
method: Distribution-based losses, Region-based losses and Compound losses. This classes
are represented in Figure 2.8.

Figure 2.8: Graphical representation of the different classes of loss functions.

Specifically, pci ∈ P is the prediction pixel of class c ∈ C and gci ∈ G the corresponding
ground truth pixel, with a grid space of N × N pixels (N = 256) and C = 8 classes,
where the eighth is the background class. Based on the previous consideration, in this
segmentation task all the losses were developed to focus on the foreground pixels of each
class, considering the background as an area belonging to other classes; for this reason
the losses were developed with a categorical approach, so as to minimize the relative error
related to the True Positive, and the overall loss among the classes is the sample mean
between the single losses evaluated on each foreground. Here below there is the detailed
description of the three classes.
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2.4.1. Distribution-based losses

This class includes all the losses that aim to minimize the difference between two distri-
butions. For multi-class segmentation these losses can be weighted if the problem of class
imbalance subsists [36]. In this works the distribution-based losses that were used are:
Cross-Entropy loss, TopK loss, Focal loss and their weighted versions.

Cross-Entropy loss

Cross-Entropy (CE) loss comes from the concept of relative entropy, also known as
Kullback-Leibler (KL) divergence, which is a statistical distance measure of how far is
the reference distribution R from the actual distribution Q as defined in 2.15.

DKL(R||Q) =
∑
i

ri log
ri
qi

= −
∑
i

ri log qi +
∑
i

ri log ri

= H(R,Q)−H(R)

(2.15)

In the above formula, H(R) is the entropy of distribution R while H(R,Q) is the cross
entropy of R and Q. To minimize the KL divergence is sufficient to minimize the H(R,Q)
cross-entropy term which, in segmentation tasks, can be rewritten as in 2.16.

LCE = −
C∑
c=1

1

N

N∑
i=1

gci log p
c
i (2.16)

This form of CE is generalized and can be adopted both for crisp, fuzzy and hybrid (crisp
G, fuzzy P ) segmentation tasks.

Weighted Cross-Entropy loss

Weighted Cross-Entropy (WCE) loss is a weighing of CE which, at the theoretic level,
should make easier the optimization of the loss in case of class imbalance, computing a
weighted sum instead of sample sum between the C classes. In this specific task, a set of
weights wc ∈ W was adopted [31], given by:

wc =
npixc

Npix
, (2.17)
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where npixc represents the number of pixels belonging to the foreground of class c, while
Npix is the sum of the total pixels belonging to the different classes foregrounds. This
kind of weighing is used for other loss functions across the entire study.
The generalized definition of WCE is defined in 2.18.

LWCE = −
C∑
c=1

wc
1

N

N∑
i=1

gci log p
c
i (2.18)

TopK loss

TopK (TK) is a loss function deriving from Cross-Entropy which focuses no longer on
the entire distribution, but on a sub-distribution K of particularly difficult pixels. These
pixels can be seen as those points that the CE fails to classify under the same conditions,
maintaining a significant error.
There are many methods to select the K sub-set, including unsafe methods that involve
a threshold on the error between G and P . To avoid manual thresholding it was first
obtained the error distribution |P −G| and then selected only the pixels with values over
the 95Th percentile, that was the set K of worst predictions. The overall generalized
TopK is given by 2.19.

LTopK = −
C∑
c=1

1

N

∑
i∈K

gci log p
c
i (2.19)

This loss was tested also in its weighted form, using weights defined in 2.17:

LWTopK = −
C∑
c=1

wc
1

N

∑
i∈K

gci log p
c
i (2.20)

Focal loss

Focal loss (FL) is derived from Cross-Entropy and its main role is to focus on the worst
classified samples. It can overcome the class-imbalance problem and is defined as:

LFocal = −
C∑
c=1

1

N

N∑
i=1

(1− pci)
γgci log p

c
i , (2.21)

were γ = 2 obtained the best performances, according to [36].
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This loss was tested also in its weighted form, using weights defined in 2.17:

LWFocal = −
C∑
c=1

wc
1

N

N∑
i=1

(1− pci)
γgci log p

c
i , (2.22)

2.4.2. Region-based losses

Losses included in this class measure the difference between ground truth G and prediction
P trying to maximize the overlap or to minimize the mismatch between the two. In this
work the region-based loss that was used is Dice loss.

Dice loss

Dice loss (DL) derives from the Sørensen-Dice coefficient (DICE), defined in Subsec-
tion 2.3.2, which is modified in order to be minimized [35]. To be used as a loss function,
DICE must tend to zero for optimal cases and for this reason it is reversed as follows:

DL = 1−DICE, (2.23)

that, in multi-class problem is given by:

LDice =
1

C

C∑
c=1

[
1−

N∑
i=1

2gcip
c
i

gci + pci

]
(2.24)

Moreover, the DL cannot be implemented in a weighted version, such as distribution-based
losses, because its evaluation range falls between [0,1] whatever the foreground/background
imbalance, as it evaluates only the degree of foreground overlapping.

2.4.3. Compound losses

Compound losses are conceived as the sum of multiple losses, with the aim of improving
performance by combining the different strengths. In the literature there are compound
losses composed of a maximum of two elements [36], while in this study this concept was
extended to three and four elements.
The two-elements losses that were used and then tested were the combination between
Dice loss (first term) and each loss belonging to the distribution-based class (second term).
The multi-elements, on the other hand, combine more than two losses.
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Dice-CrossEntropy

Dice-CrossEntropy loss (DCE) and its weighted version are given by 2.25a, 2.25b respec-
tively.

LDiceCE = LDice + LCE,

LDiceWCE = LDice + LWCE

(2.25a)

(2.25b)

From an operational point of view this loss takes into account the dissimilarities between
the two distributions and also the overlap degree.

Dice-TopK

Similar to Dice-CrossEntropy, Dice-TopK (DTopK) is the combination between Dice loss
and TopK loss. Unlike DCE, it evaluates only the distribution related to the worst subset
of the prediction errors and was used and tested in its original 2.26a and weighted version
2.26b.

LDiceTopK = LDice + LTopK ,

LDiceWTopK = LDice + LWTopK

(2.26a)

(2.26b)

Dice-Focal

This loss function allows the network to learn from the worst champions and considerably
alleviates class imbalance thanks to the combined action of the two losses that compose it
(both do not suffer from class imbalance). Dice-Focal (DF) was implemented and tested
in its original 2.27a and weighted version 2.27b.

LDiceFocal = LDice + LFocal,

LDiceWFocal = LDice + LWFocal

(2.27a)

(2.27b)

Dice-CrossEntropy-TopK

Dice-CrossEntropy-TopK is a multi-compound loss and integrates the best properties of
DL, CE and TopK. It was evaluated in both original 2.28a and weighted version 2.28b.
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LDiceCETopK = LDice + LCE + LTopK ,

LDiceWCETopK = LDice + LWCE + LWTopK

(2.28a)

(2.28b)

Dice-CrossEntropy-Focal

Dice-CrossEntropy-Focal is a multi-compound loss and integrates the best properties of
DL, CE and Focal. It was evaluated in both original 2.29a and weighted version 2.29b.

LDiceCEFocal = LDice + LCE + LFocal,

LDiceWCEFocal = LDice + LWCE + LWFocal

(2.29a)

(2.29b)

Dice-CrossEntropy-Focal-TopK

This is the last compound loss that was tested and it combines the properties of all the
one-element losses. This leads to a function that takes into account all the major aspects
of the elements that compose it: complete check of distribution and overlap (CE, DL),
focus on the hard samples (TopK, Focal), alleviation of class imbalance (Focal, DL),
attention to the highest errors (TopK).
The loss was implemented in both original 2.30a and weighted version 2.30b.

LDiceCEFocalTopK = LDice + LCE + LFocal + LTopK ,

LDiceWCEFocalTopK = LDice + LWCE + LWFocal + LWTopK

(2.30a)

(2.30b)

2.4.4. Other losses

One particular loss function that was used to train a branch of the CEL-UNet architecture,
that will be described in Subsection 2.5.5, is the Edge loss (EL) but its use is relegated
to the sole function of training the network, therefore it was not subject to performance
tests.

Edge loss

The Edge loss is a weighted combination of two particular cross-entropies, as defined in
2.31.

LE = [βC + (1− β)Ĉ] (2.31)
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In the above function C, Ĉ and β are defined as follows:

C = −
C∑
c=1

N∑
i=1

DWM cc
c
i log p

c
i ,

Ĉ = −
C∑
c=1

N∑
i=1

DWM c(1− cci) log (1− pci),

β = 1− Ncontpix

Npix

(2.32a)

(2.32b)

(2.32c)

C and Ĉ are called cross-entropy and reverse cross-entropy and they use respectively the
contours cci and the negative contours (1−cci) of the true labels Gc as new ground truth to
pilot the net to predict contours instead of areas. Ncontpix is the total number of pixels
belonging to the contours, while Npix is the overall number of pixels in the batch. More-
over, DWM is a negative exponential transformation of the euclidean distance transform
(EDT), which assigns to each pixel of the grid space its distance value from the label
boundary. These elements are depicted in Figure 2.9. DWMc is defined as:

DWMc =

[
1 + γ exp

(
− EDTc

σ

)]
(2.33)

where γ = 8 and σ = 10 were selected as better parameters. DWM was used to enhance
the contours and the near-surface pixels, obtaining a focus on this particular regions.

Figure 2.9: Components of Edge Loss: (a) EDT, (b) DWM and (c) represents the contours
c (its negative is (1− c)).
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2.4.5. Loss functions behaviour comparison

In Figure 2.10 are depicted the trends of the aforementioned loss functions taking into
account one single pixel pci of the image with ground truth value gci equal to 1 (pixel
belonging to the foreground). The graphic shows the trend of the losses in function of the
predicted value of the considered pixel pci . It must be noted that: only non-weighted loss
functions are represented because weights are computed just to deal with class imbalance,
so they don’t affect the prediction of the single pixel; Cross Entropy loss and TopK loss
are identical considering the single pixel.
It can be noted that single loss functions don’t have high values in correspondence of
the worst classification case (when pci = 0) and also their slope is quite low. Their value
decreases rapidly and the curve becomes practically horizontal when approaching the
best classification case (when pci = 1). On the other hand, the more the loss functions are
combined the higher is the initial value and the slope, which is also kept until the best
classification is reached. From this evidence it is possible to suppose that compound loss
functions learn better than single ones during the whole network learning.

Figure 2.10: Loss functions behaviour for a single pixel belonging to the foreground.
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2.5. Architectures

Five different U-shaped Convolutional Neural Networks with different configurations were
developed to accomplish segmentation task. All Networks received batches of MRI images
as input I and produced the seven corresponding labelled images as output O. During
the training phase the batches were extracted from the train dataset, while during the
validation phase the batches were taken from the validation set.
The five architectures used are described below, and divided into encoding path, bottleneck
and decoding path.

2.5.1. Ruthven-UNet

Ruthven-UNet is a UNet developed for vocal tract segmentation task and presented in
[31].
The encoding path is composed of a sub-sequence of e = 4 encoding processing blocks
(ePB) which give the network a depth dp = 4 and analyze the input I in a receptive
field that becomes gradually larger as a function of the level e. In particular, each ePB is
composed of two sub-blocks in series that include:

• one convolution layer with kernel size Kc = (3 × 3), stride and padding calibrated
to maintain the same grid-space, activation function linear and Fe filters;

• one batch normalization layer;

• one ReLU activation layer.

The batch normalization and ReLU combination helps the net to prevent overfitting easing
the optimization.
The two sub-blocks are followed by a max-pooling layer with kernel size Kmp = (2×2) and
stride Smp = (2, 2), which reduce the input grid-size. Each ePB, before the max-pooling
layers, extracts its output to be projected in the parallel decoding branch with a skip
connection. The filter size Fe of each convolution starts from F1 = 64 and increases level
by level with a function given by Fe = F1 · 2e; in this setting the output of the encoding
path is a series of F4 = 512 feature maps with grid-size of 16× 16.
In this architecture bottleneck is the deepest part of the network that contains the
maximum level of encoding and is made up of a block equal to the ePB, but in this case,
the max-pooling down-sampling layer is not used. The bottleneck output is a series of
F5 = 1024 feature maps with grid-size of 16x16.
The decoding path task is to synthesize the knowledge extracted from the encoding path
to produce the correct output O. This path is symmetrical to the encoding path and
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composed of d = 4 decoding processing blocks (dPB). In particular, each dPB is designed
as follows:

• one transpose convolution (deconvolution) layer which counterbalances the parallel
max-pooling layer down-sampling with grid-size up-sampling. It is composed of
kernel size Kd = (2× 2), stride Sd = (2, 2), activation linear and Fd filters;

• one concatenation layer that concatenates together the ePB output from the parallel
skip connection and the deconvolution output;

• one ePB with Fd filters and without max-pooling, to analyze the concatenation
information.

The filter size Fd of each dPB starts from F1 = 512 and decreases level by level with a
function given by Fd = F1 · 2(dp−1)d. When it reaches depth d = 4 the output block occurs
and, in this particular case, one convolutional layer with soft-max activation is added to
the last dPB to produce the seven output probability maps.
Ruthven U-Net architecture is depicted in Figure 2.11.
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Figure 2.11: Graphical representation of Ruthven-UNet architecture."Conv" and "De-
conv" blocks are intended with kernel size 3× 3.



42 2| Materials and Methods

2.5.2. QT-UNet

Quick Tumor UNet is a U-shaped CNN developed by [37] to localize and segment three
different types of tumors in the brain (meningioma, glioma and pituitary brain tumors).
In this work, QT-Net was adapted to correctly work with the current input-output set-up
and to accomplish the vocal-tract segmentation task.

QT-Net has a depth dp = 4 and the encoding path is composed by four particular
encoding processing blocks called dense blocks (eDNSB). They are composed by a series
of convolutional layers:

• the 1st convolutional layer with kernel size Ke = 5×5, stride and padding calibrated
to maintain the same grid-space, activation function ReLU and Fe filters;

• the 1st batch normalization layer. These layers stabilize the learning process and
reduce the number of epochs to convergence, making mean values close to 0 and
standard deviations close to 1;

• the 1st concatenation layer between the 1st convolutional layer input and the 1st

batch normalization output;

• the 2nd convolutional layer with kernel size Ke = 5×5, stride and padding calibrated
to maintain the same grid-space, activation function ReLU and Fe filters;

• the 2nd batch normalization layer;

• the 2nd concatenation layer between the 1st convolutional layer input, the 2nd con-
volutional layer input and the 2nd batch normalization output;

• the 3rd convolutional layer with kernel size Ke = 1×1, stride and padding calibrated
to maintain the same grid-space, activation function ReLU and Fe filters;

• the 3rd batch normalization layer.

The dense blocks outputs are sent, by mean of skip-connections, to the parallel levels
in the decoding path. Moreover, in the analysis path, the blocks are followed by a max-
pooling layer with kernel size Kmp = 2×2. Max-pooling operates a down-sampling of the
image to prevent the network from a large number of learnable parameters (weights and
biases) and so from degradation. The filter size Fe is kept constant for each convolutional
layer of each eDNSB and set to Fe = 64; in this particular configuration, the filter size
is also called growth-rate of the net and can be used to easily check the parameter space
of the network. The eDNSB configuration provides some advantages to the network such
as the increase of gradient back-propagation efficiency (dense block interconnections and
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skip-connections). Another advantage is that the encoding path provides to the synthesis
path (decoding path) one set of feature maps that contain all the preceding dense blocks
inputs.
The bottleneck is conceived with one convolutional layer, with kernel size Ke = 1 × 1,
stride and padding calibrated to maintain the same grid-space, activation function ReLU
and Fb = 64 filters, followed by one batch normalization layer. This level is designed to
reduce feature maps dimensionality maintaining the same information content, in order
to facilitate the synthesis path.
The decoding path is assembled to perform the summarization of information:

• one un-pooling layer with kernel size Kus = 2 × 2. This layer counterbalances the
max-pooling approximation with the opposite operation and increases the grid-size
similarly to deconvolution. In this case, it up-samples the input grid-size using
nearest-neighbour interpolation instead of transpose convolution;

• one concatenation layer that concatenates together the eDNSB output from the
parallel skip connection and the up-sampling output;

• one concatenation layer that concatenates together the eDNSB output from the
parallel skip connection, and the un-pooling output;

• one eDNSB, as described above, to analyze the up-sampling operation and extract
knowledge level by level. Also in this blocks the filter size of each convolutional
layer is fixed to Fd = 64 for all levels.

When the last level occurs, the output is subjected to a 7-layers soft-max to provide the
seven classes probability maps as output.
QT-UNet architecture is depicted in Figure 2.12.
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2.5.3. IM-UNet

IM-UNet (improved UNet) is a U-shaped CNN developed for the segmentation of human
metaphase II (MII) oocyte images. This architecture was developed to overcome the prob-
lem of the limited receptive field of the classic UNet, which does not allow to grasp both
the details and the global aspects of an image; this because UNet depth must be limited
to avoid degradation [38]. For the aim of the thesis, the architecture was adapted to the
input-output set-up and ablation was performed to find its optimal hyper-parameters.
The encoding path starts with a residual processing block (eRPB) that provides a par-
ticular input to the subsequent analysis levels. This input is not the singular 256 × 256

image, but a set of feature maps that propagate a multi-scale information. This first
eRPB is divided in two branches and developed as follows:

• the 1st convolutional layer in the 1st branch with kernel size Ke = 3× 3, stride and
padding calibrated to maintain the same grid-space, activation function linear and
F1r = 8 filters. This convolution extracts a more detailed spatial information, but
less overall knowledge;

• the batch normalization layer in the 1st branch;

• the ReLU activation layer in the 1st branch;

• one convolutional layer in the 2nd branch with kernel size Ke = 1 × 1, stride and
padding calibrated to maintain the same grid-space, activation function linear and
F2r = 8 filters. This convolution provides a global knowledge of the network given
that 1×1 convolution is a linear projection of the input into a stack of feature maps
that maintain the overall informative content;

• one batch normalization layer in the 2nd branch.

The residual block effectiveness is verified only if the number of feature maps of each
convolutional layer is kept low and the outputs of the two branches are added pixel-wise
to be provided to the next levels.
After the eRPB, there is a series of 4 encoding processing blocks (ePB) (IM-UNet depth
is dp = 4) that are designed as follows:

• the 1st batch normalization layer in the 1st branch;

• the 1st ReLU activation layer in the 1st branch;

• the 1st convolutional layer in the 1st branch with kernel size Ke = 3× 3, stride and
padding calibrated to maintain the same grid-space, activation function linear and
Fe filters;
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• the 2nd batch normalization layer in the 1st branch;

• the 2nd ReLU activation layer in the 1st branch;

• the 2nd convolutional layer in the 1st branch with kernel size Ke = 3× 3, stride and
padding calibrated to maintain the same grid-space, activation function linear and
Fe filters;

• one convolutional layer in the 2nd branch with kernel size Ke = 1 × 1, stride and
padding calibrated to maintain the same grid-space, activation function linear and
Fe filters;

• one batch normalization layer in the 2nd branch;

• one pixel-wise summation layer that combines the knowledge from the two previous
branches;

• one skip-connection that sends the information to the parallel synthesis level;

• one max-pooling layer with kernel size Kmp = 2 × 2 and stride Smp = (2, 2), to
prevent degradation and lower the network complexity. It also down-samples the
grid size of the feature maps;

• one dropout layer with a dropout rate dr = 0.5 to lower the generalization error
and prevent overfitting, disabling 50% of its weights at each epoch.

The filter size Fe of each convolution starts from F1 = 64 and increases level by level with
a function given by Fe = F1 · 2e; in this setting the output of the encoding path is a series
of F4 = 512 feature maps with grid-size of 16× 16.
The bottleneck , also called bridge, is conceived with a particular set of convolutional
layers called dilated convolutions. This architecture section is very valuable because it
allows to further increase the receptive field without further max-pooling, in order to
avoid the reduction of resolution. In this work four dilated convolutions are placed in
series, producing at the output some denser feature maps than the starting ones, which
provide more context to the decoding path, while maintaining a high level of detail. The
four dilated convolutions bridge is implemented as follows:

• the 1st dilated convolutional layer with kernel size Kb = 1 × 1, stride and padding
calibrated to maintain the same grid-space, activation function linear, Fb = 1024

filters and dilatation rate dilr = 2;

• the 2nd dilated convolutional layer with kernel size Kb = 1× 1, stride and padding
calibrated to maintain the same grid-space, activation function linear, Fb = 1024
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filters and dilatation rate dilr = 4;

• the 3rd dilated convolutional layer with kernel size Kb = 1 × 1, stride and padding
calibrated to maintain the same grid-space, activation function linear, Fb = 1024

filters and dilatation rate dilr = 6;

• the 4th dilated convolutional layer with kernel size Kb = 1 × 1, stride and padding
calibrated to maintain the same grid-space, activation function linear ,Fb = 1024

filters and dilatation rate dilr = 8.

The decoding path is developed in a symmetric and complementary way with respect to
the encoding path. It synthesizes the knowledge into the seven classes with a series of 4
decoding processing blocks (dPB) described below:

• one transpose convolution (deconvolution) layer that counterbalances the parallel
max-pooling layer down-sampling with a grid-size up-sampling. It is composed of
kernel size Kd = (1× 1), stride Sd = (2, 2), activation linear and Fd filters;

• one batch normalization layer;

• one concatenation layer that puts together the transpose convolution output and
the feature maps from the parallel skip connection;

• one dropout layer with a dropout rate dr = 0.5;

• the 1st batch normalization layer in the 1st branch;

• the 1st ReLU activation layer in the 1st branch;

• the 1st transpose convolutional layer in the 1st branch with kernel size Ke = 3× 3,
stride and padding calibrated to maintain the same grid-space, activation function
linear and Fd filters;

• the 2nd batch normalization layer in the 1st branch;

• the 2nd ReLU activation layer in the 1st branch;

• the 2nd transpose convolutional layer in the 1st branch with kernel size Ke = 3× 3,
stride and padding calibrated to maintain the same grid-space, activation function
linear and Fd filters;

• one transpose convolutional layer in the 2nd branch with kernel size Ke = 1 × 1,
stride and padding calibrated to maintain the same grid-space, activation function
linear and Fd filters;

• one batch normalization layer in the 2nd branch;



48 2| Materials and Methods

• one pixel-wise summation layer that combines the synthesized knowledge from the
two previous branches.

The filter size Fd of each dPB starts from F1 = 512 and decreases level by level with a
function given by Fd = F1 · 2(dp−1)d. When the last level occurs, the output is subjected
to a 7-layers soft-max to provide the seven classes probability maps as output.
IM-UNet architecture is depicted in Figure 2.13.

Figure 2.13: Graphical representation of IM-UNet architecture.

2.5.4. IM-UNet with attention block

The concept of "attention", as explained by [39], regards the capability of the network
to focus only to certain portions of the image, gaining a higher generalizability. The
type of attention implemented inside the traditional IM-UNet is called "soft attention"
and it implies that larger weights are attributed to more relevant portions of the image,
while smaller weights are attributed to less relevant regions. This way, during training,
the network focuses more on highly weighted areas. Attention block is introduced in
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correspondence of the skip connections to diminish the number of redundant features
that are brought from the down-sampling path to the up-sampling path.
The attention block takes two inputs which are respectively the original skip connection
(x ) and the output of the last dilated convolution or the previous decoder block (g). It
produces one output that is the new skip connection (x’ ).
It is composed by the following layers:

• one strided convolution for input x and one 1× 1 convolution for input g ;

• Element-wise summation in order to enlarge aligned weights and reduce unaligned
weights;

• one ReLU activation function;

• one 1× 1 convolution;

• one Sigmoid layer that produces the attention coefficients;

• one interpolation layer used to up-sample the weights to the original dimension of
x ;

• Element-wise multiplication between the weights and x in order to obtain the output
x’ which is scaled according to relevance.

The attention block just described together with the original IM-UNet architecture is
depicted in Figure 2.14.
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Figure 2.14: Graphical representation of IM-UNet attention architecture.

2.5.5. CEL-UNet

CEL-UNet is an Y-shaped convolutional neural network developed for CT knee volumes
segmentation by [40]. It encompasses one encoding path and two decoding paths that
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synthesize respectively the segmentation volume and the segmentation borders. For the
purpose of the thesis, this network was readjusted to work with images, instead of volumes,
and produce the correct output probability maps.
The encoding path has a depth dp = 5 that leads to a series of e = 5 encoding processing
blocks (ePB), each consisting of a series of two sub-blocks, individually defined as follows:

• one convolutional layer with kernel size Kc = (3×3), stride Sc = (2, 2) and padding
Pc = 2 to maintain the same grid-space, activation function linear and Fe filters;

• one batch normalization layer;

• one ReLU activation layer.

The two sub-blocks are followed by a max-pooling layer with kernel size Kmp = (2 × 2)

and stride Smp = (2, 2), which reduces the input grid-size. Each ePB, before the max-
pooling layers, extracts its output to be projected in the parallel decoding branches with
the relative skip connections. The filter size Fe of each convolution starts from F1 = 8

and increases level by level with a function given by Fe = F1 ·2e; in this setting the output
of the encoding path is a series of F5 = 128 feature maps with grid-size of 8× 8.
The bottleneck contains the highest content of information and here max-pooling down-
sampling layer is not used. Its output is a series of F6 = 256 feature maps with grid-size
of 8× 8.
The output of bottleneck is passed to the two branches to be synthesized in two different
manners to predict segmentation areas and segmentation edges. The edge decoding
path is based on decoding processing block (dPB) which is designed with the architecture
described below:

• one transpose convolutional (deconvolution) layer which counterbalances the parallel
max-pooling layer down-sampling with grid-size up-sampling. It is composed of
kernel size Kd = (2× 2), stride Sd = (2, 2), activation linear and Fd filters;

• one ReLU activation layer;

• one concatenation layer that concatenates together the ePB output from the parallel
skip connection and the deconvolution output;

• one ePB with Fd filters and without max-pooling, to analyze the concatenation
information;

• one pyramidal edge extraction block (PEE).

PEE block is based on the pyramidal edge extraction paradigm where, at first, the input
IPEE is linearly projected by 1 × 1 convolution and then the edges are evaluated at
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different scales. The different scales border are extracted by mean of subtraction between
the convolution output and the average pooling of IPEE at different scales scl. In this
work scales are set to be scl ∈ 1, 2 and the PEE block is developed as follows:

• one convolutional layer with kernel size Kpee = (1×1), stride and padding calibrated
to maintain the same grid-space, activation function linear and Fpee =

Fd

2
filters with

output OcPEE;

• one average-pooling layer that represents scl = 1 with kernel size Kav1 = (5 × 5),
stride Sav1 = (1, 1) and padding calibrated to maintain same grid size. Its output
is Oav1PEE;

• one pixel-wise subtraction layer to extract the edges at scl = 1 between OcPEE

and Oav1PEE with output Esc1;

• one average-pooling layer that represents scl = 2 with kernel size Kav2 = (7 × 7),
stride Sav1 = (1, 1) and padding calibrated to maintain same grid size. Its output
is Oav2PEE;

• one pixel-wise subtraction layer to extract the edges at scl = 1 between OcPEE and
Oav2PEE with output Esc2;

• one concatenation layer that concatenates together OcPEE, Esc1 and Esc2;

• one convolutional layer with kernel size Kpee = (1×1), stride and padding calibrated
to maintain the same grid-space, activation function linear and Fpee = Fd;

• one skip connection that sends the convoluted output to the post transpose convo-
lution layer of the parallel mask branch.

The dPB is repeated for dp = 5 times and then subjected to a 7-layer soft-max to provide
the edges of the seven classes as output which are used to train this branch by mean of
edge loss defined in Subsection 2.4.4.
The parallel mask decoding path is based on decoding processing block (dMPB) which
is designed with the following layers:

• one transpose convolutional (deconvolution) layer which counterbalances the parallel
max-pooling layer down-sampling with grid-size up-sampling. It is composed of
kernel size Kd = (2× 2), stride Sd = (2, 2), activation linear and Fd filters;

• one ReLU activation layer;

• one concatenation layer that concatenates together the ePB output from the parallel
skip connection and the deconvolution output;
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• one ePB with Fd filters and without max-pooling, to analyze the concatenation
information;

• one concatenation layer that concatenates together the parallel branch PEE block
output and the deconvolution output.

It must be noted that the vertical skip-connections are unidirectional, from edge to mask
branch, to increase spatial scaling and merge together the knowledge extracted from the
mask decoding path with the knowledge extracted from the edge decoding path. The dMPB
is repeated for dp = 5 times and then subjected to a 7-layer soft-max to provide the areas
of the seven classes as output.
As a common aspect, the two decoding branches have filter size Fd that starts from
F1 = 256 and decreases level by level with a function given by Fd = F1 · 2(dp−1)d, where d

is the depth level of the network.
CEL-UNet architecture is depicted in Figure 2.15.
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Figure 2.15: Graphical representation of CEL-UNet architecture.
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2.6. Networks Training and Evaluation

Summarizing, in this work a total number of network architectures equal to five were
considered:

1. Ruthven-UNet ;

2. QT-UNet ;

3. CEL-UNet ;

4. IM-UNet ;

5. IM-UNet with Attention Block.

Furthermore a total number of nineteen loss functions were tested:

1. Cross-Entropy (CE) loss ;

2. Weighted Cross-Entropy (WCE) loss ;

3. TopK (TK) loss ;

4. Weighted TopK (WTK) loss ;

5. Focal loss (FL);

6. Weighted Focal loss (WFL);

7. Dice loss (DL);

8. Dice-CrossEntropy (DCE) loss ;

9. Dice-WeightedCrossEntropy (DWCE) loss ;

10. Dice-TopK (DTopK) loss ;

11. Dice-WeightedTopK (DWTopK) loss ;

12. Dice-Focal (DF) loss ;

13. Dice-WeightedFocal (DWF) loss ;

14. Dice-CrossEntropy-TopK loss ;

15. Dice-WeightedCrossEntropy-WeightedTopK loss ;

16. Dice-CrossEntropy-Focal loss ;

17. Dice-WeightedCrossEntropy-WeightedFocal loss ;
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18. Dice-CrossEntropy-Focal-TopK loss ;

19. Dice-WeightedCrossEntropy-WeightedFocal-WeightedTopK loss.

Since each architecture was trained and tested with all the 19 losses, 95 different networks
were taken into account. They were all trained setting a batch size equal to 8, 70 epochs
using as optimizer the ADAM one, a first-order gradient-based optimization of stochastic
loss functions, with learning rate of 0.001. For each network the best one in term of
the overall metric was saved and used to evaluate it on the test set. The project was
developed in Google Colab environment using TensorFlow v2.8.0. The initial trainings
were conducted exploiting Google Colab GPU NVIDIA Tesla T4 with RAM of 25 Gigabyte
and each network took about one hour and 20 minutes to be trained. The successive
trainings exploited a cluster of NVIDIA Tesla A100 with RAM of 40 Gigabyte each and
each network took about 40 minutes to be trained. Particularly, the inference time for a
single image was about 0.1s for QT-UNet, 0.084s for IM-UNet and 0.091s for IM-UNet
with Attention Block.

2.6.1. Statistical tool

The results were analysed using the Kruskal-Wallis Test. It is the non parametric version
of original one-way ANOVA. While the latter requires that the populations have normal
distributions, the former requires only the mutual independence of all the observations.
This test is based on the following hypothesis:
H0: K independent groups that come from the same population and/or from populations
having the same median;
H1: K independent groups that don’t come from the same population and/or from pop-
ulations having the same median.
After having performed the Kruskal-Wallis test and founded the presence of global statis-
tical differences, another tool was used to identify in a paired way the statistical signifi-
cance between each group. This is called Post hoc test and, in this work, the one used was
Tukey-Kramer test. All the analysis was performed in MATLAB R2021b environment.

2.6.2. Cross Validation

Cross Validation was applied on the best networks selected after the statistical analysis.
The Subject-one-out Cross Validation was implemented using the 4 control subjects. Each
network was trained and tested a number of times equal to the number of subjects,
selecting them all cyclically. For each subject, the network was trained with a dataset
including all subjects except the one selected, and tested with a dataset corresponding



2| Materials and Methods 57

to the subject considered. This choice was made to guarantee that each subject could
appear in both the training and the test set enhancing the variability of data.

2.7. Post processing

In order to reconstruct the complete segmentation of images and visualize it on 3D Slicer in
.nrrd format, it was necessary to consider two problems. The first concerns the predictions
fuzziness (continuous values between [0,1]) that must be converted in a crisp range 0,1, as
the original manual segmented classes; this problem could have been solved by introducing
thresholds, but it would have introduced problems of dubious membership of the pixels, as
shown in the Figure 2.16(a). The problem of thresholding is in fact related to the output
of the final network layer and led to the second problem which is the output probability
map produced by the Soft-Max. This map indicated the probability of each pixels to
belong to a given class and sometimes it could assign to the same pixel the probability
of belonging to a class always lower than the threshold, for each class. This created the
holes of unassigned pixels and was solved by searching for the highest probability that
each pixel had among the classes, and by assigning it to the class to which this probability
belonged (Argmax). This last problem was mainly related to the most uncertain areas,
such as the edges.
This way the final segmentation has no more holes along borders among classes and can
be robustly reconverted into .nrrd files, as can be seen in Figure 2.16(b).
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(a) (b)

Unassigned pixels

Figure 2.16: Example of: a) pre processed segmentation where there are holes along
borders among classes, b) post processed segmentation where holes were assigned to one
of the neighbouring classes, according to the highest probability of belonging to a class.

2.8. Vocal Tract Segmentation tool (VTS-tool)

In order to make this work accessible to clinicians and allow them to benefit from the
segmentations, in terms of timing, efficiency in recognizing areas and displaying data, a
user friendly application was developed using Python 3.7.9 and KV Language. This VTS-
tool allows clinicians to have a rapid segmentation of the MRI recording, reported in an
interactive interface on which some useful operations and visualizations can be performed.
Below there is an example of use cases:

• video selection: first, the selection of a video in (.avi) format of any MRI recording
to be analyzed is required. The choice is made through a windows explorer;

• network selection: once a video is selected, it is necessary to select one of the three
best networks obtained in this study, which will be used to perform the automatic
segmentation;

• prediction: once the preliminary choices are made, by clicking on the Predict but-
ton, it is possible to start the automatic segmentation process. The selected video
is divided into frames, which are segmented by the selected network. The areas
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of articulators obtained are then post-processed with the method described in Sec-
tion 2.7. Once the prediction is completed, the interactive area of the application is
made usable;

• labels : it is possible to select the areas to be displayed, directly superposed on the
frame shown. This section allows to highlight the movements of certain areas, clearly
delineating their contours;

• graph: it shows the selected areas variation in real time. The concept of area
variation would not make sense in a simple two-dimensional context as the areas
should remain constant. In this case, however, they are areas of hard and soft tissues
that expand in three dimensions, therefore the variation of the 2D area is strictly
connected to the volumetric variation that occurs during speech. A decrease in area
can mean a greater volumetric distribution on the z axis. This allows the user to
recognize, at first glance, potential patterns that repeat themselves according to the
task;

• play button: this button is used to sequentially play the frames, at the original
video rate, so that moving areas can be viewed. The same effect can be recreated
piecemeal by moving the slider;

• drawing screen: the portion of the screen where the various frames are depicted
is interactive and allows the user to evaluate static distances on the active frame,
also with labels active to highlight edges. These distances are shown in millimeters,
knowing that the 3T Siemens Prisma scanner has a resolution of 1.6× 1.6mm2;

• save: areas raw data are saved in a (.csv) file for other possible applications, while
their graphical trend into a (.pdf) file;

• clear : static distances projected on the screen are all cleared;

• reset : projected static distances, area segmentations and triggered trends are all
returned to their initial state.

In conclusion, this application allows clinicians to perform rapid segmentation, to evaluate
the trend of the areas and to recognize patterns, analyze the distances between areas in
a static way and, eventually, be able to draw clinical conclusions.
Tool design is depicted in Figure 2.17.
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Figure 2.17: Application developed for predicted segmentation visualization, extraction
of clinical metrics such as static distances and articulators areas.
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3.1. Networks results

As described in Section 2.6, the 95 networks were trained and the evaluation on the test set
was performed using the best version of each one, obtained across the epochs. The results,
in terms of the three aforementioned metrics and the overall one, for all networks, are
reported in the following twenty graphics that are divided according to the architectures.
Results are shown as violin plots where each violin provides the distribution of metric
values for all the test images, together with their box plot.

3.1.1. Dice

Dice metric trends of the networks are depicted in Figures 3.1 to 3.5. It can be noted that
Dice values are all above the threshold of 0.6 with the only exception of CEL-UNet that
has 1 network whose Dice metric is below 0.6. The three networks that are not reported in
CEL-UNet graphic are CELUNet_WFocal, CELUNet_WTopK and CELUNet_DiceCE
because they were considered as outliers, given the unmeaningful results that produced. It
can be also noted that all networks built with compound loss functions have Dice values
a bit higher with respect to networks built with single loss functions. Values of CEL-
UNet networks are more stretched, meaning that performances of this network are pretty
different among test images. Moreover, none of the distributions has normal shape.
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Figure 3.1: Violin Plot of Dice metric for networks built with Ruthven-UNet.

Figure 3.2: Violin Plot of Dice metric for networks built with QT-UNet.
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Figure 3.3: Violin Plot of Dice metric for networks built with IM-UNet.

Figure 3.4: Violin Plot of Dice metric for networks built with IM-UNetAtt.
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Figure 3.5: Violin Plot of Dice metric for networks built with CEL-UNet.

3.1.2. Hausdorff Distance

Hausdorff Distance metric trends are depicted in Figures 3.6 to 3.10, with the same
conditions of Dice metric. It can be noted that the distributions are all between 0.2 and
0.45. For this metric, distributions of networks built with compound loss functions are
comparable to the ones built with singular loss functions. The three outliers are again in
the CEL-UNet graph, and again the violins are stretched, meaning that the performances
of this network are pretty different among test images. Also for this metric distributions
do not have normal shape.
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Figure 3.6: Violin Plot of Hausdorff Distance metric for networks built with Ruthven-
UNet.

Figure 3.7: Violin Plot of Hausdorff Distance metric for networks built with QT-UNet.
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Figure 3.8: Violin Plot of Hausdorff Distance metric for networks built with IM-UNet.

Figure 3.9: Violin Plot of Hausdorff Distance metric for networks built with IM-UNetAtt.
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Figure 3.10: Violin Plot of Hausdorff Distance metric for networks built with CEL-UNet.

3.1.3. Global Consistency Error

Global Consistency Error trends are depicted in Figures 3.11 to 3.15, with the same
conditions of the two previous metrics. It can be noted that the distributions are all
between 0.0005 and 0.003. For this metric, it can be seen that distributions of networks
built with compound loss functions are a little bit better (smaller) than the ones built with
singular loss functions. CEL-UNet has again the three outliers that are not represented
but, for this metric, the distributions are similar to the ones of the other architectures.
Also in this metric distributions do not have normal shape.
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Figure 3.11: Violin Plot of Global Consistency Error metric for networks built with
Ruthven-UNet.

Figure 3.12: Violin Plot of Global Consistency Error metric for networks built with QT-
UNet.
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Figure 3.13: Violin Plot of Global Consistency Error metric for networks built with IM-
UNet.

Figure 3.14: Violin Plot of Global Consistency Error metric for networks built with IM-
UNetAtt.
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Figure 3.15: Violin Plot of Global Consistency Error metric for networks built with CEL-
UNet.

3.1.4. Overall Metric

Lastly, overall metric trends are shown in Figures 3.16 to 3.20. Distributions are all below
0.8 threshold with the only exception of one CEL-UNet network. It has again the three
outliers and very stretched distributions, meaning that the performances of this network
are pretty different among test images. In general, networks built with compound loss
functions gain quite lower values of OM with respect to the ones built with singular loss
functions. Since this metric is given by a linear combination of the previous three it does
not have a normal shape too.
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Figure 3.16: Violin Plot of overall metric for networks built with Ruthven-UNet.

Figure 3.17: Violin Plot of overall metric for networks built with QT-UNet.
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Figure 3.18: Violin Plot of overall metric for networks built with IM-UNet.

Figure 3.19: Violin Plot of overall metric for networks built with IM-UNetAtt.
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Figure 3.20: Violin Plot of overall metric for networks built with CEL-UNet.

3.2. Statistical Analysis

This section presents the results and considerations made to select the three best per-
forming networks, with the related metric results.

3.2.1. Networks Ranking

In order to assert which are the best networks, it was necessary to conduct the statistical
analysis described in Subsection 2.6.1. Kruskal Wallis Test was applied, and the groups
compared were the 95 networks. Each group has 82 observations, which are the values
of the overall metric for each image of the test set. The test produced a p-value equal
to 0, lower than the significance level (fixed at 0.05), so the null hypothesis was rejected;
at least two networks were significantly different then each other. In order to see which
networks were or not significantly different from one another, the Tukey-Kramer test was
conducted and the result is shown in Appendix A.1.
Selecting the network with the lowest median value as best overall, IM-UNet with Atten-
tion Block trained with Dice-CrossEntropy-Focal-TopK loss, there are 73 networks whose
performance is significantly worse and 21 networks whose performance is not significantly
different from it.
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It was decided to first concentrate on the 22 best networks and see how they are dis-
tributed across both architectures and loss functions, obtaining a rank. As regards the
five architectures:

• CEL-UNet belongs to 2 of the best networks;

• IM-UNet with Attention Block belongs to 4 of the best networks;

• Ruthven-UNet belongs to 5 of the best networks;

• QT-UNet belongs to 5 of the best networks;

• IM-UNet belongs to 6 of the best networks.

As regards the nineteen losses:

• Dice loss, Cross-Entropy loss, Dice-CrossEntropy loss, Dice-WeightedFocal loss be-
long to 1 of the best networks;

• Dice-Focal loss, TopK loss belong to 2 of the best networks;

• Dice-TopK loss, Dice-CrossEntropy-TopK loss, Dice-CrossEntropy-Focal-TopK loss
belong to 3 of the best networks;

• Dice-CrossEntropy-Focal loss belongs to 5 of the best networks.

The remaining loss functions compose only networks which are significantly worse than
the best ones.
Three networks were selected among the best 22 according to the following reasons:

• IM-UNet with Attention Block trained with Dice-CrossEntropy-Focal-TopK loss be-
cause it is the network with the lowest median value (1st median);

• IM-UNet trained with Dice-CrossEntropy-Focal loss because it includes the archi-
tecture with the highest rank (6 networks) with the highest loss rank (5 networks)
(1st loss, 1st architecture);

• QT-UNet trained with Dice-CrossEntropy-Focal loss because it includes the loss
with the highest rank (5 networks) with one of the two architectures with the sec-
ond highest rank (5 networks) (1st loss, 2nd architecture). QT-UNet was chosen
compared to Ruthven-UNet because it has the lowest median value between the
two.

The Post Hoc test produced a p-value equal to 1 when comparing IM-UNet trained with
Dice-CrossEntropy-Focal loss and QT-UNet trained with Dice-CrossEntropy-Focal loss ; a
p-value equal to 0.9995 when comparing QT-UNet trained with Dice-CrossEntropy-Focal
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loss and IM-UNet with Attention Block trained with Dice-CrossEntropy-Focal-TopK loss ;
a p-value equal to 0.9763 when comparing IM-UNet trained with Dice-CrossEntropy-Focal
loss and IM-UNet with Attention Block trained with Dice-CrossEntropy-Focal-TopK loss.
These p-values are very elevated and quite similar to one another, meaning that these three
networks are not statistically different from one another.

3.2.2. Best Networks Metrics

The numerical metrics results for these three networks are shown in Table 3.1. Since the
distributions previously described are not normal, they are expressed in terms of median
and interquartile range (IQR). They were computed on the 82 test set images taken from
the four control subjects. As can be seen the IQR is low, compared to the median values,
for all metrics in all networks. This means that the dispersion of values around the median
is low.

Table 3.1: Best networks metrics results. They are expressed as median and interquartile
range (IQR) and they are computed on the test set images taken from the four control
subjects.

Network name DICE HD GCE OM

IM-UNet_DiceCEFocal 0.9248 (0.0271) 0.2997 (0.0223) 0.0012 (0.0002) 0.3756 (0.0412)
IM-UNetAtt_DiceCEFocalTopK 0.9321 (0.0152) 0.2869 (0.0287) 0.0011 (0.0002) 0.3583 (0.0362)
QT-UNet_DiceCEFocal 0.9134 (0.0192) 0.2947 (0.0218) 0.0012 (0.0002) 0.3847 (0.0373)

3.3. Cross Validation results

Then, Cross Validation, as described in Subsection 2.6.2, was performed and produced
the metrics results shown in Table 3.2 expressed as median and IQR. It can be noted
that median values are similar to the ones in Table 3.1; this means that the networks
don’t suffer from overfitting problem. IQR values instead are higher, meaning that values
dispersion around median is greater.
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Table 3.2: Cross Validation metrics results. They are expressed as median and interquar-
tile range (IQR) and they are obtained performing the subject-one-out cross validation
on the four control subjects.

Network name DICE HD GCE OM

IM-UNet_DiceCEFocal 0.9213 (0.0454) 0.2829 (0.0549) 0.0010 (0.0003) 0.3611 (0.0844)
QT-UNet_DiceCEFocal 0.9261 (0.0673) 0.2713 (0.0786) 0.0009 (0.0007) 0.3528 (0.1394)
IM-UNetAtt_DiceCEFocalTopK 0.8983 (0.0387) 0.3081 (0.0440) 0.0012 (0.0003) 0.4117 (0.0719)

3.4. Post processing results of control subjects

This section presents the metrics and the outputs of the segmentations relating to control
subjects, obtained after post-processing.

3.4.1. Metrics results

Segmentations were reconstructed according to the procedure explained in Section 2.7
and they are evaluated with respect to the manual segmentations, producing the metrics
results shown in Table 3.3. Results are expressed as median and IQR. As can be seen,
all median values are a little bit better than the ones of pre processed images, shown in
Table 3.1, while the IQR values are of the same order of magnitude.

Table 3.3: Best networks metrics results on post-processed images for control subjects.
They are expressed as median and interquartile range (IQR) and they are obtained by
the comparison between manual segmentations and the post processed segmentations.

Network name DICE HD GCE OM

IM-UNet_DiceCEFocal 0.9285 (0.0257) 0.3247 (0.0259) 0.0011 (0.0003) 0.3979 (0.0442)
IM-UNetAtt_DiceCEFocalTopK 0.9375 (0.0151) 0.3137 (0.0311) 0.0010 (0.0002) 0.3793 (0.0374)
QT-UNet_DiceCEFocal 0.9256 (0.0200) 0.3269 (0.0242) 0.0011 (0.0003) 0.4030 (0.0338)

3.4.2. Precision and Recall

The usual metrics together with Precision and Recall were used to evaluate the post pro-
cessed segmentations divided according to classes. This was done in order to see if there
were some differences in the performance of networks for different classes. The results are
shown in Tables 3.4 to 3.8. As can be seen, precision results overcome 0.90 for almost all
the metrics, this means that there are very few false positives. As regards recall instead,
it can be seen that Soft Palate, Hard Palate and Lower Lip have values below or at most
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equal to 0.90, meaning that the number of false negatives is higher than the one of the
other four regions.
Regarding the Dice metric, it can be seen that Hard and Soft palates gain lower values
with respect to the other regions; this difficulty in correctly classifying these regions can
be found also in values of Hausdorff Distance metric, which are higher for those two re-
gions. It must be noted that also Lower Lip region has this metric high.
Lastly, it can be seen that Global Consistency Error order of magnitude is directly pro-
portional to the magnitude of the regions: larger regions, such as Background and Head,
have values one order of magnitude bigger than medium regions, such as Lower Lip and
Tongue, and two order of magnitude bigger than smaller regions, such as Upper Lip, Soft
and Hard palates.

Table 3.4: Recall: best networks results on post-processed segmentations divided accord-
ing to classes (Background, Upper Lip, Hard Palate, Soft Palate, Tongue and epiglottis,
Lower Lip and Head). They are expressed as medians.

Network name BK UL HP SP TO LL HE

IM-UNet_DiceCEFocal 0.9867 0.9046 0.8843 0.8254 0.9544 0.8568 0.9917
IM-UNetAtt_DiceCEFocalTopK 0.9927 0.9226 0.9125 0.8608 0.9451 0.8692 0.9722
QT-UNet_DiceCEFocal 0.9852 0.9554 0.8739 0.7897 0.9649 0.9076 0.9950

Table 3.5: Precision: best networks results on post-processed segmentations divided ac-
cording to classes (Background, Upper Lip, Hard Palate, Soft Palate, Tongue and epiglot-
tis, Lower Lip and Head). They are expressed as medians.

Network name BK UL HP SP TO LL HE

IM-UNet_DiceCEFocal 0.9961 0.9705 0.9009 0.9071 0.9724 0.9776 0.9452
IM-UNetAtt_DiceCEFocalTopK 0.9917 0.9749 0.9169 0.9156 0.9863 0.9706 0.9688
QT-UNet_DiceCEFocal 0.9977 0.9274 0.8834 0.9056 0.9758 0.9345 0.9414

Table 3.6: Dice: best networks results on post-processed segmentations divided according
to classes (Background, Upper Lip, Hard Palate, Soft Palate, Tongue and epiglottis, Lower
Lip and Head). They are expressed as medians.

Network name BK UL HP SP TO LL HE

IM-UNet_DiceCEFocal 0.9915 0.9269 0.8866 0.8583 0.9649 0.9144 0.9674
IM-UNetAtt_DiceCEFocalTopK 0.9921 0.9375 0.9086 0.8857 0.9655 0.9138 0.9694
QT-UNet_DiceCEFocal 0.9914 0.9350 0.8739 0.8478 0.9675 0.9186 0.9672



78 3| Results

Table 3.7: Hausdorff Distance: best networks results on post-processed segmentations
divided according to classes (Background, Upper Lip, Hard Palate, Soft Palate, Tongue
and epiglottis, Lower Lip and Head). They are expressed as medians.

Network name BK UL HP SP TO LL HE

IM-UNet_DiceCEFocal 0.2339 0.3015 0.3901 0.3780 0.3111 0.3849 0.3058
IM-UNetAtt_DiceCEFocalTopK 0.2421 0.2462 0.3901 0.3381 0.2840 0.4082 0.2682
QT-UNet_DiceCEFocal 0.2339 0.3015 0.3901 0.3381 0.2840 0.4303 0.2938

Table 3.8: Global Consistency Error: best networks results on post-processed segmen-
tations divided according to classes (Background, Upper Lip, Hard Palate, Soft Palate,
Tongue and epiglottis, Lower Lip and Head). They are expressed as medians.

Network name BK UL HP SP TO LL HE

IM-UNet_DiceCEFocal 0.0261 0.0005 0.0011 0.0010 0.0024 0.0022 0.0235
IM-UNetAtt_DiceCEFocalTopK 0.0248 0.0004 0.0009 0.0008 0.0023 0.0022 0.0219
QT-UNet_DiceCEFocal 0.0263 0.0005 0.0012 0.0010 0.0021 0.0023 0.0238

3.4.3. Segmentation output

In Figure 3.21a there is an example of the ground truth segmentation of a control subject
and in Figure 3.21b the correspondent predicted and post processed segmentation. As
can be seen, these two segmentations reflect the results shown in Table 3.3.
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(a) (b)

Figure 3.21: Example of a) ground truth segmentation of a control subject and b) the
correspondent predicted and post processed segmentation.

In Figure 3.22, there is the example of a map showing, for a control subject, the ground
truth area of regions with their edges (pink and red colours) with the superposition of
areas that were under-segmented (purple) and over-segmented (green). Specifically, under-
segmented areas are those ones that should have been included in a region but were not;
over-segmented areas are those ones that should have been excluded from a region but
were not.
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Ground Truth area

Under-segmented area

Ground Truth edge

Over-segmented area

Background Head

Upper Lip Hard Palate Soft Palate

TongueLower Lip

Figure 3.22: Example of a map showing, for a control subject, the ground truth area of
regions with their edges (pink and red colours) with the superposition of areas that were
under-segmented (purple) and over-segmented (green).

3.5. Post processing results of patient

As mentioned in Section 2.1, the best networks were also used to predict the segmentations
of patient images, in order to test their generalizability.

3.5.1. Metrics results

Metrics results are synthesized in Table 3.9. They are again expressed as median and
IQR. Taking into account that vocal structures of the patient are quite different from the
control subject ones, metrics values get worse for all networks and have a IQR of the same
order of magnitude of the one obtained after cross-validation.
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Table 3.9: Best networks metrics results on post-processed images for patient. They are
expressed as median and interquartile range (IQR) and they are obtained by testing the
three best networks only on the images of the patient to test their generalizability.

Network name DICE HD GCE OM

IM-UNet_DiceCEFocal 0.8493 (0.0520) 0.3830 (0.0491) 0.0024 (0.0007) 0.5313 (0.1006)
IM-UNetAtt_DiceCEFocalTopK 0.8410 (0.0403) 0.3830 (0.0454) 0.0025 (0.0007) 0.5421 (0.0817)
QT-UNet_DiceCEFocal 0.7848 (0.0496) 0.3802 (0.0298) 0.0029 (0.0006) 0.5968 (0.0761)

The results distributions are also shown in four violin plots represented in Figures 3.23
to 3.26. It can be seen that for Dice metric, Global Consistency Error and overall metric
the performances of IM-UNet with Attention Block trained with Dice-CrossEntropy-Focal-
TopK loss and IM-UNet trained with Dice-CrossEntropy-Focal loss are slightly better
than the ones of QT-UNet trained with Dice-CrossEntropy-Focal loss, while for Hausdorff
Distance metric they are comparable.

Figure 3.23: Violin Plot of Dice Metric for the three best networks tested on patient
images.
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Figure 3.24: Violin Plot of Hausdorff Distance Metric for the three best networks tested
on patient images.

Figure 3.25: Violin Plot of Global Consistency Error Metric for the three best networks
tested on patient images.
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Figure 3.26: Violin Plot of overall metric for the three best networks tested on patient
images.

3.5.2. Segmentation output

In Figure 3.27a there is an example of the ground truth segmentation of the patient and
in Figure 3.27b the correspondent predicted and post processed segmentation. As can be
seen, these two segmentations reflect the results shown in Table 3.9.
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(a) (b)
(a) (b)

Figure 3.27: Example of a) ground truth segmentation of the patient and b) the corre-
spondent predicted and post processed segmentation.

In Figure 3.28, there is the example of a map showing, for the patient, the ground truth
area of regions with their edges (pink and red colours) with the superposition of areas
that were under-segmented (purple) and over-segmented (green). Specifically, the under-
segmented areas are those ones that should have been included in a region but were not;
the over-segmented areas are those ones that should have been excluded from a region
but were not.
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Background HeadUpper Lip Hard Palate Soft Palate

TongueLower Lip

Figure 3.28: Example of a map showing, for the patient, the ground truth area of regions
with their edges (pink and red colours) with the superposition of areas that were under-
segmented (purple) and over-segmented (green).

3.6. Vocal Tract Segmentation tool results

As explained in Section 2.8, the VTS-tool provides the trend of the areas of articulators
during the repetition of a task. Here below are graphically represented the trends of the
articulators areas during the repetition of the task Segregation, obtained using QT-UNet
trained with Dice-CrossEntropy-Focal loss. Figure 3.29 shows the areas trend for a control
subject and Figure 3.30 for patient. Since each video is constituted by a total number
of frames equal to 354, there are 354 values of articulators areas. Large areas such as
head and background are not reported because their variation is pretty irrelevant. It can
be seen that patient has a pattern that is significantly different from control for all the
articulators considered.
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Trend of a control subject’s vocal tract areas

Figure 3.29: Trend of a control subject articulators areas during the repetition of the task
Segregation. The number of considered frames is 354.

Trend of a patient’s vocal tract areas

Figure 3.30: Trend of patient articulators areas during the repetition of the task Segrega-
tion. The number of considered frames is 354.
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4.1. Loss functions results analysis

As described in Subsection 2.4.5, single loss functions at the pixels level seem to give
rise to poorer performance due to their small value at the very beginning of the learning
phase and the rapid decrease of the curve slope when approaching the end of the learning
process. On the other hand, the more the loss functions are combined, the higher is the
initial value and the slope, which is also kept until the best classification is reached. This
allows the gradient to maintain a higher potential in the neighborhood of the correct
segmentation, and therefore to be minimized with greater efficiency and precision.
From this evidence it is possible to suppose that compound loss functions learn better
than single ones during the whole network learning, also at the topological level. This
hypothesis is confirmed by the results obtained from the statistical analysis on the overall
networks. In Section 3.2, loss functions were ranked according to their belonging to the
best networks, identified by the Post Hoc test, and it can be seen that compound loss
functions appear in the first positions. Moreover, it can be noted that combining more
than two loss functions improves the performance of the networks, indeed the three best
selected networks are composed by compound losses with three and four elements. This
means that combining Dice loss and Cross-Entropy loss succeeds in taking into account
the dissimilarities between the two distributions and also the overlap degree. Then, adding
Focal loss allows to penalize the well-classified samples to focus on the worst ones and
adding TopK loss allows to focus on the most difficult pixels, which are those points that
the Cross-Entropy loss fails to classify.

4.2. Architectures results analysis

As described in Section 3.2, the three best networks are built with IMUNet, IMUNet with
attention block and QTUNet architectures. The reason why these three architectures pre-
vail over the RuthvenUNet and CELUNet may be linked to a common concept that they
have in the encoding phase. This is the propagation of the initial information through all
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the layers before the bottleneck. The IMUNet (similarly to IMUNet with attention block),
in its encoding path, propagates the initial information layer by layer, adding the linear
projection of the input (1×1 Convolution) with a deeper convolution (3×3 Convolution).
This way, information that is analyzed in a multi-scale level reaches the bottleneck. The
QTUNet, instead, propagates the input to the bottleneck through the connections of the
dense block, increasing the information flow received. Both architectures bring a portion
of the initial information, and of each subsequent layer, to the bottleneck. It is therefore
possible to state that it is preferable to propagate the input and subsequent layers, with
residual or dense blocks, at the bottom of the network. This statement is consequently
reflected on the decoding path, as it maintains the interconnections by propagating the
deep knowledge even to the final layers.
This concept, as well as improving the quality of the network outputs, also improves
its performances, as back-propagation is facilitated (mainly for QTUNet which has no
operations in the interconnections, while IMUNet still has convolutions with weights to
update).
In spite of the belonging of IMUNet with attention block to one of the best networks, it is
necessary to notice that its performance is comparable to the one of the others two archi-
tectures. This means that the introduction of the attention block at the skip connection
level does not significantly improve the performance of this network.
Furthermore, as regards IMUNet, replacing the convolutions with the transposed convo-
lutions in the decoding processing block gave better results. Another aspect in common
between the three networks is related to the bottleneck, which is not a classic convolution
block as it is in RuthvenUNet and CELUNet. IMUNet, similarly to IMUNet with atten-
tion block, uses a series of dilated convolutions that keep the spatial resolution high even
at the end of the process, however increasing the receptive field. QTUNet instead, uses a
convolution (1× 1) which linearly projects the information content coming from the en-
coding path, thus keeping its resolution constant too. Therefor, since the bottleneck does
not have a max-pooling layer and therefore does not have the corresponding up-sampling
layer that counterbalances it, it is preferable that it maintains the same resolution, without
being subjected to classic convolutions with kernel higher than (1× 1).

4.3. Best networks results analysis

As described in Section 3.2, the three best networks obtained are pretty equivalent in
producing good results from a statistical point of view, since their p-values are very close
to 1. Their performances, in terms of metric results are shown in Table 3.1. It can be noted
that for all metrics the IQR is very low, meaning that the dispersion of values around
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the median is low and the median value is representative for the networks performance.
Specifically, Dice values are all equal or greater than 0.91, meaning that the amount of
overlap between the predicted classes and their ground truth is satisfactory. Hausdorff
Distance values are quite close to 0, it means that the prediction’s spatial position and
boundaries are close to the ones of ground truth. Global Consistency Error values are
very close to zero, meaning that also the overlap of the smallest portions of the regions
is guaranteed and the amount of the true negatives is high as well as the amount of the
true positives. Eventually, the overall metric values are quite close to 0 and it means that
the overall performance of the networks can be considered satisfactory.
From Table 3.2, representing the subject-one-out cross validation results, it can be deduced
that these networks don’t suffer from overfitting problem because synthesis metrics values
remain satisfactory, meaning that the networks are able to correctly segment images when
trained and tested with different sets. Specifically, it means that these networks are
able to well predict structures of a subject after a training phase conducted on all the
other subjects. So their ability to predict something new can be considered satisfactory.
Obviously the IQRs are a little bit higher than the ones of Table 3.1 because the variability
of values obtained with cross validation procedure is stronger.

4.4. Patient results analysis

The evaluation of the best networks on patient segmentations was performed to test their
generalizability. As can be seen in Figure 3.27 the vocal tract structures of the patient
are in quite a different shape compared to a control subject, and because of that it was
more difficult for networks to perform a correct segmentation. In fact there are several
groups of pixels belonging to the incorrect region, especially in the lowest portion of the
head or at the borders among Upper Lip, Hard Palate and Soft Palate. However, the
results shown in Table 3.9 demonstrate that the three networks perform quite well for
all metrics. Their IQR is higher compared to the one of the networks tested on control
subjects, this means that there is more variability in predicted segmentations. But IQR
values are small enough not to compromise the representativeness of the median values.
In Figure 3.28 can be seen the over and under segmented areas. We would expect a
predominance of under-segmented areas since the Focal loss function used in all networks
tends to provide a more conservative segmentation. But, since performances for the
patient are not so good, this tendency does not emerge.
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4.5. Post processing results analysis

A can be seen in Table 3.3, the post processing of predicted segmentations improves a
bit the metrics results. This happens because all pixels are assigned to at least one class,
according to the highest probability of belonging to that class. This way there are no
more holes along borders between regions and the reconstructed overall segmentation is
more similar to manual one, as can be seen in Figure 3.21.
The last step was analyzing Precision, Recall, Dice metric, Hausdorff Distance metric
and Global Consistency Error metric, separately for each region, to see if there are some
differences between them. As can be noted from Table 3.4 and Table 3.5, the values
of Precision are always greater than those of Recall, this is caused by the use of Focal
loss function in all networks. This loss function amplifies Precision to the detriment
of Recall, meaning that it privileges a sub-segmentation rather than over-segmentation.
This tendency is confirmed by the map shown in Figure 3.22, where there is the strong
predominance of under-segmented areas (purple ones). In particular this is evident in
proportion for Hard and Soft palate, that are small and highly variable regions. In fact,
as can be seen in Tables 3.6 to 3.8, these two regions gain worse values also for the other
three metrics with respect to the other regions. In general these results confirm that
small and highly variable regions, such as hard and soft palate, are more challenging to
be correctly segmented, while big and low variable regions, such as head and background,
are easier to be correctly segmented. Eventually, upper lip gains quite good results because
it is a small region but it does not have great variability; at the opposite, tongue and lower
lip are medium regions but their variability is significant. This emerges from their results
which are worse than those of head and background, but better than those of hard and
soft palate.

4.6. Vocal Tract Segmentation tool results analysis

The computation of articulators area and the visualization of their trend in time is one
of the possible clinical metric that can be used to discriminate between a physiological
production of speech and the presence of some motor speech impairment. In particular, as
explained in Section 0.1, apraxia of speech (AOS) is characterized by inconsistent speech
patterns, while dysarthria is connoted by consistent patterns. This way, by looking at
the aformentioned trends, is possible, for example, to discriminate between these two
pathological conditions. Figure 3.29 and Figure 3.30 provide an example of articulators
area trends representing a physiological and a pathological condition.
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development

The automatic segmentation of vocal tract in its main articulators was successfully per-
formed by the best networks obtained. They were all built with compound loss functions
made by three or four losses, proving the superiority of multiple losses with respect to
double or singular ones. They were all built with architectures that improved bottleneck
information flow (dense blocks or residual blocks), and bottlenecks that maintain spatial
resolution.
The best networks gained satisfactory metrics results on control subjects and good results
on patient. The patient results and the cross validation results also demonstrate that these
networks achieve quite good generalizability and don’t suffer from overfitting problem.
Moreover, the post processing procedure succeeds in reconstructing the whole predicted
segmentation by removing holes along articulators borders and achieving slightly better
metrics results. The VTS-tool developed allows to visualize, in a dynamical manner, the
MRI images with their predicted segmentations superposed and it gives the possibility to
the clinicians to compute some clinical metrics both interactively (distances) and auto-
matically (dynamic computation of articulators areas). This VTS-tool allows clinicians to
save time, because it is not necessary to perform the manual segmentation of each dsMRI
image, which is a very time-consuming activity. It also allows clinicians to obtain quan-
tifiable and objective clinical information that can help them making an early diagnosis
and a better monitoring of speech diseases.
The main limitation of this work is the small amount of subjects included in the dataset
which leaded to patient results that are acceptable but not sufficient to help significantly
clinicians. To improve predictions of patients articulators it will be necessary to increase
significantly the number of controls and patients included in the dataset in order to obtain
higher values of generalizability. Another future development could concern the VTS-tool
that can be customized according to the specific clinical metrics requested by clinicians.
For example, pattern-recognition networks can be developed to quantitatively define the
presence of recurring patterns in the trend of the areas. Eventually, it could be useful
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to create a predictive model for a dynamic reference system, which can be used by the
VTS-tool to determine the distances of the vocal tract in a dynamical manner.
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