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A B S T R A C T

Six Degrees of Freedom pose estimation is a crucial task in computer vision. It
consists in obtaining the parameters that identify the translation and rotation
of an object with respect to a system of coordinates. This task is prominent
in several fields such as: robot manipulation, autonomous driving, scene
reconstruction, augmented reality as well as aerospace.

Usually, the two prevailing methods used to tackle this task are: a direct
regression of the object’s pose from the input image, and regression of the
keypoints of an object using an input image followed by a Perspective-n-Point
algorithm to obtain the correct pose of the object.

These methods have shown great results in different areas, but both present
some drawbacks. Usually the direct regression of a pose is done through
a deep neural network which requires a lot of data to be correctly trained.
Instead, the regression of key points requires costly annotation, and not many
publicly available datasets provide them.

In this work we propose a new method to address this task using differ-
entiable rendering: first, we reconstruct the 3D model of an object with a
differentiable rendering technique. Then, we use this information to enrich
our dataset with new images and useful annotations, and regress a first
estimation of the six Degrees of Freedom. Finally, we refine this coarse pose
with a render-and-compare approach using differentiable rendering.

We tested our method on ESA’s Pose Estimation Challenge using the SPEED
dataset. Our approach achieves competitive results both on the benchmark
challenge and in enhancing the performance of existing state of the art
algorithms.

xix





S O M M A R I O

La stima della posizione a sei gradi di libertà da immagini monoculari è
un compito cruciale per la visione artificiale: esso consiste nell’ottenimento
della traslazione e rotazione di un oggetto rispetto a un sistema di coordinate
fissato, partendo da una sola immagine. Questo compito è molto impegnativo,
dato che una singola immagine 2D non contiene alcuna informazione sulla
profondità. Nell’ultimo anno, questo tema ha ottenuto sempre più interesse
in diversi campi, come viene riportato nell’articolo di Sahin et al. [46].

Fra questi abbiamo: manipolazione robotica, dove un dispositivo automa-
tico deve prendere degli oggetti e piazzarli in una precisa locazione, guida
automatica, la quale beneficia molto dai software di stima della posizione,
usati principalmente per evitare collisioni durante la guida. Un altro cam-
po che si sta interessando molto a questo compito è quello spaziale, come
mostrato nell’articolo di Opromolla et al. [20].

La stima della posizione dei veicoli spaziali è un problema che ha impli-
cazioni in diversi compiti, come: navigazione in formazione, esplorazione
di comete ed asteroidi, manutenzione in orbita e rimozione di detriti. Una
dimostrazione di questo interesse è data anche dalla creazione della “Pose
Estimation Challenge” della ESA [44], dove appassionati di machine learning
da tutto il mondo si sono riuniti per affrontare questo problema di stima
della posizione a sei gradi di libertà.

Solitamente il compito di ottenere la posizione da immagini monoculari
viene espletato usando due note tipologie di approccio: o la posizione e
l’orientamento dell’oggetto vengono regrediti direttamente da un’immagine
data in input ad una deep neural network (da adesso in poi regressione diretta),
oppure vengono identificati alcuni punti chiave dell’oggetto in analisi, con i
quali si ricava la posizione sfruttando un algoritmo Pespective-n-Point (da
adesso in poi regressione di punti chiave).

Questi approcci hanno ottenuto importanti risultati in diversi campi. Infatti
la regressione diretta ha dimostrato di essere un metodo robusto e facile da
applicare a diversi oggetti, ma solitamente risulta essere meno accurato della
regressione di punti chiave. Inoltre la regressione diretta richiede un enorme
quantitativo di dati. Invece, la regressione di punti chiave ottiene eccellenti
risultati se consideriamo l’accuratezza della posizione estimata, ma richiede
l’uso di annotazioni difficili da ottenere, come la vera posizione dei punti
chiave dell’oggetto e un modello wireframe dell’oggetto da riconoscere.

Con questa tesi presentiamo un nuovo metodo per ottenere la posizione
a sei gradi di liberà di un oggetto usando un renderer differenziabile, una
nuova tecnologia per la manipolazione di dati 3D. Con il nostro approccio,
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otteniamo un’accurata ricostruzione del modello 3D di un oggetto partendo
da un piccolo insieme di immagini RGBA. Questo modello può essere usato
per generare una grossa quantità di nuovi dati e annotazioni. Dopodiché
regrediamo una stima grossolana della posizione dell’oggetto, che viene
successivamente rifinita con una tecnica render-and-compare usando di
nuovo il renderer differenziabile.

In questo lavoro, abbiamo dimostrato che questo metodo può sia generare
risultati validi nella competizione indetta dalla ESA [44], sia aumentare la
precisione di altri metodi che rappresentano l’attuale stato dell’arte in questo
campo. Inoltre, abbiamo ricostruito un modello estremamente accurato del
satellite Tango usato nella competizione [44], il quale può essere usato per ge-
nerare un numero virtualmente illimitato di immagini. Una delle più grandi
funzioni presentate in questo lavoro è il fatto che il metodo che presentia-
mo può essere utilizzato anche con altri oggetti. Infatti, mostriamo come è
possibile ricostruire il modello 3D di altri oggetti, e da questa ricostruzione
è possibile applicare l’intero sistema presentato, visto che essa non dipende
in nessun modo dalla modello 3D in input. Il nostro lavoro è strutturato nel
seguente modo:

• Nel Capitolo 2, forniamo una descrizione approfondita del compito di
stima della posa a sei gradi di libertà, con annessa la descrizione degli
attuali metodi dello stato dell’arte;

• Nel Capitolo 3, descriviamo alcune delle attuali librerie di renderer
differenziabile;

• Nel Capitolo 4, descriviamo il nostro sistema per l’ottenimento del
modello 3D, mostrandone la sua efficienza e la sua affidabilità;

• Nel Capitolo 5, analizziamo la stima della posizione a sei gradi di libertà
e proponiamo un possibile metodo per risolvere il compito;

• Nel Capitolo 6, descriviamo e discutiamo il processo di perfeziona-
mento della posizione stimata usando un renderer differenziabile e
mostrandone i suoi punti di forza.

• Nel Capitolo 7, riassumiamo i nostri risultati.

xxii



1
I N T R O D U C T I O N

Six Degrees of Freedom (6DoF) pose estimation from monocular images
is a crucial task in computer vision: it consists in obtaining the translation
and rotation of an object with respect to a fixed system of coordinates from
only one image. This task is very challenging since a single 2D image does
not directly carry the depth information. In the last years, this topic has
obtained a growing interest in different fields, as investigated by Sahin et al.
in their review [46]. Among them, we have robotics manipulation, where
an autonomous device can pick up different objects and place them in the
desired target location, and autonomous driving, which benefits a lot from
pose estimation to avoid collision with other objects during navigation. The
space domain is another field interested in this information, as highlighted
in the survey of Opromolla et al. [20]. Spacecraft pose estimation is a relevant
problem in different scenarios, such as formation flying, comet and asteroid
exploration, on-orbit servicing, and active debris removal. This interest is
further shown by ESA’s Pose Estimation Challenge [44], where machine
learning enthusiasts from around the world joined together to tackle the
6DoF pose estimation problem.

Usually, pose retrieval from monocular images is carried out using two
main types of approach: the pose of the object is directly regressed with
a deep neural network from the image (from now on direct regression), or
some key points of the object are detected, followed by a Perspective-n-Point
algorithm on these keypoints (from now on keypoints regression).

These approaches achieved important results in different fields. Indeed,
direct regression has shown to be robust and easy to apply to different objects,
but it is usually less accurate than keypoints regression. Moreover, direct
regression requires a huge amount of data. Instead, the keypoints regression
obtained excellent results in the accuracy of the estimated pose but requires
costly annotation, such as the ground truth position of key points of the
object and the wireframe model of the object to be recognized.

With this thesis, we present a new method to obtain the 6 degrees of
freedom pose of an object using differentiable rendering, a novel technology
for 3D data manipulation. With our approach, we obtain an accurate 3D
model of an object from a small set of RGBA images, this model then can
be used to generate a huge amount of new data and annotations. Then, we
regress a coarse estimation of the object’s pose, which is finally refined with
a render-and-compare technique using again differentiable rendering.

1



2 introduction

In this work, we prove that this method is competitive in ESA’s chal-
lenge [44] as well as its ability to improve the estimation made by some of the
state-of-the-art methods. Furthermore, we have reconstructed an extremely
accurate model of the Tango satellite used in the challenge [44], that can be
used to generate a virtually unlimited number of new images. One of the
greatest features presented in this work is that this method can work also
with other objects. In fact, we show that is possible to reconstruct the 3D
model of other objects, and from that reconstruction is possible to apply the
entire presented pipeline, since this pipeline does not depend in any way on
the type of 3D model presented.

This work is structured as follows:

• In Chapter 2, an in-depth description of the 6 Degrees of Freedom
pose estimation task is provided, with a description of the current
state-of-the-art methods;

• In Chapter 3, some of the current Differentiable Rendering libraries are
described;

• In Chapter 4 our pipeline for model retrieval is described, showing its
efficiency and reliability;

• In Chapter 5, we analyzed the 6 Degrees of Freedom pose estimation
problem and provided a possible approach to the task;

• In Chapter 6, the pose refinement step using Differentiable Rendering
is discussed and described, showing its strengths;

• In Chapter 7, we summarize our findings.



2
S TAT E O F T H E A RT

In this chapter, the current and known methods used in this field are pre-
sented, highlighting their advantages and disadvantages. This information
constitutes the basics of the method presented in this thesis.

2.1 3d computer vision

Before talking about the state-of-the-art approaches in the field of 6DoF Pose
Regression and Differentiable Rendering, we need to introduce some basic
concepts of 3D Computer Vision. These concepts will allow us to better
understand the task we will approach in the rest of this work.

2.1.1 3D Coordinates

In Computer Vision space can be represented in three ways, shown in Fig-
ure 2.1:

• Meshes: the world is composed by points connected together to form
faces. Usually the faces are triangular and have an associated texture. It
is a sparse representation: we only represent the position of each point
and how they are connected, while we do not describe the void.

• Voxels: the world is divided in unitary portions of space (like for in-
stance cubes). To each of these portions are associated some features,
like for instance, color, material and transparency. It is a dense repre-
sentation: the world is a tensor and we say what is the content of each
subsection of volume (even the empty ones).

• Point Cloud: the world is composed only by points. Each point has
some associated features, like for instance the position and the color. It
is a sparse representation since we only describe the position of a point
and its characteristics while not describing the void.

In our work we will only focus on Meshes representation, since it is the one
mostly used in Computer Graphics and 3D animation. Its main advantages
are that it allows to obtain photo-realistic images and the 3D models are easy
to manipulate and animate.

3
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Figure 2.1: The three possible representations of an object in 3D space: Point Cloud
[left], Voxel [center], triangle meshes [right]. Image from [31]

A mesh can be moved around the world with simple linear algebra opera-
tions on the vertices. We can move it rigidly around the world by summing
to each point a movement vector:xfyf

zf

 =

xsys
zs

+

xmym
zm

 ,
where xf, yf, zf represent the final position of a vertex, xm, ym, zm represent
a movement and xs, ys, zs represent the starting position of that vertex. A
rigid rotation can be generated with a matrix multiplication:xfyf

zf

 = R3×3 ·

xmym
zm

 ,
where R3×3 is an orthonormal 3× 3 matrix. A matrix is defined orthonormal
when its column are perpendicular one another and they have unit norm:

R =
[
R1 R2 R3

]
‖R1‖ = 1 ‖R2‖ = 1 ‖R3‖ = 1
R1 ⊥ R2 R2 ⊥ R3 R1 ⊥ R3

This rotation is around the point [0, 0, 0].
We define the Standard View (or Object View) of a mesh as the position of

a mesh before any deformation and movement. It is the position of each point
as imported from a file or generated from a function. In this representation,
we define the Z axis as the forward-pointing axis, the X axis as the leftward-
pointing one and the Y axis as the upward-pointing one.
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We define as World View the position of all the meshes with respect to the
origin. In this representation, we define the Z axis as the northbound axis,
the X axis as the westbound one, and Y as the zenith-pointing one.

2.1.2 Camera Definition

In Computer Vision, a linear camera is defined as an object that projects the
3D world on a 2D image. This is done in two steps:

1. Transform the World Space to Camera Space: in this representation the
center of the coordinate system coincides with the one of the camera.
This can be done with a rototranslation;

2. Transform the Camera Space in Screen Space: in this representation the
points of the world (viewed from the camera perspective) are projected
on a 2D space.

The camera is defined by 3 parameters. Two of these parameters are
extrinsic parameters that represent the position and the orientation of the
camera in the world coordinates, while the third one is an intrinsic parameter
that represent how the camera projects the 3D points to a 2D image plane.
These parameters can be described with 3 different matrices:

• Camera position: the extrinsic parameter of the camera that represent
the position of the camera in the world space. This parameter is defined
as a 3D vector, where each element represent the position of the camera
on the three axes:

C =

xcyc
zc

 .

• Camera rotation: the extrinsic parameter of the camera that represents
how the camera is rotated with respect to the world coordinates. It is
defined as:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (2.1)

such that R is orthonormal. This matrix is called Rotation Matrix.
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Figure 2.2: The teapot in world coordinates is transformed in camera coordinates via
a rototranslation. In this example from PyTorch3D [45] the axes follow the convention
+X: left, +Y: up, +Z: forward. Other systems may use different conventions

• Calibration Matrix: the intrinsic parameter of the camera that shows
how the camera projects the 3D points of the world to the 2D image
space. It is defined as

K =

αx γ ux 0

0 αy uy 0

0 0 1 0

 ,
where αx = fx/px and αy = fy/py are the focal lengths of the camera
fx and fy scaled by the pixel dimensions px, py, γ is the skew factor
(usually 0), and ux, uy are the principal point coordinates.

Given these matrices, we can project a point of the world to the image with
the following formula:

uv
1

 = K ·

[
R3×3 T3×1

01×3 11×1

]
4×4


xw

yw

zw

1

 = K ·


r11 r12 r13 xc

r21 r22 r23 yc

r31 r32 r33 zc

0 0 0 1



xw

yw

zw

1

 ,

where u, v represent the points in the 2D image space and xw, yw, zw repre-
sent the points in the world space.

The 4 × 4 matrix is composed by the extrinsic matrices of the camera,
and represents a rototranslation from the world coordinates to the camera
coordinates. In this representation, the camera is moved to the center of
the system of reference and it is forward-facing, while the rest of the world
is moved accordingly. This transformation is shown in Figure 2.2. Then,
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Figure 2.3: To speed up computation, only the part of the points that actually fall in
the field of view of the camera is selected. Image from [48]

the calibration matrix K will transform these points in camera view to a
perspective view, adjusting the position of the points in 2D given the distance.
Then, the Z-coordinate is dropped: this projects the 3D space into 2D.

Usually, before projecting the 3D points on the 2D image plane, another
step is taken to speed-up computation: only the portion of the camera space
that will actually fall into the camera’s field of view is taken. This means that
the points outside the field of view of the camera and the ones too close or
too far from the camera are removed, selecting only a volume of space to
keep. Since the points are now much less than before, the computation is
much easier and faster. This process is shown in Figure 2.3.

2.2 six degrees of freedom pose regression

Six Degrees of Freedom Pose regression is a Computer Vision task. Its aim
is to obtain the position and the orientation of an object whit respect to
the camera shooting the image. This usually means that we need to find a
translation T and a rotation R.
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Figure 2.4: Visual representation of the three Euler angles as rotations around the
three axes.

The position T is described as the distance vector between the camera and
the object, ant is usually expressed as:

T =

xy
z


This vector represents the distance between them on the three axes.

We can represent the rotation R in many formats:

• Euler angles: three separate and independent values ψ,φ, θ represent-
ing the roll, pitch and yaw of an object with respect to the camera’s
coordinate system or the roll, pitch and yaw of the camera with respect
to the object’s coordinate system. These two representations are strictly
related. We define the roll ψ as the rotation around the Z axis, the
pitch φ as the rotation around the X axis and the yaw θ as the rotation
around the Y axis. The main advantages of this representation are that
it is very intuitive and easy to understand, and all these variables are
independent one from the other. On the other hand, this representation
is numerically unstable (can lead to gimbal lock, a situation where
two axis of rotation are aligned and cause both an ambiguity on the
representation and a loss of a degree of freedom, as shown in Figure 2.5)
and has a different representation for each different order of rotations
given. In fact, if we fix the magnitude of the rotations and we swap the
order of the rotation, the final orientation may differ. This problem is
represented in Figure 2.6, and can be solved by fixing the conventional
order of rotations.

• Quaternion: a number q ∈ R4, such that:

q = w+ ix+ jy+ kz, w, x, y, z ∈ R

i2 = j2 = k2 = i · j · k = −1 (2.2)
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Figure 2.5: Visual representation of the gimbal lock on the Euler angles representa-
tion. In this image, the order of application of the Euler angles is θ→ φ→ ψ. As we
can see, once the airplane reaches the vertical position (φ = 90◦), the rotation axes
around Y and Z are aligned, the rotation becomes ambiguous and we suffer from a
loss of degrees of freedom on the rotation. Image from [49]

√
w2 + x2 + y2 + z2 = 1 (2.3)

Equation 2.2 tells us how the 4 axis of the system interact with each
other. Equation 2.3 constraints R4 to the vectors having unitary norm.
These values can be mapped to represent a rotation in any other form
shown in this subsection. The quaternion representation has many
advantages: it is numerically stable (no gimbal lock) and the operations
between quaternions are easy to implement. Moreover, we can apply a
subsequent rotation very easily using the quaternion product (which is
non-commutative, as the subsequent rotations). On the other hand, the
quaternion is a very unintuitive representation and its values are strictly
tied together by Expression 2.3, making direct optimization harder.
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Figure 2.6: This image shows how a different order of the same rotations leads
to different final orientations. In the two rows two different orders of rotation are
shown: the first row the rotations are applied in the order x→ y→ z, while in the
second row the rotations are applied in the order z→ y→ x. The magnitude of all
the rotations is of 60◦

• Rotation matrix: a rotation matrix as described in Subsection 2.1.1,
representing the rotation of the object from standard view to camera
view. This matrix is an orthonormal matrix. It takes into account two
steps:

1. The rotation of the object from standard view to world view;

2. The rotation of the object from world view to camera view.

These three rotation matrices are tied together by the following equation:

R = Rwtv · Rstw,

where Rwtv is the rotation matrix of the camera mapping world coor-
dinates to view coordinates, while Rstw is the rotation mapping the
standard coordinates to the world coordinates. Its main advantage is
that it already encodes the transformation used to represent the points
in view space (all other representations need to be transformed in a
rotation matrix to be used for the same purpose), but since it is required
to be orthonormal all its values are strictly tied together and thus very
hard to optimize while preserving orthonormality. Moreover, in this
optimization problem we need to optimize 9 parameters, while the
other representation have 2-3 times less parameters and encode the
same concept.
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• Axis-Angle: the rotation of the object is represented as a unitary vector
v describing the rotation axis, and a rotation magnitude θ around this
axis:

v =

xvyv
zv

 ‖v‖ = 1 θ ∈ (−π, π]

This representation is numerically stable, but it is hard to optimize since
the vector values are strictly tied together.

All these representations are equivalent since they all encode the same in-
formation. Moreover, you can switch from one representation to another
easily.

Usually, to have a simpler process, we suppose either that the camera or
the object is placed in the world in standard position, and everything else is
placed accordingly. This way the unknowns are easier to determine: if the
camera is in standard position, we need to find the position and the rotation
of the object in the world; if the object is in standard position, we need to
find the position and the rotation of the camera.

2.2.1 Previous works on 3D pose regression

A typical pipeline for 3D pose regression with deep neural networks is
composed by 3 steps:

1. 2D object localization or segmentation;

2. Regression of a first approximation of the pose;

3. Pose refining.

Moreover, the various approaches can be categorized on the data representa-
tion used:

• Classification: instead of regressing the continuous space rotation or
position, a discrete approach is taken. This has the advantage to allow
easy-to-implement neural networks that exploit the strength of the deep
learning approach. On the other hand, a classification leads to two
different problems: firstly, the classes are not totally independent one
another, but are tied together by their proximity. Moreover, a classifica-
tion approach will lead to a loss of precision, since the value estimated
is not a precise value, but a set of values.

• Regression: the neural network regresses directly position and rotation
of the object in a continuous way;
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• Keypoints: instead of directly obtain the 6DoF pose estimation from
the image, some keypoints of the object are regressed, and then the
position and rotation of the object is obtained from them.

Classification:
The first approach in this field is the one of Massa, Aubry, and Marlet
(2014) [4]. In their approach the authors propose to recover the azimuth on
the Pascal3D+ dataset [7]. It is a standard CNN pre-trained on ImageNet [11],
followed by a decoder. This decoder is dependent on the experiment: in fact
they proposed three different types of experiments:

1. Full classification: they classify both the object type and the predicted
azimuth of the camera. To do so, they used a softmax layer that simul-
taneously classify the object type and the azimuth.

2. Full Regression: they regress both the continuous rotation azimuth and
the object class. To do so, a linear layer is used.

3. Azimuth regression, Object type classification: this neural network has
two different branches: one that classifies the object type with a softmax
layer and one that regress the azimuth with a linear layer.

The work of Tulsiani and Malik (2014) [6] expands the first experiment
of [4] by obtaining also the elevation and the in-plane rotation of the camera.
The loss function used is the Cross Entropy function. Moreover, they use a
Fully Convolutional Neural Network to identify the keypoints of the object
using also the information on the pose.

One turning point for viewpoint estimation was provided by Su et al.
(2015) [12]: in their paper they proved that a synthetic dataset could be used
in this field to provide a more robust learning. They outperformed [6] on the
benchmark of Pascal3D+ with a similar net trained on ShapeNet [8], showing
the strength of this approach. Moreover, they improved the cross-entropy loss
function adding a weight that penalizes predicted bins that are further from
the correct one.
Regression:
The first work in 6 Degrees of Freedom pose estimation with a regression
approach is the one of Kendall, Grimes, and Cipolla (2015) [10]. The main task
of this neural network is to solve a relocation problem. This neural network
is a simple CNN that directly and simultaneously regresses both a position
vector v and a rotation quaternion q of the camera from a zero position. They
used Mean Squared Error as loss function, with no normalization on the
quaternion.

The approach of Mahendran, Ali, and Vidal (2017) [19] is fairly similar to
the one of [6] [12], but instead of handling the problem as a classification
task, they approached it used regression: their neural network outputs the
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axis-angle representation of the viewpoint for each object type, joint with a
classifier to determine the object depicted. Then the rotation selected is the
one corresponding to the predicted object. They used both a Mean Squared
Error loss and a Geodesic loss to train their architecture for rotation regression.
Their result is comparable with [6] and [12].

In the work of Xiang et al. (2017) [24], the network is composed by a
VGG16 [5] backbone, followed by 3 branches:

1. Semantic Labeling: each object’s silhouette is recognised.

2. Translation Regression: instead of directly regressing the position of
the object, the center 2D direction of each pixel and its depth is found.
Then, each pixel votes for the direction in which the center is and the
position with more votes is used. The pixels that voted for the actual
center are considered to be the inliers of that object, and the Z center
coordinate is the mean of their predicted depth. The inliers also define
the 2D bounding box of the object.

3. Rotation regression: The output of the CNN backbone is pooled via
RoI-pooling thanks to the 2D bounding box found in Translation branch.
Than, the pooling layer is fed into a Fully Connected Neural Network
that regress the 4 parameters of the rotation quaternion for each class.
The loss can be calculated in two different ways:

• The 3D model is roto-translated both by the predicted amount and
the ground-truth amount. The loss is the Mean Squared Error of
the distance between the corresponding points of the 3D model;

• The 3D model is roto-translated by the predicted amount and by
all the possible correct roto-translations (in the case of symmetrical
objects). Then, only the closest ground-truth mesh is used, and
the Mean Squared Error between the position of the vertices is
back-propagated.

A scheme of this neural network can be seen in Figure 2.7
In their work, Zhou et al. (2018) [28] introduce a 6D vector representation of

the rotation matrix: instead of directly regressing a 3× 3 rotation matrix with
the risk of regressing an invalid rotation matrix (i.e. non-orthonormal), they
directly regress 6 values. The first three values are normalized against each
other and are used to form the first column of the rotation matrix, while the
last three values are made perpendicular with respect to the first column, and
then normalized, forming the second column of the rotation matrix. The third
column is the cross-product of the first two columns. This allows to regress a
continuous function instead of a discontinuous one: as the authors show in
their work, the Euler angles representation has three different discontinuities
at 180◦, while the quaternion/axis-angle representation has one discontinuity
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Figure 2.7: The scheme of PoseCNN [24]

at 180◦. This representation on the other hand is continuous, and thus easier
to regress for a neural network.
Keypoints:
The work of Pavlakos et al. (2017) [21] is different: they built a Fully Convolu-
tional Neural Network to predict only the keypoints of the object and used
the EPnP algorithm [1] on these points, joined with a deformable part CAD
model. They minimize the L2 loss of the heatmap of the predicted keypoints,
whose ground truth is a 2D Gaussian centered in the keypoint with variance
1. There is no direct prediction of viewpoint, which is only inferred trough
the EPnP algorithm.

The approach of Rad and Lepetit (2017) [23] consists in a first step of object
localization using a coarse-to-fine segmentation. Then, the 2D position of
the vertices of the 3D bounding box is regressed. Finally, the camera pose
is obtained from these point using EPnP algorithm [1]. The error function
used is the mean squared error on the position of the projection in 2D of
the 3D bounding box points. Rad and Lepetit also handle the case of the
symmetric objects: they restrict the prediction in symmetric objects to a subset
of values, then they use a classifier to tell if the object is outside this range. In
the latter case, they mirror the image and adjust the output angle accordingly.
Moreover, they introduce a rendering approach to refine the pose: given the
predicted position, they render a silhouette or RGB image of the object in
the predicted position. This rendered image is fed with the original image to
another neural network, that predicts an update of the predicted pose.
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Figure 2.8: An example of two common pipeline involving differentiable renderer;
a simple optimization and one self-supervised neural network. This scheme come
from Kato et al. [42]

2.3 differentiable rendering

2.3.1 Introduction

In the last years, the effectiveness of 3D estimation methods that rely on
supervised training using deep learning has been proven by different works.
All of these methods have proved to require costly annotations, hence Dif-
ferentiable Rendering had seen a growing usage and interest since it can
be used to obtain a great number of data with different annotations. Never-
theless Differentiable rendering methods are not easy to apply, reason why
there is a plethora of them. Therefore to use the right method it is required
a strong knowledge of the various existing methods, which proprieties of
the differentiable renderer are required to the method, which type of data
can be usable, etc. Moreover different libraries that support Differentiable
Rendering methods have been developed and each one support different type
of functionalities, or have different computational requirement constraints.

2.3.2 Definitions

Before dealing with the topic let’s define some of the basic concepts that we
will use through this thesis:
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• Rendering: is the process of generating images of 3D scenes defined by
geometry, materials, scene lights, and camera properties.

• Differentiable rendering: it represents an ensemble of techniques that
tackle the integration of a rendering for end-to-end optimization, by
obtaining useful gradients of the rendering process.

• Rendering function: Is a function r(·) that takes as input the parameters
that identifies shape S, camera C, materialM and lighting L to give as
an output an image I:

I = r(S,C,M, L)

2.3.3 Method of approximation

One of the main discriminators among methods is the type of data repre-
sentation (as seen in Figure 2.1). The work presented in this thesis mainly
focuses on Meshes representation, so here are defined some of the most
famous methods using mesh as input representation. Nowadays there are
different methods that allow to obtain a differentiable rendering pipeline
using mesh as input. Among them, there are two categories that obtained
great results. These two categories can be distinguished from which part of
the rendering pipeline they approximate: the first family approximates the
backward pass of the rendering process (approximated gradients), while the
second family approximates the forward pass (approximated rendering).

2.3.4 Approximated gradients

Loper and Black [3] (2014) developed the first general-purpose differentiable
renderer, called OpenDR. Indeed, until then, no one developed a DR since the
rendering process was not differentiable. Loper and Black state that all the
renderings do an approximation of some kind, so doing an approximation to
make a renderer differentiable could be really useful and this approximation
does not imply a loss in the accuracy of the renderer. However, since OpenDR
was created to be a differentiable renderer of general-purpose, it created
different problems for the use of differentiable renderer with neural networks.

To solve these problems Kato, Ushiku, and Harada [18] (2017) propose a
differentiable renderer where the gradient that was computed by the renderer
was specifically designed for neural networks. The differentiable renderer
create by them was called Neural 3D Mesh Renderer, or shortly N3MR. Kato,
Ushiku, and Harada illustrate the problem given by the rasterization process
during the standard rendering pipeline, how we can see from Figure 2.9. The
color Ij of the pixel Pj with respect to the movement of xi is a step function
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Figure 2.9: Effect of rasterizzation on a standard image or on a blurred image. This
image comes from [18]

because the operation to compute the color is discrete. So, in N3MR this
discrete process was replaced with a gradual change, as we can see in point
d of the Figure 2.9. This is obtained replacing

∂Ij

∂xi
(2.4)

with
δIj

δxi
(2.5)

Where δIj is the difference in color between the color post-movement and
pre-movement, like this:

δIj = I(x1) − I(x0) (2.6)

Similarly δxi is defined in this way:

δxi = x1 − x0 (2.7)

2.3.5 Approximated rendering

Rhodin et al. [16] (2016) tried a different solution: approximate the rasterizza-
tion process. Their work follows this idea: represent opaque objects through a
translucent effect that gives a blurred effect to the image. Specifically, each ob-
ject has a density parameter where the maximum value is at the center of the
object and, follow a smooth Gaussian distribution, loses density moving away
from the center. The effect of this approach can be seen in the Figure 2.10.
Thanks to this approximation, we can remove the sharp edges and corners
from the figure ensuring differentiability.

Liu et al. [34] (2019) expanded the previous idea creating the framework
called Soft Rasterizer. This framework’s differentiable renderer applies a blur
to the image in the rasterization process, like Rhodin et al. In addition, they
create a probabilistic system where each triangle projected into the pixel can
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Figure 2.10: An example of the blurred effect on a image, This image comes from [16]

contribute to the pixel’s color. In this way, the color of the pixel is obtained
by a weighted sum of the color of each relevant triangle for the pixel.

Chen et al. [30] (2019) proposed instead a totally different approach to
approximate the rasterization process with their DIB-R. Their idea is to deal
independently with foreground pixel and background pixel. The foreground
pixels are determined only by one face with a weighted interpolation of his
local proprieties, while the background pixels are a distance-related function
of global geometry. For the value of the foreground pixel Ii we compute a
barycentric interpolation using the value of the face’s vertex attributes (the
face fi is the one that contains the pixel) as follow:

Ii = w0u0 +w1u1 +w2u2 (2.8)

For the value of the background pixel pi ′ , the ones that aren’t covered by any
faces, they compute a distance-related probability Aj

i ′ that assign each face
fj to pi ′ . Then they combine the probabilistic influence of each face in the
following way:

Ai ′ = 1−

n∏
j=1

(1−Aj
i ′) (2.9)

In Figure 2.11 we can see this concept of foreground and background pixels.
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Figure 2.11: In this figure we can see a foreground pixel and a background pixel
and the various attribute used to compute their value. This image comes from Chen
et al. [30]





3
D I F F E R E N T I A B L E R E N D E R I N G L I B R A R I E S

The first part of this thesis involved the evaluation and selection of the
differentiable rendering library that better suits the requirements of this work.
We recall that here, with a differentiable rendering library, we mean a library
that implements a renderer (i.e., a function producing an output image given
the environment definition), and it also provides the derivative of the image
with reference to the end parameters (i.e., the gradients). Among the few
libraries publicly available, we tested the two of them based on PyTorch’s
deep learning framework: Kaolin and PyTorch3D.

3.1 kaolin

Kaolin is a library developed by the research team of NVIDIA [32], and
released at the end of 2019 that is currently in beta version. Kaolin falls
within the category of differentiable rendering that approximated the render-
ing process. Specifically, this is obtained through the approximation of the
rasterization process. The library is powerful and versatile and it has been
developed to support the following specification:

• Support for different data representation of a 3D model, including:

– triangle mesh,

– quadratic mesh,

– point cloud,

– Voxel grid,

– Signed Distance Function (SDF)

• Use of the original implementation for some famous differentiable
rendering algorithm with approximated rasterization, namely:

– Neural 3D Mesh Renderer [18]

– Soft Rasterizer [34]

– DIB-Renderer [30]

• Support for a huge collection of different state of the art architectures
that exploit differentiable rendering, including:

– Dib-r [30]

– PointNet [22]

21
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– PointNet++ [22]

– GResNet [41]

– 3D-GAN [17]

– Pixel2Mesh [27]

– GEOMetrics [39]

– Occupancy Networks [36]

3.2 pytorch3d

PyTorch3D [45] is a differentiable rendering library developed by Facebook
Research. It provides support to operations both on 3D triangle meshes, point
cloud, and voxels. In this work, only 3D triangle mesh representation will be
discussed, since it is the representation used in all the experiments depicted
here.

PyTorch3D’s mesh differentiable renderer is based on the one described
in [35], and it is a rendering process that approximates the rendering function.
In this library, the renderer has been re-implemented, allowing a two-step
rendering:

1. The first step is the rasterization step: the meshes are transformed
from world view to camera view and projected onto the image plane.
Each face is expanded via a sigmoid blur: this allows the rendering
process to be differentiable, removing the step introduced on each edge
by standard rasterization. Moreover, each pixel of the final image is
assigned with more than one face, allowing the blending with more
faces;

2. The second step is the shading step: the information of the renderiza-
tion step is blended together and lighting is applied. This allows the
generation of the final 2D image.

Splitting the rendering process has the main advantage that any user can
rewrite one of the two steps (if not both), thus the rendering process is easier
to modify than with a monolithic architecture.

PyTorch3D’s built-in rasterizer is written both in CUDA, C++ and Python:
this allows to use the renderer also on CPU-only, even if the rendering process
is slow. On the other hand the many built-in shaders use standard PyTorch
operations: this allows the use of the full renderer both on GPU and on CPU.
The built-in PyTorch3D’s shaders are:

• Soft Phong Shader, that applies Phong shading in a differentiable way
(blending all the faces on the proposed Z-buffer together, instead of the
first one only);
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• Hard Phong Shader, that applies Phong shading in a non differentiable
way;

• Soft Gouraud Shader, that applies a differentiable version of the Gouraud
shading process;

• Hard Gouraud Shader, that applies a non-differentiable version of the
Gouraud shading process;

• Soft Silhouette Shader, that only renders the silhouette of the 3D model,
without applying lightning.

The non-differentiable shaders shown here allows the renderer to be used as
a classic renderer, and to generate true rendered images.

In PyTorch3D all the main 3D supervision losses are implemented:

• Chamfer distance;

• Mesh Normal Consistency;

• Mesh Laplacian Loss;

• Mesh Edge Loss.

Moreover, it supports both the use of perspective cameras and orthographic
cameras, that are described with a right-handed convention with the X-axis
pointing to the left of the direction the camera is facing, the Y-axis pointing
above the camera and the Z-axis pointing the same direction the camera is
facing. The library supports both point lights and directional lights.

PyTorch3D allows to have an heterogeneous batching of meshes: in fact it
support the parallel renderization of many different 3D models in the same
forward step. This is shown in Figure 3.1, where four different 3D models are
rendered at the same time. This is made possible by the joint work of many
different representations of vertices, faces and textures inside the wrapper
Meshes.

Finally, this library comes with a built-in dataloader for two classical 3D
datasets (ShapeNet [8] and R2N2 [13]), functions to load and store 3D objects,
many tutorials to learn how to use it and a well documented GitHub. This
library is now in Beta version 0.4.0.

3.3 test of differentiable rendering libraries

First, we focused on replicating, within the Kaolin and PyTorch3D frame-
works, one key experiment presented in the DIB-R paper [30], which involves
learning to extract 3D models from 2D images of objects. The ability of per-
forming this task reliably is of particular importance in the work presented in
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Figure 3.1: Example of heterogeneous rendering. The four images are from 4 dif-
ferent models with a different number of vertices and faces, and represented with
different translations and rotations. The number of vertices and faces are, from left
to right: 2057 vertices, 8076 faces; 45099 vertices, 169222 faces; 12543 vertices, 46434

faces; 3914 vertices, 13964 faces. These models have been rendered with PyTorch3D’s
renderer using Hard Phong Shader. 3D models and textures from ShapeNet [8]

Figure 3.2: The pipeline proposed by [30] was used to obtain the 3D model from a
single 2D image. The image was taken by Kato et al. [42]

this thesis and it is thus a requirement for the differentiable rendering library.
Kaolin already comes with a set of pre-trained neural networks, also called
model zoo, which makes prototyping easy.

This experiment, already documented in the paper of Chen et al., takes as
input a dataset composed of 24 images generated from various 3D models.
All of these models come from the ShapeNet dataset [8], specifically from
13 categories: Airplane, Bench, Dresser, Car, Chair, Display, Lamp, Speaker,
Rifle, Sofa, Table, Phone, Vessel. For each object that belongs to one of these
categories, we rendered 24 images using Blender [26], where each image was
taken from 24 different azimuth angles (one every 15 degrees) but with the
same elevation angle, camera, and illumination parameters; each image has
a size of 64× 64 pixels. We split the dataset following the same procedure
used by Yan et al. [25]: the training set take always the first 5 images of each
model as input image. This image is paired with one other view out of the 19

left, picked randomly, which is not input in the neural network but only used
in loss calculation. This allows the training procedure to have two different
views of the same object to learn better the 3D shape of it.
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Category Train Validation

Airplane 15371 809

Bench 6900 364

Dresser 5973 315

Car 28484 1500

Chair 25765 1356

Display 4161 219

Lamp 8808 464

Speaker 6148 324

Rifle 9013 475

Sofa 12057 635

Table 32334 1702

Phone 3997 211

Vessel 7368 388

Table 3.1: Number of images for each split of the dataset.

The architecture presented by Chen et al. which is the same presented by
Kato, Ushiku, and Harada [18] Liu et al. [34], consists of an encoder-decoder
structure that takes as input a 2D image, and outputs the position and color
of each vertex of a sphere. The network learns to deform the sphere into the
target 3D object that is contained in the image given as input. For the encoder,
we use 3 convolutional blocks followed by 3 linear blocks. A convolutional
block is composed by a convolutional layer with kernel size of 5, stride of 2

and respectively 64/128/256 channels, followed by a Batch Normalization
layer and a max pooling layer. Instead, each linear block is composed by a
fully-connected layer with 1024 neurons, a Batch Normalization layer (aside
from the last layer), and a ReLU activation function.

The decoder part of the network consists of two independent branches,
the spatial decoder and the color decoder, each composed of three fully
connected layers with 1024/2048/1920 neurons. The output of the spatial
decoder represents the 3 spatial coordinates of each vertex of the 3d sphere,
while the output of the color decoder provides the RGB color of each vertex.

From the outputs of the decoder, we generate a 3D model, which is given
in input to the differentiable renderer with camera parameters. This step
will generate the 2D image to compare to the input one. The differentiable
renderers used in the two experiments are:



26 differentiable rendering libraries

• Kaolin: the renderer is configured in "Vertex Color", one of the modes
available for the renderer. The output obtained is visible in Figure 3.3.
The renderer outputs a 64× 64 RGB image.

• PyTorch3D: The renderer used is configured as follows:

– Camera: perspective camera with FoV of 60◦;

– Output image size: 64× 64;

– Blur radius: 1× 10−4;

– Z-buffer (faces per pixel): 50;

– cull back side of the faces;

– no perspective correction;

– shading: Soft Phong Shading, as described in [45].

We render two 2D images from the 3D model predicted, one using the same
position of the input image of our network and one using the annotations on
the pose of the second image described before. In this way, we can compute
the loss function using both the 3D model and 2D rendering. Using a second
image that was not seen by the network we force the neural network to try to
obtain a more complex 3D model: if this second image is not used, the neural
network will reduce the predicted shape to a flat model.

Following 3.5, we use a loss composed of 4 terms to train the network,
which are:

• Color loss (Equation 4.2)

• IoU loss (Equation 4.1)

• Smoothness loss

• Laplacian loss

The results obtained are not at the same level as the paper, but proved
themselves to be able to obtain a good 3D model from the input images. In
fact, as we can see in the Figure 3.3 the result obtained was visually good
and similar to the real object.

3.4 reflections

After testing both the libraries we decided to adopt PyTorch3D in our experi-
ments. This decision is not driven by the result of our experiment, since both
libraries had provided optimal results, and neither for the functionalities of
the renderer, since both work flawlessly. This choice was dictated mainly by
the fact that the code presented by Kaolin for the replica of the model present
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Figure 3.3: First row: input image of the network describe in Chapter 3.2. Second
row: rendered image from the 3D model obtained by the input image in the first
row, but with a different pose

in their model zoo was not functioning correctly. Indeed, with the latest ver-
sion of the dependencies (version 0.9), they have completely deleted several
of the different features shown in section 3.1, including the one provided
by the different model zoo. So, since the main strength of Kaolin was not
available we have chosen PyTorch3D, because:

• it was easier to use, thanks to their accurate and complete documenta-
tion

• it’s core functionalities, like for instance their class use to handle the
data representations or their differentiable renderer was flexible, easy
to use and modify

3.5 losses

3.5.1 Smoothness Loss

The smoothness loss used in this test is the same used also by [30] [18] [34].
As the name suggests, the goal of this is to encourage the network to create a
smooth surface, reducing the number of predicted corners and giving a more
natural appearance.

Let E be the set of all the edges in the 3D model and θi be the angle that
exists between two adjacent faces sharing the edge ei, then the smoothness
loss is defined as:

Lsm =
∑
ei∈E

(cos(θi) + 1)2 (3.1)

As we can see in Figure 3.4, this loss helps the whole 3D model to remove
the edges in excess. But if we give too much weight to this loss or we do not
counterbalance it with another loss, we may end with a model that loses its
main feature and tend to become too smooth.
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Figure 3.4: In this figure from the paper Kato, Ushiku, and Harada [18] is shown
the effect of the smoothness loss on the reconstruction of a CTR monitor. Left: target
image, middle: model predicted without smoothness loss, right: model predicted
with smoothness loss

3.5.2 Laplacian Loss

This loss follows the same design of [30] [27]. It promotes neighbour vertex
to move consistently with each other. In this way, we constraint the vertices
to not move potentially inside the mesh itself.

For each vertex v that belongs to the 3D model, let N(v) be the set of the
neighbour vertices of v and δv the predicted translation of the vertex v, then
the Laplacian loss is defined as follows:

Llap =

δv − 1

|N(v)|

∑
v∈N(v)

δv ′

2

(3.2)

3.5.3 Edge Loss

This regularization loss has been defined in [27]. Its goal is to minimize the
average length of the edges. This way, the final mesh is smoother and has
fewer imperfections. This also allows for less interpenetration of the meshes
and fewer outlier vertices.

Let V be the set of all vertices of a 3D model and N(v) the set of all adjacent
vertices of v. Then, the edge loss is defined as follows::

Ledge =
∑
v∈V

∑
k∈N(v)

‖v− k‖22 (3.3)
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The 3D model is the starting point for all the pipelines of rendering: without
the information on the 3D model we cannot render any image. Until few years
ago, the gap between the 2D image and the 3D world was wider: a 2D image
could be obtained from a 3D object, but the opposite transformation was
very hard to achieve. On the other hand, the development of differentiable
rendering techniques allowed to bridge the gap: the transformation from
3D object to 2D image now can be done in a differentiable way. This allows
us to use the 2D information (joint with the knowledge of the position and
rotation of the object) to obtain a 3D model that can be then employed in
many different techniques. This pipeline is very simple and efficient, and
allows us to obtain a good approximation of the true shape of the 3D object
shown in the images.

4.1 model structure

The goal of the neural network described in this section is to regress the
position and color of the vertices of a 3D object. The starting model is an
icosphere with 10242 vertices and 20480 faces. We choose to optimize on
an icosphere since it has central symmetry and the vertices are equally
distributed on the surface. Moreover, PyTorch3D has a built-in function
that automatically creates it. This icosphere can be pre-processed so that its
initialization is more similar to the object to obtain, thus speeding up the
process. We represent both the vertices offset from this sphere and their color
as a tensor of size (#vertices, 3). The offset tensor is initialized to 0, while
the color tensor is initialized to 0.9.

The camera is set up to be a Perspective Camera. The Field of View of this
camera must be calculated from the calibration values of the camera used to
take the images that will be used in the process. The FoV must be regulated
correctly, since a different value will put the the object in a different position
with respect to the one in the ground truth image, making the rendered
image different from the source one.

The light used for rendering is a directional light. The direction of the light
is image-dependent: we process the image via a neural network to get an
approximation of the light direction. This neural network is trained jointly
to the 3D model prediction, and it is composed by a ResNet50 [9] backbone
pre-trained on ImageNet [11], followed by one fully connected layer with

29
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Figure 4.1: Icospheres with different numbers of vertices and faces. The leftmost is
the base one, while the others are generated from that one by subdividing each face
in 4 other faces. From left to right: 12 vertices and 20 faces; 42 vertices and 80 faces;
162 vertices and 320 faces; 10242 vertices and 20480 faces.

Figure 4.2: The scheme of the neural network used.

1024 neurons and ReLU activation, and an output fully connected layer with
3 neurons and linear activation. The l are fixed to bight’s colors are fixed to
be:

• Ambient color: (0.4, 0.4, 0.4)

• Diffuse color: (0.6, 0.6, 0.6)

• Specular color: (0.0, 0.0, 0.0)

We then process all this information via our Differentiable Renderer. The
renderer used is configured as follows:

• Output image size: 384× 384, then cropped to 384× 240;

• Blur radius: 1× 10−4;
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• Z-buffer (faces per pixel): 100;

• Cull back side of the faces;

• No perspective correction;

• Shading: Soft Phong Shading, as described in [45].

This branch of the net takes as input:

• The current 3D model;

• The position of the camera T in the form of a 3-element vector;

• The rotation of the camera R in the form of a 3× 3 rotation matrix;

• The lighting direction predicted from the neural net.

This branch outputs an RGBA image that can be confronted with the input
image.

The loss used to regress the object’s shape and color is:

Ltot = LIoU + λcolLcol + λedgeLedge,

where LIoU is the Intersection Over Union (IoU) loss, Lcol the Color loss and
Ledge the Edge Length Regularization loss (described in Subsection 3.5.3).

The Intersection Over Union loss LIoU was proposed in [15] and is defined
as:

LIoU = 1−

∑
v∈V S1(v) · S2(v)∑

v∈V S1(v) + S2(v) − S1(v) · S2(v)
, (4.1)

where V = {1, ..., N} is the set of all pixels in the silhouettes, and S1 and S2 are
the two silhouettes we want to compare. It is a differentiable version of the
Intersection over Union metric used in segmentation tasks. This metric tells
us, given two silhouettes, how much of the first one overlaps the second one
(intersection of the two silhouettes), with respect to the total image covered
by at least one of the two silhouettes (union of the two). Since intersection
and union cannot be calculated in a differentiable way, we calculate an
approximation of these values:

• The Intersection is calculated as the product pixel-wise between the two
silhouettes. These values are then summed together.

• The Union is calculated as the sum pixel-wise between the two silhou-
ettes. Then, the intersection is subtracted to eliminate the overlapping
of the two silhouettes, that otherwise will be counted twice.



32 3d model reconstruction via differentiable rendering

Figure 4.3: Visual representation of how the Intersection over Union loss is calculated.
Image from [14]

To get the IoU score, we then divide the intersection by the union. Since we
want to maximize this value, while we want to minimize the loss, we subtract
this value to 1, to then minimize the output value. This loss provides a very
strong learning signal, it is very robust and also is very easy to understand.

The color loss Lcol is defined as the Mean Absolute Error between each
channel of the two images:

Lcol =
1

|C|

∑
c∈C

1

|P|

∑
p∈P

|I1(c, p) − I2(c, p)| (4.2)

where C is the set of the color channels of the image, P is the set of all pixels
of the image and I1, I2 are the two images to compare. The main advantage
of Mean Absolute Error is that it provides a good learning signal also on
errors smaller than 1, thus accelerating the learning in this setting, since each
channel’s pixel’s value is scaled to be in [0, 1].

In these experiments, the values used are λcol = 1 and λedge = 100. The
Laplacian regularization loss (Subsection 3.5.2) and smoothness regularization
loss (Subsection 3.5.1) are not used in this experiment since they tend to round
the edges of the predicted mesh a lot. Moreover, the edge loss proved itself
to be enough to smooth the mesh’s surface.
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Figure 4.4: Image showing the two spacecrafts of the PRISMA mission: Tango (left)
and Mango (right). Image from [44].

4.2 speed dataset description

To perform this task, we used the SPEED dataset [38]. This dataset is provided
by ESA for its Pose Estimation Challenge [44], a competition held on their
Kelvin website that aims to obtain a 6 Degrees of Freedom pose estimation
of the Tango satellite. This Tango satellite is one module of ESA’s PRISMA
mission [51], launched in 2010. The goal of the PRISMA mission was to
demonstrate some sensing and navigation techniques in low Earth orbit: to
do so, the mission was launched as a two-satellite mission: one satellite (Main
or Mango) is highly maneuverable and has a lot of sensors, while the other
(Target or Tango) is a very simple satellite that can only follow its orbit and
at most stabilize it (to avoid spinning out of control). Mango’s goal was to
perform many maneuver around Tango, both in close and in long range.

This dataset is based on this mission’s concept: since a camera is a very
simple and lightweight sensor, it can be integrated easily in a satellite without
impacting too much on the payload of the launch. In this dataset, on the other
hand, no image from the actual mission is used. This dataset is composed by
in 4 different subsets:

• train dataset, composed of 12000 rendered images with annotation on
the pose of the satellite;

• test dataset, composed of 2998 rendered images without annotations
on the pose;



34 3d model reconstruction via differentiable rendering

Figure 4.5: Some samples of the images of SPEED’s rendered datasets.

• real dataset, composed of 5 real images of the satellite with the annota-
tions on the pose;

• real_test dataset, composed of 300 real images of the satellite without
annotations on the pose.

All the images provided are in black and white (B/W). The annotations on
the pose are composed of a translation vector representing the position of the
satellite with respect to the camera and a quaternion representing the rotation
of the satellite with respect to the camera. The real dataset was created by
snapping photos to a replica of the satellite in a studio, while the rendered
dataset was generated from a 3D model of the satellite. While the real datasets
have only images with a black background, the rendered dataset has both
images with a black background and images with an earth background. This
background was taken from the real images shot by Himawari 8 mission [50].

The camera used both for the real images and the rendered images has the
parameters shown in Table 4.1. From these values we can calculate the Field
of View (FOV) of the camera (in radians [rad]) as:

FOVu = 2 arctan
Nu · du
2fx

(4.3)

FOVv = 2 arctan
Nv · dv
2fy

. (4.4)

All the elements of this formula are described in Table 4.1
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Figure 4.6: Some examples of the images of SPEED’s real datasets.

Parameter Description Value

Nu Number of Horizontal pixels 1920 [px]

Nv Number of Vertical pixels 1200 [px]

du Horizontal pixel dimension 5.86× 10−6 [m]

dv Vertical pixel dimension 5.86× 10−6 [m]

fx Horizontal focal length 0.0176 [m]

fy Vertical focal length 0.0176 [m]

Table 4.1: Parameters of the camera used in the SPEED dataset.

4.3 data preparation

Since the SPEED dataset is composed only by B/W images, we need to add
the silhouette annotation to the images. This will provide our net the needed
information to understand the shape of the satellite via the Intersection over
Union loss (described in Equation 4.1). We added this annotation manually
using GIMP [40] to a subset of 215 images from the rendered train set. These
images are chosen among the ones whose Z-distance was less than 10m.
Moreover, we colored the background with white color, so that the output
image of the renderer is as close as possible to the one provided in input:
in fact, PyTorch3D colors the background of the image with a white color
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Figure 4.7: Some samples of the images used to retrieve the 3D model before (left)
and after (right) the pre-processing described in Subsection 4.3

by default. Each image is then reduced from 1920× 1200 to 384× 240. The
output of this pre-processing step can be seen in Figure 4.7.

We also need to convert the annotations of the dataset, since the conventions
used by PyTorch3D is different by the ones used to generate the images. These
are the steps needed to convert from the dataset convention to the one used
by PyTorch3D:

1. We multiply the x and y components of the translation vector by −1;

2. The provided quaternion is transformed into the corresponding rotation
its Euler angles. Then, we multiply the Roll component ψ by −1.

This procedures are needed since:

• The provided representation is in camera view: the translation is thus
the position of the object with respect to the camera (which is the
center of reference), while in our experiment we need the position of
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Figure 4.8: The final model.

the camera assuming that the object is in the center of the reference
(standard view). So the translation vector we need is the opposite of the
provided one.

• The Z-axis in the two representations goes in parallel but opposite
direction. This is due to the fact that the classic definition of a camera
is in a left-handed coordinate system, while PyTorch3D camera is
represented in a right-handed coordinate system. This means that the
translation Z component must be the opposite of the provided one, and
that the rotation around the Z axis is in the opposite direction.

The dataset of 215 images is split in two subsets:

• a train dataset, composed of 194 images;

• a test dataset, composed of 21 images.

The train dataset is the one actually used to regress the 3D shape of the
satellite. The test dataset is used to evaluate this prediction and to compare
all the experiments run.

4.4 results and comparative analysis

We obtained the final result by training the neural network on the train set of
194 images until convergence. We used a batch size of 2 images and learning
rate of 1× 10−4 both on the mesh features and on the lighting predictor.
Table 4.2 shows the resulting losses on the test set in its first row, along with
the other results from the first comparative experiment. Figure 4.8 depicts
the final predicted model, rendered with our Differentiable Renderer from 4

different angles.
To test the strength and the limits of this approach, we run four different

sets of experiments:

1. Number of images: in this experiment we compare how the output
changes with respect to the number of provided images;
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#Images IoU Loss Color Loss Edge Loss Total Loss

194 0.040881 0.021851 0.024299 0.08703

108 0.04211 0.020173 0.024297 0.086581

44 0.042657 0.02015 0.024439 0.087247

22 0.047644 0.021036 0.024402 0.093084

10 0.068686 0.025496 0.024343 0.118527

4 0.166164 0.029678 0.022009 0.217852

Table 4.2: Comparison of the losses obtained in the experiment in Subsection 4.4.1.
Best scores are represented in bold.

2. Number of faces: in this experiment we test how the learning is affected
by the number of faces the starting sphere has;

3. Ablative analysis: we check how much the regularization loss affects
the experiment;

4. Object represented: we test the portability of this experiment on 4

different objects.

4.4.1 Number of images

In this experiment the robustness of this approach is tested with a varying
number of images. Since the number of images in this experiment varies
so much, we need to balance the number of samples seen from the neural
network: this is achieved by increasing the number of epochs proportionally
to the number of images. This tweak is needed due to the fact that the model
needs roughly the same number of optimization steps to converge. If less
steps are taken, the final 3D model will both have an incorrect shape and
worse colors. A comparison of a 44-images train and a 194-images train on
the same number of epochs (360) is shown in Figure 4.10.

The outputs of this experiment are shown in Figure 4.9. It is clear from
the images that the results are comparable for a number of images greater
or equal to 22, while the process starts to fall off with a smaller number of
images. In the experiment with only 4 images the regularization losses take
over the 2D losses and try to collapse the model in the sections not depicted
by the four images (shown in Figure 4.11). In the experiment with 10 images
we can also see this phenomenon on a smaller scale on the bottom of the
body on the left of the solar panel and in the upper part of the rear of the
satellite (considering the solar panel the front of the satellite).

From Table 4.2 we can see the final loss obtained from each experiment. As
we can see, the total loss is comparable for the models with more than 44
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#Faces #Images IoU Loss Color Loss Total Loss

81920

194 0.03728 0.02009 0.05737

22 0.05405 0.02316 0.07721

20480

194 0.04088 0.02185 0.06273

22 0.04764 0.02104 0.06867

5120

194 0.05541 0.02134 0.07675

22 0.06734 0.01857 0.08591

1280

194 0.18525 0.02369 0.20894

22 0.20035 0.02454 0.22489

Table 4.3: Comparison of the losses obtained in the experiment in Subsection 4.4.2.
Best scores with 194 images are represented in bold, best scores with 22 images in
italic.

images, while it starts to fall off with 22 images and reaches very high values
with less images. Moreover, it is shown how the Intersection Over Union loss
increases with less images. The Color Loss is comparable for the models with
more than 22 images, and the fluctuation is caused by the predicted light
direction of the neural net. The edge loss has its minimum on the experiment
with less images (due to the deformation of the final model); if we leave this
particular case off, it reaches its best value with a lot of images: This is due to
the fact that the vertices are more evenly spread on the surface, in particular
in the three antennas.

In this comparative analysis it is shown that this model retrieval technique
works with at least 22 images, while it gets better with an increasing number
of images. A bigger number of images means that this technique can obtain
more fine-grained details on the 3D model.

4.4.2 Number of vertices

In this experiment we tested how the output changes with the number of
faces of the starting icosphere. The 3D models are obtained both with 194

and 22 images: this further tests how good is each regression with different
images. To account for the longer edges present in the icospheres with less
faces, the edge loss is halved in these cases. We tested this experiment on the
same set of test images described before.

In Table 4.3 the results of the experiments are shown. Moreover, in Fig-
ure 4.12 we can see a visual comparison between the results of the experiment.
As we can see from the table, the best result is obtained with 194 images and
with the highest number of faces, while being comparable with the result
with 20k faces. Then, the scores decrease with the number of faces. The model
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Training type IoU Loss Color Loss Total Loss

Full loss 0.04088 0.02185 0.06273

No Edge Loss 0.03394 0.02143 0.05537

Table 4.4: Comparison of the losses obtained in the experiment in Subsection 4.4.3.
Best scores are represented in bold.

with only 1280 faces cannot capture fully the shape of the object, leaving the
antennas out. On the other hand, we can see from the rendered images that
the one with more faces shows some strange reflections: this is due to a wavy
surface, and can be better seen analysing the 3D model in output. The IoU
loss cannot capture this detail since the body is bent inward.

The result with 22 images has a different output: The experiment with 82k
faces was worse than the one with only 20k faces, which was the best of the
batch. Then, the resulting model gets worse with a smaller number of faces.

Finally, in this experiment we can see how the color gets worse with a
smaller number of images: this is due to the fact that the models with less
faces have a bigger number of pixels with too few faces to have a solid color.
This mainly happens nearer the edges of the faces.

In this comparative analysis we can understand that with a small number
of faces it is harder to capture the true shape of the model due to a lack
of complexity of the base model. Moreover, due to the limitations of this
particular differentiable renderer, the space in-between faces is harder to
color. On the other hand, a model with many faces is harder to optimize (it
takes more time) and it can sometime present a wavy surface (that can cause
strange reflections).

4.4.3 Ablative analysis

This experiment aim to show the importance of the edge regularization loss.
We train the model on 194 images and optimizing an icosphere with 20480

faces, both with and without the regularization loss.
As we can see from Table 4.4, The losses are much smaller without the

regularization: this happens since the vertices are more free to move around,
being no more tied one another. On the other hand, if we look at Figure 4.13

we can see that this lower loss comes at a price: the faces do not form a
smooth surface, and this lead to some strange reflections that can be seen all
over the satellite.
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4.4.4 Application on other objects

In this subsection we test the portability of this approach on other objects. To
do so, we took two 3D models from ShapeNet [8] (a guitar and an airplane)
and two models from the internet (a cat and a Formula 1 car) and we rendered
100 images with PyTorch3D’s built-in renderer set up as a non-differentiable
rendered (this setting allows us to have more photo-realistic images). The
rotation of the rendered object is a sample from a uniform distribution
X ∼ U(−π, π) for each Euler angle. The Z-axis translation is the absolute value
of a sample from a Gaussian distribution X ∼ N(3, 1), while the X-axis and
Y-axis translation are samples from a Normal distribution X ∼ N(0, 1), scaled
by the Z-axis translation. The light direction components are samples from a
Normal distribution X ∼ N(0, 1), while its color components are fixed to be

• ambient color: (0.4, 0.4, 0.4);

• diffuse color: (0.6, 0.6, 0.6);

• specular color: (0.0, 0.0, 0.0).

For each model we rendered 100 images and we used 90 images for training
and 10 images for testing.

In Figure 4.14 we can see some samples of this rendering while in Fig-
ure 4.15 the output of the train process is shown. As we can see from these
images, this process works well with other models and also with color images.
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Figure 4.9: Comparison of the outputs of the first experiment. From top to bottom:
model retrieved with 194 images, 108 images, 44 images, 22 images, 10 images and 4

images. All these models have 10242 vertices and 20480 faces.
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Figure 4.10: The effects that a uniform number of training epochs has on experiments
with different number of images. From top to bottom: The model rendered after 360

epochs on 194 images; the model after 360 epochs on 44 images; the model after
1590 epochs on 44 images.

Figure 4.11: The dataset used to regress the 3D model with only 4 images.



44 3d model reconstruction via differentiable rendering

Figure 4.12: A comparison of the output images of the experiment shown in Subsec-
tion 4.4.2. The first column renders the model obtained with 194 images, while the
second the one obtained with 22 images. Images are arranged from top to bottom in
decreasing number of faces: The first image has 81920 faces, the second one 20480,
the third one 5120, while the last one has 1280 faces.

Figure 4.13: Rendering of the 3D model retrieved with (first row) and without
(second row) the Edge Regularization Loss.
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Figure 4.14: Some samples of the input images used for the 3D model retrieval with
different objects.
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Figure 4.15: Rendering of the four models retrieved by our method.



5
S I X D E G R E E S O F F R E E D O M P O S E R E G R E S S I O N

In this chapter we will have a closer look to the Six Degrees of Freedom (6DoF)
pose estimation problem starting from a monocular image. We propose a
deep neural network architecture to tackle this problem, and we will explore
how differentiable rendering can be employed in this task. Moreover, the
main results obtained with this neural network will be used as a starting
point for the pose refinement process that we will describe in Chapter 6.

5.1 model architecture

The neural network that we built to tackle the 6DoF pose estimation problem
is composed by two separate branches:

1. Rotation Branch: the branch of our neural network that regresses the
rotation of the camera;

2. Localization Branch: the branch of our neural network that regresses
the position of the camera with respect to the object.

This task will be addressed with a direct regression both on the translation
and on the rotation of the object. We can see a visual description of this net
in Figure 5.1.

Both branches share the same feature extractor: for this task, we used
ResNet101 [9] pre-trained on ImageNet [11]. This feature extractor is slightly
modified: we removed both the fully connected layer on top of it and the
average pooling layer. This modification will allow for better results, since the
fully connected layer’s goal was to classify the elements of ImageNet, while
the average pooling layer encodes an invariance to the pose and the rotation
of the object. Since our goal is to estimate these values, we need to remove
this layer.

The translation branch takes in input the full image (before any cropping)
of size 384× 240 (from now on called Localization Image). This image is
processed in the feature extractor and then in two fully connected layers with
1024 neurons, followed by a fully connected layer with 3 neurons. This branch
will output the predicted position of the object, encoded as a 3D vector.

The rotation branch takes in input only the region of interest representing
the object, re-scaled to the dimension of 240× 240 (from now on Rotation
Image) and processes it with the feature extractor. Then, these features are
passed trough 2 fully-connected layers with 1024 neurons and finally trough

47
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Figure 5.1: A scheme of the neural network used in this experiment.

a fully-connected layer with 6 neurons. ResNet101’s output changes between
the two branches: this is due to the fact that the dimension of the input image
differs between the Translation Branch and the Rotation Branch (square
240× 240 image for the Rotation Branch vs rectangular 384× 240 image for
the Translation Branch).

The 6D vector in output will be converted to a rotation matrix R as follows:

~c1 =
~v1
‖~v1‖

(5.1)

~c2 =
~u2
‖~u2‖

, ~u2 = ~v2 − 〈~c1,~v2〉~c1 (5.2)

R = [~c1 ~c2 ~c1 ×~c2] , (5.3)

where ~v1 is the vector composed by the first 3 values of the output 6D
vector, while ~v2 is the vector composed by the last 3 values. This matrix is
orthonormal by construction, and thus a valid 3D rotation matrix.

The loss used in this experiment is:

L = LT + λLR,

where LT is a Translation loss and LR is a Rotation loss. In this experiment
we set λ = 1

The Translation loss used in this approach is defined as the Mean Absolute
Error between the elements of the translation vectors:

LT

(
T̂ , T

)
=
1

3

∥∥∥T̂ − T∥∥∥
1
, (5.4)
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where T is the ground-truth translation vector and T̂ the predicted one.
The Rotation loss used in this approach is defined as:

LR

(
R̂, R

)
=

∑
e∈E

∣∣∣R̂(e) − R(e)∣∣∣ , (5.5)

where E is the set of all elements of a 3× 3 matrix, R̂ is the predicted rotation
matrix and R is the ground-truth one.

We trained this net over 100 epochs with an Adam optimizer with learning
rate 1× 10−4.

5.2 data pre-processing

In this subsection we will highlight how the input data are transformed before
being used for training and testing. The dataset used in the experiment is
the SPEED dataset [38], described in Section 4.2. This dataset provides many
B/W images of the Tango spacecraft with annotations on the translation of
the spacecraft and its rotation. In the experiment with this neural network,
the annotations on the 3D translation and the rotation are converted to the
PyTorch3D conventions as described in Section 4.3.
Image segmentation:
The first step of data preparation is to add the silhouette annotations to the
dataset. We need the silhouette annotation for 2 different tasks:

• Background whitening: to remove the noise provided by the back-
ground, we color it in white in each image. This moreover will make
the dataset images more similar to the added rendered ones (described
in Subsection 5.2.1);

• RoI pooling: we use the silhouette of the satellite to define the Region
of Interest (RoI) to input in the Rotation Branch.

We can add this silhouette with a Differentiable Rendering pipeline on the
train images: We input the model obtained in Chapter 4 joint with the
annotations on the 6DoF pose in a differentiable renderer, that will output
the silhouette of the 3D model. The renderer is configured with the following
settings:

• Camera: Perspective camera with FoV of 35.45◦, calculated with Equa-
tion 4.3 from dataset parameters;

• Output image size: 384× 384, then cropped to 384× 240;

• Blur radius: 1× 10−4;

• Z-buffer (faces per pixel): 100;
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• Cull back side of the faces;

• No perspective correction;

• Shading: Soft Silhouette Shading, as described in [45]. This shader only
outputs the silhouette of the object, skipping the textures interpolation.

To obtain the final image, we take the original B/W image and convert it
to RGB, then we add the silhouette obtained from the renderer as fourth
channel, obtaining an RGBA image. Unfortunately, we cannot employ this
method to get the silhouettes of the test images: this is due to the fact that
we don’t have the annotations on the pose of the satellite in these images.
This silhouette will be calculated by Detectron2 [47], an off-the-shelf neural
network for segmentation. The details on its implementation and training are
provided in Section 5.3.
Localization Images:
The second step is composed by a whitening of the background. This can only
be done thanks to the silhouette annotation provided by the previous step.
This allows the images to be standardized without any background, making
the training more robust. To color the background, we take the silhouette
annotation of the image and we color of white all the pixels with silhouette
value of 0. This step is needed since the silhouette is just a mask on the image
that does not change the values of the RGB channels. These normalized
images can be seen in the second column of Figure 5.2. Unfortunately, since
PyTorch3D rendering’s blur does not scale with the distance, far images will
have a little bit of background included in the silhouette. This can be seen
in the first and last example of the same figure. The images created are the
Localization Images, and will be the input of the Localization Branch.
Rotation Images:

A second set of all the images is then obtained from the Localization Images:
this set aims to remove the invariance given by the different location that the
satellite can have in the image. To do so, a square bounding box is drawn
around the satellite starting from the silhouette. Then, the image is cropped
following this square and this crop is resized to 240× 240. Some examples of
these images can be found in the third column of Figure 5.2 These images
are the Rotation Images, and they will be the input of the Rotation Branch.

5.2.1 Synthetic data enhancement

In this subsection, we show how we generate synthetic data to input in our
pipeline. This will provide us many more data to have a more robust learning.
This procedure follows the findings of [12], that show how the rendered
images can enhance the learning process.
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Figure 5.2: The images before (leftmost column) and after (center and right column)
the data preparation. The second column shows some examples of the Localization
Images, while the third column some examples of the Rotation Images.

To perform this data augmentation step using differentiable rendering, we
used the 3D model of the Tango spacecraft that was obtained in Chapter 4 to
render 100000 images. The output of this rendering will be used as Localiza-
tion image, while the Rotation image will be obtained from the alpha channel
(silhouette) of the image as described above. This allows the model to have
many more views and thus to better generalize its pose regression process.

These images are rendered with a differentiable renderer with this configu-
ration:

• Output image size: 960× 960, then cropped to 960× 600;

• Blur radius: 1× 10−4;

• Z-buffer (faces per pixel): 100;

• Cull back side of the faces;
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Figure 5.3: A montage of pre-processed images from SPEED’s train dataset (left)
and of images rendered with differentiable rendering (right).

• No perspective correction;

• Shading applied with a Soft Phong Shader as described in [45];

• Perspective camera with FoV of 35.45◦ (calculated with 4.3);

• Directional Light with ambient color (0.3, 0.3, 0.3), diffuse color
(1.2, 1.2, 1.2) and specular color (0.0, 0.0, 0.0).

The lighting direction is generated randomly using a normal distribution
X ∼ N(0, 1) for all three directional components.

The position and the rotation of the satellite in these images are generated
randomly. This will allow the neural network to see a lot of different views of
the satellite, and thus to better regress the 6DoF pose. To generate a random
rotation on one image, 3 different values are randomly sampled from a
uniform distribution X ∼ U(−π,+π): these values represent the three Euler
angles of the rotation of the camera.
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The translation vector is instead generated in two steps: firstly, a random
value is sampled from a Gaussian distribution X ∼ N(0, 100). The absolute
value of this number is then summed to 3 to have the final distance value. The
values of X, Y translations depend on the distance value: to generate these,
two random numbers are sampled from a normal distribution X ∼ N(0, 1)

and are multiplied by the distance value and then by 0.025. These operations
allow us to recreate the distribution of the provided dataset, as shown in
Figure 5.4.

5.2.2 Dataset split and composition

Our final dataset is split as follows:

• Train dataset: the dataset that will provide a training signal to the
neural network. It is composed of the full set of rendered images
(100000 images) and of 10800 images of SPEED train dataset, for a total
of 110800 images;

• Validation dataset: the dataset used to check how our neural network is
generalizing. Since the final goal is to predict the 6DoF pose estimation
of the satellite in ESA’s rendered set, the validation set is composed
only of the 1200 images SPEED’s train set not used in our Train dataset;

• Real Validation set: with this dataset, we check how the net generalizes
on a set of true images. It is composed by the 5 real images of SPEED’s
real dataset;

• Test set: the dataset on which the score is calculated. Since we do not
have the annotations on the 6DoF pose for these images, the scoring can
only be calculated by ESA’s Pose Estimation Challenge. It is composed
of the 2998 images of SPEED’s test set;

• Real test set: the test dataset for the real images. This dataset is not
provided by the annotations on the 6DoF pose of the satellite, too. It is
composed by the 300 images of SPEED’s real_test dataset

Each sample of the dataset is composed by

• the name of the source image;

• A Localization image;

• A Rotation image;

• A translation vector T (only for Train, Validation and Real Validation
datasets);

• A rotation matrix R (only for Train, Validation and Real Validation
datasets).
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5.3 segmentation

To obtain the segmentation of the satellite in each image of the test sets
where we don’t have any annotation for the Tango’s pose, we used an off-
the-shelf object detection network. This choice has been motivated because
several efficient networks have demonstrated their usefulness in different and
challenging environments. In addition, some of them have published their
weights trained on some of the most famous datasets, like COCO [2].

Among them, we chose to use Detectron2 [47], the last version of the object
detection network developed by the Facebook Research Team.

5.3.1 Training of Detectron2

In order to obtain the segmentation of the full SPEED dataset, we used one
of the models present in the model zoo of Detectron2, and then fine tuned it.
In particular, we used the weights of Mask R-CNN-101-FPN trained on the
COCO dataset of 2017.

For this fine-tuning, we tested different configurations of the training set,
with annotations taken with different strategies, as well as their combinations.
In particular, the following are the different training sets we developed:

1. Hand Segmented Set: We hand annotated a small set of 215 images
with precise segmentation masks;

2. Augmented 2D Data Set: We then used the Hand Segmented Set set,
and a set created by various images obtained through data augmenta-
tion operations. Among these operations, we used: random rotation of
Tango, the addition of different backgrounds, resize of Tango, and dark-
ening of the image. These last two operations had been implemented
because some of the hardest images to recognize are those where Tango
is really small and in shadow, and thus very dark;

3. Rendered: This set is composed by all the images of the SPEED’s train
set, where the segmentation is obtain using the 3D model generated
in Chapter 4 and the annotation of the Tango’s pose, as explained in
Section 5.2;

4. Augmented 3D Set: We rendered a large set of images using the 3D
model obtained in Chapter 4. Further details on data preparation are
given in Subsection 5.2.1. We added a background to these images to
make them similar to the ones of the provided dataset.

As we can see from the Table 5.1 (where the different settings, i.e., dataset
combinations, are also detailed), the best result is obtained by the combination
of Setting 5. The two images not recognized can be seen in the Figure 5.5.
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Setting Dataset
Image not
recognized

Recognition
Accuracy

Setting 1 Hand Made 16 99,51%

Setting 2

Hand Made + Data
Augmentation 2D

3 99,90%

Setting 3 Rendered 4 99,88%

Setting 4

Rendered + Data Aug-
mentation 3D

6 99,82%

Setting 5

Rendered + Data Aug-
mentation 2D + Data
Augmentation 3D

2 99,94%

Table 5.1: Image not recognized using each dataset describe earlier. For "Image not
recognized" we mean all the images where the network does not find a segmentation
or find a segmentation that does not resemble the real object, see Figure 5.5

Even if the recognition accuracy from Setting 4 is higher than Setting 2, the
overall quality of the segmentations obtained by the first is greater. In the first
row of Figure 5.6, we can see the quality of the segmentation increasing from
left to right, succeeding to recognize even the upper right sensor of Tango,
which is only partially segmented.

5.4 results and comparative analysis

In this section we report the results of this experiment and some comparative
analysis to check which is the best configuration of the network and how it
performs.

To compare our results, we used the score proposed in the Pose Estimation
Challenge [44], composed by:

• A Translation score, that measures the error on the predicted translation
vector T̂ with respect to the true translation vector T :

ST

(
T̂ , T

)
=

∥∥∥T̂ − T∥∥∥
2

‖T‖2
;

• A Rotation score, that measure the rotation error as a geodesic loss
between the predicted quaternion q̂ with respect to the true quaternion
q:

SR (q̂, q) = 2 · arccos (|〈q̂, q〉|) .
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Validation Test

Approach Renderer T score R score tot score Kelvins score

Regression 7 0.14857 0.10902 0.25759 0.38221

Hybrid 3 0.44624 0.11591 0.56214 0.61202

Renderer only 3 1.0 1.46688 2.46688 3.18849

Table 5.2: Comparison on the different types of pipeline used. T score, R score and
tot score are calculated on the validation set, while Kelvins score is calculated by
Kelvins, ESA’s Advanced Concepts Competition Website, where the Pose Estimation
Challenge is hosted. Best scores in bold.

We report both the scores we calculated by us in validation and the score
on the test set. This score is calculated by Kelvins - ESA’s Advanced Concepts
Competition Website[43], where ESA’s Pose Estimation Challenge is hosted.
We need to report both scores since the Kelvins scoring only gives us the
total score S = ST + SR, thus providing no insight on the decoupled score
on translation and rotation. Since we couldn’t get a segmentation of image
img009630.jpg, the prediction for that image is the same of the one on image
img009627.jpg, which is the one just before that in the list of test images. For
image img011775.jpg, on the other hand, we used the segmentation provided
by Detectron2, even if the segmentation was very poor.

Our neural network reached a score of 0.25759 on our validation set, while
the score given by Kelvins on the test set is of 0.38221. In Figure 5.7 some
samples of the output predictions are shown with respect to the source image.

In the following subsections we will analyze how this model works in
different scenarios:

1. Differentiable rendering: in this subsection we will analyse how viable
is the employment of a differentiable renderer in the a 6 Degrees of
Freedom pose estimation scenario;

2. Data representation: in this subsection we will compare four different
rotation representations (6D-vector, quaternion, Euler angles regression
and Euler angles classification) to check which one performs better in
this application;

3. Added rendered images: In this subsection we will analyze how the
added rendered images impact the training of the neural network, and
if these images can be an asset in data augmentation.
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5.4.1 Differentiable rendering

In this comparative analysis we check the advantages of adding a differen-
tiable renderer in this approach with respect to a more classic regression
approach.

The renderer used in this experiment is configured as follows:

• Camera: perspective camera with FoV of 35.45◦, calculated with Equa-
tion 4.3 from dataset parameters;

• Lighting: fixed directional light with ambient color (0.5, 0.5, 0.5),
diffuse color (0.3, 0.3, 0.3), specular color (0.2, 0.2, 0.2) and direc-
tion (0, 1, 0). These are the settings of a default PyTorch3D directional
light;

• Output image size: 384× 384, then cropped to 384× 240;

• Blur radius: 1× 10−4;

• Z-buffer (faces per pixel): 100;

• Cull back side of the faces;

• No perspective correction;

• Shading: Soft Phong Shading, as described in [45].

This renderer takes in input the predicted rotation matrix and translation
vector, joint with the 3D model of the spacecraft obtained in Chapter 4.

The total loss for this experiment can be rewritten as:

L = λIoULIoU + λcolLcol + λTLT + λRLR,

Where LIoU is the Intersection over Union loss described in Equation 4.1, Lcol

is the Color loss described in Equation 4.2, LT is the Translation loss described
in Equation 5.4 and LR is the Rotation loss described in Equation 5.5. The
various λi depend on the experiment.

We tested three different scenarios:

1. Direct Regression: the pipeline is composed only by the neural network
described in Section 5.1. The loss is calculated only on the output
rotation and translation of the pipeline:

λIoU = 0 λcol = 0

λT = 1 λR = 1;
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2. Hybrid approach: we stack the differentiable renderer on top of the
pipeline of Direct Regression. The loss is calculated both on the output
translation and rotation, and on the produced 2D image:

λIoU = 1 λcol = 1

λT = 1 λR = 1;

3. Renderer only: the pipeline is composed of the neural network with
the differentiable renderer on top. The loss is only calculated on the 2D
image, without any loss on the translation vector or the rotation matrix:

λIoU = 1 λcol = 1

λT = 0 λR = 0.

In Table 5.2 the results of this experiment are reported: the first row
corresponds to the Direct Regression approach, the second to the Hybrid
approach, while the third row to the Renderer only approach. As we can see,
the worse performance is obtained with 2D supervision only: this is due to
the fact that the neural network needs at least a bit of overlapping of the
predicted silhouette and the true one to have a decent learning signal, and the
random initialization almost never allows this. The Hybrid approach has a
comparable result on the rotation score, while it falls behind in the translation
score. This translation score difference is very impacting, and the final result
on the test set is much worse in the Hybrid approach than in the Direct
Regression approach. The best score was obtained with the Direct Regression
method, which is also the faster approach to train, since the forward and
backward pass trough the renderer is very computational-intensive.

In Figure 5.8, moreover, we have a visual comparison of the outputs of the
neural network on the validation set. These images are rendered with the
differentiable renderer described in Subsection 5.2.1 and are paired with the
ground-truth image.

From these results we can say that the impact of the differentiable rendering
in this task is not only useless, but damaging: it leads to worse overall results
and it is slower to train. This may be due to the fact that the network before the
differentiable rendering part is the same, and the 2D loss from the renderer
conflicts with the translation and rotation loss to some extent. Moreover, the
2D supervision losses have lots of local minima: this may lead out neural
network to stop its learning process in a sub-optimal state.

5.4.2 Data representation

In this analysis we compare how different rotation representations perform
in 6DoF pose regression. The different representations used are
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Validation Test

Representation T score R score tot score Kelvins score

6D vector 0.14857 0.10902 0.25759 0.38221

Quaternion 0.16575 0.17057 0.33632 0.47944

Euler angles 0.16066 0.31071 0.47137 0.83889

Classification 0.15701 0.73306 0.89006 1.20431

Table 5.3: Comparison of the score obtained by each tested rotation representation
on the validation and rendered test set. The first column shows the type of the
representation, the second column the translation score obtained, the third column
the rotation score, the fourth the sum of the previous values and the last column the
scoring on testing images given by Kelvins. Best results in bold.

1. 6D vector: this representation is described in Section 5.1. The output
of the Rotation branch is a 6D vector that is then converted to a 3×3
rotation matrix via Equation 5.1. The rotation loss used is described in
Equation 5.5.

2. Quaternion: this representation is described in Section 2.2. The output
of the rotation branch is a 4D vector that is then normalized trough the
formula:

q̂ =
~v

‖~v‖2
, (5.6)

where ~v is the 4D vector in output from the neural network, while q̂ is
the final predicted quaternion. The loss used with this representation
is:

Lrot (q̂, q) = 2 · arccos (|〈q̂, q〉|) + ‖q̂− q‖1 ,

where q is the ground-truth quaternion and q̂ is the predicted one.

3. Euler angles: this representation is described in Section 2.2. The output
of the rotation branch is a 3D vector ê = (φ, θ,ψ). The loss function
used with this representation is:

Lrot (ê, e) = 2 · arccos (|〈q̂, q〉|) + ‖ê− e‖1 ,

where ê is the predicted vector of Euler angles, e is the ground-truth
vector of Euler angles, q̂ is the quaternion representation of the pre-
dicted Euler angles while q is the quaternion representation of the
ground-truth Euler angles.

4. Classification on the Euler Angles: This representation consists in trans-
forming the continuous problem of rotation estimation to a discrete
one: the continuous space (−π, π] is divided in 18 sections of the same
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dimension, and each angle falls in one of these sections. The task then
becomes predicting the correct section of the continuous space. The
outputs of the neural network are 3 probability distributions over 18
values obtained with a softmax function, one for each Euler angle. The
loss function is then a Cross Entropy loss function defined as:

Lrot (x, c) = −log

(
exp (xc)∑
i∈C exp (xi)

)
,

where x is the probability distribution in output, c is the correct class
and C is the set of all classes. To calculate the score on this representa-
tion, the mean value of the predicted section is used as the predicted
Euler angle.

As we can see from Table 5.3, the best scoring representation is the 6D
vector one: as stated in [28], the strength of this representation lies in its
continuity: thanks to this, the neural network has an easier job to regress
the correct values. The quaternion representation falls a bit behind, but it is
much better than the Euler angle representation due to its better continuity
and the lack of gimbal lock. The classification representation is the worst
performing: this may be due to the dimension of the bins, which introduces
a lot of variance. In Figure 5.10 we can see the evolution of the Rotation score
over the 100 epochs of train.

In Figure 5.9, moreover, we have a visual comparison of the outputs of the
neural networks on the validation set. These images are rendered with the
differentiable renderer described in Subsection 5.2.1 and are paired with the
ground-truth image.

5.4.3 Added Rendered Images

In this subsection we analyze how the new rendered images impact the
training. To test this, we run three different experiments with the same net
and loss function as described in Section 5.1, and only changing the train set:

1. Full train set: in this experiment we used the full train set described in
Subsection 5.2.2.

2. SPEED train set alone: in this dataset only the images provided by the
SPEED dataset are used

3. Rendered set alone: in this experiment we will use only the images that
we rendered as described in Subsection 5.2.1

As we can see from Table 5.4, the provided train dataset alone is not
enough to have a good score: while the translation predicted is decent,
the rotation is very bad. This is due to the fact that 10800 images may be
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Validation Test

Set used T score R score tot score Kelvins score

Full set 0.14857 0.10902 0.25759 0.38221

SPEED Train set 0.21667 1.46912 1.68579 36.68126

Rendered set 0.76507 0.45268 1.21775 1.29453

Table 5.4: Comparison of the score obtained with different train sets. In the first
row we can see the results of the main pipeline with both the SPEED train set and
our rendered set; in the second row the results with only the SPEED train set are
reported; in the last row, the results with only our rendered set is shown. Best results
in bold.

very few to have a robust estimation of the rotation. Moreover, the learned
pattern is not solid enough to be transferred to the test set images, whose
segmentation is different (since it is provided by Detectron2 and not applied
by the renderization of the 3D model).

The Rendered dataset compensate this problem: in fact its score on the
predicted rotation is more robust. On the other hand, the estimation on
this dataset is lacking in the translation vector estimation. This may happen
since the predicted images are not similar enough to the provided ones, in
particular in the far-away images where the Tango satellite is no more than a
handful of pixels. This issue may be addressed by rendering images more
similar to the provided ones. The close-up images, on the other hand, are
similar enough to transfer this knowledge to the SPEED images.

The experiment with the full set of images outscores them both: this means
that these types of images can be used together and that the images rendered
with a differentiable renderer can be an asset in training this types of neural
networks.

In Figure 5.11 we have a visual comparison of the outputs of the neural net-
works on the validation set. These images are rendered with the differentiable
renderer described in Subsection 5.2.1 and are paired with the ground-truth
image.
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Figure 5.4: These graphs represent the distribution of the elements of the datasets
both in rotation and in translation. For rotations, the continuous rotation around
one axis is discretized in 50 bins of dimension 0.0628rad for X-axis rotation and
0.1257rad for Y-axis and Z-axis rotation. For translation, X and Y are represented
as a scatter plot that represent the distribution with respect to Z, while the depth
is represented in a discretized form dividing the continuous space in 50 bins of
dimension 1m each. In red we see the train SPEED dataset and in blue our rendered
dataset.
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Figure 5.5: Images img009630.jpg (left) and img011775.jpg (right) from SPEED’s
test dataset. These two images are the only ones for which our network could not
find a right segmentation. For image img011775.jpg, only a bad segmentation was
found, while for img009630.jpg the object was never spotted.

Figure 5.6: Result of the training of Detectron2. The datasets used are, from left to
right, Handmade, Rendered + Data Augmentation 3D, Rendered + Data Augmenta-
tion 2D + Data Augmentation 3D. The first row shows image img000022.jpg, while
the second row shows image img008398.jpg
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Figure 5.7: Some examples of the prediction of our neural network on the validation
set. Our prediction is shown on the left, while the input Localization Image is shown
on the right.
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Figure 5.8: Visual comparison of the outputs of the experiment described in Subsec-
tion 5.4.1. On the left is shown a rendering of the prediction, while on the right is
shown the input image. From top to bottom: Direct Regression, Hybrid Approach,
Renderer only. In the last image the satellite is not present since its predicted location
is out of the field of view of the camera.
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Figure 5.9: Visual comparison of the outputs of the experiment described in Sub-
section 5.4.2. On the left is shown a rendering of the prediction, while on the right
is shown the input image. From top to bottom: 6D vector regression, quaternion
regression, Euler angles regression, Euler angles classification.
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Figure 5.10: Comparison of the geodesic distances of the various methods tested in
Subsection 5.4.2.
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Figure 5.11: Visual comparison of the outputs of the experiment described in
Subsection 5.4.3. On the left is shown a rendering of the prediction, while on the
right the input image is shown. From top to bottom: Full dataset, SPEED dataset
only, Rendered dataset only.
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P O S E R E F I N E M E N T V I A D I F F E R E N T I A B L E R E N D E R I N G

Another possible use of Differentiable Rendering is a pose refinement step
with a render-and-compare approach. This technique consists in rendering
with a differentiable renderer the image corresponding to a starting guess
(usually an esteem from another 6DoF pose estimation process, like a neural
network), compare this generated image to the source RGBA image, and then
improve the predicted position based on this comparison. This procedure
can be applied with an iterative approach, to have many optimization steps.
In this chapter we describe the pipeline we used on the SPEED dataset [33],
showing its ability in improving the accuracy of the predictions.

6.1 refinement pipeline

The goal of the neural network described in this chapter is, taken in input an
esteem of the translation and the rotation of the camera, optimize it to have a
better and stronger approximation. The values to be optimized are:

• The translation T , represented by a 3D vector [Xt, Yt, Zt];

• The rotation R, that can be represented in many formats (3 Euler angles
in case of the Euler regression, 4 un-normalized values in case of the
quaternion regression, and 6 un-normalized values in case of the 6-DoF
rotation regression). The chosen representation is then converted to a
rotation matrix Rm. We need to optimize these representations instead
of a rotation matrix or a normalized quaternion since they both have
some sort of inter-dependency of the values that cannot be preserved
easily via direct gradient descent. In fact the normalized quaternion
must have norm 1 to encode a correct rotation, while the rotation matrix
must me orthonormal not to deform the 3d model;

• The light direction, represented as a 3D vector [Xl, Yl, Zl]. This vector
is initialized to [0.0, 1.0, 0.0] in our implementation for any input;

• The light color of the three components. Since the images have black
and white colors, we only use one value for each light component: this
way our light will also be black and white. The ambient light color
is initialized to 0.1, the diffuse color is initialized to 0.8, while the
specular color is initialized to 0.1.

This neural network is fairly simple: it is composed only by a Differentiable
Renderer. This renderer used is configured as follows:
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• Camera: perspective camera with FoV of 35.45◦;

• Output image size: 384× 384, then cropped to 384× 240;

• Blur radius: 1× 10−4;

• Z-buffer (faces per pixel): 100;

• Cull back side of the faces;

• No perspective correction;

• Shading: Soft Phong Shading, as described in [45].

The renderer takes in input several elements:

• A 3D model of the object in the image;

• A rotation matrix Rm, representing the rotation of the camera with
respect to the the object. This rotation matrix is obtained from the
respective representation;

• A translation vector T , representing the translation of the camera from
the object;

• A directional light object, comprehensive of the direction of the light
and the color of the light.

We can see a scheme of this pipeline in Figure 6.1
The output image is then compared to the input RGBA image using the

following loss function:

Ltot = LIoU + λLcol,

where LIoU is the Intersection over Union loss and Lcol is the color loss,
both described in Subsection 4.1. For this experiment the value of λ is set
to be 1. The main advantage of the Intersection over Union loss is that, via
a comparison of the two silhouettes, it allows us to match the shape of the
true image providing a strong learning signal. On the other hand, it does not
capture the intrinsic difference of the rotations with the same silhouette, but
with different internal color, like in the case of a small tilt in one direction,
where the edges of the model will not match. The Color loss address partially
this issue: it can enhance the position in cases of small rotation error. The
main disadvantage of this total loss is that it has a lot of local minima on
the rotation side, so the starting pose must be already pretty accurate. These
local minima arise since the Intersection over Union loss only tries to match
a silhouette and has no actual knowledge on the rotation of the object, while
the color loss can identify that some colors are more predominant in a very
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Figure 6.1: A scheme of the neural network used in this experiment.

Translation Rotation Light Direction Light Color

Start value 1× 10−1 1× 10−2 1× 10−2 1× 10−2

Decreased value 1× 10−2 1× 10−3 1× 10−3 1× 10−3

Table 6.1: The losses used in this experiment. The first row shows the learning rate
at the beginning of the process, while the second row the learning rate used after the
first convergence. The columns identify the value optimized with that learning rate

close area, but cannot match colors too far apart. Moreover, this loss needs to
have at least a bit of starting Intersection over Union to converge, but given
this it will provide a very good learning signal to optimize the translation
vector.

The optimizer used to perform this optimization is an Adam optimizer.
The learning rate vary between the different elements to be optimized: this is
needed since a step of the same magnitude on translation is much smaller
than a step of the same magnitude on the rotation. The learning rates are
shown in Table 6.1

The model optimizes until convergence with the starting learning rates;
then, the learning rates are multiplied by 1× 10−1 to have a more fine-grained
optimization, and are again trained until convergence. This allows to speed
up the process without loosing on accuracy. To check for convergence, we
used a patience of 30 optimization steps on the total loss. At the end of the
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optimization procedure, the input values that generated the best image are
saved to a file.

The optimization procedure is a render-and-compare loop operating on
a single image. The procedure is represented in the following pseudo-code,
that does not take into account patience and learning rate decrease to give a
better picture of the core of the algorithm:

model = load_3d_model() # the 3D model with color

patience = 30

for image_name in IMAGE_NAMES:

# load the image and the predicted starting rotation and

# translation

in_img = IMAGES(image_name)

rot = PREDICTED_ROTATIONS(image_name)

T = PREDICTED_TRANSLATIONS(image_name)

# setup starting light

light_direction = tensor([0.0, 1.0, 0.0]) # [Xl, Yl, Zl]

light_colors = tensor([0.1, 0.8, 0.1]) # [ambient, diffuse, specular]

# is_best() checks for convergence

while not is_best():

optimizer.zero_grad()

#transform in rotation matrix

R = prediction_to_R_matrix(rot)

# render...

out_img = render_image(

model, R, T, light_direction, light_color

)

# ... and compare

loss = calculate_loss(out_img, in_img)

#loss is back-propagated

loss.backward()

optimizer.step()

# the best values are saved

save_values()

6.2 results

In this section the results of this experiment are reported. We tested this
process on SPEED’s [38] test and real_test datasets. This dataset is described
in Section 4.2. The ground-truth images for this process are the Localization
Images described in Section 5.2, whose silhouette was obtained via Detectron2,
as described in Section 5.3. We cannot generate the silhouettes of the images
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Figure 6.2: Rendering of the model before (left) and after (center) the pose adjustment
step. The image on the right is the ground truth image. Result on the 6D vector
representation. Starting IoU loss: 0.2453; final IoU loss: 0.0458; image name: img
000014.jpg.

Figure 6.3: Rendering of the model before (left) and after (center) the pose adjustment
step. The image on the right is the ground truth image. Result on the quaternion
representation. Starting IoU loss: 0.3655; final IoU loss: 0.044; image name: img
000014.jpg.

via differentiable rendering as described in Section 5.2 since we do not have
the annotations of the ground-truth 6DoF pose of the two test sets that are
used in this experiment. The input 3D model for this experiment is the model
obtained with the procedure described in Chapter 4. This model’s texture is
described in a per-vertex notation: each vertex as an associated color, and the
final texture of the model is an interpolation of these per-vertex colors in a
shader-dependent way.

We tested this approach on 5 different scenarios:

1. 6D vector: we used as initialization the predictions of the experiment
in Section 5.1. The optimization on the rotation is done optimizing
the elements of a 6D vector, then transformed in a rotation matrix as
described in Equation 5.1. A sample image before and after the pose
adjustment step in this scenario can be seen in Figure 6.2

2. Quaternion: we used as initialization the quaternions predicted in the
experiment in Subsection 5.4.2. The optimization is performed on a
4D vector, from which we obtain a quaternion trough a normalization
(Equation 5.6). Then, we obtain the rotation matrix R as:

R =

 1− 2q
2
y − 2q2z 2qxqy − 2qwqz 2qxqz + 2qwqy

2qxqy + 2qwqz 1− 2q2x − 2q2z 2qyqz − 2qwq− x

2qxqz − 2qwqy 2qyqz + 2qwqx 1− 2q2x − 2q2y

 ,
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Figure 6.4: Rendering of the model before (left) and after (center) the pose adjustment
step. The image on the right is the ground truth image. Result on the Euler angles
representation. Starting IoU loss: 0.998; final IoU loss: 0.0443; image name: img
000014.jpg. This particular image shows us how strong it can be this pose refinement
technique: it managed to obtain a very good prediction given a little bit of IoU.

Figure 6.5: Rendering of the model before (left) and after (center) the pose adjustment
step. The image on the right is the ground truth image. Result on the classification
representation, then transformed to Euler angles. Starting IoU loss: 0.5961; final IoU
loss: 0.1675; image name: img000014.jpg. In this case the predicted rotation was
very far away from the correct one, so the pose refinement step can only better the
translation while getting stuck in a local minimum in the rotation.

where q = qw + qx · i+ qy · j+ qz · k. A sample image before and after
the pose adjustment step in this scenario can be seen in Figure 6.3.

3. Euler Angles: we used as initialization the Euler angles regressed in the
experiment in Subsection 5.4.2. The optimization is performed directly
on the 3 Euler angles, that are applied in the order Z→ X→ Y to obtain
the final rotation matrix R. A sample image before and after the pose
adjustment step in this scenario can be seen in Figure 6.4.

4. Classification: we used as initialization the best scoring class for each
Euler angle. Each class is converted to its corresponding Euler angle,
which is the mean value of all the Euler angles that correspond to
that class. Then, we optimize directly these three Euler angles, that are
applied in the order Z→ X→ Y to obtain the final rotation matrix R. A
sample image before and after the pose adjustment step in this scenario
can be seen in Figure 6.5.

5. UrsoNet [37]: UrsoNet is a neural network that competed for the first
tranche of the Pose Estimation Challenge, achieving third position. They
made their neural network and the weights used public, so that other
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Figure 6.6: Rendering of the model before (left) and after (center) the pose adjustment
step. The image on the right is the ground truth image. Result on the UrsoNet
prediction on the test dataset. Starting IoU loss: 0.0998; final IoU loss: 0.0444; image
name: img000014.jpg.

Figure 6.7: Rendering of the model before (left) and after (center) the pose adjustment
step. The image on the right is the ground truth image. Result on the UrsoNet
prediction on the real dataset. Starting IoU loss: 0.2772; final IoU loss: 0.0577; image
name: img000007real.jpg.

people could experiment with their net. Their neural network is com-
posed by a pre-trained feature extractor followed by two branches: the
localization branch that directly regresses the translation vector T , and
a rotation branch that obtains the quaternion q via probabilistic fitting.
We used this neural network with the pre-trained weights provided
and scored them to have a starting score of this model to use it as a
comparison. Then applied the pose refinement step to these predictions.
Since the output of this neural network uses the same conventions of
the SPEED dataset, we converted both the predicted translation vector
and the predicted rotation quaternion to PyTorch3D’s convention using
the procedure shown in Section 4.3. We optimize the value of the Euler
angles obtained from this conversion. The order of application of the
three Euler angles follows the convention Z→ X→ Y to obtain the final
rotation matrix R. A sample image before and after the pose adjustment
step in this scenario can be seen in Figure 6.6. The results on UrsoNet
are reported both for the test set of rendered images and for the test
set of real images. This is possible only for this scenario: the scoring on
Kelvins only shows the best result ever achieved by the submissions
for this test set. On the other hand, it provides the scoring on the test
set of rendered images for all submissions. In Figure 6.7 we can see the
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Method Competition score Before P. R. After P. R.

6D vector 7 0.38221 0.23191

Quaternion 7 0.47944 0.29602

Euler angles 7 0.83889 0.74775

Classification 7 1.20432 1.00247

UrsoNet [37] 0.05546 0.07311 0.05279

UrsoNet [37] real 0.14763 7 0.14263

Table 6.2: The improvement obtained with the pose refining step on the score
calculated by Kelvins - ESA’s Advanced Concepts Competition Website [43], which
host the Pose Estimation Challenge [44]. The first four rows are the results obtained
in Subsection 5.4.2 on the test dataset before and after the pose refinement step. The
last two rows show the score achieved by UrsoNet [37], respectively on the test and
the real_test dataset. For this neural network, the score obtained by the authors in
the challenge is also reported. P.R.: Pose Refining

application of the pose refinement technique on one image of the test
set.

As we can see from Table 6.2, the process of pose refinement using differ-
entiable rendering improves the score in all situations. In the figures showing
the results of the experiments we have a visual representation of this positive
impact: the final prediction is much more close to the correct position of the
satellite than the starting one. Moreover, we can see how this impact works
well on all types of rotation representation: this means that this approach is
not limited by the representation and can be applied with every one of them.
We just need to be sure that the representation is in the same convention of
the renderer and that it is a valid rotation: this is no problem with the Euler
angles representation, since each combination of numbers is a valid rotation
representation. On the other hand, we must be sure to have a normalized
quaternion and an orthonormal rotation matrix to avoid distortions on the
final 3D model. An example of this distortion can be seen in Figure 6.8, where
the optimization was performed directly on the values of the rotation matrix.

As we can see from the last rows of the table, this method managed to
improve also the result of UrsoNet, both with respect to our prediction with
its pre-trained neural network and the best result obtained by UrsoNet on
the Pose Estimation Challenge, proving that this method can also improve
very competitive scores. Moreover, we also managed to improve UrsoNet
score on the real dataset with this technique, showing that both the 3D model
obtained and this Pose Refinement technique can also be used on a dataset
of real images to improve the score.
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Figure 6.8: An example of optimization preformed directly on the rotation matrix
R. The image on the right shows the initialization (translation from 6D vector
esteem, random rotation), the central image shows the output of the pose refinement
technique, while on the right the ground-truth image is shown. As we can see, the
satellite was distorted to fit as much as possible to the silhouette of the input image.
This behaviour can be avoided by optimizing on a set of values that are not linked
together, like Euler angles or 4 distinct and uncorrelated values that will then be
normalized against each other to form a quaternion representing a valid rotation.

While this technique is pretty simple to implement and its performance is
noticeable, it has its drawbacks:

• To apply this method we need the 3D model of the object. The better
is this model, the better the optimization is. In single-model datasets
(like the SPEED dataset) this model is easy to obtain with the technique
shown in Chapter 4, while in multi-model datasets (like ImageNet [11])
this task is harder, since it needs to obtain the specific model for the
specific object in the image.

• This technique scales with the precision of the silhouette: the loss
represented uses mainly this annotation to obtain the 3D pose of the
object, so the more precise it is, the better will be the application of
this technique. An example on how a bad silhouette impacts on this
technique can be seen in Figure 6.9. In our case, it is worth considering
that even if there were few bad silhouettes, the impact is visible and
positive on the full test set.

• The 2D supervision has a lot of local minima, thus the advantages
brought by this technique are limited by how good is the initialization.
This method cannot handle the problem of 6 Degrees of Freedom pose
regression alone. This can be seen from the results reported in Table 6.2:
each result after the pose adjustment step depends a lot on how good
was the result obtained by the initialization values.
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Figure 6.9: The effect of pose refinement on a badly cropped image. The image on
the left is the prediction of UrsoNet, the central image is the output of the pose
refinement technique, while the image on the right is the ground-truth image. As we
can see, the final prediction may be worse than the starting prediction. On the other
hand this happens only for images with a really poor segmentation.
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C O N C L U S I O N S A N D F U T U R E W O R K S

In this work we presented a new method to address the 6 degrees of freedom
pose estimation using differentiable rendering. With this method, first we re-
construct the 3D model of an object with a differentiable rendering technique,
then we use this information to enrich our dataset with new images and
useful annotations, and regress a first estimation of the six degrees of freedom.
Finally, we refine this coarse pose with a render-and-compare approach using
differentiable rendering. From the results shown in this work, we can state
that differentiable rendering can be an asset in 3D pose regression as well as
in 3D model retrieval.

In our analysis, this novel technique’s main employment was to reconstruct
a 3D model starting with a small set of 2D images. As shown in Chapter 4,
it is possible to recreate 3D models of different objects, given the camera
parameters and the annotations on the pose of the object in these images. This
can be used not only in the retrieval of the 3D pose of the objects, but also to
generate a lot more data and annotations. For example, a 3D model can be
rendered in the same position of the input data using his pose annotations to
get the segmentation of that object.

Moreover, we show that this technique can be used as an effective strategy
to generate a large number of new images. This could be really useful for
all the approaches that desperately need a big set of data. Normally, deep
learning methods applied to computer vision require huge amounts of data.
With this technique is possible to recreate an unlimited amount of new images
to train a robust prediction of the model.

Another application for this technique is 3D pose regression. We tested the
use of differentiable rendering in two different scenarios: direct regression of
the 3D pose and optimization of an estimated pose. In the first case, we found
that this approach is not comparable with the actual state-of-the-art approach.
In fact, the results that we have obtained, as showed in Chapter 5, are worse
than the ones obtained with the other approach, as well as considerably
slower.

On the other hand, the use of differentiable rendering in a pose refinement
scenario proved itself to be very solid and consistent, enhancing the prediction
in each different scenario we tested it in, even enhancing the score of one
of the best competitors of the first tranche of the challenge (as shown in
Chapter 6). Unfortunately, we could not test this approach on the best scoring
result of the challenge: while the neural network used was described in [29],
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the pre-trained weights were not provided and an hardware gap did not
allow us to train it.

The final result obtained by our method is promising, and even if it did not
reach the best absolute result in the ESA Competition it is a very competitive
score. Moreover, it could be interesting to test our method using the pipeline
used by the winner of the challenge, to verify if we can enhance the result
that they have obtained.

A future work in the field of pose regression using differentiable rendering
can be testing this approach with other types of differentiable renderers,
e.g. DIB-R [30]. Moreover, this method could be tested in other domains,
like pose estimation in domotic or urban environment: in these settings the
laws of physics limit the degrees of freedom of an object (i.e. the object
must be put on the ground or fixed to a support) and thus a differentiable
renderer could be useful to encode real world dynamics. Finally, the pose
refinement approach can be slightly modified to regress not the 6 Degrees
of Freedom pose, but the lighting of a scene: given a 3D scene with the
material and textures annotation, it is possible to obtain the light direction (in
case of a directional light) or position (in case of a point light) and its color
characteristics (ambient color, diffuse color and specular color).
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