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Abstract

Lake Como, located in northern Italy, is an important regulated water reservoir supporting
a wide range of human activities, and is regulated to satisfy two primary competing ob-
jectives: (i) providing water supply to downstream users, mainly farmers and hydropower
plants, and (ii) preventing flooding along the lake shores, especially in the city of Como.
This work is aimed at assessing the performance of different on-line control approaches
for the management of such an important water resource, using both deterministic and
probabilistic hydrological forecasts that are increasingly available with better and better
accuracy. These are deterministic Model Predictive Control (MPC) and the relatively new
stochastic modification called Tree Based MPC (TB-MPC), which has attracted growing
interest for its increased robustness and flexibility shown in few previous applications.
Their performance is compared to the historical management and to two benchmarks
known as Deterministic Dynamic Programming (DDP) and Stochastic Dynamic Program-
ming (SDP), both off-line management approaches. Both MPC and TB-MPC make use
of short-term hydrological predictions of the lake inflow: while the MPC uses only deter-
ministic forecasts (here from an operational product), the TB-MPC exploits probabilistic
information from an Ensemble Forecast (EF), a set of multiple deterministic predictions
that inherently represents the forecast uncertainty. TB-MPC could be a key step to-
wards improving water management to help contrasting the rise of climate-related crises,
providing a more adaptive control framework facing uncertainties. However, EFs are not
always operationally and readily available at the local scale for different reasons (e.g. high
computational cost, lack of local calibration, etc.). So this study has made one of the first
attempts in the literature to feed TB-MPC with synthetic EFs from a recently-developed
machine learning algorithm that could be used operationally. The simulation results sug-
gest that the lake regulation could be improved by using skilful forecasts in a real-time
control scheme. Given the current levels of accuracy of the available forecasts and gener-
ated EF, the daily stochastic TB-MPC appeared to be the best on-line control scheme for
Lake Como, allowing to use forecasts while considering their uncertainty and consistency.

Keywords: hydrology, ensemble forecasts, optimization, predictive control





Sommario

Il Lago di Como, situato nel nord Italia, é una delle riserve idriche piú importanti del
paese. Supporta una grande varietá di attivitá antropiche, e viene regolato per soddis-
fare due obiettivi conflittuali molto importanti: (i) soddisfare il fabbisogno idrico a valle
dell’estuario, e allo stesso tempo (ii) prevenire allagamenti lungo le banchine del lago,
specialmente nella cittá di Como. Questo lavoro é diretto alla valutazione delle perfor-
mance di differenti approcci di controllo per la gestione di questa importante risorsa,
utilizzando previsioni idrologiche sia deterministiche che probabilistiche ("ensemble"), le
quali sono sempre più usate ed accurate. I metodi di controllo oggetto di studio vanno
dal "Model Predictive Control" (MPC) deterministico, alla sua relativamente nuova modi-
fica chiamata "Tree Based Model Predictive Control" (TB-MPC), un approccio stocastico
che sta ricevendo crescente interesse dalla comunitá scientifica grazie alla sua maggiore ro-
bustezza e adattibilitá di fronte all’incertezza delle previsioni. Questi controllori predittivi
verranno confrontati alla gestione storica e a due approcci off-line di riferimento, chiamati
"Stochastic Dynamic Programming" (SDP) e "Deterministic Dynamic Programming"
(DDP). MPC e TB-MPC usano previsioni a breve termine dell’afflusso, in particolare
MPC usa previsioni deterministiche e TB-MPC probabilistiche sotto forma di "Ensemble
forecast" (EF), un insieme di traiettorie deterministiche che rappresenta l’incertezza delle
stesse. TB-MPC potrebbe essere un metodo chiave verso il miglioramento della gestione
di risorse idriche affrontando meglio le incertezze grazie alla sua natura adattativa. Tut-
tavia, questi EF non sono sempre disponibili per diversi motivi (per esempio il loro costo,
il grande bias, etc.). Questo studio esegue quindi uno dei primi tentativi nella letteratura
di sperimentare l’implementazione di TB-MPC con EF sintetici generati con un metodo
basato su "machine learning" implementabile operativamente. I risultati delle simulazioni
suggeriscono che la regolazione del lago può essere migliorata usando previsioni di qualità
in uno schema di controllo in tempo reale. Data l’accuratezza delle previsioni disponibili e
di quelle d’ensemble generate, il TB-MPC con frequenza di controllo gionarliera risulta es-
sere il migliore schema per la gestione del Lago di Como tra (TB-)MPC orario/giornaliero,
permettendo di considerare l’incertezza delle previsioni nell’ottimizzazione.

Parole chiave: Idrologia, previsioni d’ensemble, ottimizzazione, controllo predittivo
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1| Introduction

Surface water resources like rivers, canals and lakes or reservoirs, both natural and man-
made, play a key role in the supply of water for the population in the surrounding regions,
as well as for agricultural, industrial and energy production uses. Water supply is essential
for many different human interconnected sectors in the Water-Energy-Food nexus, so
water scarcity that is expected to increase in the future with climate change can lead to
significant food and energy security problems due to intensified water supply stress (Zhang
et al. 2018). Moreover, these surface water resources support directly and indirectly
countless local human activities, as for example fishing, livestock sustainment, recreation,
tourism, manufacturing, and navigation as well as the ecosystems and wildlife inhabiting
it. These resources are particularly invaluable not only for their usefulness in a wide array
of sectors but also because they are sparsely distributed around the world and generally
cannot be created artificially wherever they may be needed, given the constraint of surface
water availability. Another key characteristic is that this surface water availability is
also highly variable in time with water levels that change according to the seasons and
climate. Therefore, it is critical to manage and use the available water resources to their
full potential, also facing and anticipating possible future changes.

1.1. Context: Forecasts value for regulated lakes

Water reservoir management is a particularly challenging task, considering for how many
human processes lakes and reservoirs are used, many of these characterized by conflicting
interests and very different intrinsic requirements. In this context, Integrated Water Re-
sources Management (IWRM) is the unanimously recognized key reference paradigm used
to meet society’s long-term needs for water resources while ensuring essential ecological
services and economic benefits, balancing human water needs and ecological requirements.
This systemic approach has frequently been subject of debate and has no unambiguous
definition, hence why this is a set of practices that must be autonomously developed by
regional authorities and national institutions depending on the particular case at hand.
Nevertheless, it is increasingly being acknowledged as the standard instrument to re-
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place the traditional, sector-specific approach to water resource management that has led
to poor services, fragmented and unsustainable resource use (Castelletti et al. 2008a).
An essential tool for effective water resources management is hydrological forecasting,
which can be used with different forecast-based optimal control techniques to increase
the efficiency of water system operations, also for multi-objective problem formulations,
maximizing performances with respect to all involved stakeholders. This integration of
forecasts in the control strategy makes the management proactive, as before the realization
of the disturbance (e.g. rainfall or inflows) the controller sets the system to a state which
is optimal to accommodate said expected disturbance. An example would be lowering the
water level of a regulated lake before an expected storm event, in order to keep a buffer
of storage available to attenuate flooding along the lake shores.

Giuliani et al. (2021) highlighted the extensive research efforts on more and more ad-
vanced methods for optimal reservoir operations of the last decades. Stochastic Dynamic
Programming (SDP) has traditionally been regarded as the best paradigm for reservoir
control since the ’60. SDP consists in an off-line management paradigm formulating a
Markov Decision Process (MDP). A MDP formulation has been found to be particularly
suitable for modeling and operating reservoirs, as it can capture both non-linear system
dynamics and objective functions, requiring only discrete domains of state, decision, and
disturbance variables, along with the time separability of objective functions and con-
straints. However, this approach has several limitations and problems that prevent its
real world application (see Section 4.1). One of the most promising options for overcoming
these problems is Model Predictive Control (MPC), a member of the class of optimal real-
time control methods, that can use exogenous information including predicted inflows to
the reservoir. Despite the extensive research efforts and the increasingly available open-
source tools, recent surveys (Pianosi et al. 2020) found a low adoption of these methods in
practice (Dobson et al. 2019). Reservoir operators often refuse to use available optimiza-
tion models and forecasts to inform their actual real-time operations and prefer simpler
tools, such as rule curves (Loucks & Beek 2017).

1.2. Literature review

1.2.1. The value of real-time information

In the last two decades, there have been several studies in the literature proving the ef-
fectiveness and the value of hydrological forecasts for water management and reservoirs
control, especially in on-line control schemes. On-line control approaches solve the pol-
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icy design problem with a computational effort distributed in time, with a new control
problem optimization formulated and solved over a finite horizon, potentially just before
each time step of a new control implementation (Castelletti et al. 2008b). This allows ex-
ploiting newly available information and possibly deterministic or stochastic forecasts of
disturbances, providing overall more flexible and adaptive control actions. On the other
hand, off-line control approaches compute the sequence of optimal control laws over a
given planning horizon with a unique execution prior to the actual management. These
off-line methods are still very frequently used for reservoir management but they gener-
ally lack flexibility and suffer of several computational limitations, as they might compute
control actions for states that never occur in reality.

Castelletti et al. (2008a) highlighted this potential short-term improvement that can be
brought by on-line control optimization techniques with respect to off-line control meth-
ods by exploiting newly available information in real-time, such as inflow predictions,
information about a power plant temporarily out of service, etc. For this reason, on-line
methods are expected to lead to an effective technical implementation of IWRM through
the better adaptation of control actions to the actual conditions the system is currently
facing. In particular, they focused on the case study of Lake Como in northern Italy,
a multi-purpose regulated lake, and investigated the possible advantages of refining the
off-line management policy computed in a previous planning process through an on-line
extension based on a receding horizon control scheme combined with a stochastic inflow
predictor. The objective of this on-line extension is to better cope with extreme events,
particularly those occurring in unusual periods of the year. Castelletti et al. (2008a)
considered the Partial Open Loop Feedback Control (POLFC) framework for on-line con-
trol, and SDP as off-line method and they concluded that through the use of real-time
information the former POLFC scheme can indeed improve SDP based policies, designed
with only a-priori available information instead. Their research also revealed that longer
prediction horizons can lead to an increase in performance, but this increase is less than
proportional to the increase in length of the prediction horizon, and can be achieved only
when the predictor is accurate. It is important to note that predictors have an inherent
cost increasing with the increase of prediction horizon, so the trade-off between these costs
and related improvement has to be thoroughly and carefully evaluated in each context.

Other authors followed a similar narrative of a comparative analysis between off-line and
on-line control, such as Galelli et al. (2014) and Pianosi & Soncini-Sessa (2009). They
also brought similar findings and conclusions, discussing some additional facets depending
on their particular case studies.
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Galelli et al. (2014) focused on the Marina reservoir in Singapore, a recently constructed
reservoir with an highly urbanized catchment. The very fast and extreme storm events
pose a significant control challenge given also the additional peculiarity of the interplay
of this multi-purpose system with the tidal cycle. This reservoir has been built primarily
to mitigate those frequent high peak inflows while also turning this storm water runoff
in drinking water for the inhabitants, which previously had to be outsourced. This is
complicated by the fact that the Marina of Singapore is effectively a tidal barrier on the
external sea, so the discharge of excessive stored water has to ideally be done with low
tides, minimizing its discharge during high tides as this operation would need a series of
pumps that consume a great amount of power. Conclusions highlighted how, even in such
a complicated setting, the MPC on-line management not only proved to be employable for
drinking water supply but also outperformed the off-line control (SDP). Moreover, MPC
provided a better compromise between flood control, pumps usage, and drinking water
supply objectives. Longer control horizons seemingly increased that behaviour, but only
up until the time constant of the reservoir (in the order of about 10 h). This improve-
ment is based on the fact that the off-line scheme can only react to inflow events, while
the on-line scheme can anticipate them thanks to the real-time predictions. Additionally,
any event occurring further than the time constant of the reservoir does not have to be
anticipated but can be resolved during the next low tide. Following work proved MPC to
be perfectly capable of managing the same reservoir Marina with the additional burden of
minimizing water salinity levels along the other previously considered objectives (Galelli
et al. 2015).

Pianosi & Soncini-Sessa (2009) focused instead on another multi-purpose reservoir, Lake
Verbano in northern Italy, on which they analysed in more detail the well known lim-
itations of the off-line approaches. Firstly, SDP requires a discretization of all system
variables, thus providing an approximate solution, but most notably suffers from mainly
two bigger limitations known as "curse of modeling" and "curse of dimensionality". The
first one represents the necessity for every component of the system that is being treated
to be explicitly modeled to be taken into account, this forced description of every dynamic
involved directly worsen the second one, which is already the most problematic between
them. The curse of dimensionality implies that the computing time increases exponen-
tially with the dimension of the state, decision and system disturbance. This may even
cause some problems to become intractable with SDP, or only with strong simplifications
to the model of the system leading to on-line methods, like POLFC and MPC, becoming
the only viable approach, such as in this particular case study. Similarly to previous work,
it was found that the on-line policy brings noticeable improvements thanks to the antici-
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patory action brought by the run-time inflow prediction. An additional counter intuitive
finding was that greater prediction ability does not necessarily imply greater effectiveness
in management, as results with an heteroscedastic (LOG-ARMAX) forecast model out-
performed those with the perfect forecast model.

Finally, both Galelli et al. (2014) and Pianosi & Soncini-Sessa (2009) emphasized how
in addition to inflow forecasts a reliable rainfall prediction could definitely help push per-
formances of on-line management even further, to the point of being almost comparable
to the one obtained with perfect inflow predictions.

Table 1.1: State of the art review table, summarizing the main studies found in the literature that
analyse some advanced applications of on-line control approaches.

Carachteristics Castelletti
et al 2008

Pianosi et
al 2009

Galelli et al
2014

Galelli et al
2015

Ficchi’ et al
2016

Raso et al
2014

Tian et al
2017

Tian et al
2019

Approach type:
Denomination POLFC POLFC POLFC POLFC TBMPC TBMPC MSMPC GAMPC

MMPC ACR
Benchmark SDP MPC-PF SDP MPC-PF MPC-PF MPC MSMPC
Objectives 2 2 3 4 4 2 2 1,2
Lin./Non Lin. NL NL NL NL NL NL NL NL

Forecasts:
Variable Inflow Inflow Inflow,Tide Inflow,Tide Inflow,Rain Inflow Inflow Inflow
Type Stoch. Stoch. Stoch. Det. EF (6) EF (15) EF (20) EF (20)
Operator E[·] E[·] Tree Tree W. sum Score m.

Others:
Prediction h 1,2,4d 1h 1h 3h 9d 15d 24,72,144h 6h
Control h 1,2,4d 1h 1h 3h 9d 15d 24,72,144h 6h
Simulation h 50d 4y 1y 3y 15y 15M 1y 60d
Decision’s f Daily Daily Hourly Daily Daily Every 6h Hourly Hourly
Info. update f Daily Hourly Hourly Hourly Daily Every 6h Every 6,24h Hourly
Reservoirs # 1 1 1 1 4 1 1 1

NOTE: h stands for horizon, f for frequency, all the other acronyms can be found in the acronyms section

1.2.2. Ensemble forecasts and stochastic approaches

In more recent years, there has been some work pushing further innovation in the con-
text of forecast use in on-line control schemes with relatively new and more advanced
implementations. These make use of the so-called Ensemble Forecasts (EF), which have
been increasing in availability and skill over the last few decades, and are the cause of a
gradual shift from deterministic to stochastic operations (Thielen et al. (2008), Chang &
Shenglian (2020) and Buizza & Leutbecher (2015)).

Over the last 25-30 years, weather forecasting has undergone a radical change, from a de-
terministic forecasting procedure where at each initial time of forecast issue (or update),
a single prediction is made "from a best-guess set of initial conditions using a best-guess
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deterministic computational representation" of the underlying physical equations, to a
probabilistic one where an ensemble (i.e. a set) of forecasts is made from a sample of ini-
tial conditions, possibly using stochastic computational representations of the underlying
physical equations Palmer (2019). EF are essentially a collection of trajectories, called
"members", obtained by running a deterministic Numerical Weather Prediction (NWP)
model multiple times with slightly different initialization or numerical atmosphere repre-
sentation schemes. This is based on the chaotic nature of the meteorological system: in
a chaotic system, like the atmosphere and climate, the known "butterfly effect" leads to
exponential divergence of trajectories in time for small perturbations of the initial state of
the system. In order to create reliable forecast systems for decision making, methods are
needed to determine when the butterfly effect will compromise the accuracy of the forecast
or when the uncertainty is too large to use the forecast information to make decisions. The
process for defining and constructing the previously mentioned initial perturbations is not
uniquely defined, and is a critical ingredient in generating ensembles that do not suffer
from sampling errors (Palmer et al. 1997), as those are the components that contribute
the most to the uncertainty of deterministic forecasts (Gneiting & Raftery 2005). The
most commonly used ensemble predictions generally come from the Ensemble Prediction
System (EPS) of the European Center for Medium-Range Eather Forecasts (ECMWF),
and range from 5 to 100 members.

Ensemble Forecasts traditionally refer to meteorological predictions, but are also increas-
ingly used for derived predictions, such as hydrological ones (e.g. streamflow). A visual
example of a hydrological ensemble forecast is provided in Figure 1.1. In this study,
with ensemble forecasts we will refer to hydrological forecasts only, which are sometimes
called Ensemble Streamflow Predictions (ESP) (Raso et al. 2014). In the context of con-
trol problems, EF allow to inherently take into account into the management problem
the uncertainty related to the predictions themselves, something that cannot be done
with single deterministic forecasts. The possibility of taking into account uncertainty via
ensembles is a powerful benefit in the search of an optimal control policy, but to create
these EFs are required powerful computers able to run computationally demanding NWP
at high resolution and a large number of times (for each ensemble member), and a high
computational time nevertheless. Additionally, to maximise their potential, EFs require a
considerable amount of statistical post processing to address model bias (e.g. Arnal et al.
(2018); Wetterhall & Giuseppe (2018)), insufficient uncertainty representation and differ-
ent spatial scales of model grid-boxes (Gneiting & Raftery 2005). All these additional
requirements are also computationally intensive, and only few large international centres
in the world, like ECMWF, can run EPS for medium-range or longer lead times with a
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Figure 1.1: An example of ensemble forecast hydrograph for a hindcasted flooding event
(Pappenberger et al. 2015). The black dotted line refers to the real observed inflow, while
the blue solid lines represent the different forecast inflow trajectories, and the horizontal
dashed lines represent four flood discharge warning levels. Example from the October
2007 Flood in Romania on the river Jiu as modelled by the European Flood Awareness
System (EFAS), Pappenberger et al. (2015)

physical model at high resolution.

For the last several decades, weather ensemble forecasting has been dominated by NWP
models, but because of the computational requirements and other reasons listed above,
in recent years there has been a growing interest in generating ensembles through other
means. For example, data driven methods based on Artificial Neural Networks (ANN),
which were previously implemented only for post processing activities on EFs (Rasp &
Lerch 2018) or for assigning a confidence measure to forecast skills (Scher & Messori
2018), have been tested more recently to generate ensemble forecasts from deterministic
ones. This is an "output-oriented" method that neglects all the real-world assumptions
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and physical laws dictating how meteorological variables or stream flow evolve in time and
aim at just reproducing the data looking at their historical behaviour (Scher & Messori
2021). These prediction tools are effective for synthetic short-term ensemble forecasts
only though, while in the medium range (between 3 to 14 days) they are currently still
outperformed by NWP models. Despite that, they provide a wide array of benefits, this is
a very flexible approach that yielded satisfactory results in terms of skills of the produced
ensembles, and does not require high performance machines nor long run times, effectively
making it available to the average end user.

Only a few studies in literature have used real ensemble forecasts in real-world appli-
cations, relying on different stochastic on-line control methods all derived from the orig-
inal MPC. The claim that EFs contain very valuable information for optimal control of
water systems is further reinforced by Raso et al. (2014), a study that compared MPC
against TB-MPC and another stochastic modification called Multiple MPC (MMPC).
While MMPC deploys the entire original ensemble in a pure stochastic optimization of a
series of control actions, TB-MPC differentiates itself by transforming the ensemble into
a tree structure and optimizing a tree of controls instead. The key difference between the
two is that TB-MPC does contemplate the possibility of the devised strategy to be ad-
justed in the next decision instants thanks to the information on which member of the EF
is actually occurring or, while MMPC does not. Thus MMPC is a non-adaptive approach
often providing an over-conservative policy, with the high risk of producing an infeasible
solution in presence of state constraints as well (uncertainty is overestimated). Expect-
edly, it was found that TB-MPC outperforms once again MPC and also its counterpart
MMPC. These conclusions suggest that, while still requiring more computational effort,
by working on a tree structure TB-MPC effectively makes better use of the information
contained in the EF. However, authors have acknowledged that the involved performance
statistics were based off a few events, due to the shortness of available data (see Table
1.1 for reference), these findings should be further tested on longer simulations and with
possibly with longer control horizons.

Another example of application of this innovative stochastic approach was brought by
Ficchí et al. (2016b), who discussed the advantages of TB-MPC over the standard deter-
ministic MPC in a real-world application in the Seine River Basin (France) over a longer
horizon of multiple years, see again Table 1.1. Their conclusions show that TB-MPC
provides results almost as good as those obtained with standard deterministic MPC using
perfect forecasts (MPC-PF), although computational time grows about 7 times greater,
remaining however feasible for the needs of real-world decision makers even for complex
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multi-purpose multi-reservoir systems. Authors suggest that this approach could become
more and more valuable with the projected increase of climate change’s impact and could
also be extended to account for the uncertainties characterizing the hydrological-hydraulic
model. Most notably, both studies (Ficchí et al. (2016b) & Raso et al. (2014)) underline
the importance of having an EF correctly representing the relevant uncertainties affecting
the hydrological system, as the powerful adaptivity of TB-MPC is a direct consequence
of that, and the approach could quickly lose ground if that requirement was not to be met.

A later interesting study tackled the issue arose in previous research of low computa-
tional efficiency of these advanced stochastic MPC approaches, making use of EF such as
TB-MPC MMPC and Multi Scenario MPC (MSMPC). Tian et al. (2017) proposed the
Adaptive Control Resolution (ACR) scheme to reduce the number of control variables
involved in these management approaches, which in brief consists of dividing the control
horizon into 3 distinct phases:

• Phase I: Near future, forecast expected to be very accurate, control resolution is
the finest possible

• Phase II: Moderate future, forecast accuracy is presumably lower, so the control
resolution is decreased

• Phase III: Distant future, characterized by the lowest forecast accuracy, control
resolution greatly decreased

This idea that the control action is significantly more important in the nearest future
thanks to the maximum forecasting accuracy is simple and intuitive, yet proved to be
very effective in increasing computational efficiency, alleviating previous concerns regard-
ing future practical implementation of these powerful approaches for complicated large
scale systems. This could definitely come in handy with the Genetic Algorithm (GA)
modifications of MPC derived approaches recently proposed in Tian et al. (2019), which
still use EF to represent uncertainty in their frameworks. GAs (MOEAs) are algorithms
architecturally built to solve multiple conflicting objectives problems with their greedy
and "brute-force" nature leading to high computational demands. The study highlights
how promising they could be in bettering management objectives when deployed to solve
multi-scenario optimization problems.
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1.3. Objective of the thesis

From this extensive literature review, it can be argued that it is well recognized that
hydro-meteorological forecasts are an invaluable tool in the water management context.
Forecasts can be directly used in combination with on-line control schemes, but also to
provide short-term improvements to policies designed off-line and lead to more robust
and adaptive policies. However, even if a few studies showed the value of real forecasts in
real-world applications of reservoir control, there have been too few studies addressing the
value of ensemble forecasts which are increasingly recognised as the standard technique in
hydrometeorological forecasting. Moreover, as suggested by the review of Giuliani et al.
(2021) an unresolved challenge for all optimal reservoir management techniques is their
limited uptake by practitioners. Thus, there is an urgent need of showing the value of
available operational forecasts in real-world case studies, to show the advantages of in-
vesting in the re-operation of existing infrastructure to optimise their benefits and bridge
the gap between science and policy-making. An exemplary very well-studied case study in
this context is Lake Como, in Italy. Local forecasts are available for the lake inflows, and
open-source optimisation tools have been developed in previous studies, but the actual
management of the system is not yet using these forecasts and tools (in a systematic and
documented way, at least).

Using forecasts to better adapt to climate variability is more and more urgent nowadays
as global warming is causing more and more climate extremes, with increased variability.
Several areas, including the Lake Como region, have been experiencing more frequent
extreme droughts or torrential rain causing large damages to human activities and as-
sets, and making water resources management increasingly challenging. On-line control
approaches, being able to exploit real-time information and forecasts, are a powerful tool
that could be capable of mitigating the increased weather variability and extreme events
expected with climate change.

This thesis will address these gaps, by assessing the skill of available short-term de-
terministic hydrological predictions for the Lake Como basin, and also by investigating
in what measure they can bring benefits with respect to flood control and downstream
water supply in the optimal regulation of this important regulated lake. To date, this
case-study has never been investigated with such an extensive forecast analysis, and with
an operative application study of a real-time controller based on real deterministic and
ensemble forecasts. The authority in charge of the lake regulation has had the deter-
ministic hydro-meteorological predictions readily accessible for some years, but has not
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yet incorporated this data in an Integrated Decision Support System (IDSS) to improve
the historical management of the reservoir. Major improvements could be expected by
integrating these forecasts, especially for coping with the projected more frequent ex-
treme events caused by climate change. Another gap that this thesis will try to cover
is the enhancement from deterministic to stochastic on-line control, deploying ensemble
forecasts generated with an innovative data driven method based on neural networks, as
a computationally-effective alternative to traditional ensembles from NWP. While some
studies have brought attention to this promising procedure, to our best knowledge this
will be the first assessment of their usefulness in a real-world water management problem.
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2| Case Study

2.1. Case study region: the Lake Como basin

The Lake Como Basin is located in Northern Italy (Lombardia Region) and is part of
the Adda River Basin, a very important basin with a key strategic role in supporting
irrigated agriculture in the region. The Adda River (the fourth longest river of Italy) is
the main tributary of Lake Como and its only emissary, which comes out of the lake close
to the city of Lecco and flows southwards until it reaches the Po River, see Figure 2.1.
Lake Como is the third largest lake of Italy after Lake Garda and Lake Maggiore and has
a total active water storage capacity of 247Mm3. The lake regulation is committed to
"Consorzio dell’Adda" (www.addaconsorzio.it), an Italian regional authority controlling
the lake regulation since 1946 by operating a dam located in Olginate, a province of Lecco,
and providing for its maintenance.
The Lake Como basin is characterized by a topology common to many other Alpine wa-
tersheds. The upstream part is characterized by the mixed snow-rain dominated regime
typical of southern Alps, with a catchment area of 4.552 Km2. There are 16 sub-alpine
reservoirs upstream of the lake, with a total storage capacity of 545 Mm3, approximately
twice as much as the main lake storage, distributed along several small to medium artifi-
cial hydropower reservoirs contributing together to roughly 12% of the national electricity
demand (Denaro et al. 2017). Contrarily to the main lake (Lake Como), which is gov-
erned by a public authority, the aforementioned reservoirs are managed independently by
four private companies with the sole scope of maximizing energy production. This affects
considerably the seasonal inflow pattern of the lake, possibly causing increased inflows in
periods with high flooding incidence, but most notably it may lead to less water volumes
available during periods with high irrigation demands, a ground for potential disputes
with downstream farmers. One instance of this issue was during the summer droughts
of 2003 and 2005 when the situation escalated to the point where the Consorzio forced
power companies to release extra water to cope with said droughts and support agricul-
tural needs. This however caused significant economic losses to these companies with a
little benefit to the farmers, leading eventually to a lawsuit (Anghileri et al. 2013).
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Figure 2.1: Map of the Lake Como basin, from Denaro et al. (2017), highlighting the
catchment area (blue) and the downstream agricultural districts (green). The triangles
denote hydropower reservoirs with the red ones being the four main ones considered in
Denaro et al. (2017).

The regulation of the lake is essential to aim to satisfy two primary competing objectives:
water supply, mainly for irrigation, and flood control along the lake shores. Downstream
agricultural districts prefer to store water from snowmelt in early spring in the lake to
satisfy the peak summer water demands, when the natural inflow is insufficient to meet
the irrigation demand, but storing such water increases the lake level and flood risk (Giu-
liani et al. 2016).
Additional interests are related to hydropower, navigation, tourism, and ecosystems ser-
vices. These multiple objectives further challenge the current water management strategy
and motivate the research on this case study to look for more efficient solutions also relying
on forecasts. Hydrometeorological forecasts can contribute to improving the reliability of
the irrigation supply as well as to mitigating existing conflicts between competing sectors
(Giuliani et al. 2016).
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In conclusion, the Lake Como Basin is a very complex system with long lasting issues
of conflicts between stakeholders, mainly for flood protection of lake shores, hydropower
production, agriculture and food production objectives, as well as other economical, en-
vironmental and recreational issues such as navigation, tourism, ecosystems and fish con-
servation. For these reasons, the regulation of Lake Como can be seen as a prominent
example of multi-objective optimization problem which is expected to grow more and more
difficult to treat, given the relatively small regulation capacity of the system itself and
due to a steady growth of global temperatures and a consequent expected reduction of
water availability (García-Herrera et al. 2010). Climate change is expected to cause an
increase in the frequency and intensity of water crises over the next years (Denaro et al.
2017).

Figure 2.2: Main hydrological components of the inflow in the study area, the patterns
represent moving averages computed from observed data over the period 2006 - 2013
(Denaro et al. 2017).

2.2. Climatology of the hydrological variables

The Lake Como (and Adda River) Basin is a catchment of alpine nature, meaning that
the inflows to Lake Como are characterized by lower values in summer and winter, while
higher values are observed in autumn and late spring. Low temperatures during winter
result in snow accumulation at high altitudes; this volume of stored water is called Snow
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Water Equivalent (SWE) and has a delayed contribution to the lake inflow, observed in
spring when the temperature gets warmer and the snow melts.

Figure 2.2 shows that this SWE represents the main contribution to the lake’s seasonal
storage supporting the downstream water demand (Denaro et al. 2017). This great volume
of water is thus critical for satisfying the water demand throughout the year (see yellow
curve), especially during summer time, when it increases as the surge in temperatures and
more sporadic precipitations challenges crop growth. However, this slow dynamic and the
necessity of keeping the water stored in spring is in conflict with the faster dynamics of
inflows (due to precipitations) affecting flood risk, which is more pronounced in spring and
autumn. The snowmelt accumulation for long-term water scheduling directly interferes
with the short-term flooding mitigation objective that requires keeping an appropriate
storage pool to buffer inflow peaks caused by heavy precipitation. This is a key issue that
the multi-objective management of the lake should deal with.

2.3. Available hydrological observations

Measured data of lake levels and releases is available at daily resolution over a long period
(1946-present), while the same data is also available at hourly resolution for some recent
years (2007-present). Hourly data of lake levels is affected by more uncertainty than daily
data because of the problem of sudden oscillations in the lake levels, due to the known
"seiches" phenomena, which are standing waves in an enclosed body of water such as lakes
and reservoirs. In the presence of seiches, gauge readings can sometimes pick up negative
or locally anomalous values that do not represent the real hourly average level. However,
upon further inspection and data pre-processing, this problem turned out to have rather
low incidence (1,4% of data points) with a very low number of registered negative values.
Consequently, it was easily fixed with a simple linear interpolation.

Measuring directly the total distributed inflow to the lake is not feasible, as there are
several small tributary rivers that drain to the lake, in addition to distributed lateral
runoff and the main tributaries, i.e. Mera and Adda Rivers. Many river gauging stations
would be needed as well as the modeling of complicated processes like evaporation and
seepage bank loss to get an accurate direct estimate of the total inflows hence the indirect
estimation of the total inflow. This is done by an inversion of the mass balance equation,
based on the time series of the storage and release, leading to an efficient estimation of
the net inflow of the lake, corresponding to the sum of all distributed inflows to the lake
minus the evaporation from the water stored in the lake.



2| Case Study 17

The upstream hydro-power basins are not considered in this study as there’s no cen-
tralised control authority, and a lack of data of all their release time series, because they
are managed independently to maximize hydropower energy production.

Figure 2.3 shows the daily cyclostationary inflows for the selected period of study, rang-
ing from the 1st Jan, 2014 to the 1st Jan, 2022, this was chosen since it coincides with the
period for which the hydrological forecasts are available.

Figure 2.3: Daily cyclostationary inflows to Lake Como, computed with a moving average
with a 5 days window over the study period from January 2014 to January 2022, from
aggregated hourly data provided by Consorzio dell’Adda.

2.4. Available hydrological forecasts

Inflow forecasts used in this study include the real operational forecasts produced by PRO-
GEA s.r.l. (www.progea.net), an italian company specialised in developing hydrological
forecasting models and services. Forecasts for Lake Como come from their registered
software called EFFORTS (European Flood Forecasting Operational Real-Time System),
which is a decision support system with a GIS interface for real-time flood forecasting and
hydrological monitoring. Hourly forecasts are produced through EFFORTS combining a
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hydro-meteorological database containing real-time information and forecasts for the area
where it is deployed (in this case the Adda River Basin) and past hydro-meteorological
data, with an hydrological model called TOPKAPI. The original temporal resolution of
the forecasts is 1 hour, the maximum lead time is 60 hours and the forecast update fre-
quency is every hour. Daily forecasts were obtained from these hourly forecasts through
aggregation from 8 a.m. of each day (as this is the convention for the start of the day
considered in the observed hydrological data).

TOPKAPI is a physically based, fully distributed rainfall-runoff model based on the lump-
ing of a kinematic wave assumption in the soil, on the surface and in the drainage network.
It is constructed around ten main modules: interception, evotranspiration, snowmelt, in-
filtration, interflow and percolation, vertical recharge to groundwater table, groundwater
flow, surface flow, channel flow and finally lake-routing producing three non-linear differ-
ential equations describing the catchment (Liu et al. 2018).

The meteorological inputs of the TOPKAPI model for the Lake Como catchment come
from COSMO’s high resolution meteorological forecasts. This is a group of meteorologi-
cal services from several European Countriesd (Germany, Greece, Italy, Poland, Romania,
Russia, and Switzerland) that pool their research and development resources in the field
of regional NWP (Baldauf et al. 2011).
The COSMO meteorological forecasts used in EFFORTS have a spatial resolution of up
to 7Km until 2018 and 5Km from late 2018 to present time. These resolutions are com-
parable to other studies that obtained satisfactory results, and also showed that there is
not necessarily benefit from finer resolutions (Alessandrini et al. 2013).

The forecasts of hourly inflows from EFFORTS were available over the period 2013-2022
(present) with several gaps, in total they miss around 14,5% of the data, but these gaps
are severe only until the year 2014 where they miss 99.9% of the data while from the year
2014 onwards just 10% is sporadically missing. The study period was thus selected from
1st Jan, 2014 to 1st Jan, 2022 to allow for a more valid reconstruction of the missing data,
these gaps were filled with the value initialized at lead time 0 of the same forecast model
(TOPKAPI, EFFORTS), this for all time steps when the 60-hour forecasts were missing.
This procedure corresponds to using the persistence benchmark commonly used as bench-
mark in hydrological forecasting that is known to be more skilful than climatology as a
forecast benchmark for short lead times (Pappenberger et al. 2015).
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2.5. Lake regulation

The management of the lake has started with the installation of a dam in Olginate during
World War II to transform the lake into a reservoir (Guariso et al. 1986), it has then been
committed to the Consorzio of Adda since 21st Nov, 1938 which has historically regulated
this reservoir to balance water needs between downstream utilities, farmers and run-of-the
river hydroelectric plants, while preventing floods along the lake shores and preserving
the ecological processes related to the lake.

2.5.1. Downstream water supply

The cultivated area fed by the estuary river Adda counts six agricultural districts, with the
main crops being corn wheat and forage on an irrigated surface totaling 144’000 hectares.
The downstream canals also provide water to seven hydroelectric power plants with a
total capacity of 92 MW, with an annual production of around 473 GWh (Guariso et al.
1986).

The most important water derivation from the Adda river is the Muzza canal, located
south-east of Milan, managed by the Consorzio di bonifica Muzza-bassa Lodigiana. This
canal has a length of 60 Km and a maximum flow of 112 m3

s
, supplying 36 secondary canals

in an area of 55000 hectares (Consorzio dell’Adda, 2013). The second most important is
canal Vacchelli, situated in the province of Cremona, managed by Consorzio Irrigazioni
Cremonesi, and has a total length of 34 km and a maximum flow of m3

s
, supplying an area

of 58864 hectars. The other canals fed by Adda river are: canal Retorto, canal Vailata,
canal Martesana, canal Bergamasco and lastly canal Rivoltana.

The nominal irrigation water demand to be satisfied is defined as the aggregation of the
historical water rights of all the downstream water users. These water rights, which were
originally established in 1942 and only marginally modified through the years, represent
the irrigation water requirements under normal conditions and do not account for the
type of crops cultivated or the meteorological conditions actually occurring in a specific
year(Giuliani et al. 2016). Favorable hydrological conditions throughout history allowed
for agricultural sustainment without any particular effort even with such a simplistic def-
inition , but due to the projected increase in water crisis (Lehner et al. 2006) call for a
more dynamic and flexible management, exploiting hydrological predictions.
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2.5.2. Environmental flow

An additional component to the water demand for irrigation is what is known as Mini-
mum Enviromental Flow (MEF), defined as the minimum downstream water flow needed
to preserve the ecological functions of the river and associated aquifer.

In the Lake Como Basin, the MEF was defined in 2006 by a regional plan and is updated
regularly. In the last update, the regional authority decreed that a daily water release
of 22 m3

s
is required to maintain an healthy river ecosystem for the Adda. Although im-

portant, this requirement has been the subject of heavy debate during the years. As per
March 2022 (at present), the water crisis in the basin is at an all time high with water
inflows down 60% with respect to the historical mean. The Consorzio dell’Adda is cur-
rently requesting the regional authority to half the MEF to cope with these unprecedented
droughts, as reported in official documents (Official bulletin of Regione Lombardia, 22nd

Apr, 2022).

2.5.3. Flood control

Flood management is one of the most important aspects in the regulation of Lake Como
because of the great infrastructural damages caused by the floods on the lake shores,
particularly in the city of Como, the lowest point on the lake shoreline (Giuliani et al.
2019). In recent years, the problem of the operation of the dam is becoming increasingly
critical, as the risk of flood during periods of high inflows increased. This risk increase
has been driven by the subsidence of the main square of Como, Piazza Cavour, and the
surrounding area that have been progressively sinking since the beginning of the 1960’s.
This is likely because of a mix between the stratigraphic characteristic and the geological
setting of the basin as well as changes in the urban configuration of the city (Nappo et al.
2020) and other anthropic activities such as land reclamation and overpumping from the
underground aquifer (Guariso et al. 1986). For all these reasons, the flooding threshold
on the lake level has been progressively reduced from 1.5 meters to 1.1 meters, and is
expected to be reduced even further with the years.

2.5.4. Integrated model

The overall system modelled includes the lake and the release from the regulation dam
situated in Olginate. As it was previously mentioned, the contribution of upstream alpine
reservoirs is considered only indirectly in this study within the total estimated inflows,
but they are not explicitly modeled.
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The lake is modeled as a discrete time daily mass balance with an hourly integration,
where the contribution of evaporation is not considered directly, while the use of esti-
mates of net inflows compensate for this. The following mass balance equation is used to
model the dynamics of the lake:

St+1 = St + nt+1 − rt+1 (2.1)

Where St is the storage of the lake a the current time step, nt+1 the incoming net inflow
to the lake, also considering indirectly evaporation losses, and rt+1 the outflow of water
defined as as non linear function f(ut, St, nt+1) of the requested control action ut and the
state of the system itself. Together they give the storage at the next time step St+1. Note
that the function rt+1 = f(·), while representing the dam, is not modeled with respect to
detailed hydraulics but is simple saturation of the input control decision ut depending on
the state of the system. These maximum and minimum saturations allow for the maneu-
vering of the system within the range [-0.4:1.1] meters, outside of these boundaries the
release is either forced to 0 or the maximum natural release of the estuary.

Depending on the chosen control frequency for the lake operation, the model is slightly
different, with daily operations the control u is computed every day at 8 a.m. and then
kept constant for the next 24 hours, while in the case of hourly operation, u is computed
and applied every hour of the day, see Section 4.2.1.

2.6. Objective formulation

The mathematical formulation of the stakeholders’ interests is necessary to be able to
compare the behaviour of all the control alternatives under study. These interests are
formulated as a set of indicators that are computed via the simulation of the system
management. The indicators used here follow a standard definition of such objectives in
water management problems and have also been developed and used for this case study
by previous authors. For example, Anghileri et al. (2011) used these for the quantitative
assessment of the climate change impacts on the key water related activities in the basin,
while Denaro et al. (2017) to derive the off-line policies (DDP and SDP) that are also
considered as benchmarks in this study.
The indicators used are defined in the equations below:
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Iflood =
1

Nsim

Nsim∑
t=0

gfloodt with gfloodt =

1, if xt ≥ xflood

0, if xt < xflood

Iwdef =
1

Nsim

Nsim∑
t=0

gwdef
t with gwdef

t =

(MEF + w − uτ )
2−rw , if MEF + w ≥ uτ

0, if MEF + w < uτ

Ilowlvl =
1

Nsim

Nsim∑
t=0

glowlvl
t with glowlvl

t =

0, if xt > xlowlvl

1, if xt ≤ xlowlvl

The flood and low-level indicators (Iflood and Ilowlvl) are computed as a percentage of
respectively flooding and low level days along the whole simulation span (Nsim days) to
account for the incidence of such events in time. Flood occurrence is defined when the
lake level (xt) exceeds the flood level threshold (xflood) equal to 1.1 m. A low-level event
is defined when the lake level falls below the low-level threshold (xlowlvl) equal to 0.2 m.
An alternative formulation could take into account the magnitude of these events. The
optimal value of both the formulations is 0, but the first formulation (temporal incidence)
can be interpreted more easily than the second.

The water deficit indicator (Iwdef ) is defined as an average squared water deficit, but
the quadratic exponent is corrected with the addition of a rain weight term rw represent-
ing the contribution of rainfall. This rain weight assumes the value of 0 from June to July
and 1 all the other months, in order to accentuate the deficit of water during periods of
more aridity, while being more permissive in those periods of the year characterized by
more precipitation which can help compensate for the lower water supply from the lake.
In the equation defining the water deficit, the water demand (w) is defined as the daily
target release values (ut) over the year, and corresponds to the ideal amount of down-
stream water flow to support crops growth (yellow area in Figure 2.2). The squared
power is particularly important here as it penalizes more concentrated higher shortages
instead of distributed small shortages, as the former one is much more damaging to the
crops than the latter. In principle the water demand should change with the type of crop
that is grown, as different plants require different watering schedules across the seasons,
but in this study this detail is neglected. The MEF is the minimum environmental flow
equal to 22 m3/s, which is an additional component of the downstream water demand,
as previously introduced.
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3| Methods: Forecast
performance and Ensemble
generation

This chapter describes in detail the methods used for the evaluation of the performances
of the available deterministic forecasts, as well as the procedures used to generate and
evaluate synthetic Ensemble Forecasts (EFs). EFs were generated based on the historical
observed data available, with two different techniques for the daily and hourly ensembles.
The specific performance indicators and skill scores used to verify the synthetic ensembles
are presented too. These analysis steps are then performed prior to the implementation
of the real-time control schemes to assess whether or not the prediction systems available
are able to produce skillful forecasts of the lake inflows, which are the core asset required
to develop a Model Predictive Control framework able to generate meaningful on-line
policies.

3.1. Introductory notes: Study period and time con-

ventions

The hydrological observed data available and used in this study are time series of the
hourly and daily mean inflows to the lake ([m3/s]), that are available from 2007 for the
hourly resolution and from 1946 for the daily one (see Section 2.3). The lake operator
collects these data at both a hourly and daily sampling frequency, with the daily data
starting at 8 a.m. of each day. These data can be used to inform the control decision-
making for the following hours or days, respectively. Hourly deterministic forecasts from
PROGEA are available over the period 2014-present. Thus, the shorter period of forecast
availability that is in common with the observations available is used to define our study
period (from 1st Jan, 2014 to 1st Jan, 2022) in the following simulation tests and analy-
sis. Daily forecasts are obtained through a standard temporal aggregation in time of the
hourly forecasts, i.e. the mean of the first 24 hourly forecast values issued each day at 8
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a.m. gives the daily forecast value with lead time 1 day. Similarly, the average for the
next 24 hours gives the daily predicted value for the lead time of 2-days ahead, and so on.

As already mentioned in Section 2.1, observed data is produced by a gauging station on
the Adda River, while the forecasts are produced by a deterministic hydrological model,
called TOPKAPI, that is fed with observed and forecast precipitation data (for initiali-
sation and forecasting, respectively). This model is initialized on the starting conditions
of each hour and the run is reiterated to generate inflow predictions up to h time steps
ahead with an hourly forecast update frequency. For this particular basin, the forecasts
are available with a maximum lead time of 60 hours. So the aggregated daily forecasts
are generated at h=1,2,3 days ahead (where the average daily forecast value for the third
day is obtained by using the average of the first 12 hours of that day).

3.2. Data processing and subsets

The skill analysis has been carried out not only over the whole forecast data set (a), but
also on particular conditions of high interest or data subsets, these being the medium-high
flow condition (b) and the flooding condition (c). The additional subsets can be particu-
larly informative as it is crucial to have a skillful forecast of these important conditions,
especially for the flood peaks timing and magnitude, which if missed or severely underes-
timated could lead to a wrong control action and heavy infrastructural damages.

Their identification procedure is done by drawing out of the whole data set those data
points which are above a certain threshold defined by a percentile drawn from the whole
daily time series, and are then grouped together as two new sets, on which the same
performance analysis is carried out. The two thresholds are respectively:

• 80-th percentile for the medium high flow conditions (b);

• 99.5-th percentile for the flood peaks (c).

3.3. Performance metrics and skill scores for deter-

ministic forecasts

In this study, standard performance metrics and skill scores for deterministic (and en-
semble) forecasts of inflows are used to tell how accurate the forecasts are, also with
respect to other simple predictors like the (static) mean and cyclostationary mean, used
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as benchmarks. In this section, the performance metrics used for deterministic forecasts
(or ensemble mean) are presented, while Section 3.5 will present the metrics used to eval-
uate EF.

Forecasts have an inherent cost in being realized or acquired, so if they wouldn’t prove to
be much more informative than those basic, easily and cheaply computable metrics they
are confronted with, the forecasting systems needed to generate them would prove to be
an inherent waste of economical resources to build or upkeep.

Note that cyclo-stationarity of the data must be assumed before attempting to compute
the corresponding cyclo-stationary mean, but this is the case in hydrological systems as
the Lake Como Basin where all the variables are influenced by the seasonal regime of
snow-melt and rainfall (see Chapter 2).

3.3.1. Mean Square Error, Root Mean Square Error, and Mean

Absolute Error

The Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) are all standard and well known error metrics, and are defined as:

MSE =
1

T

T∑
t=1

(Qsim(t)−Qobs(t))
2 (3.1)

RMSE =

√√√√ 1

T

T∑
t=1

(Qsim(t)−Qobs(t))2 (3.2)

MAE =
1

T

T∑
t=1

|Qsim(t)−Qobs(t))| (3.3)

where: Qobs(t) is the observed value at time step t, Qsim(t) is the corresponding forecast
(or simulated) value for the same time step and T is the length of the data set (i.e. the
total number of time steps in the paired observation-forecast dataset).
Due to their squared formulation, MSE and RMSE weight bigger errors more than smaller
ones, and this is useful as in hydrology such errors tend to happen during the most critical
conditions of high-flow or flooding. MSE measures the variance of the residuals, RMSE
measures the standard deviation of the residuals and MAE measures the average of the
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absolute values of the residuals.

3.3.2. Nash-Sutcliffe Efficiency

The Nash-Sutcliffe Efficiency (NSE) score is a traditional metric used in hydrology, de-
fined as in the following equation:

NSE = 1−
∑T

t=1(Qsim(t)−Qobs(t))
2∑T

t=1(Qobs(t)−Qobs)2
(3.4)

where: Qobs(t) is the observation at time t, Qsim(t) is the forecast at time t and Qobs is
the mean of the observations, i.e. the inherent benchmark, and T is the total number of
time steps in the paired observation-forecast dataset.

For an unbiased model, a NSE = 0 indicates that the simulation has the same ex-
planatory power of the observation’s mean, respectively, a NSE < 0 indicates that the
model is a worse predictor than the observation’s mean.

The NSE score can also be modified by substituting the standard benchmark, Qobs,
with the more refined cyclostationary mean, Qcyclo, without any additional computation
(Knoben et al. 2019). This alternative NSE score will be referred to as NSEcm and, for
sake of clarity, the traditional NSE score with the static mean will be written as NSEsm.

3.3.3. Kling-Gupta Efficiency

The Kling-Gupta Efficiency (KGE) score is based on a decomposition of the NSE score
into its constitutive components, being Pearsons’s correlation r, bias ratio β and variabil-
ity ratio γ. Defined as in the following equation:

KGE ′ = 1−
√

(r − 1)2 + (β − 1)2 + (γ − 1)2 (3.5)

with

r =

∑T
t=1(Qobs(t)−Qobs)(Qsim(t)−Qsim)√∑T

t=1(Qobs(t)−Qobs)2
√∑T

t=1(Qsim(t)−Qsim)2
(3.6)

β =
µsim

µobs

(3.7)
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γ =
CVsim

CVobs

=
σsimµsim

σobsµobs

(3.8)

As it can be seen from Equation 3.8, in the computation of the variabilty ratio the adi-
mensional Coefficient of Variation (CV) was used instead of the standard deviation σ.
This is coherent with the second (’modified’) proposed version of the KGE definition,
ensuring that bias and variability ratios are not cross-correlated (Kling et al. 2012).

Considering as a benchmark the mean flow, a model performance in the range −0.41 <

KGE ′ ≤ 1 means that the model outperforms said benchmark (Knoben et al. 2019), with
an ideal value of 1 for a perfect simulation/forecast model.

3.3.4. KGE as a skill score

The standard definition of KGE implicitly refers to the standard mean as a benchmark,
although its interpretation as a skill score is less straightforward than the NSE, which is
a skill score per se. Here we use also a modification of the KGE as a skill score, KGE
Skill Score (KGEss), that refers to the cyclostationary mean as a benchmark, defined as
by Knoben et al. (2019) and in the following equation:

KGEss =
KGEsim −KGEbench

1−KGEbench

(3.9)

where: KGEsim is the previously computed KGE score of the forecasts and KGEbench is
a new KGE score computed using the cyclo-stationary mean (at each time step t) instead
of the simulated/forecast dataset.

This KGEss skill score is scaled exactly like the NSE score, meaning that positive val-
ues indicate a model better than the benchmark while negative values indicate that the
opposite is true, which is a more intuitive threshold. However, because of its nature it
should not be used by itself as a metric. With a scaled metric, the “potential for model
improvement over a benchmark” always has a range of [0,1], but the information about
how large this potential was in the first place is lost and must be reported separately for
proper context (Knoben et al. 2019). If the benchmark is already very close to a perfect
simulation/forecast, a KGEss skill score of 0.5 might indicate no real improvement in
practical terms. In cases where the benchmark constitutes a poor simulation, a KGEss
score of 0.5 might indicate a large improvement by using the simulation/forecast model.
This issue applies to any metric that is converted to a skill score.
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3.4. Advanced event-based metrics

Since one of the main focuses of this work is to use forecasts to anticipate flooding events,
an additional set of more advanced skill metrics aimed at assessing the accuracy of the
forecasts in terms of flood timings and the magnitude of peaks have been computed.

3.4.1. Flood peak efficiency

As a score of flood peak efficiency, we use a simple relative difference in magnitude between
the forecast peak and the actual observed flood peak, defined from Ficchí et al. (2016a),
as in the following equation:

∆Qp =
Qp

sim −Qp
obs

Qp
obs

(3.10)

where: Qp
sim is the predicted magnitude of a particular flood event peak P and Qobsp is

the actual observed peak. The ideal value for this indicator is 0, if positive it denotes an
overestimation of the event magnitude and if negative it indicates an underestimation.

3.4.2. Time to peak error

The Time to peak error represents the time delay between the forecast and the actual
observed flood peak, defined from Ficchí et al. (2016a), as in the following equation:

∆tp = t(Qp
sim)− t(Qp

obs) (3.11)

where: t(Qp
sim) is the time at which the corresponding simulated (or forecast) peak is

registered and t(Qp
obs is the time at which the real observed peak is observed. The ideal

value for this indicator is 0 again, while positive values denote a delay in the modelled
event and negative values denote their anticipation from the model. Control-wise, while
anticipating peaks from a few hours to 1-2 days might bring benefits to the derived policy,
the real issue is predicting them too late (or, of course, even missing them).
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3.4.3. Volumetric Efficiency

Originally proposed by Criss & Winston (2008), the Volumetric Efficiency (VE) repre-
sents the fraction of water properly delivered at the right time, defined as in the following
equation:

V E = 1−
∑Np

i=1 |(Q
p
sim −Qp

obs|∑Np

i=1Q
p
obs

(3.12)

In this study, the VE has been used as a unique indicator for all the Np flood peaks events.
VE is a measure of the overall goodness of the simulated streamflow timing (Ficchí et al.
2016a). VE ranges from 1, being the ideal perfect score, to 0 for the worst model be-
haviour, as all other skill scores.

In this study flood peaks are identified in a simpler way than the procedure reported
in Ficchí et al. (2016a). Here, flood peaks are searched within an user-defined time win-
dow around the real observed peaks, and all found peak values are considered valid if they
are above the 99th percentile. If no peak was to be found it is considered missed. The
size of the window was chosen to be 5 days. This seemed a reasonable margin of time
to consider a certain peak as neither an excessively anticipated nor excessively delayed
forecast, and to be actually useful in the forecast-based control simulation.

3.5. Ensemble Generation

This section will present the two approaches used to obtain stochastic (probabilistic)
predictions. Reliable and bias-corrected hydrological Ensemble Forecasts (EF) were not
immediately available prior to this study. The well-known EF from the European Flood
Awareness System (EFAS), provided by ECMWF within the Copernicus EMS service, are
known to have a large bias in this basin to be useful in practice without bias-correction
procedure (Wetterhall & Giuseppe 2018). This happens because no data from river gauges
in the basin were available to calibrate EFAS in the basin, to date (EFAS v. 4.0). Thus,
the hydrological model used in EFAS (LISFLOOD) could not be calibrated in this region
yet and EFAS is expected to have large biases. Moreover, even if EFAS was calibrated in
the region as it might be soon, the access to real-time EF products is restricted to some
partners (while older data is open access) which may limit its uptake. Also, building
alternative local hydrological EFs with similar physically-based models (as PROGEA’s
deterministic model) may have associated monetary costs, requiring large computational
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resources. For these reasons, in this study EFs will be generated, as anticipated, from the
historical observations and deterministic forecasts, with a relatively new method that has
been recently proposed in the literature. This method consists of a data driven synthetic
EF generation through a series of Feed Forward Neural Networks (FFNN). This approach
circumvents the complexity, the prohibitive computational burden and run times related
to the NWP models used by large data centers, allowing operational users to have access
to alternative operational synthetic ensembles in real-time, potentially effective more im-
mediately and free-of-charge.

Both daily and hourly ensembles that will be generated will have 25 members, which
is in line with the size of EFs produced by international centres like the ECMWF, for
long-term reforecasts (e.g. EFAS v.4.0 reforecasts range from 11 to 25 ensemble members
at extended and seasonal range respectively). Additionally, while the computational re-
quirements decrease with a decreasing number of branches, the skill tends to decrease as
well (Fan et al. 2016).

3.5.1. Daily Ensemble Forecast Generation via a Neural Net-

work

Scher & Messori (2021) proposed four distinct methods with increasing complexity to
generate EFs in a data-driven fashion:

• Random initial perturbations: Conceptually the simplest method, even though
not necessarily the best, it consists in applying a random noise to the training data
set of the neural network.

• Singular Value Decomposition: A technique from linear algebra with a wide
set of applicability, used here to find and apply the minimum input perturbation
leading to the maximum output perturbation through the network’s Jacobian.

• Network Retraining: Training a neural network is inherently a "random" pro-
cedure, it consists in carrying out a non linear optimization with a random initial-
ization of weights and biases as well as training and validation subsets of the input
data. This leads to slight differences in the end network.

• Random Dropout: A known regularization technique, it consists in a random
deactivation of one or more neurons and all their connections during training. This
helps reducing overfitting, but it can be applied during the forecasting stage instead
to diversify predictions.
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This study will adopt the third proposed method (Network Retraining) with additional
sources of randomness. This choice was made since results by Scher & Messori (2021) con-
cluded that the method that retrains the network achieves the best results, while keeping
a relative simplicity.

The network of choice is a classic FFNN, the most basic and reliable type of neural
networks in the literature, which will be used for all the ensemble members without any
modification to its architecture (Figure 3.1).

Figure 3.1: FFNN architecture used for synthetic daily ensemble forecast generation,
applying the Network Retraining method by Scher & Messori (2021).

The FFNN has its input and output layers of size three. The input layer takes the current
inflow value xt and those of the two days before xt−1 and xt−2, to estimate the future three
day ahead inflow values x̃t+1, x̃t+2 and x̃t+3.
The numbers of hidden layers and their respective size have been chosen with some trial
and error tests and empirical rules. A choice of two hidden layers of n = 10 neurons
yielded good prediction capabilities. Moreover, the overall training data set is the his-
torical daily inflow data from 1946 to 2022, which has a sample size well over ten times
the total number of parameters Ntot = 183 of the FFNN network (Ntot = Nw +Nb, with
Nw = 3∗10+10∗10+10∗3 = 160, number of weights, and Nb = 0+10+3 = 23, number
of biases), ensuring that overfitting is avoided.

As FFNN are a very powerful fitting and predicting tool, the first results showed that a
simple re-training of the network did not produce a good spread of (diversified enough)
output trajectories, so at every training cycle one or more of these additional randomness
factors were added:

1. change the seed of random number generator before every calibration phase;
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2. use different partitions of the whole data set for training and validation;

3. switch the training and validation data sets;

4. add a Gaussian perturbation to the input data set;

5. randomly choose a training algorithm from those available;

6. use the available deterministic predictions (PROGEA) as the input data set, instead
of the observed historical values at past time steps.

In total four EFs with varying degree of skill were generated, this throught the pro-
gressive implementation of these randomness factors, in order to asses the effect of EF
performances on those of the management policy produced by TB-MPC. See later in
Section 5.1.2.

3.5.2. Hourly Ensemble Forecast Generation

While it is technically possible to generate an hourly EF with the proposed data-driven
method based on neural networks, our results of first tests were relatively poor (ensemble
performance) and the computational time was too high to perform more tests. Theoreti-
cally, the underlying FFNN could be extended from the daily prediction (i.e. 3 daily time
steps ahead) to the hourly setting (i.e. 72 or 60 hourly time steps ahead), by taking as in-
puts observations (or deterministic forecasts) over the previous 72 hours, i.e. xt−72, ..., xt.
However, the hourly resolution case would lead to a neural network to be trained to re-
produce x̃t+1, ..., x̃t+72 hourly data up to 72h in the future, with a new suitable number
of neurons and hidden layers, which is a much more complex problem that would require
more training data than what available too. Neural networks are a powerful tool but
cannot be expected to skillfully predict over such a long horizon, as also noted by Scher
& Messori (2021), let alone with the simple architecture adopted here. Due to the nature
of the neural networks training requiring a large quantity of parallel computations, big-
ger networks require exponentially large memories and time to train. In addition to the
poor performance, the problem gets so computationally taxing that it loses its prospected
advantage over the NWP models, to the point where it loses its "user-friendliness". The
method by Scher & Messori (2021) should be further adapted to work with longer hourly
records (see Section 6.1).

Consequently, an alternative simpler method was used to generate an hourly synthetic EF,
as proposed firstly by Nayak et al. (2018). This alternative method, originally proposed
to extend the period of available re-forecasts, was used here to get short-term ensemble
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forecasts starting from the historical record of deterministic forecasts paired with obser-
vations. This hourly ensemble forecast generation method is not directly operationally
applicable though, being based on ’dressing’ past observations with errors with given sta-
tistical properties. So, this alternative EF generation is used just for a proof-of-concept
analysis, to investigate the value of moving from daily to hourly EF resolution in TB-
MPC, but could not be used operationally, unlike the previous data-driven method used
for daily ensembles. More precisely, this alternative stochastic generation approach is used
to generate a short-term 60-hour synthetic ensemble forecast of inflows with statistical
properties matching the original observed and deterministic forecast data. This ensemble
re-forecast generation procedure is done through a K-Nearest Neighbor (KNN) algorithm
based on a resampling of the existing forecast residuals. The approach is a novel inverted
application of the common Model Output Statistics (MOS), which employs statistical
postprocessing to correct forecast output based on the error distribution of past forecasts
(Wilks & Hamill 2007). Some statistical properties of our original deterministic forecasts
for the Lake Como basin are extracted and used to develop a synthetic hourly ensemble.

The key idea is to resample the logarithmic residuals of the existing deterministic forecasts
based on the euclidean distance (d) of each hourly observed inflow at the time step of
forecast issue. Within the KNN algorithm, in addition to the actual value of the observed
inflows (at the current time step t), forecast residuals are resampled based also on the
observed values and the residuals of the previous 3 hours (t-1, t-2, t-3), to ensure that the
auto-correlation of the synthetic forecasts matches or gets close to the one of the original
forecasts (Nayak et al. 2018). Then a residual is randomly selected from those resampled
and a new forecast is generated at each time step by adding the re-sampled residual to the
observed inflow. The procedure is repeated a number N of times to generate N ensemble
members. The number of members for this ensemble forecast of hourly inflows has been
fixed to 25, as in the previous method for the daily ensemble, which is in the range of
typical numbers of ensemble members for operational reforecasts like those coming from
the EPS of ECMWF.
Among the vector of K nearest residuals in the reforecast period, the selection of the
residual to use was based on a kernel density function:

f(dj) =
1/j∑K
j=1 1/j

(3.13)

f(dj) provides ordered resampled weights increasing with increasing distance dj, K was
chosen as

√
n
ns

= 47 with n the number of hours in the reforecasted period and ns the
number of ’seasons’ or sub-periods, here set equal to 12 (by month).
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Then, the forecast error ϵ̂ is resampled for each lead time (up to 60 hour), t∗+1 : t∗+60,
from the deterministic reforecast period in this way:

ϵ̂Q,t∗+1:t∗+60 = log Q̂t∗+1:t∗+60 − logQt∗+1:t∗+60 (3.14)

where: ϵ̂Q,t∗+1:t∗+60 is the observed error between each observed value Qt∗+1:t∗+60 and the
corresponding reforecast Q̂t∗+1:t∗+60. Once ϵ̂ is resampled, the synthesized forecast over
the 60 hours is:

Q̂t+1:t+60 = Qt+1:t+60e
ϵ̂Q,t∗+1:t∗+60 (3.15)

The choice of the logarithmic error model ensures the non negativity of the newly syn-
thesized inflow forecast (Nayak et al. 2018).

This method, although not easily employable in an operative setting as it relies on observa-
tions (over the forecast horizon), leads to ensembles with similar properties and accuracy
to the ones that would be generated with operationally feasible methods, and are useful
for comparisons with their daily EF counterparts.

3.6. Ensemble Performance Metrics

To asses performances of the generated ensembles a set of extensively known indicators
will be computed, all of them are computed with respect to the particular h lead time.

3.6.1. Root Mean Square Error

The first introduced metric is the RMSE, easily interpretable and traceable back to its
computation for deterministic forecasts showed in Section 3.3.1. It is defined as in the
following equation:

RMSEh =

√√√√ 1

N

N∑
τ=1

(Xτ,h − yτ )2, for h = 1, 2, 3d

with Xτ,h =
1

K

K∑
k=1

Xτ,h,k

(3.16)

where: N is the total number of data entries generated, K is the number of ensemble
members, Xτ,h the ensemble mean at time tau and at lead time h and yτ the corresponding
observation.
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3.6.2. Spread

The second metric is the ensemble Spread, it is essentially the square root of the average
ensemble variance. This is a more correct and informative way of estimating it in terms
of exchangeability and ensemble size with respect to the square root of the standard de-
viation of the ensemble (underestimation) (Fortin et al. 2012). It is defined as in the
following equation:

Spreadh ∼=
1

N

N∑
τ=1


√√√√ 1

K − 1

K∑
k=1

(Xτ,h −Xτ,h)
2

 , for h = 1, 2, 3d (3.17)

It is widely known that a "perfect" ensemble has the mean forecast spread coinciding to
the mean forecast error, respectively estimated by the Spread and RMSE formulated in
this way (Scher & Messori 2021).

3.6.3. Continuous Ranked Probability Score

The CRPS is another well known performance metric for EFs, that compares the cumu-
lative probability distribution of the ensemble forecast to an observation. It is sensitive
to the mean forecast bias as well as the spread of the ensemble (Wetterhall & Giuseppe
2018). For each lead time (h), the CRPS is defined as in the following equation:

CRPSh =

∫
(F (Xh)−H(Xh − y))2 dX, for h = 1, 2, 3d (3.18)

where F(X) is the Cumulative Distribution Function (CDF) of the forecast distribution of
the probabilistic forecast X (at lead time h), y is the correspondent observed variable, and
H(X-y) is the Heaviside step function (unit step function, with a value of 1 for positive
arguments, and 0 for negative ones). The CRPS is a generalisation of the MAE for the
case of probabilistic forecasts, so is expressed in the same units as the forecast/observed
variable of [m3/s] and its ideal value is zero.
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4| Methods: Optimal Control
Benchmarks and Model
Predictive Control

This chapter is devoted to a brief description of the control benchmarks (off-line con-
trol methods) and to a more detailed description and formal definition of the general
framework of the on-line control problem. This is firstly considered as deterministic, thus
implementing Model Predictive Control (MPC) using deterministic forecasts from PRO-
GEA. Then, it will be extended to a stochastic framework that makes use of ensemble
probabilistic forecasts within the Tree-based MPC (TB-MPC). The extension to a stochas-
tic framework makes the control less vulnerable to the forecast uncertainty, especially in
the presence of non linearity in the cost function or in the system to be controlled (Raso
et al. 2012). The stochastic TB-MPC approach is also expected to allow for a partial com-
pensation of performance loss caused by high-variance disturbances and poor prediction
capabilities (i.e. non-skilful forecasts), while the performance of a deterministic MPC can
quickly deteriorate with increasing inaccuracy of the forecasts.

Water resources have historically been managed with off-line approaches. The algorithms
implemented to do this (like SDP) are mathematically guaranteed to produce an optimal
solution, but they are sometimes not feasible or have limitations and high prices in a real
world setting, for their computational and practical requirements (see Section 4.1). Also,
the literature has shown how additional information gathered in real-time could yield a
performance improvement in the short term (Castelletti et al. 2008a).
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4.1. Benchmarks: DDP and SDP

To properly assess the performance of the implemented on-line control approaches under
study, one or more benchmarks are required.

The benchmarks selected here come from two off-line approaches that have commonly
been used in IWRM: Deterministic Dynamic Programming (DDP) and its stochastic
counterpart, Stochastic Dynamic Programming (SDP). Both of them solve the operating
policy design problem treating it as a sequential decision making process based on the key
idea that, when choosing the optimal solution at time t, all the future decisions chosen
from t+1 and on-wards will be optimal. This is formalized by the Bellman’s equation
(Bellman 1957), providing the optimal cost-to-go function at time t (H∗

t ), given the one
at time t+1, through a cost-to-go gτ and an end-state cost gh in this way:

H∗
t (xt) = minimize

p[t,h)
E

τ=t+1,...,h−1

[
h−1∑

τ=t+1

gτ (xτ , uτ , ϵτ+1) + gh(xh)

]
(4.1)

where: ϵτ is a disturbance with known probability distribution in SDP (or a known deter-
ministic trajectory in DDP), xτ the state of the system, uτ the decision variable at time
τ , defined by the policy p adopted. The solving procedure then is performed backwards
from the final stage (time instant) to the initial one. In SDP, the function H is computed
for every possible one step ahead permutation of the state. SDP minimizes the total
expected cost H over the considered time horizon h granting optimality of the solution
(Bellman 1957).

DDP represents the ideal (but practically infeasible) best possible scheduling of release,
under the condition of perfect knowledge of the disturbances (inflows) over an infinite
horizon, so this benchmark is also called Perfect Operating Policies (POP). On the other
hand, SDP is based on the search of an optimal sequence of control laws over the entire
horizon but with degraded input knowledge, caused by the stochastic description of the
disturbances. However, this degradation is to be expected in real applications, as the
knowledge about future inflows is not perfect. Thus, the comparison between the two
benchmarks, DDP and SDP (that will be shown in Chapter 5), is useful to prove that
the knowledge about future inflows brought by skilful forecasts can indeed bring an useful
contribution in water management.
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4.1.1. SDP limitations

SDP has little to no requirements, being the discretization of state, decision and dis-
turbance variables, as well as time-separability of objective functions and uncorrelated
disturbances (Giuliani et al. 2016). It is theoretically the second best possible approach
behind DDP, particularly suited for reservoir modeling and consequential operation, be-
cause applicable under general hypotheses that are usually satisfied (Giuliani et al. 2021).
Yet, its practical implementation is limited and not feasible in most cases, because of a
series of well known issues, as already mentioned in Chapter 1.
These issues are:

• The "Curse of Dimensionality": the computational cost grows exponentially
with the dimensions of the state, control and disturbance vectors; this is because
every combination of these discretized variables has to be checked at every time step
during the optimization (Bellman 1957). Thus the computational time grows with
the dimension of the problem as in the following equation:

time = Nx ∗Nu ∗Nϵ ∗ h (4.2)

where: Nx, Nu and Nϵ are respectively the dimension (number of grids) of the
discretized state, control and disturbance, and h is the total simulation horizon.
This makes SDP generally unsuitable for systems with more than two or three
reservoirs (Castelletti et al. 2008a).

• The "Curse of Modeling": SDP requires any information used in the opti-
mization to be explicitly modeled by a dynamic model or to be considered as a
disturbance (Powell 2007). This directly exacerbates the Curse of Dimensionality
as well.

• The "Curse of Multiple objectives": SDP is at all effects a single objective opti-
mization algorithm, so if it was to be used to solve a multiple objective optimization
problem it would need to repeat its whole optimization procedure for every single
objective separately (Bertsekas & Tsitsiklis 1995). With every additional objective
computational time grows very quickly to the point of making SDP intractable for
more than two or few objectives.
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4.1.2. Multi-Objective Problem: weighting method

Although an intuitive ideal choice would be a management policy that could somehow
maximise all the indicators, this solution generally does not exist, in multi-objective opti-
mization problems with conflicting objectives like our case-study. There is often a trade-off
between stakeholders and objectives, which can be highlighted with the so-called Pareto
Frontier that maps all the Pareto efficient solutions, where a solution is Pareto efficient if
there is no alternative solution where improvements can be made to at least one objective
without worsening any other objective (see, for example, Denaro et al. (2017) and Section
5.2.2 for our case study).

As done by Denaro et al. (2017), in this study we use the weighting method to convert the
multi-objective problem (two in our case, floods and water deficit) into a single-objective
one via convex combinations: the objective of the single-objective problem is obtained as
a weighted sum, of the individual objectives, with the sum of weights equal to one. The
exploration of the trade-off between the objectives is performed by varying the weights
used in the objectives’ aggregation. In our case study, the DDP and SDP were solved
using multiple pairs of weights for the flood incidence and water deficit objectives as
described in Section 5.2.2, while the weight for the low-level indicator was kept at zero.
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4.2. Deterministic on-line framework: MPC

MPC is an advanced on-line control method which makes use of a dynamical model of
the system under study to predict its future behavior and response to the control policy.
Based on the optimisation of an objective function, MPC is able to provide an optimal
sequence of controls over a finite horizon, by solving a potentially constrained optimization
problem. At every control time step, the MPC controller takes as inputs the input w and
the current state of the system y (see Figure 4.1). The prediction and optimization is
run by feeding these to the system model, to provide an optimal control sequence over
the finite control horizon, from which only the first action u is applied to the real system
(receding horizon strategy). Then, at the next time step, the system evolves to a new state
and the procedure is repeated by using that same real-time information, now updated.

Figure 4.1: A simplified scheme of deterministic MPC, from Schwenzer et al. (2021).

4.2.1. The control problem

The MPC control problem is formalized as:

minimize
ut,...,ut+H

ftot =
t+H∑
τ=t

gτ (xτ , uτ ) + gendτ (xτ+H) (4.3)

subject to

xτ+1 = xτ +∆T (qτ − uτ )

xτ=t = x0 given
(4.4)

umin ≤ uτ ≤ umax (4.5)
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where: the system’s state is represented by x, while u represents the control decision
(in our case, the release of the dam); H is the control horizon of the MPC optimization
(in this study, up to 3 days ahead, due to forecast availability), that coincides with the
horizon of the short term inflow predictions available.

Note that the temporal resolution of the approach is not constrained a-priori in the equa-
tions, as the same scheme can be used both for daily or hourly operations, with a
suitable choice of all the parameters (e.g. horizon H, model time step ∆T , etc.). For
example, the horizon H could be either 3 days or 72 hours and the state variables (arrays)
can be scaled accordingly. The model and control time step, ∆T can be 24*3600 or 3600
seconds. An hourly approach is expected to take more time to solve but to be more
precise, as it follows better the sub-daily evolution of the real system.

4.2.2. System Model and Constraints

The system model is represented by Equation 4.4 , which in our case is defined as a simple
mass balance of the first order, where xτ+1, the storage at time step τ + 1, is equal to
xτ , the storage at the previous time step, plus the total inflow minus the released water
amount over the time step. This simple mass-balance equation could take into account
explicitly also the contribution of rainfall over the lake, as well as evaporation from the
lake, but in this case study these were neglected for simplicity and clarity sake (however,
the estimated net inflow data were used in the simulation, as described in Section 2.3).

Equation 4.12 represents the control saturation constraint, which is implemented in such a
way to mimic the same saturation acting on the real world system, so that MPC searches
and provides only feasible control actions along the optimization. It is implemented as a
non linear constraint since the maximum and minimum releases related to the dam are
non linear and a function of the state of the system.

4.2.3. The optimization problem: step-cost and penalty cost

The optimization subroutine is implemented in Matlab, specifically, with the non linear
optimization toolbox’s function "fmincon.m". As Equation 4.3 is a non linear problem
with linear and non linear constraints, it it set to be solved with Sequential Quadratic
Programming (SQP), a small-medium scale algorithm suitable to solve these problems.
The optimal control sequence u1...uH corresponds to the one minimizing the total cost in
Equation 4.3, composed by two elements, the step-cost gτ and the end state penalty cost
gendτ .
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gτ = gfloodingτ ∗W1 + gwdeficit
τ ∗W2 + glowlevel

τ ∗W3 (4.6)

The step cost is a weighted aggregation of different giτ components that formalize the
objectives and requirements of the case study, along the particular time window t...t+H.
These are chosen specifically to mimic in the best way possible the real requirements of
the stakeholders, defined in Section 2.6, while being suitable for the optimization routine
to handle (i.e. the flood indicator is adapted to be managed by MPC). The weights Wi

are a user-defined set of numbers ∈ [0, 1] expressing the relative importance given to the
components of gτ .

The step-cost components are defined as follows:

gfloodingτ = ( max
t...t+H

(xτ − hflood, 0))
2 (4.7)

gfloodingτ is related to flooding condition, measuring the squared difference between the
simulated lake level (storage) xτ and a flooding threshold hflood, penalizing the solution
when the trajectory of the lake level is predicted to exceed the threshold value within the
time horizon H. This threshold is defined as 1.1m (see Section 2.6), as crossing this level
would lead to flooding and damages in Como.

gwdeficit
τ = ( max

t...t+H
(MEF + w − uτ , 0))

2 (4.8)

gwdeficit
τ is related to water deficit downstream of river Adda, and penalizes the solu-

tions giving a release decision uτ that does not satisfy the MEF and the water demand w
along the time horizon H (see Section 2.6).

glowlevel
τ = ( max

t...t+H
(hlow − xτ , 0))

2 (4.9)

glowlevel
τ is related to low-level condition and is based on a threshold, similarly to (4.7);

it measures the squared difference between the simulated lake level xτ and a threshold,
now hlow, defined as -0.2m. This is a secondary objective related to navigation and preser-
vation of the shores ecosystem which will be generally neglected in this study (apart from
some secondary tests), by putting its respective weight W3 to zero, because this objective
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is less critical than the other two.

The penalty cost, gendτ , is a critical component of the total cost (Equations 4.3 and 4.10)
for the performances of the closed loop system in the long-term, but its choice is far
from immediate. It is a cost associated to possible less desirable states of the system,
particularly critical for natural systems, as when the optimization ends the system must
be left into a non detrimental condition. This study makes use of a penalty function de-
rived off-line, as in (Castelletti et al. 2008a), by solving an off-line Dynamic Programming
horizon problem. This problem has to be traceable back to the original one, then the
optimal cost-to-go functions Hk expressing the future cost associated to each state value,
at each time instant, can be used as penalty functions over the final state of the finite
horizon on-line problem. In this way, the penalty cost gendτ contains crucial information
from the end of the foreseeable future H to the end of the simulation. In this way, the
MPC optimization has at hand the information on which state would be preferable at
every time t to properly mitigate future critical events that cannot be seen in the short
term horizon (3 days), based on the optimality of the devised dual off-line problem.

4.3. Stochastic on-line framework: Tree Based MPC

The stochastic version of MPC used in this study, called Tree-based Model Predictive
Control (TB-MPC), was originally proposed by (Raso et al. 2014). In TB-MPC, ensem-
ble forecasts can be used to set up a Multistage Stochastic Programming, which finds a
different optimal strategy for each likely future trajectory of the predicted disturbance
(represented as a branch of a tree) and enhances the adaptivity to forecast uncertainty.
The underlying key idea of TB-MPC, that differentiates it from deterministic MPC, is to
search for an optimal decision tree instead of an optimal decision sequence. In this way,
TB-MPC provides a more adaptive control implementation that makes the best use of
ensemble forecasts, while other stochastic approaches using them might yield less efficient
or infeasible solutions due to the burden of multiple disturbance in combination with hard
constraints (Uysal et al. 2018).

The approach is characterized by the possibility of changing future control actions with
respect to the actual trajectory that the system takes among those predicted; this causes
a prominent increase in the optimization problem dimensions influencing heavily compu-
tational complexity and increasing the required optimisation time.
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The TB-MPC problem is formalized as:

minimize
uMτ
t ,...,uMτ

t+H

ftot =
Z∑

z=1

p(z)

[
t+H∑
τ=t

gτ (xτ,z, u
Mτ
τ,z ) + gendτ (xτ+H,z)

]
(4.10)

subject to

xτ+1,z = xτ,z +∆T (qτ,z − uMτ
τ,z ) ∀z

xτ=t,z = x0 given ∀z
(4.11)

umin ≤ uMτ
τ,z ≤ umax ∀z (4.12)

The notation is the same as the deterministic version, with the addition of the subscript
z indicating that every variable depends also on the particular ensemble member, z ∈ Z,
where Z is the total number of ensemble members. The model equation and the opti-
mization constraints representing the system model and control saturation are the same
as for the deterministic MPC framework.

Every ensemble member has a total cost fz coinciding with the one for the single de-
terministic optimization of MPC showed in Section 5.2.3. They are combined together
into the actual total cost ftot by a weighted sum with their probability of outcome p(z).
The simulation aims to minimize this comprehensive expected cost for every ensemble
forecast by devising a set of controls uMτ

t , ..., uMτ
t+H .

The so-called "scenario tree nodal partition matrix", Mτ , is a way to represent the forecast
tree structure from the ensemble members: Mτ is a matrix responsible for structuring the
set of controls into a tree. In other words, Mτ provides "the necessary labeling scheme
to set up the Multistage Stochastic Programming problem" (Raso et al. 2014). It is built
from the ensemble forecast at every time step τ , respecting the following reported Non-
Anticipatory Condition:

ui
τ = uj

τ when

P (j) = i

t < B(j)
∀ i, j ∈ Z (4.13)

where: P(j) represents the Parent of member j, and B(j) is the Branching point of member
j, that identifies when the member j is distinguishable from its parent P(j).
This key condition states that controls should not depend on the outcome of stochastic
variables that have not been extracted yet. At every time τ it is unknown which member
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of the ensemble will actually happen, so the controller has to calculate control actions
that are valid for all the scenarios in the branch. Once the bifurcation point has been
reached, the uncertainty is solved and the controller can calculate specific control actions
for the scenarios in each of the new branches (Grosso et al. 2014).

It is important to underline that TB-MPC does not manipulate directly the EF, before
the start of the optimization the ensemble undergoes two important procedures:

• Scenario Reduction: The ensemble is reduced from k members to kred members
by grouping together similar enough trajectories that compose it, and then their
probability of realization p gets updated with Bayes’s rule.

• Tree Generation: The reduced ensemble is transformed into a tree structure,
without any loss in carried information. This procedure generates a labelling scheme,
called Tree Nodal Partition Matrix Mτ , that is used to represent the tree structure
(of forecast inflows) and used in the optimization to search for the optimal control
tree.

These procedures will be explained in detail in the following respective subsections.

4.3.1. Scenario reduction

Ensembles generally have from 10 to 50 members composing them. Although this size is
good for catching most of the variability, if not all the possible scenarios of the system
evolution in time, they would definitely slow down a lot the optimization if all of them
were to be considered. However, reducing the size of the ensemble in a smart way does
not necessarily lead to any loss in performances: a previous study showed that even after
a 50% reduction of the number of ensemble scenarios, about 90% of relative accuracy is
still reached (Dupačová et al. 2000).

The scenario-reduction procedure itself is carried out through an heuristic algorithm called
Backward Reduction, this is a simple and fast recursive algorithm that groups togheter
the most similar members of the original ensemble to create a reduced one with an an a
priori defined number of members Nred, chosen in this study as 6.

The actual way in which the algorithm discerns between similar enough members (or
not) is by comparing the actual raw difference between their trajectories and their prob-
ability p, and when two members are selected to be aggregated their total probability is
updated as their sum.
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4.3.2. Tree generation

Ensembles tend to have small differences for small lead times and then diverge, as this is
one of their key peculiarities. Thus, a natural and efficient way to contain their information
is to transform the ensemble itself into a tree structure, with branches diverging as the
forecast horizon increases.

Figure 4.2: An example of reduced ensemble forecast (left panel) and the correspondent
computed control tree (right).

The most compact way to mathematically represent a tree structure is with the paired
set of variables [P (·), B(·)] for every ensemble member z ∈ Z, where P(z) represents the
parent of member z, i.e. the branch of the tree from which z diverges, and B(z) is the
branching point of member z, that identifies when z is distinguishable from its parent P(z)
(Ficchí et al. 2016b).

This formalization at the code level is done with the introduction of the matrix M, the
previously mentioned tree nodal partition matrix; M is a matrix with a number of columns
equal to Nred and a number of rows equal to h, that contains labels referring to the time
step when a ’branch’ divergence (branching point) occurs, indicating in a way the moment
when uncertainty on the occurring sub-branch is going to be resolved (Raso et al. 2014).
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5| Results and discussion

This chapter will first present the results of the skill evaluation of the deterministic
forecasts from PROGEA and the ensemble forecasts from the two data-driven methods,
through the performance metrics and skill scores introduced in Chapter 3.

Then, the second Section 5.2 will report and discuss the results of the different control
algorithms tested comparing their performances between them and with the historical
management, following these three main groups of control schemes: (i) the two off-line
control benchmarks, i.e. DDP and SDP; (ii) the deterministic MPC with perfect and real
forecasts, at both daily and hourly time steps; (iii) the stochastic TB-MPC with synthetic
ensemble forecasts, at both daily and hourly time steps.

5.1. Forecast analysis

This section will show the results of the forecast skill analysis, using the different perfor-
mance metrics introduced in Chapter 3. As anticipated, all metrics are computed for the
whole time series and for different subsets of the complete original data set, in order to
investigate in further details the capability of the forecasts to carry information on the
most critical conditions of above seasonal mean flow and flooding periods.

This section will first report the analysis of the accuracy of the deterministic forecasts
from PROGEA, and then also report the skill of the daily and hourly ensemble forecasts
generated with the data-driven methods (FFNN and KNN algorithms; see Chapter 3).

5.1.1. Deterministic forecasts from PROGEA

Table 5.1 reports the results of the forecast performance metrics, computed for the three
data subsets (see Section 3.2): the whole data set (a), and the subsets over high flow (b)
and flooding conditions (c). The three mean (quadratic) error-based scores (MSE, RMSE
and MAE) have very good values for the whole dataset (a) with an expected worsening
from 1- to 3-day lead time, with the RMSE and MAE always below 100 m3/s. RMSE
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and MAE are well below the static mean of 146m3/s also at 3-day lead time, and are less
than half of it (< 65 m3/s) at 1-day lead time. The fact that they increase for high flow
and flooding condition is something to be expected as the most difficult part of hydrolog-
ical forecasting is to skillfully predict the flood peaks, both in timing and in magnitude.
The quite high errors in (c) suggest that peaks are either under/over estimated or even
predicted in advance/with a delay. Predicting peaks in advance can be still valuable in
terms of flood control, while the opposite is potentially very detrimental.

From both NSEsm and NSEcm of (a) it can be inferred that the overall prediction capa-
bilities of PROGEA’s forecasts are better than both the proposed benchmark statistics
(static and cyclo-stationary mean), although with an expected decrease with growing lead
times. This seems to be valid even for the other high-flow and flood conditions, (b) and
(c), when considering the cyclo-stationary mean, while they decrease substantially when
compared to the static mean. However, this is certainly caused by the reduced size and
variability of these smaller sets over 8 years (e.g. only about 15 days over the 99.5-th
percentile), that makes the mean benchmarks very difficult to beat. Looking at the bias
component of KGE, β, for the whole dataset (a) and high-flow condition (b), it can be
seen that predictions at all lead times are almost perfect (β = 1), as they are almost
completely unbiased. On the other hand, when focusing only on flood conditions, (c), we
found a clear tendency for PROGEA’s forecasts to underestimate the highest peak flows.

The same conclusions can be derived after analysing the KGE’ and KGEss results. Thanks
to the KGE peculiarity of being decomposed into its specific components, it is clear that
the performance loss in high flow conditions (b) is mainly caused by a higher variability
of forecasts with respect to observations (γ>1), while for the highest flood peaks (c) there
is an average underestimation (β<1). For the latter, it was previously explained that
the smaller size of these data sets is the issue with an apparent degraded explanatory
performance with respect to the mean. Also, the smaller sample size and higher mean (in
(b) and (c)) lead to a smaller coefficient of variation of the observations CVobs in turn
increasing γ, as per Equation 3.8. This however is not something to be alarmed of,
as overall KGE’ scores are still within the range [−0.41, 1] indicating "reasonably good"
performances with respect to an average-flow benchmark also in high flow conditions.
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Table 5.1: Performance metrics for PROGEA’s deterministic forecasts over the whole
dataset (a), high flows (b), and flood conditions (c) across lead times.

Dataset (a) Dataset (b) Dataset (c)

1d 2d 3d 1d 2d 3d 1d 2d 3d

MSE 4.1*103 6.4*103 8.9*103 1.5*104 2.2*104 3.1*104 1.3*105 1.4*105 2.1*105
RMSE 64 80 94 1.2*102 1.5*102 1.8*102 3.5*102 3.8*102 4.5*102
MAE 37 49 56 78 99 1.2*102 3*102 3.1*102 4*102

NSEsm 0.7 0.53 0.35 0.41 0.13 -0.24 -2.2 -2.6 -4.2
NSEcm 0.63 0.41 0.18 0.65 0.48 0.26 0.75 0.71 0.58

r 0.85 0.8 0.72 0.69 0.6 0.43 0.51 0.46 0.38
β 1.1 1.1 1.1 0.99 1 1 0.67 0.72 0.55
γ 0.91 0.95 0.94 0.97 1 1 2.2 2.6 2.7

KGE’ 0.82 0.75 0.68 0.69 0.6 0.43 -0.34 -0.72 -0.9

KGEss 0.76 0.69 0.59 0.74 0.67 0.53 0.19 -0.047 -0.16

Note: For each dataset (whole dataset (a), high flow condition subset (b), and the flooding
condition subset (c), skill metrics are evaluated at each lead time h (1-, 2- and 3- day).
Note 2: Units of measurements for RMSE, MAE are [m3/s], for MSE [m3/s]2, while all other scores
are adimensional.

Table 5.2 reports the more advanced flood-event peak and timing metrics, to show how
skillfully the PROGEA’s forecasts predict the flood event occurrence.

In terms of flood peak magnitude errors, ∆Qp shows that for every lead time the fore-
casts tend to slightly underestimate the observed magnitude of flood peaks, with however
moderately low differences (< 6%) even at the longest lead time (3 days).

In terms of flood timing errors, ∆tp values show that the daily forecasts of PROGEA
struggle in correctly reproducing the flood hydrograph’s timing. It can be seen that al-
most all (> 90%) flood peaks are predicted (within the margin of magnitude/timing error
limits defined), but roughly half of them are predicted to occur later or in advance, on
average 2-3 days late or 1d in advance, at 1-2 days lead times. Yet all the other events are
correctly predicted in timing too (∆tp=0). At 3-day lead time, the proportion of forecasts
anticipating the flood peak timing (of 1.5 days on average) increases significantly, while
the one with delayed timing is the same as at shorter lead times. The errors in flood timing
are a well known problem in daily hydrological models as highlighted by Asadzadeh et al.
(2016), especially arising when the watershed area has a fast rainfall-runoff response, e.g.
a daily or sub-daily concentration time constant.
Despite some errors in flood peak timings for about half of the events, the overall timing
of predicted flows over the whole flood event is satisfactory at all lead times, as reflected
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by the scored VE values.

In conclusion PROGEA’s forecasts proved to be overall quite skillfull, and thus may
contain useful knowledge for the generation of an optimal control policy in a MPC imple-
mentation.

Table 5.2: Advanced flood timing metrics for PROGEA’s deterministic forecasts

Lead time h

1d 2d 3d

Median ∆Qp -1.69% -5.23% -5.78%

# Events with ∆tp = 0 15/31 14/31 8/31

# Events missed 2/31 3/31 2/31

# Events with ∆tp > 0 6/31 8/31 8/31
Mean delay 3 3.5d 2.5d

#Events with ∆tp < 0 8/31 6/31 13/31
Mean delay -1d -1.5d -1.5d

VE 0.83 0.79 0.77
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5.1.2. Synthetic ensemble forecasts

To generate daily synthetic Ensemble Forecasts, the training of the k=30 parallel FFNN
took in total around 30 minutes, employing the whole available historical dataset of daily
inflows from year 1946 to early 2022. The cited sources of randomness (see Section 3.5)
were inserted progressively to generate ensembles with different levels of skill; this was
done in order to investigate how the simulations and performance of TB-MPC are overall
heavily influenced by the ensemble quality. Less randomness factors yield a more precise,

Horizon

1d 2d 3d Average

EF#1
RMSE 84.9 109.2 110.8 101,6
Spread 173.5 233.9 266.7 224,7
CRPS 32.5 41.1 43.9 39.2

EF#2
RMSE 177.5 169 166.9 171,1
Spread 59.1 55.1 46.1 53,43
CRPS 209.4 196.1 189.1 198

EF#3
RMSE 112.3 213.2 170.8 165,4
Spread 225.9 383.7 489 366
CRPS 228.3 223.5 236.7 229.3

EF#4
RMSE 210.7 207 209.2 208.8
Spread 53.8 46.5 53.6 51,3
CRPS 230.5 246.1 321.9 266.2

Forecast
RMSE 64 80 94 79.3

Table 5.3: Skill metrics for the synthetic short therm ensemble forecasts

but less diverse prediction (i.e. with smaller ensemble spread), while on the other hand
increasing these disturbances leads to more diverse ensemble members, diverging with
lead time. Table 5.3 reports the skill metrics of the generated ensembles. EF#1 and
EF#2 used historical data only at previous time steps (hence its operational feasibility),
while EF#3 and EF#4 used real predictions. EF#1 and EF#3 had switched calibration
and validation datasets, while EF#2 and EF#4 did not. All of them had a Gaussian
noise added on the input, different splitting for every member and randomized training
algorithm and random number seed (see Section 3.5.1).
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For the hourly implementation of TB-MPC, only one ensemble was generated as its dif-
ferent method required a lot more computational time (around 10h). The skill metrics of
the hourly EF are reported in Figure 5.1 for conciseness. This ensemble is as skilled as
the best daily one, EF#1, and in particular, it is an "under-dispersive" ensemble (Fortin
et al. 2012), with a smaller spread than the RMSE.

Figure 5.1: Skill metrics of the synthetic hourly ensemble forecast, varying with lead time
h (1h-60h). It denotes and "under-dispersive" behaviour.
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5.2. Performance analysis of control schemes

5.2.1. Benchmark: Stochastic vs Deterministic DP

The best possible option in terms of hydro-meteorological prediction would irrefutably be
a perfect knowledge of inflow with a infinite horizon in the future. This is naturally impos-
sible in a realistic setting but it would lead to the upper-bound of control performances,
or the so called Perfect Operating Policy (POP), in a fictitious simulation setting. This
POP is embodied by the DDP algorithm (see Section 4.1) and was used as a benchmark
for all the other proposed sub-optimal control methods.

DDP can effectively schedule control action for the system in the best possible way,
while its stochastic counterpart SDP is closely behind, as expected given the less accu-
rate knowledge available. They both use the same mathematical principle to optimize a
control policy based on solving the Bellman’s equation (Section 4.1). The usefulness of
forecasts as a concept is firstly evaluated by comparing them.

Figure 5.2: Cyclo stationary behaviour of system state with DDP, SDP and historical
management
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From Figure 5.2 it can be inferred that over the course of the years SDP tends to be more
conservative like the historical management, while DDP thanks to its perfect foreseeing
can store higher water levels for drought seasons while still being able to decrease storage
to attenuate inflow peaks when necessary. This tendency can be seen better in a snapshot
on period May 2020 to Nov 2020 reported in Figure 5.3 where SDP is seen releasing less
water during inflow peaks, causing the all-high level for the year in October to surpass
the one related to DDP.

Figure 5.3: System state with DDP, SDP and historical in flooding condition, year 2020
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5.2.2. Optimal weight choice

The earlier simulations used coinciding weights for objective aggregation of
W = [0.667 0.333 0], this particular choice comes from an a-priori examination of perfor-
mance sensitivity with respect to weight choice.

A set of consequent simulations with progressively varied weight choice was carried out
for both SDP and Daily MPC with perfect predictions and varying horizons to create a
Pareto frontier on the two most important objectives, flooding incidence and water deficit.
Through this graph, a unique best set of weights was identified and chosen for all other
simulations (for MPC and TB-MPC) to maintain consistency.

Figure 5.4: 2D Pareto frontier of Daily deterministic MPC with perfect predictions and
varying horizons with respect to DDP, with also a snapshot zoomed onto the the two
Pareto-dominating solutions for the 3 days ahead horizon case

From the degenerated characteristic of the obtained DDP in Figure 5.4 it can be de-
duced that the flooding and water deficit are not really conflicting objectives, as a unique
best alternative weighting choice exists. This does not directly translate to MPC though,
which appear to have a set of two dominating Pareto solutions Wp1 and Wp2, the former
dominating in terms of water deficit and the second dominating in terms of percentage
of flooding days. In light of the facets of the particular case study already presented in
Chapter 2, it was chosen the weight [0.667 0.333 0] of solution Wp2 as the best weight
choice for all simulations from this point forward.
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5.2.3. Deterministic MPC: Perfect predictions

The next step towards a real world implementation of forecasts is to deploy them in a real-
time control scheme such as deterministic MPC. This however is a management paradigm
very different from Dynamic Programming approaches, so the very first results will focus
on assessing if, and to what extent, MPC can use effectively weather predictions with
respect to this benchmark.

This comparative analysis has been carried out on a fair common ground, with same
system requirements, performance indicators, weight factors on costs to minimize and
with perfect predictions.
Additionally, these differences are investigated considering different possible control fre-
quencies. Both of them with 3 days ahead of control and prediction horizon.

As defined in Chapter 4, MPC can be set to operate with either a DDaily or Hourly
decision frequency by properly scaling the inner system model and adopting respectively
daily or hourly forecasts. Daily forecasts are obtained simply by aggregating the original
hourly forecasts over 24h, from 8 a.m. of a day to 8 a.m. of the next.

Daily MPC

• Control action u computed at 8 a.m.
and applied all day

• Cannot fully satisfy the saturation of
the control of the system

• Rougher control action

• Very low computational demand

Hourly MPC

• Control action u computed every hour

• Completely satisfies the saturation of
the control of the system

• Finer control action

• High computational demand

By the premises, Hourly MPC is expected to achieve better performances than the Daily
one, especially with respect to the water deficit objective, since an hourly control resolu-
tion can better follow and satisfy the real control saturation of the system.

The following are the results of a simulation from January 2014 to January 2022 of Daily
and Hourly management of the lake compared to the historical management and both
DDP and SDP benchmarks.



5| Results and discussion 59

Figure 5.6 reports the score indicators for the whole simulation, proving that MPC can
in fact make and effective use of weather predictions almost as good as the benchmark
when it has perfect knowledge of inflow as well, while also confirming how the Hourly
adaptation is superior to the Daily alternative and even beats the "perfect" benchmark
DDP with respect to flooding.

Figure 5.5 provides a more detailed snapshot of the MPC behaviour during a particular
period characterized by a flooding event, all the alternatives besides SDP behave similarly
to the best one (black) especially during October when they start discharging water to
absorb the predicted peak of November. It is also worth noting how MPC releases more
water than SDP and the historical management effectively reducing the reached level of
around 0.4m.

Figure 5.7 displays the cyclostationary mean of the system state over the whole pe-
riod of the simulation, it can be intended as the average amount of water that is kept in
storage throughout the year. DDP is unsurprisingly the less conservative of the alterna-
tives with respect to flood risk, having perfect knowledge of the magnitude and timing of
the flooding peaks it can keep more water in storage for irrigation while simultaneously
being able to release it right before the flooding events to attenuate them. SDP is more
conservative with respect to flood risk, as it operates based on a statistical description of
the inflows it tends to keep more storage available at all times to avoid the risk of hav-
ing the reservoir too full. A similar behaviour is found for both MPC schemes. Although
Daily and Hourly MPC score different indicators, it can be seen from this figure that their
long-term (yearly average) behaviour is mostly the same, while differences arise from the
capability of the latter to provide a finer release on a hourly basis that can be useful in
rapid flood events.

Finally, Figure 5.8 shows the cyclostationary mean for the releases alongside with the
yearly demand. All of the alternatives show a difficulty in satisfying the demand during
the last weeks of July and August, even DDP. This can be explained by the cyclostation-
ary inflows shown in Figure 2.3, this particular catchment is characterized by sudden
inflows much higher than the seasonal mean in the 3 months preceding July and early
August, with then very sudden and sharp decreases. While this great amount of water
could in principle satisfy the high irrigation demand characterizing Summer if stored, it
arrives in such a short span of time that most of it has to be released immediately to
avoid flooding.
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Figure 5.5: System state evolution in a 6-month period with flooding from Jun 2020 to
Nov 2020, with daily and hourly MPC using perfect predictions alongside the benchmarks
(DDP, SDP) and the historical management.

Figure 5.6: Score indicators throughout the entire simulation period of 8 years, with daily
and hourly MPC using perfect predictions alongside the benchmarks (DDP, SDP) and
the historical management.
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Figure 5.7: Daily cyclostationary levels over the whole simulation period of 8 years,
daily/hourly MPC with perfect predictions alongside the benchmarks (DDP, SDP) and
the historical management.

Figure 5.8: Daily cyclostationary releases for the whole simulation period of 8 years on top
of the the yearly water demand characteristic, daily/hourly MPC with perfect predictions
alongside the benchmarks (DDP, SDP) and the historical management.
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5.2.4. Deterministic MPC: Real predictions

Results brought in the previous section show how the MPC paradigm provided with per-
fect knowledge of the future can provide a satisfactory management of the system.

Now the same simulation is repeated but using real deterministic predictions from PRO-
GEA in both Daily and Hourly MPC, keeping the rest of the setting as before (demand,
requirements, horizon etc...). This deterioration of knowledge about the future inputs to
the system (from the perfect forecast case) is expected to cause a deterioration in the pro-
duced control policy. However, performances of this simulation are now truly indicative
of real world objective accomplishment while the previous one has to be intended more
as a first proof of validity showing the upper bound of performance for MPC, prior to its
implementation.

Figure 5.10 Shows the updated score indicators for the whole simulation, the expected
performance loss is more prominent on the water deficit objective than the flooding one,
which remained quite satisfactory and just under DDP. This increase in deficit is still
acceptable as it remains in the neighborhood of the historical and SDP alternatives.

Figure 5.9 shows the same snapshot shown before for the perfect predictions, the antici-
patory discharge of water to mitigate the October peak is now significantly different. Both
MPC implementations decreases the level of the lake a lot less due to an under-estimation
of the incumbent peak’s magnitude and/or time of arrival. Peak level is still decreased
with respect to SDP and the historical management, but only of around 0.2m this time.

Figure 5.11 reflects the tendency of MPC to discharge more water in prevention of
floods with a slightly higher level around October, while there is big difference in storage
when possible to accumulate water from November to December.

The same previous conclusions can be drawn from Figure 5.12, now with MPC releases
reaching moderately higher deficits in the critical final weeks of July and August.
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Figure 5.9: System state evolution in a 6-month period with flooding from Jun 2020 to
Nov 2020, with daily and hourly MPC using real predictions.

Figure 5.10: Score indicators throughout the entire simulation period of 8 years, with
daily and hourly MPC using real predictions.
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Figure 5.11: Daily cyclostationary levels over the whole simulation period of 8 years,
daily/hourly MPC with real predictions alongside the benchmarks (DDP, SDP) and the
historical management.

Figure 5.12: Daily cyclostationary releases for the whole simulation period of 8 years on
top of the the yearly water demand characteristic, daily/hourly MPC with real predictions
alongside the benchmarks (DDP, SDP) and the historical management.
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5.2.5. Daily TB-MPC vs Daily deterministic MPC

This section will describe the results related to the daily stochastic implementation of
TB-MPC, adopting the synthetic ensemble forecasts generated based on the real deter-
ministic forecasts from PROGEA and the algorithms described in the Section 3.5.
Daily TB-MPC will be compared to the corresponding Daily deterministic MPC with
real predictions in order to bring a comparison between approaches truly applicable in
the real world and to highlight the changes in performance moving from a deterministic
to a stochastic approach with real forecasts. The comparison with MPC with perfect pre-
dictions is not reported in this section, but the reader could refer to the previous Section
5.2.3 to see the upper bound of performance of the deterministic MPC approach. The
benchmarks will still be SDP, DDP and historical management.

Figure 5.13 and Figure 5.14 show score indicators across the same 8 year simula-
tion as before, here produced with the Daily TB-MPC implementation using each of the
four selected generated short-term ensembles. The TB-MPC performances fluctuate more
on the flooding objective rather than the water deficit one, showing that different ensem-
ble forecasts can lead to different control performances (also with respect to deterministic
forecasts) particularly in flood conditions. Additionally Figure 5.13 shows that EF#1
(the best ensemble with respect to all of forecast skill metrics) is the one associated to
the best TB-MPC performance, as it could be expected. The other ensembles are closely
behind with the exception of EF#4, the one with worst skill metrics, having 2 times the
error of the deterministic forecasts with a quite lower spread than other EFs. As foretold
the spread is a very important feature of an ensemble, and this can be seen with the
behaviour of TB-MPC with EF#3 beating the TB-MPC with EF#4 on both objectives,
while having similar high RMSE and CRPS but with a much larger spread. These results
suggest that there is a link between TB-MPC performance and ensemble forecast skill and
spread, that further work could aim to validate using a larger set of ensemble forecasts
with a wider range of skill and spread metrics.

Note that low level indicators have been omitted now as there are more options to show
and they are not optimized.
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Figure 5.13: Flooding indicators for all the four TB-MPC options (with different ensemble
forecasts) over the 8-year study period, alongside the daily deterministic MPC with perfect
and real forecasts (this for comparison between operationally-feasible paradigms), and
against the benchmarks (DDP, SDP and the historical management).

Figure 5.14: Water deficit indicators for all the four TB-MPC options (with different en-
semble forecasts) over the 8-year study period, alongside the daily deterministic MPC with
perfect and real forecasts (this for comparison between operationally-feasible paradigms),
and against the benchmarks (DDP, SDP and the historical management).
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Figure 5.15: System state evolution in a 9-month period with flooding events (from May
2020 to Jan 2021) with different control strategies: TB-MPC (with the best and worst
ensembles), daily MPC using real predictions alongside the benchmarks (DDP, SDP) and
the historical management.

Figure 5.15 reports a snapshot of the system’s state evolution with daily TB-MPC using
the best and worst ensembles, EF#1 and EF#4, alongside daily MPC with real forecasts
together with all the other benchmarks. Using EF#1, the TB-MPC controller produces
a good trajectory, similar to all the others, while the information contained in the EF#4
likely has a widespread underestimation in high flow conditions, judging by the incapa-
bility of the controller to mitigate the secondary burst in inflows after the main peak.

Figure 5.16, and especially Figure 5.17, suggest that there is no consistent differ-
ence in normal conditions between TB-MPC and MPC operations,apart from the fact
that having access to ensemble predictions allows TB-MPC to behave less conservatively
around those months with high flooding incidence, while having an overall lesser storage
during high water demand months. This is consistent with the indicators in the previous
Images. Performances are highly influenced by the capacity of the ensemble to capture
variegated possible scenarios and which one actually happens.
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Figure 5.16: Daily cyclostationary mean lake levels computed from the whole simulation
period of 8 years, with different control strategies: TB-MPC (with only the best ensemble,
to maintain clarity), daily MPC using real predictions alongside the benchmarks (DDP,
SDP) and the historical management.

Figure 5.17: Daily cyclostationary releases over the whole simulation period of 8 years,
with different control strategies: TB-MPC (with only the best ensemble, to maintain
clarity), daily MPC using real predictions alongside the benchmarks (DDP, SDP) and the
historical management.
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5.2.6. Hourly TB-MPC vs Daily TB-MPC

The comparison between hourly and daily TB-MPC is presented as a potential "proof-
of-concept", since the hourly ensemble forecast generation method used is not directly
operationally applicable (being based on ’dressing’ past observations), differently from
the operative method used for the daily EF generation used in the previous Section 5.2.5.
It is reminded here that the reason for this is that the data-driven method used for daily
ensemble is usable operationally, but needs to be further adapted to work with longer
hourly records (see Section 6.1). Anyway, the skill of the hourly EF is comparable with
the deterministic operational forecasts, so it is a good basis to clarify if the hourly TB-
MPC brings more benefits than the daily counterpart. This analysis aims to prove if it
is worth to develop further an operative hourly EF data-driven generation method and
implement a more computationally-expensive hourly TB-MPC as well. However, from
the previous results comparing daily and hourly deterministic MPC operations, we do
not actually expect any significant improvement moving from daily to hourly resolutions,
except for a possible slight improvement in flood conditions, as in low or average flow
conditions the hourly forecasts did not provide any additional information.

Before proceeding with the discussion of the results, it’s important to remind that, for
the sake of consistency, the daily TB-MPC uses a daily ensemble derived from the ag-
gregation of the hourly synthetic ensemble. Moreover, both daily and hourly TB-MPC
simulations start with the same initial state over each period, obtained from the daily
TB-MPC simulation over the whole 8-year period.

While the simulation of the optimal daily operation with TB-MPC take around six times
the computational time of the daily deterministic MPC, the hourly TB-MPC takes 8-10
times the one required by daily TB-MPC (i.e. the hourly TB-MPC requires about 30-min
per day of simulation). Thus, the complete 8-year simulation with the hourly TB-MPC
would require a prohibitive amount of time to be carried out, up to two months with
the current undistributed and unclustered computational setting. Future research should
aim at reducing the computational time of the TB-MPC optimisation (see Section 6.1).
Consequently, the hourly TB-MPC was tested only for specific periods characterized by
flooding events (i.e. the two highest and most recent registered historical peaks, Oc-
tober 2020 and September 2021), where we may expect some differences between daily
and hourly optimal operations. For the sake of a more comprehensive analysis, also one
drought event (summer 2020) was used for running the tests with the hourly version of
TB-MPC, to corroborate our expectation on the null benefits from the higher control
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frequency in average and below-average inflow conditions.

Figure 5.18 and Figure 5.19 show the lake level (state of the system) and the re-
lease trajectories during the two selected flooding periods (October 2020, left panel, and
September 2021, right panel). They both show an expected similarity between the be-
haviour of the two different TB-MPC control frequencies, as suggested by previous results
with hourly/daily deterministic MPC too. Both daily and hourly TB-MPC outperform
SDP and the historical management, with a behaviour very similar to the perfect bench-
mark DDP (see Table 5.4).

Figure 5.20 shows that the hourly synthetic forecasts with 60h ahead lead time under-
estimated both flood peaks on average, but some ensemble members correctly picked up
the flood peaks and timing (especially for the first flood event of 2020). It is reminded
here that the level of accuracy of the daily ensemble used in this Section is the same as
the hourly EF, given its construction by simple temporal aggregation of the hourly one.

These first hourly TB-MPC results suggest that there does not seem to be any advantage
from the development of a more sophisticated data-driven procedure to generate hourly
EF, as they are likely to not bring any significant improvement during critical conditions
with respect to daily EF. The only notable difference between hourly and daily TB-MPC
operations is that the hourly one tends to be less conservative than the latter, closely
behaving like DDP at times. For example, after the peak of September 2021, both DDP
and hourly TB-MPC keep the level right below the threshold instead of lowering it more
quickly as the daily TB-MPC and the historical management.

Event #1 Event #2 Event #3

Iflood Iwdef Iflood Iwdef Iflood Iwdef

DDP 13.33 1 19.35 358 0 905

SDP 23.33 22 29.03 1768 0 1355

Historical Man. 20 268 16.13 578 0 1783

Hourly TB-MPC 13.33 245 29.03 2025 1.54 2218

Daily TB-MPC 20 5 22.58 1545 0 1808

Table 5.4: Performance indicators for for hourly/daily TB-MPC over the three events
under analysis (Iflood is the percentage of flooding days [%], Iwdef is the mean (squared)
water deficit [m3/s]). Event #1 corresponds to flooding event of October 2020, Event #2
the flooding event of September 2021 and Event #3 drought of Summer 2020, with the
addition of daily MPC with perfect/real forecasts and benchmarks
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Figure 5.18: System state evolution for the hourly TB-MPC compared to the daily TB-
MPC and benchmarks in flooding conditions: October 2020, left panel; September 2021,
right.

Figure 5.19: Release trajectory for the hourly TB-MPC compared to the daily TB-MPC
and benchmarks in flooding conditions: October 2020, left panel; September 2021, right.

Figure 5.20: Hourly synthetic ensemble forecasts at 60-hour lead-time, for the two selected
flooding periods: October 2020, left panel; September 2021, right.
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Figure 5.22 and Figure 5.23 show the simulated state of the system and the corre-
sponding release on a longer period (9 months) covering the entire Summer of year 2020,
using the hourly and daily TB-MPC against the different benchmarks. As seen in Figure
5.21, this period is characterized by below-average inflows in late winter and early spring,
and one high inflow peak in late Spring (June), typical of those caused by snowmelt in
this alpine basin.

Figure 5.21: Observed inflows over January-September 2020 against daily cyclostationary
inflows and water demand. The observed inflows over most of this period (26th Dec, 2019
to 10th Sept, 2020) are lower than the seasonal average and than the water demand, apart
from a few flood events in June and September 2020.

It can be seen that the hourly TB-MPC leads it to only partially attenuate the sudden
inflow peak in June. Interestingly, the daily TB-MPC making use of the same ensemble
predictions (aggregated) completely attenuates this peak instead. Figure 5.23 shows in
fact how in June the hourly TB-MPC has a considerably lower release than the other
approaches right before this critical event, causing the level of the lake to not be properly
lowered in time (Figure 5.22) before the inflow peak. This did not happen with the flood
events of October 2020 and September 2021 previously analysed. For the October 2020
event, for example, as it can be seen from Figure 5.20 and Figure 5.18, the incoming
peaks are predicted better than in June 2020 and this leads to a better control: most
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of the ensemble members pick the actual observed flood event timing, while the sudden
peak in Figure 5.24 is under-estimated by about 25 members of the ensemble (out of 30).

This difference in behaviour between daily and hourly TB-MPC has a counter-intuitive
explanation: in such cases of underestimation of the flooding peak by the forecasts, the
controller might schedules a lower release than the ideal for that period. Due to the finer
hourly frequency, the optimal decision of hourly TB-MPC can (wrongly) follow the fore-
casts more closely and control the system towards an unfavorable state of higher water
level. Finally, when the scenario that actually happens is one with (moderately) higher
than expected inflow, a (small) flooding event occurs. In this instance, the level only
slightly exceeds the flooding threshold, but it definitely brings to light how an hourly
ensemble needs to have more accuracy than a daily one.

The daily TB-MPC has instead a rougher control capability which makes it much more
’balanced’ (i.e. less reactive), but also more resilient in case of wrong predictions. Occa-
sionally, when the flood peak forecasts are accurate, the daily TB-MPC might struggle to
lower the lake levels and achieves slightly lower performance than the hourly TB-MPC,
as during the flood of October 2020. On the other hand, it also does risk less to run into
following too closely forecast errors, like false alarms (releasing more water) or underesti-
mation of peaks (with lower release than the ideal).
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Figure 5.22: System state evolution for the hourly and daily TB-MPC, against bench-
marks, over a 9-month simulation period from 26th Dec, 2019 to 10th Sept, 2020, with
drought conditions in Summer 2020.

Figure 5.23: Release trajectory for the hourly and daily TB-MPC, against benchmarks,
over a 9-month simulation period from 26th Dec, 2019 to 10th Sept, 2020, with drought
conditions in Summer 2020.
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Another possible contribution to the too reactive behaviour of the hourly TB-MPC is
the forecast discontinuity, also known as ’jumpiness’ (Zsoter et al. 2009). The stochastic
ensemble generation used creates some very ’jumpy’ trajectories especially in flooding
conditions, which is a feature that can be found also in EFs from NWP in some cases, but
is not desirable. These results suggest that the ensemble forecast generation should be
further tuned to liming extracting too variable data in following time steps for flooding
conditions and reach too high jumpiness, while keeping a significant ensemble spread.
This is particularly important to avoid providing a detrimental contribution to the opti-
mization, which is already stressed by the great amount of variables involved. This could
cause many instances of no convergence to the optimal value or potentially even a fail
(i.e. no feasible point found), although this did not occur in our tests.

Figure 5.24 and Figure 5.25 show an exemplary case of the higher jumpiness of hourly
predictions with respect to daily aggregated predictions, from the same hourly ensemble,
for the same days reported in Figure 5.24, empirically showing that aggregating data
on a daily scale smooths out members trajectories, giving a more consistent signal to the
controller. This further reinforces the explanation suggested above on why the daily TB-
MPC may perform better than the hourly one in the event analysed here. Further work
should analyse the link between forecast jumpiness and the performance of TB-MPC over
a larger set of flood events and more case studies (Chapter 6).
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Figure 5.24: Hourly ensemble prediction of the flooding event with peak dated 7th Jun,
2020. Most ensemble members moderately underestimated the flood peak and the trajec-
tories of the hourly EF members are mostly jumpy.

Figure 5.25: Aggregated daily ensemble prediction of the flooding event with peak dated
7th Jun, 2020 (from the original hourly EF above). Most ensemble members moderately
underestimated the flood peak. The daily aggregation filters (smooths out) the jumpy
trajectories of the hourly EF members.
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The objective of this thesis was to assess whether and to what extent short-term hydro-
logical forecasts can help improve the management of multi- purpose water reservoirs and
regulated lakes with short- and long-term objectives. Lake Como, in northern Italy, is
used as a case study. Located in a snow-dominated alpine basin, Lake Como is regulated
for flood control and water supply. This study was one of the first to implement a deter-
ministic and stochastic Model Predictive Control (MPC) exploiting real-time exogenous
information for the management of this important regulated lake, after that only a few
existing studies tested these approaches for other water reservoirs in the literature. For
Lake Como, this was done in a simulation setting to investigate the possible improvements
of these on-line control methods with respect to the historical management and off-line
approaches considered as benchmarks, and to investigate the benefits of using available
operational short-term (3-day) forecasts. Operational deterministic forecasts are already
available in real-time with a 60-hour lead-time, but are not used in any optimal control
scheme by the lake operator yet. Here, MPC was tested with both daily and hourly control
frequencies and its performance was compared against two off-line control approaches that
have already been extensively studied in literature, i.e. Deterministic (DDP) and Stochas-
tic (SDP) Dynamic Programming. The results of deterministic MPC are also compared
to the stochastic formulation of Tree-Based MPC (TB-MPC) using data-driven synthetic
ensemble forecasts produced with a novel approach tailored to this specific case study, to
investigate the possibility of unlocking even more benefits by considering the uncertainty
associated to the inflow forecasts. TB-MPC was tested for both daily and hourly control
frequencies (as well as MPC). The daily and hourly ensemble forecasts were produced
with two synthetic stochastic forecast generation algorithms, driven by real deterministic
forecasts and past observations. To our best knowledge this is the first study (or at least
one of the first) where such data-driven probabilistic forecasts are applied to a real-world
reservoir management problem, even if only through simulations. Ensemble forecasts of
different quality were generated to investigate the impact of forecast skill characteristics
on the simulations and performance of TB-MPC.
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The first comparative analysis between the benchmarks showed that the Perfect Op-
erating Policy (POP) embodied by the DDP significantly outperforms both SDP and the
historical management for both objectives, suggesting the existence of room for improve-
ment of the lake regulation by using perfect or skilful forecasts of inflows. Deterministic
MPC fed with perfect forecasts and both daily and hourly control frequencies proved
that indeed an on-line control scheme has the potential to reach the performance of the
DDP, and surpass all benchmarks (in the hourly case). This is especially true in terms of
flood control, as water scheduling capabilities are mostly tied by the length of the short
control horizon of MPC and are all obtained by the use of a penalty cost. The refinement
from daily to hourly control frequencies seems to bring only minor improvements for some
flood events, as the long-term behaviour in both storage and release is mostly the same.
The next comparative analysis followed the same procedure with real deterministic pre-
dictions instead of perfect predictions for MPC. The real short-term forecasts are found
to be overall quite skillful in terms of error metrics and flooding prediction capabilities.
The results of MPC fed by these forecasts reflect this, as apart from a minor degradation
in performances this operative MPC proves to be quite competitive. It still outperforms
SDP and the historical management, while is now slightly worse than DDP, which is how-
ever to be expected.
The multiple randomized calibration of neural networks method implemented is one of the
simplest that have been proposed in the literature, yet it was remarkably able to produce
satisfactory ensembles with performance metrics similar to the local operational (PRO-
GEA) deterministic forecasts. This led to similar performances of deterministic MPC
and stochastic TB-MPC at daily resolutions, with the latter scoring slightly better for
the flooding objective with only a slightly higher water deficit. The ability of the neural
networks to produce ensemble forecasts as skilled as deterministic forecasts of operational
data centers specialized in producing them is an undeniable success. This is also because,
even if in this particular scenario (i.e. our simulation of 8 years on historical data) there
was no clear cut improvement, the key strength of TB-MPC optimizing over inflow trees
is to, on average, beat deterministic MPC operations across more variable or unexpected
scenarios. A stochastic control of this type is a "no regret" implementation that increases
robustness and is able to cope with the drastic environmental changes and extreme events
increasing frequency expected with climate change.

Finally, the comparison between daily and hourly deterministic MPC operations showed
that although performances could slightly improve on the short term with the finer hourly
control (on some flood events) at the cost of higher computational time, the long-term
behaviour and water deficit performance is mostly the same, as expected. The results
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have shown a lower return in benefits with the hourly implementation of the stochastic
MPC. TB-MPC heavily depends on the quality of the EF utilized in the optimization and
the finer control capabilities require finer representation of the inflow of the system. The
hourly TB-MPC could theoretically achieve supplemental benefits if forecasts were more
accurate, but these improvements seem to be minor with respect to the higher risk of
over-confidently following wrong or jumpy forecasts. So it does not seem to be worth the
effort to work towards extending the re-calibration of ANN method for hourly ensemble
forecast generation and run a hourly TB-MPC given its extremely high computational
burden and low expected return.
In conclusion, among the different on-line approaches and resolutions tested, the daily
stochastic (TB-MPC) one appeared to be the best option for this case-study, allowing to
use forecasts with their uncertainty, which is more consistent at the daily scale given the
current accuracy and jumpiness of forecasts.

6.1. Future work

The successful development of a local, computationally cheap and user friendly alternative
to generate ensemble forecasts would definitely be of great value for water management
around the globe, especially for those areas where available global or continental hydro-
logical ensemble forecasts are not accurate or have too much bias to be used. Usually,
local physically-based hydrological models with EF are not available yet, in most areas of
the world (like for Lake Como), given the high computational burden and large amount of
meteorological data needed. So future research should focus on refining the data-driven
approach used in this study, for example testing other ANN with more refined structures
than FFNN or testing more advanced techniques for randomization like singular value
decomposition (SVD) or network dropout during reproduction (Scher & Messori 2021).
This could improve the skill of the synthetic ensemble forecasts and allow for an extension
to longer lead times. It would also be beneficial to investigate in a more systematic way
the relationship between EF skill metrics and overall TB-MPC performances, including
the ensemble spread-error relationship and its link with the control performance.

Future work could also investigate the use of alternative operational forecasts at longer
lead times for the Lake Como case study, using the continental forecasting systems avail-
able, like the European Flood Awarness System (EFAS) at sub-seasonal and seasonal
lead times. This would be possible only after applying post-processing and bias correc-
tion techniques to deal with the known low levels of forecast skill and large biases that such
continental systems have in areas where they are not calibrated yet, as the Lake Como
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basin (Arnal et al. (2018) and Wetterhall & Giuseppe (2018)). The control performances
following this approach could be compared to the application of synthetic ensemble fore-
casts developed in our study.

Further work should assess in more quantitative terms the link between forecast accuracy
and jumpiness at different temporal resolutions (e.g. daily/hourly) and the performance
of daily/hourly TB-MPC over a larger set of extreme events (floods and droughts) and
other case studies.

Future research should also tackle other practical aspects for the implementation of TB-
MPC that would help its real-world deployment for water reservoir management, aiming
particularly at reducing its computational time. As highlighted in this and other studies,
TB-MPC has a significantly higher computational time than a standard MPC procedure,
e.g. around seven times more than MPC with the setting used here and by Ficchí et al.
(2016b). This is due to a higher number of optimization variables, and this requirement
would grow even more larger ensemble sizes and longer lead times, that would probably
require more refined optimization routines. It would be very beneficial to develop ways to
distribute computational time of the optimization problem between different agents, like
with a dual decomposition method showed by Maestre et al. (2012). In case of multiple
reservoirs, a smarter way to alleviate computational burden could be developing filtering
methods to pass local controllers only information of use for their task extracted from the
ensemble, a very promising procedure initially proposed by Velarde et al. (2018).
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A| Low level days as a constraint

This appendix presents a small note on the tests carried out to include the low level days
indicator (see Section 2.6) as a constraint. This has been ignored in the cost function used
in the (TB-)MPC optimisation in the rest of the study, as the low-level days indicator is
the less important of the three. However, it could still be taken into account by making
use of a hard constraint, as one of the most distinguishing features of MPC is the possi-
bility of including hard constraints within the optimization. This is quite straightforward
from an implementation standpoint, the framework in Section 4.2 remains the same but
the contribution to the total cost g3τ reported in Equation 4.9 is cancelled and it is added
an hard constraint of the form hτ > hlow, where hlow = −0.2m is the threshold value
defined by the regional authority.

The simulations with this alternative setting are carried out on the same period of 8
years ranging from 1st Jan, 2014 to 1st Jan, 2022, with the same weight choice for the
flood and decifit objectives, same objective formulations, same requirements, and using
perfect predictions.

The performance indicators reported in Figure A.1 show that the low level days can
be completely nullified, throughout the entire 8-year simulation period, as it can also be
seen by looking at the (green) trajectory in Figure A.2. As expected, prohibiting MPC
to lower the level of the lake under a certain threshold limits the quantity of water re-
leasable to satisfy the water demand. The increase in the water deficit indicator is still
very small, with an even lower influence on flooding incidence.
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Figure A.1: Performance indicators throughout the entire simulation period of 8 years, for
the deterministic MPC with the low-level hard constraint using perfect forecasts, standard
MPC with no constraint, DDP and the historical management.

Figure A.2: System state evolution in a 9-month period with flooding from Mar 2016 to
Dec 2016, for MPC with the low-level hard constraint using perfect forecasts, standard
MPC with no constraint, DDP and the historical management.
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