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Sommario

In Computer Vision, i metodi per allineare le immagini in fotomosaici senza
soluzione di continuità sono stati ampiamente utilizzati nel corso degli an-
ni. Per esempio, l’allineamento delle immagini al frame rate è usato in ogni
videocamera che ha una funzione di “stabilizzazione dell’immagine”. Nella
comunità della fotogrammetria, metodi più intensivi manualmente basati su
punti di controllo a terra rilevati o punti di legame registrati a mano sono
stati a lungo utilizzati per registrare le foto aeree in fotomosaici su larga sca-
la. Mentre la maggior parte delle tecniche di cui sopra lavora minimizzando
direttamente le dissimilarità da pixel a pixel, una diversa classe di algoritmi
lavora estraendo un insieme sparso di feature per poi abbinarle tra loro. Gli
approcci basati sulle feature hanno il vantaggio di essere più robusti contro
il movimento della scena e sono potenzialmente più veloci, se implementati
nel modo giusto. Il loro più grande vantaggio è la capacità di “riconosce-
re i panorami”, cioè di scoprire automaticamente le relazioni di adiacenza
(sovrapposizione) tra un insieme non ordinato di immagini, il che li rende
ideali per lo stitching completamente automatizzato di panorami presi da
diversi utenti. Un problema correlato, noto come matching multi-vista, è
la ricostruzione di tracce multi-feature che identificano lo stesso punto ma-
teriale da un insieme di immagini prese dalla stessa scena. In questa tesi
presentiamo due tecniche per affrontare il problema dello stitching delle im-
magini e del matching multi-vista. La prima combina il concetto di warping
as-projective-as-possible con la coerenza della registratura. In particolare,
si ispira al concetto di warping flessibile dell’immagine mentre tiene conto
degli errori che si accumulano quando si aggiunge un’immagine alla volta al
mosaico, per mezzo di un approccio globale formalmente noto come sincro-
nizzazione di gruppo, attraverso tutte le immagini. La seconda propone un
approccio basato sulla teoria dei giochi per trovare le corrispondenze combi-
nando ancora la proprietà di coerenza, ma applicato, invece, alle corrispon-
denze di feature, affrontando la limitazione presente nei precedenti lavori di
non avere un indicatore affidabile per la congruità delle tracce multi-feature.
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Abstract

In Computer Vision, methods for aligning and stitching images into seam-
less photomosaics have been widely used through the years. For example,
frame-rate image alignment is used in every camcorder that has an “image
stabilization” feature. In the photogrammetry community, more manually
intensive methods based on surveyed ground control points or manually reg-
istered tie points have long been used to register aerial photos into large-scale
photo-mosaics. While most of the above techniques work by directly mini-
mizing pixel-to-pixel dissimilarities, a different class of algorithms works by
extracting a sparse set of features and then matching these to each other.
Feature-based approaches have the advantage of being more robust against
scene movement and are potentially faster, if implemented the right way.
Their biggest advantage is the ability to “recognize panoramas”, i.e., to auto-
matically discover the adjacency (overlap) relationships among an unordered
set of images, which makes them ideally suited for fully automated stitching
of panoramas taken by casual users. A related problem, known as multi-
view matching, is the reconstruction of multi-feature tracks that identifies
the same material point from a set of images taken from the same scene. In
this thesis we present two techniques to tackle the problem of both image
stitching and multi-view matching. The former combines concept from as-
projective-as-possible warping with registration consistency. Specifically, it
takes inspiration from the concept of flexible image warping while account-
ing for the errors that accumulate when adding an image at a time to the
mosaic, by means of a global approach formally known as group synchroniza-
tion, across all images. The latter proposes a game-theoretical approach for
finding matches and still combining the consistency property, but applied,
instead, to matching correspondences, addressing the limitation present in
the previous related works of not having a reliable indicator for the adequacy
of multi-feature tracks.
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Chapter 1

Introduction

1.1 Overview

Algorithms for aligning images and stitching them into seamless photomo-
saics are among the oldest and most widely used in Computer Vision as for
instance, frame-rate image alignment is used in every camcorder that has
an “image stabilization” feature. Image stitching algorithms create the high-
resolution photo-mosaics used to produce today’s digital maps and satellite
photos. They also come bundled with most digital cameras currently being
sold, and can be used to create beautiful ultra wideangle panoramas [45].

In the photogrammetry community, more manually intensive methods
based on surveyed ground control points or manually registered tie points
have long been used to register aerial photos into large-scale photo-mosaics
[36]. One of the key advances in this community was the development of bun-
dle adjustment algorithms that could simultaneously solve for the locations
of all of the camera positions, thus yielding globally consistent solutions [21,
47]. One of the recurring problems in creating photo-mosaics is the elimina-
tion of visible seams, for which a variety of techniques have been developed
over the years.

While most of the above techniques work by directly minimizing pixel-
to-pixel dissimilarities, a different class of algorithms works by extracting
a sparse set of features and then matching these to each other. Feature-
based approaches have the advantage of being more robust against scene
movement and are potentially faster, if implemented the right way. Their
biggest advantage, however, is the ability to “recognize panoramas”, i.e.,
to automatically discover the adjacency (overlap) relationships among an
unordered set of images, which makes them ideally suited for fully automated
stitching of panoramas taken by casual users [11].
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1.2 Research Background

Aligning and stitching images into seamless mosaics is a procedure usu-
ally composed by three main steps: image registration, color correction and
blending. Image mosaicing can be performed independently from (and prior
to) the structure-from-motion and dense matching phases, that are instead
required to generate orthophotos. The goal of mosaic creation is, in fact, to
visualize a wide area on a single image under perspective projection, whereas
orthophotos are orthographic projections.

In the last decades several methods for automatic image mosaicing ap-
peared in the literature, proposing a complete pipeline for the final mosaic
generation [17, 30, 12] or focusing the attention on the optimization of one
of the previously cited steps [41, 33, 27].

1.2.1 Image registration

Algorithms for image alignment can be divided into two broad categories [44]:
direct (pixel-based) and feature-based. Direct methods exploit the entire
image data, thus providing very accurate registration but requiring at the
same time a close initialization. Feature-based algorithms, instead, do not
require initialization and can be computationally less expensive. Moreover,
since the introduction of invariant features (e.g., SIFT, [28]) and robust
feature matching, feature-based methods have gained increasing attention
and are nowadays widely used. [12] proved that, formulating stitching as
a multi-image matching problem and using invariant local features to find
matching between the images, lead to a method insensitive to the ordering,
orientation, scale and illumination of the input images.

1.2.2 Color correction

To obtain a clean, pleasant looking mosaic, a robust alignment process
must be followed by color correction. Neighboring images can indeed show
color and appearance differences due to exposure level variation, changes in
lighting condition and different camera settings. Color correction methods
proposed in the literature can be divided into model-based parametric ap-
proaches and non parametric ones [52]. The former assume that the relation
between two images can be described by a color transfer function, whereas
the latter consider no particular parametric format of the color mapping
function and typically use a look-up table to directly record the mapping of
the color levels. [52] evaluated the performance of various color correction
approaches, showing how the gain compensation method by [12] and the lo-
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cal color transfer approach by [50] are fast, effective and general (applicable
in various scenarios).

1.2.3 Blending

Once the seams have been placed and unwanted object removed, we still
need to blend the images to compensate for exposure differences and other
misalignments. However, it is difficult in practice to achieve a pleasing bal-
ance between smoothing out low-frequency exposure variations and retaining
sharp enough transitions to prevent blurring (although using a high exponent
does help).

Among the contributions in image blending, it is worth mentioning:

Laplacian Pyramid
An attractive solution to this problem was developed by Burt and
Adelson [13]. Instead of using a single transition width, a frequency-
adaptive width is used by creating a bandpass (Laplacian) pyramid
and making the transition widths a function of the pyramid level.

Gradient Domain Blending
An alternative approach to multiband image blending is to perform
the operations in the gradient domain. Reconstructing images from
their gradient fields has a long history in computer vision [23], starting
originally with work in brightness constancy [22], shape from shading
[6], and photometric stereo [51]. Pérez et al. [35] showed how gradient
domain reconstruction can be used to do seamless object insertion in
image editing applications.

Exposure Compensation
Uyttendaele et al. [48] iteratively estimate a local correction between
each source image and a blended composite and, as their results demon-
strate, this does a better job of exposure compensation than simple
feathering, and can handle local variations in exposure due to effects
like lens vignetting.

High Dynamic Range Imaging
A more principled approach to exposure compensation is to estimate
a single high dynamic range (HDR) radiance map from the differently
exposed images [29, 18, 32, 37]. Most techniques assume that the
input images were taken with a fixed camera whose pixel values are
the result of applying a parameterized radiometric transfer function to
scaled radiance values.
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1.3 The Problem of Mosaicing

The problem of image mosaicing can be decomposed in what are called multi-
view matching and image stitching. The former aims to find correspondences
among image features which are supposed to belong to the same material
point in the same scene. This is achieved by extracting and collecting sig-
nificant features from every image thus obtain what are meant to be their
feature descriptors. This descriptors are essential for finding correspondences
through their similarities since each of them represents an important role in
identifying significant image features. The property being exploited when
extracting such feature descriptors is their invariance especially in scale and
rotation but also illumination and noise.

When feature correspondences among images are found, we need to re-
mark the difference in generating the so called multi-feature tracks, i.e., set
of feature belonging to the same material point, and using them for align-
ment and stitching, which require estimating projective transformations—as
already explained in the previous section—for composing an image mosaic.

1.4 Aim and Contributions

The purpose of this thesis is to present a novel technique in both context
of image stitching and multi-view matching by still treating them as two
decoupled problem.

Concerning image stitching we describe in this thesis a technique that
combines the work presented in [53] and [40] about projective transforma-
tions, which we are going to refer to as APAP Synchronization. The reason
behind this arises from the idea of exploiting the averaging property, known
as synchronization, from a set pairwise measurements that need to agree on
consistency, but applied on local image deviation which do not strictly fol-
low the global projective trend. The main assumption behind the traditional
image alignment relates to views that differ purely by rotation and not by
translation, or that the imaged scene is effectively planar.

The idea proposed for the multi-view matching problem, here presented
as Evolutionary MatchEIG, follow a game-theoretical approach described
in [15], that try to solve the problem as a non-cooperative game in which
two strategy are drawn from a population of individuals. Such individuals
are interpreted as the extent of selecting certain image feature to represent
a material point of the scene from which images are taken. This idea takes
into account the descriptor space similarity among feature descriptors in or-
der to find correspondences but lacks of the consistency property which is
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Unordered set of images Multi-view matching Image stitching

Evolutionary MatchEIG APAP Synchronization

Figure 1.1: Mosaicing pipeline overview showing our contribution methods

vital when presenting the MatchEIG method in paper [31]. The contri-
bution brought by [31] for presenting the proposed method, concerns the
same consistency property based still on the one from the synchronization
formulation but—as we will see later on—being applied on permutations of
features. Specifically, given a set of noisy pairwise correspondences, jointly
updates them so as to maximize their consistency, based on a spectral de-
composition method.

1.5 Thesis Structure

This thesis is structured as follows:

• Chapter 2 introduces and describe all the main related works and their
research field which play an important role in carrying out the work
presented in this thesis;

• In Chapter 3 we describe the APAP Synchronization method, in partic-
ular its main idea followed by all the criteria necessary to fully represent
it;

• In Chapter 4 we discuss Evolutionary MatchEIG along with its con-
siderations and the general pipeline.

• Chapter 5 shows and evaluates the experiments being performed;

• Chapter 6 draws the final conclusions considering the results obtained
from the experiments.
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Chapter 2

State of the Art

2.1 Classification of the Main Related Works

Here we present the related work carried out in both field of image stitching
and multi-view matching. The main stream of research are classified in the
following way:

• Image alignment and stitching: the procedure of taking the align-
ment estimates produced by feature registration algorithms and blend-
ing the images in a seamless manner, while taking care to deal with
potential problems such as blurring or ghosting caused by parallax and
scene movement as well as varying image exposures.

– As-Projective-As-Possible warps [53]: an estimation tech-
nique that is able to tweak or fine-tune the projective warp to
accommodate the deviations of the input data from the idealized
conditions. This significantly reduces ghosting without compro-
mising the geometric realism of perspective image stitching.

– Mosaicing via Synchronization [40]: a method to create high-
quality seamless planar mosaics. It uses a global approach, known
as synchronization, for image registration and color correction.
correction.

• Multi-view matching: the problem of feature registration from a set
of multiple images, in which the features grouped together refer to the
same material point.

– Permutation Synchronization: the feature matching between
images can be represented by means of permutation that asso-
ciates to each feature in one image the corresponding one in the
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second image. By solving a synchronization problem where all
partial permutations between image pairs are taken into account,
it is possible to identify all the features that correspond to the
same 3D point in the scene (see Appendix D) This problem has
been addressed in [31] which introduce the MatchEIG method.

– Game Theory for hypothesis validation: the matching prob-
lem is formulated as a simultaneous optimization over the entire
image collection, without requiring previously computed pairwise
matches to be given as input. This formulation operates directly
in the space of feature across multiple images, resulting in the
final matches being consistent by construction, and has a natural
interpretation as a non-cooperative game, which allows to lever-
age tools and results from Game Theory (see Appendix F). [15]
proposes a formulation and realization of this problem by means
of what are referred to as multi-feature matching games.

2.2 Image Alignment and Stitching

2.2.1 As-Projective-As-Possible warps

The authors of [53] introduced an estimation technique called Moving Di-
rect Linear Transformation (Moving DLT) that is able to tweak or fine-tune
the projective warp to accommodate the deviations of the input data from
the idealized conditions. This produces as-projective-as-possible image align-
ment that significantly reduces ghosting without compromising the geometric
realism of perspective image stitching. This technique thus lessens the de-
pendency on potentially expensive post-processing algorithms. In addition,
they describe how multiple as-projective-as-possible warps can be simulta-
neously refined via bundle adjustment to accurately align multiple images
for large panorama creation.

Moving DLT

When images I and I ′ are obtained by translating cameras or the scene is
not planar using a basic homographic warp inevitably yields misalignment or
parallax errors. To alleviate this problem, [53] introduced the Moving DLT
method. The idea is to warp each x∗ using a location dependent homography

x̃′∗ ∝ H∗x̃∗ ,
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where H∗ is estimated from the weighted problem

h∗ = arg min
h

N∑
i=1

‖wi∗aih‖2 s.t. ‖h‖ = 1 . (2.1)

The scalar weights {wi∗}Ni=1 give higher importance to data that are closer
to x∗, and the weights are calculated as

wi∗ = exp(−‖x∗ − xi‖2/σ2) . (2.2)

Here, σ is a scale parameter, and xi is the coordinate in the source image I
of one-half of the i-th point match {xi,x′i}.

Intuitively, since Eq. (2.2) assigns higher weights to data closer to x∗, the
projective warp H∗ better respects the local structure around x∗ in contrast
to Eq. (A.4)—from original DLT formulation on page 62—which uses a single
and global H for all x∗. Moreover, x∗ is moved continuously in its domain
I, the warp H∗ also varies smoothly. This produces an overall warp that
adapts flexibly to the data, yet attempts to preserve the projective trend of
the warp, i.e., a flexible projective warp.

The problem in Eq. (2.1) can be written in the matrix form

h∗ = arg min
h
‖W∗Ah‖2 s.t. ‖h‖ = 1 , (2.3)

where the weight matrix W∗ ∈ R2N×2N is composed as

W∗ = diag([w1
∗ w

1
∗ w

2
∗ w

2
∗ . . . w

N
∗ wN∗ ]) ,

and diag(·) creates a diagonal matrix given a vector. This is a weighted
SVD1 (WSVD) problem, and the solution is simply the least significant right
singular vector of W∗A.

Problem Eq. (2.3) may be unstable when many of the weights are in-
significant, e.g., when x∗ is in a data poor (extrapolation) region. To prevent
numerical issues in the estimation, the authors of [53] propose to offset the
weights with a small value γ within 0 and 1

wi∗ = max(exp(−‖x∗ − xi‖2/σ2), γ) . (2.4)

This also serves to regularize the warp, whereby a high γ reduces the warp
complexity. In fact as γ approaches 1 the resultant warp loses its flexibility
and reduces to the original homographic warp.

1Singular value decomposition: a factorization of a real or complex matrix that gener-
alizes the eigendecomposition of a square normal matrix to any m× n matrix.
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Cells partitioning

The assumption underlying Moving DLT is that the input consists in inlier
matches, but in practice mismatches and outliers exist among the data. For
this reason, invoking Moving DLT, we remove outliers using RANSAC [19]
with DLT as the minimal solver. Although [53] considers data where the
inliers themselves may deviate from the projective trend, in practice, the
outlier errors are orders of magnitude larger than the inlier deviations [46],
thus RANSAC can be effectively used.

Solving Eq. (2.3) for each pixel position x∗ in the source image I is
unnecessarily wasteful, since neighboring positions will yield very similar
weights Eq. (2.2) and hence very similar homographies. They thus uniformly
partition the 2D domain I into a grid of C1×C2 cells, and take the center of
each cell as x∗. Pixels within the same cell are then warped using the same
homography. The warp is globally projective for extrapolation, but adapts
flexibly in the overlap region for better alignment.

Partitioning into cells effectively reduces the number of WSVD instances
to C1×C2. Moreover, each of the WSVD instances are mutually independent,
thus a simple approach to speed up computation is to solve the WSVDs in
parallel.

A potential concern is that discontinuities in the warp may occur between
cells, since cell partitioning effectively downsamples the smoothly varying
weights Eq. (2.4). In practice, as long as the cell resolution is sufficiently
high, the effects of warp discontinuities are minimal.

Further speedups are possible, for most cells, due to the offsetting many
of the weights do not differ from the offset. To exploit this observation a
WSVD can be updated from a previous solution instead of being computed
from scratch by means of rank-one update [53].

Bundle Adjustment

Bundle adjustment [21, 47] is the problem of refining a visual reconstruction
to produce jointly optimal 3D structure and viewing parameter (camera pose
and/or calibration) estimates. Optimal means that the parameter estimates
are found by minimizing some cost function that quantifies the model fitting
error, and jointly that the solution is simultaneously optimal with respect
to both structure and camera variations. The name refers to the “bundles”
of light rays leaving each 3D feature and converging on each camera centre,
which are “adjusted” optimally with respect to both feature and camera
positions. Equivalently—unlike independent model methods, which merge
partial reconstructions without updating their internal structure—all of the
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Figure 2.1: APAP stitching with source image partitioned in 25x25 cells

structure and camera parameters are adjusted together “in one bundle”.
To stitch multiple images to form a large panorama, pairs of images can

be incrementally aligned and composited onto a reference frame. However,
incremental stitching may propagate and amplify alignment errors, especially
at regions with multiple overlapping images. Such errors can be alleviated
by simultaneously refining the multiple alignment functions, prior to com-
positing [53, 44]. In [53] is shown how bundle adjustment can be used to
simultaneously refine multiple as-projective-as-possible warps.

2.2.2 Mosaicing via Synchronization

The algorithm proposed in [40] tries to overcome some common issues in
mosaic generation (e.g., misalignments, color correction, moving objects)
thanks to the use of synchronization and the search for an optimal cutting
path between overlapping images. The entire process is summarized in [31]
and described in detail in the following paragraphs.

Homography estimation

The first step of the proposed procedure is to extract features from all the
images (e.g., SIFT features, [28]) and match them. A robust feature match-
ing algorithm should be used in order to avoid wrong matches that can cause
strong misalignments between the images. For this reason, the method pro-
posed in [31] has been chosen. Starting from the correspondences between
pairs of views, it jointly updates them so as to maximize their consistency.



12 Chapter 2. State of the Art

Pairwise homographies are then robustly estimated using RANSAC [19],
computing image transformation parameters through the Direct Linear Trans-
formation (DLT) method [1]. A possible solution to project all the images
in the same reference system for mosaic generation is to compose relative
transformations multiplying the obtained pairwise homographies. However,
this approach accumulates error at each successive multiplication. To solve
this problem, synchronization over SL(3) is applied, converting in this way
pairwise homographies into absolute ones. This guarantees that all relative
information are considered simultaneously, minimizing misalignment errors
among the whole dataset.

To improve the accuracy of the synchronization process, a weighting fac-
tor can be assigned to each pairwise homography, that describes its reliabil-
ity. In practice, the unitary elements of the adjacency matrix A contained in
Eq. (E.2) are replaces by the estimated weights. In the proposed procedure,
these weights are assumed to be proportional to the area of the convex hull
that contains the features matched in each image pairs.

Color correction

Changes of the illumination conditions, different camera settings and vi-
gnetting are some of the causes that make the seams of the mosaic visible,
even when the scene is planar, the images are sharp and the alignment is
perfect. Color variations between overlapping images should be modelled by
a non-linear function and often involve the three color channels simultane-
ously. However, the simplified approach that considers the RGB channels
independently and that models the transformation with an affinity proved to
work well. Thus, in the proposed method the relation between the three color
channel of adjacent images (i, j) is assumed to be an affine transformation,
that can be written in matrix form as[

C

1

]
i

=

[
ac bc
0 1

]
i,j

·

[
C

1

]
j

,

where C is in turn R,G, or B. Formulating the problem in this way corre-
sponds to estimating the parameters of three affine transformations between
each pair of overlapping images, that have to be then composed in order to
compute a global color correction for each single image. It is easy to see that
this problem can be solved via the synchronization over the Affine Group
Aff(d).

In presence of small residual misalignments, pixel-based estimation of
pairwise affine transformations can lead to inaccurate results. An alternative
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Figure 2.2: Mosaic before (left) and after (right) applying color correction

robust approach, adopted in [40], consists in exploiting the histograms of the
overlapping area computed for both images. The parameters of the affine
transformation are computed as the angular coefficient and intercept of the
straight line that fits the plot of one cumulative histogram versus the other
cumulative histogram [16].

Once all the relative affine transformations have been computed for each
color channel, the absolute ones can be retrieved via synchronization, as
previously explained for the homographies. A weighting matrix can be in-
troduced, where the weights are proportional to the overlapping area size,
in order to give more confidence to the most reliable pairwise color transfor-
mation. Please note that synchronization retrieves absolute affine transfor-
mation, up to a global one. This degree of freedom can be fixed by choosing
one image that does not undergo color correction. The unaltered image can
be identified automatically as the one that has the best color balance, or it
can be defined by the user.

Figure 2.2 shows an application to an image mosaic of color correction
with the described method (source: Marearts roof dataset2).

2.3 Multi-View Matching

In the context of multi-view matching, and even more in general of fea-
ture matching, much research has been carried out. We introduce the ideas
reported in [31] and [15] which are essential in introducing the concept de-
veloped for this thesis. The former is based on the maximization of the
global consistency of pairwise correspondences derived from the permutation
synchronization problem, the latter, instead, consists in a game-theoretical
approach which operates directly in the space of feature descriptor and for-

2http://study.marearts.com/2013/11/opencv-stitching-example-stitcher-class.
html

http://study.marearts.com/2013/11/opencv-stitching-example-stitcher-class.html
http://study.marearts.com/2013/11/opencv-stitching-example-stitcher-class.html
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mulates the problem as a non-cooperative game, without requiring previously
computed pairwise matches to be given as input.

2.3.1 Spectral method

The Spectral method of [34] treats the absolute permutation block-matrix
X—from the optimization problem described in Eq. (E.6)—as a real matrix
instead of a binary matrix and enforces the columns of X to be orthogonal,
resulting in the following optimization problem

max
UTU=Id

trace(UT ẐU) , (2.5)

where the notation U instead of X is used to underline that, due to the relax-
ation, the optimal U will not be composed of partial permutation matrices.
Equation (2.5) is a generalized Rayleigh problem, whose solution is given by
the d leading eigenvectors of Ẑ. In order to obtain proper correspondences
from U , each mi × d block is projected onto the nearest permutation ma-
trix via the Kuhn-Munkres algorithm [26], which solves a linear assignment
problem, thus returning a set of estimated absolute permutations.

2.3.2 MatchEIG method

The Spectral method is extremely fast, as multi-view matching is solved in
one shot via spectral decomposition. However, since absolute permutations
are computed, the knowledge of the size of the universe d is required, which
is not available in practice. The importance of a correct estimate of d is also
demonstrated experimentally in [31].

The authors of paper [31] introduce a novel technique for multi-view
matching, dubbed MatchEIG, which inherits the positive aspects of the
Spectral method, namely efficiency and simplicity, and at the same time it
overcomes its drawback, i.e., the need of the correct value of d as input. The
key observation is that relative permutations are independent from d, thus a
method that aims at producing relative permutations instead of absolute ones
can get by without knowing precisely d. Specifically, this method proceeds
as follows. First, the top d eigenvectors of Ẑ are computed and collected in
a m × d matrix U , as done by Spectral. Let D be the diagonal matrix
containing the corresponding d eigenvalues λ1, . . . , λd. The matrix

Ẑd = UDUT

is the solution of Eq. (E.5) under the spectral relaxation. In this way we get
an estimate of Z—which contains relative permutations, and this is a key
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difference with respect to the Spectral method that provides an estimate
of X—which contains absolute permutations.

Suppose that we are given an estimate d̂ of the size of the universe such
that d̂ ≥ d and is computed Ẑd̂ accordingly. Since Ẑ has approximately
rank d, we expect that the least d̂ − d eigenvalues λd+1, . . . , λd̂ are smaller
than the top d eigenvalues, thus the corresponding eigenvectors in U have a
limited impact on Ẑd̂, in particular: ‖Ẑd − Ẑd̂‖2 = |λd+1|.

Note that, due to the relaxation, themi×mj blocks Ẑd are not guaranteed
to be partial permutation matrices. In order to enforce this constraint, two
different strategies are analyzed. A first stage common to both consists
in setting to zero all the entries smaller than a given threshold t. In the
experiments carried out in [31] it has been set t = 0.25 in simulations and
t = 0.5 in real experiments. A higher threshold allows for more missing
matches, and this is useful in real datasets to model the presence of isolated
features.

Then, a principled approach consists in projecting each block onto the
closest partial permutation matrix via the Kuhn-Munkres algorithm. In
[31] this method is called MatchEIG-CP, where CP stands for “closest
permutation”. This projection, however, slows down the computing time,
so in MatchEIG algorithm a greedy strategy is used so that, if applied to
each block, it returns a valid permutation, although not the closest one. This
strategy, implemented by the authors of [31] as function matrix2perm(), is
approximate but it produces no noticeable loss in accuracy, while greatly
boosting the speed, as experiments demonstrated.

The matrix2perm() function takes a matrix C as input and returns a
(partial) permutation matrix P constructed as follows: search among the
non-zero entries of C for the ones where the maximum over the corresponding
row or column is achieved. These entries are then sorted by decreasing
magnitude and examined sequentially starting from the largest element: let
(i, j) be the index of the current entry, and let P be the output matrix,
initialized to 0; then [P ]i,j is set to 1 provided that P remains a partial
permutation.

The idea behind this procedure is the following. For a given row i, which
corresponds to a feature in one image, each entry [C]i,j represents the extent
of pairing between feature i and feature j, and the greatest element in this
row can be regarded as the most likely correspondence. The same holds for
each column. To these putative matches we need to apply the principle of
exclusion, and the authors of [31] propose to do it in a greedy way [42]: the
strongest match wins and inhibits other 1s to be placed in its row or column.

Note that, because of noise, Ẑd̂ is full, in general, and its size can become
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large in practical scenarios. However, this matrix needs not to be explicitly
computed, for only one block is needed at a time. Specifically, when an
image pair (i, j) is considered, the product UiDUTj need to be computed,
where Ui denotes the mi× d̂ block in U corresponding to image j. Therefore
we only need to store the matrix UD

1
2 instead of Ẑd̂, and this observation

considerably reduces the storage space necessary to run the algorithm.
Note also that the projection step (either via the Kuhn-Munkres algo-

rithm or via the approximate strategy) can be performed in parallel, since
each image pair is independent from the others, thus speeding up the process.

2.3.3 Pairwise Game-theoretical Matching

During the last few years, Game Theory has been adopted to perform hy-
pothesis validation within a wide range of scenarios. This is the case, for
instance, of the seminal paper by Albarelli et al. [2], where a game-theoretical
framework is used for finding correspondences between segments and to per-
form point-pattern matching. Registration of rigid and deformable shapes
have been also addressed in [3] and [38], and object-in-clutter recognition in
[39]. Other relevant works are about feature selection [5] and image segmen-
tation [25]. Most of these methods follow a common script:

• A set of initial hypotheses is selected from the solution space of the
problem;

• A payoff function is defined between each pair of hypotheses in order
to express the level of mutual validation;

• A hypotheses population, represented as a probability distribution, is
evolved through some dynamics.

A highly relevant application, is the one presented in [4], called Game
Theoretical Matcher (GTM). Here, the initial hypotheses are putative matches
between features and the selection process operates according to a payoff that
accounts for how well the affine transformation induced by one match can be
applied to a competing hypothesis. This addresses the same problem of [15],
i.e., to extract coherent feature matches between images in order to enable
3D recovery. Moreover, it also adopts a game theoretical framework, albeit
it uses it in a very different way.

As experiments in [15] shows, the pairwise matching process fails to re-
cover some of the correct matches. This is due to the limited mutual sup-
port that the individual matches can establish in the simple pairwise setting,
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which may give rise to visual ambiguities and is in fact more prone to the
presence of structured noise in the images and to random outliers.

The next section will describe an approach to sidestep these limitations
by leveraging the information contained in the whole collection of images.

2.3.4 Multi-Feature Matching Game

Feature matching methods exploiting the game-theoretical framework (e.g.,
[4], [38], [39]) usually consider matches between two images as hypothesis
and validate them to find the set of assignments that are the most suitable.
These pairwise solutions can in principle be recomposed so as to form coher-
ent tracks. [15] proposes exactly the opposite approach: validating multiple
correspondences of the same feature among several images by finding a mu-
tually coherent set according to the feature descriptor. In this view, each
game will produce just a single multi-feature match rather than a set of
pairwise matches.

The motivating idea is that, if n images are available, searching for a
set of landmarks exhibiting strong compatibility between each pair should
result in a much stronger validation of the feature descriptors, which are
required to be repeatable over all the n(n− 1)/2 pairs. This, in turn, helps
to avoid wrong matches resulting from random descriptor similarities that
can easily happen if only two images are involved. Furthermore, the obtained
tracks will be inherently multi-way, ruling out the need for an explicit merge
of pairwise correspondences. Finally, when the single tracks are grouped
together, enforcing their geometrical coherence throughout several images
will benefit from the increased dimensionality. These two steps (multi-feature
selection and multi-feature validation) are performed through two separate
games, using different hypothesis sets and payoff functions, which are going
to be described later on.

Multi-Feature Selection Game

The goal of this game is to find features that agree on their descriptor
throughout the whole image sequence (or at least images where the feature
is visible). The result will be the extraction of a single track characterized
(hopefully) by high reliability. Note that, differently from [4], no geometric
information is used as this method just relies on the descriptor vectors.

First, query candidates are selected from all the feature points of all the
images. This is carried out by estimating the density of the features in the
feature-descriptor space and selecting low-density (i.e., uncommon) descrip-
tors under the assumption that these descriptors are more distinctive. The
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density estimation is performed non-parametrically through k-nn density es-
timation: Let x be a point in the descriptor space, and Bk(x) be the minimal
ball centered at x containing k descriptors of k features. Then the k-nn den-
sity at x is dk(x) = k

|Bk(x)| , where |A| is the volume of the set A. With
the density at hand, select the N least common features (lowest density) as
query points and create a selection game for each of them. Given a query
point, the selection game is as follows:

Hypotheses
for each image extract a fixed proportion p of the features extracted
from that image that are closest (in the descriptor space) to the query
point.

Payoff
The payoff is defined as a Gaussian over the descriptor distances. This
makes sense, since we are considering descriptors to be originated from
the same phenomenon and their drift can be reasonably modeled as a
non-biased random error with standard deviation σa. Note, however,
that features from the same image are incompatible with one another,
thus their payoff is set to 0 regardless of their descriptor:

π(i, j) =

 1
σa
√

2π
e
−
|D(fi)−D(fj)|

2

2σ2a if I(fi) 6= I(fj),

0 otherwise.

Parameter σa can be used to tune the expected drift, which is clearly
dependent on the feature descriptor adopted, on its dimensionality
and, finally, on the strictness that is needed to enforce on the selection
process. Smaller σa values results in a more selective process and vice
versa.

Setting payoff 0 between features coming from the same image enforce
a very important theoretical property of this method. The theorem proven
in [15] showed that the support of a population evolved through a Feature
Selection Game contains at most one feature from each image. This theorem
is key to the feasibility of the proposed approach since it allows to avoid
to include in the final solution two or more hypotheses originating from the
same image (which is indeed the case, for instance with highly repeated
structure such as walls, facades, and many man-made objects).

This configuration, which is defined as multi-feature, collects the most
repeatable instances among all the features close to the query point. This
process can be repeated for each query point resulting in the computation
of exactly N distinct multi-features.
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Multi-Feature Validation Game

While the tracks extracted in the selection game are highly similar from a
photometric point of view, their extraction does not enforce any form of
mutual geometric consistency among them. The authors of [15] propose a
validation scheme that selects the geometrically consistent multi-features by
performing an additional game over them.

Hypotheses
The set of multi-features extracted with the selection games. Each
multi-feature refers to a single material point, thus it must contain at
most one feature from each image. More formally, multi-features are
sets α = {fi, i ∈ 1, . . . , n | fi, fj ∈ α =⇒ I(fi) 6= I(fj)}.

Payoff
In order to play this second game, we must define a payoff between
multi-features. This differs from GTM [4] as we do not assume the
transformations to be locally affine, neither we can perform epipolar
validation, since we need to define a payoff between two tracks, and we
would need at least 5 to produce a fundamental matrix. Rather, define
some property that can be preserved throughout subsequent shots of
the same subject and that can be verified between two tracks. Given
the 3D position of each tracked point, the distance between two of them
would be a suitable measure. Unfortunately, only the projection on the
image plane of the observed points is known. However, each feature
fi comes with an observed scale S(fi) and changes of the depth of the
point with respect to a camera would result in inversely proportional
changes in the observed scale through a constant k, which is a charac-
teristic of the planar patch responsible for the observed feature. Under
the assumption of moderate rotation between views, such constant is
related to the size of the original object and can be used to express a
point’s 3D position: If k is known for the object that generated feature
fi, its position with respect to the reference frame of camera I(fi) is:

P (fi, k) =
k

S(fi)

[
U(fi) V (fi) 1

]T
where U(fi) and V (fi) are normalized coordinates of fi on the image
plane of the observing camera I(fi). Let us consider features fi and
fj extracted from the same image Ii observing two material objects
(i.e., belonging to two tracks) α and β. If we know the values of k
for such objects, we can compute the estimated length of the segment
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connecting α and β as L(f iα, f
i
β, kα, kβ) = ‖P (f iα, kα) − P (f iβ, kβ)‖. If

tracks α and β have no outliers and perfectly accurate feature localiza-
tion, then the variance σ2

L of the distance L between the 3D points can
be used as a measure of geometric inconsistency that is intrinsically
multi-way. However, since kα and kβ are not known, it is not possible
to compute a value for σ2

L, but a lower bound can be computed by
minimizing its value over the unknown parameters. To this end, we
have to account for an unrecoverable scale factor in the two patch sizes
since we can always trade patch size for depth, thus we fix this scale
setting k2

α + k2
β = 1, obtaining the following multi-feature variance:

σ2
αβ = min

kα,kβ
σ2
L s.t. k2

α + k2
β = 1 .

With this define the payoff as follows:

π(α, β) =
1

σb
√

2π
e
−
σαβ

2σ2
b .

In order to compute this variance, define vα and vβ as long vectors concate-
nating all the observed 3D points modulo the parameters kα and kβ :

vi =

[
U(f1

i )

S(f1
i )
,
V (f1

i )

S(f1
i )
,

1

S(f1
i )
, . . . ,

U(fni )

S(fni )
,
V (fni )

S(fni )
,

1

S(fni )

]T
.

With these vectors at hand, we note that ‖kαvα − kβvβ‖2 = n(σ2
L + µ2

L).
In order to estimate kα and kβ substitute in the computation of µL the Eu-
clidean distance between the points with their Manhattan distance, obtain-
ing: nµL ≈ sT (kαvα− kβvβ), where s is a vector satisfying si = sign(kαvα−
kβvβ). While this approximation is a bit rough, use it only to estimate ka
and kb, and not to compute the variance σαβ directly:

nσ2
L = [kα, kβ]A[kα, kβ]T , A =

[
vTαEvα vTαEvβ
vTβEvα vTβEvβ

]
,

where E = I − 1
nss

T . Hence, estimate kα and kβ by initializing them to√
2/2 and iteratively computing s with the current values and re-estimating

[kα, kβ]T as the eigenvector associated with the smallest eigenvalue of A.
With the estimated values of kα and kβ at hand, we can compute the actual
Euclidean distances between feature points (modulo global scale) and thus
their variance σαβ as:

σαβ =
1

n

n∑
i=1

L(f iα, f
i
β, kα, kβ)2 −

(
1

n

n∑
i=1

L(f iα, f
i
β, kα, kβ)

)2

.
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As demonstrated by the experiments in [15], the remaining tracks, that
include at least one mismatched feature, result in a low mutual payoff which,
in turn, drives them to extinction.
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Chapter 3

APAP Synchronization

3.1 Overview

The as-projective-as-possible warps [53] allow to to accommodate the de-
viations of the input data from the idealised conditions reducing artifacts
such as misalignments or “ghosting” effects by means of cell partitioning of
images. This technique, however, is limited to pairwise image stitching with
only one image that adapts to the other. On the other hand, the homogra-
phy synchronization [40] proposes a solution for synchronizing homography
estimations, thus performing only globally projective warps.

We aim at overcoming these limitations by presenting a novel method
that handle deviations not modeled by global homographies but at the same
time is able to enforce consistency between transformations involving multi-
ple images—as in synchronization methods.

The general idea of APAP Synchronization is to synchronize the ho-
mography estimations among cells from all the images, thus building the
synchronization graph over them. In other words, the graph will be com-
posed of image cells representing nodes and the homography estimations,
needed to warp points of one cell to the other, representing arcs. We for-
malize the proposed method with the following criteria used for building the
synchronization graph:

• Image adjacency graph: define the APAP estimations to be com-
puted by determining the pairs of images that have an overlapping
region with the global alignment.

• Overlapping criterion: describe the way cells in overlapping regions
of pairs of images are estimated through synchronization.
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• Non-overlapping criterion: describe the way cells in non-overlapping
regions of pairs of images are estimated through synchronization.

• Arc criterion: define the selection of arcs composing the synchro-
nization graph over the cells along with the related homographies as
pairwise measure.

• Weight criterion: describe the assignment of weight to arcs between
cells.

Each node in the synchronization graph represents a cell of certain image,
except of the one defined as root, i.e., the image selected for not undergoing
any transformation (up to translation factor in the final mosaic composition).
For this reason, the root image is associated to only one node in the graph
since it is not required to be partitioned in cells associated with different
transformation.

3.2 Image graph criterion

We need to recall that given a pair of images, the APAP stitching estimation
is an asymmetric relation (an image flexibly adapts to the other but the the
transformation can not be directly inverted).

After obtaining the (weighted) adjacency matrix among image homogra-
phies for classic synchronization, compute the maximal spanning sub-DAG
thereof. This directed graph is defined over images as nodes instead of cells.

This DAG is obtained as follows:

1. The original image graph is assumed weakly connected (i.e., ignoring
arc orientations)

2. Arbitrarily select the image that does not undergo transformation as
root

3. Compute the Minimum Spanning Tree (e.g., Kruskal algorithm)

4. Then add arcs with only one orientation from the original graph that
does not generate a cycle

The resulting DAG define the ordered pairs of images for which is performed
APAP estimation (i.e., pairs of source and target images).

For each arc (i, j) in the DAG define target and source image respectively
for pairwise APAP estimation.
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Figure 3.1: Target image Figure 3.2: Source image

Figure 3.3: Maximal spanning sub-DAG from a set of 4 images. Differently from a
tree, each node can be reached from the root node with at least one path so to allow
redundancy in noisy measures. In the same way, it guarantees the asymmetric relation
of pairwise APAP estimation. Each arc connects the target image to the source one in
each APAP estimation to be computed.
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3.3 Overlapping criterion

For each ordered pair of images i and j respectively target and source images,
from an arc (i, j) the DAG, compute the homographies and the warped
meshgrid of the source image.

Arc criterion
for each cell in the source image, defined as a quadrilateral by its
vertices, obtain all the overlapping cells in the (un-warped) meshgrid
of the target image, thus assign an arc from each of this cells to the
current one in the source image. In the case the target image is the
root node, assign only one arc from it (see Figs. 3.4 and 3.5).

Weight criterion
assign the weight proportionally to the covered area of the cell of the
source with the one in target, so that they sum up to one for one cell
of the source image.
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Figure 3.4: Source image: overlapping image boundary (orange) and considered over-
lapping cell (red)

1 2 3

654

(a) (b)

Figure 3.5: One cell of the source image (orange) maps into more cells of target image
meshgrid (green on the left, highlighted in red on the right) in different overlapping
areas
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3.4 Non-overlapping criterion

This criterion is applied in case a cell of the source image does not overlap
with any of the cell of the target image, then outside the overlapping region
of the pair of images.

This criterion is based combining these two ideas:

1. Cells that are close to the target image are mapped to the closest cell
therein. The closest cell accounts for the most information regarding
the local deviation of that area of scene that results in the entire mosaic,
basing on the principle of space locality the idea behind APAP is built
upon (see Fig. 3.6).

2. Cells that are far from the target image directly maps to root image
node by means of the global homography between them (see Fig. 3.7).

In this case the closest cell does not bring enough information about the
local deviation of the warping for that cell of the source image. Indeed, being
far from the matching points the warping tends to be globally projective.
Being the information brought by the closest cell is likely to be “misleading”
we cover this lack by synchronize the considered cell directly to the root
image node through the global homography of the source image required to
be known a priori (e.g., obtained by classic synchronization among images).

Apply these two considerations for every non-overlapping cell:

Arc criterion
assign the cell of the source image to the closest one, in terms of Eu-
clidean distance of the centroids, of the target image. Also assign an
arc to the root node so to account also for the global transformation
(i.e., the one computed without APAP warping). If the target image
node is root node, then closest point in the target meshgrid is consid-
ered instead.

Weight criterion
for the closest cell of the source image the weight for the arc is com-
puted similarly as the one used for weighting the matches in APAP
estimation, with x′∗ and xclosest_cell the centroids of current (warped)
cell of the source image and the closest cell respectively

weightclosest_cell = exp(−‖x′∗ − xclosest_cell‖2/σ2) .

For the arc with the root node is assigned its complementary.

weightroot = 1− weightclosest_cell .
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Figure 3.6: Non-overlapping criterion: the considered cell is very close to the target
image meshgrid, so the estimation can directly rely on the closest cell present on it.

Figure 3.7: Non-overlapping criterion: the considered cell is visibly far from the target
image meshgrid, so an estimation based on the closest cell would be inaccurate. On
the other hand, the global homography would be a preferable choice.
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Moreover, since the arc from the root node is only needed to cover the
lack of information concerning the local warping between source and target
images, the relation to the global homography should be used only for non-
overlapping cells of the source image that are not covered by any other target
image in the mosaic image set.

3.5 Discussion

The method presented in this chapter as APAP Synchronization deals with
the homography synchronization problem but extended to cell partitions
throughout all images. The crucial part is obviously how to compose the
graph as well as assigning the corresponding weights to each arc. One node
of such graph is chosen to represent the reference image which does not un-
dergo any transformation referred to as root node. All the other nodes are
connected in such a way they overlap when applying APAP warp estimation
in their respective images. If a cell of the source image does not overlap with
any of the target image cell, this one is synchronized both with global ho-
mography estimation and the closest target image cell in a weighted average
depending on how much is cell distant from the target image meshgrid.
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Figure 3.8: APAP Synchronization graph: Arcs in green and blue represent the ones
built according to the overlapping and non-overlapping criterion respectively. The four
values w1, w2, w3, w4 (which they sum to one) indicate the arc weights proportional to
the overlapping regions of the highlighted source cell mapped into the target meshgrid
(the bottom one). To the top meshgrid two arcs are directed according to the non-
overlapping criterion which connect its closest cell node and the root image one to a
non-overlapping node with two complementary weights, respectively wcc and 1− wcc.
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Chapter 4

Evolutionary MatchEIG

4.1 Overview

The MatchEIG method [31] propose a novel solution to the multi-view
matching problem that, given a set of noisy pairwise correspondences, jointly
updates them so as to maximize their consistency. On the contrary multi-
feature games [15] are able to produce multi-feature tracks—and thus pair-
wise correspondences—directly from features itself in terms of descriptor
space while possibly lacking of cycle consistency, namely the composition of
pairwise matches along any loop should give the identity.

The main concept behind Evolutionary MatchEIG arises from the idea
of combine the averaging property from the consistency constraints with
the feature similarities in term of descriptor space. To do so, we consider
the approach used in [31] regarding the implementation of the function—
referred to as matrix2perm()—for converting a matrix of real values into a
valid permutation one, in which each entry in row i and column j in matrix
Ẑd̂ represents the extent of pairing the features associated to i and j.

Starting from the set of images, all the features (e.g., SIFT) are obtained
encompassing both keypoints and descriptor vectors. Next, a set of query
points are retrieved from feature previously obtained as in [15]. Features that
are not included in any of the computed hypothesis sets are hence discarded.
The ESS is computed and for each query point is obtained a track of features
(i.e., multi feature) from different images. The number of query points is set
to a value less or equal to d̂, since the maximum number of distinct tracks
must not be more than the size of the universe.

Based on [15], treat each value xi(t) from a certain game g and feature i
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as a (conditioned) probability distribution described as

P (i | g)
def
= P (D(fi) | g) =

xi
maxi′∈g xi′

∼ Be(·) ∀i ∈ g , (4.1)

The expression shown in Eq. (4.1) represents the probability of i to belong
to the feature set described by game g. In general probability independence
does not hold for two different features belonging to the same hypothesis set
since we need to consider the fact that two distinct features can come from
the same image, hence a matching between them will not be possible.

P (i, j | g) =

{
P (i | g)P (j | g) if I(fi) 6= I(fj),

0 otherwise. .

Therefore we need to embed this information in matrix Ẑ?
d̂
for each pair

of features. To do so we propose two alternatives: a first approach consists
in setting

ẑ?
d̂,ij

= max
g∈Gij

P (i, j | g) ,

being Gij the set of games which contain the putative match (i, j). Alter-
natively, we can also incorporate further information about the reliability of
the multi-feature track obtained from game g described as posterior prob-
ability P (g)—which is going to be introduced later on—so that it can be
reformulated as follows

ẑ?
d̂,ij

=
maxg∈Gij P (i, j | g)P (g)

maxg P (g)
.

Finally apply MatchEIG to matrix Ẑd̂,ij thus obtained matrix Ẑ?
d̂,ij

fixing possible consistency errors by spectral relaxation as described in [31].
Subsequently, the last step consists in estimating the absolute permuta-

tion matrix—and therefore the set of multi-feature tracks—from the infor-
mation provided by the relative permutation matrix obtained combined with
the game posteriors. At the end extract a valid permutation matrix from
both relative and absolute matrix applying matrix2perm() block-wise.

4.2 Game priors

Being able to compute sets of features does not ensure us that a particular
one is valid and not redundant. The validity of a multi-feature set can be
estimated from the convergence rate of the population vector in reaching the
ESS, mostly because of incompatibility of features belonging to the hypoth-
esis set. To correctly evaluate the reliability of a multi-feature set obtained
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from a particular game we consider the excepted payoff as in [15] to evaluate
the mutually compatibility of the current population and also a weighting
factor, so having

P (g) ∝ wg · xTΠx ∼ Be(·) ∀g ,

where wg represents the fact of having as number of features belonging to
a certain track no more than the number of images whose features are been
included in the hypothesis set. The higher is the number of features in the
resulting set, the lower such weight is, as described by the following formula.

wg =

1 if (maxi′∈g xi′)
−1 ≤ ng

|H|−
(

maxi′∈g xi′
)−1

|H|−ng otherwise

Once obtained what is intended to be a score associated to one game
some normalization can be applied to each of them (e.g., considering the
maximum one with certain probability).

4.3 Game posteriors

The concept of game posterior is intended to better evaluate the information
retrieved from the game priors. Whereas game priors are obtained consid-
ering each single game independently, the idea of game posterior follows the
idea of considering all games at once to evaluate one. The idea is inspired
by the concept of “posterior equals likelihood times prior”

P (g | data) ∝ P (data | g)P (g) .

Regarding the likelihood function, it needs to represent the maximum
evidence that a certain feature is representative for a given multi-feature
track, that is, no other track exists, among the ones already considered, such
that they (probability-wise) contain it. The idea behind it is to exclude as
much as possible multi-feature tracks that potentially contain only a subset
of already considered tracks given a certain order. For that reason, consider
an enumeration of all the games, hence obtaining the following

Pg,1 = max
i∈g

{
P (i | g)

∏
g′<g

(1− P (i | g))

}
, (4.2a)

Pg,2 = max
i∈g

{
P (i | g)

∏
g′>g

(1− P (i | g))

}
. (4.2b)
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The reason of having two values in Eq. (4.2) is because of the potential
presence of two possible sets of features in which one is a strict subset of the
other while not excluding sets that happen to be roughly equivalent. In this
way only the greater set of the two is preserved considering both ordering,
as expressed by

P (data | g) = min(Pg,1, Pg,2) .

4.4 Absolute permutation estimation

In this phase an attempt to estimate a set of multi-feature tracks is performed
in terms of absolute permutation matrices, that means a matrix composed
by the pairwise matches between features extracted from each image and
their respected feature of the universe from a material point of the scene
[31]. The way this is obtained is by means of the game posteriors and the
population vector of each game. Firstly, all games with posterior lower than
a certain threshold are excluded since they may be wrongfully associated
to a multi-feature track that does not exist. The value d̂′ is the number of
games which posterior is above the threshold.

d̂′ = |{g : P (g) ≥ t}| .

Secondly, a matrix Xd̂′ ∈ RM×d̂′ is created such that

[Xd̂′ ]i,g = P (i | g) =
xi

maxi′∈g xi′
∀g : P (g) ≥ t ,

given the row entry corresponding to feature i. Being Xd̂′ composed of
real values, finally obtain a set of valid permutation matrices by applying
matrix2perm() [31] to each block thereof.

4.5 Discussion

Evolutionary MatchEIG is a technique presented in this thesis that com-
bines multi-feature games and permutation synchronization by evaluating
matching correspondences as probability estimations. Such estimations are
firstly obtained from different multi-feature games in same way as [15] which
each of them represents a potential multi-feature track. Each game can be
seen as a population of feature that compose a certain track while finding
an agreement in description similarity as to determine the track they belong
to. The obtained multi-feature tracks are consequently discarded depending
on their game posterior, filtered by thresholding. Game posteriors are com-
puted as to evaluate each track truthfulness to represent a real and consistent
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multi-feature track. As a consequence, we are also able to find an estimate
to the absolute permutation matrices which map features from one image to
the corresponding track related to the material point taken from the scene.
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Chapter 5

Experiments

All the experiments have been conducted in MATLAB, with the addition of
VLFeat1 and export_fig2 libraries.

5.1 APAP Synchronization experiments

In order to assess the performance of APAP Synchronization we design the
following experiments.

The procedure essentially requires the following parameters:

• root_img_idx: root image index taken from the image set enumera-
tion;

• ratio_test: this parameter is used to improve the robustness of fea-
ture matching. Specifically, it is used to discard those matches that are
ambiguous as the distance of a descriptor is closest match is similar to
the distance with its second closest. The lower the value (expressed in
percentage for the ratio between the first and second lower distances)
this parameter is set the less matches are kept;

• msac_max_distance: MSAC outlier thresholding used for estimating
the set of global homographies. A typical value for it is 1.5.

• msac_max_distance_apap: MSAC outlier thresholding used for dis-
carding matches when performing the APAP estimations. This values
is expected to be higher than the regular outlier thresholding for the
global homographies. The reason behind this is to accommodate more
matches which may not follow the global projective trend in the image

1https://www.vlfeat.org/
2https://www.mathworks.com/matlabcentral/fileexchange/23629-export_fig

https://www.vlfeat.org/
https://www.mathworks.com/matlabcentral/fileexchange/23629-export_fig
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stitching procedure. Because of this, a looser outlier thresholding value
needs to be chosen, as for example of one order of magnitude higher
than the regular one (e.g., 15, given 1.5 for regular global estimations);

• avg_cell_width, avg_cell_height: average image cell size (in pix-
els), used for computing the meshgrid of each image (except root).
Depending on each image pixel size, the actual cell size is rounded
off so to fit in an integer number of cell in the meshgrid. The higher
these values the more resolute the APAP estimations are, trading off
for computational time since it would involve a higher number of cells
and thus synchronization nodes;

• sigma, gamma: for APAP weights computation (respectively for σ and
γ). The scale parameter σ has to be resized depending on the average
pixel resolution in images, while γ (a small value between 0 and 1) is
used to regularize the warp by offsetting the APAP weights. A typical
value for σ can be 30 on a set of 320×480 pixels and 0.025 can be a
good value for γ.

The pipeline is composed of the following steps:

Parameters initialization
Set the aforementioned constants.

Feature extraction and matching
Extract SIFT feature from all the images and find the corresponding
matching correspondences by performing MSAC algorithm, a variant
of the Random Sample Consensus (RANSAC) algorithm.

Global homography estimation
Compute a set of global homographies through MSAC which are going
to be used in case misalignments among cells occur.

Compute APAP matches
Same as done for the global homographies, but here instead a looser
inlier threshold for MSAC has been used (namely, εAPAP > ε).

APAP image pair stitching
Given any overlapping pair of images, obtain the target meshgrid and
the (warped) source meshgrid. Subsequently, compute the adjacency
matrix for all cell according to the overlapping and non-overlapping
criteria.
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APAP Synchronization
Apply the homography synchronization for the cells of all images. In
this way we can exploit the consistency property among multiple mea-
surements, thus reducing the error from misalignments.

Mosaic warping and rendering
Find the common reference frame from the root image and warp all
the images for the final mosaic.

Figures 5.1 and 5.2 show an application of APAP Synchronization to a
set of three overlapping images with different meshgrid cell sizes. As it can
be noted, they produce no significant difference in the final mosaic in this
particular example.

To quantify the alignment accuracy of the total set of image warps
f : R2 → R2, we adopt the method described in [53], we compute the root
mean squared error (RMSE) of f on a set of keypoint matches {xi,x′i}Ni=1,

i.e., RMSE(f) =
√

1
N

∑N
i=1‖f(xi)− x′i‖2. Further, for an image pair we

randomly partitioned the available SIFT keypoint matches into a “training”
and “testing” set. The training set is used to learn a warp, and the RMSE
is evaluated over both sets.

We also employed the thresholding of Euclidean distance between a point
in one image and its corresponding warped one in an overlapping image as
error metric for finding outliers. For this purpose we used a threshold of 3
pixels for all datasets.

We compared APAP Synchronization with a baseline approach in which
the images homographies are chained in a tree, thus not synchronized, con-
necting overlapping pairs of images in order to show the difference in the
alignments on the same mosaicing task. The order in which images are esti-
mated in the baseline approach (i.e., the construction of the tree) may affect
the final alignment. On a side note, the tree is built so to maximize the total
sum of matching points from pairs of images that are connected in the tree.
In the end, this method just uses a subtree of the synchronization graph
between over global homography. In addition, we extended this setting to
pairwise APAP estimations used for comparison with the same error metrics.
A further comparison is given by the homography synchronization of [40].
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Dataset
APAP Synch APAP w/o Synch Synch w/o APAP Baseline

TR TE %out TR TE %out TR TE %out TR TE %out

Buildings 2.23 3.16 4.92 2.28 3.24 4.92 4.04 4.37 6.15 4.18 4.49 6.15

Buildings(2) 2.67 3.10 4.56 2.74 3.01 4.56 4.25 4.65 6.89 4.44 5.01 6.89

G. Earth 1.80 1.94 0.81 1.92 2.03 0.81 3.81 3.98 1.13 3.85 3.98 1.13

Table 5.1: Comparison of APAP Synchronization: for each method RMSE on both
training set (TR) and test set (TE) has been reported with the total number of outlier
matches (%out).

Figure 5.1: APAP Synchronization: example comprising three images, divided in 16x8
cells each on a dataset of images of 320x480 pixels.
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Figure 5.2: APAP Synchronization: example comprising three images, divided in 24x12
cells each on a dataset of images of 320x480 pixels.
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5.2 Evolutionary MatchEIG experiments

The procedure essentially requires the following parameters:

• N_qp: number of query points, from each of which is generated a multi-
feature matching game;

• d_hat: estimate d̂ of the size of the universe set d. This is going to
be used in the MatchEIG routine as in [31] and it has to be greater
than the believed number of multi-feature tracks (it can be chosen to
be same as N_qp);

• k: size of query point neighborhood. It is needed to evaluate the ball
density of a query point when choosing the set of multi-feature games
as in [15]. A typical value can be 4;

• p: size of hypothesis set, as a percentage of the total number of feature
from all images. The higher this value the larger will be any hypothesis
set for each game. A typical value is 20% of the total number of
features;

• sigma_a: payoff function parameter. Earlier introduced as σa, it al-
lows to model the payoff function so to be more or less selective when
comparing the descriptor distances from two features. The closer to
zero this value is the more selective the matching is;

• thresh_Z: threshold for discarding matches from relative permutation
matrix when applying MatchEIG. Entry values in the relative per-
mutation block-matrix Ẑ?

d̂
lower than this threshold are set to zero;

• thresh_game: threshold for discarding multi-feature set whose game
posterior is low. A typical value can be 0.5 (with normalized game
posteriors values);

• num_RD_iters: number of iterations when applying the replicator dy-
namic equation to each game population. A value of 20 can be sufficient
for reaching the ESS in the multi-feature selection games.

The pipeline is composed of the following steps:

Parameters initialization
Set the aforementioned constants.

Feature extraction
Extract SIFT feature from all the images.
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Compute hypothesis sets
For each query point selected a group of feature which are going to the
hypotheses of a certain game. Such feature are chosen so that they are
close to the query point, while the total number of them (which is the
same for all games) is set as a proportion, set by parameter p, of the
total number of feature in all images.

Apply the replicator dynamics
Perform the population evolution through the replicator equation for
fixed number of iteration.

Estimate relative permutations
Collect all the probabilities of relative matches in a block-matrix given
each pair of images.

Apply MatchEIG
Obtain a set of permutation matrix maximizing matching consistency.
Set also to zero all the entries smaller than a given threshold thresh_Z.

Compute game priors and posteriors
Discard less reliable multi-feature sets whose game posterior is below
a certain threshold.

Estimate absolute permutations
From the selected games and the related matching probabilities, find
an estimate for the absolute permutation matrix of each image.

Figure 5.3a shows the matching correspondences of a pair of images as a
result of Evolutionary MatchEIG performed on a set of five images taken
from Google Earth, while Fig. 5.3b shows an example of pairwise matching
performed by means of RANSAC. As it can be noted, RANSAC is able to
recover more feature correspondences than Evolutionary MatchEIG given
a sample pair of images.

In all the experiments, performances have been measured in terms of
precision (number of correct matches returned divided by the number of
matches returned and recall (number of correct matches returned divided by
the number of correct matches that should have been returned). In order to
provide a single figure of merit we computed the F1 score (twice the product
of precision and recall divided by their sum), which is a measure of accuracy
and reaches its best value at 1 and worst at 0.

Prec =
TP

TP + FP
, Rec =

TP
TP + FN

, F1 = 2 · Prec · Rec
Prec + Rec

.
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Dataset
Evolutionary
MatchEIG

w/o
MatchEIG

Multi-feature
games ([15])

k-d trees

Prec Rec Prec Rec Prec Rec Prec Rec

Graffiti 94.5 45.3 93.9 43.1 92.0 97.3 84.6 -
G. Earth 92.9 53.6 92.8 53.6 89.0 95.6 78.2 -

Table 5.2: Comparison from the experiment conducted reporting precision and recall.
Note that the recall has not been reported for k-d trees since the correct matches
obtained have been considered as the total number that should have been returned for
all the other methods.

In order to estimate the precision we need to describe the criterion for
considering an certain match correspondence correct. Matches are considered
correct if the corresponding point is located within a given distance threshold
from what is predicted. To have an idea of the recall we considered all
the matches found by means of k-d trees and then polishing them through
RANSAC from all pairs of images. This matches are going to be deemed as an
approximation—being limited to the number of feature the SIFT algorithm
can find—of the set of relevant matches that should have been returned by
the proposed method.

5.2.1 Synthetic experiments

Besides using real images, experiments have been also carried from synthetic
data. For creating synthetic data, we set the following constants:

• n: number of views, namely the number of nodes in the permutation
synchronization problem;

• d: size of the universe set. Note that we also use constant d_hat to
represent the upper bound estimation for d;

• obs_ratio: observation ratio, i.e., the probability that a feature is seen
in a view;

• err_rate: input error (ratio of observations corrupted), i.e., the ratio
of mismatches in the relative permutations by switching two matches,
removing true matches or adding false ones;

• sigma_DD: descriptor variance of matching pairs, for generating random
descriptor distance out of a normal distribution (generally lower than
sigma_a).
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(a) Evolutionary MatchEIG pair matching example on Google Earth images

(b) RANSAC pair matching example on Google Earth images
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(a) Evolutionary MatchEIG pair matching example on Graffiti dataset

(b) RANSAC pair matching example on Graffiti dataset
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Firstly a random ground-truth absolute and relative permutation matrix
is generated which satisfies the consistency constraint. Secondly, for each
query point, random hypothesis sets are computed. The hypothesis sets,
each corresponding to one game, are generated by grouping all features in-
dices belonging to a one multi-track feature from the ground-truth absolute
matrix.

Concerning the payoff functions, a matrix with the same size of the
ground-truth permutation matrix is created; each entry of such matrix con-
tains a randomly generated descriptor distance:

• if the feature pair corresponds to a match in the ground-truth ma-
trix, their descriptor distance is generated from a zero-mean normal
distribution of variance σDD (in absolute value);

• otherwise the distance is obtained from a uniform distribution ranged
in (0, u) where u = 3|H|σDD

ron
(being ro the observation ratio).

In order to analyze the effectiveness of the proposed method using the
synthetic data, we evaluate the F1 score alongside the precision and recall
indices which in turn are obtained by the total number of true/false positive
and true/false negative, being the problem a two-class classification, i.e.,
deciding if every entry in the relative permutation block-matrix is a match
or not from the ground-truth matrix. We show that this evaluation can be
performed when estimating both the relative permutations and the absolute
ones. We recall that the the relative permutations matrices can be obtained
back from the absolute ones by matrix multiplication as shown in Eq. (E.3).
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Figure 5.5: Relative permutation block-matrix resulted from Evolutionary MatchEIG
on synthetic data composed of 5 nodes, which represent images in real dataset. Every
blue dot in each block represents a matching corresponding to the relative pair of
features belonging to their respective images. Along the diagonal it consists of all the
identity matrices representing the reflexive self-matching of features belonging to the
same node.

Figure 5.6: False positives (crosses) and false negative (circles) compared with ground-
truth of the relative permutation block-matrix. Left from obtaining directly the relative
permutation block-matrix, right from reassembling it from absolute permutations. The
synthetic data here is generated with 10 nodes. A quick comparison of the two figures
shows that the reassembling of the relative permutation block-matrix from the absolute
one lead to more accurate results.
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Figure 5.7: Game posteriors: results of d = 50 (leftmost) ground-truth universe size
(leftmost posterior values) on a total of d̂ number of games taken from the grid of
values [ 80 100 120 140 ] (resp. (a), (b), (c), (d)). Values have been normalized by
the maximum. It can be noted that the game posterior selection with a threshold
of t = 0.5 is able to select most part of the 50 leftmost correct multi-feature tracks
generated from synthetic data so to assess its robustness to outlier games (i.e., partially,
or in no way, resembling a complete multi-feature track).
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5.3 Final Considerations

There is still room for improvements: as the experiments show, Evolutionary
MatchEIG fails to recover a considerable part of multi-feature tracks which
otherwise would be obtainable by simply performing RANSAC for each pair
of images. Consequently, APAP Synchronization, that needs dense and dis-
tributed feature keypoints in overlapping regions, may in turn not be able
to find correct estimates of local warping alignments. When APAP Syn-
chronization still produces incorrect homographies the algorithm relies on a
global homography.

After conducting the experiments, we observed that the current imple-
mentation for eigenvector decomposition (tested in MATLAB) fails to com-
pute the result in some cases, undermining the reliability of the proposed
algorithm on a generic set of image samples. This problem is due to the lim-
itation of eigendecomposition algorithms in presence of noisy input matrices.
APAP Synchronization allows to trade off between alignment granularity and
computational time by leveraging on scalability of cell size.

In addition, we say that the estimated size of the universe d̂ needs to be
carefully selected due to it being an upper bound of the unknown actual value
d, which represented the total number of multi-feature tracks from all images.
We noticed that using a too large estimation may lead to returning too
many wrongly evaluated multi-feature sets, i.e., that they do not represent
an actual track, despite thresholding of game posteriors. For that reason,
we chose to select a lower value than d̂ as number of query points, but still
using d̂ when performing MatchEIG.

Despite all the challenges, both the presented methods can achieve rea-
sonable performance on the provided datasets thanks to the averaging pro-
cedure provided by the synchronization of noisy measurements.



Chapter 6

Conclusions & Future
Directions

The work presented in this thesis focuses on the challenge of both finding
feature correspondences among a set of images taken from the same scene
and stitching overlapping image region together so to obtain a mosaic. The
inspiration taken for both ideas derives from the concept of averaging sets
of noisy pairwise measures, being a common factor on both APAP Synchro-
nization and Evolutionary MatchEIG. The former aims to find a consistent
agreement among as-projective-as-possible warps from a set of overlapping
images corresponding to views that may not differ purely by rotation. The
latter, instead, attempts to reconstruct feature tracks related to the same
material point from a certain scene, hence resulting in solving the problem
known as of multi-view matching. Solving this problem involves retrieving
pairwise feature correspondences that needs to be consistent in terms of cycle
consistency and descriptor similarity.

Some of the paths that can be explored for further development are
finding a solution to the eigenvector decomposition problem in case of noisy
data when performing APAP Synchronization, as well as the possibility of
leveraging on geometrical information about the images taken from the scene
during the process of multi-view matching in Evolutionary MatchEIG. A
further possibility is essentially to join the pipeline which through matching
data coming from Evolutionary MatchEIG go to APAP Synchronization.
In other words, the objective is to exploit some additional information about
the correspondences retrieved by Evolutionary MatchEIG to be passed to
APAP Synchronization so to better adapt the image stitching procedure.
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Appendix A

2D Projective Warping

Let and x = [x y ]T and x′ = [x′ y′ ]T be matching coordinate points across
overlapping images I and I ′. A projective warp transforms x to x′ following
the relation

x̃′ ∝ Hx̃ , (A.1)

where x̃ = [xT 1 ] is x in homogeneous coordinates, and ∝ indicates equality
up to scale. The 3 × 3 invertible matrix H is called the homography. In
inhomogeneous coordinates,

x′ =
r1[x y 1 ]T

r3[x y 1 ]T
and y′ =

r2[x y 1 ]T

r3[x y 1 ]T
, (A.2)

where rj is the j-th row of H. The division in (A.2) cause the 2D function
to be non-linear, which is crucial to allow a fully perspective warp.

Direct Linear Transformation (DLT) [54] is the baseline method to esti-
mate H from a set of noisy point matches {xi,x′i}Ni=1 across I and I ′ (e.g.,
established using SIFT matching [28]). First, (A.1) is rewritten as the im-
plicit condition 03×1 = x̃′ ×Hx̃ and then linearized as

03×1 =

 01×3 −x̃T y′x̃T

x̃T 01×3 −x′x̃T

−y′x̃T x′x̃T 01×3

h, h =

rT1rT2
rT3

 , (A.3)

where h is obtained by vectorizing H into a vector. Only two of the rows
in (A.3) are linearly independent. Let ai be the first-two rows of the LHS
matrix in (A.3) computed for the i-th point match {xi,x′i}. The quantity
‖aih‖ is the algebraic error of the i-th datum from an estimate of h. DLT
minimizes the sum of squared algebraic errors

ĥ = arg min
h

N∑
i=1

‖aih‖2 s.t. ‖h‖ = 1 ,
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where the norm constraint prevents the trivial solution. DLT is thus also
referred to as algebraic least squares [54]. Stacking vertically ai for all i into
matrix A ∈ R2N×9, the problem can be rewritten as

ĥ = arg min
h
‖Ah‖2 s.t. ‖h‖ = 1 .

The solution is the least significant right singular vector of A. Given the
estimated H (reconstructed from ĥ), to align the images, an arbitrary pixel
x∗ in the source image I is warped to the target image I ′ by

x̃′∗ ∝ Hx̃∗ , (A.4)

while the position x′∗ can be obtained by converting x̃′∗ in cartesian coor-
dinates. To avoid issues with numerical precision, prior to DLT the data
can first be normalized in the manner of [20], with the estimated H then
denormalized before executing (A.4).



Appendix B

RANSAC

The RANdom SAmple Consensus (RANSAC) algorithm proposed by Fis-
chler and Bolles [19] is a general parameter estimation approach designed to
cope with a large proportion of outliers in the input data. Unlike many of
the common robust estimation techniques such as M-estimators and least-
median squares that have been adopted by the computer vision community
from the statistics literature, RANSAC was developed from within the com-
puter vision community.

RANSAC is a resampling technique that generates candidate solutions by
using the minimum number observations (data points) required to estimate
the underlying model parameters. As pointed out by Fischler and Bolles
[19], unlike conventional sampling techniques that use as much of the data
as possible to obtain an initial solution and then proceed to prune outliers,
RANSAC uses the smallest set possible and proceeds to enlarge this set with
consistent data points [19]. Formally we introduce the consensus set given
an inlier threshold ε and a parameter vector θ as

CSε(θ) = {x ∈ X | r(x, θ) ≤ ε} ,

where r(x, θ) is the residual error of the model obtained from θ at point
x. In conclusion the larger the consensus set CSε(θ) the better the model
obtained from θ. This process is repeated through different iterations by
randomly sampling from the complete dataset the minimum number of points
required to determine the model parameters, aiming to maximize the number
of consensus points.

The number of iterations, N , is chosen high enough to ensure that the
probability p (usually set to 0.99) that at least one of the sets of random
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Algorithm 1: RANSAC
Input: X data, ε inlier threshold
Output: θ∗ model parameter estimate
i = 0, CS∗ = {}, N = +∞
repeat

Select randomly a minimal sample set S ⊂ X of size m
Estimate parameters θ on S
Evaluate consensus set CSε(θ)
if |CSε(θ)| > |CS∗| then

θ∗ = θ

CS∗ = CSε(θ)
v̂ = 1− |CS∗|

|X|

N = log(1−p)
log(1−(1−v̂)m)

i++
until i < N ;
Re-estimate θ on CS∗ (through Ordinary Least Squares)

samples does not include an outlier. Let u represent the probability of se-
lecting an inlier and v = 1−u the probability of observing an outlier. In this
case, N iterations of the minimum number of points denoted m are required,
where

1− p = (1− um)N

and thus with some manipulation,

N =
log(1− p)

log(1− (1− v)m)
.



Appendix C

SIFT Features

The scale-invariant feature transform (SIFT) is a feature detection algorithm
in computer vision to detect and describe local features in images [28]. For
any object in an image, interesting points on the object can be extracted
to provide a “feature description” of the object. Applications include object
recognition, robotic mapping and navigation, image stitching, 3D modeling,
gesture recognition, video tracking, individual identification of wildlife and
match moving.

The detection and description of local image features can help in object
recognition. The SIFT features are local and based on the appearance of
the object at particular interest points, and are invariant to image scale and
rotation. They are also robust to changes in illumination, noise, and minor
changes in viewpoint. In addition to these properties, they are highly dis-
tinctive, relatively easy to extract and allow for correct object identification
with low probability of mismatch. Such points usually lie on high-contrast
regions of the image, such as object edges. They are relatively easy to match
against a (large) database of local features but, however, the high dimen-
sionality can be an issue, and generally probabilistic algorithms such as k-d
trees with best bin first search are used. Object description by set of SIFT
features is also robust to partial occlusion; as few as 3 SIFT features from
an object are enough to compute its location and pose. Recognition can be
performed in close-to-real time, at least for small databases and on modern
computer hardware.

The procedure computes at the end a descriptor vector of 128 elements
for each keypoint such that the descriptor is highly distinctive and partially
invariant to the remaining variations such as illumination, 3D viewpoint, etc.

SIFT feature matching can be used in image stitching for fully automated
panorama reconstruction from non-panoramic images. The SIFT features
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extracted from the input images are matched against each other to find k

nearest-neighbors for each feature. These correspondences are then used to
find m candidate matching images for each image. Homographies between
pairs of images are then computed using RANSAC and a probabilistic model
is used for verification. Because there is no restriction on the input images,
graph search is applied to find connected components of image matches such
that each connected component will correspond to a panorama. Finally
the panorama is rendered using multi-band blending. Because of the SIFT-
inspired object recognition approach to panorama stitching, the resulting
system is insensitive to the ordering, orientation, scale and illumination of
the images. The input images can contain multiple panoramas and noise
images (some of which may not even be part of the composite image), and
panoramic sequences are recognized and rendered as output.



Appendix D

Permutations

Consider a set of n nodes. A set of mi objects out of d is attached to node
i (we say that the node “sees” these mi objects) in a random order, i.e.,
each node has its own local labeling of the objects with integers in the range
{1, . . . , n}. Let us also denote the set of d objects as universe set.

Pairs of nodes can match these objects, establishing which objects are
the same in the two nodes, despite the different naming. The goal is to infer
a global labeling of the objects, such that the same object receives the same
label in all the nodes.

A more concrete problem statement can be given in terms of feature
matching, where nodes are images and objects are features. A set of matches
between pairs of images is given, and the goal is to combine them in a multi-
view matching, such that each feature has a unique label in all the images.

Each matching is a bijection between (different) subsets of objects, which
is also known as partial permutation (if the subsets are improper then the
permutation is total). Total and partial permutations admit a matrix rep-
resentation through permutation and partial permutation matrices, respec-
tively.

A matrix P is said to be a permutation matrix if exactly one entry in
each row and column is equal to 1 and all other entries are 0. A matrix P is
said to be a partial permutation matrix if it has at most one nonzero entry
in each row and column, and these nonzero entries are all 1. Specifically,
the partial permutation matrix P representing the matching between node
B and node A is constructed as follows: [P ]h,k = 1 if object k in node B is
matched with object h in node A; [P ]h,k = 0 otherwise. If row [P ]h,· is a row
of zeros, then object h in node A does not have a matching object in node
B. If column [P ]·,k is a column of zeros, then object k in node B does not
have a matching object in node A.
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Figure D.1: In the center, two nodes with partial visibility match their three common
objects. At the extrema the ground truth ordering of the objects. Each node sees some
of the objects (white circles are missing objects) and puts them in a different order,
i.e., it gives them different numeric labels.

The set of all d × d permutation matrices forms a group with respect
to matrix multiplication, where the inverse is matrix transposition, which is
called the symmetric group Sd. The set of all d× d partial permutation ma-
trices forms an inverse monoid with respect to the same operation, where the
inverse is again matrix transposition, which is called the symmetric inverse
semigroup Id.

Let Pij ∈ Id denote the partial permutation representing the matching
between node j and node i, and let Pi ∈ Id (resp. Pj ∈ Id) denote the
unknown partial permutation that reveals the true identity of the objects in
node i (resp. j) in the universe set. The matrix Pij is called the relative
permutation of the pair (i, j), and the matrix Pi (resp. Pj) is called the
absolute permutation of node i (resp. j). It can be easily verified that

Pij = PiP
T
j . (D.1)

Thus the problem of finding the global labeling can be modeled as finding
n absolute permutations, assuming that a set of relative permutations is
known, where the link between relative and absolute permutations is given
by Eq. (D.1).



Appendix E

Group Synchronization

In a network of nodes, suppose that each node has an unknown state and
that (noisy) measures of differences (or ratios) of states are available. The
goal is to infer the unknown states from the available measures. This is a
general statement of the synchronization problem [43]. Typically, states are
represented by group elements, that is why the problem is actually referred
to as group synchronization. Several instances of synchronization have been
studied in the literature, which correspond to different instantiations of the
considered group. Among them, it is worth citing SE(d) for rigid-motion
synchronization [10], SL(d) for homography synchronization [41] and Aff(d)

for affine matrix synchronization. Please note that SE(d), SL(d) and Aff(d)

are all subgroups of GL(d). Here the attention is focused on synchronization
over SL(3), that will be applied for image registration, over Aff(1) for color
correction and over Id for multi-view matching.

In order to formally define the problem and its solution, let Σ be a group
and let ∗ denote its operation. Suppose that the pairwise relations between
the index pairs (i, j) ∈ {1, . . . , n}×{1, . . . , n} are known, and refer to them as
zij . Synchronization can be formulated as the problem of recovering xi ∈ Σ

for i = 1, . . . , n such that the following consistency constraint is satisfied

zij = xi ∗ x−1
j . (E.1)

The solution is defined up to a global (right) product with any group element,
i.e., if xi ∈ Σ satisfies (E.1) then also xi ∗ y does for any (fixed) y ∈ Σ.

If the known pairwise measures are noisy, the consistency constraint can-
not be satisfied exactly. Thus, as shown in Fig. 1, the searched solution is
the one that minimizes the consistency error :

ε(x1, x2, . . . , xn) =
∑
(i,j)

δ(zij , xi ∗ x−1
j ) ,
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where δ : Σ× Σ→ R+ is a metric function for Σ [8].
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Figure E.1: The synchronization problem. Each node is characterized by an unknown
state and measures on the edges are ratios of states. The goal is to compute the states
that best agree with the measures.

E.1 Synchronization over (GL(d), ·)

In this section we consider the synchronization problem over the General
Linear Group GL(d), which is the set of all d× d invertible matrices, where
the group operation ∗ is matrix multiplication and 1Σ = Id. Let Xi ∈ Rd×d

and Zij ∈ Rd×d denote the matrix representations of xi ∈ Σ and zij ∈ Σ,
respectively. Using this notation, (E.1) rewrites Zij = XiX

−1
j .

Let us collect the unknown group elements and all the measures in two
matrices X ∈ Rdn×d and Z ∈ Rdn×dn respectively, which are composed of
d× d blocks, namely

X =


X1

X2

. . .

Xn

 , Z =


Id Z12 . . . Z1n

Z21 Id . . . Z2n

. . . . . .

Zn1 Zn2 . . . Id

 .
If not all the pairwise measures Zij are available, the input matrix becomes
ZA := Z ◦(A⊗1d×d), where ◦ denotes the Hadamard product, A is the adja-
cency matrix and the Kronecker product with 1d×d is required to match the
block structure of the measures. The n× n adjacency matrix is constructed
as follows: Aij = 1 if the pairwise measure Zij exists, Aij = 0 otherwise.
Accordingly, the consistency constraint writes

ZA = (XX−[) ◦ (A⊗ 1d×d) , (E.2)
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where X−[ ∈ Rd×dn denotes the block-matrix containing the inverse of each
d× d block of X.

It can be shown [7] that

ZAX = (D ⊗ Id)X ,

thus an estimate of X is represented by the eigenvectors of (D ⊗ Id)−1ZA
corresponding to the d largest eigenvalues, where D is the degree matrix
defined as D = diag(A1n×1). This is also called the spectral solution.

E.2 Synchronization over SL(d)

Consider now the Special Linear Group SL(d), that is the set of d×dmatrices
with unit determinant

SL(d) = {R ∈ Rd×d s.t. det(R) = 1} .

Synchronization over SL(3) corresponds to the homography synchronization
problem. Since SL(d) is a subgroup of GL(d), the problem can be addressed
via the spectral solution, which computes the top d eigenvectors of (D ⊗
Id)
−1ZA, that are collected in a dn×d matrix U . In order to obtain elements

of SL(d) from U , each d×d block in U , denoted by Ui, must be scaled to unit
determinant [41], which can be done by dividing Ui by d

√
det(Ui). However,

if det(Ui) is negative and d is even, real roots do not exist; in this case the
determinant can be always made positive by exchanging two columns of U .

E.3 Synchronization over Aff(d)

Let us consider the Affine Group Aff(d), that is the set of invertible affine
transformations in d-space, which admits a matrix representation through
(d+ 1)× (d+ 1) matrices

Aff(d) =

{[
M v

0T 1

]
, s.t. M ∈ Rd×d,v ∈ Rd

}
.

Aff(d) is a subgroup of GL(d+1), therefore the synchronization problem can
be solved by computing the top d+ 1 eigenvectors of (D⊗ Id+1)−1ZA. Since
this approach leads to an algebraic solution, it does not enforce constraints
that matrices in Aff(d) should satisfy.

Specifically, the output matrix U will not have vector [01×d 1 ] in rows
multiple of d + 1. In order to recover X from U it is sufficient to choose
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a different basis for the resulting eigenvectors that satisfies such constraint,
which can be found by taking a suitable linear combination of the columns
of U , as explained in [10].

E.4 Synchronization over Sd and Id

Let us describe the synchronization problem over Σ = Sd. Since Sd is a sub-
group of O(d) and thus a subgroup of GL(d), permutation synchronization
can be addressed with the matrix notation shown earlier. As observed in
[34, 24, 55], the consistency constraint (D.1) can be expressed in a compact
matrix form if all the absolute and relative permutations are collected in
two block-matrices X ∈ {0, 1}m×d and Z ∈ {0, 1}m×m respectively, where
m =

∑n
i=1mi, namely

X =


P1

P2

. . .

Pn

 , Z =


P11 P12 . . . P1n

P21 P22 . . . P2n

. . . . . .

Pn1 Pn2 . . . Pnn

 .
For practical reasons we defined Pij ∈ {0, 1}mi×mj for relative permutations
and Pi ∈ {0, 1}mi×d for absolute permutations. Note that Z may contain
zero blocks: if all the features in image i do not match with any feature in
image j, then Pij = 0. Using this notation, Eq. (D.1) becomes

Z = XXT . (E.3)

Since Z has rank d, the matrix V = XTX contains the largest eigenvalues
of Z and all the other eigenvalues are zero. Thus, in the presence of noise,
we can take the eigenvectors of Z corresponding to the d largest eigenvalues
as an estimate of X [31].

If permutations were total, Eqs. (D.1) and (E.3) would be recognized as
the consistency constraint of a synchronization problem over Sd [34]. How-
ever, in all practical settings, permutations are partial, so in [9] they address
the synchronization problem over the inverse monoid Id.

Consider now the synchronization problem over Σ = Id. Despite the
group structure is missing, [31] shows that a spectral solution can be de-
rived in an analogous way, which can be seen as the extension of [34] to
the case of partial permutations. Moreover, the authors of [31] also propose
an alternative method in terms of an optimization problem for multi-view
matching.
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E.4.1 Optimization problem

In practice, pairwise correspondences contain errors, hence what is being
measured is an estimate P̂ij of the relative permutation between image i and
image j (here we use the hat accent to denote approximate quantities). The
goal is to compute a set of partial permutation matrices {Pij}ni,j=1 such that
the consistency constraint is satisfied and Pij is as close as possible to its
measure P̂ij , namely Pij ≈ P̂ij for all i, j ∈ {1, . . . , n}. A possible approach
consists in considering the following optimization problem

max
{Pij}ni,j=1

n∑
i,j=1

〈P̂ij , Pij〉 s.t. Pij = PiP
T
j , (E.4)

where each optimization variable is constrained to be a partial permuta-
tion matrix. Here 〈·, ·〉 denotes the matrix inner product, i.e. 〈A,B〉 =

trace(ABT ). The cost function in (E.4) counts, for each image pair (i, j),
the number of features equally matched by permutations Pij and P̂ij .

If Ẑ denotes the block-matrix containing the measured relative permu-
tations P̂ij then Eq. (E.4) rewrites

max
Z
〈Ẑ, Z〉 = max

Z
trace(ẐZT ) s.t. Z = XXT (E.5)

⇐⇒ max
X
〈Ẑ,XXT 〉 = max

Z
trace(XT ẐX) , (E.6)

where X is constrained to be composed of partial permutation matrices.
Maximizing the objective function in Eq. (E.6) is a challenging task since the
feasible set consists of binary variables which makes the problem combinato-
rially NP-hard. Moreover, optimizing with respect to multiple permutation
matrices simultaneously increases the difficulty of the problem. For these
reasons, it is common practice to relax some constraints on the optimiza-
tion variables, thus providing tractable approaches that solve the multi-view
matching problem approximately but efficiently. Some examples include the
semidefinite relaxation [14], the low-rank relaxation [55] and the spectral
relaxation [34].
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Appendix F

Evolutionary Game Theory

Evolutionary game theory [49] considers a scenario where pairs of individu-
als, each pre-programmed with a given strategy, are repeatedly drawn from
a large population to play a game, and a selection process allows “fit” in-
dividuals (i.e., those selecting strategies with high support) to thrive, while
driving “unfit” ones to extinction. The general idea is to model each hypoth-
esis as a strategy and let them be played one against the other according to
a fixed payoff function until a stable population emerges. These notions of
hypothesis, payoff, population are here described:

Hypothesis
A fact, derived from observed data, that is assumed to be produced
by the phenomenon to be characterized. We define H = {1, . . . , n} be
the set of n available hypotheses derived from data.

Payoff
A measure of the degree of reciprocal support between two hypotheses.
The payoff is usually expressed as a function π : H ×H → R≥0. Since
payoffs are defined between all the pairs, an alternative notation is the
payoff matrix Π = (πij) where πij = π(i, j), and i and j are hypotheses.

Population
A probability distribution x = (x1, . . . , xn)T over the strategies H.
Any population vector is bound to lie within the n-dimensional stan-
dard simplex ∆n = {x ∈ Rn : xi ≥ 0 for all i = 1, . . . , n,

∑n
i=1 xi = 1}.

The support of a population x ∈ ∆n, denoted by σ(x), is defined as
the set of elements chosen with non-zero probability: σ(x) = {i ∈ H :

xi > 0}.

In order to find a set of mutually coherent hypotheses, we are interested
in finding configurations of the population maximizing the average payoff.
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Since the total payoff obtained by hypothesis i within a given population x

is (Πx)i =
∑

j πijxj , the (weighted) average payoff over all the considered
hypotheses is exactly xTΠx.

Unfortunately, it is not immediate to find the global maximum for xTΠx,
however local maxima, called Evolutionary Stable State (ESS), can be ob-
tained by letting an initial population vector x evolve by means of a rather
wide class of evolutionary dynamics called Payoff-Monotonic Dynamics. In
particular we use replicator dynamics which are governed by the following
equation:

xi(t+ 1) = xi(t)
(Πx(t))i

x(t)TΠx(t)
.
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