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1. Introduction
Traditionally, drug discovery has been chal-
lenged by lengthy development cycles, high
costs, and significant failure rates. The integra-
tion of various in-silico methods has alleviated
these issues. In-Silico Drug Discovery comprises
two primary stages: Target Discovery and Lead
Discovery. The first stage involves accurately
identifying biological macromolecules represent-
ing the disease. The second stage focuses on
finding a set of small molecules that represent
potential drug candidates within a large-scale
molecular database for subsequent wet labora-
tory experiments. The leads screened from this
stage are expected to bind to the target molecule
related to the disease and influence its activ-
ity in a therapeutically beneficial manner. Dur-
ing this stage, High-Throughput Virtual Screen-
ing (HTVS) plays a crucial role in Lead Iden-
tification, leveraging High-Performance Com-
puting (HPC) capabilities to efficiently screen
large-scale database. HTVS employs two pri-
mary methods: Ligand-based and Structure-
based virtual screening. Ligand-based Virtual
Screening (LBVS) harnesses information from
known ligands (molecules capable of binding to
target proteins) to predict the activity of novel

compounds. In contrast, Structure-based Vir-
tual Screening (SBVS) relies on the target pro-
tein’s structural information to identify poten-
tial ligands. Utilizing the target’s 3D structure,
SBVS employs molecular docking to sample the
conformations of the complex, and scoring func-
tions to assess their binding affinity. This affin-
ity reflects the interaction strength between the
molecules, with a higher affinity indicating a
stronger interaction.
The primary contribution of this thesis cen-
ters on the scoring function, which is essen-
tial for the effectiveness and success of HTVS.
Inaccuracies in the scoring function can com-
promise the entire HTVS process, while ineffi-
ciencies may hinder evaluating sufficient ligands
within the time budget. Therefore, both ac-
curacy and efficiency are of paramount impor-
tance for a scoring function. Currently, various
scoring functions are available, such as physics-
based, empirical, and knowledge-based scoring
functions. However, most existing Scoring Func-
tions compete with each other in prediction ac-
curacy, while ignoring the importance of compu-
tational performance. Therefore, our work in-
tends to introduce a new scoring function that
considers both prediction accuracy and compu-
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tational performance. This is particularly chal-
lenging as accuracy and computational perfor-
mance often stand in opposition at the algorithm
level, necessitating an optimal balance between
them. Additionally, maximizing the utilization
of available hardware and infrastructure within
budgetary constraints is also a key considera-
tion. To this end, our new scoring function ad-
dresses these aspects both at the algorithmic
level and through the utilization of advanced
hardware capabilities, particularly GPUs. Our
primary objective is to achieve satisfactory ac-
curacy while significantly enhancing computa-
tional performance, thereby enabling the rapid
screening of extensive compound libraries. The
scoring function we introduce, named DrugXG-
BScore, is a hybrid that merges the advan-
tages of both knowledge-based and machine-
learning scoring functions. More specifically,
to achieve our objective, we integrated the
optimized Drugscore2018, a Knowledge-based
scoring function [2], with the recently popular
machine learning algorithm eXtreme Gradient
Boosting (XGBoost) [1]. Drugscore2018’s sim-
ple structure allows for easy and efficient in-
tegration into our High-Performance Comput-
ing pipeline, while XGBoost contributes to fur-
ther enhancing the prediction accuracy. To fur-
ther enhance the computational efficiency, we
custom-designed an HPC pipeline specifically
for DrugXGBScore, harnessing the power of ad-
vanced Nvidia A-100 high-performance GPU to
achieve our HPC objectives.
The predictive accuracy of the DrugXGBScore
was assessed using the CASF-2016 dataset [3],
normally used for scoring function evaluations.
For computing performance, we conducted a
screen test on a large dataset to compare the
total running time and throughput between our
HPC pipeline and a CPU-only setup. Finally,
our comprehensive evaluation demonstrates that
DrugXGBScore attains a mid-to-upper tier ac-
curacy compared to other scoring functions in
the CASF-2016 Power tests. In terms of compu-
tational performance, it remarkably screens all
28,500 decoys of a protein with approximately
8,000 atoms in just 8 seconds. For compari-
son, performing the same task using only a CPU
would require nearly 27 hours, highlighting the
significant efficiency of our HPC pipeline.

2. State of the Art
In academic, Scoring Functions are com-
monly classified into four categories: Physics-
Based (e.g., GoldScore), Empirical (e.g., X-
Score, AutoDock Vina), Knowledge-Based (e.g.,
DrugScore, DrugScore2018 [2]), and Machine
Learning Scoring Functions (e.g., XGBoost [1]).
Among these, the most relevant to our contribu-
tions are Knowledge-Based and Machine Learn-
ing Scoring Functions. Knowledge-based scor-
ing functions extract pairwise potentials from
the three-dimensional structures of numerous
protein-ligand complexes, utilizing the inverse
Boltzmann principle. They assume that the
frequency of different atom pairs at specific
distances indicates their interaction strength,
which is translated into a distance-dependent
potential of mean force (PMF). The final score
can be derived from this PMF. Machine Learn-
ing Scoring Functions, on the other hand, em-
ploy machine learning algorithms, such as sup-
port vector machines, random forests, or gradi-
ent boosting, to predict the effectiveness of de-
coys as potential ligands directly.
The success of In-Silico Drug Discovery relies
not only on the predictive accuracy provided by
components such as Scoring Functions, but also
on the computing performance offered by High-
Performance Computing (HPC). In this context,
we plan to use a hierarchical model to more ef-
fectively introduce HPC. This model systemat-
ically categorizes HPC into four distinct tiers,
offering a logical and structured overview. At
the broadest tier, the Computer infrastruc-
ture level, there’s an emphasis on leveraging
large-scale infrastructures, exemplified by super-
computers. Moving to the Computer hard-
ware level, the spotlight is on exploiting paral-
lel computing capabilities through technologies
such as multi-core CPUs, GPUs, FPGAs, and
specially designed hardware accelerators. At
the Computing framework level, the focus
is on incorporating parallel computing frame-
works like MPI, OpenCL, and CUDA. Finally, at
the Computing algorithm level, the essence
is on devising high-performance algorithms tai-
lored to specific computational tasks.
Notably, these levels are set to interplay and
complement one another. For instance, when
developing a high-performance algorithm for a
specific task, it is essential to consider not only
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the task’s execution, time complexity, and space
complexity but also the effective use of the com-
puting framework. This includes invoking tools
like OpenMP for multithreading and CUDA for
GPU acceleration, ensuring seamless alignment
with the computing hardware and even under-
lying infrastructure, such as supercomputer, to
maximize computational potential.

3. Hybrid Scoring Function -
DrugXGBScore

The contributions of this Thesis are twofold.
First, we propose DrugXGBScore, a Hy-
brid Scoring Function that linearly combines
Knowledge-based and Machine Learning Scor-
ing Functions. In this aspect, our focus is
mainly on the computing algorithm level. While
achieving satisfactory prediction accuracy, we
aim to maximize computational efficiency by
using simpler or High-Performance Computing
(HPC)-friendly algorithms. Second, we inte-
grate DrugXGBScore into our custom-designed
HPC pipeline. This part concentrates on
the computing framework and hardware level,
employing appropriate computing frameworks,
such as CUDA, to ensure DrugXGBScore works
seamlessly with our HPC hardware, thus fulfill-
ing our HPC objectives.

3.1. Overview of DrugXGBScore
Our proposed scoring function, DrugXGBScore,
is a hybrid solution that integrates two dis-
tinct types of scoring equations. To achieve
an optimal balance between prediction accuracy
and computing performance, we combined Op-
timized DrugScore2018 [2], a Knowledge-based
scoring function, with XGBoost [1], a Machine
Learning based approach. The simpler struc-
ture of the Knowledge-based scoring function
readily meets our HPC demands, while a well-
trained Machine learning scoring function can
further enhance prediction accuracy. Addition-
ally, the XGBoost we selected features built-in
high-performance computing capabilities [1].
The general workflow of the DrugXGBScore is
shown in Figure 1. This process takes as in-
put the 3D coordinates of all atoms in the Pro-
tein and Ligand, along with their SYBYL atom
types. The final output is a score quantifying
the Ligand’s binding affinity to the Protein at
a specific pose. A higher score signifies greater
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Figure 1: The general workflow of DrugXGB-
Score

binding affinity. The process is comprised of four
steps. In the first step, new conformations of
the complex are calculated using a local opti-
mization step. The second step involves scor-
ing each new conformation with our Optimized
DrugScore2018, selecting the highest score and
its associated Feature Matrix. The third step
utilizes the optimal Feature Matrix from the pre-
vious step as input for XGBoost, generating an
XGBoost score. Finally, the fourth step com-
bines the scores from Optimized DrugScore2018
and XGBoost linearly using a pre-trained pa-
rameter α to derive the final score.
In this process, the Optimized DrugScore2018
we employed follows a training and inference
process similar to the original DrugScore2018
[2]. The key innovations include parameter re-
tuning and the introduction of a novel local op-
timization approach, termed the ‘Ligand Vibra-
tion technique’. This technique primarily serves
to improve dataset quality and address atom po-
sition uncertainty by adjusting the Ligand’s po-
sition (moving in 27 directions from its original
position) during the inference phase. Another
highlighted aspect of this contribution is the fea-
tures used for XGBoost input. We selected the
feature matrix generated during the DrugScore
inference process, which contains potential val-
ues of protein-ligand atom pairs extracted from
the DrugScore model at various hit distances.
Lastly, the parameter α used in the linear com-
bination is determined through Bayesian search.
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3.2. Deploying DrugXGBScore on
the HPC Pipeline

To boost large-scale drug discovery, we
integrated DrugXGBScore into the High-
Performance Computing (HPC) pipeline,
thereby enhancing High-Performance Virtual
Screening (HPVS). This HPC pipeline is a spe-
cialized computational framework designed to
handle complex and computing-intensive tasks.
It employs advanced computing technologies
and hardware, such as parallel computing
and high-performance GPUs, to significantly
accelerate our overall computing processes.
During deployment, we strategically utilized
our hardware for optimal parallel computing
across both CPU and GPU platforms. We
activated all CPU cores to operate indepen-
dently for maximum efficiency. Concurrently,
on the GPU, we tailored our algorithms for
optimal execution using CUDA, aligning them
with hardware capabilities. These approaches
ensure superior computational performance
and throughput. In practice, the input of our
HPC pipeline consists of one or more proteins
and their corresponding decoys that need to
be screened. The output is the predicted score
for each decoy, with higher scores indicating
a greater binding affinity to the respective
protein.

Main Thread

Thread for each protein XGBoost C API Thread

Figure 2: CPU Multiple Threads

Our CPU multi-threading strategy is depicted
in Figure 2. The primary thread assigns
distinct threads to simultaneously process each
protein during virtual screening, free from data
dependencies. In cases where the task involves
only one protein, it can still be distributed
across multiple threads to enable the concurrent
screening of various ligands. For our Multi-
threading Computing Framework, we utilized
OpenMP, a well-established and user-friendly
library with stable performance. Leveraging

OpenMP, we launched 18 threads from the
main thread on our device, which has 20 CPU
cores. This approach was strategically chosen
to prevent oversubscription and the resultant
thread competition, as XGBoost’s autonomous
thread management could lead to more than
20 threads competing for CPU time, causing
inefficiencies due to excessive context switching.

For GPU acceleration, we employed our
cutting-edge GPU, the Nvidia A100 SXM4
40GB. Figure 3 visualizes the entire GPU
accelerating process, using a single thread and
protein as a representative example. This
process is consistent across all other threads. In
this figure, ‘host’ denotes the CPU and its mem-
ory, tasked with executing the main program,
handling memory transfers, and launching the
CUDA kernels. ‘Device’ refers to the GPU and
its memory, which are dedicated to running
the kernels. Our optimized DrugScore2018
model and proteins are initially transferred to
GPU memory, followed by the ligands awaiting
screening. The kernel is then invoked to com-
pute the DrugScore and generate its associated
feature matrix. After computation, the data
are transferred back to the host memory, where
the feature matrix is passed to the XGBoost C
API. Finally, the resulting scores are linearly
combined with the normalized DrugScore
results. To maximize efficiency, we endeavored
to perform all computing-intensive tasks within
the CUDA kernel while minimizing memory
transfer between host and device. Furthermore,
as depicted by the dotted line in the center
of the figure, we allocated a CUDA stream to
each thread, facilitating concurrent execution of
CUDA kernels and data transfers.

4. Experimental Results
Our objective is to maximize computing per-
formance while maintaining satisfactory predic-
tion accuracy. Therefore, our experimental tests
are centered around these two critical aspects.
Firstly, to assess prediction accuracy, we employ
CASF-2016 Power test [3] as a benchmark, com-
paring DrugXGBScore’s accuracy with other
Scoring Functions. Then, to evaluate comput-
ing performance, we screen a large test set us-
ing our HPC pipeline, contrasting the total run-
ning time and throughput with a CPU-only ap-
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Figure 3: GPU Accelerating Process - Single CUDA Stream

proach.
Prediction Accuracy Test. CASF-2016 in-
cludes four power tests to evaluate scoring func-
tions:
• Scoring Power: Assesses scoring function

proficiency in producing binding scores with
a linear correlation to experimental values
of protein-ligand complexes, using the Pear-
son correlation coefficient (R) as the pri-
mary metric.

• Ranking Power: Measures the ability to
accurately order known ligands of a target
protein based on binding affinities, given ex-
act binding poses, with Spearman’s rank
correlation coefficient (ρ) as the primary
metric.

• Docking Power: Evaluates the capabil-
ity of distinguishing native ligand binding
poses from computer-generated decoys, us-
ing success rates of binding poses as the
metric.

• Screening Power: Tests the proficiency
in identifying true binders among random
ligands with varied poses, using the Average
enrichment factor as the primary metric.

Table 1 presents the CASF-2016 Power Test re-
sults, comparing the prediction accuracy of Op-
timized DrugScore2018, XGBoost, and the final
DrugXGBScore. The metrics used are the Pear-
son correlation coefficient (R) for Scoring Power,
Spearman correlation coefficient (ρ) for Ranking
Power, success rate of the top1 binding pose for
Docking Power, and average enrichment factor
among top 1% for Screening Power. This result
indicates that our Optimized DrugScore2018 ex-
cels in Docking and Screening Power, while XG-
Boost outperforms in numerical predictions, as
evidenced by its effective Scoring Power. Sig-
nificantly, the most critical metric is the aver-

age enrichment factor of Screening Power, as
the primary function of DrugXGBScore involves
screening, namely identifying optimal ligands
from a large-scale database for in-vitro test-
ing. The results demonstrate that linearly com-
bining Optimized DrugScore2018 with XGBoost
into DrugXGBScore markedly improved overall
screening power. This approach resulted in a no-
table increase in the average enrichment factor,
reaching 4.52, compared to using either Opti-
mized DrugScore2018 or XGBoost alone.
Moreover, based on the data presented in the
available thesis (with all other methods de-
tailed in the full documents), our DrugXG-
BScore achieves near-optimal performance in
Scoring and Ranking Power and ranks in the
upper-middle tier for Docking and Screening
Power. We believe these results align well with
the prediction accuracy requirements for this
drug discovery task.
Computing Performance Test. Subse-
quently, we conducted a large-scale computa-
tional performance test of our HPC pipeline,
comparing its total running time and through-
put with a CPU-only setup to evaluate the per-
formance improvements achieved. This was fol-
lowed by two sets of experiments designed to
evaluate DrugXGBScore’s performance across
different scenarios.
• In the first set, we utilized 57 proteins for

screening, along with their corresponding
1,624,500 ligands.

• For the second set, our focus was on screen-
ing potential decoys for a single protein,
ACETYLCHOLINESTERASE, which has
8313 atoms, is identified by PDB Code
1E66, and includes 28,500 decoys.

The results are displayed in Figure 4. Panel A
shows the total running time for both test sets,
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Metrics Optimized DrugScore2018 XGBoost DrugXGBScore

Scoring Power (R) 0.604 0.733 0.714
Ranking Power (ρ) 0.618 0.600 0.625
Docking Power (Success Rate Top1) 82.5% 43.2% 75.1%
Screening Power (Top 1%) 3.08 2.35 4.52

Table 1: CASF-2016 Power Test Results

with blue indicating CPU-Only usage and red
representing GPU acceleration. Panel B illus-
trates the throughput. Given the substantial
differences in both running time and through-
put, we use a Logarithmic Scale for the Y-axis
to facilitate visual comparison. On the CPU-
only setup, screening 28,500 decoys of a single
protein with approximately 8,000 atoms requires
105,023 seconds, about 27 hours. For all 57 test
proteins with their 1,624,500 decoys, the pro-
cess takes nearly 55 days. However, the effi-
ciency significantly improves with our GPU ac-
celeration. Screening 28,500 decoys for a sin-
gle protein now takes just 8.51 seconds, while
completing the entire Screening Power test re-
quires only 184 seconds. The throughput also
astonishingly reaches approximately 3,300 and
8,700 ligands per second, respectively. Over-
all, our HPC pipeline’s performance exhibited
nearly four orders of magnitude increase com-
pared to a CPU-only setup. It is noteworthy
that while the throughput with CPU-only shows
little variation between different scenarios, it dif-
fers notably post-GPU acceleration. This dis-
crepancy is attributed not only to the significant
variation in the number of atoms among differ-
ent proteins but also to the startup time involved
in GPU acceleration. Such non-computational
overhead includes tasks like memory allocation,
freeing up GPU memory, and memory transfer.

5. Conclusions
To address the challenges of prolonged timelines,
significant costs, and high failure rates in drug
discovery, we introduced a hybrid scoring func-
tion, DrugXGBScore, for high-performance vir-
tual screening. This scoring function identifies
potential drug candidates for the target protein
from a large-scale drug molecule database, which
are then forwarded for experimental testing in a
wet laboratory.
In this process, our primary goal is to maintain

(A) (B)

Figure 4: Performance Comparison: Our HPC
Pipeline vs CPU-Only Setup

satisfactory prediction accuracy while maximiz-
ing computing performance. Correspondingly,
the experimental results show that DrugXG-
BScore ranks in the upper-middle tier among
other scoring functions in CASF-2016 in terms of
prediction accuracy. On the other hand, regard-
ing computing performance, our HPC pipeline
achieved an overall enhancement of four orders
of magnitude compared to a CPU-only setup,
which is a significant achievement.
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