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Abstract

Earth Observation is the gathering of information about planet Earth’s sys-

tem via Remote Sensing technologies for monitoring land cover types and

their changes. One of the most attractive use cases is the monitoring of polar

regions, that recently observed some dramatic changes due to global warm-

ing. Indeed drifting ice caps and icebergs represent threats to ship activities

and navigation in polar areas, and the risk of collision with land-derived ice

highlights the need to design a robust and automatic Sea-Ice classifier for

delivering up-to-date and accurate information.

To achieve this goal, satellite data such as Sentinel-1 Synthetic Aperture

Radar images from the European Union’s Copernicus program can be given

in input to a Deep Learning classifier based on Convolutional Neural Net-

works capable of giving the content categorization of such images as output.

For the task at hand, the availability of labeled data is generally scarce,

therefore the problem of learning with partially labeled data must be faced.

Therefore, this work aims at leveraging the broader pool of unlabeled satel-

lite data available to open up new classification solutions.

This thesis proposes a Semi-Supervised Learning approach based on Gener-

ative Adversarial Networks, that takes in input both labeled and unlabeled

data and outputs the classification results exploiting the knowledge retrieved

from both the data sources. Its classification performance is evaluated and

it is later compared with the Supervised Learning approach and the Transfer

Learning approach based on pre-trained networks.

This work empirically proves that the Semi-Supervised Generative Adver-

sarial Networks approach outperforms the Supervised Learning method, im-

proving its Overall Accuracy by at least 5% in configurations with less than

100 training labeled samples available in the use cases under evaluation,

achieving performance comparable to the Transfer Learning approach and

even overcoming it under specific experimental configurations. Further anal-

yses are then executed to highlight the effectiveness of the proposed solution.

I





Sommario

L’Osservazione della Terra consiste nel collezionare informazioni attraverso

il Telerilevamento al fine di monitorare le variazioni della superficie terrestre.

Uno dei casi più interessanti è il monitoraggio delle zone polari, poiché ice-

berg e calotte di ghiaccio alla deriva comportano una minaccia per le attività

di navigazione nelle zone polari. Pertanto, il rischio di collisione con esse

rende necessario un sistema automatico e robusto di classificazione Mare-

Ghiaccio che produca informazioni accurate.

A tale scopo, dati satellitari come immagini Radar ad Apertura Sintetica

raccolte da Sentinel-1 per il programma Europeo Copernicus possono essere

fornite in input ad un classificatore ad Apprendimento Profondo basato su

Reti Neurali Convoluzionali capace di produrre in output la classificazione

di tali immagini. In tale contesto la disponibilità di dati etichettati è limi-

tata ed è pertanto necessario apprendere con dati parzialmente etichettati.

Questo lavoro punta a sfruttare il numeroso insieme di dati satellitari non

etichettati per proporre nuove soluzioni di classificazione.

Questa tesi propone un approccio di Apprendimento Semi-Supervisionato

basato su Reti Generative Antagoniste, che riceve in input sia dati etichettati

che non etichettati e produce in output i risultati di classificazione facendo

leva dulla conoscenza acquisita da entrambe le sorgenti. Le performance

di classificazione raggiunte da tale approccio sono valutate e poi comparate

con l’Apprendimento Supervisionato e l’Apprendimento per Trasferimento

basato su reti pre-addestrate.

Questo lavoro dimostra empiricamente che l’approccio Semi-Supervisionato

basato su Reti Generative Antagoniste supera in prestazioni l’Apprendimento

Supervisionato, migliorandone l’Accuratezza Complessiva di almeno il 5%

in configurazioni con meno di 100 dati etichettati disponibili durante la fase

di apprendimento nei casi d’uso valutati, raggiungendo performance com-

parabili a quelle dell’Apprendimento per Trasferimento e superandole in

configurazioni sperimentali specifiche. Infine, ulteriori analisi sono condotte

al fine di evidenziare l’efficacia della soluzione proposta.
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Chapter 1

Introduction

In this chapter, the context, motivation, task and overall purpose of the the-

sis are presented. An introduction of the proposed solution and its delimi-

tations are also provided, together with the research methods used during

the whole work and its ethical and sustainability considerations.

1.1 Context

Classification is the process of labeling every sample contained in a pool of

items under evaluation, with each label representing the category to which

the specific object belongs [1]. For instance, the pool can be composed of

images, website user behaviours or customer purchase patterns coming from

different categories: images of cats and dogs, legitimate or malicious users,

new or loyal customers must be discriminated and labeled accordingly.

Classification aims at predicting which input data belong to which class to

improve the performance of the decision-making process in a specific use

case. The prediction on unseen data in the data science world is made pos-

sible thanks to models trained on past data following several widely known

Machine Learning (ML) and Deep Learning (DL) approaches.

Classification of images, in particular, is a widely used practice in the Com-

puter Vision area and several other related domains, including Earth Ob-

servation (EO).

The improvement of Artificial Intelligence (AI) techniques in the last decades

has allowed the scientific community to reach high-quality image classifi-

cation results leveraging on powerful architectures such as Convolutional

Neural Networks (CNNs). They are Artificial Neural Networks (ANNs)

capable of extracting features from images taking advantage of local spa-

tial coherence, reducing dramatically the number of parameters and opera-



tions needed compared to fully connected networks by using convolution on

patches of adjacent pixels.

This makes them suitable for EO classification problems, in which satellite

data such as Synthetic Aperture Radar (SAR) images collected by Sentinel-

1 or optical images collected by Sentinel-2 satellites must be processed to

categorize their content. In this context, developing innovative products for

addressing EO-related problems has become a prime necessity for the Eu-

ropean Commission program Copernicus [2] and other related projects such

as ExtremeEarth [3], that leverage on Sentinel-1 SAR data [4] to provide

automatic classifiers and more.

Research in both image and EO classification is indeed growing and promis-

ing, but there is still much room for improvement in terms of how CNNs

can be used to achieve good results with scarcely available labeled training

data, namely in a non-purely Supervised Learning (SL) environment.

In recent times different approaches involving CNNs such as Transfer Learn-

ing (TL) or Semi-Supervised Learning (SSL) have been tested out to over-

come the scarcity of labeled data in Computer Vision classification tasks,

obtaining encouraging results.

The EO classification scenario belongs to the same kind of tasks mentioned

above, being characterised by a huge availability of unlabeled images col-

lected by the satellites hour by hour, while just relatively few hand-labeled

datasets are at disposal.

In this context, wondering which method is the best to face the shortage

of labeled data in Earth Observation classification scenarios seems to be a

challenging task, likewise interesting: it is even more so if you deal with

polar areas images and you need to detect the presence of drifting ice caps

or icebergs, representing a big threat for ship activities and navigation, to

overcome the risk of collision.

1.2 Problem

The easiest and fastest way to face a classification problem in general, and an

EO classification problem in particular, is to implement a SL classifier that

during the training phase receives in input some labeled data and during

the prediction phase outputs the categorization of the unseen data it deals

with.

SL works well under one strong condition: enough labeled data are available

at training time. This means that somebody must have built the dataset and

hand-labeled it, or implemented an algorithm able to automatically perform

the labeling. The first approach is extremely time-consuming in case of big

XVIII



datasets, while the second one is very demanding and still requires some

ground truth labels in input or the interaction by humans, ending up in a

semi-automatic approach, namely Active Learning.

Having to deal with poorly available labeled data is not that rare, and

implementing a purely SL approach within this scenario can lead to two

distinct problems:

• Loss of large piece of information

• Increased risk of overfitting the data

The model obtained in this scenario suffers from the loss of a large piece of in-

formation due to its inability to exploit the widely available unlabeled data,

that instead bring great knowledge with them. To exploit the unlabeled

data the SSL approach has been introduced, whose possible applications

are widely described in several books and literature surveys [5][6] showing

evidence of its better performance than the purely SL method with small

labeled data. Figure 1.1 gives an intuition of how the model performance

varies with the size of the labeled samples.

Useful information could be also retrieved from different labeled datasets, if

wider, and with common features to the data at disposal, such as another

dataset of images in case of an image classification task. This method is

commonly known as Transfer Learning [7], and its results are interesting

from a dual perspective compared to the purely SL approach. They can be

either positive or negative, depending on the level of relation between the

source task and the target task. This behaviour is visible in Figure 1.2.

Figure 1.1: SSL performance at

varying amount of labeled data,

image available at [8]

Figure 1.2: TL performance at

varying amount of labeled data,

image available at [9]

Moreover, the purely SL model is prone to overfit the small labeled dataset

used as training set and may not be able to generalize with new unseen data
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given in input during the prediction phase, resulting in a great prediction

error despite the small training error achieved [10][11]. In this regard, Figure

1.3 clearly shows the inability of such a model to generalize with few train-

ing labeled data, causing a significant gap between prediction and training

errors.

Figure 1.3: Error in relation to training set size, image available at [12]

Given the limitations of the SL approach that have been introduced above,

it becomes necessary to conduct an analysis of the possible alternative ap-

proaches through the realization of a comparative framework, propose a

novel technique and establish if it is possible to overcome the problem of

learning with poorly available labeled data in an EO scenario.

The results of this extensive study are crucial for the reliable prediction of

icebergs and ice caps in the polar regions, reachable only through the de-

velopment of a robust Sea-Ice classifier whose knowledge is not just merely

based on labeled data at disposal.

1.3 Purpose and Research Question

The availability of labeled satellite images is generally poor when compared

with the huge pool of unlabeled images collected by satellites every hour

daily. This applies also to satellite images representing polar regions, there-

fore the exploitation of unlabeled images is worthy of further investigation

due to its potential benefits in terms of the amount of captured information

and thus reliability of classification. The procedure consists of extracting

knowledge, namely representations, before performing the Supervised step.

This additional Semi-Supervised step brings to the main research question

addressed by this work:
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Given a set of polar satellite images and the task of classify-

ing their content with scarcely available labeled data, this work

aims to empirically study whether Semi-Supervised Learning based

on Generative Adversarial Networks can outperform purely Su-

pervised Learning delivering better performance. Semi-Supervised

Learning is further compared with Transfer Learning based on pre-

trained networks.

The initial underlying hypothesis on which the research project is devel-

oped is that, when dealing with limited labeled images, the traditional SL

classification approach can be outperformed by methods that leverage other

widely available unlabeled images to build representations useful for the

classification tasks.

Thus, a pipeline composed of two actions is proposed: first, extracting an

initial set of representations from widely available unlabeled EO data (SSL)

or from widely available labeled data coming from a related classification

problem (TL); second, transferring the derived representations into a clas-

sifier, along with their few class labels, to train the system and produce the

final result.

The description, discussion and comparison of the assessed SL, SSL and TL

approaches are thoroughly introduced in the next chapters.

1.4 Goals and Research Objective

In order to answer the above-presented research question, a set of precise

goals must be identified:

• G1: Undertake a deep study of the literature and the related work

already present in the field, in order to have knowledge about the

existing problems and solutions in the fields.

• G2: Identify a knowledge gap in the literature and propose an inno-

vative approach that tackles the identified problem trying to fill the

gap, in order to address the research question.

• G3: Investigate thoroughly the characteristics of the datasets under

consideration and of the models under assessment, defining a base-

line, in order to focus the problem and pave the way to the proposed

solution.

• G4: Propose a solution to the problem, implement it and compare

with the baseline and the most promising approaches from the liter-
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ature. Then, discuss and evaluate the obtained results through the

appropriate metrics, in order to introduce the main outcomes.

• G5: Draw some conclusions out of the comparison and outline possible

improvements and future work.

These goals are presented to comply with a chronological order of steps to

follow, defining the general research workflow that enables the achievement

of the ultimate research objective: show that through the exploitation of

unlabeled data it is possible to outperform the traditional SL approach.

1.5 Research Methodology

This work has been supported with scientific and empirical research method-

ologies [13] since the beginning of the research. Systematic steps have been

fulfilled during the data preparation, models selection and execution of the

experiments to assure validity, reliability and replication of the results. In

this regard, both the data and the specific architectures to be used have been

chosen as a result of a comprehensive literature review. The implementation

choices that have been made and the evaluation of the results rely on the

knowledge acquired during the whole project, and are thoroughly presented

and discussed in the next chapters.

A quantitative method has been followed and enriched by supplementary

qualitative evaluations, aiming to reach conclusions by experimenting on

two different datasets. This allowed a full understanding and comparison of

the proposed algorithms’ performance on a wider range of cases, instead of

concentrating on just one dataset. A deductive approach was used to verify

the hypothesis, leveraging on the obtained results.

Since the identified research question aimed at studying whether an im-

provement in EO classification would be possible, the focus has been in the

first place on implementing the already existing techniques (SL and TL)

and in the second place to implement a novel SSL technique, that is intro-

duced in the next section, benchmarking their results at the very end. The

benchmarking was mainly based on Overall Accuracy (OA) and other per-

formance metrics such as Precision, Recall and F1 score, since they are the

most commonly used metrics in the classification literature and most of the

results deriving from the existing algorithms are provided through bounds

defined on these metrics.

To run the experiments the same settings for each of the benchmarked ap-

proaches have been reproduced, such as the same train, validation and test
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set sizes and the same maximum number of epochs and maximum batch

sizes for the training phase, to fairly compare their results.

1.6 Proposed Solution and Contributions

This thesis addresses the presented problem by proposing a SSL technique

that leverages on a revised version of the Generative Adversarial Networks

(GANs). The proposed method, known as Semi-Supervised Generative Ad-

versarial Network (SGAN) [14], aims to take into account not only the infor-

mation extracted from the labeled data but also the knowledge contained in

the unlabeled images at disposal and exploit them to extract features useful

to handle the classification problem in the last stage.

The idea is to adopt this approach in the sea ice SAR satellite imagery

world, introducing an extension of the original SGAN technique to solve the

classification problem in the SAR domain which is characterized by wide

availability of unlabeled images.

The DL architecture proposed, whose overview is shown in Figure 4.5, is

a variant of the GAN architecture capable of performing a final classifica-

tion. The learning process, as happens with traditional GANs, is based on

the competition between the Generator and the Discriminator, which un-

dergoes relevant variations from its original form. These variations involve

creating logically separated supervised and unsupervised models for the Dis-

criminator, attempting to reuse the output layers of the former as input to

the latter.

Figure 1.4: SGAN architecture, image available at [15]
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The approach is based on the definition of the SSL model by Tim Salimans

et al. [14] entitled “Improved Techniques for Training GANs.” In the pa-

per, they describe an implementation where at first the supervised model

is created with K output classes and a softmax activation function, while

in a second step the unsupervised model takes the output of the supervised

one before the softmax and computes a normalized sum of the exponential

outputs to produce its own output, namely the ”real” or ”fake” label. The

”fake” label represents the (K + 1)-th output class of the Discriminator.

To answer the research question, this method is compared with the tradi-

tional SL approach implemented through a SAR-specific CNNs architecture,

namely the DeepSAR-Net [16], and benchmarked with other approaches

such as the VGG16-based [17] TL approach.

This comparison highlights the effectiveness of using the available unlabeled

data in addition to the labeled ones, given the higher performance achieved

by the SGAN approach compared to the traditional SL one. In particular,

it improves the OA achieved by the SL approach by at least 5% in configu-

rations with less than 100 labeled samples available at training time in the

use cases analyzed.

More in general, this work also confirms the impact and the usefulness of

including additional knowledge coming from the same domain (SSL) or a

related domain (TL). Specifically, the SSL approach obtains performance

comparable to the TL one, but with the great advantage of avoiding the TL

pre-training step, hence saving great human effort for data hand-labeling,

relevant training time and related CO2 emission.

Moreover, a framework containing other variants of the above-mentioned

approaches, such us the Fine-tuned (FT) variant of the TL method, the con-

catenation of the features extracted by the CNN with additional information

(e.g. geographic coordinates) or the Support Vector Machine (SVM)-based

classifier, has been developed for the sake of comparison.

Such a framework further enriches the contribution of this thesis, show-

ing the capability of the SVM-based classifier of dealing with small labeled

datasets, the usefulness of the concatenation of additional information to

the CNN features and finally the higher performance of the TL-FT approach

compared to the traditional TL approach thanks to its high-level features

tailored on the target use cases.

Finally, images produced by the SGAN Generator open up to future possi-

bilities of performing Data Augmentation and Label Refinery techniques to

further improve the achieved performance.

To sum up, the main contributions provided by this work are the following:
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• The extensive study and comparison of existing DL approaches in

the EO domain have been performed, with the focus on the Sea-Ice

classification problem with scarcely available labeled data;

• The extension of the SGAN architecture [14] based on the DeepSAR-

Net [16] has been introduced. It outperforms the traditional DeepSAR-

Net [16] SL approach by at least 5% in configurations with less than 100

labeled samples available at training time in both the use cases under

evaluation, and competes with the TL approach based on VGG16 [17];

• The comparison of the training times and CO2 emissions related to

the SL, SSL and TL approaches has been proposed, pointing out the

great advantage of the SSL approach of avoiding the TL pre-training

step, that is computationally-heavy;

• The generative capabilities of the DeepSAR-Net-SGAN approach have

been highlighted, opening up new Data Augmentation and Label Re-

finery possibilities;

• The performance enhancement related to DeepSAR-Net-SGAN when

increasing the size of unlabeled data available has been shown;

• The SVM classifier capability of generalizing with datasets of small size

has been proved, enhancing the SL approach performance especially

when few labeled data are available;

• The performance enhancement in the traditional SL approach due to

additional information given (e.g. geographic coordinates) has been

highlighted, especially when few labeled data are available.

1.7 Delimitations

This thesis aims to explore the effectiveness of the SSL approach based on

GANs focusing on SAR satellite images that contain mainly icebergs and

ocean scenes collected under specific acquisition modes. Nevertheless, the

SSL approach introduced by this thesis is expected to perform well also in

other SAR-related tasks where satellite vignettes are characterized by foot-

prints of similar size compared to the polar images ones. In this regard, the

generality of the method could be tested out on the Copernicus [2] Food

Security use case with the aim of classifying crops, performing crop yields

estimation or continuously monitoring the water and nutrient availability in

crops development.
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Still, the more general purpose of defining a method for any kind of SAR or

satellite imagery is only partially addressed in this work since just part of

the method can contribute to it.

Moreover, being this a first attempt of applying a SGAN architecture on

icebergs satellite imagery, areas for improvements still need to be explored.

For instance, this research studies the training and the deployment of such a

model in the ground stations which gather the images collected by the satel-

lites, but does not evaluate its direct deployment on AI modules-equipped

satellites. This kind of investigations is left for future work.

1.8 Ethics and Sustainability

The four principles of Ethics presented in [18] - Autonomy, Non-maleficence,

Beneficence and Justice - are very influential not only in the field of medical

ethics in which they were originally formulated, thus it is possible to evaluate

the ethical implications of this thesis leveraging on this framework. The

main ethical principles affected by this work are:

• Non-maleficence: this project aims to not harm anyone, instead it

aims at helping military ships and civilian sailors to avoid collisions

with icebergs and ice caps. Despite its good intentions, the system

may output wrong predictions, therefore it is necessary to take care of

possible false negatives (not recognized icebergs or ice caps). Moreover,

if the system is hacked by any malicious user it could be used to harm

people through the recommendation of wrong suggestions.

• Respect for autonomy: the system outputs a suggestion to the human,

who is still able to make his own decision.

The United Nations have defined the 17 Sustainable Development Goals

[19], whose aim is to provide a blueprint for peace and prosperity for people

and the planet in the future. This thesis takes into account these goals and

it is mainly related to some of them:

• 8th and 12th Sustainable Development Goals “Decent Work and Eco-

nomic Growth” and “Consumption”: the project may cause additional

computational power and electricity consumption compared to the tra-

ditional SL approach since it leverages also unlabeled data, but it al-

lows to avoid hand-labeling of images which may be very expensive.

• 13th Sustainable Development Goal “Climate Action”: the aim of the

project is to avoid accidents and collisions that might damage the

nature and its ecosystem.
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Besides, the scope of this thesis is in line with the Copernicus program [2]

overall aim, which is to help humans to better understand the planet Earth

and sustainably manage its environment.

In this regard, the Copernicus program is related to the Thematic Exploita-

tion Platforms (TEPs) activity of the European Space Agency (ESA). The

TEPs are virtual work environments that provide access to EO data related

to specific areas such as geohazards, coastal, hydrology, forestry, polar, food

security and urban themes together with computing resources required to

work with them. In particular, this project is linked to the Polar Regions

TEP.

1.9 Thesis Structure

The structure of this research is hereby presented:

• Chapter 1 presents the Introduction to this research work, useful to

let the reader perceive the motivation and the purpose of the study.

• Chapter 2 presents the Background knowledge related to this project,

necessary to have a comprehensive understanding of the problem under

assessment and the proposed solution.

• Chapter 3 presents the Related work conducted by other authors

that has proved to be a source of inspiration to deeper investigate the

scenario under consideration and provide a fancier approach. Together

with Chapter 2, it contributes to the achievement of goals G1 and G2.

• Chapter 4 presents the Deep Learning model architectures that have

been fundamental for the development of the research project, in such

a way that readers can understand and later reproduce the proposed

solutions.

• Chapter 5 presents the Experimental evaluation conducted and the

related results obtained during the research work, describes the ex-

ploited data and provides an evaluation of the main outcomes. To-

gether with Chapter 4, it contributes to the achievement of goals G3

and G4.

• Chapter 6 presents the Conclusions and future work of the research

work providing a summary of the whole study, draws the main con-

clusions out of it and introduces to future work. It fulfills goal G5.

XXVII



XXVIII



Chapter 2

Background

This chapter introduces the fundamental knowledge related to the work

under investigation, useful to have a comprehensive understanding of the

problem at hand, of its related works and of the solution proposed in the

next chapters.

2.1 Satellite Data

Satellite data mainly concern information about Earth and other planets

gathered by satellites floating in the universe. One of the most common

applications for satellite data is EO: satellites floating in the Earth’s or-

bit constantly collect and deliver authentic information about the surface,

weather changes and other relevant phenomena happening on the planet.

The gathered information is mainly generated via Remote Sensing (RS)

technologies capable of observing the Earth with devices physically remote

from it and transmitting images or other data back to the ground stations.

Observation satellites such as ESA Sentinel-1 and Sentinel-2 are launched to

relatively low altitude orbits (respectively 693 and 786 km from the surface

of the Earth) to be able to address their imaging tasks.

Data may be collected through active or passive RS technology. Among

the passive systems, those able to gather data only in sunlit and cloudless

circumstances through optical and thermal sensors, there is the Sentinel-2

satellite; among the active systems that send energy to Earth and measure

the energy received back through radar and laser technologies, there are two

types of systems used for microwave imaging: Real Aperture Radar (RAR)

and SAR, to which Sentinel-1 belongs. An active system that provides its

own illumination and its microwaves are able to pass through clouds and

other weather with little attenuation.
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2.1.1 Synthetic Aperture Radar

The technique of microwave fine-resolution two-dimensional radar imaging

called SAR, among the other RS technologies, is the only instrument able

to penetrate clouds and that does not require sunlight to record reliable

data. It provides timely data stream opportunities for several applications

at land and sea and is especially relevant for monitoring those areas of the

Earth which most of the time are covered by clouds. For organizations,

businesses and governments, this means possibilities for acting on time in

case of specific phenomena and tackling the detected issues, no matter the

weather conditions. Main civilian applications of radar imagery include land

use analysis, oceanography, agriculture and more [20], while main military

applications include surveillance, navigation and more.

SAR generated images are monochrome since this technique measures only

the scalar quantity of reflectivity, while its resolution may range from several

tens of meters down to a few inches. In particular, this resolution should be

available in both the range and cross-range dimensions, quantities that are

introduced below.

SAR is a radar system, the acronym for RAdio Detection And Ranging.

Radars work at radio frequency and are composed of a transmitter, a switch,

an antenna, a receiver and a data recorder, as presented by [21] and visible

in Figure 2.1.

Figure 2.1: Radar building blocks, image available at [21]

The transmitter is the block responsible to generate the electromagnetic

waves at radio wavelengths and pass them to the switch, which directs the

pulse to the antenna, waits for the echo signal and then returns it to the

receiver. The antenna transmits the electromagnetic waves towards the area

to be imaged and collects the related echoes. Finally, the receiver converts

the returned signal to a digital number and passes it to the data recorder

which stores it for later processing. The radar flies with constant speed

along the track direction, while its antenna produces a beam illuminating
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the ground.

As previously stated, there are two kinds of dimensions that that is worth

considering: range and cross-range. As introduced in [22] and shown in

Figure 2.2, the antenna scans in azimuth angle θ, thus at a range R the

beamwidth is Rθ meters to a good approximation. The cross-range dimen-

sion, instead, is the direction orthogonal to range. This is relevant since

the two scatterers in the picture are considered resolvable only if they are

separated by the width of the antenna beam, as the second case represented.

Figure 2.2: Radar range and cross-range dimensions, image available at [22]

The two resolutions related to the cross-range and range dimensions are

respectively:

• Azimuth or cross-range resolution, that is mainly determined by the

beamwidth θ and is given by:

{
ρa = Rθ

θ = k λl
, so:

ρa = kRλl
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where λ is the wavelength of the transmitted signal, l is the radar

aperture length or antenna width, R is the vertical to the terrain and

k is the scale factor that depends on the antenna design and whose

value is often around 1.

Azimuth resolution indicates the ability of a radar to separate two tar-

gets in the direction parallel to its motion, and in particular represents

the minimum distance on the ground at which the two scatterers can

be imaged separately.

Since the azimuth resolution is strongly dependent on the aperture

length l and degrades in proportion to the range R, a larger antenna

operating at a restricted range needs to be employed to obtain sat-

isfying results. At last, given its dependence on wavelength λ, the

resolution would be further improved with higher frequencies.

• Range resolution, that is mainly determined by the pulse length and

is given by:

ρr =
cτp

2sinθ

where c is the speed of light, τp is the pulse length and θ is the incidence

angle between the line which connects the antenna to the object and

the vertical to the terrain.

Figure 2.3: Range resolution and pulse length, image available at [23]

As Figure 2.3 shows, if the distance between two targets is less than

half the pulse width, they will be not detected as distinct by the radar.

Thus, the pulse length should be as short as possible to improve range

resolution. Simultaneously, the radar pulses need to transmit enough

energy to enable the detection of the reflected signals. Therefore, if

the pulse is shortened, its amplitude must be increased to keep the

same amount of energy in the pulse.
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As highlighted by the two previous notions of resolution, the larger the an-

tenna the radar is equipped with, the finer the detail it can resolve, at least

for what concerns RARs. But such changes are impractical, as visible from

Figure 2.4 in which is shown the relative size of a fighter aircraft and an

array of antennas large enough to achieve a ρa of 3m at X band and 10km

range.

Figure 2.4: Unfeasible array of antennas, image available at [22]

SARs, instead, solve the mechanical problems involved in building the equip-

ment needed to transmit a very short and high-energy pulse leveraging on

a signal processing approach, as introduced below.

Figure 2.5: SAR signal processing, image available at [22]

To obtain acceptable azimuth resolution at spacecraft altitudes SARs aim at

synthesising a long antenna by using the forward linear motion of the plat-

form. As suggested from the picture above, the data are collected serially,

one element at a time, rather than in parallel all at once. After process-
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ing, the data have fine resolution in both range and cross-range. It does so

by implementing methods such as the Two-dimension algorithm [24], which

processes the range and azimuth data simultaneously, the Range Doppler

Processing, which does range compression processing before the azimuth

compression processing, or the Chirp Scaling approach, which provides pulse

compression by frequency modulation.

An extensive analysis of the above-mentioned algorithms has been done by

Cumming and Wong [25], while other useful details on SAR signal pro-

cessing are provided by Curlander and McDonough [26] and Lanari and

Franceschetti [27].

Undertaking these analyses, the approximated azimuth resolution that it is

possible to obtain with SAR is:

ρa = l
2

where l is the length of the antenna in the along-track direction: in SARs a

smaller physical antenna generates broader beamwidth θ, allowing a larger

maximum synthetic aperture size.

This is a remarkable result and shows the independence of the SAR az-

imuth resolution to the wavelength and the slant range, thus the altitude.

Since range resolution is independent to the altitude as well, a SAR can

operate at any height with no variations in resolution. As a consequence,

this technology is used with aircraft based imaging radars and spaceborne

operations.

2.1.2 Sentinel-1

Sentinel-1A and Sentinel-1B are two satellites launched by ESA respectively

on 03 April 2014 and 25 April 2016, with a lifespan of 7 years and with

the aim of Land and Ocean monitoring, including sea ice observations and

iceberg monitoring. The objective of the mission is to provide medium and

high-resolution SAR imaging in all weather conditions operating in a range

of radar frequencies around 5.404 GHz called C-Band.

The SAR operating configuration is defined by the swath width and spatial

resolution, which is usually expressed in meters and represents the smallest

size a single pixel in the sensor covers on the ground.

As visible in Figure 2.6 Sentinel-1 can operate at 4 beam modes:

• Strip Map Mode: 5 m (range) x 5 m (azimuth) spatial resolution, 80

km Swath

• Interferometric Wide Swath: 5 m x 20 m spatial resolution, 250 km

Swath
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• Extra-Wide Swath Mode: 25 m x 100 m spatial resolution, 400 km

Swath

• Wave (WV) Mode : 5 m x 20 m spatial resolution, 20 km x 20 km

vignettes collected every 100 km along the orbit

Figure 2.6: Sentinel-1 acquisition modes, image available at [28]

Sentinel-1 can use the full Synthetic Aperture and the complete signal data

history to produce the highest possible spatial resolution Single-Look Com-

plex (SLC) SAR image product, or may generate multiple looks by averaging

over range or azimuth bandwidths. The SLC processing algorithm takes into

account both the data in azimuth and range resolutions and combines them

to form an image following a procedure explained in [29].

For what concerns the polarisation, the Sentinel-1 instruments support op-

erations in single polarisation (HH or VV) or dual polarisation (HH + HV

or VV + VH). As shown in Figure 2.7, HH means both transmitting and

receiving horizontally while HV means transmitting horizontally and receiv-

ing vertically. SAR acquisitions performed at different polarisations result

in slightly different representations of the same target, due to the variation

of the backscatter signal intensity that returns to the sensor depending on
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the chosen polarisation. Some polarisations might be more sensitive to flat

surfaces while some others may be more suitable to describe land variations.

Figure 2.7: Polarisation modes, image available at [30]

WV acquisitions, in particular, consist of several vignettes acquired in either

VV or HH polarisation every 100 km along the orbit and alternately on two

different incidence angles (approximately 23◦ and 36◦ respectively).

Strip Map acquisitions, instead, consist of several vignettes mostly acquired

in HH + HV polarisation with incidence angle varying from 18.3◦ to 46.8◦.

2.2 Classification

The classification problem is a predictive task whose goal is to best approx-

imate a mapping function from the input variables to the output variables,

that are discrete. The final aim is to correctly identify which category the

new data will fall into.

In particular, it is a technique in which a model, called classifier, is trained

to learn from input samples and then used to generalize on new unseen in-

stances [31] based on patterns identified in the training data. Classification

tasks can be split into multiclass and binary problems.

In binary classification problems, input data belong to a positive or a nega-

tive class. The output of a binary classification algorithm is a binary predic-

tion vector, where each new given sample is labeled as positive or negative.

In multiclass classification problems, instead, input data belong to one of

the available classes. The output of a classification algorithm, in this case,

is often a 1-hot encoded prediction vector, where each new given sample is

labeled with an encoding corresponding to the class it belongs to.

2.2.1 Classification methods

Logistic Regression

The Logistic Regression algorithm, also known as Logit Regression, is an

extension of the Linear Regression for classification purposes. In particular,
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it estimates the probability that an instance belongs to a specific class (e.g.

What is the probability that the considered image represents an iceberg?).

Instead of fitting a straight line or hyperplane as the Linear Regression does,

the Logistic Regression model makes us of the logistic function to flatten the

output of a linear equation between 0 and 1, interpreted as a probability.

Based on this probability and a threshold the model predicts whether the

instance belongs to the positive class (e.g. iceberg) or it does not. This

makes it a binary classifier, thus the name Binary Logistic Regression.

The logistic function, also called sigmoid function, is defined as follows:

σ(z) = 1
1+e−z

And it looks like this:

Figure 2.8: Sigmoid function

Differently from the Linear Regression model, which directly outputs the

weighted sum of the input features (plus a bias term), the Logistic Regression

computes this same quantity but outputs the logistic of this result, as visible

here:

z = w0x0 + w1x1 + w2x2 + ...+ wnxn = wTX

σ(z) = σ(wTX) = 1

1+e−wTX

Once the Logistic Regression estimates the probability σ(z) that a sample

belongs to the positive class, it can output its prediction ŷ:

σ(z) < 0.5 when z < 0, and σ(t) ≥ 0.5 when z ≥ 0, so the Logistic Regression

predicts ŷ = 1 if z = wTX is positive and ŷ = 0 if it is negative.

In the case of Linear Regression, it is possible to find the optimal weights by

solving the normal equations. Logistic regression is somewhat more difficult
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since there is no closed-form solution for its optimal weights. The objective

of the training is to set the parameter vector so that the model estimates

high probabilities for positive instances (y = 1) and low probabilities for

negative instances (y = 0). This idea is captured by the following cost

function:

cost(ŷ, y) =

{
−log(ŷ) if y = 1

−log(1− ŷ) if y = 0
(2.1)

Figure 2.9: Binary Logistic Regression cost function

The cost is desired to be: close to 0, if the predicted value ŷ will be close to

true value y; large, if the predicted value ŷ will be far from the true value y.

Therefore, if y = 1, − log(ŷ) will give a result close to 0 if ŷ is close to 1.

Conversely, the cost to pay grows to infinity as ŷ approaches to 0.

Instead, if y = 0, − log(1− ŷ) will give a result close to 0 if ŷ is close to 0.

Conversely, the cost to pay grows to infinity as ŷ approaches to 1.

This function also grants the convexity to the function the Gradient Descent

algorithm has to process, which thus is guaranteed to find the global mini-

mum.

The cost function over the whole training set is the average cost over all the

training instances. It can be written in a single expression known as the Log

Loss, shown below:

J(w) = − 1
m

∑m
i=1 y

(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

Following a probabilistic interpretation it is possible to come up with the

Negative Log-Likelihood equation, which is the same as the Logistic Re-

gression cost function written above. Therefore, minimizing the negative

Log-Likelihood, also known as Cross-Entropy given its ability to measure

the difference between two probability distributions, means minimizing the

Logistic Regression cost function J(w).
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According to the Gradient Descent algorithm (and its Batch, Mini-Batch

and Stochastic variants), the minimization takes place starting at a random

initialization of the weights and then repeating the following steps, until a

stopping criterion is satisfied:

• Determine a descent direction ∂J(W )
∂w ;

• Choose a step size η;

• Update all the parameters simultaneously: w(next) = w − η ∂J(W )
∂w .

For what concerns the Multinomial Logistic Regression, things slightly differ

from the previous case. Instead of two classes, it deals with k classes and

therefore one set of parameters w is no longer sufficient and it needs k sets

of parameters W , since it has to estimate the result of each individual label.

Instead of the sigmoid function, in the multiclass case the softmax function

is used:

ŷj = p(y = j|x;wj) = σ(wTj X) = e
wTj x∑k

i=1 e
wT
i
x

The softmax function is able to calculate the probabilities of each target

class over all possible target classes, and if computed for two classes it is

equivalent to the sigmoid function. The prediction outputs the class with

the highest estimated probability.

As in the previous case, the cost function is represented by the Cross-

Entropy.

Support Vector Machine

SVM is a classification algorithm that has been introduced in 1995 by Cortes

et al. [32]. It trains a classifier by first creating a feature-space, mapping

original instances into it and then defining linear partitions (linear separating

hyperplanes) of the feature space into categories. SVM finds the partitions

that separate the data into categories by maximizing the orthogonal distance

between the nearest points of each category and the separating hyperplanes.

This distance, called margin, is shown in Figure 2.10. The closest point to

the boundary for each category is called support vector, and it is used to

calculate the separating hyperplane.

There exist also techniques through which SVM can perform multiclass clas-

sification, such as the One-against-one in which SVM classifiers for all possi-

ble pairs of classes are created [34]: when applied to test data, each classifier

gives one vote to the winning class and in the end the sample is labeled with

the class having most votes.
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Figure 2.10: SVM support vectors intuition, image available at [33]

The success of SVM is linked to the ability to work well in non-linear cases

as well, by creating non-linear separation between classes. It can do so by

leveraging on different types of kernel transformations [35], such as the Ra-

dial Basis Function kernel (RBF). The RBF kernel on two instances x and

x
′
, represented as vectors in the feature space, is defined as:

K(x, x
′
) = e

||x−x
′
||2

2γ

This function is of the form of a bell-shaped curve, whose height ranges

between 0 and 1 and therefore can be interpreted as a similarity measure

among the points; its width, instead, is determined by the parameter γ: the

smaller its value the wider is the bell, as visible in Figure 2.11, meaning

that the decision boundary is less effected by individual data points like in

Figure 2.12.

Figure 2.11: RBF γ parameter choice affects the bell shape, image available at [36]

2.2.2 Classification evaluation

Evaluating the model is a crucial part of any classification problem. The

proposed solution can give satisfying results when evaluated using a certain
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Figure 2.12: RBF non-linear decision boundaries shapes are affected by the value of γ

parameter, image available at [37]

metric, but may give poor results when evaluated using other metrics.

Several methods to evaluate the performance of a classifier do exist. It is

useful to introduce the concept of Confusion Matrix to understand them.

The Confusion Matrix is used to describe the performance of a classifier on

a set of test data for which actual values are known.

In a binary classification task, there are two possible predicted classes: pos-

itive and negative, and this also applies to multiclass classification if each

time one class is considered as positive and the rest of the classes as neg-

ative. Then there are the class actual values (positive or negative) defined

by their ground truth labels. According to this logic, it is possible to define

four classification possibilities:

• True Positives (TP ): set of samples belonging to the positive class,

that the model correctly predicted as positive.

• False Positives (FP ): set of samples belonging to the negative class,

that the model incorrectly predicted as positive.

• False Negatives (FN): set of samples belonging to the positive class,

that the model incorrectly predicted as negative.

• True Negatives (TN): set of samples belonging to the negative class,

that the model correctly predicted as negative.

The Confusion Matrix, as shown in Figure 2.13, summarizes these concepts

collecting information about the support of each group. It is used as a

starting point to calculate the most common evaluation metrics, presented

below. Based on the Confusion Matrix, three main evaluation metrics can

be defined:
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Figure 2.13: Confusion Matrix, image available at [38]

• The Overall Accuracy is calculated as the number of all correct

predictions divided by the total number of instances in the test set.

Accuracy is generally a good indicator, but it could become misleading

when dealing with an unbalanced dataset.

OA = TP+TN
TP+TN+FP+FN

• The Precision is the number of correct positive results divided by the

number of both correct and incorrect positive results predicted by the

classifier. Precision is a good measure to consider when the cost of

false positives is high.

P = TP
TP+FP

• The Recall is the number of correct positive results divided by the

number of all relevant samples (e.g. all samples that should have been

correctly predicted as positive). Recall is a good metric to consider

when there is a high cost associated with false negatives, such as the

case of iceberg detection.

R = TP
TP+FN

Many other metrics are used to evaluate machine learning models, such

as Area Under the ROC Curve (AUC-ROC) or F1 score, that takes into

account both Precision and Recall according to the formula:
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F1 = 2∗P∗R
P+R

OA, Precision, Recall and F1 score are the metrics used to evaluate the

performance of the proposed methods later in this work.

2.3 Deep Learning

In this section are presented the main theoretical and background notions

underlying the DL field, a subset of ML, and its main applications that

involve ANNs architectures such as CNNs or GANs.

2.3.1 Machine Learning definition

The main challenge that AI tackles is solving tasks that are hard for people

to describe formally. In this scenario, ML is the part of AI that lets com-

puters solve this kind of task by learning from experience: an ML algorithm

is an algorithm that is able to learn from data.

What does learning mean? According to Mitchell [39]: ”A computer pro-

gram is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E”.

The experience E is composed by examples, collections of features measured

from events or objects that the ML algorithm can process in the first place.

Task T is the activity that the ML system can fulfill once the learning pro-

cess performed on the examples is complete. Here lies the main difference

between learning and task: learning is the means of achieving the ability to

perform the task. At last, the performance P is the quantitative measure

used to evaluate the ability of a ML algorithm to perform the concerned

task, and it is usually specific to the task.

For instance, in a classification task the ML algorithm is asked to specify

which categories some test examples given in input belong to, and it per-

forms this task building a mathematical model learnt from training examples

and evaluating its performance through specific quality metrics like the OA.

In general, the resulting model is reliable when the training examples fol-

low a distribution similar to that of future test examples, so that the ML

algorithm becomes able to make good predictions on the test data without

explicitly being programmed on how to perform this task.

ML algorithms can be categorized into different types based on the type of

experience, namely input and output data, they handle during the learning

process and type of task they are intended to solve. Here follows a textual

summary of the main ML categories:
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• Supervised Learning (SL): the ML algorithm experience is composed

of a dataset containing examples associated with a label, or target.

Its name is due to the presence of a notional supervisor during the

learning process that assigns the labels to the data. Instead, in the

case of SSL, that is a slightly different variant of SL, part of the labels

is present while another is missing.

• Unsupervised Learning (UL): the ML algorithm experience is com-

posed a dataset containing examples made of features, through which

the system learns useful properties of the dataset intrinsic structure

without the help of any target.

• Reinforcement Learning (RL): in this case there is not an actual prior

experience on which the ML algorithm bases its learning process. Here

the learning process is based on a trial-and-error method and is com-

posed of an agent that interacts with its environment, performs actions

and gets rewards.

A visual summary, with some additional details, is attached in Table 2.1.

Categories SL UL RL

Definition Machine learns

from labeled

data

Machine learns

from unlabeled

data

Agent learns

from rewards

related to its

actions in the

environment

Problems Regression and

classification

Association and

clustering

Reward-based

Data Labeled data Unlabeled data No predefined

data

Training External

supervision

No supervision No supervision

Approaches Maps labeled

inputs to

known outputs

Understands

patterns and

discovers the

output

Follows the

trial-and-error

method

Table 2.1: Overall comparison of RL, UL and RL
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The focus of this thesis is mainly dedicated to the SL and SSL approaches.

As visible from the table above, these categories usually address regression

tasks, in which the output variable is continuous, or classification tasks, in

which the output variable categorical or discrete as already discussed in the

previous section.

This project, in particular, tackles the problem of classifying satellite images

representing classes such as icebergs or ice caps.

2.3.2 Neural Networks

DL is a subfield of ML algorithms based on learning data representations. Its

main objective is to mimic the neural networks of the human brain, that is

why ANNs are inspired by human biological neurons. Humans indeed learn

thanks to the millions of interconnected neurons in their brain that transmit

electrical impulses and activate each other via axons [1]. In particular, these

impulses are called action potentials and make the synapses release chemical

signals known as neurotransmitters. When a neuron receives an adequate

amount of neurotransmitters within a few milliseconds, it fires its own action

potentials towards other neurons, which especially in the cerebral cortex are

organized in consecutive layers.

Similarly to our brain, SL leverages on Neural Networks (NNs) made of

consecutive layers to learn how to transform an input X to an output Y.

As the name suggests, NNs are composed of neurons, that represent the

basic logic units of any NN. McCulloch and Pitts in 1943 [40] introduced

a simple model of the artificial neuron with one or more binary inputs and

one binary output. A few years later, in 1957, Frank Rosenblatt invented

the Perceptron [41], a slightly different neuron architecture composed by

a single layer of Linear Threshold Units (LTUs), whose inputs and output

are numbers and in which each input connection is coupled with a weight.

The Perceptron training algorithm aims at reinforcing the connections that

help reduce the error and it is inspired by Hebb’s rule [42], according to

which the connection between two neurons tends to grow when they fire

simultaneously.

In 1969 Minsky and Papert [43] highlighted some weaknesses of Perceptrons,

such as their incapability of solving the XOR classification problem, and it

turned out that such limitations could be eliminated by stacking multiple

Perceptrons. The result is a Multilayer Perceptron (MLP), composed of one

input layer, one or more hidden layers of LTUs, and one final layer of LTUs

called the output layer, which represents the foundation of modern ANNs.

The modern neuron takes a vector of inputs X = [x1, .., xn] and computes
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an output y. The computation happens as follows:

1. It multiplies each input vector of inputs X = [x1, .., xn] by a vector of

weights W = [w1, .., wn]

2. It computes the summation of the weighted inputs and adds a bias

term b : (x1∆w1) + ..+ (xn∆wn) + b

3. It applies an activation function f to the summation, such that: y =

f(x1∆w1 + ..+ xn∆wn + b)

Figure 2.14: Neuron architecture, image available at [44]

Figure 2.14 shows the basic neuron architecture. Common activation func-

tions f are the sigmoid, the hyperbolic tangent (tanh) or the Rectified Linear

unit (ReLu) [45] functions. The use of non-linear activations allows NNs to

generate non-linear mappings between inputs and outputs, meaning that

they are able to compute and learn any theoretical function and thus are

considered as universal function approximators [46]. Figure 2.15 shows the

structure of a single-layer NN, that, as well as the MLP, is organized in

layers of neurons. If a NN is composed of more hidden layers it is known as

a multi-layer NN or Deep Neural Network (DNN).

A NN learns through the minimization of the output error, often defined by

a cost function. For instance in SL tasks, when training data are labeled, a

common choice for the cost function J is the Mean Square Error (MSE):

J(w) = MSE = 1
m

∑m
i=1(y

(i) − ŷ(i))2

where, for each test sample i, y represents the actual value while ŷ represents

the predicted value. As already introduced in section 2.2.1, for classification

tasks is usually preferred the Cross-Entropy cost function.
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Figure 2.15: Neural Network structure

To minimize the cost function and learn the right output to produce, the

Gradient Descent method is used to update the NN’s weights. It is an op-

timization algorithm that consists of iteratively moving in the direction of

steepest descent as defined by the negative of the gradient, which is com-

puted as:

∂J(W )
∂w

To implement this algorithm a technique known as Backpropagation is used.

When inputs are given to the NN the outputs are computed according to

the current weights W = [w1, .., wn], and the cost function is calculated as

well as its gradient. Therefore Backpropagation consists of propagating the

gradient of the cost function backward through the network to update each

weight involved in the computation of the error. Once the backward pass

is complete and thus the gradient is successfully computed, the weights are

updated as follows, according to a learning rate η:

w(next) = w − η ∂J(W )
∂w

This means calculating the gradient with respect to the weights using the

chain rule, an example of which is shown in Figure 2.16 and the formulas

below:

The Backpropagation steps to compute w
(new)
1 are:

w
(new)
1 = w1 − η ∂Etotal∂w1

, where:

∂Etotal
∂w1

= ∂Etotal
∂outh1

∂outh1
∂neth1

∂neth1
∂w1

, where:
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Figure 2.16: Backpropagation, image available at [47]

• ∂Etotal
∂outh1

= ∂Eo1
∂outh1

+ ∂Eo2
∂outh1

= ∂Eo1
∂outo1

∂outo1
∂neto1

∂neto1
∂outh1

+ ∂Eo2
∂outo2

∂outo2
∂neto2

∂neto2
∂outh1

, where:

– ∂Eo1
∂outo1

= −21
2(targeto1 − outo1)

– ∂outo1
∂neto1

= 1 if activationfunction = ReLu and neto1 > 0

– ∂neto1
∂outh1

= w5

and:

– ∂Eo2
∂outo2

= −21
2(targeto2 − outo2)

– ∂outo2
∂neto2

= 1 if activationfunction = ReLu and neto2 > 0

– ∂neto2
∂outh1

= w7

• ∂outh1
∂neth1

= 1 if activationfunction = ReLu and neth1 > 0

• ∂neth1
∂w1

= x1

In practice, three strategies are mainly used to implement the Gradient

Descent algorithm:

1. Batch Gradient Descent, that calculates the error for each sample in

the training set and updates the model only after all training samples

have been evaluated. Model updates are performed at the end of

each training epoch, a cycle through the entire training set. As a

consequence, it may be slow on very large training sets;

2. Stochastic Gradient Descent, that picks a random instance in the train-

ing set at every step to compute the gradient, thus it is faster than

Batch Gradient Descent but less regular;
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3. Mini-Batch Gradient Descent, a variation of the Batch Gradient De-

scent that splits the training set into small random batches used to

calculate that error and update model coefficients accordingly. It rep-

resents a sort of trade-off solution and it is the most common practice

in the DL field.

To face the challenges (e.g. slow training process) that choosing one of these

three strategies may entail, some optimization algorithms are used in the DL

community. Among them it is worth mentioning: the Momentum optimizer

[48], that helps to escape from bad local minima including previous gradients

information into a specific vector added to the local gradient; the RMSProp

optimizer [49], which adapts the learning rate dividing it by an exponentially

decaying average of the past squared gradients; the Adam optimizer [50],

that not only stores an exponentially decaying average of the past squared

gradients like RMSProp, but also keeps an exponentially decaying average

of the past gradients similar to Momentum.

Another big challenge that one can face while training NNs is overfitting the

model on the training data, especially when the model has a large number

of parameters. To address this issue, some approaches that can be followed

are: Early Stopping, which takes care of monitoring the error computed on

the validation set and stops the training process as soon the validation er-

ror reaches a minimum; Dropout, which consists of randomly dropping out

each neuron temporarily during training, that is like averaging the effects of

different NNs. These NNs may overfit in different ways, but the net effect

of Dropout is to reduce overfitting.

To proceed with the next sections, in the DL field the most common imple-

mentations of NNs are: Feedforward Neural Networks [51], Recurrent Neural

Networks[52], Long-Short Term Memory Neural Networks [53], CNNs [54],

GANs [55] and Autoencoders [56].

Since the methods proposed in this thesis rely on CNNs and GANs, ex-

tensive analysis and presentation of these architectures are proposed in the

following sections.

2.3.3 Convolutional Neural Networks

CNNs [54] are specialized NNs for processing data with grid-like topologies,

such as images, that are 2D-grids of pixels. CNNs get their name from an

operation called convolution, that is used instead of the traditional matrix

multiplication in at least one of the NN layers. This operation takes inspi-

ration from the behaviour of the human visual cortex neurons: they have a

local receptive field and thus react only to stimuli located in a limited region
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of the visual field.

As a result, in a CNN architecture neurons in the first layer are not con-

nected to every pixel in the input image but only to those in their receptive

fields. In turn, each neuron in the following layer is connected only to neu-

rons located within a small region in the previous layer and so on, as shown

in Figure 2.17. This architecture allows the first hidden layers to concentrate

Figure 2.17: CNN intuition, image available at [1]

on small low-level features and assemble them into large high-level features

in the next hidden layers, summing up the overall aim of CNNs: extracting

higher-level features from high dimensional data.

More in detail, each layer of a CNN applies one or more filters on the input

data and generates as output a simplified representation of its input. Each

neuron is associated with a particular region (known as receptive field) of

the input and applies to that region a transformation described by the filter

(also known as kernel). All the neurons in a certain layer usually apply the

same filter (but on different regions), give the result as input to the activa-

tion function and generate the output, as shown in Figure 2.18. Moreover,

it is also possible to apply more filters in a given layer to extract features in

different ways. For instance, in the case of RGB images classification, there

are always three channels (Red, Green and Blue) and each channel applies

at least one filter.

In contrast to traditional NNs, mainly based on fully connected layers and

weights used exactly once when computing the output of a layer, CNNs

leverage on techniques introduced above such as sparse interaction and pa-

rameter sharing to reduce the ML system memory requirements and improve

its statistical efficiency. In the end, the number of parameters that define
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Figure 2.18: CNN Kernel, image available at [10]

a CNN only depends on the size of the filters, the number of filters (also

known as feature maps) and the number of channels.

In addition to the Convolutional layers, a CNN is also composed of Pool-

ing layers: they aim at subsampling the input data to further reduce the

computational load, the number of parameters and thus the memory usage.

What a Pooling layer does is replacing the output of a certain layer with

a summary statistic of the nearby outputs (e.g. Max-pooling [57] function

reports the maximum output within a rectangular neighborhood, while the

Average-pooling reports its average). This procedure helps to make the rep-

resentation invariant to small translations of the input, a useful property if

there is no need to know the exact location of a feature.

In order to fully introduce the CNN architecture, shown in Figure 2.19, it

is necessary to finally include the Fully connected or Dense layers and the

Flattening operation. The role of the is to take the result from the last Con-

volutional module in input and output a K dimensional vector, where K is

the number of classes that the model has to choose from. In this process, the

Flattening operation is necessary to convert the output of the Convolutional

layers part into a 1D feature vector to be used by the dense layer for the

final classification.

For what concerns the update of the kernel weights and the overall CNN

learning process, it is important to mention the role of the activation func-

tions such as the ReLu (f(x) = max(0, x)) placed between the Convolutional
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Figure 2.19: Full CNN architecture, image available at [58]

and the Pooling layer: given its non-saturating property, the vanishing gradi-

ent problem during the Backpropagation is avoided. The learning procedure

of the CNNs is indeed based on the Gradient Descent algorithm and its chain

rule as well as the traditional NNs: the gradient can be now interpreted as

the measurement of how the change in a single pixel in the weight kernel

affects the defined loss function, and when backpropagating it often risks to

get smaller and smaller as the update progresses down to the lower layers.

Another technique that is worth mentioning when dealing with the vanish-

ing gradient problem is the Batch Normalization, that tries to avoid that

the distribution of each layer’s inputs changes during training due to the

change of the parameters of the previous layer. It does so by zero-centering

and normalizing the inputs of the current batch, then scaling and shifting

the result by specific parameters.

In this context, it is worth mentioning how the Pooling layers affect the

Backpropagation: in the case of Average-pooling, the error is multiplied by
1

NXN , with N size of the pooling block, and it is assigned to the whole pool-

ing block. In the case of Max-pooling, instead, the error is just assigned to

the unit it comes from and thus the gradient from the next layer is passed

back to the only neuron which achieved the max while all other neurons get

zero gradient.

2.3.4 Generative Adversarial Networks

When it comes to Generative Adversarial Networks (GANs) [55], it is neces-

sary in the first place to introduce the meaning of the terms Generative and

Adversarial. Generative models are a class of statistical models different

from the Discriminative ones: the former can generate new data while the

latter can discriminate between different types of data. In particular, given

a set of data instances X and labels Y:
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• Generative models aim at capturing the joint probability P (X,Y ), or

just P (X) if no labels are available.

• Discriminative models, instead, aim at capturing the conditional prob-

ability P (Y |X).

While Discriminative models just tell how likely a label is to be applied

to the instance, Generative models address a more difficult task since they

include the distribution of the data and tell how likely a given example is.

Generative models have to model more: for instance, when they deal with

images, they have to capture correlations and complex distributions related

to the likelihood of objects of appearing next to each other, while Discrimi-

native models just need to look for a few details and can ignore many of the

existing correlations to perform classification. More formally, Generative

models try to model how data are placed throughout the space.

For what concerns the term Adversarial, instead, its meaning relies on the

fact that GANs are based on the idea of making NNs compete against each

other during training to push them to excel.

Figure 2.20: Gartner Hype Cycle 2019, image available at [59]

GANs, which according to the Gartner Hype Cycle for Emerging Technolo-
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gies (Figure 2.20) represent of the most promising techniques on the rise in

2019, are composed of two NNs: a NN called Generator, that aims at gener-

ating data that look like they are drawn from to the same distribution as the

training data, and a NN called Discriminator that aims at discriminating

real data from fake data.

For what concerns the Generator, it takes a random noise as input (usually

represented through a Gaussian distribution) and outputs an image. Ran-

dom inputs can be seen as the latent representations (e.g. codings) of the

image to be generated, which have a much lower dimensionality than the

actual data. Thus the Generator can be used to generate brand-new images

just feeding it some Gaussian noise.

For what concerns the Discriminator, instead, it takes as input either a real

image from the training set or a fake image from the Generator, and behaves

as a classifier in guessing whether the input image is fake or real, as visible

in Figure 2.21.

Figure 2.21: GAN overall structure, image available at [15]

The Adversarial training consists of the Discriminator trying to correctly

distinguish fake images from real images, while the Generator tries to fool

the Discriminator producing images that look as real as possible. The GAN

is composed of two NNs with different objectives and thus is not trained as

a traditional NN. The training is divided into two phases that are alternated

during the process:

1. The first to be trained is the Discriminator, which receives in input an

equal number of real images labeled as 1 and of fake images labeled

as 0, and is trained on this labeled batch for one step, using the bi-

nary Cross-Entropy cost function. In this phase, the Backpropagation

updates only the weights related to the Discriminator.

2. In the second phase, the Generator is trained: it produces a batch
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of fake images and the Discriminator is asked to guess whether these

images are real or fake. Differently from before, real images are not

included in the batch and fake images are labeled as 1 to teach the

Discriminator to wrongly classify them as real. In this procedure, the

Backpropagation updates only the weights related to the Generator,

while the weights of the Discriminator are frozen.

Since GANs aim at replicating a real probability distribution, loss functions

that reflect the distance between the distribution of the real data and the

synthetic ones must be used. One of the possible approaches is to use the

Minimax loss function [55], that includes both the Discriminator’s probabil-

ity estimate D(G(z)) that a fake instance G(z) is real and the Discrimina-

tor’s probability estimate D(x) that a real instance x is real, dropped during

the training of the Generator since it can only affect the term related to the

distribution of the fake data.

Mathematically, the Discriminator aims at maximizing the expected value

over the real data Ex of the log probability for real images and the expected

value over all generated instances Ez of the log of the inverted probabilities

of fake images, while the Generator tries to minimize it:

Ex[log(D(x))] + Ez[log(1−D(G(z)))]

The formula derives from the Cross-Entropy between the real and generated

distributions, thus the problem is more commonly implemented as a tradi-

tional binary classification problem with labels 0 and 1 for synthetic and real

images respectively. The GAN model is hence fit seeking to minimize the

average binary Cross-Entropy, also called Log Loss as introduced in section

2.2.1.

2.4 Representation Learning

Representation Learning [60] typically consists of transforming input data or

extracting features from them, making it easier for the model to perform a

task like prediction or classification. In a DL context, representation refers

to the characteristics of the transformed input along the NN architecture

and it can be considered a good representation if it makes the learning task

easier. For instance, training a classifier in a SL manner leads to a different

representation at every hidden layer, with each new representation taking

on characteristics that make the classification easier.

The concept of representations can be really useful when dealing with DL

architectures, since through them it is possible to share statistical strength
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and acquired information across different tasks for which just a few examples

are available (TL), or using knowledge from unsupervised tasks to perform

supervised ones (SSL). These two approaches are further discussed in the

following subsections.

2.4.1 Transfer Learning

Extensive studies about the transferability of features across DNNs have

been conducted in recent years [61]. The basic idea that underlies this tech-

nique is the following: if a model to recognize some objects has already been

trained and a new NN able to recognize other objects that may have some

features in common with the previous ones must be trained, it is possible to

kickstart the training of the new NN initializing its weights by reusing the

lower layers of the first NN. In this way, the new NN will have to learn the

higher-level features specific to its task but not all the low-level structures

that occur in most pictures such as edges etc. An overall representation of

the TL approach is shown in Figure 2.22, where a classification task is taken

as an example. The number of final layers to be trained in the new NN is

variable: in case we do not want to train just the final classifier but we want

to go deeper and retrain some previous layers, the TL approach is referred

to as Fine-tuned.

Figure 2.22: Transfer Learning overall idea, image available at [62]

2.4.2 Semi-Supervised Learning

When facing DL problems, and specifically those related to images (e.g.

satellite images), it is common to have very large amounts of unlabeled

data and relatively few labeled data through which train the model. As a

consequence, while in such a scenario traditional SL techniques might lead
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to severe overfitting, SSL techniques offer the chance to learn also from the

unlabeled data [6]. Indeed, good representations learnt from the unlabeled

data can be used to solve the SL task. These two steps are known as pre-

training phase, which receives in input the unlabeled data, and SL phase,

which receives in input the labeled data and leverages the weights received

from the previous step, as shown in Figure 2.23.

Figure 2.23: Semi-Supervised Learning overall idea, image available at [63]

Therefore, if plenty of unlabeled training data are available, they can be

used in the pre-training phase to train an unsupervised model such as an

Autoencoder or a GANs model, then reuse the layers of the encoder or the

GAN’s Discriminator in the SL phase adding the output layer for the specific

task on top, and Fine-tuning the final NN.

Figure 2.24 depicts the idea that underlies the SSL-AE approach, based on

a pre-training phase which consists of the Autoencoder trying to replicate in

output the unlabeled images it receives in input. During this operation, the

encoder learns how to perform an effective features extraction from the input

samples and this knowledge is then transferred to the SL phase. The weights

of the final SL model are indeed initialized with the encoder weights obtained

during the pre-training phase, and an output layer such as a softmax is put

on top of the architecture in case of classification. When performing the final

training, the weights coming from the pre-training phase are frozen, and only

the last layers involved in the target task are trained in a supervised manner.

For what concerns the SGAN approach, instead, the process is a bit different

from that of the Autoencoder, although there is a strong symmetry between

the role of its encoder and the SGAN Discriminator and between its decoder

and the SGAN Generator respectively. In particular, the former are the

architectures that are responsible to perform the actual SL task after the

pre-training phase, while the latter are fundamental for the proper execution

of the pre-training phase due to their capability of producing images in

LVII



Figure 2.24: Semi-Supervised Learning with Autoencoders [64]

output.

The SGAN approach is thoroughly introduced and discussed in the later

chapters together with its implementation details, since it is part of the

solution proposed by this thesis.
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Chapter 3

Related work

In this chapter, the existing research works in the literature that represent

the foundations of this thesis are introduced and discussed.

Since the proposed method aims to apply DL techniques for EO classifi-

cation (SAR images specifically) by leveraging a pipeline composed by a

Representation Learning step ahead of a Supervised classification step, the

related works can be grouped into DL techniques for EO classification and

methods to perform the Representation Learning ahead of the SL classifica-

tion step.

An overview of the state-of-the-art in the topic of DL classification for EO

is presented, examining the main approaches used to handle this problem.

A particular focus on polar images is also provided.

On the other hand, methods to perform the Representation Learning ahead

of the SL classification are explained as well, focusing on the most relevant

works for the architectures later proposed in Chapter 4.

3.1 Deep Learning for Earth Observation classifi-

cation

In recent years, the interest towards the topic of DL applied to Earth-related

tasks has significantly increased.

As reported by Hu et al. [65], this attitude is mainly due to the fact that for-

mer methods for solving RS-based scene classification or target recognition

tasks can just generate mid-level image features with restricted representa-

tive ability thus not achieving great performance.

These methods such as Spatial Pyramid Matching Kernel [66], Spatial Pyra-

mid Cooccurrence Kernel [67], min-tree kd-Tree [68] and Sparse Coding [33]
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are mainly based on the Bag of Visual Words (BoVW) approach [69] which

disregards spatial information and strongly relies on the extraction of hand-

crafted local features. This prevents the building of more representative

higher-level features, abstractions of the lower-level features that can exhibit

more discrimination playing a dominant role in scene classification tasks.

Among the possible EO scene classification tasks, sea ice detection is cur-

rently gaining more and more concern given the sudden changes that oc-

curred in polar areas caused by global warming. Developing an automatic

sea ice product for monitoring the status, movement and melting of ice caps

and icebergs has become a prime necessity for the European Commission

program Copernicus [2] and other related projects such as ExtremeEarth [3]

that leverage on Sentinel-1 SAR data [4] to provide innovative solutions to

the issue at hand.

SAR satellite images are indeed very suitable for sea ice classification and

DL applications, as discussed below.

3.1.1 SAR-based Sea Ice Classification

As the review by Zakhvatkina et al. [70] supports, many works in the

last decades have been carried out to derive sea ice information from high-

resolution SAR images. This is due to the ability of SAR to provide day-

and-night measurements regardless of any weather condition or natural il-

lumination, maintaining a high spatial resolution.

The national ice services of Canada, United States of America, Norway, Rus-

sia and other countries have been employing for years high-resolution SAR

data as the main source for monitoring sea ice cover during ships naviga-

tion and several marine operations [71][72][73][74], exploiting the continuous

and intensive development of SAR observing systems simultaneously with

the launch of new satellites. From the first SAR satellite SEASAT (USA)

launch in 1978 up to the C-Band Sentinel-1A/B (European Commission and

ESA) launches in 2014 and 2016 lot of improvements in terms of image cap-

ture have been done such as multiple SAR modes, different incidence angles,

resolutions, polarisations and swath widths.

More data have become accessible to the scientific community and new ap-

proaches involving feature-based NNs and DL have been experimented, gen-

erating new research questions and results.

In this regard, Wang et al. [75] provide us with the TenGeoP-SARwv,

a dataset composed of more than 37000 SAR acquisitions of Sentinel-1A

in WV mode and VV polarization [4] representing ten different oceanic

phenomena. This work is specifically aimed to benefit the development
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of massive ocean SAR data analysis which includes DL signal processing

algorithms.

In particular, the images are collected in 20 km x 20 km scenes at two alter-

nate incidence angles of 23.8◦ (WV1) and 36.8◦ (WV2) and each pixel within

each vignette has 5 m spatial resolution. The frames are also submitted to

three processing steps to enhance broadscale features of oceanic phenomena

and make them ready for ML purposes calibration of backscatter coefficient

δ0 [4], downsampling and normalization. The dataset is finally provided in

both Portable Network Graphics (PNG) and Georeferenced Tagged Image

File Format (GeoTIFF), respectively in 8 and 16 bits scales.

Among the ten categories available, this work selects the three most suitable

scenes as target labels for the sea ice classification purpose: Icebergs (IB),

Pure Open Waves (POW) and Sea Ice (SI). Experiments on these three

cases are conducted and presented in the following chapters.

3.1.2 Convolutional Neural Networks for Earth Observation

DL in recent years has achieved state-of-art results on a variety of tasks,

including visual recognition and image classification. Among the different

types of NNs, CNNs have been the most extensively studied due to their

promising results in various fields [76]. EO and RS, similarly to other do-

mains close to Computer Vision, turned out to be good applications of such

techniques.

As Nogueira et al. showed in their work [77], CNNs perform better than

state-of-the-art solutions based on mid-level descriptors such as the already

mentioned BoVW [69]. They performed experiments with six popular CNNs

(including the VGG16 [17]) using three EO datasets, comparing three pos-

sible strategies for exploiting the power of the existing CNNs: full training,

Fine-tuning, and using them as feature extractors. Also the study from

Castelluccio et al. [78] adds another piece of evidence in this sense. This

comparison is of primary importance when dealing with problems in which

few labeled data are available and training a new network is a challenging

task, therefore the results of these works provide important insights for the

task that this thesis aims to address.

Other applications of CNNs have been proven to be successful, like that

of Li et al. [16] on SAR imagery. They propose a CNN architecture called

DeepSAR-Net which consists of five main building blocks composed by Con-

volutional, Max-pooling, Batch Normalization, ReLu and Fully-connected

layers. Experiments on the Moving and Stationary Target Acquisition and

Recognition (MSTAR) dataset [79] illustrate encouraging results in the EO
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domain, giving further evidence of the suitability of such architectures for

the task at hand. This architecture is later used in the next chapters as a

component of the SGAN approach and for benchmarking purposes.

The next section investigates more thoroughly the problem of learning with

scarce labeled data in the EO field and presents possible approaches and

techniques drawn from related works to overcome this issue.

3.2 Representation Learning methods

EO data are nowadays quickly accessible thanks to open access data hubs

that contain daily data collected from several satellites. While labeled data

in this scenario are generally expensive to get, unlabeled data are plentiful

and cheaper, or rather, come for free with the regular acquisitions made by

the satellites.

Such a feature paves the way for the overcoming of the traditional SL in this

domain, revealing the great opportunities lying in alternative approaches

that involve a Representation Learning step ahead of the classification. Two

promising techniques in this direction are TL and SSL, presented in the

following sections introducing some works that have made use of both.

3.2.1 Transfer Learning for Earth Observation

Since not enough data are available in the target domain to generalize well

in the classification task, TL aims to learn from another domain closely re-

lated to the target one, known as the source domain.

As the work from Marmanis et al. [80] suggests, when the target domain

consists of EO data it is a good idea to split the model into two individual

processing stages, a pre-trained model and a trainable model.

The first phase involves the use of a popular pre-trained CNN, namely the

Overfeat [81], employed for generating a set of representations using a fixed

set of weights obtained from the ImageNet dataset [82]. The second compo-

nent of the architecture is a trainable NN that accepts as input the previ-

ously derived features, along with their respective class labels, and is trained

through standard Backpropagation and Stochastic Gradient Descent.

Employing the proposed pipeline the authors successfully tackle the UC

Merced Land Use aerial dataset classification problem [83], outperforming

some of the mid-level descriptors already mentioned in this work [66][67][68][33][69].

Results are shown in Figure 3.1 to give an idea of how effective this approach

may be.

Another interesting work on this path is the one provided by the same au-
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Figure 3.1: OA results, Marmanis et al. [80]

thors of the TenGeoP-SARwv dataset [75]. Wang et al. propose in [84] an

adaptation of the Inception-v3 CNN [85] to train a model dedicated to the

classification of oceanic phenomena collected in SAR mode. They examined

two training strategies: TL and Fine-tuning, respectively training only the

final classifier layer in the first case and Fine-tuning all the layers in the

CNN architecture in the second case. Fine-tuning turned out to be the best

option in terms of OA, as shown in Figure 3.2.

Figure 3.2: OA results, Wang et al. [84]

The experimental setup of their study is inspiring for the task at hand and

is later reproduced in this thesis for benchmarking purposes.
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3.2.2 Semi-Supervised Learning for Earth Observation

Since not enough labeled data are available in the EO domain to generalize

well in the classification task, SSL aims to exploit the related widely avail-

able unlabeled data to improve the performance of the supervised learner.

Differently from normal images, the SAR images are formed by the interac-

tion of the transmitted microwaves with the targets and their pixels refer to

the backscattering properties of the ground. Given the recognised difference

between optical and SAR imagery, this section considers a large number of

unlabeled SAR scene images as the source dataset instead of ImageNet, on

which the TL approach is based.

There exist several methods to perform SSL: the subsections below intro-

duce the Autoencoders-based and the GANs-based versions starting from

previous work relevant to address the task of this thesis.

Autoencoders

This approach consists of training an Autoncoder to reproduce both the

labeled and unlabeled inputs it receives and then using the encoder part to

perform the SL step just with labeled data. The underlying hypothesis of

this approach is that the latent space defined by the encoder should capture

useful information about the data such that they become easily separable

in the SL problem.

Huang et al. in their work [86] propose the use of a Stacked Autoencoder to

address the MSTAR aerial dataset target recognition task leveraging on fea-

tures extracted from the wider TerraSAR-X dataset. The results obtained

by their method, reported in Figure 3.3 as ”CNN-TL-bypass”, are promis-

ing for the SAR domain and give useful hints for this work towards the SSL

approach. It is worth noting that the gap between the fully SL approaches

Figure 3.3: OA results, Huang et al. [86]

(A-ConvNet, CNN-baseline) and the SSL one grows as the size of the labeled
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data in the training set decreases.

Another interesting approach based on Variational Autoencoders is instead

suggested by Kingma et al. [87], who demonstrate its effectiveness in the

Computer Vision field on the MNIST [88] handwritten digits dataset, as

shown by the loss values of their ”M” architectures in Figure 3.4.

Figure 3.4: Loss values, Kingma et al. [87]

Differently from the previous approach that mapped the input to a fixed la-

tent vector, input here is mapped to a distribution and therefore the model

learns the parameters of a probability distribution representing the data.

Since it learns to model the data, by sampling from the distribution it is

possible to generate new input data samples: for this reason it is known as

a generative model, such as the GANs introduced in the next subsection.

Generative Adversarial Networks

GANs make effective use of large unlabeled data to train a Generator model

via a Discriminator model with each of the two trying to fool the other one.

In some circumstances the Discriminator can be used as a starting point

for developing a classifier: this is the case of the SGAN, introduced for the

first time by Salimans et al. [14]. This model represents an extension of

the GAN architecture and implies the simultaneous training of a supervised

Discriminator, an unsupervised Discriminator and a Generator model.

The proposed architecture ends up in a classification model that generalizes

well on unseen samples thanks to the knowledge extracted from the unla-

beled data: the Discriminator is in fact updated to predict K + 1 classes,

where K is the number of classes in the prediction problem with an addi-

tional label representing a new “fake” class.

The outcome is a classifier that can outperform state-of-the-art solutions

on Computer Vision problems such as MNIST when trained on few labeled

data, as shown by the results obtained by Odena in [89] and reported in

Figure 3.5.

Given its promising results in Computer Vision related tasks, the SGAN

approach has been employed by Gao et al. [90], who tested out its effec-
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Figure 3.5: OA results, Odena [89]

tiveness in the SAR imagery facing the MSTAR target recognition problem.

Inspired by Salimans et al. [14], they proposed a variation of the SGAN

which involves the addition of the unlabeled samples predicted as positive

labels to the labeled set for the next round of training. To reduce the nega-

tive influence of those samples that are wrongly labeled, they also introduce

a noisy data learning theory. The results are visible in Figure 3.6, where

L stands for Labeled data, U for Unlabeled data and NDLT for Noisy Data

Learning Theory.

Figure 3.6: OA results, Gao et al. [90]

The encouraging results obtained by the cited works definitely make GANs

worth considering as a promising solution to the problem of learning with

labeled data in the sea ice classification problem on SAR imagery. Its im-

plementation is presented and discussed in the next chapter of this work.
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3.3 Related work of major interest

Analysing the related work that has been presented and its correlation with

the problem under assessment, it is possible to identify which of the above-

mentioned studies are the most inspiring for the task of this thesis.

In particular, the DeepSAR-Net method proposed by Li et al. [16] has been

chosen as the CNN architecture that underlies the SL approach used in this

work, due to the similarity between the two use cases. The DeepSAR-Net is

also used in this study as the basis of the Discriminator architecture of the

SGAN approach originally introduced by Salimans et al. [14], resulting in a

extension of this model.

Furthermore, this work takes inspiration from the work of Wang et al.

[75][84], that not only provide the TenGeoP-SARwv dataset useful for sea

ice classification purposes, but also propose the application of an Inception-

v3 [85]-based TL approach and its FT version on this dataset, leveraging on

networks pre-trained on the ImageNet challenge. This work selects the most

interesting classes for the task at hand from the TenGeoP-SARwv dataset

and follows the stages of the above-mentioned TL approach to implement

its VGG16 [17]-based variant. VGG16 is indeed a CNN architecture able to

achieve very good results in the EO domain, as shown by Nogueira et al.

[77].

The architectures involved in the cited works and their implementations are

further presented and deepened in the next chapter.
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Chapter 4

Deep Learning model

architectures

This chapter introduces the architectures on which the whole research project

is built, in such a way that they are understandable and reproducible.

The analysis of the related work and the study of the relevant literature

have highlighted which of the existing models are the most promising in the

context under assessment. As a consequence, these architectures have been

implemented, validated and improved.

The following section introduces the DeepSAR-Net [16] for the purely SL

approach, the VGG16 [17] for the TL approach and the SGAN [14] archi-

tecture for the SSL approach. In addition to the mentioned models, some

variants are also presented: a modified version of each approach with the aim

of including information such as geographic coordinates or incidence angle of

the satellite images under evaluation; the FT version of the VGG16 in which

the last few layers of the architecture are re-trained on the target dataset;

the SGAN implementation which reuses the DeepSAR-Net architecture as

the basis for its Discriminator. Every approach is also re-implemented sub-

stituting the final softmax layer with an SVM classifier.

4.1 Model architectures

The subsections below introduce the main NN architectures and methods

on which the implementations proposed in this thesis are build on.
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4.1.1 DeepSAR-Net

The DeepSAR-Net proposed by Lie et al. [16] is a CNN architecture that

consists of five main building blocks composed by Convolutional (C ), Max-

pooling (Mp), Batch Normalization (N ), Rectified Linear Unit (ReLu) and

Fully-connected (Fc) layers. The CNN architecture built up by the authors

is shown in Figure 4.1 along with the information related to the kernel size

and the stride used, as well as the outputs obtained.

Figure 4.1: DeepSAR-Net [16]

The Cross-Entropy function, already introduced in section 2.2.1, is the cost

function chosen by the authors to train their NN, whose output layer is

represented by a softmax layer. The training algorithm adopted is the Mini-

Batch Gradient Descent, previously described in section 2.3.2.

The authors conduct their experiments on the MSTAR dataset [79], a group
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of 128 x 128 pixels images with 1 ft x 1 ft resolution representing three dif-

ferent ground military targets and collected using an X-band SAR sensor.

Figure 4.2 depicts some samples of the SAR images contained in the MSTAR

dataset.

Figure 4.2: MSTAR dataset [79]

Given the promising results obtained by the just referred work in its use

case, and its similarity with the task addressed by this thesis, it is reason-

able to re-implement the original architecture introduced by the authors

in such a way that the sea ice classification problem can be addressed ef-

fectively. The underlying hypothesis on which this choice is made is that,

given the similarity between the MSTAR targets and the icebergs under a

SAR perspective (the objects stand out from the background in a similar

way), using the same cascade of filters and layers may result in a meaningful

extraction of features, thus a meaningful classification. The resulting archi-

tectures implementations, adapted to the specific datasets under evaluation,

are presented in the next chapter together with their outcomes.

4.1.2 VGG16

The VGG16 proposed by Simonyan et al. [17] is a CNN architecture which

consists of twelve Convolutional layers, five Maximum-pooling layers, four

Fully-connected layers and a final softmax classifier, as shown in Figure 4.3.

The authors investigated the effect of the CNN depth on its accuracy during

the 2014 large-scale image recognition challenge called ImageNet [82].
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Figure 4.3: VGG16 architecture [17], image available at [91]

As Nogueira et al. showed in their work [77], the VGG16 architecture per-

forms well as features extractor and low and mid-level representations de-

scriptor in the RS domain. Therefore, it is suitable to be exploited as the

basis for a TL approach, especially for the low and mid-level features knowl-

edge transfer.

Inspired by this result and by the work from Wang et al. [84] which lever-

ages a TL approach to address the TenGeoP-SARwv classification task, this

thesis validates two TL variants of the VGG16 architecture.

As visible in Figure 4.4, it is possible to freeze earlier weights in the NN en-

suring that any low and mid-level features learned by VGG16 from the source

domain are not destroyed, and re-training only the final Fully-connected lay-

ers responsible of performing the actual classification in the target domain

through the softmax function. As a second option, it is possible to unfreeze

some or all of the earlier layers in the NN and re-train them on the target

task, providing a tailored or FT version of the model.

Depending on the dataset and the task under assessment, the FT-TL ap-

proach may perform better or worse than the traditional TL approach and

it is usually worth validating both.

As a result, the TL approach and its FT version implemented in this thesis,

adapted to the specific datasets under evaluation, are presented in the next

chapter together with their outcomes.
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Figure 4.4: VGG16 Fine-tuning, image available at [92]

4.1.3 SGAN

SGAN is a SSL technique introduced by Salimans et al. [14] that leverages

on a revised version of the GANs. This model represents an extension of

the GAN architecture and implies the simultaneous training of a supervised

Discriminator, an unsupervised Discriminator and a Generator model.

The proposed architecture ends up in a classification model that generalizes

well on unseen samples thanks to the knowledge extracted from the unla-

beled data: the Discriminator is updated to predict K + 1 classes, where K

is the number of classes in the prediction problem with an additional label

representing a new “fake” class, as shown in Figure 4.5.

It is indeed possible to perform SSL with a standard classifier adding sam-

ples generated by the Generator to the dataset and labeling them with a new

”fake” class y = K + 1, while accordingly increasing the dimension of the

classifier output from K to K + 1. One can then use p(y ∈ {1, ...,K}|x) =

1−p(y = K+1|x) to represent the probability that a real instance x is real,

corresponding to D(x) in the original GAN (section 2.3.4). By maximizing

p(y ∈ {1, ...,K}|x) is therefore possible to learn from unlabeled data, since

they come from one of the K classes of real data.

Representing as G(z) a fake instance and as x, y a real instance together with

its label, the loss function to be minimized in order to train the classifier
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Figure 4.5: SGAN architecture, image available at [15]

becomes:

L = −Ex,y[log p(y|x)]− Ez[log p(y = K + 1|G(z))] =

= Lsupervised + Lunsupervised, where:

Lsupervised = Ex,y[log p(y|x, y < K + 1)] and

Lunsupervised = −Ex[1− log p(y = K + 1|x)]− Ez[log p(y = K + 1|G(z))]

Once the total Cross-Entropy cost function is decomposed into the super-

vised loss Lsupervised and the unsupervised loss Lunsupervised, its equality with

the standard cost function from section 2.3.4 becomes evident substituting

D(x) = 1− p(y = K + 1|x) into Lunsupervised:

Lunsupervised = Ex[log(D(x))] + Ez[log(1−D(G(z)))]

Lunsupervised has a positive impact if it is not too trivial for the classifier

to minimize, thus the Generator is trained to best approximate the data

distribution by minimizing the traditional GAN cost function through the

Discriminator defined by the classifier.

The Discriminator undergoes some variations from its original GAN archi-

tecture: it is formed by two logically separated supervised and unsupervised

models, attempting to reuse the output layers of the former as input to the

latter. At first, the supervised model is created with K output classes and a

softmax activation function, while in a second step the unsupervised model

takes the output of the supervised one before the softmax and computes a
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normalized sum of the exponential outputs to produce its own output ”fake”

or ”real”. This is done through a custom activation function, computed as

follows:

D(x) = Z(x)
Z(x)+1 , where:

Z(x) =
∑K

k=1 e
wTk x

Once the loss function is defined and the model is built, the adversarial

training between Generator and Discriminator takes place. This process

can be formalized as follows:

Batch length: m

Iterations: I= epochs ∗ number of batches in each epoch;

for i← 1 to I do

Draw m
2 examples {(x(1), y(1)), ..., (x(m), y(m))} from data

generating distribution pd(x).

Draw m
4 examples {x(1), ..., x(m)} from data generating

distribution pd(x), coupled with true labels.

Draw m
4 noise samples {G(z)(1), ..., G(z)(m)} from noise prior

pg(z), coupled with false labels.

Perform Gradient Descent on the parameters of the

Discriminator w.r.t. the Cross-Entropy of the Discriminator

outputs on the combined minibatch of size m.

Draw m noise samples {G(z)(1), ..., G(z)(m)} from noise prior

pg(z), coupled with true labels.

Perform Gradient Descent on the parameters of the Generator

w.r.t. the Cross-Entropy of the Discriminator outputs on the

minibatch of size m.
end

Algorithm 1: SGAN Training Algorithm, revised from [89]

Every cycle includes first updating the supervised Discriminator with

labeled examples and the unsupervised one with generated and unlabeled

real examples, after which the is the turn of the Generator. This is done

following the same labeling principles for both Discriminator and Generator

trainings already described in section 2.3.4.

Given the task faced by this thesis, the CNN architecture that underlies

the Discriminator NN is chosen in such a way that it is capable of dealing

effectively with SAR satellite images. In particular, the DeepSAR-Net ar-

chitecture [16] is used to perform the role of the Discriminator and thus the

classifier. For the Generator, a symmetric Deconvolutional version of the
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DeepSAR-Net is provided.

The Generator is further modified compared to the common Deconvolutional

version of the DeepSAR-Net approach to build stable CNN GANs. Relevant

suggestions in this sense are provided by Radford et al. [93] and shown in

Figure 4.6.

Figure 4.6: GANs convergence suggestions, revised from [93]

As a result of the SGAN dependency to the DeepSAR-Net architecture and

these convergence suggestions, the final SGAN implementation, adapted to

the specific datasets under evaluation, is presented in the next chapter to-

gether with its outcomes.

4.2 Special configurations

The subsections below present the main NN modifications that have been

made to the architectures introduced in the section above to provide alter-

native approaches and possible performance enhancements.

4.2.1 Combining CNN features with scalar inputs

The first variation of the approaches that have been earlier introduced con-

sists of concatenating the features given in output by the CNN architecture

before the final classification with additional scalar information given in in-

put to the model, when available.

This scalar information may consist of geographic coordinates when dealing

with geo-referenced images, or additional data such as incidence angles for

SAR satellite images. These data, pre-processed and normalized to interact

properly with the features given in output by the CNN, are concatenated

in a Dense layer and later used for the final classification task, as shown in

Figure 4.7 .

This concatenation often results in improved classification performance, de-

pending on the actual usefulness of the additional information provided for

the task under evaluation. More specifically, it turns out to be very effective
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when few samples are given in input to the CNN architecture and thus this

additional information helps the model to enhance the classification perfor-

mance. As a result, this approach, implemented and adapted to the specific

datasets under evaluation in this thesis, is presented in the next chapter

together with its outcomes.

Figure 4.7: CNN features and scalar inputs concatenation [17], image available at [94]

4.2.2 Substituting the softmax layer with an SVM classifier

The second variation of the approaches that have been earlier introduced

consists in substituting the final softmax classifier with an SVM classifier,

with the aim of achieving high classification performance even when few

samples are given in input to the CNN architecture. This is mainly due to

the capability of the SVM of generalizing with datasets of small size: it is a

kernel-based method and as such works better with few data with a lot of

features than parametric methods such as the Logistic Regression.

At first, the CNN architecture is trained with the softmax classifier, then

the features obtained before the softmax layer are extracted and given in

input to the SVM classifier, which is trained on them. The overall idea is

shown in Figure 4.8.

This approach, implemented and adapted to the specific datasets under

evaluation in this thesis, is presented in the next chapter together with its

outcomes.

4.3 Summary of the compared architectures

Table 4.1 gives an idea of how the main comparison among the previously

introduced architectures is conducted and presented in the next chapter.
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Figure 4.8: Softmax layer substituted by an SVM, image available at [95]

#Labels

Models
SL

(DeepSAR-

Net)

[16]

TL

(VGG16-

ImageNet

[17])

TL-FT

(VGG16-

ImageNet

[17])

SSL

(DeepSAR-

Net-

SGAN)

L SL

performance

with L

labels

TL

performance

with L

labels

TL-FT

performance

with L

labels

SSL

performance

with L

labels

L1 SL

performance

with L1

labels

TL

performance

with L1

labels

TL-FT

performance

with L1

labels

SSL

performance

with L1

labels

L2 SL

performance

with L2

labels

TL

performance

with L2

labels

TL-FT

performance

with L2

labels

SSL

performance

with L2

labels

Table 4.1: Comparison of the models at different labeled samples sizes Ln
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The models (on the X axis) are compared based on the classification

performance that they achieve downgrading the amount of labeled samples

at their disposal at training time (on the Y axis), thus each row of the table

represents a different experimental configuration.

In particular, the amount of labeled samples used for training the mod-

els gets progressively decreased from the whole labeled dataset size (L) to

smaller amounts of labeled data (L1 and L2, with L2 < L1 < L), showing

the related performance degradation. The resulting table is filled with the

classification performance (mainly OA but also F1 score) achieved by each

model in each experimental configuration.

The same table structure is also used for enriching the quantitative analysis

of the architectures under consideration with the comparison among their

training times and their related CO2 emissions.

Furthermore, additional analyses for each of the compared models are pre-

sented, exploring the special configurations of such architectures which in-

volve the concatenation of additional information to the models or the sub-

stitution of the final softmax layer with an SVM classifier.

Finally, a qualitative analysis of the results obtained by the assessed models

is included to complete the experimental evaluation of the research project.

The next chapter delves into the evaluation of the experiments conducted

in the thesis, showing the experimental setups, the implementation of the

presented models and their results through the above-described comparative

framework.
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Chapter 5

Experimental evaluation

This chapter aims at fully introducing the experimental setup of this thesis,

including the datasets under assessment, the implementations of the model

architectures tailored on these datasets and their results, which are pre-

sented through a comparative framework.

5.1 Datasets

The subsections below illustrate the two datasets that have been used for

each experiment run during this project.

5.1.1 TenGeoP-SARwv

This is a labeled dataset of 37560 SAR images provided by Wang et al. [75]

which contains Sentinel-1A WV acquisitions representing ten observed at-

mospheric and ocean-related physical phenomena.

Sentinel-1 WV vignettes, as already introduced in section 2.1.2, are ac-

quired alternating center incidence angles of 23.8◦ (WV1) and 36.8◦ (WV2)

every 100 km along the satellite flight track. Each vignette has a 5 m spa-

tial resolution with a 20 x 20 km footprint. This dataset focuses on the VV

(default) polarized SAR vignettes.

The images are derived from the SLC processing of Sentinel-1 WV and

are provided in both PNG and GeoTIFF versions, with PNG pixel values

normalized into an 8 bits greyscale ([0, 255]) while GeoTIFF pixel values

are instead normalized on 16 bits ([0, 65535]). Despite the higher preci-

sion maintained by the GeoTIFF files, PNGs are more suitable for visual

interpretation and fulfill the input requirements for the CNN models imple-

mented in this thesis.
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Given the 8 bits greyscale ([0, 255]) nature of the PNG images, these needed

to be pre-processed before being processed by any CNN architecture. In par-

ticular, this step consisted in normalizing the inputs in the range {-1,+1}.
Besides, given the different sizes of the original images (varying around 500

x 500), they have been first resized to size 480 x 480 and then downsampled

through the PIL library to fixed-size 240 x 240. This was done to guaran-

tee the proper input dimensions to the models that have been used in the

experiments. The original ten classes denoted by Wang et al. are depicted

in Figure 5.1 together with their class names.

Figure 5.1: From (a) to (j): Pure Ocean Waves (POW), Wind Streaks (WS), Micro

Convective cells (WC), Rain Cells (RC), Biological Slicks (BS), Sea Ice (SI), Icebergs

(IB), Low Wind area (LW), Atmospheric Front (AF) and Oceanic Front (OF), image

available at [75]

As visible in Figure 5.1, the vignettes are labeled based on the geophysical

phenomenon that dominates with its specific pattern. In this regard, POW

signatures usually exist in SAR images as background for the other nine

classes.

Among the ten classes presented above, this thesis selects the three of great-

est interest to tackle the iceberg and ice caps detection problem: Icebergs

(IB), Pure Ocean Waves (POW) and Sea Ice (SI).

The overall amount of images composed of these three classes is 11.250,

distributed as follows: 1980 IB, 4900 POW and 4370 SI images. Samples

drawn from the dataset are shown in Figure 5.2.

Moreover, geographic coordinates related to these vignettes are available.

Since there is no WV acquisition in areas such as the Arctic Ocean or the

Mediterranean, Red, Caribbean and Black seas, the dataset does not cover

every existing latitude and longitude bands. Existing ice caps and icebergs

in the Arctic ocean are indeed not present in the dataset, as shown in Figure
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Figure 5.2: The three TenGeoP-SARwv classes under assessment

5.3. Looking at the Figure, which depicts the geographic normalized coor-

dinates of the three classes, it is also noticeable that, as expected, several

icebergs positions almost overlap with those of the ice caps.

Figure 5.3: Geographic coordinates of the three TenGeoP-SARwv classes

Given the usefulness of the geographic coordinates of the three classes, espe-

cially in case of a model that monitors the Antarctic area, these are included

in a variation of the models proposed in this thesis which concatenate this

scalar information with the CNN features extracted from the images. The

obtained results are shown in the next sections.
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5.1.2 C-CORE

This dataset has been created by C-CORE [96], a R&D corporation expe-

rienced in the satellite data domain, in collaboration with the international

energy company Equinor (ex Statoil) [97] to detect drifting icebergs that

can threaten navigation in polar areas. They leveraged on the crowdsourc-

ing platform for predictive modeling Kaggle to make the dataset publicly

available to the data scientists eager to tackle the problem [98].

The dataset is composed of 1604 labeled images acquired by the Sentinel-1

satellite in Strip Map mode and representing either a ship or an iceberg

(respectively 851 and 753 examples for each class). Each image is composed

of the following fields:

• Band 1, Band 2: 75 x 75 pixel values representing the signals pro-

duced by SAR backscatter from different polarizations and measured

in dB. Band 1 corresponds to HH polarization, while Band 2 corre-

sponds to HV polarization;

• Band 3: 75 x 75 pixel values not originally present in the dataset and

produced by the author of this thesis as the average of the two previous

Bands: Band 3 = Band 1+Band 2
2 to deal with the resulting images as

they were 3-channels images, such as Colour Composite RGB ones;

• Inc angle: the angle between the vertical to the terrain and the vector

to the location on the Earth where the radar points;

• Is iceberg: the label or target value, set to 1 in case of icebergs and 0

in case of ships;

Examples retrieved from the dataset are depicted in Figure 5.4.

As visible, these are challenging objects to classify and the polarization and

the incidence angle of the images play an important role in the categorization

since the icebergs and ships tend to reflect energy differently. Figure 5.5

presents a 3D visualization of the objects at hand which may help to grasp

the main difference between the two: the ships follow a way more regular

reflecting behaviour than the icebergs.

Band 1,Band 2, and Band 3 have physical meaning and thus their values are

not the non-negative integers commonly used in image files. These are float

numbers that need to be pre-processed before being processed by any CNN

architecture. In particular, this step consisted of normalizing the inputs in

the range {-1,+1}, as visible from Figure 5.5.

The incidence angle field, similar to the role that the geographic coordinates

have played in the TenGeoP-SARwv dataset, is used as further information
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Figure 5.4: Iceberg vs Ship, image available at [98]

Figure 5.5: 3D visualization of Icebergs and Ships

used for improving the classification performance. Thus, it is included in a

variation of the models proposed in this thesis concatenating this normalized

scalar information with the CNN features extracted from the images. The

obtained results are shown in the next sections.

5.2 Experimental settings

All the experiments included in the following subsections have been con-

ducted on Google Colaboratory, a free platform that offers computational

resources useful for ML and DL purposes. In particular, the Python 3.0
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Jupyter Notebooks hosted on Google Colaboratory which have been used

are provided with a Tesla P100 16GB PCIe GPU.

The main libraries that have been used include the Keras library on a Ten-

sorflow backend v. 1.15.2 and the NumPy, Pandas, Matplotlib, SciPy and

Scikit-Learn libraries.

The following subsections fully introduce the experimental setup and the

architectures’ implementations.

5.2.1 Experimental setup

This subsection aims at presenting the setup of the experiments for each

of the two datasets, whose pre-processing has been already introduced in

section 5.1.

First setup: TenGeoP-SARwv

The 3 classes used are Icebergs (IB), Pure Ocean Waves (POW) and Sea Ice

(SI), in total 11250 images. The dataset has been split in train, validation

and test set to comply with ML and DL good practices. The split of train,

validation and test sets is 70%, 15%, 15% of the total (7875, 1688, 1687),

maintaining the same proportion of samples for each class performing a

stratification procedure. In particular:

• POW: 4900 images (3455, 723, 722);

• IB: 1980 images (1408, 286, 286);

• SI: 4370 images (3012, 679, 679).

The architectures that have been implemented, validated and compared are

the DeepSAR-Net for the SL approach, the VGG16 and its FT version for

the TL approach, the DeepSAR-Net-SGAN for the SSL approach. The geo-

based versions of each of these approaches have been tested out for bench-

marking purposes, as well as their SVM-based classifier versions.

Experiments have been conducted selecting at training time respectively

7875, 4000, 2000, 500, 300, 100, 70, 40, 10 labeled images from the dataset,

reproducing every above-mentioned approach each time. The SGAN ap-

proach, in particular, has taken in input both the selected labeled data and

the whole dataset treating it as unlabeled data.

Moreover, for each configuration of selected labels used, the experiments are

reproduced three times to counterbalance the stochasticity of the training

process and the maximum value is recorded. Also, three different train-

validation splits have been created to cross-validate the model, tune the
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related hyperparameters and select the model with maximum validation per-

formance as model to be finally evaluated on the test set. The evaluation

of such metrics is done on the test set, while the training process mostly

involves both training and validation sets since it implements the Early

Stopping technique. This is valid for every approach except the SGAN,

which, based on the adversarial training between Discriminator and Gener-

ator, could not exploit this technique.

Furthermore, experiments have been mostly conducted with maximum batch

size = 100 and maximum number of epochs = 100. The batch size parameter

has been reduced accordingly when dealing with labeled dataset sizes lower

than 100 samples, while the epochs parameter has been subject to the Early

Stopping behaviour in both the SL and the TL approaches, concluding the

training after just a few epochs when the labeled data at disposal were not

many.

At last, given the dataset unbalanced classes distribution, the OA may not

be enough to evaluate the goodness of the models. Therefore Precision,

Recall, F1 score and Confusion Matrix are used. In addition, Class Activa-

tion Maps have been used to further compare the behaviour of the several

approaches, since they indicate the image regions that the CNN activates

along the NN to discriminate each of the categories under assessment.

Second setup: C-Core

The 2 classes are Icebergs and Ships, in total 1604 images. As already done

in section 5.2.1, this dataset has been split in train, validation and test to

comply with ML and DL good practices. The split of train, validation and

test sets is 70%, 15%, 15% of the total (1124, 240, 240), maintaining the

same proportion of samples for each class. In particular:

• Icebergs: 753 images (541, 106, 106).

• Ships: 851 images (583, 134, 134).

To check the consistency of the results obtained in the first use case (sec-

tion 5.2.1), the architectures that have been implemented, validated and

compared in this use case are the same ones: the DeepSAR-Net for the

SL approach, the VGG16 and its FT version for the TL approach, the

DeepSAR-Net-SGAN for the SSL approach. The incidence angle-based ver-

sions of each of these approaches have been tested out for benchmarking

purposes, as well their SVM-based classifier versions.

Experiments have been conducted selecting at training time respectively

LXXXVII



1124, 800, 500, 300, 100, 70, 40, 10 labeled images from the dataset, repro-

ducing every above-mentioned approach each time. The SGAN approach,

in particular, has taken in input both the labeled data and the unlabeled

data that for each configuration are excluded from the labels’ selection.

As well as in section 5.2.1, three experiments for each of the configurations

have been repeated, three different train-validation splits have been created

and the results have been computed in the same way. Besides, the Early

Stopping technique has been used during the training phase, whose param-

eters have been the following: maximum batch size = 100 and maximum

number of epochs = 100.

At last, given the dataset balanced classes distribution, the OA has been

considered enough to evaluate the goodness of the models. Class Activa-

tion Maps have been then used to further compare the behaviour of the

approaches.

5.2.2 Implementation details

This section aims at showing the implementation details of the architectures

presented in chapter 4, tailored on the datasets described in the previous

section and enriched with specific implementation choices such as hyperpa-

rameters selection.

DeepSAR-Net

The standard DeepSAR-Net input shape is (124,124,1), hence it has been

necessary to adapt this architecture to the TenGeoP-SARwv (240,240,1)

and C-CORE (75,75,3) shapes respectively. In particular, the DeepSAR-

Net architecture dedicated to the TenGeoP-SARwv use case has been en-

riched with a Max-pooling layer before the first Convolutional layer, while

the number of channels has been extended to 3 in order to deal with the

C-CORE use case.

For what concerns the training process, the standard Stochastic Gradient

Descent optimizer ( lr = 0.01) has been used. To avoid overfitting, the

Early Stopping technique ( min delta = 0.01, patience = 10) has been im-

plemented through the keras.callbacks functions.

The DeepSAR-Net geo-based version tailored for the TenGeoP-SAR use case

includes the latitude and longitudes information separately into the model

through the keras.layers.concatenate function. The DeepSAR-Net in-

cidence angle-based version tailored for the C-CORE use case, similarly,

includes the incidence angle information. In particular, the concatenation

takes place before the softmax layer, when the image high-level features are
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fully extracted from the CNN.

At last, the SVM-based classifier version of the DeepSAR-Net involves the

substitution of the final softmax layer with the SVM classifier imported from

the sklearn.svm.SVC class. In detail, a first training process based on the

softmax layer is computed, then the softmax layer is removed and the fea-

tures obtained from the Dense layer prior to the softmax one are given in

input to the SVM classifier, which is trained from scratch based on the RBF

kernel.

The standard model architecture, its geo-based and incidence angle-based

versions are included in Appendix A, together with their number of train-

able parameters.

VGG16

The standard VGG16 input shape is (224,224,3), hence it has been nec-

essary to adapt this architecture to the TenGeoP-SARwv (240,240,1) and

C-CORE (75,75,3) shapes respectively. In particular, the TenGeoP-SARwv

images have undergone a replication of the greyscale channel in order to deal

with the 3 input channels required by the architecture.

For what concerns the training process, the parameters of the VGG16 layers

prior to the softmax layer have been transferred from its ImageNet chal-

lenge pre-trained version, while the softmax layer has been re-trained from

scratch. In this configuration, the RMSProp optimizer ( lr = 0.001 for

TenGeoP-SARwv and lr = 0.01 for C-CORE, decay = 1−6) has been used.

To avoid overfitting, a Dropout layer (α = 0.5) has been included before

the softmax layer and the Early Stopping technique ( min delta = 0.01,

patience = 10) has been used.

A FT version of the VGG16 has also been proposed, freezing the pre-trained

weights up to the penultimate Convolutional layer and Fine-tuning the re-

maining layers from scratch. This has been done using a lr = 0.0001 for

TenGeoP-SARwv and lr = 0.01 for C-CORE.

The VGG16 geo-based and incidence angle-based versions, along with its

SVM-based classifier version, have been managed exactly as already done

with the DeepSAR-Net architecture.

DeepSAR-Net-SGAN

The DeepSAR-Net-SGAN approach leverages the DeepSAR-Net architec-

ture for implementing its Discriminator, hence it must be tailored on the

datasets similarly as it has been done with the DeepSAR-Net. The stan-

dard DeepSAR-Net input shape is (124,124,1), hence it has been necessary
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to adapt this architecture to the TenGeoP-SARwv (240,240,1) and C-CORE

(75,75,3) shapes respectively. In particular, the DeepSAR-Net-SGAN archi-

tecture dedicated to the TenGeoP-SARwv use case has been enriched with

an additional Max-pooling layer at the beginning of the NN, while the num-

ber of channels has been extended to 3 in order to deal with the C-CORE

use case.

Moreover, given the convergence suggestions presented in section 4.1.3,

LeakyReLu activation functions have been used instead of the DeepSAR-Net

traditional ReLu activation functions for the Generator. The Generator ar-

chitecture has been properly defined as the symmetric version of the Discrim-

inator, characterised by Deconvolutional layers keras.layers.Conv2DTranspose

instead of the Convolutional and Max-pooling ones.

For what concerns the training process, the Adam optimizer ( lr = 0.002,

beta 1 = 0.5) has been used for both the unsupervised Discriminator (loss =

binary crossentropy)and the supervised Discriminator (categorical crossentropy);

the Generator (binary crossentropy) uses a slightly different Adam optimizer

( lr = 0.02, beta 1 = 0.5). As already introduced in section 4.1.3, a custom

activation function generates the output of the unsupervised Discriminator

taking in input the outputs of the supervised one prior to the softmax layer.

In addition,to avoid overfitting, a Dropout layer (α = 0.4) has been included

before the Discriminator softmax layer.

The geo-based and incidence angle-based versions of the DeepSAR-Net-

SGAN, along with its SVM-based classifier version, have been managed in

a slightly different way compared to the DeepSAR-Net architecture. These

variants are only related to the supervised Discriminator, which after being

normally trained on images following the SGAN approach undergoes some

changes. In particular, each of the variants re-train just the final layers: in

case of geo-based and incidence angle-based versions, this information are

concatenated to the features extracted prior the softmax layer and then the

classifier is re-trained; in case of SVM-based classifier, the solution is the

same as previous approaches and it substitutes the softmax layer with the

SVM classifier, which takes in input the features extracted prior the softmax

and train the SVM on them.
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5.3 Analysis of the results

This section aims at presenting the results of the experiments. The results

are obtained exploiting the models on the test set and evaluated through a

quantitative analysis based on the evaluation metrics introduced in section

2.2.2 and through a qualitative analysis.

The majority of the experiments that have been conducted give in output

the value of the chosen evaluation metrics at the variation of the amount

of labeled data received in input by the assessed models during the training

phase. Evaluation metrics such as OA and F1 score have been monitored

during the labeled dataset size variation, and interesting outcomes have been

revealed. Also, training times have been recorded. Besides, Class Activation

Maps of the NNs under comparison are shown when useful to enhance the

interpretability of the results.

Moreover, the impact of the additional information given in input to the

models (e.g. geographic coordinates or incidence angle) has been experi-

enced, as well as the SVM classifier impact.

At last, a focus on the DeepSAR-Net-SGAN approach has been done, test-

ing different sizes of unlabeled data given in input at training time and

monitoring how the evaluation metrics are impacted. In addition, images

generated by the DeepSAR-Net-SGAN Generator are introduced.

In all the experiments the DeepSAR-Net approach is referred to as SL, the

VGG16 approach as TL, the VGG16 FT approach as TL-FT, the DeepSAR-

Net-SGAN approach as SSL.

In the following subsections the results of the experiments run on each

dataset are presented, shown in both tabular and graphic representations.

5.3.1 TenGeoP-SARwv quantitative analysis

Here follow the experiments and the related performance metrics results cho-

sen to address the TenGeoP-SARwv classification problem. A quantitative

analysis of the results is provided for each experiment.
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Overall Accuracy

Figure 5.6: OA score at different labeled samples sizes

#labels

Models
SL

(DeepSAR-

Net) [16]

(%)

TL

(VGG16-

ImageNet

[17]) (%)

TL-FT

(VGG16-

ImageNet

[17]) (%)

SSL

(DeepSAR-

Net-

SGAN)

(%)

7875

(whole

dataset)

96.29 99.44 99.76 97.29

4000 96.19 99.37 99.71 97.25
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2000 95.36 99.15 99.64 96.89

500 93.88 98.74 99.05 96.42

300 93.25 98.48 98.87 96.13

100 90.30 97.53 98.43 94.98

70 89.77 96.75 98.14 94.37

40 88.17 95.87 96.65 93.41

10 72.40 94.47 94.81 91.94

Table 5.1: OA score at different labeled samples sizes

Figure 5.6 and Table 5.1 show the OA results obtained by the models under

assessment varying the size of the labeled data given in input to them at

training time. For each configuration, the SSL approach exploits not only

the restricted pool of selected labeled data, but also the whole dataset re-

moving its labels and treating it as unlabeled data.

As visible in the last stages (when very few labeled data are available), the

TL and the SSL approaches outperform the traditional SL approach. In

the early stages, instead, the SL model is almost as accurate as the other

approaches thanks to the bigger amount of labeled information given to the

models.

The TL approach is very effective in every configuration. In particular, its

FT version improves as more labeled information is given to the model since

it is tailored to the higher-level features of the specific use case. This boosts

its performance even more.

The SSL approach is way more effective than the SL approach with few

labeled data. As more information is given, it improves and almost achieves

the TL results, while the gap with the SL approach is reduced due to the

high amount of labeled data given during the training phase.

The results are computed on the test set, as previously described in 5.2.1.

Further details on the classification performance obtained by the assessed

models are given in the sections below.
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Confusion Matrix, OA, Precision, Recall, F1 score: SL (DeepSAR-

Net [16]) vs SSL (DeepSAR-Net-SGAN) with 10 labeled samples

Figure 5.7: Confusion Matrix, OA, Precision, Recall, F1 score: SL (DeepSAR-Net [16])

with 10 labeled samples

Figure 5.8: Confusion Matrix, OA, Precision, Recall, F1 score: SSL (DeepSAR-Net-

SGAN) with unlabeled and 10 labeled samples
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Figure 5.7 and 5.8 show the Confusion Matrix, F1 score, Precision and Re-

call of the DeepSAR-Net and the DeepSAR-Net-SGAN approaches trained

with 10 labels. This comparison clearly shows the contribution given by the

unlabeled data in the SSL performance.

As visible, both OA and F1 score results of the two approaches are different.

In particular, it is worth focusing on the icebergs F1 score, which is a very

relevant metric for the problem at hand. Due to the big similarity between

POW and IB images, icebergs are the most difficult class to distinguish and

thus the most prone to suffer from false negatives (real IB misclassified as

belonging to another class) and false positives (classified as IB but belonging

to another class) issues.

In this scenario, a big improvement in terms of icebergs F1 score is done

from the SL to the SSL approach thanks to the exploitation of unlabeled

data. This helps in understanding the different OA results obtained by the

two approaches.

An overall improvement in moving from the SL approach to the SSL ap-

proach can be also seen in the other metrics shown above. The same be-

haviour can be noticed in other configurations characterised by a bigger

amount of labeled data available, but it becomes less noticeable the more

labeled data are given to the models.

IB class F1 score

Figure 5.9: IB F1 score at different labeled samples sizes
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#labels

Models
SL

(DeepSAR-

Net)

[16]

TL

(VGG16-

ImageNet

[17])

TL-FT

(VGG16-

ImageNet

[17])

SSL

(DeepSAR-

Net-

SGAN)

7875

(whole

dataset)

0.91 0.99 0.99 0.93

4000 0.89 0.98 0.99 0.91

2000 0.87 0.97 0.99 0.90

500 0.85 0.96 0.97 0.89

300 0.80 0.95 0.96 0.86

100 0.74 0.92 0.95 0.86

70 0.73 0.89 0.94 0.83

40 0.71 0.84 0.89 0.80

10 0.42 0.76 0.78 0.75

Table 5.2: IB F1 score at different labeled samples sizes

As visible from Figure 5.9 and Table 5.2, the IB F1 score metric results are

lower in absolute value than the corresponding OA results. As previously

stated, IB F1 score metric may be considered the main cause of OA loss since

the IB detection is the most difficult task in the problem under investigation.

Anyway, the trend is very similar to the OA behaviour: the SL approach is

always outperformed by the other three methods at hand.

In particular, the TL approach is very good at handling the IB detection

even with fewer labeled data than the SSL, due to its ability to detect small

features such as edges gained from the ImageNet challenge problem.

TenGeoP-SARwv training times and CO2 consumption

#labels

Models
SL

(DeepSAR-

Net) [16]

(s)

TL

(VGG16-

ImageNet

[17]) (s)

TL-FT

(VGG16-

ImageNet

[17]) (s)

SSL

(DeepSAR-

Net-

SGAN)

(s)

7875

(whole

dataset)

284.66 1961.20 17040.50 1989.58
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4000 174.10 1211.30 9157.20 1968.43

2000 99.25 806.21 4830.50 2017.25

500 54.16 575.62 3082.80 2135.67

300 49.83 531.48 2587.20 2361.40

100 43.21 482.63 2007.60 2578.56

70 38.63 447.81 1843.80 2212.63

40 35.02 412.62 1578.60 2267.18

10 24.75 362.64 1327.20 2342.35

Table 5.3: Training times comparison

Table 5.3 aims at showing the time necessary for training each of the different

models under assessment. The results are considerably different from one

approach to another due to some of the implementation choices already

introduced in section 5.2.2. In particular:

• the SL approach uses a Stochastic Gradient Descent optimizer with

lr = 0.01, resulting in a relatively quick training phase although it has

4.16M parameters to train;

• the TL approach uses a RMSProp optimizer with lr = 0.001 for its

standard version and a lr = 0.0001 for its FT version, resulting in a

long computation even if the parameters to train are not too many

(0,26M for the TL and 2,62M for the TL-FT approaches respectively).

Moreover, it must be considered that every TL approach consists of

pre-training the network on another problem before transferring the

acquired knowledge: this could take days of training. In the case of

VGG16, training this network on the ImageNet challenge leveraging

on a Tesla P100 16GB PCIe GPU takes 277 ms / batch with batch

size=64, as reported in [99]. This means that in this work fully training

such a network would have taken approximately 89 hours of computa-

tion.

• the SSL approach must train a 7,02M parameters Generator and a

4,16M parameters Discriminator, using an Adam optimizer with lr =

0.02 and lr = 0.002 respectively. This results in a long computation,

also due to the adversarial behaviour of the two NNs. The SSL times

that are shown in Table 5.3 represent the duration needed (on average

10-15 epochs) for the Discriminator to achieve the best classification

performance with a batch size of 16. Different batch sizes can be tested
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out, varying the training time. Bigger batch sizes reduce training time

but may let the Discriminator outperform the Generator too early

compromising its learning procedure.

It is noticeable that on average with more labeled data the system

receives in input, the sooner it achieves the best classification perfor-

mance thanks to the boost received by the labeled data.

Batch sizes also impact training times: small batch sizes have been used

when few labeled data were available, reaching a maximum size of 100 start-

ing from the 300 labeled samples configuration.

As already anticipated above, the SSL batch size deserves a separate discus-

sion, since it has been noticed the Generator and Discriminator behaviours

usually relate to its choice. Smaller batch sizes help the GAN convergence

and allow the Generator to generate good synthetic images after about 10

epochs, but this not always leads to an improvement of the classification

results. Instead, bigger batch sizes allow the Discriminator to outperform

the Generator from the very beginning of the training thanks to the bigger

amount of real samples seen right from the start, resulting in high-quality

classification results from the early stages. A good batch size trade-off can

be 16, according to the conducted experiments.

Given the training times shown in Table 5.3 and the information of the GPU

and ML platform that have been used (section 5.2), it would be also possi-

ble to estimate the CO2 emissions of the models under evaluation thanks to

the work of Lacoste et al. [100].

For this work, experiments were conducted using the Google Colab platform

(provided by Google Cloud) and in the Europe-West1 computation region,

resulting in carbon efficiency of 0.27 kgCO2eq/kWh. A cumulative of 0.65

hours of computation was performed to train the SSL architecture with the

10 labels configuration on hardware of type Tesla P100, characterised by

a TDP of 250W. This results in an estimation of total emissions produced

equivalent to 0.05 kgCO2eq.

Such computations can be repeated for every approach in each of the con-

figurations, including also the pre-training time in case of the TL approach.

For each architecture, its CO2 consumption would be estimated as a quan-

tity that is directly proportional to its training time. Thus the TL approach

would result as the less CO2 consumption efficient method overall due to its

computational-heavy pre-training phase.
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SSL (DeepSAR-Net-SGAN) OA varying unlabeled samples size at

fixed labeled samples sizes

Figure 5.10: SSL (DeepSAR-Net-SGAN) OA results varying unlabeled samples size

%Unlabeled data

#Labels
70 300 2000

100% (whole dataset) 94.37 96.13 96.89

80% 93.06 94.10 95.87

50% 91.51 92.86 94.90

20% 87.60 91.44 93.56

Table 5.4: SSL (DeepSAR-Net-SGAN) OA (%) results varying unlabeled samples size

at fixed labeled samples sizes

Figure 5.10 and Table 5.4 show the variation of the OA performance ob-

tained by the SSL approach varying the size of the unlabeled dataset given

in input at fixed sizes of labeled data chosen as representatives. As visible,

from 20% to 100% dataset size there is a consistent performance difference

for almost every fixed labeled samples size configuration, with the gap that

slowly shrinks when more labeled data are given to the models.

This leads to the deduction that more unlabeled data there are at disposal,

the better performance results are reachable by the SSL approach, especially
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with few labeled data.

5.3.2 TenGeoP-SARwv qualitative analysis

This section provides a qualitative analysis of the DeepSAR-Net-SGAN

model achievements on the TenGeoP-SARwv dataset.

Class Activation Maps: SL (DeepSAR-Net) [16] vs SSL (DeepSAR-

Net-SGAN) with 10 labeled samples

Figure 5.11: A sample of SI class drawn from TenGeoP-SARwv

Figure 5.12: SL (DeepSAR-Net) [16] vs SSL (DeepSAR-Net-SGAN) Class Activation

Maps of class SI with 10 labeled samples

Given the original image in Figure 5.11, Figure 5.12 shows the comparison of

its Class Activation Maps produced by the SL (on the left) and the SSL (on
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the right) approaches, which indicate the image regions that the CNN acti-

vates along the NN to discriminate each category under assessment. Here,

activations of the SI class image after the third DeepSAR-Net Convolutional

layer have been chosen for the comparison of the two approaches.

Thanks to the unlabeled data provided, the SSL approach is way more ca-

pable of activating the correct pixels in the input image and then classify

it. In the example, both the models produce a correct classification of SI,

but the SSL model outputs a probability for the correct class that is higher

(0.99976) than the SL one (0.93425).

Synthetic images generated by the SSL (DeepSAR-Net-SGAN)

approach

Figure 5.13: Samples of IB class generated by the DeepSAR-Net-SGAN

Figure 5.14: Two samples of SI and POW classes generated by the DeepSAR-Net-SGAN

Figure 5.13 and 5.14 depict some images generated by the DeepSAR-Net-

SGAN Generator after about 15 epochs of training, proving that not only
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the DeepSAR-Net-SGAN can be successfully used to train a supervised Dis-

criminator for classification purposes, but it can be also exploited to perform

Data Augmentation or Label Refinery techniques once high-quality images

are generated.

There is still room for further improvement in this sense and problems such

as Mode Collapse have to be faced appropriately. At the current state, Mode

Collapse is not treated and as a consequence each Generator that is saved

during the training phase turns out to be very good at reproducing images

similar to the ones it has seen in input shortly before, but not those that

has seen earlier.

5.3.3 TenGeoP-SARwv special configurations

This section shows the impact of the additional information given in in-

put to the models (geographic coordinates for the TenGeoP-SARwv use

case), as well as the SVM classifier impact. Among the assessed models, the

SL (DeepSAR-Net) [16] approach is the architecture which experiences the

biggest improvements.

Geo-based SL vs base SL (DeepSAR-Net) [16]

Figure 5.15: OA comparison between Geo-based SL and base SL (DeepSAR-Net) [16]

As visible from Figure 5.15, concatenating the geographic coordinates with

the CNN features boosts the SL performance and achieves higher quality
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results also when few labeled data are available. This highlights the correla-

tion existing between the distribution of the geographic coordinates (shown

in Figure 5.3) and the distribution of the classes, given the different world

map positions of the targets to be categorized. The concatenation gives a

relevant contribution mainly in the SL approach, allowing this technique to

narrow the gap with the other approaches. Still, it is not able to reach TL

and SSL performance. The TL and SSL already have additional information

to deal with, therefore the geographic coordinates do not seem to affect their

performance in a relevant way.

SVM-based SL vs base SL (DeepSAR-Net) [16]

Figure 5.16: OA comparison between SVM-based SL and base SL (DeepSAR-Net) [16]

As shown in Figure 5.16, substituting the Softmax classifier with the SVM

classifier allows the traditional SL approach to achieve high-quality results

even with few labeled data used. This is mainly due to the capability of the

SVM of generalizing with datasets of small size: it is a kernel-based method

and as such works better with few data with a lot of features than para-

metric methods such as the Logistic Regression. The improvements in the

inclusion of the SVM are not that effective in the other architectures, which

already achieve high performance with the Logistic Regression. Therefore,

the SVM substitution allows the SL approach to narrow the gap with the

other approaches, but still obtaining lower performance than TL and SSL.
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5.3.4 C-CORE quantitative analysis

Here follow the experiments and the related performance metrics results cho-

sen to address the C-CORE classification problem. A quantitative analysis

of the results is provided for each experiment.

Overall Accuracy

Figure 5.17: OA score at different labeled samples sizes

#labels

Models
SL

(DeepSAR-

Net) [16]

(%)

TL

(VGG16-

ImageNet

[17]) (%)

TL-FT

(VGG16-

ImageNet

[17]) (%)

SSL

(DeepSAR-

Net-

SGAN)

(%)
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1124

(whole

dataset)

89.67 86.10 87.33 90.15

800 87.33 84.33 86.19 89.74

500 86.45 82.67 85.30 89.11

300 85.63 81.60 84.67 87.96

100 77.64 77.80 80.38 84.45

70 74.10 79.29 80.17 79.33

40 68.24 76.67 79.70 74.55

10 61.34 65.66 66.78 66.50

Table 5.5: OA score at different labeled samples sizes

Figure 5.17 and Table 5.5 show the OA results obtained by the models under

assessment varying the size of the labeled data given in input to them at

training time. For each configuration, the SSL approach exploits not only

the restricted pool of selected labeled data, but also the whole dataset re-

moving its labels and treating it as unlabeled data.

As visible in the last stages (very few labeled data available), the TL and

the SSL approaches outperform the traditional SL approach. In the early

stages, instead, the SL model is almost as accurate as the SSL approach

and does even better than the TL approach thanks to the bigger amount of

labeled information given to the models.

The TL approach is effective in every configuration, but not as much as it

was the previous use case (section 5.3.1). This is due to the fact that the C-

CORE pixel values represent the signals produced by SAR backscatter and

are measured in dB, differing a lot from the ImageNet images. Moreover,

its FT version improves as more labeled information is given to the model

since it is tailored to the higher-level features of the specific use case, which

boosts its performance.

The SSL approach is more effective than the SL approach with few labeled

data. As more information is given, it improves and outperforms the TL re-

sults, while the gap with the SL approach is reduced due to the high amount

of labeled data given during the training phase.

The results are computed on the test set and no cross-validation is performed

due to the small size of the dataset at hand.

The overall performance obtained in this use case are on average lower than

the ones obtained in (section 5.3.1), due to the higher difficulty of the prob-

lem. Pictures shown in the next subsection, related to the Class Activation
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Maps, clarify how difficult is to distinguish a Ship from an Iceberg in 2D

images.

C-CORE training times and CO2 consumption

#labels

Models
SL

(DeepSAR-

Net) [16]

(s)

TL

(VGG16-

ImageNet

[17]) (s)

TL-FT

(VGG16-

ImageNet

[17]) (s)

SSL

(DeepSAR-

Net-

SGAN)

(s)

1124

(whole

dataset)

54.16 66.39 81.22 63.12

800 40.79 51.38 60.19 58.88

500 28.60 38.62 45.61 87.17

300 17.32 19.53 34.88 70.20

100 13.45 21.33 25.27 65.36

70 11.89 19.21 23.60 80.66

40 10.21 17.39 21.41 75.98

10 8.86 14.43 17.23 88.35

Table 5.6: Training times comparison

Table 5.6 aims at showing the time necessary for training each of the different

models under assessment. The results are considerably different from one

approach to another due to some of the implementation choices already

introduced in section 5.2.2. In particular:

• the SL approach uses a Stochastic Gradient Descent optimizer with

lr = 0.01, resulting in a relatively quick training phase although it has

4.16M parameters to train;

• the TL approach uses a RMSProp optimizer with lr = 0.01 for both

its standard version and FT version, resulting in a similar compu-

tation time compared to SL even if the parameters to train are less

(0,26M for the TL and 2,62M for the TL-FT approaches respectively).

Moreover, it must be considered that every TL approach consists of

pre-training the network on another problem before transferring the

acquired knowledge: this could take days of training. In the case of
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VGG16, training this network on the ImageNet challenge leveraging

on a Tesla P100 16GB PCIe GPU takes 277 ms / batch with batch

size=64, as reported in [99]. This means that in this work fully training

such a network would have taken approximately 89 hours of computa-

tion.

• the SSL approach must train a 4,42M parameters Generator and a

4,16M parameters Discriminator, using an Adam optimizer with lr =

0.002. This results in a longer computation than SL, also due to the

adversarial behaviour of the two NNs. The SSL times that are shown

in Table 5.3 represent the duration needed (on average 10-15 epochs)

for the Discriminator to achieve the best classification performance

with a batch size of 16. Different batch sizes can be tested out, vary-

ing the training time. Bigger batch sizes reduce training time but may

let the Discriminator outperform the Generator too early compromis-

ing its learning procedure.

It is noticeable that on average with more labeled data the system

receives in input, the sooner it achieves the best classification perfor-

mance thanks to the boost received by the labeled data. Still, the

training times are quite unstable due to the adversarial training be-

tween Generator and Discriminator.

Batch sizes also impact training times: small batch sizes have been used

when few labeled data were available, reaching a maximum size of 100 start-

ing from the 300 labeled samples configuration.

Given the training times shown in Table 5.3 and the information of the GPU

and ML platform that have been used (section 5.2), it would be also possi-

ble to estimate the CO2 emissions of the models under evaluation thanks to

the work of Lacoste et al. [100], as already proposed in 5.3.1.

In this case, given the similar training times needed by the assessed models,

their related CO2 emissions estimates are also comparable. In any case,

in such comparison it must be also taken into account the TL pre-training

phase, that is computationally-heavy and hence results in much higher CO2

consumption than the other assessed approaches.

5.3.5 C-CORE qualitative analysis

This section provides a qualitative analysis of the DeepSAR-Net-SGAN

model achievements on the C-CORE dataset.
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Class Activation Maps: Ice vs Ship with SSL (DeepSAR-Net-

SGAN)

Figure 5.18: SSL (DeepSAR-Net-SGAN) Class Activation Maps of class Iceberg with

10 labeled samples

Figure 5.19: 2D and 3D representations of a sample of class Iceberg
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Figure 5.20: SSL (DeepSAR-Net-SGAN) Class Activation Maps of class Ship with 10

labeled samples

Figure 5.21: 2D and 3D representations of a sample of class Ship

Figure 5.18, 5.19, 5.20 and 5.21 show the comparison of the SSL Class Ac-

tivation Maps of the two classes under assessment Ship and Iceberg. In

particular, the activations indicate the image regions that the CNN acti-

vates along the NN to discriminate each category under assessment. Here,

activations of the Ship and Iceberg images after the third DeepSAR-Net

Convolutional layer have been chosen for the comparison of the two Class

Activation Maps.

In the examples, it is noticeable that the Ship activation is more regular than

the Iceberg activation, given its nearly rectangular shape. To understand

if activations are correctly computed, 3D images are provided (in the cen-
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tre). These images show more effectively the backscatter difference between

a Ship and an Iceberg, whose reflectivity properties are different. Hence 3D

images are better suited for human visual inspection than the 2D images

(on the left), whose content is difficult to distinguish.

5.3.6 C-CORE special configurations

This section shows the impact of the additional information given in input to

the models (incidence angles for the C-CORE use case), as well as the SVM

classifier impact. Among the assessed models, the SL (DeepSAR-Net) [16]

approach is the architecture which experiences the biggest improvements.

Incidence angle-based SL vs base SL (DeepSAR-Net) [16]

Figure 5.22: OA comparison between Inc. angle-based SL and base SL (DeepSAR-Net)

[16]

As visible from Figure 5.15 and similarly to what happened with the previous

dataset (section 5.3.3), concatenating additional information such as inci-

dence angle with the CNN features boosts the SL performance and achieves

higher quality results also when few labeled data are available. This high-

lights the correlation existing between the distribution of the incidence an-

gles and the distribution of the classes, given the different reflectivity prop-

erties of the targets to be categorized. The concatenation gives a relevant
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contribution mainly in the SL approach, allowing this technique to narrow

the gap with the other approaches. The TL and SSL already have addi-

tional information to deal with, therefore the incidence angle does not seem

to affect their performance in a relevant way.

SVM-based SL vs base SL (DeepSAR-Net) [16]

As shown in Figure 5.16 and as already experienced with the previous

dataset (section 5.3.3), substituting the Softmax classifier with the SVM

classifier allows the traditional SL approach to achieve high-quality results

even with few labeled data used. This is mainly due to the capability of

the SVM of generalizing with datasets of small size: it is a kernel-based

method and as such works better with few data with a lot of features than

parametric methods such as the Logistic Regression. The improvements in

the inclusion of the SVM are not that effective in the other architectures,

which already achieve high performance with the Logistic Regression.

Figure 5.23: OA comparison between SVM-based SL and base SL (DeepSAR-Net) [16]

CXI



5.4 Discussion

The experiments that have been conducted show that the DeepSAR-Net-

SGAN architecture for the SSL approach is capable of exploiting the knowl-

edge hidden in unlabeled data outperforming the traditional SL approach

and thus representing a great resource for both the EO and SAR domains.

The performance results reached by the assessed methods on the two datasets

and presented in sections 5.3.1 and 5.3.4 are consistent with each other and

in line with the original hypothesis that underlies this research work, guar-

anteeing the robustness of the obtained results.

Indeed, the SSL approach outperforms the traditional SL approach in every

assessed setting, even in special configurations when additional information

such as geographic coordinates of the images is included, representing a

valid Representation Learning alternative to the TL approach based on pre-

trained NNs.

In particular, SSL improves the OA achieved by the SL approach by at least

5% in configurations with less than 100 labeled samples available at training

time in both the use cases, as visible from Table 5.7 for the TenGeoP-SARwv

use case and from Table 5.8 for the C-CORE use case.

#labels

Models
SL

(DeepSAR-

Net) [16]

(%)

TL

(VGG16-

ImageNet

[17]) (%)

TL-FT

(VGG16-

ImageNet

[17]) (%)

SSL

(DeepSAR-

Net-

SGAN)

(%)

100 90.30 97.53 98.43 94.98

70 89.77 96.75 98.14 94.37

40 88.17 95.87 96.65 93.41

10 72.40 94.47 94.81 91.94

Table 5.7: OA comparison at different labeled samples sizes on TenGeoP-SARwv use

case, extracted from Table 5.1

#labels

Models
SL

(DeepSAR-

Net) [16]

(%)

TL

(VGG16-

ImageNet

[17]) (%)

TL-FT

(VGG16-

ImageNet

[17]) (%)

SSL

(DeepSAR-

Net-

SGAN)

(%)

100 77.64 77.80 80.38 84.45
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70 74.10 79.29 80.17 79.33

40 68.24 76.67 79.70 74.55

10 61.34 65.66 66.78 66.50

Table 5.8: OA score comparison at different labeled samples sizes on C-CORE use case,

extracted from Table 5.5

These results show that the OA gap between SSL and SL grows as less

labeled data are given to the models at training time, while SSL and TL

achieve pretty similar results in both the use cases. In the first one, TL

achieves higher performance thanks to a very positive knowledge transfer

from the source domain (ImageNet [82]) to the target domain, while in the

second case the transfer is less effective due to the fact that C-CORE pixel

values represent the signals produced by SAR backscatter measured in dB

and are thus different from the ImageNet images.

Still, SSL in both the use cases has a great advantage compared to TL: it

does not need any pre-training procedure. This avoids long training times

and consequent large CO2 emissions produced by the computation engine, as

discussed in 5.3.1 and 5.3.4. Furthermore, with SSL it is not needed to find

a wide labeled dataset on which the pre-training phase must be performed,

saving manpower: SSL leverages unlabeled data to boost the performance

of the supervised classification, therefore there is no need to hand-label a

huge amount of data except those few that are necessary.

Specifically, it has been shown in section 5.3.1 that more unlabeled data are

available, the higher is the performance achieved by the SGAN, especially

with few labeled data. This means that in a domain as EO it could be

enough to have a pool of few labeled data available and a large amount of

unlabeled data to obtain high classification performance.

At last, further evidence of the validity of the results and the effectiveness of

the SSL approach has been given in sections 5.3.2 and 5.3.5, through the use

of the Class Activation Maps along the NNs architectures and through the

generation of synthetic images produced by the the DeepSAR-Net-SGAN

Generator approach. The generated images prove the quality of the ap-

proach and opens up to various possibilities for future work, as delved in

the next chapter.
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Chapter 6

Conclusions and future work

This chapter concludes the thesis by summarizing the work done and advis-

ing the possible future work.

6.1 Conclusions

This thesis has addressed the problem of performing Sea-Ice classification

on polar SAR satellite images. Given the scarce availability of labeled data

in the EO and satellite domain, addressing such a task with the traditional

SL approach has revealed to be unfavourable.

Prompted by the huge availability of EO unlabeled data, this work has ex-

plored a SSL solution based on GANs (SGAN [14]) to address the problem

at hand, benchmarking its performance with a SL approach that shared its

same CNN architecture (DeepSAR-Net [16]) and a TL approach based on

VGG16 [17] pre-trained on the ImageNet challenge.

The comparison has been performed taking into account widely used clas-

sification metrics such as OA and F1 score, but also other parameters such

as training times and related CO2 emissions.

The benchmarking procedure has revealed the effectiveness of the SSL ap-

proach based on GANs, showing its ability to extract knowledge from un-

labeled data and exploit it outperforming the traditional SL approach. In

particular, it improves the OA achieved by the SL approach by at least 5%

in configurations with less than 100 labeled samples available at training

time in both the use cases under evaluation. Moreover, the SSL approach

obtains performance comparable to the TL one, with the great advantage

of avoiding the TL pre-training step, hence saving big human effort for data

hand-labeling, long training time and great CO2 emission.

Besides, such an architecture is able not only to perform an accurate classifi-
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cation through its modified Discriminator but also to produce good quality

synthetic images through its Generator, which can be used to implement

techniques such as Data Augmentation and Label Refinery with the aim

of enhancing the classification performance even further. This capability

opens up to the outlining of the possible future work, discussed in the next

section.

At last, some variations of the above-mentioned architectures have been

tested out, concatenating additional information such as geographic coor-

dinates to the CNN features extracted from the images or substituting the

final softmax classifier with an SVM. These variations resulted in relevant

performance enhancement especially for the SL approach, therefore able to

narrow the gap with SSL and TL approaches.

To sum up, the main contributions provided by this work are the following:

• The extensive study and comparison of existing DL approaches in

the EO domain have been performed, with the focus on the Sea-Ice

classification problem with scarcely available labeled data;

• The extension of the SGAN architecture [14] based on the DeepSAR-

Net [16] has been introduced. It outperforms the traditional DeepSAR-

Net [16] SL approach by at least 5% in configurations with less than 100

labeled samples available at training time in both the use cases under

evaluation, and competes with the TL approach based on VGG16 [17];

• The comparison of the training times and CO2 emissions related to

the SL, SSL and TL approaches has been proposed, pointing out the

great advantage of the SSL approach of avoiding the TL pre-training

step, that is computationally-heavy;

• The generative capabilities of the DeepSAR-Net-SGAN approach have

been highlighted, opening up new Data Augmentation and Label Re-

finery possibilities;

• The performance enhancement related to DeepSAR-Net-SGAN when

increasing the size of unlabeled data available has been shown;

• The SVM classifier capability of generalizing with datasets of small size

has been proved, enhancing the SL approach performance especially

when few labeled data are available;

• The performance enhancement in the traditional SL approach due to

additional information given (e.g. geographic coordinates) has been

highlighted, especially when few labeled data are available.
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6.2 Future work

The future work may be dedicated to giving a deeper emphasis on a few

points that can provide an interesting advancement of this research, such

as:

• Study and evaluate the deployment of the model on AI modules-

equipped satellites, so that once images get analyzed just geographic

coordinates of detected icebergs and ice caps could be passed to the

ground stations to notify their existence, saving bandwidth;

• Refine the quality of synthetic images generated by the SGAN Gener-

ator through architectures modifications (e.g. treating Mode Collapse

with the inclusion of a replay buffer) and implement a Label Refin-

ery technique to perform a Data Augmentation of the existing labeled

dataset;

• Compare the SGAN approach with another Semi-Supervised Learning

approach (e.g. Variational Autoencoder), evaluating the differences

and similarities between the approaches to delve more into the possible

SSL solutions to the problem of scarce availability of labeled data;

• Evaluate the use of an alternative Representation Learning approach

based on UL methods such as the Deep Clustering technique for ex-

ploiting unlabeled data before the final Supervised classification;

• Test the generality of the developed models in different use cases such

as the Food Security TEP, with the aim of performing tasks such as

crop classification and crop yield estimation, or continuously monitor-

ing the water and nutrient availability in crops development.
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to multi-layer feed-forward neural networks”. In: Chemometrics and

Intelligent Laboratory Systems 39 (Nov. 1997), pp. 43–62. doi: 10.

1016/S0169-7439(97)00061-0.

[52] Danilo P. Mandic and Jonathon A. Chambers. “Recurrent Neural

Networks for Prediction: Learning Algorithms, Architectures and Sta-

bility”. In: (2001).

CXXII



[53] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-

ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[54] Yann Lecun and Yoshua Bengio. “Convolutional Networks for Im-

ages, Speech, and Time-Series”. In: The Handbook of Brain Theory

and Neural Networks (Jan. 1995).

[55] Ian Goodfellow et al. “Generative Adversarial Nets”. In: (2014). Ed.

by Z. Ghahramani et al., pp. 2672–2680. url: http://papers.nips.

cc/paper/5423-generative-adversarial-nets.pdf.

[56] Geoffrey Everest Hinton and Ruslan Salakhutdinov. “Reducing the

Dimensionality of Data with Neural Networks”. In: Science (New

York, N.Y.) 313 (Aug. 2006), pp. 504–7. doi: 10.1126/science.

1127647.

[57] Yi Tao Zhou and Rama Chellappa. “Computation of optical flow

using a neural network”. In: IEEE 1988 International Conference on

Neural Networks (1988), 71–78 vol.2. doi: 10.1109/ICNN.1988.

23914.

[58] Connor Bowley et al. “Toward Using Citizen Scientists to Drive Au-

tomated Ecological Object Detection in Aerial Imagery”. In: (Oct.

2017), pp. 99–108. doi: 10.1109/eScience.2017.22.

[59] David Smith and Brian Burke. Hype Cycle for Emerging Technolo-

gies 2019. 2019. url: https://www.gartner.com/en/documents/

3956015/hype-cycle-for-emerging-technologies-2019.

[60] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representa-

tion Learning: A Review and New Perspectives”. In: (2012). doi:

10.1109/TPAMI.2013.50.

[61] Jason Yosinski et al. “How transferable are features in deep neural

networks?” In: NIPS’14 (), pp. 3320–3328.

[62] integrate.ai. Transfer Learning Explained. 2018. url: https://medium.

com/the- official- integrate- ai- blog/transfer- learning-

explained-7d275c1e34e2.

[63] Semi-Supervised Learning for NLP. url: https://helicqin.github.

io/2018/03/22/Semi-Supervised%20Learning%20for%20NLP/.

[64] Abdelmalek Amine et al. Computational Intelligence and Its Appli-

cations 6th IFIP TC 5 International Conference, CIIA 2018, Oran,

Algeria, May 8-10, 2018, Proceedings. Apr. 2018. isbn: 978-3-319-

89742-4.

CXXIII



[65] Fan Hu et al. “Transferring Deep Convolutional Neural Networks

for the Scene Classification of High-Resolution Remote Sensing Im-

agery”. In: Remote Sensing (2015).

[66] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. “Beyond Bags

of Features: Spatial Pyramid Matching for Recognizing Natural Scene

Categories”. In: (2006). url: http://www.csd.uwo.ca/~olga/

Courses/Fall2014/CS9840/Papers/lazebnikcvpr06b.pdf.

[67] Yi Yang and Shawn Newsam. “Spatial pyramid co-occurrence for

image classification”. In: Proceedings of the IEEE International Con-

ference on Computer Vision (2011). doi: 10 . 1109 / ICCV . 2003 .

1238663.

[68] Lionel Gueguen. “Classifying Compound Structures in Satellite Im-

ages: A Compressed Representation for Fast Queries”. In: Geoscience

and Remote Sensing, IEEE Transactions on 53 (Mar. 2015). doi:

10.1109/TGRS.2014.2348864.

[69] Josef Sivic and Andrew Zisserman. “Video Google: A Text Retrieval

Approach to Object Matching in Videos”. In: Proceedings of the IEEE

International Conference on Computer Vision 2 (Nov. 2003), 1470–

1477 vol.2. doi: 10.1109/ICCV.2003.1238663.

[70] Natalia Zakhvatkina, Vladimir Smirnov, and Irina Bychkova. “Satel-

lite SAR Data-based Sea Ice Classification: An Overview”. In: Geo-

sciences (2019).

[71] Wolfgang Dierking. “Mapping of Different Sea Ice Regimes Using

Images From Sentinel-1 and ALOS Synthetic Aperture Radar”. In:

IEEE Transactions on Geoscience and Remote Sensing 48.3 (Mar.

2010), pp. 1045–1058. issn: 1558-0644. doi: 10.1109/TGRS.2009.

2031806.

[72] Wolfgang Dierking — Alfred Wegener Institute for Polar and Ger-

many Marine Research Bremerhaven. “Sea Ice Monitoring by Syn-

thetic Aperture Radar”. In: Oceanography 26 (June 2013). url: https:

//doi.org/10.5670/oceanog.2013.33.

[73] Bernd Scheuchl et al. “Potential of RADARSAT-2 data for opera-

tional sea ice monitoring”. In: Canadian Journal of Remote Sensing

30.3 (2004), pp. 448–461. doi: 10 . 5589 / m04 - 011. url: https :

//doi.org/10.5589/m04-011.

[74] Christopher Jackson and John R. Apel. Synthetic Aperture Radar

Marine User’s Manual. Jan. 2004.

CXXIV



[75] Chen Wang et al. “A labelled ocean SAR imagery dataset of ten

geophysical phenomena from Sentinel-1 wave mode”. In: Geoscience

Data Journal 6.2 (2019), pp. 105–115.

[76] Jiuxiang Gu et al. Recent Advances in Convolutional Neural Net-

works. 2015. arXiv: 1512.07108.

[77] Keiller Nogueira, Otávio A.B. Penatti, and Jefersson A. dos Santos.

“Towards better exploiting convolutional neural networks for remote

sensing scene classification”. In: Pattern Recognition 61 (Jan. 2017),

pp. 539–556. issn: 0031-3203. doi: 10.1016/j.patcog.2016.07.001.

url: http://dx.doi.org/10.1016/j.patcog.2016.07.001.

[78] Marco Castelluccio et al. Land Use Classification in Remote Sensing

Images by Convolutional Neural Networks. 2015. arXiv: 1508.00092.

[79] MSTAR. url: https://www.sdms.afrl.af.mil/index.php?

collection=mstar.

[80] Dimitrios Marmanis et al. “Deep Learning Earth Observation Clas-

sification Using ImageNet Pretrained Networks”. en. In: IEEE Geo-

science and Remote Sensing Letters 13.1 (Jan. 2016), pp. 105–109.

doi: 10.1109/LGRS.2015.2499239. url: http://ieeexplore.

ieee.org/document/7342907/.

[81] Pierre Sermanet et al. OverFeat: Integrated Recognition, Localization

and Detection using Convolutional Networks. 2013. eprint: 1312 .

6229.

[82] ImageNet. url: http://www.image-net.org/.

[83] UC Merced Land Use. url: http://weegee.vision.ucmerced.edu/

datasets/landuse.html.

[84] Chen Wang et al. “Classification of the global Sentinel-1 SAR vi-

gnettes for ocean surface process studies”. en. In: Remote Sensing of

Environment 234 (Dec. 2019), p. 111457. issn: 00344257. doi: 10.

1016/j.rse.2019.111457. url: https://linkinghub.elsevier.

com/retrieve/pii/S0034425719304766.

[85] Christian Szegedy et al. “Going deeper with convolutions”. In: (June

2015), pp. 1–9. doi: 10.1109/CVPR.2015.7298594.

[86] Zhongling Huang, Zongxu Pan, and Bin Lei. “Transfer Learning with

Deep Convolutional Neural Network for SAR Target Classification

with Limited Labeled Data”. en. In: Remote Sensing 9.9 (Aug. 2017),

p. 907. issn: 2072-4292. doi: 10.3390/rs9090907. url: http://www.

mdpi.com/2072-4292/9/9/907.

CXXV



CXXVI Chapter 6. Conclusions and future work

[87] Diederik P. Kingma et al. Semi-Supervised Learning with Deep Gen-

erative Models. 2014. arXiv: 1406.5298 [cs.LG].

[88] MNIST. url: http://yann.lecun.com/exdb/mnist/.

[89] Augustus Odena. “Semi-Supervised Learning with Generative Ad-

versarial Networks”. en. In: arXiv:1606.01583 [cs, stat] (Oct. 2016).

url: http://arxiv.org/abs/1606.01583.

[90] Fei Gao et al. “A Deep Convolutional Generative Adversarial Net-

works (DCGANs)-Based Semi-Supervised Method for Object Recog-

nition in Synthetic Aperture Radar (SAR) Images”. en. In: Remote

Sensing 10.6 (May 2018), p. 846. issn: 2072-4292. doi: 10.3390/

rs10060846. url: http://www.mdpi.com/2072-4292/10/6/846.

[91] VGG16 – Implementation Using Keras. url: https://engmrk.com/

vgg16-implementation-using-keras/.

[92] Adrian Rosebrock. Fine-tuning with Keras and Deep Learning. 2019.

url: https : / / www . pyimagesearch . com / 2019 / 06 / 03 / fine -

tuning-with-keras-and-deep-learning/.

[93] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised

Representation Learning with Deep Convolutional Generative Ad-

versarial Networks”. In: CoRR abs/1511.06434 (2015).
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CXXVIII Appendix A. Appendix

Appendix A

Appendix

A.1 DeepSAR-Net models

A.1.1 DeepSAR-Net - base version (TenGeoP-SARwv)

Figure A.1: DeepSAR-Net base architecture
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A.1.2 DeepSAR-Net - Geo-based version (TenGeoP-SARwv)

Figure A.2: DeepSAR-Net Geo-based architecture
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A.1.3 DeepSAR-Net - Inc. angle-based version (C-CORE)

Figure A.3: DeepSAR-Net Inc-based architecture
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A.2 VGG16 models

A.2.1 VGG16 - base version (TenGeoP-SARwv)

Figure A.4: VGG16 model architecture
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A.2.2 VGG16 - FT version (C-CORE)

Figure A.5: VGG16-FT model architecture
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A.3 DeepSAR-Net-SGAN models

A.3.1 Discriminator (TenGeoP-SARwv)

Figure A.6: DeepSAR-Net-SGAN Discriminator



CXXXIV Appendix A. Appendix

A.3.2 Generator (TenGeoP-SARwv)

Figure A.7: DeepSAR-Net-SGAN Generator


