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Abstract

The traditional pricing paradigms, once reliant on static models and rule-based strate-
gies, rapidly give way to dynamic data-driven approaches powered by machine learning
algorithms. Dynamic pricing algorithms usually face the problem of finding the optimal
prices of a product independently from the others. However, this choice may lead to
suboptimal solutions, as we miss the chance to exploit product interactions. In this the-
sis, we present CPP (Complementary Product Pricing), an online learning algorithm for
optimizing the pricing strategies of a set of products, considering the substitutable and
complementary relations between them. The algorithm makes use of transaction data to
learn the interaction between the different items and then optimize the pricing strategies
through efficient multi-armed bandit solutions. We validate our solution in a simulated
environment that mimics the one of a real e-commerce website, and we demonstrate that
CPP improves the profit w.r.t. to an algorithm that ignores such interaction, also in the
short-term, up to 30%.

Keywords: complementary products, dynamic pricing, multi-armed bandit, online learn-
ing





Abstract in lingua italiana

I paradigmi tradizionali di pricing, un tempo basati su modelli statici e strategie rule-
based, stanno lasciando rapidamente il posto ad approcci dinamici basati sui dati e al-
imentati da algoritmi di apprendimento automatico. Gli algoritmi di pricing dinamico
di solito affrontano il problema di trovare i prezzi ottimali di un prodotto indipenden-
temente dagli altri. Tuttavia, questa scelta può portare a soluzioni subottimali, poiché
si perde la possibilità di sfruttare le interazioni tra i prodotti. In questa tesi presenti-
amo CPP (Complementary Product Pricing), un algoritmo di apprendimento online per
ottimizzare le strategie di prezzo di un insieme di prodotti, considerando le relazioni di
sostituibilità e complementarietà tra di essi. L’algoritmo utilizza i dati delle transazioni
per apprendere l’interazione tra i diversi articoli e quindi ottimizzare le strategie di prezzo
attraverso soluzioni efficienti con multi-armed bandit. Validiamo la nostra soluzione in un
ambiente simulato che imita quello di un sito web di un e-commerce reale e dimostriamo
che CPP migliora il profitto rispetto a un algoritmo che ignora tale interazione, anche nel
breve termine, fino al 30%.

Parole chiave: prodotti complementari, pricing dinamico, multi-armed bandit, ap-
prendimento online
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1| Introduction

Determining the optimal price of a product is a crucial task for retailers, playing a signifi-
cant role in shaping consumer behaviour, influencing purchasing decisions, and ultimately
impacting the overall success of a retail business. This task is directly addressed by dy-
namic pricing, the study of determining optimal selling prices of products or services, in
a setting where prices can easily and frequently be adjusted (Den Boer, 2015). Among
the key factors that determine the demand for a product and its optimal selling price,
the relations each product has with others sold by the same retailer is certainly of great
importance. Studies demonstrate the inherent value in pricing by adopting bundling and
joint pricing strategies (Yan and Bandyopadhyay, 2011; Venkatesh and Kamakura, 2003).
Dynamic pricing algorithms usually face the problem of finding the optimal prices of a
product independently from the others, which may lead to suboptimal solutions, as we
miss the chance to exploit product interactions. Two main types of relationships can be
identified between products: substitutability and complementarity. Substitutable prod-
ucts refer to goods that can be used in place of each other to satisfy a particular need
or want. As a consequence, these products are rarely bought together, i.e. two different
brands of mattresses or two different models of computer keyboards. Complementary
products, on the other hand, are products that "go together" (Nicholson and Snyder,
2017) and complement each other, such as a printer and ink cartridges or a toothbrush
and toothpaste. They enhance the value and utility of each other when consumed or
utilized simultaneously and thus are usually bought together. This characteristic of com-
plementary products is greatly exploited in recommender systems (McAuley et al., 2015)
to suggest additional products for the user to buy given the interest shown in their comple-
mentary products and in pricing (Mulhern and Leone, 1991; Ghoniem et al., 2016; Feng
et al., 2018), to take into account product relations when selecting the optimal selling
price.
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1.1. Goal and Challenges

Dynamic pricing algorithms usually face the problem of finding the optimal prices of a
product independently from the others and this can lead to suboptimal solutions as we
miss the chance to exploit product interactions. The goal of our thesis is to fill this
gap by proposing an online learning algorithm for optimizing the pricing strategy of a
set of products, considering both positive and negative interactions between them. The
main challenges reside in the characteristics of the complementary relationship and in the
complexity of the problem. A complementarity relationship exhibits characteristics such
as asymmetry and non-transitivity (Kocas et al., 2018; Yu et al., 2019; Xu et al., 2020)
which distinguish complementarity from a simple equality relation like substitutability.
Moreover, two products can be complementary while belonging to semantically different
areas, so complementarity is inherently harder to capture and cannot be identified simply
by similarity. When determining the price of a product, we are dealing with an unknown
environment and the selling volumes that a product will produce at a given price are not
known in advance. Thus, when dynamically pricing a product, we need to balance the
information we acquired about the environment and collecting new information. This is
known as the exploration-exploitation dilemma and is to be addressed when dealing with
such a task. Another crucial challenge to tackle is the computational complexity of the
problem. Indeed, given a catalogue of products, each product can be related to all of the
others in the catalogue with a combinatorial explosion that is infeasible to manage both
from a computational and data scarcity point of view.

1.2. Original Contribution

In this thesis, we address these challenges, focusing on pricing non-luxury products in
retail e-commerce with unlimited inventory. We propose an online learning algorithm
to identify complementary products and optimize their pricing strategies by taking into
account the interactions between them. The algorithm makes use of transactional data to
identify the complementarity relationships between products. The computational com-
plexity of the problem is tackled by considering only the most significant complementary
relations among products. A Multi-Armed Bandit approach is used to learn the prod-
uct demands, addressing the exploration-exploitation tradeoff with the use of Thompson
Sampling as a heuristic to drive exploration in the choice of product prices. We evaluate
our solution in a simulated environment that mimics the one of a real e-commerce website,
and we demonstrate an improvement of up to 30% in profit with respect to an algorithm
that ignores product relations and assumes the products to be independent.
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1.3. Work Structure

Our work is organized as follows: in Chapter 2 we provide an overview of the topics that
are the backbone of our proposed solution. We cover Economics Groundings, Hypothesis
Tests, Linear Models used in regression with a focus on Bayesian Linear Regression and
Multi-Armed Bandits. In Chapter 3 we formally define the problem we want to address
in the thesis and the objective. In Chapter 4 we discussed our proposed solution of the
problem, describing our algorithm CPP. In Chapter 5, we explore works related to the
problem we face in our thesis, comparing them to CPP. In Chapter 6 we validate our
algorithm in a synthetic environment and compare it to an algorithm that independently
price products. Finally, in Chapter 7 we draw the conclusions on our thesis, suggesting
future extension of our work in new settings.
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2| Background

In this chapter, we aim to provide the groundings on the topics we will address in our
thesis. We first introduce in Section 2.1 the groundings in microeconomics needed in our
thesis, in particular the concepts of demand, complementary and substitutable products
and cross-price elasticity. In Section 2.2 we cover the statistical tools we make use of
in our thesis, focusing in particular on the Binomial Hypothesis Test. We proceed in
Section 2.3 to discuss the mathematical formulation of Linear Basis Function Models and
their extension to a Bayesian framework with Bayesian Linear Regression. In Section 2.4
we cover the Multi-Armed Bandit problem, focusing on the Bayesian approaches used to
solve the exploration-exploitation dilemma, such as Thompson Sampling.

2.1. Economics Groundings

2.1.1. Demand Function and Price Elasticity

A demand function, in the context of microeconomics, describes the relationship between
the price of a good or service and the quantity of that good or service that consumers
are willing and able to purchase at different price levels. As shown in figure 2.1 we depict
the demand function with the price on the x-axis and the quantity on the y-axis, in order
to better convey the fact that price is considered an independent variable and quantity
depends on price. Closely related to the demand function is the concept of price elasticity
of demand, which quantifies the responsiveness of the quantity demanded to changes in
the price of a good or service. For most goods, following the law of demand, the demanded
quantity decreases as the price increases (Nicholson and Snyder, 2017) and accordingly,
the demand function is decreasing and the price elasticity is negative. Exceptions to this
case are particular categories of goods such as Veblen goods (Kemp, 1998) and Giffen
goods (Dougan, 1982).
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Figure 2.1: Example of a demand function

2.1.2. Complementary and substitutable products

The economic literature distinguishes between two types of product interdependencies:
complementary products and substitutable products(Nicholson and Snyder, 2017).

Complementary products "go together" (Nicholson and Snyder, 2017) and complement
each other. These kinds of products are usually bought together, such as a printer and
an ink cartridge or a toothbrush and toothpaste.

On the other hand, substitutable products are products that serve the same purpose and
are rarely bought together, instead, they usually cannibalize each other, for example, two
different brands of a mattress are rarely bought together and the purchase of one brand
usually corresponds to one less purchase of the other brand.

2.1.3. Cross-Price Elasticity

Complementary and substitutable products have different effects on the demand function
for related products. The concept of cross-price elasticity is useful to describe these effects:
it measures the proportionate change in the quantity q of a good demanded in response
to a proportionate change in the price of some other good (Nicholson and Snyder, 2017).

More formally, given two products x and y, their respective prices px and py and the
demand function of product x qxppx, pyq, the cross-price elasticity of demand for product
x with respect to the price of product y is defined as:

exy “
B

Bpy
qxppx, pyq ˚

py
qx
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Figure 2.2: Cross price elasticities between products

For complementary products, as we can see in figure 2.2a the cross-price elasticity is
negative: this is intuitive since a lower price of product y leads to a lower quantity of
product y and, since the demand of product y drives the demand of the complementary
product x, we can expect also the quantity of product x to decrease.

On the contrary, as shown in figure 2.2b, the effect for substitutable products is the oppo-
site: the cross-price elasticity is positive since the lower demand of product y leads to an
increase in the demand of a competing product x.

2.2. Hypothesis Test

A statistical hypothesis is a statement about a set of parameters of a population distri-
bution. A primary problem is to develop a procedure for determining whether or not the
values of a random sample from this population are consistent with the hypothesis (Ross,
2021).

2.2.1. Significance levels

Given a population having distribution Fθ, where θ is unknown, we want to test a specific
hypothesis about θ. We denote this hypothesis by H0 and call it the null hypothesis.

In order to test a specific null hypothesis H0, a population sample of size n X1, . . . , Xn is
observed. The decision on whether or not to accept H0 is based on these n values. We
can specify a test for H0 by defining a region C in n-dimensional space. If the random
sample X1, . . . , Xn lies in C the hypothesis is rejected, accepted otherwise. The region
C is called the critical region. We encounter two types of errors in testing, given a null
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hypothesis H0: type I error is said to result if the test rejects H0 when it is correct while
type II error results if the test accepts H0 when it is false.

The objective of a statistical test is not to explicitly determine if the null hypothesis is
true or not but rather its consistency with the resultant data. Thus, we want to reject
H0 only with very unlikely data. To accomplish this, we specify a value α and require
that whenever H0 is true, the probability of rejecting H0 is never greater than alpha. The
value α is called significance level and we usually set it in advance and common values
for it are α “ t0.1, 0.05, 0.005u.

We can determine whether or not to accept the null hypothesis by computing first the
value of the test statistic, i.e. a function dpX1, . . . , Xnq that maps samples to a value used
to accept or reject the null hypothesis, and compute the probability that the distribution
used in the test would exceed that quantity. This probability is called the p-value and
gives the critical significance level in the sense that H0 will be accepted if the significance
level α is less than the p-value and rejected if it is greater than or equal.

2.2.2. Binomial Test

The binomial test is a test of the null hypothesis H0 that the probability of success p in
a binomial distribution is p0. Considering a binomial distribution with parameters pn, pq,
we define the following testing problem:

H0 : p ď p0

H1 : p ą p0
(2.1)

where H1 is called the alternative hypothesis and p0 is some specified value.

This is called a one-sided testing problem since we call for rejection only when the esti-
mator of p is large, as opposed to the two-sided case where the alternative hypothesis is
H1 : p ‰ p0.

If we let X denote the number of successes in the sample of size n, we wish to reject H0

when X is large and we have that:

P tX ě ku “

n
ÿ

i“k

P tX “ iu “

n
ÿ

i“k

ˆ

n

i

˙

pip1 ´ pq
n´i. (2.2)

It can be proven that P tX ě ku is an increasing function of p and using this we observe
that when H0 is true (so p ď p0),
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Figure 2.3: Example of acceptance and rejection regions in a binomial test

P tX ě ku ď

n
ÿ

i“k

ˆ

n

i

˙

pi0p1 ´ p0q
n´i. (2.3)

Hence, a significance level α test of H0 : p ď p0 versus H1 : p ą p0 is to reject H0 when

X ě k˚ (2.4)

where k˚ is the smallest value of k for which
řn

i“k

`

n
i

˘

pi0p1 ´ p0qn´i ď α, so

k˚
“ min

#

k :
n

ÿ

i“k

ˆ

n

i

˙

pi0p1 ´ p0q
n´i

ď α

+

. (2.5)

We can perform this test by determining the value of the test statistic, e.g. X “ x, and
computing the p-value given by

p-value “ P tBpn, p0q ě xu “

n
ÿ

i“x

ˆ

n

i

˙

pi0p1 ´ p0q
n´i (2.6)

In Figure 2.3 we show a visual example of acceptance and rejection regions in a binomial
test.
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2.3. Linear Models

We now discuss linear models used for regression. The goal of regression is to predict the
value of one or more continuous target variables t given the value of aD-dimensional vector
x of input variables (Bishop, 2006). We indicate a training dataset of N observations as
txnu, where n “ t1, . . . , Nu and x “ px1, . . . , xDq P RD and the corresponding target
values ttnu. Regression aims at modelling the relationship between target values and
observations.

2.3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of the
input variables

ypx,wq “ w0 ` w1x1 ` . . . ` wDxD (2.7)

This is often simply known as linear regression, as it is a linear function of the parameters
w “ pw0, . . . , wDqT and, in this case, it is also a linear function of the input variables xi,
significantly limiting the expressiveness of the model. We extend the class of models by
considering linear combinations of fixed non-linear functions of the input variables, of the
form

ypx,wq “

M
ÿ

j“1

wjϕjpxq “ wTϕpxq (2.8)

where w “ pw1, . . . , wMqT and ϕ “ pϕ1, . . . , ϕMqT .

The model has now M parameters where w1 is the bias parameter with the dummy basis
function ϕ1pxq “ 1.

2.3.2. Maximum Likelihood

We assume that the target variable t is given by a deterministic function ypx,wq with
additive Gaussian noise so that:

t “ ypx,wq ` ϵ (2.9)

where ϵ is a Gaussian random variable with zero mean and precision (inverse variance) β.

This implies a distribution over the target variable:

ppt|x,w, βq “ N pt|ypx,wq, β´1
q. (2.10)



2| Background 11

Now we consider a dataset of inputs X “ tx1, . . . ,xNu with corresponding target values
t “ pt1, . . . , tNq. With the assumption that the data points are drawn independently from
the distribution, we can obtain the following expression for the likelihood function:

ppt|X ,w, βq “

N
ź

n“1

N ptn|wTϕpxnq, β´1
q (2.11)

From now on we will omit the explicit X as it will always appear in the set of conditioning
variables. We apply the logarithm to the likelihood function:

ln ppt|w, βq “

N
ÿ

n“1

lnN ptn|wTϕpxnq, β´1
q

“
N

2
ln β ´

N

2
lnp2πq ´ βEDpwq

(2.12)

where ED is the sum-of-squares error function, defined as:

EDpwq “
1

2

N
ÿ

n“1

ttn ´ wTϕpxnqu
2 (2.13)

We want to obtain the values wML of the parameters that maximize the likelihood of the
target. To do so we compute the gradient of the log-likelihood:

∇ ln ppt|w, βq “

N
ÿ

n“1

ttn ´ wTϕpxnquϕpxnq
T . (2.14)

We define the design matrix Φ, anNˆM matrix whose elements are given by ϕnj “ ϕjpxnq

so that

Φ “

¨

˚

˚

˚

˚

˝

ϕ1px1q ϕ2px1q . . . ϕMpx1q

ϕ1px2q ϕ2px2q . . . ϕMpx2q

...
... . . . ...

ϕ1pxNq ϕ2pxNq . . . ϕMpxNq

˛

‹

‹

‹

‹

‚

(2.15)

and setting the gradient to zero and solving for w we obtain

wML “ pΦTΦq
´1ΦT t. (2.16)
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Moreover, maximizing the log-likelihood function (2.12) with respect to β we obtain:

1

βML

“
1

N

N
ÿ

n“1

ttn ´ wT
MLϕpxnqu

2 (2.17)

2.3.3. Bayesian Linear Regression

In order to move to a Bayesian treatment of linear regression, we introduce a prior prob-
ability distribution over the model parameters w:

ppw|αq “ N pw|m0,S0q (2.18)

with mean m0 and covariance S0.

We then compute the posterior distribution, which, due to the choice of a Gaussian prior,
is Gaussian as well:

ppw|tq “ N pw|mN ,SNq (2.19)

where the posterior mean mN and covariance SN are given by:

mN “ SNpS´1
0 m0 ` βΦT tq (2.20)

S´1
N “ S´1

0 ` βΦTΦ. (2.21)

Since the posterior distribution is Gaussian, its mode coincides with its mean and the
maximum posterior weight vector is simply given by wMAP “ mN .

Bayesian Linear Regression exhibits a sequential nature in that the posterior distribution
forms the prior when a new data point is observed. This property makes the use of
Bayesian Linear Regression suitable in an online learning setting.

2.3.4. Bayesian Monotonic Regression

We now focus on the setting where the relationship between input and target values is
known to be monotonic. We are particularly interested in this scenario because the de-
mand function can be assumed to be monotonically decreasing in price (see Section 2.1.1).



2| Background 13

To impose monotonicity in a Bayesian Regression setting it is possible to resort to a set
of basis functions such as Bernstein Basis Polynomial.

The k-th Bernstein Polynomial basis function of degree M is defined as

ψkpx,Mq :“

ˆ

M

k

˙

xkp1 ´ xq
M´k, x P r0, 1s (2.22)

and the regression formulation results in the following weighted combination

fpxq “

M
ÿ

k“0

ψkpx,Mq βk “ ψβ (2.23)

where β “ pb0, . . . , bMqT and its elements are called Bernstein coefficients and ψ “

pψ0, . . . , ψMq. The resulting model has M ` 1 parameters.

The function in Equation 2.23 is monotone if β0 “ 0 and bk ě bk´1 @k P t1, . . . ,Mu.

With the same procedure described in McKay Curtis and Ghosh (2011) and Wilson et al.
(2020), we perform a reparametrization of the regression coefficients as θ “ Aβ, where
A is an pM ` 1q ˆ pM ` 1q-matrix defined as

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 . . . 0 0

´1 1 0 . . . 0 0

0 ´1 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . ´1 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (2.24)

The regression function is then

fpxq “ ψA´1θ. (2.25)

With this reparametrization, f is monotone increasing when θk ě 0 @k ą 0. To obtain a
monotonically decreasing function is sufficient to use as basis functions 1´ψA´1 instead
of ψA´1.

In Figure 2.4 we show the Bernstein Polynomial basis functions and their transformed
version.

In the context of Bayesian Linear Regression, to obtain positive θ coefficients we resort to
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Figure 2.4: The 21 Bernstein polynomial basis functions of degree 20

priors with non-negative support. The simplest choice is a Lognormal prior distribution:

θ „ LN pθ0,Σ0q, (2.26)

where θ0 P RM and Σ0 P RMˆM . It is possible to estimate the posterior distribution
through sampling approaches such as the No-U-Turn Sampler (Hoffman and Gelman,
2014) or via Variational Inference (Blei et al., 2017).

2.4. Multi-Armed Bandits

A bandit problem is a sequential game between an agent and an environment. The game is
played over T rounds, where T is a positive natural number called the horizon (Lattimore
and Szepesvári, 2020).

In each round t P t1, . . . , T u, the agent chooses an action at P A and the environment
subsequently reveals a reward rt P R. In literature, actions are usually called arms and
when the number of arms is at least two, we refer to Multi-Armed Bandit (MAB).

An agent, when choosing their actions at round t, can only depend on the history ht´1 “

pa1, r1, . . . , at´1, rt´1q. A policy is a mapping from histories to actions and an agent adopts
a policy to interact with an environment. The goal of the agent is to choose actions that
lead to the largest possible cumulative reward over all the T rounds.

The fundamental challenge in bandit problems relies on the fact that the environment
is unknown to the agent so the agent has to balance the acquisition of new informa-
tion and the exploitation of current knowledge about the environment: this is called the
exploration-exploitation dilemma.
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2.4.1. Thompson Sampling

In order to tackle the exploration-exploitation dilemma, numerous bandit strategies have
been developed over time and their mathematical properties have been extensively studied
(Bubeck and Cesa-Bianchi, 2012). Thompson Sampling is a standard among the heuris-
tics to drive exploration and its theoretical guarantees have been thoroughly researched
(Agrawal and Goyal, 2012, 2013; Nuara et al., 2020). The common assumption is that
the reward r is drawn from a distribution defined by parameters θ P Θ.

Let P pθq be the prior distribution over the parameters and D “ tpai, riqu1:t the action-
reward tuples up to round t ď N . The posterior distribution of P pθq can be inferred
through Bayes’ theorem:

P pθ|Dq9P pD|θqP pθq,

where P pD|θq is the likelihood function. With the posterior distribution of the parameters
of the reward, it is possible to compute a probability distribution over the reward of each
action. The strategy employed selects the action a˚ P A is the one with the maximum
expected reward:

a˚
“ argmax

aPA
Errt|at “ a,θs.
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3| Problem Formulation

In this chapter, we formalize the problem we address in this thesis. We start in Sec-
tion 3.1 by defining the setting we are considering and the related assumptions. Then, in
Section 3.2, we present the learning problem and we define the metric we use for evaluating
the quality of our solution.

3.1. Setting

We study the scenario in which we want to find the optimal pricing strategy for a set of
products J (we call N the cardinality of set J , i.e., |J | “ N). Our goal is, given a time
horizon T , to set for every time t P t1, . . . , T u a vector of percentage margins (from now
on, margins) mt “ pm1t, . . . , mNtq where mjt P M is the price we choose for product j at
time t, and M is the (even infinite) set of possible margins. We define the (percentage)
margin mjt as:

mjt :“
pjt ´ cj
cj

,

where pjt is the selling price and the acquisition cost for product j at time t, and cj is its
acquisition cost.

For a generic product j P J we denote as vjpmtq the demand of product j which we assume
to depend on the margin vector mt of all products. We consider a scenario in which we
may have both positive and negative interactions among the products, i.e., we assume that
the purchase of a product has an effect on the purchases of other products. We identify two
types of relationships between products: substitutability and complementarity. Consider
two products a, b P J and the vector margin mt “ pm1t, . . . , mNtq. On the one hand,
we call a and b substitutable products if the increases in the sales of one product imply
a decrease in the sales of the other. On the other hand, we call a and b complementary
products if the increases in the sales of one product imply an increment also in the sales
of the other.
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Assumptions We consider non-perishable products with unlimited availability, for which
the demand function is monotonically non-increasing as its price increases. These assump-
tions, nowadays, hold in several cases. The assumption of unlimited availability virtually
holds for e-commerce websites adopting the dropshipping (Singh et al., 2018) paradigm.
The assumption of the monotonic demand holds for sellers vending products that are dif-
ferent from Veblen, Giffen or Luxury ones (Dougan, 1982; Leibenstein, 1950). We assume
to be in a stationary environment.1

Available data We consider a scenario in which we assume to have access to transaction
data reporting all the sales for every product j P J , divided by baskets. The only
information we have about products is the groups of substitutable products. The detection
of substitutable products has been thoroughly discussed in literature (Foxall et al., 2010;
Van Gysel et al., 2018; Zhang et al., 2019) and is out of the scope of this work.

3.2. Learning Problem

The goal of our learning problem is to find the vector of the optimal margin m˚, i.e., the
vector maximizing our objective function fpmq. Formally:

m˚
P argmax

mPMN

fpmq, (3.1)

where the objective function fpmq is profit:

fpmq :“
ÿ

jPJ
mj cj vjpmq, (3.2)

over all the products.2

We call π a policy returning at each time t a vector of margins mt. We define the
cumulative regret of such a policy as:

Rpπ, T q :“ Tfpm˚
q ´

T
ÿ

t“1

fpmtq. (3.3)

1The extension to non-stationary environments has been discussed several times (Bauer and Jannach,
2018; Nambiar et al., 2019; Javanmard et al., 2020; Mussi et al., 2022) and is out of the scope of this
work.

2The objective function can be made more general by considering a convex combination of revenue
and profit. In this case, the objective function f becomes fpmq :“

ř

jPJ pmjt ` 1 ´ αq cj vjpmq, with
α P r0, 1s. In this formulation, it is easy to observe that if we select α “ 1 we optimize the profit as in
Equation (3.2), and if we select α “ 0 we optimize the revenue.
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The goal of our algorithm is to find a policy minimizing the expected cumulative regret:

E rRpπ, T qs :“ Tfpm˚
q ´ E

«

T
ÿ

t“1

fpmtq

ff

, (3.4)

where the expectation is taken over the randomness of the realizations and the algorithm.
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4| Proposed Solution

In this chapter, we present our proposed algorithm to identify and price complementary
products in an online manner. The algorithm consists of two parts. In the first part
(Section 4.1), we deal with the aggregation of substitutable products and the discovery of
complementary ones. In the second part (Section 4.2), we discuss the demand estimation
model and the exploration strategy considered in the selection of optimal margins. In
Figure 4.1 we show an outline of the proposed algorithm.

Substitutable
Products

Aggregation

Building
Complementarity

Graph

Pruning
Complementarity

Graph

Demand Learning
and

Exploration

L

F

Figure 4.1: Algorithm outline

4.1. Complementary Products Discovery

Taking into account all the possible relations between every combination of products is
challenging both in terms of computational and data requirements. A way to simplify the
problem while focusing on the most significant relationships between products is necessary,
in order to have an algorithm that scales properly with catalogues containing hundreds
of thousands of products.

Conceptually, we can represent the relationships between products as a directed graph
where each node is a product and each edge represents a complementarity relationship
between 2 products. The graph is directed as the complementarity relationship is asym-
metric, as is usually assumed in literature (Kocas et al., 2018; Yu et al., 2019). As stated
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Product A

Product B

Product C

Product D

Figure 4.2: Example of a complementarity graph.

in Chapter 3, every product volume depends on the margins of the entire catalogue of
products, so our initial representation of the graph of complementarity relationship (from
now on the complementarity graph) is a connected graph, as shown in Figure 4.2.

In this section, we propose an approach to prune the edges of this graph while maintaining
the most meaningful ones. The process makes use of information about substitutable
products and transactional data and is divided into two steps:

1. Clustering substitutable products

2. Mining complementarity relationships.

4.1.1. Clustering Substitutable Products

The need to cluster substitutable products is due to the characteristics of these types of
products. Two substitutable products compete with each other and are often subject to
the phenomenon of cannibalization (Moorthy and Png, 1992) since they satisfy the same
need. Applying dynamic pricing solutions to these products separately would exacerbate
cannibalization and could lead to letting them compete against each other, with the effect
of reducing profit. Clustering these products together allows them to be priced with the
same pricing policy, minimizing cannibalization.

Following Mussi et al. (2022), given the information about substitutable products, which
we assume to have, and a set T of time instants for which historical transaction data is
available, we cluster a set of substitutable products K Ď J and their historical margin
mkτ and volume vkτ for all products k P K and time τ P T in the following way:
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mKτ :“
ÿ

kPK
mkτ ¨

vkτ
ř

hPK vhτ
,

vKτ :“
ÿ

kPK
vkτ .

Given a time horizon T , the margin mKt chosen at each time t P t1, . . . , T u will be applied
to every product k P K.

It should be noted that over time, the effect of averaging on margins, used at the beginning
to aggregate historical data, becomes progressively more marginal, since the algorithm
assigns, at each time t P t1, . . . , T u, the same margin for all aggregated products.

We refer to clustered substitutable products simply as products and each clustered product
is a node in the complementarity graph. From now on we assume that there are no
substitutable products in different nodes of the complementarity graph.

4.1.2. Mining Complementarity Relationships

After the identification of substitutable products, we proceed to identify meaningful com-
plementary relationships between products.

As previously stated in Chapters 2 and 3, complementary products are frequently bought
together and can then be identified using co-purchases in transactional data, as common
in Market Basket Analysis (Ünvan, 2021). Following this approach, we propose a way to
measure complementarity between products making use of the binomial test, discussed in
Section2.2.2. We want to test the independence of every pair of products in order to verify
if the co-occurrence of two products in the same basket is higher than random chance with
a given significance level. More formally, given two products a, b P J , we denote the total
number of baskets as n, the number of baskets containing product a as na, the number of
baskets containing product b as nb and the number of baskets containing both products
a and b as nab.

The probability of having product a in a basket is:

P paq “
na

n
,

similarly for product b:
P pbq “

nb

n
.



24 4| Proposed Solution

Leader Follower

Figure 4.3: Example of a leader-follower relationship.

Under the assumption of independence, the probability of having both products a and b

in a basket is P paqP pbq and this is the hypothesized probability of success π:

H0 : π “ P paqP pbq.

Since we want to test if the probability of the co-occurrence of a and b is higher than if
they were independent, we perform a right-tailed test and our alternative hypothesis is:

H1 : π ą P paqP pbq.

The number of trials in our hypothesis test is the total number of baskets n, while the
number of successes k is the number of co-occurrences of products a and b:

k “ nab.

Finally, we want to perform the test with a significance level of 1%, so we reject H0 if the
p-value is smaller than 0.01. For the product pairs for which we reject the null hypothesis
H0, we have statistical evidence that the probability of products a and b appearing in
the same basket is higher than if they were independent, and we can consider product
a and b to be complementary. We set the direction of the complementarity relationship
between two products to be from the product with the bigger number of baskets where
it is bought to the one with less. We do so on the assumption that the product with
more selling volumes has more influence on the product with less than vice versa, and
in a pair we call the product that influences the other product leader while the product
that is influenced follower, as shown in Figure 4.3. By imposing this direction we obtain
a Weighted Directed Acyclic Graph (DAG) of complementarity relationships between
products, where the p-values of the hypothesis tests are the weights of the edges. The
absence of cycles is due to the unidirectional flow of the edges given by the product
volumes.

In order to break down combinatorial complexity when optimizing we want to reduce the
graph structure to multiple star structures composed of one leader and multiple followers,
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Leader

Follower 1

Follower 2

Follower 3

Figure 4.4: Star structure with one leader and multiple followers

where each node can only be either a leader or a follower, as shown in Figure 4.4.

In order to do this we first need to obtain tree structures from the DAG. This can be done
by keeping, for each node, among the inbound edges, only the one with the highest weight,
i.e. the most influential leader. It should be noted that we are guaranteed to obtain trees
with this process thanks to the absence of cycles in the complementarity graph. Finally,
we need to cut the trees into star structures. To accomplish this, we need to address
the case where a node is both a leader and a follower of other nodes. We propose an
algorithm to obtain the desired structure: starting from the leaves of the trees and going
up to the roots, when we encounter a node that is both a follower and a leader, we only
consider its leader role and, as a consequence, only keep its outbound edges. The result
of this process is the above-mentioned structure: a collection of stars, with one leader and
multiple followers. We have obtained a structure that allows us to perform optimization of
the margins of the products breaking down the intrinsic combinatorial complexity of the
problem. In Figure 4.5 we show a visual example of the graph pruning process, labelling
with I the isolated nodes, L the leader nodes and F the follower nodes in the final graph.

4.2. Pricing Complementary Products

After mining meaningful complementarity relationships and reducing the complexity of
the complementarity graph to obtain a structure feasible to optimize, in this section, we
proceed to talk about the actual pricing methodology. We aim to find the margins that
maximize the total profit (Equation 3.2). At each time t, our algorithm outputs the
vector margins mt and tackles the exploration-exploitation dilemma in order to minimize
the expected regret (Equation 3.4).

In the following, we first discuss the demand estimation of products whose demand does
not depend on other products, then we examine the demand estimation for products whose
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Figure 4.5: Example of graph pruning

demand depends on complementary products. Lastly, we address the chosen exploration
strategy of the algorithm and the choice of the optimal vector margins mt at time t.

4.2.1. Univariate demand learning

The resulting complementary graph after the steps discussed in Section 4.1 may have
isolated nodes, which indicate products for which no complementary relations have been
identified. Therefore, we model the demand for these products on the assumption that it
depends only on their own margins.

Excluding the isolated nodes, the rest of the graph consists of the star structures above
mentioned, where each edge represents a complementarity relationship. Similarly to the
isolated nodes, we assume the demand of the leader products in the graph to depend
only on their own margins. Given the set of products J , we define the set of isolated
products I Ď J and for the star structures we define the set of leaders L Ă J and the
set of followers for each leader i P L Fi Ă J , i.e. such that there is a directed edge
pi, jq @j P Fi, @i P L.

Formally, the demand of product i P I Y L is such that:

vipmq “ vipmiq @m P MN ,

where we denote with vip¨q the demand of product i, with mi the margin of product i and
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with N the total number of products. We estimate the demand using a Bayesian Linear
Regressor (BLR, Tipping, 2001), this type of conditional model allows the estimation
of uncertainty and will allow us to use a MAB approach to balance exploration and
exploitation. Using the BLR we build an estimate d̂ip¨q of the demand function for product
i as a linear combination of the basis function taken as input, formally:

d̂ipmiq “

Z
ÿ

h“0

θh ϕhpmiq,

where θh is the h-th weight distribution and ϕhpmiq is the h-th basis function of the margin
mi P M. In order to improve the robustness of our model we employ a shape-constrained
model for which we impose the shape of the function to learn to be monotonically de-
creasing, following the assumption of monotonicity of demand made in Chapter 3. To do
so we make use of the set of monotonically non-increasing basis functions discussed in
Chapter 2 together with the choice of prior distributions with non-negative support.

4.2.2. Bivariate demand learning

While we assume the demand for the leader products in the graph to depend only on
their own margins, we assume the demand for the follower products to depend on their
own margin and on the margin of their leader.

Formally, given the set of leader products L Ă J and the set Fi Ă J of products that
are follower of leader i P L, the demand functions of the follower products is such that:

vjpmq “ vjpmj,miq, @j P Fi, @i P L, @m P MN .

Similarly to the univariate demand case, we employ a BLR to produce the estimate d̂jp¨q

of the demand function for product j P Fi, with i P L. For each follower product j P Fi

of leader product i P L, the demand is estimated as:

d̂jpmj,miq “

Z
ÿ

h“0

θh ϕhpmjq `

Z
ÿ

h“0

θh`Z`1 ϕhpmiq,

where θh is the h-th weight distribution and ϕhpmq is the h-th basis function of the margin
mj P M. Following the characteristics of cross-price elasticity described in Section 2.1,
we can also assume the additive contribution of leader products on follower volumes to
be monotonically decreasing on their own margin. Thus, we employ the same set of
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monotonically non-increasing basis functions for both margins.

4.2.3. Exploration strategy and joint optimization

We can naturally frame our problem as an online learning one, where we want to acquire
new information about the function we want to learn while at the same time minimizing
the cumulative regret. The use of BLR allows us to measure uncertainty and use this
information in a MAB setting to balance exploration and exploitation, where the arms of
the MAB are the margins our algorithm chooses at each round. In order to do this we
employ an approach similar to Thompson Sampling (TS, Agrawal and Goyal, 2012): in
each round we draw a sample from each of the posterior distribution of the BLR weights,
obtaining an estimation of the demand curve given the margins on which it depends. This
is done both for isolated products and for products related to other products, obtaining a
univariate estimation of the demand curve for isolated or leader products and a bivariate
one for follower products. Given the estimation of the demand curve, we proceed to choose
the margins that maximize the estimated profit. We distinguish the case where we price
an isolated product and the one where we price related products.

For an isolated product i P I we can compute the estimated objective function f̂ipmq, @m P

M as:

f̂ipmq “ m ci d̂ipmq, @i P I.

We want to maximize f̂i, to do so we choose at each time t P t1, . . . , T u the optimal
margin m̂˚

it for product i as:
m̂˚

it “ argmax
mPM

f̂ipmq.

With regard to the products belonging to a star structure, the estimated objective function
for a leader product i P L is, in the same way as the isolated products:

f̂ipmiq “ mi ci d̂ipmiq @i P L,

while for the follower products j P Fi of leader i P L the estimated objective function is:

f̂jpmj,miq “ mj cj d̂jpmj,miq.

When choosing the optimal margins for the products belonging to a star structure, we
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jointly optimize the objective functions and obtain the vector margin m̂t:

m̂t “ argmax
mPMN

ÿ

iPL

«

f̂ipmq `
ÿ

jPFi

f̂jpmq

ff

,

where N is the number of products belonging to L Y
Ť

iPLFi.
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5| Related Works

This chapter explores the other works in the literature correlated to the one described in
this thesis. We distinguish two main research fields related to our work: the one that deals
with the identification of complementary products and the one that focuses on learning
for dynamic pricing.

5.1. Complementary Products Identification

With regard to the identification of complementary products, the field of recommender
systems has a rich literature on this subject, since discovering complementarity rela-
tionships among products can be used to recommend items complementary to the ones
purchased by a user. Numerous works resort to the use of a product graph where the
edges are complementarity relationships to represent the interactions between products.
McAuley et al. (2015), using, as a primary source of data, product reviews and making
use of topic modelling, builds a network of substitutable and complementary products.
Sun et al. (2015) resort to association rules to identify implicit item-item relationships,
accounting for the asymmetric nature of this relation. Zhao et al. (2017) builds a directed
graph of complementary products using NLP techniques and in particular the Skip-Gram
architecture to obtain product embeddings. Wan et al. (2018) uses a similar Skip-Gram
architecture but integrates compatibility and loyalty estimates, while Wang et al. (2018)
uses catalogue information together with transaction data to build a product graph of
both substitutability and complementarity relationships and applies category and multi-
step path constraints to the graph to discover new relationships. Hao et al. (2020) employs
graph-based product representation learning using both customer behaviour and textual
descriptions and predicts complementary product recommendations taking into account
diversity, while Xu et al. (2020) uses co-view and product descriptions to build product
knowledge graph embedding, using an architecture similar to Skip-Gram. Although these
works demonstrate the effectiveness of representing the relationships between products
in a graph, they serve a fundamentally different purpose from that of our work. In fact,
unlike our setting, reducing the complexity of the graph is not a priority, as there is no
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need to jointly use and optimise bandit models. Moreover works like McAuley et al.
(2015) make use of textual features when identifying complementary products, but they
do not necessarily correspond to the purchasing dynamics of a specific e-commerce, based
on which pricing can be done, unlike actual transactional data. Lastly, a further differ-
ence with our setting is the data requirements most of these works have, requiring textual
descriptions, product reviews and co-views in addition to transactional data, the latter
being the only information we assume to have to discover complementary products.

5.2. Learning for Dynamic Pricing

There is extensive literature on the estimation of demand and the consequent choice of
optimal price given the demand curve estimated by the algorithm. Existing studies focus
on this problem but neglect the crucial trade-off between exploration and exploitation,
lacking theoretical guarantees. For example, Besbes and Zeevi (2015) enforces model-
wise monotonicity and demonstrates the suitability of linear regression models for de-
mand function modelling. Besbes and Zeevi (2009) and Broder and Rusmevichientong
(2012) present parametric formulations of the demand function. Cope (2007) and Bauer
and Jannach (2018) are seminal works on Bayesian inference applied to dynamic pricing,
including even features such as competitors’ prices, but they do not force monotonic-
ity on the demand curve. In their work, Araman and Caldentey (2009) introduces a
Bayesian framework that incorporates a monotonic formulation for the demand function.
This formulation captures market-related information by integrating a prior belief on the
parameters. Wang et al. (2021) explore non-parametric models for the estimation of a
nonconcave demand function. Additionally, the authors make the assumption that the
demand function exhibits smoothness and examine how this characteristic influences the
robustness of the models. Shukla et al. (2019) propose a dynamic pricing algorithm that
focuses on the monotonic willingness-to-pay of customers, making use of customer-related
features that are missing in our setting. The aforementioned works focus on the dynamic
pricing of single products, ignoring interactions between products.

Among the works that consider the relationships among complementary products, Mulh-
ern and Leone (1991) is a seminal work on multiple-product pricing of retail stores, empir-
ically demonstrating how a multiproduct approach boosts retail performance. Ghoniem
et al. (2016) deals with a joint assortment and pricing problem on complementary retail
categories, each category composed of substitutable products. Their definition of "pri-
mary" and "secondary" categories in a complementary relationship is a point of contact
with our "leader-follower" framework, while the assumption of limited inventory differs
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from our setting. The problem is tackled through mixed-integer linear programming. Ko-
cas et al. (2018) investigates the role of bestsellers on complementary products, modelling
in addition traffic generation in online retailers in a duopoly scenario. Feng et al. (2018)
models substitutability and complementarity through discrete choice models.

Unlike all the above-mentioned works, MABs provide theoretical guarantees, effectively
tackling the exploration-exploitation dilemma. A landmark contribution which resorts
to the MAB framework for dynamic pricing is Rothschild (1974). This approach has
been extended in multiple directions. First, Kleinberg and Leighton (2003) tackles the
problem of dealing with continuous-demand functions by proposing a discretization of the
price values that provide theoretical guarantees on the algorithm’s regret. Subsequently,
Trovò et al. (2015, 2018) and Misra et al. (2019) exploit that, in many practical set-
tings, the demand function is monotonically non-increasing in the price to design novel
algorithms outperforming the classical MAB policies empirically. Mussi et al. (2022) ap-
plies a monotonic bandit to price long-tail products aggregating products with similar
demands together. Mussi et al. (2023) considers the scenario in which the e-commerce
website faces different customers and wants to find the optimal pricing scheme taking into
account volume discounts. However, these approaches do not consider complementarity
products.

To the best of our knowledge, the integration of complementary product identification,
graph representation, and joint pricing through a bandit algorithm is unprecedented in
the existing literature. This novel approach fills a gap in the current research landscape
and provides a framework for addressing the intricate dynamics of complementary prod-
ucts in a pricing strategy that balances exploration and exploitation, while also being
computationally feasible.
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6| Experimental Evaluation

In this chapter, we discuss the evaluation of our algorithm. The experimental evaluation of
our algorithm is carried out through a synthetic environment with which we simulate the
purchasing dynamics of customers and their price sensitivity. In Section 6.1 we describe
the characteristics of our simulated environment while in Section 6.2 we compare CPP with
pricing products independently.

6.1. Simulation Environment

We design a synthetic environment with the purpose of emulating market dynamics with
reasonable assumptions. The environment is characterized by a fixed number of potential
customers and a catalogue of products to buy.

Each product is characterized by a conversion rate, the probability of purchasing such
product given its margin. We denote the conversion rate of product i P J given the
vector margin m P MN as cipmq.

Each product is related to others through fixed complementarity relationships. In the
environment, we assign to each follower product one leader. We model the complemen-
tarity relationships between products by resorting to the conversion rates. Specifically, we
model the conversion rate of follower products to be dependent on their own margins and
on those of the leaders. In order to simulate the effect that leaders have on the purchase
of followers in the same basket we model the conversion rate of followers to be conditioned
on the purchase of their leader and to increase in case their leader is added to the basket.
In particular, for a follower j P Fi with Fi the set of followers of leader i P L, we scale
the conversion rate by employing a coefficient l in the following way:

cjpmq when i is not in the same basket

l cjpmq when i is in the same basket.

The transactions of the users are generated by sampling a Bernoulli distribution for each
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Figure 6.1: Conversion rates in synthetic environment.

product in the catalogue and using as parameter p the conversion rate of each product,
such that:

P pBi “ 1q “ cipmq

and

P pBi “ 0q “ 1 ´ cipmq,

where Bi is the event of a purchase of product i P J by a potential customer.

In Figure 6.1 we show the conversion rates used to generate transactions, univariate in the
case of the leaders and bivariate on the margins of the followers of the leaders in the case
of the followers. Specifically, the function used for the conversion rates is f1pxq “ e´p2xq2{3

for the leaders and f2px, yq “ f1pxq ` 0.7f1pyq for the followers. We limit the margins
domain in r0, 1s. The conversion rate of the leader i is cipmiq “ f1pmiq while for the
follower j of leader i is cjpmj,miq{l when there is not leader i in the same basket and
cjpmj,miq when leader i is present. Coefficient l is set to 1.5.

In Figure 6.2 we show, for a leader-follower pair, the expected profit function assuming
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Figure 6.2: Expected profit of leader-follower pair, 1000 potential customers, cost 1.

1000 potential customers and the cost of both products to be 1.

We employ as basis functions in the demand estimators the monotonically non-increasing
transformed Bernstein polynomial (see Section 2.3.4) of degree 10.

We employ as priors of the BLRs the Lognormal distribution with parameters loc “

0.5, scale “ 10 for the bias and loc “ 0, scale “ 10 for the rest of the polynomials. We
test our algorithm with a catalogue of 10 products with 5 leader-follower pairs and 1000

users.

At each timestep, the agent, using the transactional data observed up to that point, infers
the complementarity relationships and fits the BLRs. It then chooses the optimal margins
by managing exploration through Thompson Sampling. We split the margin domain into
100 arms that will be pulled by our agent. After pulling an arm, the agent observes the
transactional data as a reward of the environment.



38 6| Experimental Evaluation

0 10 20 30 40 50

200

400

600

800

1000

Number of timesteps

Pr
ofi

t

CPP
Independent

Figure 6.3: Instantaneous profits.

0 10 20 30 40 50

500

1000

1500

2000

2500

Number of timesteps

Vo
lu

m
e

CPP
Independent

Figure 6.4: Instantaneous volumes.

6.2. Comparison with independently priced products

We compare the performance of CPP with an algorithm that prices the products inde-
pendently with the same BLR employed for isolated and leader products. We do so to
evaluate the profit increase obtained thanks to the joint optimization of complementary
product prices.

In Figure 6.3 we show and compare the instantaneous profits obtained by jointly pricing
complementary products with CPP and those obtained by independent pricing. We can
observe that after 4 timesteps where the performance of the two approaches are compara-
ble, CPP reaches a better optimum and unlocks profits up to 30% more w.r.t. independent
pricing. As a side effect, we can observe in Figure 6.4 that, in this setting, choosing the
margins with CPP results in an increase of volumes of over 30% as opposed to independent
pricing.
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7| Conclusions

In this thesis, we faced the problem of finding the optimal pricing strategy for products
presenting substitutable and complementary relations. We presented the problem under
analysis, the related assumptions, and the learning problem, which consists of minimiz-
ing the expected regret. Then, we proposed Complementary Product Pricing (CPP), a
novel strategy for learning online in this setting. The algorithm is composed of two main
phases. In the former, we provided a strategy for the online identification of complemen-
tary relations. In the latter, we discussed a model for efficiently jointly optimizing the
margin of the products. We conducted an extensive experimental campaign to assert the
solution’s soundness and goodness. The results showed that CPP effectively outperforms
an independent pricing strategy, obtaining an increase of up to 30% in profits compared
to independently priced products in a synthetic environment.

Future developments may consider removing the assumption of the knowledge of substi-
tutable products. Another possible extension is dropping the non-stationary assumption
on the environment, exploring the evolution of complementary relationships and demand
of products over time. Finally, in order to identify complementary relationships we con-
sidered relations of products purchased in the same basket. An extension to this is to
investigate the complementarity in purchases made over time by the same users.
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