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1. Introduction
In this thesis, we investigate the stochastic
multi-armed bandit problem (MAB) [3] under
the assumption of heavy-tailed (HT) reward dis-
tributions. In the classic stochastic multi-armed
bandit setting, an agent has access to a set
of K possible actions (i.e., arms). Each arm
i ∈ [K] := {1, . . . ,K} is associated with a re-
ward probability distribution νi, having finite
mean µi. At every round t ∈ [T ], being T a
learning horizon, after an action It is selected, a
reward Xt is sampled from νIt and revealed to
the agent. The goal of the agent is to minimize
its expected regret after T rounds, defined as:

RT = T max
i∈[K]

µi − E

[
T∑
t=1

µIt

]

= E

[
T∑
t=1

∆It

]
,

(1)

where ∆i := maxj∈[K] µj − µi is the sub-
optimality gap for all i ∈ [K].
Most of the existing works assume that the
reward probability distributions νi are sub-
Gaussian. Under this assumption, the tails of
the distribution present a strong decay (at least
as fast as that of the Gaussian distribution).
An important implication is that every moment

of finite order is finite. While this assumption
enables the application of powerful theoretical
tools and, consequently, strong regret guaran-
tees, it is often limiting in many practical sce-
narios such as, for example, financial environ-
ments or network routing problems. In set-
tings where uncertainty has a significant im-
pact, heavy-tailed distributions naturally arise.
In these cases, the tails decay slower than a
Gaussian, and the moment-generating function
is no longer assumed to be finite. As a conse-
quence, the moments of any finite order might
not exist.
In this work, we investigate the regret minimiza-
tion problem for heavy-tailed MAB, according to
the setting introduced in the seminal work [1].
Assumption 1. Given a bandit instance
(νi)i∈[K], we assume moments of order up to
1 + ϵ, with ϵ ∈ (0, 1], to be finite and uniformly
bounded by a constant u, namely:

EX∼νi [|X|1+ϵ] ≤ u < +∞, ∀i ∈ [K]. (2)

In the heavy-tailed MAB problem, it is canon-
ical to assume the knowledge of both ϵ and u
and, to the best of our knowledge, every regret
minimization strategy in the stochastic HT ban-
dit literature which is optimal in the instance-
dependent case, requires at least one of them as
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an algorithm’s input.
The goal of this work is to answer the following
question:
Is it possible to provide a novel regret minimiza-
tion strategy in the heavy-tailed bandit problem
that does not require any prior knowledge on
ϵ nor u, but still achieves comparable perfor-
mances to other approaches knowing them?
In this work, we will prove that in general it
is not possible to achieve the same order of
performance while being adaptive to the afore-
mentioned unknown quantities. Fortunately,
we will show that under a specific distribu-
tional assumption, the answer is, instead, af-
firmative. In particular, we will discuss the
role of the truncated non-positivity assumption,
and show that, when this assumption is vio-
lated, it is not possible anymore to guarantee
the existence of an adaptive algorithm with re-
spect to ϵ nor u achieving state-of-the-art perfor-
mances. We introduce Adaptive Robust UCB
(shortly AdaR-UCB), an algorithm based on the
optimism in the face of uncertainty principle
that is capable of being fully adaptive w.r.t. the
two parameters ϵ and u that characterize the re-
ward distributions. In particular, we propose a
modification of the well-known Robust UCB al-
gorithm from [1], showing that under our as-
sumption we are able to attain the same the-
oretical guarantees.

2. Setting
We now introduce the stochastic heavy-tailed
multi-armed bandit problem. Formally speak-
ing, there are K ≥ 2 available actions and a
sequence of T rounds. To each arm i ∈ [K], we
associate a probability distribution νi satisfying
Assumption 1. At each round t ∈ [T ], the
agent can choose an index It and subsequently
collects a reward of Xt, which is an independent
sample from νIt . The agent is allowed to make
a decision at round t by considering all history
up to time t − 1. We remark that distributions
(νi)i∈[K] only admit finite moments up to order
1 + ϵ, with ϵ ∈ (0, 1], thus, distributions with
infinite variance are allowed in this problem for-
mulation. The goal of the agent is to minimize
the regret as defined in Equation (1).

In the heavy-tailed bandits literature, is custom-
ary to assume the knowledge on both ϵ and the

upper bound on the (1 + ϵ)-th order moment u,
which is assumed to be common for all (νi)i∈[K]

without loss of generality. In our setting, we
will remove this constraint which is unfeasible
in real-world, considering both quantities to be
unknown to the agent. From now on, we will
refer to any algorithm operating without this
knowledge as adaptive w.r.t. ϵ or u, depending
on which one is unknown (possibly both). In a
specific bandit setting, we will also say that the
upper bound on regret suffered by an algorithm
matches the lower bound, if the two have the
same order in T up to constants. In this case,
we can refer to the algorithm as tight or optimal.

3. Related Works
The stochastic heavy-tailed bandit model was
first introduced by Bubeck et al. [1], who de-
signed Robust UCB, an algorithm that assumes ϵ
and u are both known to the agent. Lately, more
contributions started to propose approaches to-
wards adaptive settings, at first only w.r.t u,
still assuming ϵ as known. Other recent re-
search tried to tackle the fully-adaptive set-
ting, i.e., considering both the parameters un-
known. Despite that, these works usually as-
sessed different performance targets than regret
minimization, so that the only work that cur-
rently attempted to get closer to our goal is
[2]. Huang et al. [2022] presented a fully adap-
tive algorithm which is optimal in the instance-
independent case, only under a weak assump-
tion on the losses. For the instance-dependent
one, on the contrary, they proposed another ap-
proach that still requires no prior knowledge,
but gives a sub-optimal regret compared to [1].
And here is where the thesis enters the game,
since, to the best of our knowledge, nobody yet
presented any approach that is feasible in real-
world, i.e. any fully adaptive algorithm for the
stochastic HT bandit problem, which achieves
a tight instance-dependent regret and, simulta-
neously, an instance-independent one optimal at
most up to logarithmic terms in T .

4. Lower Bound on the Regret
for Adaptive Heavy-Tailed
Bandits

In this section, we state a lower bound on the ex-
pected regret that any adaptive algorithm (w.r.t.
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either u or ϵ) can achieve in the heavy-tailed
bandit problem. We start by stating the lower
bound on the regret when ϵ and u are known.
Theorem 4.1 (Lower Bounds on Regret for
Stochastic Heavy-Tailed Bandit, adapted from
[1]). For any algorithm and for any fixed T ,
there exists a set of K distributions satisfying
Assumption 1, such that:

RT ≥ Ω

 ∑
i:∆i>0

(
u

∆i

) 1
ε

log T

 ,

RT ≥ Ω
(
(uT )

1
1+ϵK

ϵ
1+ϵ

)
.

(3)

(4)

The following two results show that any algo-
rithm unaware of ϵ or u, respectively, cannot
achieve the same regret order as the one de-
picted in Theorem 4.1.

We first state the regret lower bound for any
algorithm adaptive with respect to u.
Theorem 4.2 (Lower Bound on Regret for
Stochastic Adaptive Heavy-Tailed Bandit, un-
known u). For any algorithm adaptive w.r.t. to
the (1 + ϵ)-th order moment of reward distri-
butions, and for any fixed T , there exist two
stochastic heavy-tailed bandit instances satisfy-
ing (2) with u and u′ respectively (assume u′ > u
without loss of generality), such that:

max

{
RT

(uT )
1

1+ϵ

,
R′

T

(u′T )
1

1+ϵ

}
≥ C1

(
u′

u

) ϵ
(1+ϵ)2

,

where RT and R′
T are the regrets suffered by this

algorithm in the two instances, respectively, and
C1 is a constant independent of u, u′ and T .
This result states that there exist two particular
heavy-tailed bandit problem instances s.t. no
algorithm can match the lower bound on regret
presented in (4) on both, and instead some
regret is accrued in a way that is proportional
to the ratio between u′ and u. Since it can be
taken arbitrarily large, it is not possible to be
adaptive in u without the risk of incurring in
an arbitrarily big regret bound.

Next, we present a similar result concerning
adaptivity with respect to the maximum order
1 + ϵ of finite moment.
Theorem 4.3 (Lower Bound on Regret for
Stochastic Adaptive Heavy-Tailed Bandit, un-

known ϵ). For any algorithm adaptive with re-
spect to ϵ, with the maximum order finite mo-
ment u known, and for any fixed T , there ex-
ist two stochastic heavy-tailed bandit instances
satisfying (2) with ϵ and ϵ′ respectively (assume
ϵ′ < ϵ without loss of generality), such that:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
≥ C2T

ϵ′(ϵ−ϵ′)
(1+ϵ)(1+ϵ′)2 , (5)

where RT and R′
T are the regrets suffered by this

algorithm in the two instances, respectively, and
C2 is a constant independent of ϵ, ϵ′ and T .
Differently from Theorem 4.2, since the values
of ϵ and ϵ′ are known to belong to the set
(0, 1], then, for any fixed T , the term on the
right-hand side of (5) cannot grow arbitrarily.
For instance, when ϵ = 1 and ϵ′ = 1

3 , the gap’s
order is ≈ T

1
16 , which gives an intuition on how

being adaptive with respect to unknown ϵ is an
easier task rather than adapting to unknown u.

To wrap up, we have shown how any algorithm
adaptive w.r.t. either u or ϵ has a higher regret
lower bound than the one of the non-adaptive
heavy-tailed bandit problem. We remark that
the two bounds introduced in this section refer
to adaptivity with respect to only one of the
unknown quantities. As a future research di-
rection, it could be interesting to investigate if
simultaneous adaptivity to both quantities im-
plies an even higher lower bound.

5. A Fully Adaptive Approach
for Bandits with Heavy Tails

In this section, we finally give an answer to our
original research question, i.e., whether there ex-
ists an algorithm adaptive w.r.t. both ϵ and
u matching the standard setting’s lower bound
stated in Theorem 4.1. In the previous section,
we already shown how adaptivity has a cost, and
thus the lower bound presented in Theorem 4.1
is not achievable by any algorithm unaware of
at least one of these quantities. Luckily, it is
possible to restrict the set of adaptive heavy-
tailed bandit problem instances under analysis
to a special set, that will be defined in a short,
on which our algorithm, Adaptive Robust UCB,
is able to achieve a regret order matching the in-
stance dependent lower bound for the standard
heavy-tailed bandit problem.
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5.1. The Truncated Non-Positivity
Assumption

We start by stating a key assumption, namely
the truncated non-positivity assumption.
Assumption 2 (Truncated Non-Positivity).
Given a set of K distributions satisfying (2), let
ν1 be the distribution of the optimal arm, namely
µ1 ≥ µi ∀i ≥ 1, then:

Eν1 [X1{|X|>M}] ≤ 0, ∀M ≥ 0. (6)

This assumption, intuitively, requires the opti-
mal arm of a heavy-tailed bandit instance to
have more mass on the negative semi-axis, but
still allows the distribution to have an arbitrary
support covering, potentially, all R.
The two lower bounds in Theorems 4.2 and
4.3 have been obtained by introducing four in-
stances that violate this assumption, and thus
the lower bound on regret for the adaptive
heavy-tailed bandit problem under the trun-
cated non-positivity assumption can be smaller
than the ones presented in Section 4. However,
it is possible to show that forcing the truncated
non-positivity assumption does not result in an
improvement of the lower bounds in Theorem
4.1.

5.2. A Fully Adaptive Algorithm:
Adaptive Robust UCB

We are now ready to introduce Algorithm 1,
namely Adaptive Robust UCB, an algorithm
able to operate in the heavy-tailed bandit prob-
lem without any prior knowledge on ϵ nor u.
AdaR-UCB is an optimism in the face of uncer-
tainty based algorithm, built upon the Robust
UCB strategy from [1] using a modified version of
the trimmed mean estimator. This estimator is a
common one in the heavy-tailed statistics litera-
ture, since it allows robustness against extreme
values.
More formally, we define the trimmed mean es-
timator for the mean of a set of independent
observations X = {X1, . . . , Xs} as:

µ̂s(X) =
1

s

∑
j∈[s]

Xj1{|Xj |≤M}, (7)

where M > 0 is a given threshold.

Algorithm 1 Adaptive Robust UCB

1: Initialize si ← 0, Xi ← ∅, X′
i ← ∅,

µ̂i,0,1 ← +∞ ∀i ∈ [K].
2: for t ∈ [⌊T2 ⌋] do
3: for i ∈ [K] do
4: Compute threshold M̂i,si,t solving:

1

si

∑
j∈[si]

min

{
(X ′

i,j)
2

M̂2
i,si,t

, 1

}
−25log(t

4)

si
= 0

5: Compute trimmed observations Yi,t,
with its j-th component Yi,j,t:

Yi,j,t ← Xi,j1|Xi,j |≤M̂i,si,t
∀j ∈ [si]

6: Compute trimmed mean estimator:

µ̂i,si,t ←
1

si

∑
j∈[si]

Yi,j,t

7: Compute sample variance Vi,si,t(Yi,t)
as:

1

si(si − 1)

∑
l,j∈[si]

(Yi,l,t − Yi,j,t)
2

2

8: end for
9: Select an action it as:

argmax
i∈[K]

{
µ̂i,si,t + 2

√
Vi,si,t(Yi,t) log(t4)

si

+ 19
M̂i,si,t log(t

4)

si

}

10: Play action it and receive a reward Xt

11: Update samples Xit ← Xit ∪ {Xt}
12: Play action it and receive a reward X ′

t

13: Update samples X′
it ← X′

it
∪ {X ′

t}
14: Update number of pulls sit ← sit + 1
15: end for

In the Robust UCB algorithm, the trimmed mean
estimator replaces sample average in a standard
optimism in the face of uncertainty strategy, by
selecting at each round t the action i maximis-
ing the sum of the estimator with a proper up-
per confidence bound. AdaR-UCB operates in the
same way, but while in Robust UCB the thresh-
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old choice is driven by the values of ϵ and u,
AdaR-UCB computes a proxy threshold M̂ for M
without resorting to either ϵ or u (or any estima-
tion of them). In particular, our chosen thresh-
old M̂s,t is dynamic in time and can be computed
as the solution (in M) of fs,t(X;M) = 0, i.e.,

1

s

∑
j∈[s]

min
{
X2

j ,M
2
}

M2
−

25 log
(
t4
)

s
= 0. (8)

We remark that, since Equation (8) has some
randomness introduced by (Xj)j∈[s], the thresh-
old is a positive random variable, and not
simply a parameter.

We now state the main theoretical result about
AdaR-UCB, i.e., its upper bound on regret.
Theorem 5.1 (Upper Bound on Regret for
AdaR-UCB). Given a heavy-tailed bandit problem
instance satisfying Assumption 2, the regret of
AdaR-UCB then satisfies:

RT ≤
∑

i:∆i>0

(
160

(
40u

∆i

) 1
ε

log T + 7∆i

)
. (9)

First, we point out that this result provides a
positive answer to our initial research question,
since the upper bound matches the order of the
regret lower bound for the classic scenario, even
when both ϵ and u are unknown.
Finally, as customary in the bandit literature,
we also provide an instance-independent version
of the upper bound on regret of AdaR-UCB.
Theorem 5.2 (Instance-Independent Upper
Bound on Regret for AdaR-UCB). Given any
heavy-tailed bandit problem instance with K
arms that satisfies Assumption 2, if horizon T
is such that:

log T ≥ max
i∈[K]

 7∆
1+ε
ε

i

160(40u)
1
ε

 ,

then the regret of AdaR-UCB satisfies:

RT ≤ T
1

1+ϵ (320K log T )
ϵ

1+ϵ (40u)
1

1+ϵ . (10)

Thus, we have showed that, under Assumption
2, it is possible to be adaptive w.r.t. both ϵ and u
while attaining the best regret order achievable
in the heavy-tailed bandit problem.

6. Numerical Simulations
Given the theoretical novelties presented, we
need to validate empirically the performance
of AdaR-UCB algorithm, by comparing it with
some state of the art regret minimization algo-
rithms, e.g., UCB1 [3] and Robust UCB [1]. The
instances considered have rewards distributed as
generalized Pareto with infinite variance, which
is the custom heavy-tailed distribution in lit-
erature. The probability density function can
present only one tail, either on the positive or
negative axis, or can be double-tailed.
We start considering heavy-tailed bandit in-
stances having an optimal arm that is truncated
non-positive, satisfying Assumption 2.
For simulation 1, we evaluate the performances
of our three reference algorithms on an instance
with all the arms distributed as Pareto with
negative tail. The expected cumulative regrets
are reported in Figure 1, over a time horizon
T = 25000. We note that Robust UCB is always
run with the right values of parameters u and ϵ,
computed analytically.

0 5000 10000 15000 20000 25000
Number of rounds

0

50000

100000

150000

200000

250000

300000
Cumulative Regret

Ada_RobustUCB
UCB1
RobustUCB_TM

Figure 1: Simulation 1 - Numerical results -
Baseline regret comparison, 20 runs (shaded ar-
eas are standard deviations).

In this case, AdaR-UCB performs way better than
UCB1 and Robust UCB, with a clearly sub-linear
regret that tends to flatten fast. On the other
side, UCB1 and Robust UCB algorithms show a
regret behaviour only slightly sub-linear, almost
linear, with a slower convergence with respect to
our algorithm.
This trend of behaviour replicates also for a more
difficult instance that still satisfies Assumption
2, but has Pareto rewards both with negative
tail only, and double-tailed. The regret suffered
by the algorithms in simulation 2 is reported in
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Figure 2, with Robust UCB consistently showing
poor performances, even if we have theoretical
results that guarantee a logarithmic regret.

0 5000 10000 15000 20000 25000
Number of rounds

0

20000

40000

60000

80000

100000

Cumulative Regret
Ada_RobustUCB
UCB1
RobustUCB_TM

Figure 2: Simulation 2 - Numerical results of
regret comparison, 20 runs.

Eventually, we can consider some bandit in-
stances such that the optimal arm does not sat-
isfy Assumption 2. In this case, the theoretical
results presented in Section 5 for AdaR-UCB do
not hold, thus we do not have any guarantee
on the behaviour of its cumulative regret. The
performance of AdaR-UCB is not predictable in
this setting, with its regret curve that can grow
fast and flatten with time, can be logarithmic,
slightly sub-linear or even linear. Considering
an instance with mixed Pareto distributions, the
execution of the algorithms suffers regret results
as in Figure 3.

0 20000 40000 60000 80000 100000
Number of rounds

0.0

0.5

1.0

1.5

2.0

2.5

1e6 Cumulative Regret
Ada_RobustUCB
UCB1
RobustUCB_TM

Figure 3: Simulation 3 - Numerical results of
regret comparison, 20 runs, T=100000.

Even in more general heavy-tailed instances,
AdaR-UCB algorithm still shows a slope of cumu-
lative regret which decreases faster than UCB1
and Robust UCB.

7. Conclusions
In this thesis, we studied the adaptive heavy-
tailed bandit problem, a variation on the classi-
cal heavy-tailed bandit problem where no infor-
mation is provided to the agent regarding the
moments of the distribution, not even which of
them are finite.
The first results concern the intrinsic difficulty
of the setting, for which two novel lower bounds
have been provided. In particular, we proved
that without any additional assumption no al-
gorithm can match the performances of the non-
adaptive setting.
Finally, we provided a novel algorithm, namely
Adaptive Robust UCB (AdaR-UCB), that, under
a specific distributional assumption over the op-
timal arm, is able to achieve the state-of-the-art
performances of the standard heavy-tailed ban-
dit problem.
We validated numerically the design choices
of our solution in a synthetic environment.
In general, for heavy-tailed bandit instance,
AdaR-UCB outperforms the other two well-known
baselines algorithms, namely Robust UCB and
UCB1.

Future directions of investigation regard the role
of the truncated non-positivity assumption. In
particular, we wonder if is it possible to find
a weaker assumption ensuring this kind of per-
formances for an algorithm. Moreover, future
work should also provide theoretical guarantees
on how AdaR-UCB performs on bandit instances
not satisfying Assumption 2.
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