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Abstract

ESTIMATING the worst-case execution time in modern architecture is a non-trivial
problem. The presence of complex hardware features, necessary to improve the
computational power due to the single-core performance barrier, makes this

estimation difficult or even impossible if traditional techniques are employed. Proba-
bilistic real-time and, in particular, the measurement-based probabilistic timing analysis
have been developed to overcome this issue. Measurement-based approaches are very
appealing for the industrial world, because they enable to obtain a statistical estimation
of the worst-case execution time by directly observing the execution time of the real sys-
tem. Unfortunately, the current status of probabilistic real-time is far to be acceptable
for certification purposes of safety-critical systems. In this thesis, both theoretical and
experimental works, related to the PhD activities, are presented, with a special focus on
the uncertainty estimation and the applicability of the probabilistic real-time techniques
to real platforms. Both these problems have been studied, providing theoretical tools
and experimental evaluations to advance probabilistic approaches towards a safe solu-
tion to the worst-case execution time estimation problem. The issues, which still limit
the use of such techniques in industrial environment, are discussed and possible future
research directions presented. In addition, unconventional exploitations of probabilistic
real-time are proposed for mixed-criticality, high performance computing, and energy-
constrained systems. During all of these works, some software tools and datasets have
been developed, released as open-source and described in this thesis.
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Abstract (in Italian)

STIMARE il tempo massimo di esecuzione nelle architetture dei calcolatori mod-
erni è impegnativo. A causa della necessità di andare oltre la potenza di cal-
colo singolo-core ormai sostanzialmente in stallo, l’introduzione di funzion-

alità complesse nell’hardware rende il problema difficile o addirittura impossibile da
risolvere con gli approcci classici. Il real-time probabilistico, e in particolare le anal-
isi probabilistiche del tempo di esecuzione basate su misure, sono stati recentemente
sviluppati per ovviare a questa difficoltà. Avere a disposizione degli approcci basati
su misure sarebbe molto interessante per il mondo industriale, perché consentono di
ottenere una stima probabilistica del tempo massimo di esecuzione osservando diretta-
mente il tempo di esecuzione sul sistema reale. Sfortunatamente, allo stato attuale, il
real-time probabilistico è lontano dall’essere accettabile nel processo di certificazione
di un sistema safety-critical. Questa tesi presenta i lavori teorici e sperimentali relativi al
dottorato dell’autore, focalizzandosi in particolare sugli aspetti di stima dell’incertezza
e applicabilità delle tecniche di real-time probabilistico a piattaforme reali. Entrambi
questi problemi sono stati studiati, fornendo sia strumenti teorici che presentando va-
lutazioni sperimentali, allo scopo di migliorare gli approcci probabilistici verso una
soluzione atta a calcolare in modo affidabile il tempo massimo di esecuzione. Nel pre-
sente elaborato vengono prima discussi i loro limiti, che ancora oggi relegano il loro uso
ad ambienti prettamente accademici, e presentate delle possibili linee di ricerca future.
Inoltre, sono proposti usi non convenzionali del real-time probabilistico nell’ambito di
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sistemi a criticalità mista, high-performance computing e con energia limitata. Durante
il progresso di queste ricerche, sono stati sviluppati e pubblicati in open-source diversi
software e dataset descritti in questa tesi.
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CHAPTER1
Introduction

Since the beginning of the 2000s, computing platforms shifted towards more complex
architectures because of the increasing computing power demand not achievable with
simple and single-core processors. This introductory chapter describes this trend, the
ensuing modeling problems, and the impact on both embedded and high-performance
computing systems, with a particular focus on time-sensitive systems.

1.1 The Evolution of Hardware Platforms

The increasing computational performance demand of applications in recent years leads
to the evolution of computing platforms towards complex processor architectures and
sophisticated system components. This trend is mainly caused by the single-core per-
formance barrier. For years, the CPU manufacturers worked to increase the clock fre-
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Figure 1.1: The evolution of microprocessor characteristics in the last 48 years. Data
by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and
K. Rupp2.

quency and to exploit instruct-level parallelism (ILP), by making the transistors smaller
and smaller until reaching the current limit of 7nm1. Robert H. Dennard predicted in
1974 that the power density (amount of power per area) of the processors remains con-
stant over the years [70]. However, around 2006-2007, this scaling law appeared to be
no more valid, and the linear trend of the power density started to decrease towards a
plateau. The same happened for frequency and ILP performance gain. The consequence
of these limitations is today’s difficulty in improving the single-core performance at the
same rate as the previous decades. To overcome this barrier, manufacturers have started
introducing several advanced features, primarily multi-core, but also complex pipelines,
multi-level caches, memory prefetcher, and many other mechanisms and architectural
features.

Figure 1.1 perfectly depicts these trends. The Moore’s law – i.e., the number of tran-
sistors doubles approximately every 2 years – is still valid in 2020, but it is expected

1Smaller transistor sizes are affected by quantum effects. Some manufactures are developing smaller
transistors (5nm and 3nm), but they are not commercially available at the time of writing.

2Released under ’Creative Commons Attribution 4.0 International Public License’. Repository: https:
//github.com/karlrupp/microprocessor-trend-data
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1.2. Embedded Systems

to end in the next few years [189]. However, the single-thread performance increased
(sub-)linear in the last 15 years, and they are substantially constant looking at the last
few years. Frequency reached its top value during the late 2000s and started to decrease
to reduce the power consumption and dissipation. The power, in fact, has also stabilized
in the last years. Since increasing single-thread performance and frequency is no longer
a viable solution for processors’ manufacturers, increasing the number of cores is cur-
rently the primary solution to respond to the performance demand, as clearly shown by
the trend depicted in the figure.

1.1.1 Computing Continuum

This single-thread performance barrier, in addition to the explosion of computational
power-hungry applications, changed the paradigms of the system development for both
large-scale and small-scale computing. Nowadays, even small and mobile embedded
systems need extensive computational capabilities to perform their tasks, e.g., image
recognition or artificial intelligence algorithms. The order of magnitude of the number
of software code lines in a modern car is hundreds of a million [51]. However, main-
taining the miniaturization and, in particular, achieving the power and energy goals is
difficult at small-scale, leading to the computing continuum concept: Thanks to the in-
creasing interconnection of embedded devices to the global network, the devices “at the
edge” can forward the heavy computational load to centralized clusters of machines. In
this way, the lightweight computation is kept on the embedded systems, moving the
most power-hungry computation to the cloud or High-Performance Computing (HPC)
systems.

In this thesis, we focus on both embedded and HPC systems dealing with time
constraints. The challenges to achieving timing predictability in modern architectures
are shared in both system categories and also linked by the computing continuum con-
cept. The rest of this chapter introduces the current trends of embedded systems (Sec-
tion 1.2) and HPC (Section 1.3), followed by a description of time-sensitive systems
(Section 1.4).

1.2 Embedded Systems

Numerous definitions of the term embedded system exist. An embedded system is com-
monly defined as a computing system built for a specific target application (opposed

3



Chapter 1. Introduction

to a general-purpose system), that is usually part of a larger system (e.g., a washing
machine, a car, or an airplane). Nowadays, human society is pervaded by embedded
systems which are more and more connected to the internet. There is an enormous
number of possible examples, like the infotainment system of a car, the orbit control
computer of a satellite, the interface of a printer, or the computer controlling a medical
tomography machine, just to name a few.

The hardware platforms of embedded systems are diverse: they can be as simple as
an 8-bit microcontroller or a multi-core machine with an operating system and software
virtualization. Most all of the application of embedded systems share the same com-
mon goals: to be small, inexpensive, power/energy efficient, reliable, and with a low
development cost.

1.2.1 Critical systems

An important segment of embedded systems is the critical systems category. In such
systems, providing a correct result is essential due to the nature of their application. We
can distinguish two classes:

• Mission-critical systems: the failure to correctly perform the intended function
for which they have been developed may cause critical financial damage to the
organization producing and/or using the system. Examples of this category in-
clude financial trading systems or unmanned spacecraft operations.

• Safety-critical systems (sometimes, but less commonly, called Life-critical sys-
tems): the failure to correctly perform the intended function for which they have
been developed may result in: 1) death or serious injuries to people, 2) environ-
mental disasters, or 3) severe damage to buildings or equipment. Examples of this
category include avionics, nuclear power plant systems, and medical equipment.

Designing a critical system requires not only proper hardware and software components
but also a complex company organization to trace the development activities to ensure
the reliability of the final product. While standards for both software and hardware ex-
ist, no one can certify that the final system is exempt of bugs and design errors. Testing
shows the presence, not the absence of bugs (Dijkstra, [74]). Formal methods, which
can instead prove the logical correctness, are challenging when used to verify complex
hardware devices [107], and they are usually feasible for only a small part of the soft-
ware, due to the complexity of the state space exploration. Consequently, creating a

4
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proper and documented development process that is built to reduce the risk of errors
is the key of a critical system. This is especially important for safety-critical systems,
which usually require the approval by a certification authority. The failure to create and
maintain a proper development process and requirement tracing may lead to disastrous
financial and human consequences. A recent example is the Boeing 737 MAX. The
crashes of two airplanes of this model are attributed to inadequate requirements anal-
yses and certification process of a flight control computer [127]. These tragedies cost
346 human lives and an estimated money loss, at the time of writing, of $20 billion
for Boeing3. This sad episode perfectly serves as an example of how a safety-critical
embedded system, even if it has a minor role in the global function of the machine, may
have a tremendous impact on the correctness of the whole system and the organization
developing it.

1.2.2 The Commercial Off-The-Shelf trend

Many industries use Commercial Off-The-Shelf (COTS) platforms to reduce the design
cost of embedded systems, rather than to develop custom hardware and software. This
is, usually, not the case for critical systems, where the strict rules for the development
process hinder the possibility of using off-the-shelf hardware or software. However,
a recent trend to using COTS components in critical systems can be observed: Ap-
plications are becoming more and more sophisticated and require a large amount of
computational power, and it would be too costly to build custom systems from scratch.
Companies like Boeing and Airbus are currently evaluating the possibility of using
COTS components in their aerospace products [9, 131]. Specific technical committees
– e.g., the IEC Technical Committee 107 for avionics – are developing standards for
COTS to ensure the product quality and enable their certification.

COTS components may improve the time-to-market and reduce the design cost, but
they present many challenges when used in critical systems, as we will later explain
Section 1.4.3. The trend towards COTS software and hardware cannot be ignored, and
it represents a further complexity in the analysis of embedded systems.

3Reference news source: https://www.theguardian.com/business/2020/jan/29/

boeing-puts-cost-of-737-max-crashes-at-19bn-as-it-slumps-to-annual-

loss.
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Figure 1.2: An exemplification of the architecture of an HPC cluster.

1.3 High Performance Computing

At the opposite side of the computing continuum, it is possible to find the High–
Performance Computing (HPC). This term refers to the technology of large clusters
of interconnected machines, generally called supercomputers. The main goal of HPC
clusters is to provide a computing infrastructure capable of fulfilling the increasing
performance requirements of modern large-scale applications, in both scientific and in-
dustrial domains. The HPC infrastructure usually consists of clusters of thousands of
computing, storage, and management nodes interconnected by a high-speed network,
as sketched in Figure 1.2.

1.3.1 System and application goals

The software development for HPC systems is completely different from the embedded
systems. However, many challenges, especially from the research perspective, are in
common. Examples include task scheduling, parallel and distributed computing, and
timing requirements. A work in this thesis, presented later in Section 5.3, focuses on
the latter example. Regarding power and energy, HPC also has these two requirements.
However, the focus is very different: while embedded systems necessitate optimizing
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these metrics to keep the thermal and energy budgets contained, for HPC, these re-
quirements are more related to the cost of the infrastructure. Large energy consumption
has a direct impact on electricity costs. Large power dissipation requires powerful air-
conditioning systems that, in turn, increase both the design and the running costs of
electricity. The problem of energy dissipation is so important for HPC that the TOP500
organization4 – which traditionally ranks the HPC systems by their performance – cre-
ated a parallel ranking method, called Green5005, to classify the systems based on
performance/watt metric.

1.3.2 Programming models

To achieve high performance levels, computing nodes typically include multiple proces-
sors and multiple cores, because of the already described single-core performance bar-
rier. Having both a distributed topology and high-performance multi-core processors,
HPC systems allow the developers to scale the applications’ performance by leverag-
ing on both inter-node and intra-node parallelisms. To effectively exploit these paral-
lelisms, proper software frameworks are required [8], including programming models
(e.g., MPI, OpenMP), and management frameworks, like job schedulers and resource
managers.

For heterogeneous HPC architectures (described in the next Section 1.3.3), an in-
termediate run-time framework to support programming models across a wide range of
different accelerators becomes essential. Frameworks exposing basic services for com-
munication, synchronization, and task spawning are needed, in addition to the high-
level programming models built over the intermediate model, and specific primitives
for each accelerator. Only with this complex structure, the programmer has all the
tools he or she needs to achieve the maximum performance and exploit heterogeneous
architectures.

1.3.3 Heterogeneous HPC

The hardware of HPC systems is traditionally uniform and homogeneous across the
whole cluster and inside each node. In this way, management costs are reduced, and
it makes software development easier because only one version of the application is

4Website: https://www.top500.org/
5Website: http://www.green500.org/
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Figure 1.3: The evolution of the number of heterogeneous HPC systems in the TOP500
list6.

needed. Moreover, the exploitation of parallelism is less challenging than having het-
erogeneous computational resources [72]. Nevertheless, from the 2010s, an increasing
number of HPC systems started to include heterogeneous resources, as depicted in Fig-
ure 1.3 that shows the number of clusters in the TOP500 list exploiting heterogeneity.
The achievement of Exascale capabilities (i.e., 1018 FLOPS7) requires not only ad-
equate computational performance but also the meeting of power and energy budget
constraints for the previously mentioned reasons. Heterogeneous architectures are a
natural energy-efficient solution in this scenario [231], and they are promising to im-
prove the aforementioned performance/watt metric.

The traditional approach towards resource management, which is essentially lim-
ited to assigning to each application a set of physical nodes at the job scheduler level,
is not sufficient in such a scenario. This approach leaves many deeply heterogeneous
resources unused, as each application typically employs only a subset of the available
resources. To counter this effect and improve resource utilization, capacity computing

6Data source: https://www.top500.org/statistics/list/
7Floating-Point Operations per Second.
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approaches allow multiple applications to coexist on the same node, sharing the hetero-
geneous resources based on each application’s priority and Quality of Service (QoS)
requirements. To achieve utilization goals and improve the QoS of applications, proper
resource management protocols must be implemented. In this thesis, we focus on the
time predictability requirement, and we propose resource management strategies based
on embedded systems approaches.

1.4 Real-Time Systems

A real-time system is defined as a system whose correctness depends not only on the
correctness of the results (logical or functional correctness) but also on the time con-
straints (temporal correctness).

1.4.1 Classification

Real-time applications (and by the extension, the systems on which they run on) can
be further classified depending on the strictness of the requirements. Many different
classifications exist, but the three categories commonly used are:

• Hard real-time: the time constraints of the tasks (usually expressed as deadlines)
must be met under any condition. The failure to meet even one single deadline
makes the system failed. Most of these applications are also safety-critical.

– Examples: fly-by-wire computers, pacemaker controller, cars’ engine con-
trol module, etc.

• Firm real-time8: the violation of a single time constraint does not cause the failure
of the overall system, but a late computation makes the output of the applications
useless, and it must be discarded.

– Examples: financial trading software, weather forecast applications, etc.

• Soft real-time: the time constraints are not mandatory, and they are usually loosely
defined (for instance, Quality of Service metrics). However, the violation of tim-
ing requirements should not happen “too often”9.

8Different definitions of firm real-time exist, we selected the most common one for this thesis.
9This requirement has been voluntarily imprecisely defined: the exact definition of the requirement and

how much is acceptable to violate it depends on the single model, system, and application.
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Figure 1.4: Three examples of utility functions with respect to the deadline Di: (a)
hard constraint, the utility of the output is zero immediately if the task overruns
its deadline; (b) soft constraint, the system is considered functioning for a certain
period of time, in degraded mode, for a given time frame after the deadline; (c) soft
constraint, the system is considered functioning with a decreasing level of utility.

– Examples: multimedia players, simulation software, etc.

These categories can be generalized in the concept of time-utility function proposed
in 1985 by Jensen et al. [138], which provides a general function model linking the exe-
cution time with the system utility. Three common examples are depicted in Figure 1.4.
Case (c) is typical of soft real-time systems, while Case (a) is typical of a hard/firm
real-time system, in which a deadline miss makes the system/output useless. Case (b)
is, instead, a mixed-case: deadline can be missed, and the task exposes degraded perfor-
mance, but only for a short and well-defined time interval. Having this general function
makes it possible to formally express the fuzzy definition of soft real-time systems.
The next chapter and, in particular, Section 2.4 provide the formal definitions for hard
real-time systems.

Many embedded systems are also real-time systems (soft, firm, or hard). The safety-
critical systems are usually hard real-time because the timeliness of the applications is
often a requirement for such systems. For instance, an automotive airbag control system
must react within a given time frame, and a soft real-time requirement is not sufficient
to guarantee safety. However, real-time systems are not a perfect subset of embedded
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systems because they can be applied to general-purpose machines or HPC, as shown in
the next paragraphs.

1.4.2 Timing sensitive applications in HPC

The performance of HPC systems is typically measured in terms of throughput, i.e., the
amount of work completed in a given time unit. The most common measurement unit
for the throughput is the FLOPS. New application domains that require an HPC infras-
tructure to run are emerging. These include, for instance, use cases from automotive,
smart city, healthcare, environmental, and infrastructure monitoring [95]. Application
requirements in such domains include specific timing constraints, similar to real-time
applications running on embedded systems. To show these new requirements, we pro-
vide in the next paragraphs some examples of real world applications.

Example – Autonomous driving. The automotive world, with the Autonomous Ve-
hicles (AV) horizon, provides probably the most straightforward and one of the most
challenging examples. From the computational perspective, an AV is equipped with a
sensing system, which provides a large amount of data on the environment, nearby ve-
hicles, pedestrians, and other objects. Such data must be processed to carry out prompt
control actions (e.g., steering or braking). This processing requires the execution of a
large number of computationally intensive tasks, which could hardly be executed as a
whole by the local computing system of the vehicle. Consequently, the need for of-
floading part of the workload on a remote HPC infrastructure has been proposed [177].
This challenging approach demands strict requirements on the maximum latency that
must be considered in a worst-case sense rather than in average-case sense.

Example – Environmental monitoring. Another large class of use cases is the one
including applications for monitoring. For example, in the environmental context, we
can mention the rainfall forecasting models or, more in general, the disaster predic-
tion applications [201], where we need to process a large amount of data and make a
prediction, by a specific deadline. This is necessary in order to generate an alert sig-
nal in a useful time frame and, thus, trigger suitable emergency plans. Similarly, large
infrastructures also need efficient health monitoring systems. For example, a bridge
monitoring system [254] requires the collection and the real-time processing of data
from sensors on a large scale. When a dangerous situation is detected, an alert should
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be raised as soon as possible to stop the road traffic. The necessity of having a worst-
case requirement is justified by the fact that a late alert may compromise the bridge
safety and, then, lead to loss of human life.

Example – European projects. Recent EU H2020 projects, like MANGO [94] and
RECIPE [95] are addressing the challenges introduced by use cases with similar re-
quirements. In the former, the three use cases – a real-time medical imaging application,
a video transcoder, and a network digital signal processing algorithms – need a large
amount of computational power to process a highly variable amount of input data, with
guarantees in terms of maximum response time or latency. For example, the medical
application receives data from a large set of tomographic sensors, performs the proper
transformations to create a human body rendering, and recomposes them to create a
streaming video. Since the video is played and observed by the medical personnel in
real-time, its reproduction has low-latency requirements. The latter project, RECIPE,
includes three use cases: a weather forecast and environmental monitoring system, the
real-time analysis of health bio-signals in a big-data context, and a geophysical imaging
tool. For the first use case, the application needs to collect data from a weather forecast
model and a wide range of sensors, located by rivers and basins, to monitor the water
levels. Then, suitable algorithms are required for analyzing data and detecting risky
conditions in a short time frame, so that a proper emergency procedure could be im-
plemented. Similarly to the previous bridge monitoring, in this case, worst-case timing
requirements are necessary to ensure people’s safety.

Summary. Many of the previously described applications can be considered mission-
or safety-critical. These categories expose the systems to authority regulations and,
in particular, to certification processes. Even if we are not aware of any certification
requirement for HPC applications related to timing requirements at the time of writing,
we expect that in the future, it may become a legal requirement.

Overall, all of these use cases can benefit from the scalability capabilities of HPC
platforms, but, at the same time, they need solutions that could also provide timing
constraints guarantees. Current HPC resource management solutions are focused on
maximizing the throughput or maintaining the best average Quality-of-Service (QoS),
whatsoever it is defined. However, the requirements of timing-sensitive applications are
usually expressed in the form of maximum response time. Guaranteeing a maximum
response-time is in trade-off with guaranteeing the maximum throughput. For instance,
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the scheduler of a general-purpose operating system tends to control the number of pro-
cess context-switches to reduce the overhead and maximizing the system throughput.
Unfortunately, the response time is negatively affected in this case.

To guarantee the real-time requirements, we need a combination of design-time ef-
fort and run-time resource management strategies. The former’s goal is to characterize
the applications accurately and, in particular, their timing profiles. On the other hand,
the latter needs to develop the knowledge of the target platform at run-time – and this
is crucial for HPC platforms that are too complex to be analyzed and characterized at
design-time – in order to tune the resource management policies [205]. In this regard,
it is worth noting that the number of papers dealing with response-time driven resource
management in HPC is only 15% of the total amount reported in the survey by Singh
et al. [241]. However, in such papers, the response-time metrics are considered in an
average sense only, and the violation of the deadlines is considered a degradation of the
Service Level Agreement (SLA), similar to soft real-time systems of Figure 1.4c. The
use of the utility function, and in particular the analysis of the case of Figure 1.4a, is
uncommon in HPC researches. Even if the hard real-time on parallel architectures has
been widely studied in recent decades [67], the applicability of the proposed techniques
to HPC applications is limited, due to both the complexity of HPC infrastructure and
the necessary use of COTS components to reduce the cost of the clusters. A recent
work [75] proposed a real-time scheduler for a COTS x64 architecture, capable of deal-
ing with the System Management Interrupts (SMIs). SMIs are, in fact, one of the most
critical sources of timing unpredictability of COTS platforms [146]. However, SMIs
are just one of the numerous hardware and software mechanisms that make an HPC
cluster unpredictable in time.

1.4.3 The WCET problem

To satisfy the temporal requirements of the real-time systems (especially the hard real-
time systems), we need to know the maximum value for the execution time. The up-
per bound value on the execution time of a given task is called Worst-Case Execution
Time (WCET). The WCET is necessary to perform the scheduling analysis and verify
the timing constraints. The techniques to estimate the WCET will be later presented in
Section 2.3. However, in general, computing this value in modern architecture and com-
plex programs is a non-trivial problem. The trend we described in Section 1.1 makes
the obtaining of a good timing model of the processor (or, more widely, of the system)
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difficult, that, in turn, makes the computation of the WCET hard. The use of COTS
components in real-time applications is challenging and adds another layer of complex-
ity in WCET estimation, due to the numerous sources of unpredictability affecting these
platforms [65]. In fact, COTS platforms are built with average performance in mind,
and not intended to provide a timing model able to compute the WCET easily. As an ex-
treme example, certain DRAM controllers of COTS platforms do not even guarantee an
upper-bound for the timing latency in accessing a memory location [258], making the
computation of a finite WCET impossible. Finally, it is easy to imagine how difficult
it could be to estimate a WCET for an HPC application, running on complex machines
and possibly multi-node, with network and other external interferences.

1.5 This Thesis

The common motivations behind the works presented in this thesis arise from the
WCET problem described above and the necessity of finding alternative approaches
to the traditional static analyses and real-time systems, in both embedded and HPC
scenarios.

1.5.1 Contributions

This thesis is the result of many scientific works dealing with non-traditional approaches
to real-time systems and, in particular, probabilistic real-time. We can identify the
following macro-areas of contributions:

1. Advancing the theoretical framework of probabilistic real-time, especially on
how to estimate the uncertainty behavior for safety-critical systems.

2. Analyzing the applicability of probabilistic approaches to real systems, from
small embedded micro-controller to large HPC infrastructure, identifying the
open challenges and the timing requirements of each scenario.

3. Proposing the use of probabilistic techniques in non-traditional real-time systems,
such as mixed-criticality and heterogeneous computing.

4. Exploiting the timing analysis techniques for the estimation of different metrics
than the execution time, especially in the context of energy-constrained systems.
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Figure 1.5: Dependency graph of the chapters of this thesis.

5. Developing tools and datasets to speed up scientific research and the adoption of
these methods in industrial environments.

1.5.2 Structure

Due to the nature of the theoretical and practical works performed, this thesis does not
follow the usual structure of introduction, methods, results, and conclusions. Rather,
this thesis is organized as follows: after the introduction of this chapter, the necessary
background is provided in Chapter 2. This background is essential, especially for the
statistical aspects, which may be far from the usual knowledge of a computer scientist or
engineer. In the same chapter, Section 2.5 presents an overview of the State of the Art,
i.e., the previous works related to this thesis. Each of the subsequent chapters includes
more specific literature reviews for their own subtopics. After Chapter 2, novel con-
tributions are presented, including the purely theoretical advances (Chapter 3), studies
on the applicability of probabilistic techniques to real systems (Chapter 4), exploita-
tions for non-traditional real-time systems (Chapter 5), and for non-timing constraints
(Chapter 6). Each chapter and its sections explain the proposed methodology and the
results, being, in this way, self-contained works, but connected with the main story-

15



Chapter 1. Introduction

line of the thesis. Finally, Chapter 7 presents the developed tools and datasets, and the
conclusions and possible future works are summarized in Chapter 8. The logical de-
pendencies among the chapters are depicted in Figure 1.5 and among the sections are
depicted in Figure 1.6. Appendix A contains the list of scientific articles written during
the Ph.D. course of the author, which are the foundations on which this thesis was writ-
ten. Appendix B contains the formulas of some statistical testing procedures referenced
in the thesis.
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CHAPTER2
Background

Before entering in the innovative part of this thesis, this chapter provides the necessary
background to the reader to understand the subsequent ones. The focus is related to the
statistical domain and, in particular, to the Extreme Value Theory and its application to
real-time computing. The last section presents an overview of the state-of-the-art works
related to this thesis.

2.1 Statistical Foundations

In the probabilistic theory, a random experiment is a procedure that can be repeated
and has well-defined possible outcomes (at least two). The experiment is modeled by
a probability space (Ω,F , P ), where Ω is the set of all possible outcomes, F the set
of events, and P a probability measure function. A random variable is an entity repre-
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Function Acronym Symbol Interpretation Limits

probabilistic mass func. pmf pX(xi) P (X = xi) [0; 1]

cumulative distribution func. cdf FX(x) P (X < x) [0; 1]

probabilistic distribution func. pdf fX(x) d
dxFX(x) [0;∞]

complementary cdf ccdf F̄X(x) P (X ≥ x) [0; 1]

inverse cdf icdf F−1X (p) x : FX(x) = p D(X)

Table 2.1: Functional characterizations of the probabilistic measure function P . The
symbol D(X) represents the domain of the random variable X .

senting the outcome of the experiment, formally a function having the domain Ω and as
co-domain a measurable set. The realization of a random variable is its value randomly
selected according to the probability measure function P . Finally, the set of events, F ,
is a subset of Ω representing a set of outcomes. When a random experiment is repeated
several times, the outcome is a sequence of random variables {X1, X2, ..., Xn}. If the
number of elements of this sequence is not limited, the set X = {X1, X2, ...} is called
random process.

Example 2.1.1 (Rolling a dice). The experiment "rolling a dice" has the probability
space depending on the number faces of the dice – e.g., Ω = {1, 2, 3, 4, 5, 6} – the set
F can be any possible subset – e.g., "the resulting face has a number lower than 4" –
and the probability function P depends on the fact that the dice is weighted (cheat) or
not; in the latter case, P (X = 5) = 1

6 . The random variable X corresponds to the
"number we observe on the face of the dice", and its realization can be, for instance,
"5". �

2.1.1 Probability functions

The abstract concept of probability measure function is then developed in the func-
tions shown in Table 2.1. The probabilistic mass function (pmf) is used in the case
of discrete random variables (such as the dice outcome in Example 2.1.1), while the
probabilistic distribution function (pdf) is used for continuous variables. Formally,
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the cumulative distribution function (cdf) is computed as FX(x) =
∑
xi≤x pX(xi)

for discrete variables and FX(x) =
∫ x
−∞ fX(t)dt for continuous variables. Then, its

complement, the complementary cumulative distribution function (ccdf), is defined as
F̄X(x) = 1 − FX(x), as well as the inverse cumulative distribution function (ccdf)
F−1X (p) = {x : FX(x) = p}. All of these functions are said to describe a statistical
distribution (or, equivalently, probability distribution), in this thesis represented by the
calligraphic script font, for instance, G .

Empirical determination of probability functions. Observing a phenomenon via
experiments, usually requires to estimate the probabilistic distribution, because the
characteristic functions are in many cases unknown. The simplest method to estimate a
distribution is to compute the empirical cumulative distribution function (ecdf) by mea-
suring the realizations of the random variables several times. Given n observation as
independent and identically distributed (i.i.d.) random variables {X1, X2, ..., Xn}, the
ecdf is computed as follows:

F̂n(x) =
1

n

n∑
i=1

1Xi≤x (2.1)

where 1A is the indicator function defined as:

1A =

1 if A is true

0 otherwise

By the strong law of large numbers and as stated by the Glivenko-Cantelli theorem
[103, 43], the ecdf converges almost surely to the real cdf:

P
(

lim
n→∞

∣∣∣F̂n(x)− F (x)
∣∣∣ = 0

)
= 1

From the ecdf, the other distribution functions can be computed in their empirical form.
An example of ecdf generated from a sample of 100 points on a normal distribution is
depicted in Figure 2.1.

2.1.2 Common operations

Truncation. In some cases, it is needed to truncate the distribution at a given value,
reducing its domain. This operation is done if some previous knowledge where the
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Figure 2.1: An example of ecdf generated from 25 measurements sampled from the
normal distribution N(10, 1), in comparison with the original cdf.

values lie is available, and it produces a conditional distribution. Let f(x) be the pdf of
the distribution to be truncated, and a, b respectively the minimum and the maximum
values of the truncating window, then the pdf becomes:

T ba [f(x)] = P (x|a < X ≤ b) =
f(x)

F (a)− F (b)

The new function (T ba [f(x)]) satisfies all the properties of a pdf. The truncation opera-
tors can be equivalently applied to discrete distributions and, consequently, pmfs.

Convolution. The sum of random variables is performed thanks to an operator called
convolution. This operator is identified by the symbol ~, and it is applicable to i.i.d.
random variables1. In particular, we define the convolution of two random variables
Xsum = X1 ~ X2 as the convolution of their pmfs or pdfs fXsum(x) = fX1

(x) ~

1Methods exist to convolute non-i.i.d. random variables [96], but they are not relevant for this thesis.
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fX2(x). The general formula of X = Y ~ Z for discrete random variables is:

pX(x) = pY (x)~ pZ(x) =

+∞∑
n=−∞

pY (n)pZ(x− n)

and its counterpart for continuous random variables is:

fX(x) = fY (x)~ fZ(x) =

∫ +∞

−∞
fY (t)fZ(x− t)dt

The convolution operator satisfies many algebraic properties, such as commutativity,
associativity, and distributivity, but lacks an identity item.

Example 2.1.2 (Truncation and Convolution). Let be Y and Z two random variables
with the following pmfs:

pY (x) =

0.5 if x = 10

0.5 if x = 20
pZ(x) =


0.3 if x = 0

0.3 if x = 10

0.4 if x = 15

then, the convolution of X = Y ~ Z is:

pX(x) =



0.15 if x = 10

0.30 if x = 20

0.20 if x = 25

0.15 if x = 30

0.20 if x = 35

Let us assume we can apply the truncation operator because we know that X ≤ 25,
then the final pdf becomes:

T 25
−∞[pX(x)] =


0.2308 if x = 10

0.4615 if x = 20

0.3077 if x = 25

�
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2.2 The Extreme Value Theory

At the beginning of the 20th century, the needs of some astronomers to correctly reject
outliers in the observations were the reasons behind the origin of the Extreme Value
Theory (EVT) [153]. This branch of statistics deals with the probability of extreme (i.e.,
rare) events to occur. Consequently, it is opposed to the well-known Central Limit The-
orem (CLT) that, instead, studies the probability distribution around their mean value.
The EVT is frequently used for risk management in manifold contexts, such as natural
disaster prediction, financial applications, and earth sciences, but also in several fields
of engineering [45].

2.2.1 Statistical distribution of the extremes

Given a sequence of random variables X1, X2, ..., Xn representing the observation
of a phenomenon, the EVT provides the limit distribution at the extremes, i.e., the
max(X1, X2, ..., Xn) or min(X1, X2, ..., Xn). In the context of this thesis, the se-
quence of X1, X2, ..., Xn is a sequence of observation of execution times. As detailed
later in Section 2.4.1, we are interested in the worst-case value only; thus we can limit
our dissertation to the max value only so that it simplifies the following notation. The
min is symmetrical, but it has no significance for the purposes of real-time computing.

We can formalize the probability of not observing a value for the considered phe-
nomenon larger than a given value x as follows:

P (max(X1, X2, ..., Xn) ≤ x)

= P (X1 ≤ x, X2 ≤ x, ..., Xn ≤ x)

iid
= P (X1 ≤ x) · P (X2 ≤ x) · · ·P (Xn ≤ x)

= [F (x)]n

where F (x) is the (unknown) cdf of Xi. The symbol iid
= is a step that requires the se-

quence of random variables to be independent and identically distributed (i.i.d.), which
permits the expansion by multiplication of the single cdf. From the results of the EVT2,
it is possible to demonstrate that [46]:

∃an, bn s.t. lim
n→∞

[F (anx+ bn)]n = G(x) (2.2)

2The statistical details and proofs are omitted because out of the scope of this document.
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Figure 2.2: The pdfs of the distribution GEVD(10, 1, ξ) with ξ = 1 in the top subfigure,
ξ = 0 in the top subfigure, and ξ = −1 in the bottom subfigure.

where G(x) is the cdf of a so-called Extreme Value Distribution. According to the
Fisher-Tippett-Gnedenko theorem [93, 104] this distribution can assume only three
forms: the Gumbel, the Weibull, or the Fréchet distribution, independently from the
original distribution represented by the cdf F (x). This theorem is the main result of the
EVT and shows how the original distribution of the random variables does not affect
the distribution of extremes.

Generalized EVT. In 1978, McFadden [182] discovered that the three distributions
are actually particular cases of a more general distribution: the Generalized Extreme
Value Distribution (GEVD). This distribution is characterized by the following cdf:

G(x) =

e−e
x−µ
σ ξ = 0

e−[1+ξ(
x−µ
σ )]−1/ξ

ξ 6= 0
(2.3)

The GEVD distribution G (µ, σ, ξ) is parameterized by the location parameter µ, the
scale parameter σ, and the shape parameter ξ. The location parameter is conceptually
similar to the mean value of a distribution, while the scale parameter to the standard
deviation3. The shape parameter ξ has a very important role (especially in probabilistic

3They are similar for a conceptual standpoint but they have not the same formulation, the GEVD has a
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Figure 2.3: The cdfs of the distribution GEVD(10, 1, ξ) with ξ = 1 in the top subfigure,
ξ = 0 in the top subfigure, and ξ = −1 in the bottom subfigure.

real-time computing), since it represents which sub-class of distribution a given GEVD
is part of:

• ξ > 0: the GEVD is a Fréchet distribution.

• ξ = 0: the GEVD is a Gumbel distribution.

• ξ < 0: the GEVD is a Weibull distribution.

The pdfs and the cdfs of these three cases are respectively depicted in Figure 2.2 and
Figure 2.3. The key difference among the GEVD subclasses is "how fast" the cdf con-
verges to 1. In fact, if ξ > 0 the Fréchet distribution converges to 1 slowly compared
to the ξ = 0 Gumbel case. Instead, in the ξ < 0 case, the Weibull subclass, the cdf
converges to 1 very quickly, and it has a finite value of x such that Gξ<0(x) = 1, con-
versely to the previous subclass were instead it is infinite: Gξ≥0(+∞) = 1. The value
of ξ has crucial consequences for probabilistic real-time, as subsequently explained in
Section 2.4.1.

mean value of E[G ] 6= µ and VAR[G ] 6= σ2. The exact formula is not reported because it is rather complex
and irrelevant in this discussion.
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2.2. The Extreme Value Theory

Generalized Pareto Distribution. The other distribution which can be used to model
extreme events is the Generalized Pareto Distribution (GPD) as named by Pickands et
al. in 1975 [202]. This distribution, in its most generic form, is characterized by the
following cdf:

G(x) =

1− e−
x−µ
σ ξ = 0

1− (1 + ξ x−µσ )−1/ξ ξ 6= 0
(2.4)

with the following support4 for x:

• x− µ ≥ 0 if ξ ≥ 0

• − 1
ξ ≥

x−µ
σ ≥ 0 if if ξ < 0

Similarly to the GEVD, a GPD distribution G (µ, σ, ξ) is parameterized by the loca-
tion parameter µ, the scale parameter σ, and the shape parameter ξ. However, in many
cases the GPD is restricted to 2 parameters only, by setting G (0, σ, ξ), i.e. µ = 0 5. This
distinction does not affect the generality of the GPD for the EVT problem. In this thesis,
when this differentiation is needed, we refer with GP3D and GP2D for, respectively, the
3-parameters GPD and the 2-parameters GPD.

For specific parameters values (especially the value of the shape parameter ξ), sub-
classes of GPD can be recognized:

• ξ = 0 and µ = 0: the GPD is a Exponential distribution.

• ξ > 0 and µ = σ
ε : the GPD is a Pareto distribution.

The GPD and GEVD distributions are asymptotically equivalent and, consequently,
both of them can be used to model the extreme behaviors, based on the result of the
Pickands-Balkema-de Haan theorem [17, 202]. However, the two distributions have to
be estimated by using two different methods explained in the next paragraphs.

2.2.2 The estimation procedure

The estimation procedure comprises two parts: initial filtering is applied to the exe-
cution time observations, and then the actual estimation performed by an appropriate
estimator algorithm.

4Subset of the function domain containing the values for x such that F (x) 6= 0.
5Rarely, it is used with only with the shape parameter, by setting G (0, 0, ξ). However, to the best of our

knowledge, this form has been never used for probabilistic real-time.
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Input filtering. A filtering technique is applied to the input values to focus the esti-
mator on the distribution’s tail. Two possible approaches are frequently used in both
statistical and real-time fields:

• Block-Maxima (BM). The following filter is applied to the sequence of observa-
tions X1, X2, ..., Xn:

Yi = max(XB·(i−1)+1, XB·(i−1)+2, ..., XB·i) (2.5)

where B is a parameter called block size. The set of observations is divided into
blocks of fixed size B, and for each block, the maximum value is taken. The
sequence Y1, Y2, ..., Ym represents the maxima of the blocks, with m = d nB e.

• Peak-over-Threshold (PoT). This filter is a simple threshold-based cut:

Y = {Xi > u} (2.6)

where u is a predefined threshold. The sequence Y1, Y2, ..., Ym represents the
measurements that are greater than the threshold u, discarding all the values under
this threshold. In this case, contrarily to the BM case, the value of m is unknown
a priori of the analysis because it depends on the values themselves.

The selection of BM or PoT impacts the final distribution: if BM is applied, the esti-
mated distribution has to be a GEVD, while if PoT is applied, the resulting distribution
has to be a GPD. To estimate such distributions, an appropriate estimator must be used,
as described in the following paragraph.

Common estimators. The commonly used estimator for EVT analyses is the Max-
imum Likelihood Estimator (MLE). This method is well-known because it is used as
the estimator in many fields of science and engineering. Given a model, the GEVD or
the GPD, MLE estimates its parameters by maximizing the likelihood that the process
described by the model is the same as the one which produced the observation data –
i.e., the execution time in our case. However, it was observed [222] that, in some cases,
the MLE estimator fails to obtain a valid EVT distribution due to the presence of a local
minimum of the MLE optimization function. One possible solution to this problem is to
initially use the Probabilistic Weighted Moment (PWM) estimator and, then, use MLE
to refine the solution. In fact, PWM usually leads to a less precise solution compared
to MLE, but MLE may not converge or may converge to a local minimum. The reader

28



2.2. The Extreme Value Theory

is invited to check the paper of Diebolt et al. [73], for a detailed analysis of the two
estimators in the EVT context.

2.2.3 The EVT hypotheses

As any mathematical theorem, the EVT theorems also require some hypotheses to be
satisfied, in a way that the EVT process produces a correct and non-underestimated
distribution. The following three paragraphs briefly describe such hypotheses.

Independent and Identically Distributed (i.i.d.). The input sequence of observa-
tions – i.e., the execution time trace in probabilistic real-time scenario – must be inde-
pendent and identically distributed (i.i.d.). In real-time computing, this hypothesis is
mainly dependent on the processor and the system architecture. For example, a multi-
core processor including a cache memory would not probably be able to fulfill the
independence requirement, due to the time locality principle. Time samples from con-
secutive executions of the same task, in fact, are affected by the data locality given
by the cache, making the execution times not independent. In practice, the i.i.d. re-
quirement can be relaxed in favor of the stationary property and weaker independence
properties [155, 230]. If these hypotheses hold, the EVT estimation process can be
correctly applied. They can be formalized as follows [228]:

• Stationarity: Given a random sequence X1, X2, ..., Xn of size n, the process is
said to be strict stationary iff for any choice of k, l,mwith 0 < k+l+m < n the
following condition is true: F (Xk, Xk+1, ..., Xk+l) = F (Xk+m, Xk+m+1, ...,

Xk+m+l), where F is the cdf of the joint distribution. This condition implies the
identical distribution of the random variables. In real-time computing, the sta-
tionary hypothesis indicates a flat distribution of execution times, with constant
variance. For instance, a task that drastically changes the job execution time after
some runs violates this property.

• Short-range independence. Given a sequence of random variables X1, X2, ...,

Xn of size n, the sequence is said to be short-range independent if for any i1 <
i2 < · · · < ip < j1 < · · · < jp ≤ n s.t. j1 − ip ≥ s > 1, defining FIJ
the cdf of Xi1,...,ip,j1,...,jn , FI the cdf of Xi1,...,ip , FJ the cdf of Xj1,...,jp we
have |FIJ −FIFJ | ≤ αn,s where αn,s is a sequence with non-decreasing values
with respect to s and αn,s → 0 for n → ∞. The intuition behind this property
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can be noticed looking at the content of the absolute value operator, which is
zero if FI and FJ are perfectly independent; otherwise, the dependency has to
be upper-bounded by (a function of) the distance among the random sequences.
In real-time computing, an example of a cause of short-independence property
violation is the presence of processor cache effects between two job instances.

• Long-range independence. According to this property, the time series does not
show a significant correlation across large time-spans. We define this property
by defining its opposite. A long-range dependent sequence can be defined as: a
random sequenceX1, X2, ..., Xn of size n is said to have long-range dependence
if its auto-correlation function ρ(τ) decays exponentially: ρ(τ) ∼ L(τ)

τ1−2d with
0 < d < 1

2 where L(τ) verifies limt→∞
L(at)
L(t) = 1 for some a > 0.

It is worth noting that the short-range hypothesis is a sufficient but not necessary con-
dition for EVT applicability [156]. If the dataset presents a short-range dependence, it
can still be considered valid if other conditions hold. A statistical paper [156] proposes
some diagnostic methods to check these properties, however, they require a non-trivial
in-depth analysis of the dataset and the used estimation method. For this reason, we
suggest using such techniques only when the short-range independence hypothesis is
false, and it is not possible to improve the system to be adherent to this hypothesis.

Maximum Domain of Attraction (MDA). The hypothesis of Maximum Domain of
Attraction (MDA) (called matching by some authors [228]) requires that the original dis-
tribution of extremes actually converges to one of the EVT distribution classes. When
the observation samples are represented with random variables having continuous dis-
tribution functions, the MDA hypothesis is true in the overwhelming majority of the
times [223]. This fact is, instead, not necessarily true when discrete distributions are
considered. It is hard to provide a generalization of the MDA hypothesis for probabilis-
tic real-time, being a statistical detail that cannot be easily linked to specific hardware or
software characteristics. Section 3.4.4 contains some empirical results to give a “prac-
tical” meaning of this hypothesis.

Representativity. The representativity hypothesis is not commonly discussed in tra-
ditional applications of EVT, but it plays a critical role in probabilistic real-time: Ob-
serving natural phenomena is very different from observing an execution time that de-
pends on human-made conditions. The representativity hypothesis requires the obser-
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Figure 2.4: The classification of timing analysis techniques.

vations to be a good representation of the real phenomenon, in our case of the execution
time, by reducing as much as possible the epistemic uncertainty. The details and expla-
nation of this hypothesis is described later in the dedicated Section 4.2.

2.3 Worst-Case Execution Time Estimation

2.3.1 Taxonomy

Several techniques of the WCET estimation have been developed since the beginning of
the use of embedded systems in critical systems. Next paragraphs describe the taxon-
omy of WCET analyses based on the classification by Abella et al. [1]. The taxonomy
is also depicted in Figure 2.4.

Static analyses. Most of the traditional analyses can be classified under the category
of Static Deterministic Timing Analyses (SDTA). The SDTA class includes all the anal-
yses that use the design-time parameters of the system (static), such as the hardware
architecture knowledge, to compute via algorithmic operations a WCET value (deter-
ministic). By cross-analyzing the program information (commonly, the control-flow
graph) and the architectural characteristics (e.g., the timing of every single instruction),
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the WCET can be computed and, usually, proved to be correct or to be an overestimation
of the real one.
Instead, the Static Probabilistic Timing Analyses (SPTA) category includes the methods
that use probabilistic characterizations of the hardware and/or the software to com-
pute the final distribution. This method, which the seminal paper can be considered
the Bernat et al. [27] work in 2002, does not infer any probability distribution, but it
assumes to have adequate knowledge of the hardware and software phenomena. For
example, the control-flow graph can be annotated with statistical distribution instead of
execution time, and the final distribution can be computed via the convolution operator
described in Section 2.1.2.

Measurement-based approaches. Totally different approaches to compute the WCET
are the measurement-based techniques. The WCET is not computed in a classical algo-
rithmic way, but it is derived from the measurements directly performed on the system
under analysis. Similar to static analyses, they can be categorized in Measurement-
Based Deterministic Timing Analyses (MBDTA) and Measurement-Based Probabilistic
Timing Analyses (MBPTA). The MBDTA is the most trivial technique we can think
to get the WCET: observing the execution time numerous times and take the maximum
observed value, in some work called Worst-Case Observed Time (WCOT). Provided that
the worst-case condition is observed, the WCOT is equivalent to the WCET. However,
ensuring to have observed the worst-case condition is usually very difficult.
For this reason, the probabilistic version, MBPTA, has been developed to obtain a prob-
abilistic bound by applying statistical techniques to the observed values of execution
time. MBPTA is the main subject of this thesis, and most of the works are based on the
theory previously described in Section 2.2, i.e., the EVT. Section 2.5 presents the State
of the Art for MBPTA.

2.3.2 Current standards

Static analyses are still the WCET estimation methods currently in use for safety-critical
systems and, in particular, for systems that require certification. Among the various
standards, the following documents are worth to be cited [145, 172]:

• DO-178 [226]: This is the current standard for avionic software used by almost
all the certification authorities for aircraft (formally Software Considerations in
Airborne Systems and Equipment Certification). According to this standard, the
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2.3. Worst-Case Execution Time Estimation

software must be verified, and testing is not sufficient to achieve the verification
goal. Even if not directly stated, this requirement entails that the WCET analysis
must be performed with static analyses or with a measurement-based method
which can be formally proved to be safe (e.g., providing the exhaustiveness of an
MBDTA exploration).

• IEC-61508 [134]: The Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems is an international standard published by the
International Electrotechnical Commission. This standard recommends the use
of static tools for any safety-critical software, and it “highly” recommends them
for Safety Integrity Levels (SIL)6 2, 3, and 4. This standard is the basis for many
others, including the automotive ISO-26262 (described in the next bullet item)
and the railway standard EN 50126-9.

• ISO-26262 [135]: The Road Vehicles - Functional Safety standard, developed
from the IEC-61508, does not explicitly state that the WCET must be calculated
statically, but it requires the scheduling analysis to satisfy certain properties. This
can be achieved only if the WCET is safely computed, i.e., with static methods.

• Other standards: Like the previous, other standards like the railway standard EN
50126-9 or the medical devices standard EN-60601 require the verification or
similar concept for the WCET, leading to the requirement of static analyses.

All the standards listed above require the validation of the used tool. For the most
critical software, the tool must be formally proven to correctly estimate the WCET or
output an upper-bound of it. Measurement-based methods are not excluded a priori, but
their safety must be established before using them in real products. One of the aims of
this thesis is to identify the challenges of probabilistic and measurement-based methods
that make them non-compliant with certification requirements.

2.3.3 The limits of the traditional analyses

We already cited the limits of traditional static analyses, which require an infeasible
amount of computational power, or, due to the introduction of a considerable amount

6The SIL represents the criticality of a given safety critical feature. SIL1 is the least critical class, while
SIL4 is the most critical one. For example, SIL1 includes several automotive safety features, while SIL4
includes some embedded systems in nuclear environments.
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of approximations, they produce a very pessimistic WCET. By focusing on just the
pessimism caused by the approximations needed in handling the caches, according to
the survey of Wilhelm et al. [257], it can vary in the range 15%− 50%. This pessimism
refers to experiments conducted in the early 2000s when the processors were not as
complicated as today.

To show a modern example, we performed the following experiment: we com-
puted the WCET of a bsort100 benchmark from the Mälardalen WCET benchmarks
suite [118] by using the state-of-the-art static tool Heptane [123] for the architecture
ARMv7. The tool has been configured for a Cortex-A8 processor, and we obtained an
estimated WCET= 5 534 964. Then, we run for 10 000 times the bsort100 bench-
mark in the same conditions on a real Cortex-A8 board, and we obtained an average
execution time of 315 684 and a worst-case observed time of 466 655. Clearly, the
latter value is the WCOT and not necessarily the real WCET, but due to the trivial
benchmark, it is reasonable to think that it is probably near the real one. Consequently,
the static WCET tool estimated a 10x larger value for the WCET. By performing the
probabilistic analysis following described, the WCET is estimated to be 882 597 (with
violation probability of p = 10−5). We want to remark that this experiment was not to
provide an exhaustive analysis, but a simple example to give the reader a rough idea of
the possible order of magnitude of the WCET over-estimation.

2.4 Real-Time Systems

In (hard) real-time systems, it is usual to express the computational workload with the
concepts of task and job. A task is an entity that periodically or aperiodically spawns
jobs. The job is the single unit of computation that performs the function the task is
developed to. One of the fundamental model class of the real-time systems is the task
model. The minimal form for a generic task τi is τi = (Ti, Ci, Di), where Ti is the
period (in case of periodic task) or inter-arrival period (in case of aperiodic task), Ci is
the WCET, and Di is the relative deadline. The relative deadline Di refers to the dead-
line with respect to the activation time: a periodic task is activated at regular interval
of size Ti, and each job must complete Di time unit. A system is called constrained-
deadline if ∀τi : Di ≤ Ti, implicit-deadline if ∀τi : Di = Ti, and arbitrary deadline
if there is no constraint on the deadlines. Many other possible parameters can be set in
the model, for example a very common one is φi, that is the phase, i.e., the time offset
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0

Figure 2.5: An example of the model of a single task τi with some parameters specified.
The arrows identify the activation time and the deadline.

between the origin and the first job. Lowercase letters represent values related to the
job (which are usually computed and not directly expressed in the model) and that refer
to absolute time. Common examples are ai,j , the activation or release time of the j-th
job of the i-th task, si,j , the starting time when the job starts to execute, the fi,j , the
actual finishing time, and di,j , the absolute deadline. The system is correct if, for any
hard real-time job, the following relation holds under any condition: fi,j ≤ di,j . For
periodic jobs, this condition can be rewritten as: si,j + ei,j ≤ ai,j + Di, where ei,j
is the actual execution time. Since the actual execution time is rarely know at design
time, ei,j is replaced with the WCET Ci. All these variables are depicted for a better
comprehension in Figure 2.5. The scheduling decisions of a real-time system composed
of periodic tasks repeat over time, and the size of this time interval is called hyperpe-
riod. The hyperperiod H can be computed as the Least Common Multiple of the tasks’
period: H = LCM(T1, T2, ..., Tn).

2.4.1 Probabilistic real-time computing

To overcome the difficulties in estimating a tight WCET in modern processors, prob-
abilistic real-time computing has been developed. This thesis focuses on MBPTA ap-
proaches only, because SPTA did not attract significant attention from the researchers.
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The difference with respect to the traditional model is to estimate a probabilistic distri-
bution instead of a scalar value Ci. The execution times of the jobs of a given task τi,
i.e. ei,1, ei,2, ..., compose a so-called random process, composed, in turns, of random
variables. For simplicity, we use the traditional upper case syntax of random variables,
writing this process as X1, X2, .... We consider this random process as unlimited, i.e.,
we do not put any restriction on the number of times a job could be spawned. In other
words, we do not set an upper limit of time for our system to run. These random vari-
ables are distributed according to a, usually unknown, probability distribution. We refer
to this distribution with the name Probabilistic Execution Time (pET).

Probabilistic-WCET. MBPTA approaches are based on the application of a statisti-
cal procedure to a finite sequence of random variables X1, X2, ..., Xn, sampled from
the execution time random process. The output of such procedure is a statistical distri-
bution called probabilistic-WCET (pWCET), and it is usually expressed with its ccdf:

p = P (X ≥ C̄) = 1− FX(C̄)

The probability p, called violation probability, represents the probability of observing
an execution time larger than C̄. The random variable X represents a generic ran-
dom variable of the process, by assuming that the random variables are identically dis-
tributed. The experimenter can select either Ci or p and accordingly compute the other
value: it is possible to estimate the violation probability p given a WCET Ci or, vice
versa, estimate the WCET Ci given a target violation probability p. The latter option is
computed by using the icdf (see Table 2.1).

Provided that the pWCET distribution is correctly computed and it represents the
real distribution of execution times, it is reasonable to expect that it is compliant with
the certification of safety-critical systems: a probability of violation, corresponding to
the real one, would be just another term in the Fault Tree Analysis of the safety-critical
system. However, guaranteeing this safety is non-trivial and represents the major ob-
stacle to probabilistic real-time use in the current industrial system. We will discuss in
detail this problematic in Section 4.2.

The difference between the pET and the pWCET is crucial: the pET represents the
execution time distribution, while the pWCET represents the distribution of the maxima
values only. While it is theoretically possible to use the pET distribution for WCET
purposes, it is not practically possible to obtain reasonable confidence, as explained in
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the next paragraph.

The need of the EVT. In Section 2.1.1, we described the ecdf method to estimate
a distribution directly from the time samples. The ecdf can be used to estimate the
pWCET from the time measurement. However, due to the finiteness of the num-
ber of measurements that is possible to gather in a real-world scenario, the ecdf is,
clearly, subject to estimation errors. This estimation errors can be upper-bounded by
the Dvoretzky-Kiefer-Wolfowitz inequality [78]:

P
(

max |F̂n(x)− F (x)| > ε
)
≤ Ψ (2.7)

where F (x) is the real cdf, F̂n(x) is the ecdf computed according to Equation (2.1), Ψ

is called confidence, and Ψ = 2e−2nε
2

. Unfortunately, to obtain large confidence for a
small estimation error bound, a large number of samples are required. For example, to
obtain ε ≤ 10−5 with a confidence of Ψ = 1 − 10−20, by inverting Equation (2.7) the
number of measurements required is n ≥ 4 · 109: a large number that is non-practical
in several use cases. This problem justifies the need of EVT for such estimation be-
cause, even if it has more hypotheses to be satisfied compared to ecdf, it allows us to
estimate a very low probability with high confidence and a low number of samples. In
the following chapters of this thesis, many works present various methods to estimate
and improve such confidence.

The impact of ξ parameter. Besides the mere statistical interest on the distribution
type, the parameter ξ of the extreme value distributions described in Section 2.2 has a
significant effect on the pWCET:

• When ξ < 0 (i.e. a Weibull distribution in the GEVD case), the pWCET is
a truncated-tail distribution, i.e. there exists a maximum iccdf F̄−1(p) value
for p → 0. According to the distribution, such value represents the maximum
admissible value, allowing us to select this value as the WCET.

• When ξ = 0 (i.e. a Gumbel distribution in the GEVD case), the pWCET is a
light-tail distribution, i.e. the iccdf F̄−1(p) → ∞ for p → 0, however the F̄ (x)

goes “extremely fast” to zero, making the WCET, not theoretically, but practically
bounded. In fact, a linear increase of the WCET corresponds to a decrement of
the probability p faster than an exponential function.
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• When ξ > 0 (i.e. a Fréchet distribution in the GEVD case), the pWCET is a
heavy-tail distribution, i.e. the iccdf F̄−1(p)→∞ for p→ 0, but the ccdf F̄ (x)

goes to zero slower than the exponential distribution: arbitrarily large WCET has
a non-negligible probability to be observed. Moreover, if ξ > 1, the mean of the
distribution is even infinite: E[X] = ∞, X ∼ GEV (µ, σ, ξ > 1), and this is
clearly a problem for a tight WCET estimation.

Some effort was dedicated in previous works to identify the distribution class that
best fits the worst-case execution time values. The results are controversial: some re-
searchers [2, 60, 62, 121] claimed we should consider only the distribution with ξ ≤ 0,
because unbounded WCET has no sense. However, other researchers [167, 228] do not
exclude the ξ > 0 case too. Often, the Gumbel distribution (ξ ≤ 0) is the only one
taken into account because it is an upper-bound of the Weibull. However, this property
was improperly used in some works, hindering the pWCET reliability, as described by
Section 3.2.

Most of the state-of-the-art works based their selection on empirical observations,
which lack strong mathematical justifications, that are – indeed – difficult to achieve.
For this reason, voluntarily ignore this discussion: this thesis does not consider any
GEVD/GPD class restriction, remaining in this way as general as possible.

2.5 Literature Review - A General Overview

The research on time predictability of the embedded systems has been very active since
the beginning of the use of embedded systems for safety-critical applications. It is still
a very hot topic for research, from the WCET analyses to the scheduling of tasks. This
section provides an overview of the literature having a role in this thesis and, in partic-
ular, on probabilistic approaches to estimate the WCET. Additional specific literature
reviews are present in the following chapters when dealing with specific research topics;
for instance, the state of the art of energy-constrained systems is proposed in Chapter 6
because related only to the works presented in that chapter.

2.5.1 Traditional WCET estimation

Determining an upper-bound to the execution time becomes a hot research topic since
the 1990s, consequently to the increasing complexity of the hardware platforms. A
survey in 2008 by Wilhelm et al. [257] is widely used as the reference for WCET
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analyses. Even if, at the time of writing of this thesis, the article is 12 years old, it is
still valid, and most all the techniques presented in that manuscript are currently used
in both academia and the industrial world.

The traditional static methods to estimate the WCET usually require four inputs: 1)
the executable program in binary form, 2) the user annotations (usually in the source
code), 3) the processor model, and 4) the semantic of the instructions. From the exe-
cutable, a Control-Flow Graph (CFG) is built and analyzed thanks to the user annota-
tions to determine variable values, loop bounds, and any other information needed to
perform the architectural analysis. Then, the the architectural analysis output is used
to determine a global bound on the execution time. Since this thesis is not focused on
static methods, we do not describe all the literature regarding the single phases of static
analyses and tools used, which could be found in the survey mentioned above [257].

2.5.2 Probabilistic WCET approaches

The early probabilistic approaches to WCET estimation date back to the first years of
the 2000s. Edgar and Burns [79] proposed in 2001 the first work exploiting EVT to
compute the pWCET. The paper explained how to estimate the Gumbel distribution
parameters, the confidence of the obtained WCET, and how to apply the scheduling
analyses having a pWCET instead of a scalar WCET value. The next year, in 2002,
another article by Bernat et al. [27] was published, introducing the concept of proba-
bilistic hard real-time systems. The authors presented a mixed measurement-based and
static method, based on the convolution of execution time random variables of the single
blocks of the CFG. These two papers can be considered the seminal articles for proba-
bilistic real-time computing research activities. It is worth citing that previous works on
stochastic scheduling of real-time tasks exist [100, 247, 5], although not directly related
to the pWCET concept. About a decade later, the pWCET techniques gained significant
attention for the research community, which developed many theoretical tools and ex-
perimental evidence. The interest is still very high nowadays, due to the numerous open
challenges summarized by Jiménez Gil et al. [139] in 2017. Two recent comprehensive
surveys, [48] and [66], provided a general overview of probabilistic real-time WCET
analyses research of the last years while, regarding the probabilistic task scheduling,
another recent survey is available [69].
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EVT hypotheses. The i.i.d. hypothesis described in Section 2.2.3 received attention
since the first works on pWCET [79]. Griffin and Burns [106] discussed the possibil-
ity of satisfying i.i.d. in real systems, concluding that appropriate methods must be
used to ensure this property. A new sampling method was proposed to overcome the
issue of i.i.d. [174], but its effect possibly hinders the satisfaction of other hypothe-
ses (i.e., representativity). The main efforts on the satisfaction of the i.i.d. hypothesis
have been focused on creating a cache-randomized architecture [209]. This was one
of the main goals of the European FP7 project PROARTIS [47]. Cache-randomized
architecture tries to make the execution time independent across different executions by
randomizing the hit/miss behavior of the caches. The problem has been faced with both
hardware [148, 150, 242, 128] and software solutions [149, 151]. Other randomized
hardware components were proposed, for instance, buses for multi-cores [136]. Later,
in 2017, Santinelli et al. [228] showed that the i.i.d. hypothesis could be relaxed in
favor of three hypotheses, which together represent a less strict requirement than the
full i.i.d. hypothesis. The MDA hypothesis is the one less studied in the context of
probabilistic real-time. The low interest is due to the difficulty to map this property
to a real platform or software property. It was formally described by Santinelli et al.
[228] and included in the experimental evaluation of other works [112, 90, 77, 110].
Regarding the representativity hypothesis, some researchers focused on how to analyze
multi-path programs [61] to obtain the pWCET and how epistemic variability relates
to the MBPTA analysis [68]. The presence of multiples “modes” in applications is
a source of epistemic uncertainty and, consequently, hinders the pWCET estimation,
as shown by Guet et al. [112]. Experimental studies [167] indicated that all the GEV
models are plausible and that the hardware randomization is not sufficient to achieve
representativity, as pointed out, instead, by other researchers [186]. In parallel to rep-
resentativity, the reproducibility was proposed [181] as another hypothesis, i.e., the
ability of the pWCET method to generate the same distribution according to different
input time traces belonging to the same system.

Analysis process and uncertainties. Several approaches have been proposed by many
authors to estimate the pWCET distribution via MBPTA. Among the works, it is worth
mentioning the Santinelli et al. [228] paper, which recapped the whole estimation pro-
cess with a special focus on the statistical tests to be executed. Other articles described
how to execute the MBPTA process to estimate a safe distribution focusing on the ap-
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plicability to real systems [230, 167]. Abella et al. [4] proposed in 2017 a new method
called MBPTA-CV to estimate the extreme distribution. Regarding the quantification of
uncertainties on the pWCET distribution, not many previous works are available. Silva
et al. [238] proposed a method to estimate with a confidence region the parameters of
the extreme distribution. Other works (e.g., [54]) suggested a simplification of the GEV
model by considering just the Gumbel distribution.

2.5.3 Timing requirements in HPC

The performance of HPC systems is typically measured in terms of throughput – i.e.,
the amount of work completed in a given time unit – as introduced in Section 1.4.2. The
most common measurement unit for the throughput is the FLOPS (Floating-Point Op-
erations per Second). Currently, the top supercomputers in the world offer performance
in the petaFLOPS (1015) order of magnitude. On the other hand, the research is striving
towards exascale compliant solutions [233], taking into account the power consumption
envelope and trying to go beyond the scalability limits of current infrastructures.

The throughput is not the only metric considered in HPC, especially from the users’
standpoint: they are usually more interested that their jobs complete successfully and in
a short time. Two surveys, [133] and [241], provided an overview of the current state-
of-the-art strategies to deal with application requirements and resource availability, in
both HPC and Cloud computing. The common goal of such techniques is to optimize
or to fulfill a Quality-of-Service (QoS) metric defined by the user. The actual QoS
definitions may vary, but they usually include system throughput, average execution
time, infrastructure cost, reliability, and availability metrics. However, all the QoS or
performance metrics are mostly considered in an average sense, i.e., the violation of
user requirements is just a Service Level Agreement degradation [8].
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CHAPTER3
On the Estimation of a

Correct Distribution

In probabilistic real-time, the reliability of the estimated pWCET distribution is the
fundamental metric. The estimation process, described in the first section of this chap-
ter, is subject to errors that must be quantified. This chapter provides an overview of
the correct estimation process for the pWCET and how we can derive reliability from
statistical testing procedures.

3.1 The EVT Estimation Process

To estimate the pWCET by using the EVT, the two filtering methods BM and PoT exist,
as we described in the previous Section 2.2.2. Once the input measurements have been
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Figure 3.1: The simplified scheme of the EVT process.

filtered, distribution estimators (e.g., MLE or PWM) provide the pWCET parameters’
values. However, the overall process leading to the pWCET distribution generation is
more sophisticated than just running an estimator. The main components of this process
are depicted in Figure 3.1:

1. The sequence of execution time measurements X1, X2, ..., Xn is tested to verify
the compliance of the i.i.d. hypothesis or all its sub-hypotheses.

2. If the sequence is considered valid, the process proceeds, and the BM or PoT
technique is applied to the time measurements.

3. The resulting sequence is then fed to an EVT estimator, which estimates a GEVD
or GPD distribution (according to the choice BM/PoT).

4. A Goodness-of-Fit test is then applied to check if the input data of the estimator
corresponds to the pWCET distribution estimated.

5. If the test does not reject the hypothesis, the distribution is considered valid and
the process successfully stops.

This chapter focuses on the analysis of the reliability aspects of the EVT process applied
in probabilistic real-time. In particular, Section 3.2 shows a common error in selecting
the appropriate GEVD/GPD model, while Section 3.3 and Section 3.4 explores the
uncertainties on statistical testing and estimation procedures.
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Figure 3.2: The asymptotic behaviors of the GP3D(0, 100, ξ) cdf F (x). (Original
source: [215])

3.2 A Common Misconception in Literature

In probabilistic real-time research, some authors argued that the exponential-tail distri-
butions – i.e., GEVD/GPD with ξ = 0 – are good candidates for fitting the pWCET
distribution. These claims are motivated by empirical demonstrations because it is al-
most impossible to provide formal proofs. Conversely, other experiments [228, 167]
showed that it is worth considering the ξ < 0 and ξ > 0 cases. These authors con-
cluded that the exponential distribution might not be representative of all the scenarios.

Figure 3.2 shows the tails of the extreme distributions, depicting the the ccdf for
different values of the shape parameter ξ. This information has been recently used [4,
14, 7] to state that exponential-tail distribution upper-bounds the light-tail distribution.
Formally:

1− FG1
(x) > 1− FG2

(x)

where G1 ∼ GP3D(µ, σ, 0) and G2 ∼ GP3D(µ, σ, ξ < 0). This relation is the same for
the GEVD. In the probabilistic real-time context, this means that using a distribution
with exponential-tail (ξ = 0) to upper-bound a light-tail (ξ < 0) should not lead to
pWCET underestimation. This upper-bound is valid because, for a certain WCET x,
the probability to incur in a longer execution time value (1− FG1

(x)) is always higher
than the one computed with light-tail (1− FG2

(x)). Vice versa, for a given probability
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p, the WCET estimated by exponential tail (F−1G1
(1− p)) is always higher than the one

computed by light-tail (F−1G2
(1− p)).

These results are valid only if the other parameter(s) of the distribution remains
unchanged. For example, let us assume to fit the complete distribution GP3D(µ, σ, ξ)

(with ξ < 0) and then enforce ξ = 0 obtaining GP3D(µ, σ, 0). In this case, the second
distribution upper-bounds the first one, and the pWCET is not under-estimated. How-
ever, enforcing ξ = 0 before performing the distribution fitting may lead to different
values of µ and σ, with respect to the real distribution of the data. This possibility would
invalidate the previous result, carrying out potentially unsafe pWCET estimations. The
estimation procedure, in fact, provides the µ and σ values that best fit the input data.
In general, these are different from the ones that would have been computed without
enforcing ξ = 0. Moreover, if the estimator is unbiased with respect to the extreme
population’s mean, the resulting distribution is always unsafe, as proven below.

3.2.1 Formal proofs

Parameters shift effects on the first moment. To prove the above statements, we
initially use a two-parameters Generalized Pareto Distribution GP2D(σ, ξ) (this to sim-
plify the calculus). The extension to GP3D and GEVD is then discussed at the end of
this subsection.

Let Y1, ..., Ym be the m maximum measurements of execution time distributed un-
der G ∼ GP2D(σ, ξ), as result of the Peak-over-Threshold algorithm, with Yi > u. By
assuming the estimator as unbiased, the mean value of Yi matches the expected value
of the GP2D distribution:

E[Y ] =
σ

1− ξ
It follows that, for the exponential distribution case (ξ = 0), the expected value is:

E[Y ] = σξ=0

Upper-bounding with the exponential-tail distribution means forcing ξ = 0 for the same
set of data, while maintaining the same expected value E[Y ]. The consequent effect is
to obtain:

σξ=0 =
σξ<0

1− ξ
(3.1)

In case the data are distributed with ξ < 0, the simplification ξ = 0 leads to estimate
σξ=0 > σξ<0, instead of the real σ value. However, the following section provides the
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proof that this scale parameter skew may lead to unsafe pWCET estimations.

Proof of failure of exponential-tail upper-bounding. Given the definition of cdf
F (x) = P (X ≤ x), upper-bounding a distribution in the context of MBPTA means
that the relation F ′(x) < F (x) holds for any x.

Proof. Let F̄ = 1−F (x) = P (X > x) be the complementary cdf. A safe upper-bound
for pWCET has to guarantee the conservative relation P ′(X > x) > P (X > x) ∀x.
From this, it is possible to obtain 1−F ′(x) > 1−F (x) and, in turn, F ′(x) < F (x).

In our scenario, F ′(x) corresponds to the upper-bound with ξ = 0, while F (x) is
the cdf of the real distribution, with ξ assumed to be set to an unknown negative value
ξ < 0. By expanding the cdfs we obtain:

1− e
−

x

σξ=0 < 1−
(

1 + ξ
x

σξ<0

)−1/ξ
(3.2)

This inequality must hold for any x, but since we deal with a positive variable (execution
time), this holds only for x > 0. As a consequence of Equation (3.1), it is possible to
state that this inequality is not true in general.

Proof. Removing the constant term and multiplying by −1:

e
−

x

σξ=0 >

(
1 + ξ

x

σξ<0

)−1/ξ
(3.3)

Let us now replace σξ<0 according to Equation (3.1):

e
−

x

σξ=0 >

(
1 +

ξ

1− ξ
x

σξ=0

)−1/ξ
(3.4)

The equation corresponding to this inequality has a trivial zero for x̄1 = 0, but it has
another solution x̄2 for x > 0:

x̄2 =
σξ=0

ξ

(
−W

[
(ξ − 1)

(
e

1
ξ−1
)−ξ]

+ ξ − 1

)
(3.5)

where W [·] is the Lambert W function. Since ξ < 0, the argument of W [·] is negative,
as well as W [·]. While, being |W [·] | < 1, x̄ assumes a positive value. This means that
there is a second zero (x̄2 > 0) and consequently at least a value (x̄2) that violates the
inequality of Equation (3.2).
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As detailed later in Section 3.2.2, there is a continuous interval – i.e., infinite points
– that violates the inequality. Providing analytical proof for it is not straightforward
because of the complexity introduced by the Lambert W function. Luckily, this is not
necessary to demonstrate that the exponential-tail upper-bounding is unsafe. The coun-
terexample obtained by numerical evaluation is, in fact, sufficient to prove this.

Applicability to GEVD and GPD 3-parameters. The exponential-tail bounding prob-
lem also exists in GP3D and GEVD since both share the same tail behavior presented in
Figure 3.2. The previous proofs can be easily ported to GP3D and GEVD distributions.
Following the same approach of the GP2D version, the mean value of GP3D(µ, σ, ξ)
is E[Y ] = µ + σ

1−ξ . If the mean value does not change once the estimation runs with
ξ = 0, the results are the same as the provided proof. If µξ=0 < µξ<0, then the error
is higher and the estimation becomes unsafe. If µξ=0 > µξ<0, then nothing can be said
without an accurate analysis of the specific case.

Similarly to the GPD case, the GEVD condition for safe upper-bounding is:

e1−e
−

x

σξ=0
< e

1−
(
1+ξ x

σξ<0

)−1/ξ

and since ef(x) < eg(x) ↔ f(x) < g(x), it results that:

1− e
−

x

σξ=0 < 1−
(

1 + ξ
x

σξ<0

)−1/ξ
that is exactly the same as Equation (3.2). For this reason, the previous analysis can
also be applied to GEVD.

3.2.2 Numerical evaluation

To clarify the previous equations and provide a counterexample to the exponential
upper-bounding claim, we consider a GP2D distribution with σ = 100, ξ = 0 as refer-
ence, and we compare it to other two GP2D distributions with ξ = −0.4 and ξ = −0.8.
The scale parameter σ is computed according to Equation (3.1). The respective ccdfs
are depicted in Figure 3.3a. The exponential GPD (ξ = 0) upper-bounds both distribu-
tions only starting from the value x̄2 ≈ 179. The absolute value of x̄2 is not negligible:
in this case, we consider σ = 100, that is the mean value of the extremes, and the ex-
ponential tail upper-bound becomes safe only after nearly the double of it. Figure 3.3b
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Figure 3.3: The ccdf varying ξ of two-parameter GPD. The reference distribution
GP2D(100, 0) is represented by the solid blue line. The plot (b) is the zoom of
the plot (a) at the ccdf intersection. (Original source: [215])

zooms in the intersection point of the previous Figure 3.3a. As expected, increasing the
value of ξ towards 0 produces a smaller error in the difference of cdf between ξ < 0

and ξ = 0. However, it also shifts the intersection point – i.e., the point where the
upper-bound is safe – towards +∞.

To better investigate the last result, we compute the maximum error between a
GP2D(σξ<0, ξ < 0) and the reference distribution GP2D(100, 0), by varying the value
of ξ from−1 to 0. The result is depicted in Figure 3.4a. The blue (solid) line represents
the value x̄2, after which the upper-bound is safe, while the red (dashed) line shows the
maximum error compared to the reference distribution. The x̄2 value increases with a
peculiar slope, for which we provide Figure 3.4b to show the trend for small values of
ξ, while the maximum error has a quasi-linear trend. The key point here is to observe
that there is no upper-bound for x̄2. Even if there exists a point x̄2 from which the
upper-bounding is safe, it is not possible to know it without knowing the real value of ξ.
This leads to an uncertainty on the pWCET estimation that can not be accepted in hard
real-time systems. On the other hand, when ξ is close to 0 and x̄2 increases towards in-
finite, the error decreases, but we still need to know ξ in order to quantitatively estimate
both.

3.2.3 Lesson learned

Some recent works proposed to upper-bound the pWCET extreme value distribution
when it has a light-tail (ξ < 0) with its exponential tail version (ξ = 0). While it
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Figure 3.4: Analysis of the safety point x̄2 (blue solid line) and the maximum absolute
error (red dashed line), varying the real ξ < 0 and compared to ξ = 0 case. The
plot (b) is the zoom of the plot (a) when ξ has a magnitude of 10−4. (Original
source: [215])

simplifies the overall process, it may underestimate the pWCET value if the ξ value
is bounded a priori of the estimation phase. Previous works neglected this aspect by
assuming the upper-bounding safe. As shown by the previous sections, instead, its
validity holds only for WCET values greater than a certain unknown value x̄2. For
these reasons, we should not blindly consider exponential-tail distributions on critical
systems without taking into account the ξ parameter. Rather, the ξ must be forced after
the estimation phase, the error magnitude must be estimated, or the WCET must be
proven to be large enough to guarantee a safe upper-bound.

3.3 The Role of Statistical Testing

The introductory section of this chapter (Section 3.1) presented the EVT estimation
process and highlighted the presence of statistical tests to be run to check the EVT
hypotheses described in Section 2.2.3. We can distinguish two categories of statistical
tests interesting for probabilistic real-time: the tests to check the i.i.d. hypothesis (or its
sub-hypotheses) and the Goodness-of-Fit tests. Before describing in detail these tests,
let us recap a minimal statistical background on statistical tests. A statistical test is a
method used in statistical inference to decide the truthfulness or the falseness of the
statistical hypotheses of a hypothesis scheme, usually composed of one null hypothesis
(H0) and one or more alternative hypotheses (H1, H2, ...). A statistical test is an
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algorithmic procedure performed on arbitrary input values, such as functions, scalars,
etc. The output is usually the p-value or, alternatively, the statistic. This output is
used to decide whether there is sufficient evidence to reject the null hypothesis or not.
It is important to remark that a test can never accept the null hypothesis: it can only
tell us if the H0 hypothesis is false, while it cannot prove its truthfulness. This detail
has a critical impact on pWCET reliability, as explained in Section 3.3.3. The p-value
is an indicator which compared to the significance level of the test α (chosen by the
experimenter) tells us how to decide the test result:

• p-value > α: no evidence, H0 cannot be rejected.

• p-value ≤ α: strong evidence, H0 is rejected.

Alternatively, and equivalently, it is possible to use the statisticD (computed by the test
from the inputs) and the critical value CV (computed given the test and given the α,
but not the inputs). They are used in a similar way of the p-value:

• D < CV : no evidence, H0 cannot be rejected.

• D ≥ CV : strong evidence, H0 is rejected.

The two strategies are exactly equivalent and interchangeable. In this thesis, to set a
convention, we use the latter version, i.e., the statistic/critical value evaluation.

3.3.1 The i.i.d. tests

The i.i.d. hypothesis (described in Section 2.2.3) is checked with a statistical test, by
directly executing it on the sequence of time measurements before the application of
BM or PoT.

Previous works. Most of the scientific papers in probabilistic real-time field check
the EVT applicability by directly verifying the i.i.d. hypothesis. The execution times
independence is usually checked by performing a Ljung-Box test [4, 14, 25, 91]. This is
problematic for two reasons: we already described that pure independence is a too strict
requirement [230] and the Ljung-Box test checks for the presence of a particular form
of independence, i.e., the serial correlation. Other approaches use the Wald-Wolfowitz
test (also called runs test) – e.g., [152] – which suffers from the same problems: on the
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one hand it is used as a "pure" independence test, on the other hand, its detection ca-
pabilities refer to a particular dependence around the median value. Finally, to test the
identically distributed hypothesis, the two-sample Kolmogorov-Smirnov (KS) test has
been extensively used1 [14, 25, 91, 152, 239, 255, 256]. This test consists of dividing
the sample into two parts of equal size and then comparing each other with the KS test to
check whether they have the same distribution. While this can be effective against some
form of violation of the identically distributed hypothesis, it is easy to build counter-
examples that show this test is ineffective and improperly used in our scenario. For
example, let consider x1, x2, ..., x200 as our execution time trace, drawn from a se-
quence of random variable distributed as follow: X20k+1, ..., X20k+10, for k = 0, ..., 9

from a distribution D1, while the values X20k+11, ..., X20k+20, for k = 0, ..., 9 from a
distribution D2. Applying the KS test using the first 100 elements as the first sample
and the last 100 elements as the second sample, it would result in a false-negative, being
unable to detect the non-identically distributed hypothesis. This because, while the two
joint cumulative distribution functions of the samples of 100 elements each are similar,
their inside random variables are not identically distributed.

A selection of tests for each sub-hypothesis. As previously explained, the i.i.d. hy-
pothesis can be split into three sub-hypotheses. The first one is stationarity. In this
regard, in literature, there is a large availability of unit-root tests – a particular case of
non-stationarity – but a lower number of general stationary tests. Given a time series
X = {X1, X2, ..., Xn}, we are looking for a test with the following hypothesis scheme:

H0 : the time series X is stationary

H1 : the time series X is not stationary

The most used test is the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test [154].
A variant of KPSS considering the relaxed null hypothesis “the time series is stationary
or trend stationary” exists. For the EVT hypothesis of stationarity, we are interested in
the tightest one, thus we do not consider this variant. The formula for KPSS statistic is
available in Appendix B.1. The critical values can be computed through the interpola-
tion of the tabular data proposed by Kwiatkowski et al. [154] or by using Monte Carlo
approaches.

1Not to be confused with the one-sample KS test used as Goodness-of-Fit, described in the following
subsection.
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To test the short-range dependence of data, we selected the Brock, Dechert, Scheinkman
and LeBaron (BDS) test [39]. For probabilistic real-time, we decided to select this test
because it is a portmanteau test, i.e., the null hypothesis is well specified, but the alter-
native hypothesis is not. Given a time series X = {X1, X2, ..., Xn}:

H0 : the time series X is independent

H1 : the time series X has some sort of dependency

Most of the other available tests detect specific sort of dependency (e.g., serial corre-
lation or deterministic chaos). Therefore, we decided to choose the test with the most
general detection capability. The formula for BDS statistic is available in Appendix
B.2. The critical values can be computed via numerical methods.
The Hurst Exponent (H) is the traditional index used to measure the long-term mem-
ory of a time series in financial applications [207]. H is a number in the range [0; 1]

indicating the degree of long-term dependence: H = 0.5 means a perfectly random
and uncorrelated time series, while H < 0.5 or H > 0.5 indicates a negative or posi-
tive correlated time series, respectively. However, performing a statistical test on H is
nontrivial [58] and, to the best of our knowledge, it does not exist a well-assessed test.
The Hurst index is computed from the R/S statistic equation [132], that can, instead, be
directly used as a test:

H0 : the time series X has no long-range dependency

H1 : the time series X has long-range dependency

This test is sensitive to long-range dependency but also to short-range dependency. An
alternative to this formulation is the Lo’s modified version [170] that has been developed
to limit the influence of short-range dependency in the R/S equation, and it is commonly
used. However, this version reduces the statistical power of the test [246], which is
not desirable in this context. Therefore, by using the unmodified R/S statistic, this test
may detect a short-range dependency partially overlapping the BDS test, thus providing
pessimistic but safe results. The formula for R/S statistic is available in Appendix B.3.
The critical values can be computed via numerical methods.

3.3.2 Goodness-of-Fit tests

The Goodness-of-Fit (GoF) test at the end of the EVT estimation process aims at finding
any error in the estimation of the pWCET. This covers not only the MDA hypothesis
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Test output Reality Informal Name Formal Name Symbol

H0 is not rejected H0 is false false-positive Type I α

H1 is rejected H0 is true false-negative Type II β

Table 3.1: Recap of the errors a statistical test can make.

described in Section 2.2.3, but also estimation errors, uncertainties, and mistakes in the
EVT process. The most famous GoF tests are the Chi-Squared (CS) [97], Kolmogorov-
Smirnov (KS) [142], Cramer-von Mises (CvM) [64], Anderson-Darling (AD) [11], and
the Modified Anderson-Darling (MAD) [126]. Such tests have the same hypothesis
scheme:

H0 : G(x) = F̂n(x) (null hypothesis)

H1 : G(x) 6= F̂n(x) (alternative hypothesis)

whereG(x) is the cdf of the extreme value distribution output of the EVT estimator and
F̂n(x) is the ecdf built on the n time samples output of the BM or PoT filter according
to Equation (2.1).

3.3.3 How statistical power impacts reliability

The testing procedures are built to detect any violation of the null hypothesis. Such
detection can fail in two ways: (1) The null hypothesis H0 is rejected, in favor of H1,
but H0 is actually true (false-positive); (2) The null hypothesis H0 is not rejected, but it
is actually false (false-negative). The ratio of false-positive errors, called Type I errors,
is selected by the experimenter tuning the significance level α. The ratio of false-
negative errors, or Type II errors, depends, instead, on several factors, and it cannot be
easily controlled or estimated. We refer to it with the letter β. These errors and symbols
are summarized in Table 3.1.

The impossibility to control β forces the statisticians to say that a statistical test can
never “accept” the null hypothesis: If the hypothesis is not rejected and the value of β
is unknown, no conclusions could be drawn. In the pWCET world, this means that if
a GoF test rejects a pWCET distribution, we are sure with (1 − α) confidence that the
actual pWCET distribution is wrong. In this case, the pWCET estimation stops, and
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k 50 100 200 500 1000

KS 0.03 0.29 0.74 1− 10−3 1− 10−7

AD 0.49 0.86 0.99 1− 10−8 > 1− 10−9

MAD 0.26 0.80 0.95 1− 10−8 > 1− 10−9

Table 3.2: Minimum achieved statistical power among all the test scenarios described
in Section 7.2 for α = 0.05. (Original source: [218])

the safety is guaranteed. On the other hand, if the pWCET is not rejected, nothing can
be said about its validity. The latter case is a safety problem: even if there is no clear
evidence that the estimated pWCET is invalid, we have no confidence bound on this
statement, making the GoF test completely useless in terms of reliability. A possible
solution could be to invert the H0 and H1 hypotheses so that we can control the ratio of
invalid distributions. However, no statistical test is known to exist with such an inverted
hypothesis scheme.

Consequently, to estimate the confidence of the results, we define the following
scalar value:

Definition 3.3.1 (Statistical Power). The complement of the Type-II error is called
statistical power:

W = 1− β = P (reject H0|H0 is false) (3.6)

The statistical power W of a GoF test depends on several factors: 1) the signifi-
cance level α, 2) the test sample size, 3) the test procedure itself, 4) the shape of the
real (unknown) distribution. The statistical power increases when α increases: we can
decrease the false-negative rate by increasing of false-positive ratio. Another option to
decrease the rate of false-negative results is to increase the number of samples used for
testing. Since increasing the α is not advantageous, we determine the minimum sample
size that is required to reach certain confidence on the test result. Such power analysis,
for the best of our knowledge, has never been performed in a probabilistic real-time
context. How this analysis is performed and the resulting dataset are presented later in
Section 7.2 and in the paper by Reghenzani et al. [217].

The availability of the statistical power allows us to provide a lower-bound on the
value of the confidence of the test result and, in turn, on the pWCET confidence. This
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result is an enabler for the estimation of the overall reliability of the pWCET distribu-
tion. It is possible to compare the three tests KS, AD, and MAD (CS and CvM have
been excluded for a reason explained in Section 7.2.1) and provide the minimum num-
ber of samples required to obtain the given confidence on the result of the GoF test.
From the dataset, we computed the statistical power values presented in Table 3.2 vary-
ing the number of samples k. It should be noted that the number of samples refers to the
size of the input of the GoF test, i.e., the size of the set of measurement outputs of the
BM/PoT filtering and not to the amount of the original time measurements. From these
results, it is possible to conclude the following statements: (1) KS has, in general, less
statistical power than the other two tests, while AD and MAD present similar behavior
for a large number of samples; (2) To obtain very high confidence on the result of the
tests, it is necessary to use a sample of at least 1000 time measurements. This size refers
to the sample of observed time measurements in the tail of the distribution, i.e., after
applying the BM/PoT filter.

Many previous works on probabilistic real-time empirically selected a number of
samples usually not higher than 100, basing their choice on statistical works. However,
in probabilistic real-time, we need large confidence and a very low violation probability,
and a low sample size makes the non-rejecting result of the GoF test very untrustworthy
and with low significance. The experimenter should select the sample size depending
on the desired confidence level, and he or she should pay attention if KS is used since
the number of samples required to obtain sufficient confidence could be very large. It
should also be noted that (M)AD tests rely on an internal Monte Carlo estimation; for
this reason, they have an intrinsic uncertainty on the test result, that should also be
considered and adequately analyzed.

3.3.4 The significance level in case of multiple tests

We already explained the significance level α, which is a parameter chosen by the
designer of the statistical test procedure, and it corresponds to the false-positive ratio of
the test. To check the i.i.d. sub-hypotheses with the tests presented in Section 3.3.1, it is
necessary to perform a sequence of three statistical tests. In general, executing multiple
hypothesis tests on the same data increases the false-positive rate on the null hypothesis
rejection of the overall test [24]:

αglobal = 1− (1− α)n (3.7)
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where n is the number of tests (in our case n = 3).

For common values α = 0.05 and α = 0.01, the resulting global significance lev-
els are respectively αglobal ≈ 0.14 and αglobal ≈ 0.03. The real significance level is
thus higher than the single test levels, entailing a higher false-positive rate. Rejecting
a sample implies that the pWCET estimation process stops because it detects that not
all the hypotheses are satisfied, preventing the estimation of an unsafe pWCET. The
false-positive rate makes the characterization of the capability of a hardware/software
architecture to fulfill the EVT hypotheses difficult: obtaining a rejection result by run-
ning one single time a statistical test does not necessarily mean that the architecture
is non-compliant with EVT hypotheses. The test has to be run multiple times to per-
form a correct evaluation, and the final outcome has to be decided by looking at the
overall reject/not-reject ratio: a rejection ratio close to α identifies a system that veri-
fies the EVT hypotheses; in contrast, a higher ratio represents a violation of the EVT
hypotheses.

In statistical literature, several methods exist to reduce the αglobal value when multi-
ple tests are performed. The most famous one is the Bonferroni correction [36]. How-
ever, all such approaches have the negative effect of reducing the statistical power [193]
that, as explained in the previous section, may hinder the reliability of our results. Be-
cause the number of tests is fixed and low (3), it does not worth trading a lower αglobal

value with lower statistical power.

3.4 Region of Acceptance

The GoF test is, however, not a panacea for the pWCET safety. The estimation of the
extreme value distribution G , which results from the EVT process, is naturally subject
to errors: the necessary condition to obtain the exact distribution for any estimator al-
gorithm is to have infinite measurements, that is clearly not realistic. To this extent, the
estimator routine provides us the GEVD (or GPD) parameters tuple (µ, σ, ξ) that can
be rewritten as (µ~+ εµ, σ

~+ εσ, ξ
~+ εξ), where (µ~, σ~, ξ~) is the exact unknown

distribution and the symbols (εµ, εσ, εξ) represent the unknown errors in our estimation.
As discussed in the previous section, the goal of the GoF tests is to detect these uncer-
tainties and to reject the estimated distribution when the errors are excessively high.
However, because of the finite number of measurements, the GoF test is also imperfect,
i.e. it is not able to reject the distributions when (εµ, εσ, εξ) are too low to be detected.
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For this reason, a multi-dimensional cloud of points in the GEVD (or GPD) parameters
space exists, which represents the distributions that are not rejected by the GoF test. In
this section, we explore this region and, we describe how its statistical properties affect
the reliability of our pWCET estimation.

3.4.1 Definitions and exploration

For the purposes of this section, let us assume that we have already performed the EVT
estimation of the pWCET distribution: the input sequence of the execution time mea-
surements has been filtered by the BM approach to obtain a sequence X , from which
we have estimated the GEVD distribution2 G . Before providing the formal formulation
for the uncertainties of the GEVD parameters space, we specify the following helper
function:

Definition 3.4.1 (Test result function). Given a statistical test identified by its statistic
function D(·), the sequence of time measurements X , an estimated distribution G , and
the critical value3 CV , its test result function is defined as:

T (X ,G ) :=

1 if D(X ,G ) ≥ CV (G )

0 if D(X ,G ) < CV (G )

�

This definition is a formal notation to state the result of a statistical test: the rejection
of the null hypothesis (T (X ,G ) = 1) – i.e. the values X show a strong evidence that
have not been drawn from the distribution G – or the non-rejection of the null hypothesis
(T (X ,G ) = 0) – i.e. the values X have been probably drawn from the distribution G .
This definition can be used to identify the region of points in the GEVD parameter space
for which the test accepts the null hypothesis. Note that this is an abuse of the common
notation of hypothesis testing we described in Section 3.3. However, in this section, we
abuse the accepts notation for clarity purposes.

By exploiting the test result function, we can formally define the three-dimensional
cloud of points in the GEVD parameters space:

2In this section we limit the discussion to the BM/GEVD case.
3For some GoF statistical tests, the critical value depends on the reference distribution (e.g., the Anderson-

Darling test). We write it as a function of the reference distribution CV (G ) or simply CV .
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(a)

Best Fit Point

Best Statistic Point

(b)

Figure 3.5: The Region of Acceptance R(X ) plotted for a real sequence of time mea-
surements X : (a) by color representing the value of statistics D(·) (color scale
red-green: the red color identifies values near the critical value, the green color
identifies – in the middle of the region – values far form it); (b) by green dots where
the T (·) = 0 and the highlighted BFP and BSP points. (Original source: [222])

Definition 3.4.2 (Region of Acceptance). Given a sequence of execution time measure-
ments X , the Region of Acceptance of a statistical test with test result function T for
an extreme distribution is the cloud of points R defined as:

R(X ) := {(µ, σ, ξ) ∈ R3 : T (X , (µ, σ, ξ)) = 0}

�

A visual example of the Region of Acceptance is depicted in Figure 3.5. To shorten
the notation, we sometimes avoid to write the measurements sequence parameter: R =

R(X ). In the same parameters space, it is possible to identify the tuple (µ, σ, ξ) as
the point that represents the output of the EVT estimator. We call this point the Best
Fit Point (BFP). This point may or may not be inside the region R, i.e. it may be
accepted (T (·) = 0) or rejected by the GoF test (T (·) = 1). If this point is outside
the region, the estimator failed to provide a valid distribution. The region may even
not exist, e.g., when the original distribution is not in the domain-of-attraction of any
GEVD distribution. It is worth reminding that the GoF test has a false positive rate that
is equivalent to the chosen level of significance α, i.e., the GoF test wrongly rejects a
distribution with α probability.
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Henceforth, we consider the point BFP as part of the region, i.e., we assume to have
estimated a distribution G that successfully passed the GoF testing procedure. This is
further discussed later in the experimental evaluation (Section 3.4.4), where we obtain
a BFP rejected by the GoF test during the analysis of a real dataset. According to this
assumption and Definition 3.4.1, the test assigns a statistic value D(X , (µ, σ, ξ)) to
the BFP, that is lower than the critical value CV . In general, the BFP point does not
correspond to the point with the test’s minimum statistic value. In particular, we can
define the following point as:

Definition 3.4.3 (Best Statistic Point, BSP). Given a sequence of execution times X ,
the Best Statistic Point for a statistical test with statistic D(·) is:

(µ∗, σ∗, ξ∗) := arg min
µ,σ,ξ

D(X , (µ, σ, ξ))

�

Examples of BFP and BSP points are depicted in Figure 3.5b. According to the
previous assumption, the region R has at least one point, i.e., the BFP. Thus the BSP
point always exists with D(X , (µ, σ, ξ)) < CV . Before proceeding with the region’s
analysis, we define the following property of the statistic of a statistical test:

Definition 3.4.4 (Correct statistic). Given a sample X of size n drawn from a dis-
tribution A , we say that a statistic D(X ,A ) of a given statistical test is correct iff
D(X ,A )→ K for n→∞ with K ∈ R and D(X ,A ) ≥ K for any finite value of n.

�

To write in a less formal definition, we can say that a statistic is correct if, when
applied to the exact distribution of samples and having a sample of infinite size, it
provides the minimal possible value (e.g., D = 0 in KS test). This property and the
well-known consistent estimator property enable the following asymptotic result:

Lemma 3.4.1. If the estimator is consistent and the statistic computed by the statistical
test is correct, then both the BFP and the BSP converge to the real unknown pWCET
distribution point (µ~, σ~, ξ~):

(µ, σ, ξ)→ (µ~, σ~, ξ~) n→∞

(µ∗, σ∗, ξ∗)→ (µ~, σ~, ξ~) n→∞

where n is the size of the set X used for training or testing the pWCET distribution.
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Proof. This result is an immediate consequence of the definitions of consistent estima-
tor and correct statistic of the test.

This asymptotic result can be exploited to derive the following theorem:

Theorem 3.4.1. Given a sequence of execution timesX , if the statistic of the considered
statistical test is correct, the exact true distribution P~ is inside the acceptance region
R:

(µ~, σ~, ξ~) ∈ R

Proof. Let be n the size of the set X and P ∗n ∈ R the best statistic point of Definition
3.4.3. We provide this proof by contradiction. Let assume that P~ 6∈ R. It follows that
D(X , P~) > CV and, consequently,D(X , P~) > D(P ∗n). When n→∞, P ∗n → P~

and D(P ∗n) → D(P~). Since the statistic is correct as Definition 3.4.4, D(P ∗n) → K,
consequently D(P~) = K. But ∀n D(P ∗n) ≥ K and K < D(P ∗n) < CV , therefore
D(P~) < CV that is in contradiction with the hypothesis P~ 6∈ R.

From a real-time viewpoint, this theorem states that the true – but unknown –
pWCET distribution is always inside the region R. This has an impact on the eval-
uation of the confidence of the pWCET result. In fact, each point in the region R(X )

corresponds to a pWCET distribution with parameter tuple (µ, σ, ξ). Thanks to the
result of Theorem 3.4.1, we can state the following corollary:

Corollary 3.4.1. Given a region R(X ), a violation probability p, and a point P̂ ∈
R(X ) such that P̂ = arg maxP F

′
P (p), then either P̂ = P~ or the pWCET associated

to P̂ overestimates the real pWCET given by P~ at violation probability p.

In other words, given a fixed value for the violation probability p, we can compute
the WCET for each point of the region R. The maximum of these WCETs is either
the true WCET or a safe overestimation of the WCET, at violation probability p. Con-
versely, there is no point P ∈ R that, in general, overestimates the WCET for any
probability p. A possible solution to this issue is presented later in Section 3.4.2.

Exploring the Region of Acceptance. The regionR(X ) describes the estimation un-
certainty of the three parameters of the GEVD distribution. Its size along the three axes
depends on several factors, including the distribution of the input data, the chosen test
statistic, the significance level α, and the number of samples n. In particular, when in-
creasing the sample size n, the ability of the test to detect invalid distributions improves,
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Figure 3.6: Comparison of the complementary-cdfs F̄ (x) = 1 − F (x) = P (x ≥
X) varying the different parameters of the reference GEV distribution. (Original
source: [222])

leading to, in general, a decrease of the region size. Moreover, the three dimensions are
strictly correlated. For example, experimental evidence shows that points inside the
region representing a Fréchet distribution (ξ > 0) usually have lower values of σ than
points inside the region representing a Weibull distribution (ξ < 0)4. To compare the
distributions corresponding to the points inside the region, it is necessary to clearly
define the order relations between two pWCETs.

The pWCET ordering via statistical dominance. In previous articles on probabilis-
tic real-time [228, 229], the ordering relation between pWCET has been defined by
using the simplest form of partial ordering between distributions:

Definition 3.4.5 (First-order stochastic dominance [208]). A pWCETA dominates a
pWCETB iff the probability of observing a WCET larger than x is always equal or
higher in pWCETA with respect to pWCETB , but the two distributions must not be
exactly the same. In notation form:

pWCETA � pWCETB ↔ [∀x : FA(x) ≤ FB(x)

∧∃y : FA(y) < FB(y)] ,

where FA(x) and FB(x) are respectively the cdf of pWCETA and of pWCETB . �

An example of first-order stochastic dominance is shown in Figure 3.6a5: the distribu-
4This is neither a formal nor a general rule, but a recurring behavior experienced by performing EVT

estimations.
5As a reminder, the cumulative distribution function is defined as F (x) = P (x < X). Instead, its

complementary, F̄ = 1− F (x) = P (x ≥ X), is depicted in the figures.
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tion Ḡ1(x) dominates the distribution F̄ (x). However, this is a very restrictive partial
ordering: it is not possible to apply it to situations like the one depicted in Figure
3.6b. Econometrics analyses frequently overcome this problem using the so-called
second-order stochastic dominance that has been studied in [253] for extreme value
distributions. Even if this dominance is widely used in financial risk analysis, it does
not provide the necessary guarantees for the distribution tail. This non-applicability to
pWCET is described in details in our paper’s appendix [222]. Rather, we suggest to use
a less restrictive dominance that keeps the safety of real-time requirements valid:

Definition 3.4.6 (Left tail-restricted first-order stochastic dominance [197]). A
probabilistic-WCET pWCETA left dominates a pWCETB iff the probability of ob-
serving a WCET larger than x is always equal or higher in pWCETA with respect
to pWCETB with x ∈ [x,+∞), but the two distributions must not be exactly the same.
In notation form:

pWCETA
L
� pWCETB ↔ ∃x [∀x > x : FA(x) ≤ FB(x)

∧∃y > x : FA(y) < FB(y)] .

Every first-order stochastic dominance is also a left tail-restricted first-order stochastic
dominance:

pWCETA � pWCETB =⇒ pWCETA
L
� pWCETB .

Although this definition is still a partial ordering, we can describe a larger set of
relation, e.g. the scenario of Figure 3.6b 5: the cdf Ḡ1(x) left dominates the cdf F̄ (x),
i.e. fixed a WCET value, the pWCET related to Ḡ1(x) provides an higher violation
probability p for any x > x̄ with x̄ = 100 in the depicted example.

Points dominance analysis. Having defined the orders for pWCET, we can now for-
malize the dominance when we move along one direction from a chosen point in-
side the region. In particular, Figures 3.6a, 3.6b, 3.6c depict the simplest scenar-
ios. Using the notation inside the figures, let be pWCETF ∼ GEV (µ, σ, ξ) and
pWCETG ∼ GEV (µ′, σ′, ξ′), hence:

• If µ′ > µ and σ′ = σ, ξ′ = ξ then pWCETG � pWCETF .
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Figure 3.7: The Region of Acceptance R generated from a Gaussian distribution sam-
ple and test CvM with the σ values collapsed. It is possible to notice thatR includes
all the three possible extreme value distributions. (Original source: [222])

• If σ′ > σ and µ′ = µ, ξ′ = ξ then pWCETG
L
� pWCETF .

• If ξ′ > ξ and µ′ = µ, σ′ = σ then pWCETG � pWCETF .

It is also possible to build more complex relations when two or more variables change:

• If ξ′ > ξ and σ′ and/or µ′ change in any directions then pWCETG
L
� pWCETF .

• If σ′ > σ and ξ′ = ξ and µ′ changes in any direction then pWCETG
L
� pWCETF .

Starting from these relations and according to the previous ordering definitions, it is
possible to know if, by moving from a specified point inside the region to another
point inside the region, we are overestimating or underestimating the pWCET. When
pWCETP � pWCETP ′ the pWCET related to point P ′ is safely overestimated by P
for any violation probability value p. Rather if pWCETP

L
� pWCETP ′ the pWCET

related to point P ′ is safely overestimated by P for any violation probability value
p > p with p that can be computed solving the equivalence equation between the iccdfs
of both points. If p < p, the distributions may potentially intersect in several points,
making it impossible to conclude anything without further analyses.

EVT distribution classes. The Region of Acceptance may include more than one
extreme value distribution classes. In order to show this, we have generated a random
sample X1,X2, ...,X50 000 from a Gaussian distributionN (10000, 100). After applying
BM, 80% of the sample is used to produce the pWCET estimation, while the remaining
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20% is used to run the CvM test and build its Region of Acceptance R depicted in
Figure 3.7. In this figure, we have not illustrated the scale parameter σ axis in order
to clarify the variation of the ξ parameter. It can be noticed that the region includes all
the three possible extreme value distributions: Fréchet (ξ > 0), Weibull (ξ < 0) and
Gumbel (ξ = 0). Our estimator produced a Weibull distribution (ξ < 0), and the BSP is
also in the same distribution class. From statistical theory, we know that any Gaussian
is in the domain of attraction of a Gumbel; consequently, these two points, for n→∞,
converge to the Gumbel line of Figure 3.7. According to the previously defined point
dominance, we can define the following ordering:

pWCETξ>0

L
� pWCETξ=0

L
� pWCETξ<0

The fact that a region spreads over different GEVD distributions can then provide a
way to increase the pWCET estimation quality. For instance, if some knowledge of
the system and the task is available, e.g., it is known that the execution time must be
bounded, then the exact distribution P~ cannot be in the Fréchet region. In this case, if
the estimator generates a pWCET P with ξ > 0 and if we consider as the worst-case the
point P ′ ∈ R having ξ = 0, then P ′ is both safe and tighter than P . Vice versa, if P has
ξ < 0, and we know that the WCET can assume arbitrarily large values, then we must
move the point P towards the Fréchet region to obtain a more pessimistic but robust
estimation. The in-depth discussion and analysis of the system properties involving the
MDA hypothesis are left as future work. In the experimental part of this section, a
relevant result on ξ uncertainty, intrinsic in the definition of Region of Acceptance, is
discussed: it is not possible to directly rely on the pWCET estimation provided by the
estimator because its inaccuracies can lead to unreliable or non-tight results.

3.4.2 Bounding the distributions

In the previous paragraphs, we have seen that, in general, It does not exist one single
point, i.e., one single valid pWCET distribution, that can dominate the overall region.
In this section, we propose a method to overcome this problem by estimating a pWCET
curve that pessimistically bounds all the possible valid distributions of the region.

The pessimistic pWCET curve. The idea behind the pessimistic bound is to obtain a
robust and safe estimation of the pWCET by taking the worst-case curve generated by
overlapping the cdf of all the points inside the Region of Acceptance. The requirement
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Figure 3.8: The overlap of the cdfs of all distributions related to each point of the
region of Figure 1. The upper-bound of this area is the curve pWCET↑, while the
lower-bound the curve pWCET↓. (Original source: [222])

for pessimism (safety of pWCET estimates) is illustrated in Figure 3.8, and formalized
in the following definition:

Definition 3.4.7 (Pessimistic pWCET Curve). The curve pWCET↑ is defined as the
locus of point (WCET, p) such that WCET ∈ D and p = maxP∈R[1 − FP (WCET)],
whereD is the domain of the worst-case execution time and FP is the cdf corresponding
to the point P in the region R. �

As the definition clearly points out this locus of points first-order stochastic domi-
nates all the other points pWCET↑ � pWCETP ∀P ∈ R, thus making the pessimistic
pWCET curve a safe over-estimation of the real distribution. However, when the region
is computed in a real scenario, the space of parameters cannot be explored continuously,
and the set of points inside the region must be discretized. The pessimistic pWCET
curve reliability also depends on the resolution selected to build the region: in the un-
fortunate case that P~ is in the proximity of the region boundaries, the resolution of
µ, σ, ξ used to build the region may not be sufficient to include P~. More generally, to
obtain a safe pessimistic pWCET curve it is sufficient to consider one more layer out-
side the region: (µ± δµ, σ± δσ, ξ± δξ) where δµ, δσ, δξ are the parameter resolutions
used in the region exploration.

The tightest pWCET curve. The same definition used for the pessimistic pWCET
curve can be used to define its symmetrical tightest version, i.e., the black lower curve
in Figure 3.8:
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Definition 3.4.8 (Tightest pWCET Curve). The curve pWCET↓ is defined as the locus
of point (WCET, p) such that WCET ∈ D and p = minP∈R[1 − FP (WCET)], where
D is the domain of the worst-case execution time and FP is the cdf corresponding to
the point P in the region R. �

It is important to remark that the pWCET↓ does not necessarily represent an opti-
mistic bound to the real pWCET distribution. This locus of points has indeed passed the
GoF test, making it a valid extreme value estimation for the real pWCET. The pWCET↓
is, however, the less robust estimation in the whole set of possible distributions. We will
recall and extend this concept later on in Section 3.4.3.

Area of uncertainty. The area between pWCET↓ and pWCET↑ contains all the pos-
sible pWCET distributions according to our definition of Region of Acceptance. We
informally call this space area of uncertainty, and it is depicted as the gray area in
Figure 3.8. This area is strictly correlated with the region size and parameters spread:
the bigger the region R, the bigger the area of uncertainty. Since we moved from the
GEVD parameters space to the ccdf space, the area of uncertainty provides a new metric
to compare different possible estimations.

Definition 3.4.9 (Area of uncertainty). The area of uncertainty is defined as the area in
the ccdf-space composed of the points of all ccdf curves of all pWCET distribution be-
longing to the Region of Acceptance. Equivalently, it is the area between the pWCET↑

and the pWCET↓ curves. Let be pWCET↑(x) and pWCET↓(x) their respective curve
functions D → [0; 1], then the value of this area is:

A :=

∫ ∞
0

[pWCET↑(x)]dx−
∫ ∞
0

[pWCET↓(x)]dx.

The value of A can be easily computed numerically, and it represents a novel met-
ric to evaluate the quality of the probabilistic analysis empirically. Large values of A
suggest that our region includes large values of uncertainty not only in the parameter
space but also in the pWCET space. This happens when in our region, all three GEVD
models are plausible to be estimated according to the considered statistical test. Vice
versa, when the value of A is small, this is a clue that at least the distribution class is
correct. The value of A may also be infinite: when at least one point P with ξ ≥ 1, the
mean value of the distribution and consequently the area under the ccdf are infinite. In
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this case, we can make two possible interpretations: either the analysis has been incor-
rectly performed, or the system behavior shows strong evidence of unbounded WCET.
We could also exploit this to compare statistical tests: the area size is a direct measure
of their quality because a test with a smaller area is able to detect more significant vi-
olations than another test executed with the same experimental setup but with a larger
area.

3.4.3 Tightness vs pessimism trade-off

BFP vs BSP. According to Section 3.4.1, the BFP P provided by the estimator and the
BSP P ∗ provided by the statistical test are good approximations of the unknown exact
pWCET P~. In general, it is not possible to establish which of P or P ∗ is the closest to
the exact pWCET. However, the closest point to P~ is not necessarily the best in a real-
time context. We could, in fact, consider a different point that safely over-estimates the
real distribution pWCET using one of the dominance definitions previously defined.
Accordingly, the first decision criterion is to select P if P � P ∗ or vice versa. In
alternative, we can consider the left tail-restricted dominance and select P if P

L
� P ∗

or vice versa; in this case, our decision remains valid if, in the evaluation of pWCET
distribution, the computed WCET at a given probability level p is higher than the value
x of Definition 3.4.6. These selection criteria with the statistical dominance concepts
can be applied to any other point of the regionR. Unfortunately, it is not always possible
to select between two points with stochastic dominance, due to its partial ordering.

The robustness ratio. To evaluate the pessimism and tightness of a given pWCET
distribution belonging to a point of the region R, we propose a metric based on an
empirical formula, that will be later improved.

Definition 3.4.10 (Robustness ratio). Let us assume that we select a probability p and a
distribution corresponding to a point P ∈ R. At this probability, we can compute three
WCETs: from P , from pWCET↓, and from pWCET↑. We call: (1) D↓ the absolute
value of the distance between the WCET computed in P and the WCET computed with
pWCET↓; (2) D↑ the absolute value of the distance between the WCET computed in P
and the WCET computed with pWCET↑ (see right-side of Figure 3.8 for clarity). We
can now define the robustness ratio as:

r =
D↓ −D↑

D↓ +D↑
.
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This ratio r is always r ∈ [−1; +1]. When r → −1, the distribution of point P
is near the tightest one. When r → +1, the distribution of point P is instead near the
pessimist one. The robustness ratio r is then a metric representing the trade-off between
tightness and pessimism. The experimenter can choose among all the valid distributions
based on the value of this ratio, by knowing from the results of Section 3.4.1 that the
true WCET value is inside this interval.

Confidence in the pWCET analysis. If we consider the previous definition of ro-
bustness ratio, by selecting a desired value of violation probability p, we can derive
the WCET interval from the curves pWCET↓ and pWCET↑. This interval is written as
IpW = [WCET↓; WCET↑] and, according to Figure 3.8, its size is D↓ + D↑. Since the
real distribution related to point P~ is inside the region – from Theorem 3.4.1 – and
since we know that this interval represents all the pWCET distribution values – from
Definitions 3.4.7 and 3.4.8 –, then the real WCET value at the given probability p is
inside this interval: WCET~p ∈ [WCET↓; WCET↑].

Definition 3.4.11 (Confidence of the pWCET analysis). Given a probability p and a
WCET ∈ IpW , the confidence of the pWCET analysis c is defined as:

c = P [P (X > WCET) ≤ p] .

It is important to carefully dwell on this definition. The confidence is defined as the
probability that the system violation probability is underestimated. If c = 1, the esti-
mated couple (p,WCET) is surely safe. If c < 1, there exists a certain degree of uncer-
tainty on the safety of (p,WCET). The reader should not confuse the two probabilities:
p is the chosen violation probability, a run-time property of the system, i.e. the probabil-
ity to experience a larger WCET than the estimated one; c is the confidence, a property
of the analysis, i.e. the probability to have estimated an unsafe couple (p,WCET).
This confidence can be linked with the previously defined robustness ratio: if we select
WCET↑, then c = 1 and r = 1, consequently WCET↑ surely upper-estimates the real
WCET at probability p. If the WCET value selected is not the right-most value, i.e.
r < 1, the confidence is potentially less than the truth value: c ≤ 1. In other words,
selecting a less pessimistic, but still valid according to the chosen test, WCET may
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be potentially under-estimated. Clearly, c is a non-decreasing function of WCET, i.e.,
higher WCETs have higher confidence. The computation of the precise c value with
respect to the variation of the chosen WCET is left as future work. This computation
is possible, thanks to the statistical power estimation approach of the selected GoF test
presented in Section 7.2.

3.4.4 Experimental evaluation

To evaluate the benefits of the previously introduced notations and techniques, we con-
sidered four datasets representing different execution conditions and systems. The anal-
ysis of the proposed time traces showed the effectiveness of dealing with the uncertainty
of the region of acceptance and related models.

We used the chronovise tool described in Section 7.1 to perform the MBPTA
analysis on the following datasets:

D1) An industrial safety-critical application from Airbus, running on a multi-core
platform. The execution time is measured on a single task execution with other
tasks running in other cores and interfering on shared resources6.

D2) The same as the previous dataset, but considering a different task of the same
safety-critical real-time application.

D3) A memory-intensive task running on a multi-core T4240, stressing the data-cache
with interferences on the overall cache hierarchy, shared memory and bus [77].

D4) A time trace of a GPU application running under different execution conditions,
taken from the paper of Berezovskyi et al. [26].

The paper of Nolte et al. [195] proposed a classification for real-time workloads
in the context of probabilistic real-time. Some proposed constraints are, however, too
strict for real applications. We guaranteed A.3.1 (Avoid usage of shared services and
drives in the software architecture.) for D1 and D2, while D3 runs on PikeOS (so we can
consider valid A.3.2 that requires predictability of services) and D4 runs on CUDA, so
neither A.3.1 nor A.3.2 applies for D4. Regarding the hardware states (A4 group), the
cache status was disregarded (A.4.2). Finally, the tasks’ execution time is not affected
by the state of the environment (A.5.2).

6No more details on the Airbus use case can be provided since it is an actual industrial application in
active development.
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Datasets D1 and D2 are composed of 400 000 time measurements, while the sample
sizes of D3 and D4 are respectively 5 000 and 50 000. All the time traces in the afore-
mentioned datasets are real measurements of the task execution time acquired with
appropriate instrumentation of the applications. We verified the satisfaction of the iid
hypothesis running a standard LjungBox test. Since the EVT was applicable, we could
filter the data via the Block-Maxima method with a block size of B = 20, empirically
chosen but in line with previous works [111, 167, 255].

Results – Region of Acceptance. From the sample output of the BM approach, the
GEVD is fitted using the well-known Maximum Likelihood Estimator (MLE). To build
the Region of Acceptance we consider as GoF test the CvM. Another possible test is
KS. Both tests have correct statistics, i.e. they satisfy Definition 3.4.4 as proved in the
appendix of paper by Reghenzani et al. [222].

To find the region R it is necessary to explore the parameter space around the es-
timated distribution P̄ . We have begun by uniformly exploring 40 points around each
parameter, leading to a total number of 403 = 64 000 explorations. The initial inter-
val has been set to ±10% of the estimated value, and it was step-by-step increased to
include the whole region. The CvM test has been applied to each point, obtaining the
set of accepted points, i.e., the region R, depicted in Figure 3.9. The time complexity
depends on the number of points explored and how the statistic is computed for the cho-
sen test. For CvM, the computational complexity is O(nm), where n is the number of
time measurements, and m is the number of explored points. Instead, for KS, the time
complexity becomes O(n2m). In this experimental evaluation, the total time required
to build each region was less than 10 seconds on a standard workstation.

It is possible to notice that in the dataset D2, the estimated point is outside the
region: the GEVD estimated by MLE is not a valid distribution according to the CvM
test result. This is a violation of the initial assumption that the best fit estimator point P
is inside the region. In this case, before beginning with the parameter space exploration,
not only do we have no information on how many points should be explored, we also do
not know whether the region exists or not. For example, assuming that the input time
measurements are distributed according to a statistical distribution that is not in the
domain of attraction of any generalized extreme value distribution – e.g., the Poisson
distribution – then no point is expected to pass the test (R = ∅), whatever GEVD is
estimated. In our lucky case, the region exists, and we have been able to find it because
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Figure 3.9: Region of Acceptance, number of samples, estimator best fit point (BFP)
and best statistic point (BSP) of the datasets under analysis. (Original source:
[222])
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Figure 3.10: The Regions of Acceptance for the datasets under analysis with the σ
value collapsed. (Original source: [222])

it is in the ±10% interval of at least one parameter. For completeness, we checked
why the MLE estimator failed to obtain a valid distribution fitting the data, and we
discovered the presence of a local minimum of the MLE optimization function at the
estimated P . One possible solution to this problem, already described in Section 2.2.2,
is to initially use the Probabilistic Weighted Moment (PWM) estimator to obtain the
point inside the region and improve the estimation with MLE. In the considered corner
case of D2, the parameter space exploration guides us to find a set of points – the region
– fulfilling the GoF test, i.e., with a valid pWCET distribution otherwise impossible to
find using only the estimated point P . This is another accidental advantage of using the
Region of Acceptance to evaluate the pWCET output of the estimator algorithm.

Distribution shapes. Figure 3.10 shows the region collapsing the σ axis to show the
spread of the ξ parameter. D1, D2, and D4 regions contain only points from Weibull
distribution. In the real-time world, it means that the observed phenomenon – i.e., the
execution times – has a finite maximum – i.e., a finite WCET. Instead, D3 is more
problematic because it includes both Gumbel and Fréchet distribution classes. Even
more, it includes Fréchet distributions with ξ > 1. This means that the WCET is not
finite, but also its mean value is not finite, suggesting that either there is a problem in
the execution time measurements, or the system has actually an unbounded WCET.

It is worth noticing the position of the BFP and the BSP in our datasets. The latter is,
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Figure 3.11: Area of uncertainty, tightest upper-bound and pessimistic upper-bound
curves, BFP and BSP distributions. (Original source: [222])

in general, at the center of the region. The D2 case, where the estimated point is outside
the region, has already been discussed in the previous Section 3.4.1. The D3 case is
interesting: the estimated point represents a Weibull distribution with ξ = −0.23, while
the point that has the best statistic is near the Gumbel line and is actually a Fréchet
distribution with ξ = 0.02. This leads to an important conclusion: the distribution
estimated by the estimator is a light-tail distribution, but the test is able to accept another
distribution with even better statistic having the Fréchet tail. Consequently, we can
conclude that relying on the estimator result without a sensitivity analysis on ξ may
lead to unreliable or non-tight results since the real pWCET distribution can belong to
another GEVD class.

Results – Uncertainty. Referring to Figure 3.11, the effect of ξ parameter spreading
is clear: it is immediately visible that D3 has the largest area of uncertainty. More-
over, the absolute value of this area is infinite due to the presence of valid Fréchet
distributions with ξ ≥ 1. For the other scenarios, the area has been computed by
performing the numerical integration of Definition 3.4.9. D1 and D2 have lower un-
certainties compared to D4. This is the consequence of a smaller region of acceptance
and, in particular, less uncertainty on ξ. We notice that there is no general rule on the
domination between P and P ∗. For example, in D3 pWCETP∗

L
� pWCETP while

in D4 pWCETP
L
� pWCETP∗ . Instead, as expected by their definition, pWCET↑ �

pWCETP , pWCET↑ � pWCETP∗ , pWCETP � pWCET↓, pWCETP∗ � pWCET↓
for all cases. There is only one exception that is not visible in the figure: the D3 BFP is
outside the region and in this case there are some WCET values for which the pWCET↓
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p Distribution D1 D2 D3 D4

10−3

pWCET↑ 685 525 731 054 1.3 · 1015 15 314

P 685 198 731 059 66 943 15 032

pWCET↓ 684 728 730 456 60 192 14 756

10−6

pWCET↑ 686 075 731 365 1.5 · 1026 15 368

P 684 773 731 378 68 566 15 046

pWCET↓ 685 494 730 490 60 192 14 757

10−9

pWCET↑ 686 231 731 425 1.7 · 1041 15 370

P 685 548 731 439 68 898 15 046

pWCET↓ 684 774 730 491 60 192 14 757

10−12

pWCET↑ 686 275 731 436 2.0 · 1050 15 370

P 685 558 731 451 68 966 15 046

pWCET↓ 684 774 730 491 60 192 14 757

Table 3.3: The computed WCET from the curves of Table 3.11 at different violation
probability levels. (Original source: [222])

does not under-estimate the probability, i.e. pWCETP 6� pWCET↓. However, the re-

laxed version is still valid in this case: pWCETP
L
� pWCET↓. The consequence on the

WCET estimation is that the estimated distribution associated with the point P outside
the region is potentially unsafe for some WCET or p values because it underestimates
the curve representing the lower-bound on the distributions accepted by the GoF test.

Results – Tightness vs pessimism. Having computed pWCET↑ and pWCET↓, it is
now possible to estimate the WCET according to a violation probability p. The WCET
value for the different curves and some values of violation probability are presented in
Table 3.3. The effect of the presence of valid points with a Fréchet distribution in D3
is evident: the WCET of pWCET↑ is clearly too large to be considered feasible in any
scheduling analysis. Instead, P and pWCET↓ provide valid approximations, but with
less confidence: if we select P and pWCET↓, there potentially is a non-null probability
that our WCET result is unsafe according to Definition 3.4.11. The WCET values of
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p Distribution D1 D2 D3 D4

10−1
P ∗ −0.093216 −0.066638 −0.994008 −0.310016

P −0.017073 0.669008 −0.995131 −0.042482

10−3
P ∗ −0.255874 −0.265608 −1.000000 −0.513920

P 0.178674 1.017288 −1.000000 −0.012972

10−6
P ∗ −0.372082 −0.367926 −1.000000 −0.549735

P 0.107353 1.030012 −1.000000 −0.052946

10−9
P ∗ −0.417336 −0.395697 −1.000000 −0.551476

P 0.062515 1.031415 −1.000000 −0.055915

10−12
P ∗ −0.432052 −0.402085 −1.000000 −0.551556

P 0.044533 1.031659 −1.000000 −0.056071

Table 3.4: The robustness ratios of BFP P at different violation probability levels.
(Original source: [222])

D1, D2, and D3 are distributed in a smaller interval and are all apparently feasible to be
used for scheduling analysis.

To explore the differences between P and P ∗ we presented their robustness ratio
in Table 3.4. In D1, D2, and in D4, P is more pessimist than P ∗ while in D3 it is the
opposite. This is in line with our previous graphical result of Figure 3.11. The fact
that one point is always pessimist with respect to the other point for all the considered
probabilities must not be taken as a general rule: the robustness ratio is a value at a
fixed probability, and it may behave differently for different values of it. The presence
of valid pWCET distributions is clear in D3: both points are definitely tighter than the
pWCET↑, as it is also experimentally verified in Table 3.3.

Summary of the experimental results. To summarize the experimental evaluation,
we recap the major steps and the conclusions that can be drawn from the four datasets
under analysis:
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1. The Region of Acceptances of test CvM has been generated by exploring the
space around the GEVD parameters provided by MLE estimator.

2. Even if the estimated point P for dataset D2 does not pass the GoF test, we have
been able to find the Region of Acceptance in the ±10% of P parameter space.
Despite there are no guarantees that this exploration is always successful, in our
scenario, it was useful to find valid pWCET distributions that we would not have
otherwise found.

3. From the analysis of shape parameter uncertainty, we noticed that one dataset
(D3) includes all the three distribution types. This has a significant impact on
the pWCET uncertainty: the most robust pWCET curve leads to an unrealistic
WCET at small probability values.

4. If a potential reduction in the pWCET confidence is acceptable, the issue of the
previous point can be easily solved by selecting another point inside the region
according to its robustness ratio value and test’s statistical power.

5. The estimated distribution P is not necessarily the best one, neither in terms of
safety nor in terms of tightness. The same is valid for the BSP P ∗. Careful
evaluation must be performed by exploiting one of the decision-making tools
provided.

3.4.5 Lesson learned

Any distribution estimation routine suffers from estimation errors caused by the neces-
sarily finite number of input samples. In probabilistic WCET analyses, the safety of the
results depends on several conditions imposed by the EVT conditions. Even consider-
ing all the open challenges on these conditions solved, the estimated pWCET distribu-
tion is still affected by uncertainty. This section discussed this problem by providing a
set of mathematical tools to deal with the parameter uncertainty, intending to be a step
towards a more reliable pWCET estimation. In particular, the region of acceptance has
been defined on the GEVD parameter space. By exploring this region, it is possible to
move the estimated pWCET distribution to more reliable or to tighter distributions. The
advantages, on both the safety and the tightness of the pWCET distributions, have been
shown by performing the analysis on real-time traces of different nature, including real
industrial datasets.
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CHAPTER4
Applicability to Real Systems

Having discussed about the estimation uncertainty, we move in this chapter to study the
applicability of probabilistic real-time techniques to real systems, discussing about the
i.i.d. hypothesis and the representativity of MBPTA techniques.

4.1 The Probabilistic Predictability Index

The reject/not-reject result and the absolute value of the statistics of the three previ-
ously described tests for the i.i.d. hypothesis (Section 3.3.1) do not provide clear and
straightforward information on the time predictability of the system and the applicabil-
ity of probabilistic real-time. In this regard, we introduce a more meaningful unified
index to provide a quantitative value that expresses the fulfillment of the statistical hy-
potheses of a given time trace. We refer to this index as Probabilistic Predictability
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Index (PPI). The PPI has been designed by merging the three tests while maintaining
their statistical properties to be able to use the novel index as a hypothesis test as well.
The PPI is defined over the continuous range (0; 1). For PPI values near 0, the time
samples present strong evidence that the time series is not analyzable because it vio-
lates EVT hypotheses. Vice versa, for PPI values near 1, the time series presents good
properties and adherence to EVT hypotheses. The time series should be rejected if the
PPI is lower than the predefined critical value CVPPI , maintaining the original statis-
tical tests’ significance. In particular, if PPI > CVPPI , then the hypotheses are true,
and the pWCET can be safely estimated; if PPI ≤ CVPPI , then at least one hypoth-
esis is violated and any pWCET estimation would lead to unreliable results. The PPI
is obtained with a set of transformations that maintain the statistical foundations of the
original hypothesis tests. The capability of rejecting or not rejecting the null hypoth-
esis is unchanged, as well as the statistical power. This is extremely important in the
probabilistic real-time context, due to the critical aspect of the pWCET reliability.

4.1.1 Index formulation

The statistics of the tests – described in Appendix B – have the following ranges1:

DKPSS ∈ (0; +∞) DBDS ∈ (−∞; +∞) DR/S ∈ (0; +∞)

To level off these statistics, we need to define a common domain D = (0; 1), to which
PPI domain belongs. By taking into account the described desired meaning for PPI and
the statistic formulas, we have to find the following functions:

fKPSS : (0; +∞)→ D

fBDS : (−∞; +∞)→ D

fR/S : (0; +∞)→ D

under the following constraints:

lim
x→+∞

fKPSS = 0 lim
x→0

fKPSS = 1

lim
x→±∞

fBDS = 0 lim
x→0

fBDS = 1

lim
x→+∞

fR/S = 0 lim
x→0

fR/S = 1

1We omit the ({Xi}) parameter of statistics Di for brevity.
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Moreover, the rejection property of the test statistics against the critical value must be
maintained. LetCVKPSS , CVBDS , CVR/S be the critical values of the respective tests,
each null hypothesis has to be rejected if

|Di| > CVi ∀i ∈ {KPSS,BDS,R/S} (4.1)

For this reason, the Equation (4.1) must hold whatever transformation we apply. In
order to satisfy this requirement, the fKPSS , fBDS , fR/S transformations must be con-
tinuous, positive, and monotonic functions. The following functions satisfy the afore-
mentioned properties:

fKPSS(x) = e−KKPSS ·x

fBDS(x) = e−KBDS ·|x|

fR/S(x) = e−KR/S ·x

(4.2)

Hence, we have to select KKPSS ,KBDS ,KR/S in order to be compliant with the pre-
vious constraints and to get the same critical value for each test. We assign an em-
pirical value to KKPSS = 1

4 , then the critical value for KPSS test can be computed
C∗KPSS = e−

1
4CVKPSS . Since the critical value should be the same for the other two

tests, their constants are computed as follows:

kBDS = − logC∗KPSS
|CVBDS |

kR/S = − logC∗KPSS
CVR/S

(4.3)

eventually obtaining:

CVPPI := C∗i = fi(CVi) ∀i ∈ {KPSS,BDS,R/S}

Assigning different values to kKPSS would produce different statistic PPI values.
However, it does not change its statistical meaning because the critical values would
change consistently. Choosing a higher value of kKPSS shifts the PPI to produce values
towards 0, vice versa, a lower value of kKPSS shifts the PPI to produce values towards
1. We selected the value of kKPSS = 1

4 such that the obtained CVPPI is 0.89 for
α = 0.05, i.e. about of 10% of fraction of PPI values (0.9−1.0) are dedicated to values
representing valid hypothesis, while the remaining 90% fraction (values 0.0− 0.9) can
represent the violation degree of the hypotheses. The experimenter can change kKPSS
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fKPSS(DKPSS) fBDS(DBDS) fR/S(DR/S) PPI

0.96 0.91 0.92 0.92 3

0.50 0.91 0.92 0.50 7

0.50 0.91 0.70 0.425 7

Table 4.1: Example of PPI values for three cases of statistical tests. The critical value
is CVPPI = 0.89. (Original Source: [220])

at will, without losing statistical properties, but modifying the human perception of the
index value. In Table 4.1, we can see an example of PPI value computation for three
cases of statistical tests statistics.

Having uniformed the three statistics in the (0, 1) range with the same critical val-
ues, it is possible to merge them into a unique index by applying the following conser-
vative approach:

• if all test statistics are higher than their respective critical values, PPI must be
higher than PPI critical value;

• if any of the three test statistics is lower than its critical value, PPI must be lower
than the PPI critical value;

• if more than one test statistics are lower than their respective critical values, PPI
must be lower than the minimum of the three statistics.

This approach ensures that the statistical test meaning is not changed: we can compare
PPI with the critical value to assess all three hypotheses, assuming that if any EVT
hypothesis is violated, the test rejects the null hypothesis.

To ensure this behavior of the test, we apply the following merging transformation:

PPI :=


min
∀i

fi(Di) ·
∏
i∈v∗

[1− (CVPPI − fi(Di))] v 6= ∅

1

3

∑
∀i

fi(Di) v = ∅
(4.4)

where v is the violation set, i.e. v = {i|fi(Di) < CVPPI}, and v∗ is the violation set
without the minimum, i.e. v∗ = {v \ arg min∀i fi(Di)}. If no violation occurs in the
three tests, the result is the arithmetic mean of the three values, which is greater than
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CVPPI . Otherwise, the PPI is equal to the minimum statistic potentially multiplied by
other statistics that violate CVPPI . This leads to a PPI value lower than CVPPI , guar-
anteeing the statistical hypothesis testing property. The arithmetic mean uses the same
weight for the three tests to compute the PPI because each test verifies one different
hypothesis.

To summarize, the PPI value can be computed by using Equation (4.4) and com-
pared with the critical value CVPPI . In probabilistic real-time scenarios, if PPI <
CVPPI the following null hypothesis (H0) has to be rejected in favor of the alternative
one (H1):

H0 : the time trace X verifies the EVT hypotheses

H1 : X violates at least one of the EVT hypotheses

4.1.2 Experimental evidence

This subsection presents the experimental evaluation of the chosen statistical tests and
the proposed index PPI. The datasets have been analyzed thanks to the open-source
software chronovise (see Section 7.1). This software has been updated to include
the algorithm computing the PPI index. The algorithm is also available separately as
MATLAB script [219]. The correct assessment of the EVT hypotheses with a statistical
testing inference (e.g., PPI) requires to acquire several time traces of execution time,
run the statistical tests for each time trace, and, finally, look at the results. In particular,
the ratio of rejection/non-rejection of the null hypothesis provides the deduction of the
statistical property searched for. A single time traces meeting the EVT hypotheses can
not provide any insights about the statistical process generating it. In fact, even if a
single time trace may pass the checks, this must not be interpreted as the system to be
compliant with the EVT hypotheses. In fact, the hypotheses can be considered fulfilled
when the rejection/non-rejection ratio settles around the significance level for the test,
or the αglobal in case of multiple testing as described in Section 3.3.4. The expectation
is to get high rejection rates for time traces that do not satisfy the hypotheses. On the
other hand, if the source distribution of the samples verifies the EVT hypotheses, then
the rejection rate should settle around the significance value α.

Time trace sources. For characterizing the properties of the proposed test, we used
both synthetic time samples and real benchmark executions. The first class of time
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Figure 4.1: The Probability Distribution Functions of the synthetic benchmarks con-
sidered. (Original Source: [220])
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Figure 4.2: Plots of the realization of 1000 random variables with the distributions
of the synthetic benchmarks considered. The red dashed line shows the long-term
trend, computed as a linear interpolation of all the points. (Original Source: [220])
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traces has been designed to stress the detection capability of each statistical test by using
synthetic distributions with well-known statistical properties. The real benchmarks are
instead executed on different hardware platforms, with known real-time capabilities, to
evaluate the probabilistic predictability of the target system. Without losing generality,
we evaluated the tests with a level of significance α = 0.05. This means that we
expected, for each test, a type I error (i.e. false-positive rate) of 5%. In our scenario,
this is a conservative error: each test excludes 5% of the times a dataset that is actually
valid for EVT estimation. The overall type I error can be computed using Equation
(3.7), obtaining 14% (αglobal = 0.14).

Synthetic sources. Let Xa:b be an ordered subset of the full time trace X1:n. For
synthetic and controlled time traces, we used both i.i.d. and non i.i.d. sources. For
the former, we selected the following EVT-compliant distributions that are expected to
pass the statistical tests:

A1 X1:n ∼ N (10, 1): Gaussian (normal).

A2 X1:n ∼ P(10): Poisson.

A3 X1:n ∼ Γ(10, 1): Gamma.

Then, we tested four non-compliant distributions that are expected to violate at least
one of the i.i.d. sub-hypotheses:

B1 X1:n2
∼ N (10, 1);Xn

2 +1:n ∼ P(1): a normally distributed time trace for the first
half part and then a Poisson distribution; it represents a sequence of independent
but not identically distributed samples.

B2 X1:n ∼ AR(2): an auto-regressive model of order 2, with constant 10 and auto-
regressive coefficients (0.7, 0.25). This class represents a short-range dependent
time source.

B3 X1:n ∼ ARFIMA( 1
2 , 0, 0, 0,

1
4 ): an auto-regressive fractionally integrated mov-

ing average model with AR, MA, and I coefficients zero, constant 1
2 and d = 1

4 .
This class represents a time source with a long memory.

B4 X1:n = {∀i ∈ [1;n]|Xi ∼ N(10 + 0.001 · i, 1)}: non identically distributed
samples with long-range dependence, but short-range independent.
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We drew a total of 1 000 000 samples for each distribution, and then we split into groups
of size 1 000 for a total of 1 000 evaluations. The pdfs of these distributions have been
plotted in Figure 4.1, as well as an example of traces in Figure 4.2. It is possible to note
that A1, A2, A3 appear as random, B1 is composed of two modes, B2 presents a clear
short-range dependence, while B3 and B4 have long-term trends.

Real sources. Concerning the experimental evaluation on real platforms, we run four
state-of-the-art benchmarks of the WCET Mälardalen suite [118]: sqrt, minver,
fdct, complex. We implemented each benchmark onto five different platforms,
whose well-known architecture characteristics introduce different degrees of unpre-
dictability:

R1 PIC: a PIC18F45K50 microcontroller without operating system.

R2 STM: time-deterministic platform with a L1D and L1I cache: STM32F7 board
programmed bare-metal without operating system.

R3 MIO: time-deterministic platform with a real-time operating system: the STM32F4
with Miosix operating system2.

R4 ODR: embedded development-board unpredictable platform: multi-core Odroid
XU-3 with a Linux OS (vanilla kernel).

R5 INT: a desktop system, completely unpredictable platform: multi-core Intel i7
with a Linux OS (vanilla kernel).

R1 is a simple processor, time-deterministic, and constant instruction timing. R2 and
R3 are also time-deterministic platforms, with no features that can affect the execution
time predictability, except the L1 caches of R2, which introduce a timing dependence
among the benchmark execution. R4 is, instead, an embedded development board with
several advanced features, making the execution time unpredictable. R5 is even more
unpredictable because it is a general-purpose machine and, consequently, contains sev-
eral unpredictable hardware features, such as SMIs.

The benchmarks have been slightly modified to add: (1) a PRNG for input data gen-
eration (except for complexwhere the input is constant), (2) an external loop to run the
benchmark multiple times, (3) a toggling mechanism for a GPIO to signal the start and

2http://miosix.org/
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E[PPI] VAR[PPI] Rej.PPI Rej.KPSS Rej.BDS Rej.R/S
A1 0.9374 1e-3 13.9% 6.8% 5.5% 4.5%

A2 0.9388 1e-3 12.3% 5.3% 4.9% 4.3%

A3 0.9393 1e-3 11.4% 4.9% 5.3% 3.4%

B1 0.6302 2e-3 100% 4.7% 100% 6.9%

B2 0.0058 1e-5 100% 100% 100% 100%

B3 0.5228 3e-2 100% 83.1% 99.2% 98%

B4 0.1319 3e-3 100% 100% 5.5% 100%

Table 4.2: Tests rejection results of synthetic time traces analysis. (Original Source:
[220])

stop of benchmark execution. To maintain consistency among all platforms, the PRNG
has been initialized with the same seed. In such a way, each platform generates the
same sequence of pseudo-random inputs to the benchmarks. The time measurements
have been acquired by measuring the GPIO interval between the rising edge (start of the
computation) and the falling edge (end of the computation), using a commercial logi-
cal analyzer with a 10ns resolution. Each benchmark then has been executed 100 000

times by using time series of size 1 000 for statistical testing, for a total number of 100

estimations for each benchmark.

Results. The results on time traces from synthetic sources are shown in Table 4.2. For
i.i.d. datasets (A1-A3), it is possible to notice a rejection rate based on evaluations of
single tests around 5%, which actually matches the chosen significance level α. The
rejection rate of the composed index PPI is slightly below 14%, that is the significance
level value computed by using Equation (3.7). This value represents the false-positive
error rate, i.e., the percentage of time series discarded even if generated by compliant
sources.

Regarding the results of time traces that do not satisfy at least one EVT condition
(B1-B4), we can notice the PPI rejection rate is always 100%. We can observe that the
power of BDS is high for B1-B3, but it is not for B4, where KPPS and R/S are able
to reject the hypothesis. On the contrary, for B1, only BDS appears to be sufficiently
powerful. Moreover, it is worth highlighting that B1 is a non-identically distributed
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RejectPPI RejectKPSS RejectBDS RejectR/S
sq

rt
R1 23% 7% 15% 6%
R2 24% 2% 20% 3%
R3 29% 6% 23% 7%
R4 14% 1% 13% 1%
R5 34% 20% 12% 21%

m
in

ve
r

R1 16% 6% 6% 6%
R2 15% 9% 5% 6%
R3 17% 10% 7% 8%
R4 44% 1% 44% 1%
R5 78% 61% 31% 66%

fd
ct

R1 8% 2% 5% 2%
R2 20% 4% 15% 4%
R3 100% 99% 100% 99%
R4 62% 16% 48% 15%
R5 81% 67% 45% 71%

co
m

pl
ex

R1 79% 19% 72% 16%
R2 56% 5% 52% 3%
R3 100% 0% 100% 0%
R4 92% 5% 92% 1%
R5 100% 60% 95% 71%

Table 4.3: Tests rejections of R1-R5 real hardware time traces. (Original Source:
[220])

time series, but KPSS is not able to detect it, while BDS provides for it. This is due to
the lack of statistical power of KPSS in case of weak stationary, but not strict stationary
time series [168].

Table 4.3 and Figure 4.3 show the results when time traces are generated by execut-
ing benchmark applications on the aforementioned platforms. It is possible to observe
the expected trend of generating less-compliant time traces, with the increasing of the
hardware complexity. The traces generated by the complex benchmark are hardly
analyzable for all platforms due to the lack of variability. This contrasts with the com-
mon logic behind the WCET analysis for which a more stable timing is preferable. The
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Figure 4.3: The reject rates of the four benchmarks executed onto the described plat-
forms. (Original Source: [220])

statistical tests described and the EVT, instead, generally require a minimal degree of
variability, as also shown by Lima et al. [166]. The benchmark complex lacks vari-
ability as it is the only benchmark one – out of the four benchmarks – that performs
simple computation on the same input data for each iteration. For example, in the PIC
microcontroller case (R1), the variability of time measurements of complex bench-
mark is due only to the measurement errors of the instrumentation: the input is constant
for this benchmark, and the PIC microcontroller has a constant instruction timing ar-
chitecture, making the actual execution time constant. The same measurement errors
affect the other experiments, but the variability from software and hardware sources
dominates the measurement errors.

For all the other benchmarks, the simple PIC microcontroller generates determin-
istic time traces that lead to a low rejection rate, close to the significance level, i.e.,
the false positive rate. The MIO and STM platforms present higher values of rejection,
caused by the presence of the operating system and cache memories, respectively. As
expected, and with the only exception of sqrt case, the probabilistic theory cannot
be used for the Odroid, and least of all, the Intel CPU based machine. The only unex-
pected outlier is the fdct benchmark on the Miosix board. Here the rejection rate is
100% without an apparent reason. By observing the time traces, we hypothesize that
the instruction prefetcher, the board is equipped with, causes large recurrent variations
compared to the intrinsic variability of the fdct benchmark, that triggers the detec-
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ACET WCOT DI RejPPI RejKPSS RejBDS RejR/S

sq
rt

P1 408 262 ns 938 217 ns 7 508.3 89% 39% 67% 48%

P2 390 508 ns 426 728 ns 77.5 88% 0% 88% 0%

P3 388 413 ns 413 123 ns 65.6 6% 1% 5% 1%

m
in

ve
r P1 485 854 ns 1 114 823 ns 6 938.3 94% 48% 72% 47%

P2 466 040 ns 1 914 380 ns 128.5 89% 0% 89% 0%

P3 464 227 ns 542 293 ns 69.4 43% 0% 43% 0%

fd
ct

P1 470 208 ns 789 290 ns 6 482.7 92% 39% 67% 48%

P2 450 845 ns 478 049 ns 46.8 100% 0% 100% 0%

P3 450 561 ns 487 578 ns 35.5 100% 0% 100% 0%

co
m

pl
ex P1 429 737 ns 764 678 ns 7 206.3 87% 20% 71% 22%

P2 410 894 ns 447 453 ns 63.9 97% 0% 97% 0%

P3 410 585 ns 443 200 ns 46.7 100% 13% 100% 33%

Table 4.4: Linux PREEMPT_RT result for the four WCET benchmarks considered.
(Original Source: [220])

tion of a short-range dependence. However, this conclusion requires a more in-depth
analysis of the specific system that falls outside this section’s scope.

Generally, the results shown in Table 4.3 highlight an important fact: the single
PPI hypothesis test result depends on both the system and the considered workload.
Moreover, the result is a random variable, that consequently requires to be sampled
several times to assess the capability of analyzing a system by using EVT. Again, the
PPI hypothesis test result (or the result of any single test) is a property of the time traces
provided, not of the system generating such traces.

The Linux kernel has been built as a general operating system and thus not appro-
priate for real-time computing since its main performance goal can be considered max-
imizing the average throughput. For this reason, the PREEMPT_RT patch has been
developed since the first decade of the 2000s, to improve the time predictability of the
Linux kernel. A comprehensive survey of scientific works related to PREEMPT_RT is
available [214] and later presented in Section 5.1.

In this experimental evaluation, we run the same benchmarks used for R1-R5 but
on an Odroid H2, a quad-core x86-64 platform based on COTS components and con-
sequently subject to unpredictable latencies. The goal is to verify if the introduction of
PREEMPT_RT improves the predictability of execution times and which effects PRE-
EMPT_RT has on the probabilistic theory’s applicability. We exploit the PPI index
previously defined in three scenarios:
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P1 On a plain vanilla Linux and the task having no special configuration (like the
previous R5 case).

P2 On a plain vanilla Linux but the task configured with real-time priority and with
core pinning.

P3 On a PREEMPT_RT kernel and the task configured with real-time priority and a
core pinning.

The task under analysis runs together with contenders on other cores that cause in-
terferences at both architecture and operating system levels. The contention has been
generated thanks to the stress-ng tool3. Like the previous tests, each benchmark has
been executed 100 000 times by using time series of size 1 000 for statistical testing, for
a total number of 100 estimations for each benchmark and scenario.

The results are shown in Table 4.4. As common in PREEMPT_RT works, we also
computed the Average-Case Execution Time (ACET), the Worst-Case Observed Time
(WCOT), the Dispersion Index (DI), the PPI value, and its components. DI is computed
as follows: µσ , where µ is the mean value of the time trace and σ the standard deviation.
Looking at the traditional ACET, WCOT, and DI values, it is possible to notice that
applying the correct task real-time priority configuration and the PREEMPT_RT
patch are essential to obtain low variability. In particular, the dispersion index of P2 is
at least one order of magnitude lower than P1, and P3 is slightly better than P2. This
means that the execution times vary in a smaller interval, making it more predictable.
It is possible to notice that the WCOT is much lower in P3 than the other cases. Setting
real-time priority is not sufficient to reduce sporadic high-level latencies, as proved by
the large WCOT of minver benchmark, even larger than the P1 scenario. To reduce
these latencies is crucial for the inclusion of the PREEMPT_RT patch in Linux ker-
nel. Focusing on the PPI index, there is no direct link between DI, WCOT, or ACET
concerning the satisfaction of EVT hypotheses. In fact, even if PREEMPT_RT seems
to improve the satisfaction of hypothesis for sqrt and minver, this is not true for
fdct and complex. Comparing the PPI index with its critical value, it is possible
to conclude that only the scenario sqrt running on PREEMPT_RT satisfies the EVT
hypothesis and makes possible the estimation of a correct distribution.

This example of PREEMPT_RT shows that it is not sufficient to improve the average-
case, worst-case, nor the predictability of the platform to improve the satisfaction of the

3http://kernel.ubuntu.com/~cking/stress-ng/
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EVT hypotheses. A possible future work may be investigating why PREEMPT_RT is
not able to improve the fdct and complex cases and which are the internal kernel
mechanisms and/or architecture components that prevent this.

4.1.3 Lesson learned

Considering the synthetic time traces, the PPI resulted in being very effective in detect-
ing the violation of i.i.d. property. Indeed, the non-compliant time traces have been
rejected with a 100% rate, while the rejection rate of the compliant ones settled in the
range 11.4% – 13.9%. This range represents the false-positive rate of the test, which is,
however, lower than the expected theoretical value of 14%.

For real-time traces from real benchmark applications, we can notice that the PPI
rejection rate trend is coherent with the index meaning. In fact, for predictable plat-
forms, we experienced low rejection rates, while for complex platforms, this is very
close to 100%, as expected.

Finally, we computed the PPI index for the same benchmarks running on a Linux
embedded platform to observe if the PREEMPT_RT patch can make the system EVT-
compliant. The results suggest that it is not possible to claim a priori satisfiability of
the hypotheses, nor we can generally conclude that improving the usual average-case
or worst-case metrics improves the satisfiability as well. The inability to obtain a priori
such information makes the PPI analysis essential.

4.2 Representativity

We already pointed out the importance of the representative hypothesis of probabilis-
tic real-time. This section provides the reader with a clear and formal definition of
this hypothesis, often loosely defined in previous works. In the last subsections, we
instead describe the barriers in reaching the representativity of the time measurements
and which can be the future research directions.

4.2.1 The WCET problem as a dynamic system

For the purposes of this section, we model the WCET in a control-theory fashion with
a dynamic system. We restrict our analysis to a single periodic task τ running on a
single-core processor. We will show that even with this simplistic assumption, the rep-
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resentativity problem of probabilistic approaches is already very challenging. Without
loss of generality, we consider task τ as a task (periodic or aperiodic) activated multiple
times and spawning a sequence of jobs. Its execution time of the k-th job of the task τ
can be modeled like the following time-invariant discrete system:

x(k + 1) = f(x(k), i(k))

T (k) = g(x(k), i(k))

o(k) = h(x(k), i(k))

(4.5)

where x(k) ∈ X is the machine state, i(k) ∈ I is the input, o(k) ∈ O the output, and
T (k) is the execution time of the k-th job. The machine state x(k) includes all values
intentionally or unintentionally stored by the task across job executions – e.g., register
values, the memory content, the available data in the cache. When a job is activated, it
begins the execution with the machine in the state x(k), it processes the input i(k) to
produce an output o(k), and finally, it leaves the system in a new state x(k + 1). The
system’s logical correctness depends on the value of the output o(k), while the temporal
correctness depends on T (k). Because we can model any traditional computing system
as a Turing machine, the function f , g, and h are deterministic functions.

The WCET of this model is the maximum value of T (k) for any valid state and
input. However, in a computing platform, it is usually difficult to set a state, and x(k) is
usually explored by providing an input sequence i(1), i(2), ..., i(n). Consequently, we
write the WCET as the following maximization problem:

C = max
∀{i(1),i(2),...,i(n)}∈In

T (k) (4.6)

This formulation can be simplified if:

• The state x(k) is constant, e.g., a stateless program running on a simple mi-
crocontroller without any cache or other memory items influencing the execution
time. In this casem, C = max∀i(k) T (k) because the WCET is just the maximum
for any input (and not for any sequence of inputs).

• The program does not have any input, or it has an input not affecting state and
execution time. In such scenario, the WCET depends only on the state and is
the maximum execution time measured for any possible state of the machine:
C = max∀x∈X T (k).
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4.2.2 Formal definitions of representativity

The representativity is a term that is sometimes defined in a vague manner. This section
provides formal definitions of deterministic and stochastic representativity for, respec-
tively, the MBDTA and MBPTA approaches, in addition to linking the concepts to
practical situations.

Deterministic representativity. In the MBDTA case, the representativity is simply
the fact that we choose a sequence of inputs able to capture the real WCET. This re-
quirement is formally expressed similar to Eq. (4.6) as follows:

C∗ = max
∀{i(1),i(2),...,i(n)}∈I∗n

T (k)

where I∗ ⊂ I is a set of input sequences. The input subset I∗ is representative if and
only if C∗ = C. Unfortunately, it is usually very difficult to find a subset I∗ so that
it is possible to prove that the previous condition holds. If the system is considered
in a black-box approach (i.e., with no or limited knowledge of f and g), the only way
to find I∗ is to exclude input sequences not compliant with input specifications, and
thus that cannot occur at run-time. For example, if input specifications tell us that
two identical inputs cannot occur in a row, we can exclude all the sequences having
i(k) = i(k− 1), for any k. In a black-box approach, it is essential to know the value of
n: how many inputs are necessary before the state returns to an already visited value.
In real systems, it seems quite difficult to get such information. In some industrial
environments, systems are periodically rebooted at a given rate, making, in this way,
the estimation of n possible. However, this rate is usually measured in terms of days or
weeks, making in this way I∗n still too large. We have an alternative to the black-box
approach when we know something about the functions f and/or g in our model of Eq.
(4.5). For example, a common approach to reducing the input space is to guarantee that
at least all the possible paths in the control flow graph are covered [61], and if, in the
considered architecture, the execution time of the single instruction is independent of
the data, we can then reduce the number of input values to try. However, it does not
provide any information on the representativity concerning the state, so we still need
some information on g, or we have to be able to observe x(k) and detect when we reach
an already visited state. Both solutions present several issues to be effectively used in a
real industrial scenario. The black-box approach is limited to very simple architectures
and programs (e.g., stateless with a small input space). Instead, knowing something
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about f and/or g may help, but the required effort to obtain software and hardware
characteristics is similar to the static analysis, jeopardizing the advantages of MBDTA.

Stochastic representativity. The representativity, in the case of the pWCET, refers
to estimating a distribution that upper-bounds the real distribution. Let G be the prob-
ability distribution computed by the MBPTA algorithm from the sequence of observed
execution times {T (1), T (2), ..., T (n)} generated by the input sequence {i(1), i(2), ...,

i(n)}. This input sequence is said to be stochastic representative if ∀C̄:

F̄G (C̄) ≥ p∗ (4.7)

where p∗ is the real (and unknown) probability of observing an execution time larger
than C̄, and F̄ (C̄) = P (X ≥ C̄) is the ccdf function of the distribution G . An alterna-
tive and equivalent formulation is possible by inverting the ccdf function and obtaining
∀p it must be true that F̄−1G (p) ≥ C∗, where C∗ is the real (and unknown) execution
time at the given probability. It is possible to restrict this condition for only some values
of C̄ or p, instead of having the ∀ operator; in such case, the representativity is valid
only for some values of the WCET or probability of violation.

In MBPTA, the estimation of the distribution is, in general, subject to estimation
errors because of the finiteness of the number of samples {T (1), T (2), ..., T (n)}. For
example, by considering the EVT method, the distribution estimator (e.g., Maximum
Likelihood Estimation) is imperfect or the statistical tests used to check the EVT hy-
potheses have a non-zero error rate. For this reason, we define a new concept of repre-
sentativity by adding to the previous formula a confidence term ϕ. The input sequence
is said to be weak stochastic representative if ∀C̄:

P (F̄G (C̄) ≥ p∗) ≥ ϕ (4.8)

The outer probability refers to committing an error during the offline MBPTA analysis
(with probability 1 − ϕ), while the inner ccdf F̄ refers to a run-time property of the
system, i.e., that the estimated probability of exceeding the execution time C̄ is not
higher than the real one p∗.

4.2.3 Representativity and WCET safety

The concept of representativity of the WCET is strongly connected to the safety of the
WCET estimation. The MBDTA case is simple to describe: any measurement campaign
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must trigger and observe the worst-case scenario, i.e., the system must be executed at
least one time with the state and input values (x(k), i(k)) that maximize T (k). If we
can guarantee that this scenario is observed, then the schedulability analysis can be
safely performed because C∗ = C. Otherwise, we have to consider that the worst-
case observed time is potentially smaller than the real WCET by a quantity δC = C −
C∗. If this quantity δC can be (over-)estimated, then it can be added to the maximum
observed time, and the schedulability analysis can again be safely performed. However,
the value of δC is usually unknown and hard to estimate. Expert-provided values or
empirical upper-bounded are sometimes used, but they cannot formally guarantee a safe
overestimation of this δC, hindering the certification requirements for safety-critical
systems.

Regarding the MBPTA case, the pWCET is safe if the probability to observe a
higher execution time than C̄ is correctly computed. The value C̄ is selected from the
distribution function and used in the schedulability analysis. The violation probability
can be considered as a probability of our task to fail in the safety analysis of critical
systems. For example, an extra event for software failure, with the annotated pWCET
probability, can be added to the Fault Tree Analysis. Using reliability analysis for
logical correctness software faults is definitely not a new concept [162] and can also be
used for temporal correctness violations. However, it is mandatory to formally prove
that the computed probability of failure – i.e., the probability of observing an execution
time larger than C̄ – matches the real one or over-estimates it. Conversely, the safety
analysis potentially incorrect, hindering the certification process.

4.2.4 How do you know what you know?

The title of this section refers to the traditional question of epistemology. This philo-
sophical question has a crucial impact on the evaluation of the safety of the measurement-
based approach and, in particular, on MBPTA approaches. This section aims to discuss
the possibility of having any formal proof for pWCET safety or, alternatively, whether
it is possible to make statistically sound conclusions on the safety of pWCET.

Epistemic vs aleatory uncertainty. The epistemic uncertainty is the uncertainty re-
lated to a model or, in general, the lack of knowledge of a phenomenon. Instead, the
aleatory uncertainty is the intrinsic natural variability of a phenomenon. Let us explain
these two concepts by considering a simple experiment: “Roll a dice”. If we perform
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this experiment several times, we obtain a random sequence of numbers: let us assume
we observed {2, 1, 6, 4, 4}. The reader can apply any statistical estimation technique
on this sequence, but he or she must be aware that it contains both the epistemic and
the aleatory uncertainty. The epistemic uncertainty is because we did not tell the reader
how many faces the dice has, or if it is balanced or weighed. On the other hand, the
aleatory uncertainty is the natural uncertainty of the throw, expressed as a probabilistic
distribution. The epistemic uncertainty can be reduced by increasing the number of
measurements and improving our knowledge of the model. However, increasing the
number of measurements does not reduce the aleatory uncertainty, but it makes our es-
timation more precise. If we perfectly know all the dice parameters (number of faces,
weights, etc.), the aleatory uncertainty still exists. However, the most problematic is
the epistemic one. A good example is from seismology: while statistical techniques
can be used to deal with the aleatory uncertainty, scientists cannot forecast earthquakes
location and time because of the presence of epistemic uncertainty, due to the lack of
data and the high complexity of the model of such phenomena.

Is representativity achievable in a real system? Probabilistic real-time strategies
model the execution time variability with a probabilistic distribution computed using
a statistical technique (e.g., a simple Empirical-CDF or the EVT). Provided that the
proper statistical hypotheses are respected, these techniques find an estimation of the
pWCET distribution parameters. However, it is easy to show that such techniques can-
not deal with epistemic uncertainty. Let us provide a counterexample by considering the
program with the trivial control flow graph of Figure 4.4. If we consider this system as
a black-box, we observe for all the inputs, with the exception of i(k) = 1234, a normal
distribution N(10, 1) of execution times. If we never observe i(k) = 1234, we have no
idea what is going on in the other branch, and whatever statistical technique we select,
it cannot predict something we do not observe. In the case depicted in the figure, the
other branch has a larger execution time (on average), but it could be that the branch we
do not observe contains an infinite loop. Such a silly situation would be undetected by
an MBPTA tool, and its probability is non-estimable. Someone may argue that at least
all the branches should be analyzed. However, the same figure can be rewritten with
states x(k) instead of inputs i(k) and, consequently, also states must be considered.
If all states and inputs have to be observed, then the problem is going back to deter-
ministic representativity (with all the disadvantages described in the previous section),
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and statistical tools are not even needed if there is no aleatory uncertainty. Researchers
should not confuse the representativity with the independent and identically distributed
(i.i.d.) hypothesis common of many statistical techniques, including Empirical-CDF
and EVT. In fact, in the example of the figure, assuming i(k) to be i.i.d. or constant,
T (k) is also i.i.d., but with a mixture distribution. In addition, if i(k) can not be as-
sumed i.i.d., there is epistemic uncertainty also on how i(k) varies. It should also be
noted that the other condition of EVT (the maximum domain of attraction hypothesis)
is usually not satisfied with mixture distributions, while they are satisfied, e.g., by using
an Empirical-CDF. If the case i(k) = 1234 is never observed, then T (k) appears to
a normal distribution, i.e., it would pass the i.i.d. statistical test. Consequently, even
if they are somehow linked concepts, the i.i.d. condition does not necessarily imply
representativity. To better exemplify this concept, let us use the previous example of
“Roll a dice” and use the output face value as our execution time. Let us also assume
that the dice has six faces with values {1, 2, 3, 4, 5, 100}with non-uniform weights such
that the face 100 appears with a very low probability, for instance 10−6 per throw. We
observe the outputs of the rolls several times without having any knowledge of the last
sentence, as we will do in a black-box measurement-based approach of a computing
system. In other words, we have a non-null epistemic uncertainty. If we never observe
100, the output values appear i.i.d. for any test we use, and we will probably estimate
a WCET 5 or slightly higher. The measurements not only appear to be i.i.d., they ac-
tually are i.i.d.: there is no dependence in the throws, and the probability distribution
does not change. This example clearly shows that i.i.d. is a necessary condition for
many estimation methods, but it is not sufficient for achieving representativity.

We discussed epistemic uncertainty, but a question on aleatory uncertainty arises:
what is aleatory uncertainty in today’s computing systems? Basically nothing. By ex-
cluding unexpected hardware effects, such as clock skew or random faults, current in-
dustrial systems are deterministic Turing machines; consequently, the only uncertainty
regarding WCET is epistemic. This uncertainty is because, in a measurement-based
approach, we do not know the perfect model of the architecture (in particular f and g of
Equation (4.5)), the model of the algorithm, and their interactions. The processor clock
may be affected by aleatory uncertainty, but it is usually irrelevant for the WCET com-
putation. DRAM controllers often require a variable time to access a memory cell, with
a timing behavior appearing stochastic, also due to DRAM refreshing. However, this is
again epistemic uncertainty and not aleatory. Some researchers added a pseudo-aleatory
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Figure 4.4: An example of control-flow graph with two different timing behaviors de-
pending on the input value.

behavior to the caches [209]. This was done to improve the satisfaction of the i.i.d. hy-
pothesis for EVT. This technique may have a positive impact also for representativity,
as discussed in the next paragraphs.

Estimating the uncertainty. In statistics, many recent works, not related to proba-
bilistic real-time computing, discussed the problem of estimating epistemic uncertainty
in extreme environments. For example, in 2018, Jones et al. [140] applied Bayesian
uncertainty analysis to quantify the epistemic uncertainty of extreme distributions in
an ocean engineering problem. However, the quantification of epistemic uncertainty
is still an estimation and, by definition, subject to uncertainty. Other methods to es-
timate the uncertainty in the estimation of the epistemic uncertainty are required, but
they would be, in turn, subject to uncertainty. This nested structure of uncertainties
is called the errors on errors concept. In practical applications, someone may argue
that such a recursion can stop at some level. However, taking any estimation as an ob-
jective truth is potentially dangerous, especially when looking at the distribution tails,
e.g. our pWCET, as recently showed by Taleb et al. [245]: Ignoring errors on er-
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rors introduce a significant risk that the tail of the distribution is under-estimated. The
uncertainty estimation problem does not only affect representativity. In probabilistic
real-time literature, statistical tests are the traditional way to verify the EVT hypothe-
ses. The results of statistical tests are often considered valid without an investigation
of the inevitably present uncertainties, as showed in Section 3.3.3. Even when uncer-
tainties have been estimated, errors on errors concept appears, hindering the safety of
the pWCET approaches. The estimation of epistemic uncertainty as a possible solu-
tion to representativity has never been considered in probabilistic real-time. However,
this is still a controversial topic in theoretical statistics, and some researchers consider
it more a philosophical problem rather than a possible realistic estimation. For this
reason, nowadays, it does not appear a realistic solution to integrate the estimation of
epistemic uncertainty in the analyses of safety-critical systems. Alternative solutions to
uncertainty estimation have to be then considered.

Possible future solutions. A possible solution is to eliminate or hide the epistemic
uncertainty by design. If this goal is achieved, then probabilistic real-time could be
used for the certification of safety-critical systems because we can easily estimate the
aleatory uncertainty and safely predict the p∗ of Equation (4.7) and Equation (4.8). One
possible solution to achieve representativity is to make the functions f and g stochastic
rather than deterministic. This is partially achieved by randomized caches, at least
for the state function f . We propose a set of possible solutions promising for future
research studies to zero epistemic uncertainty of the states and the inputs in order to
achieve representativity. To remove the state epistemic uncertainties, possible solutions
are:

1. Using stateless architectures: This is the trivial solution, and many processors are
already available, such as microcontrollers or simple System-on-Chip. Clearly,
these architectures are not very computational powerful, and they are usually
easy to be analyzed with non-probabilistic static tools, vanishing the advantages
of probabilistic real-time.

2. Making all components of the system time-randomized, i.e., in such a way they
produce a correct o(k) but they expose T (k) as a random process with aleatory
uncertainty only (possibly with a single non-mixture distribution, so that EVT
can be applied and stochastic representativity possible). To expose T (k) as a
random process, x(k) should be randomized. The randomization should be done
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Solution Pro Cons
St

at
e

Stateless
systems

• Simple
• Many commercial products

already available

• Low computational capabilities
• Easy to analyze with SDTA

Randomized
architectures

• Very effective
• Implementations for caches

already exist

• Hard to randomize everything
• Loss of performance

Unconventional
architectures

• Potential, but uncertain, benefits
for MBTPA • Early stage of development

In
pu

t

Random inputs • No need to implement anything • Limited use in real applications

Randomized
algorithms

• Effective, make the input
problem irrelevant

• Some strategies already available
from security field

• Not easy to be implemented on
large software

• Loss of performance

Table 4.5: Possible solutions to remove or hide epistemic uncertainty.

by using True (hardware) Random Number Generators (TRNGs), to avoid intro-
ducing epistemic uncertainty that would otherwise be present in Pseudo-Random
Number Generators (PRNGs).

3. Adopting unconventional computing architecture paradigms – for example stochas-
tic computing [99], hyper-dimensional computing [143], or residue number com-
puting [188] – may change how we conceive the computation and, therefore, the
WCET estimation. Stochastic computing was proposed from the early years of
computer science, but it remained substantially an academic exercise due to the
numerous complexity and poor performance issues. However, in the last years,
it is reborn thanks to its use in machine learning environments. It is difficult to
establish if this architecture, the others previously mentioned, or the future ones
may reduce or not the epistemic uncertainty on execution time compared to to-
day’s architectures. It should be noted that the previously mentioned architectures
also have an effect on o(k), possibly introducing issues on functional correctness,
which must not be neglected.

Regarding the input epistemic uncertainties, possible solutions to remove or hide them
are:

4. Using probabilistic real-time for systems having only physical quantities as in-
puts (such as sensor readings), that can be assumed to belong to a statistical dis-
tribution. In this case, even if f and g are deterministic, like in traditional com-
puting systems, they are applied to random variables (inputs i(k)), and then the
processes x(k) and T (k) are also random variables. The inputs i(k) have only
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aleatory uncertainty and no epistemic uncertainty, leaving the epistemic uncer-
tainty only on the models of f and g.

5. Using algorithms that are time-independent with respect to states and/or inputs.
For example, cryptographic algorithms are often randomized in time to avoid
side-channel attacks that would infer the key by analyzing the execution time.
In this case, the goal is to hide the epistemic uncertainty (that would expose the
cryptographic key) and show as much as possible the aleatory variability to make
the attack harder. Similar algorithms could be exploited in probabilistic real-time
to obtain the pWCET, even if we have to take into account that current time-
randomized cryptographic algorithms make considerably worse both the average-
case and the worst-case performance.

To achieve representativity, a combination of the previous solutions can be used. Whether
these solutions can become actually feasible and advantageous is an open question, as
also summarized in Table 4.5. For example, can solution 2) be implemented without
significantly reducing the actual computational capabilities of the platform? The same
question applies to case 5). Solutions 1) and 4) are, instead, very restrictive. Finally,
solution 3) still requires to demonstrate the abilities and convenience of unconventional
architectures and may require several years to have a paradigm shift in industrial prod-
ucts.

Another option exists, but it raises practical and ethical issues. In many other en-
gineering fields, epistemic uncertainty is present and cannot be removed. Engineering
margins are applied based on expert-provided thresholds and past experience. This
also happens for safety-critical systems: for example, in nuclear power plants, statisti-
cal techniques (e.g., EVT) are applied to determine the probability of extreme weather
events and to, consequently, drive the design choices; however, the models of weather
phenomena are still known to be subject to a large and non-quantifiable epistemic uncer-
tainty. Similarly, the embedded systems community may consider the option to do not
perfectly model the WCET, because finding an accurate model for modern architectures
is already too complicated.
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CHAPTER5
Exploitation for Non-Traditional

Real-Time Systems

The previous techniques of probabilistic real-time can be exploited for other systems
rather than computing the WCET for traditional hard real-time setups. The first section
describes how the PREEMPT_RT patch adds real-time capabilities to Linux systems.
Probabilistic methods are probably the only WCET estimation methods that can be
used for a complex kernel like Linux, where the formal proofs of static analyses would
not be affordable. Then, the second section explains how probabilistic information can
be exploited to improve the energy-optimization of mixed-criticality systems. Finally,
the application of probabilistic-WCET estimation to HPC clusters is presented, another
scenario where the traditional WCET estimation tools would fail due to excessive com-
plexity.
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5.1 Linux PREEMPT_RT

The moving towards COTS multi-core platforms described in Section 1.2 makes the
porting of time-unpredictable General-Purpose Operating Systems (GPOSs) to real-
time environments an interesting alternative. Among the GPOSs, the Linux operating
system has evident advantages: tons of scientific and industrial research solutions are
available for a wide number of problems. Thanks to the high number of available li-
braries, often open-source, the adoption of Linux as an operating system can consider-
ably reduce costs and development effort [210]. Complex applications, like Graphical
User Interfaces or machine learning algorithms, require an immense work to be re-
implemented on custom real-time operating systems, due to the common absence of
state-of-the-art libraries.

The advantages and the limitations of using Linux for non-desktop markets are
presented in this section, specifically focusing on real-time applications. The source
code accessibility and portability, the years of industrial and scientific research, and the
amount of already available algorithms and libraries have made Linux a strong alterna-
tive to commercial and specialized approaches, also in embedded environments [124].
As evidence of this trend, real-time Linux has been considered by both the European
Space Agency (ESA) and the National Aeronautics and Space Administration (NASA)
for space and ground applications, including mission-critical software [37, 160, 244].

5.1.1 The real-time patch

The PREEMPT_RT patch of the Linux kernel is actually composed of a set of patches
developed by a group of kernel developers. The project was started by Ingo Molnár, and
the first release was based on kernel version 2.6.11 (March, 2005). This project aims
to trade the throughput of the system with low latencies and predictability, while main-
taining the single-kernel approach, to allow the developers to easily write (user-space)
real-time applications. Among the changes introduced, it is worth mentioning the intro-
duction of two additional preemption levels (a fourth and fifth one): Preemptible Kernel
or Basic RT (PREEMPT_RTB) and Fully Preemptible Kernel (PREEMPT_RT_FULL).
More in detail, the latter allows the real-time tasks to preempt the kernel everywhere,
even in critical sections. However, some regions can still be made non-preemptible, like
the top-half of interrupt handlers and the regions protected by raw spinlocks. The dis-
tinction of which spinlock is raw and which is not is a prerogative of the PREEMPT_RT

104



5.1. Linux PREEMPT_RT

patch.

During the development of the PREEMPT_RT patch, besides the new features in-
troduced, several positive side effects were observed. Systems with this patch applied
are more sensitive to bugs due to latency constraints [105], allowing the kernel develop-
ers to easily discover the bottlenecks of the kernel itself. Moreover, the patch introduced
several scheduler improvements and analysis tools in the kernel mainline.

PREEMPT_RT and co-kernels. The most evident difference between the state-of-
the-art approaches based on co-kernel mechanisms – such as RTAI [176], Xenomai
[101], and RTLinux [259] – and the PREEMPT_RT patch is the absence of a sec-
ond kernel dedicated to the management of the real-time applications. This makes
the implementation of real-time processes in user-space similar to non real-time ones,
apart from having a special scheduling class and priority. Generally speaking, the PRE-
EMPT_RT software development is entirely different from co-kernels: an application
can be executed in “real-time mode” without being rewritten. The programming model
of co-kernel approaches uses specialized system calls, which usually provide the func-
tions to deal with cyclic period tasks, typical of real-time applications. Even consider-
ing the advantages of specialized programming models, they remove one of the most
important advantages of using Linux in real-time environments: exploiting the already
available huge set of drivers and libraries to speed up the application development pro-
cess. It is worth mentioning that even if these drivers and libraries are available in
Linux, additional effort may be required to make them real-time compliant. Overall,
the PREEMPT_RT patch allows the developers to operate in a real Linux environment
in which they can easily reuse most of the existent libraries and tools, including all the
set of functions specified by the POSIX standard.

5.1.2 Literature review

Over the years, several contributions in this sense have been integrated into the Linux
kernel mainline to support real-time. The remarkable ones have been summarized in the
timeline shown in Figure 5.1. A detailed description of the improvements and further
insights of the early RT patches can be found in the articles by Rostedt and Hart [224],
Henriques [125], and Edge [80].
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Figure 5.1: Timeline of merged real-time features in the mainline Linux kernel, most of
them coming from PREEMPT_RT patch. (Original Source: [214])

Interrupts. Linux may incur in unbounded or poorly predictable latencies when deal-
ing with interrupts by the following causes [144, 6, 82]:

• The presence of the well-known priority inversion problem.

• The impossibility to run the worker threads at a proper frequency. The delayed
execution of kernel utility threads may impact on the overall performance of the
system and also on the real-time tasks. A couple of examples are the pdflush
daemon (the thread controlling the writeback mechanism from memory to the
disk) and the kswapd (swap management).

• The problem of assigning priority to interrupt threads in charge of managing the
peripherals shared by tasks of different priority. An interrupt thread providing
services to a real-time task should have equal or higher priority with respect to
the latter in order to serve it with sufficiently low latency. However, when a
low priority task shares a peripheral with a high priority task, it may indirectly
preempt the high priority one with the execution of the interrupt thread.

Some solutions to these problems were proposed. Priority inheritance, to solve the first
problem, was implemented in the early PREEMPT_RT patch [56], since priority in-
version is able to cause unbounded and unpredictable latencies to real-time tasks [144,
224]. More recently, alternative solutions include priority ceiling protocol [44], migra-
tory priority inheritance [38] and Probabilistic-Write/Copy-Select mechanism [263].

RCU. The Read-Copy-Update (RCU) synchronization mechanism [184] was intro-
duced in Linux kernel version 2.6 and then ported by Desnoyers et al. [71] to user-
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space. RCU had an impressive success thanks to the performance improvements in
synchronization. As a consequence, RCU is nowadays extensively used in all kernel
subsystems [185]. The basic idea is to replace the standard read-write locks into RCU
primitives to prevent read-side locks from blocking and to maintain multiple versions of
the object updated by the writers. The RCU technique is particularly useful in scenarios
featuring multiple readers and one writer. Guniguntala et al. [113] showed how RCU
offers deterministic overhead, and it can be effectively used for real-time applications in
PREEMPT_RT based systems. We omit a detailed description of the mechanism since
it is accurately described in the cited papers. The RCU subsystem is still an active topic
in research. Recent works include the modeling and verification of the RCU kernel
code [147, 164], high-level user-space abstractions [71, 192] and proposal for possible
variants of RCU [183, 13, 204].

Tickless. In the Linux kernel, a periodic timer triggers the main event interrupt rou-
tine at a constant rate depending on the HZ value. It updates the internal data structures,
such as the scheduler counters for the process time slices. The advent of high-resolution
timers and the RCU improvements previously described make the inhibition of the pe-
riodic timer event possible. This feature is known as Full Tickless Operation, and,
typically, it is not enabled by default. The first steps towards this achievement were
described in the article of Siddha et al. [237] and some years later on lwn.net by
Corbet [57]. This introduction had extreme importance for the following reasons: (1)
it reduces the power consumption of battery-powered devices when inactive, and (2) it
decreases the extra latencies due to the rate of preemptions triggered by the periodic
timer.

Schedulers. Since kernel version 2.6.23 (October 2007), the Completely Fair Sched-
uler (CFS) [198] is the Linux default scheduler. The system administrator can assign
to each process a scheduling policy and a priority. In Linux, the scheduling policies
traditionally follow the POSIX standard [108]:

• SCHED_OTHER (sometimes called SCHED_NORMAL): default time-sharing
scheduling for best-effort workload.

• SCHED_RR: a priority-based Round Robin algorithm.

• SCHED_FIFO: First-In First-Out policy.
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The real-time classes were tested by Sousa et al. [243]. The authors showed that the
best-effort workload of the system negatively impacted the performance of the real-time
workload. They tested a multi-core system with over 50% of load, and they showed
that the scheduler was not able to guarantee deadlines. Subsequently, they proposed
the scheduling policy Real-time TAsk Splitting (ReTAS) inspired by the state-of-the-
art Notional Processor Scheduling-F (NPS-F) policy [35]. However, this policy was
never receipted by kernel developers. In 2010 the SCHED_DEADLINE policy was
presented [87, 175] and subsequently integrated in the kernel mainline (version 3.14,
March 2014). This scheduler is based on the Earliest Deadline First (EDF) and the
Constant Bandwidth Server (CBS) algorithms.

Memory allocators. Traditionally, for most hard real-time systems, the memory al-
location is statically performed. This because dynamic memory allocators routines may
have unpredictable behaviors, making the estimation of the WCET upper-bound hard
[206]. For example, the regulation DO-178B of avionics software [225] excludes the
possibility to use dynamic memory allocation for safety-critical systems. The more re-
cent version DO-178C [226] introduced general guidelines on dynamic memory man-
agement verification. The major problems affecting memory allocators with respect to
real-time constraints are memory fragmentation and exhaustion, dangling references,
and possible unbounded worst-case (re)allocation time [206, 235], that are clearly un-
wanted effects. In less critical real-time systems, the operating system usually provides
a memory allocator to help the application developers. A noticeable example is the
Real-Time Java Specification that provides a sophisticated hierarchy of memory alloca-
tors dedicated to real-time software [129]. Another example – implemented in several
operating systems, including RTLinux and PREEMPT_RT – is the Two-Level Segre-
gate Fit (TLSF) proposed by Masmano et al. [178]. The key point of this algorithm
is the capability to allocate memory with O(1) time complexity. It is often called the
O(1) memory allocator in Linux communities. However, a previous work exists, in
fact, the first O(1) allocator developed was the Half-fit algorithm [196]. A constant
time complexity entails a bounded worst-case execution time of the memory allocator
independently of applications and data. Regarding general-purpose memory allocators,
Linux has different techniques at the kernel-level and user-level. At kernel side, the slab
allocator [171] guarantees the absence of memory fragmentation, while in user-space
several implementations are available, mostly having linear complexity [92].
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Performance and real-time capabilities. The common trend is not to consider Linux
PREEMPT_RT as a hard real-time compliant solution. The work of Brown and Martin
[40] and the technical report of Chalas [50] led to the conclusion that real-time Linux
systems can be considered 95% hard real-time. These studies compared the latencies
resulting from the execution of specific applications under certain system configura-
tions. The general idea of a 95% hard real-time system is that deadline miss are tol-
erated if they occur with a probability lower than 5%. However the timespan to be
considered is not specified, making this classification not really convincing. A similar
classification, but with 99% constraint, was proposed for the Ach IPC RT Library [63].
All the works in literature agree on the benefits introduced by the PREEMPT_RT patch
in terms of improvements of the scheduling capabilities for real-time tasks. Betz et al.
[28] argued that these improvements become evident when the best-effort workload ex-
ceeds the 75%. However, this result is in contrast with the previously cited paper [243],
in which the authors noticed a real-time performance degradation with a system work-
load greater than 50%. Unfortunately, the two papers make use of very different kernel
versions – respectively 2.6.25 and 3.2.11 – and both lack of details on the actual system
configuration, making the experiments hard to be replicated and compared. Neglecting
the workload effects, in first approximation, we can state that interrupt and scheduling
latencies reported are in the order of micro-seconds (µs) with worst cases smaller than
50µs [15, 83, 49, 89, 120].

Possible uses of the PREEMPT_RT. The PREEMPT_RT patch is promising when
adopted in industrial environment only if the hard real-time requirements are not dic-
tated by safety-critical constraints. Linux could not in fact provide any formal guaran-
tee of WCET using classical static analysis tools. This is due to both kernel complexity
and intrinsic unpredictability of modern architectures. Besides embedded scenarios,
other scenarios can take advantage of the latency reduction and increased predictability
provided by PREEMPT_RT, e.g. multimedia, HPC, and network applications. Time
predictability has gained interest in HPC community, as explained later in Section 5.3.
For academic and research purposes, PREEMPT_RT is a potential candidate for the
development of both applications and test-benches. In the first case, any type of appli-
cation can be implemented and tested in a real-time environment with less effort rather
than using complex RTOS. In test-bench cases, the experimenters can use Linux to test
the performance of scheduling algorithms, IPC calls and any other operating system
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mechanisms. It is important that researchers correctly configure the Linux system in
order to have realistic latencies. This activity has been sometimes neglected and may
lead to erroneous or unreliable conclusions.

PPI analysis. Previously, in Section 4.1.2, we reported an analysis based on the PPI
of a Linux board equipped with PREEMPT_RT. The patch improves the satisfaction
of the conditions only for certain benchmarks, but further investigations are needed to
assess the possible use of PREEMPT_RT for probabilistic real-time systems, and, in
particular, for MBPTA.

5.2 Mixed-Criticality Energy Optimization with Probabilistic

Information

Designing a real-time system with the assumption that a task executes up to its WCET
may lead to system over-provisioning, low utilization, high costs, and excessive pow-
er/energy consumption [180]. This contrasts with the requirement of improving perfor-
mance while maintaining the non-functional property at an acceptable level.

5.2.1 Introduction to mixed-criticality systems

To efficiently utilize the non-negligible gap between the WCET and the actual execu-
tion time, and to minimize energy consumption, resource over-provisioning, and cost,
the Mixed-Criticality (MC) framework [249] received attention from both the scientific
and industrial community. In an MC setup, different software components with differ-
ent criticality levels are integrated into a common platform. To each task, a criticality
level is assigned together with multiple execution time thresholds (at different certifi-
cation/pessimism levels), as described by Vestal’s seminal paper [249]. This value is
inspired by the industry standards for safety-critical systems: for instance, the DO-178C
standard [226] sets 5 levels of criticality: {A,B,C,D,E}, where A is the criticality
level referring to functions that may cause catastrophic failures, while at level E, to
functions that do not affect safety. In real-time computing, this value is interpreted as
the level of assurance of the WCET. To illustrate this concept, let us consider a dual-
criticality system, where the tasks are classified in LO-criticality and HI-criticality. The
tasks belonging to the latter category have two values for the WCET: one value is pes-
simistic, but safe, while the other value is computed with an analysis that provides a
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lower level of assurance, and hence less pessimistic. In this case, the less pessimistic
value may not correctly (over-)estimate the real WCET. Consequently, the execution
time of a task may overrun this value. When this condition happens, i.e., the overrun,
we say that a mode switch occurs.

Existing MC task-set scheduling strategies aimed at: (i) correctly scheduling all the
tasks when the system exhibits less pessimistic behaviors (in this case, the system is
said to be in LO-criticality mode), and, (ii) correctly scheduling the more important
(HI-criticality) tasks under more pessimistic behaviors, while no scheduling guarantee
is given to the less important (LO-criticality) tasks (in this case, the system is said to be
in HI-criticality mode). The system starts running in LO-criticality mode by scheduling
the tasks under optimistic assumptions. When a HI-criticality task violates its assigned
execution time threshold, the system switches to the HI-criticality mode, and it drops
all the LO-criticality tasks to guarantee the deadlines of HI-criticality tasks. However,
discarding (or providing degraded services) to the LO-criticality tasks may result in
severe performance loss and it violates the task independence requirements for safety-
critical systems [85].

A recent work by Bhuiyan et al. [31] handled the precise scheduling of MC systems,
where full service is provided to all tasks under both the pessimistic and optimistic as-
sumptions. They incorporated the Dynamic Voltage and Frequency Scaling (DVFS)
scheme to the precise scheduling strategy and derived the energy-aware CPU speed to
execute in normal mode. However, the optimized energy consumption is in accordance
to the worst-case behaviors under the normal mode. The energy consumption should be
optimized for the average/expected scenarios instead, and the existing MC task model
(with multiple WCETs) does not provide sufficient information to perform such opti-
mization.

5.2.2 Related works

To date, a significant amount of works studied the energy minimization scheduling
technique considering both the parallel and sequential real-time tasks, in a non-MC
platform, few to mention [53, 34, 200, 116, 30, 117, 33]. On the other hand, extensive
research has been done on real-time scheduling of the MC task model considering both
the sequential and parallel workload model (e.g., [18, 21, 81, 115, 32, 163]), without
considering the energy-awareness.

The majority of the above-mentioned works considered the EDF-VD scheduling
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policy, while Lee et al. [157] proposed the MC-Fluid model. In this model, each task
receives a share (dependant on its criticality level) of the available resources. They
also proposed MCDP-Fair, an implementable (on a real hardware platform) variant of
the MC-Fluid. Considering the dual-criticality platform, Baruah et al. [22] proposed
MCF, which provided an improved speedup bound of no greater than 1.33. However,
all these above-mentioned models received criticism (from Ernst et al. [85] and Esper
et al. [86]) of being impractical and unable to maintain the run-time robustness. Also,
a vast majority of the existing works have another limitation, upon a system mode-
switch, no service guarantee is provided to any of the LO-criticality tasks [19, 20, 114,
41, 85]. Some recent works [23, 169, 158] proposed the imprecise mixed-criticality
(IMC) model, that provides degraded service to the LO-criticality tasks even after a
mode-switch.

Little work has been done [130, 194, 216] that considered both energy awareness
and MC scheduling. All these papers assumed that all LO-criticality tasks are dropped
after a mode-switch. The recent work in [31] proposed the technique to provide a full-
service guarantee to all LO-criticality tasks (even after a mode switch) and most related
to this work. However, it is also based on the pessimistic assumption that all the tasks
will execute up to their WCET (at the corresponding system criticality level) and did
not consider the probabilistic information to derive the LO-criticality execution time
thresholds.

5.2.3 The proposed solution

In the work presented in this section, we propose to exploit the probabilistic information
not to directly estimate the WCET for scheduling analysis purposes, but to use them for
the optimization of the system energy consumption. Differently from previous proba-
bilistic approaches, the focus of this work is the satisfaction of real-time requirements
with a deterministic approach and on top of that, exploiting the probabilistic informa-
tion to minimize the expected energy consumption of the system.

Existing works aimed at minimizing energy consumption at LO-criticality mode,
but considered a pessimistic assumption that all the tasks execute up to their WCET,
at their respective criticality levels [31]. Since a task rarely needs to execute up to its
WCET, we integrate the probabilistic based prediction strategy and the DVFS scheme
to the precise scheduling of MC tasks. The main innovative concepts are:

1. An energy-aware scheduling strategy that selects the proper (optimistic) WCETs
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for tasks and the processor speeds under both (LO- and HI-criticality) modes
to minimize the overall average energy consumption. This optimization is per-
formed via a novel probabilistic analysis of the execution time, coupled with a
dedicated response time analysis which guarantees the timing correctness of all
tasks under both the pessimistic and optimistic assumptions.

2. A variant of an existing MC non-preemptive fixed-priority uniprocessor schedul-
ing policy is proposed to integrate the speed changing between different modes
and to remove the undesirable dropping of LO-criticality tasks.

3. Based on a randomly generated task sets, we conduct extensive simulation stud-
ies which supports the effectiveness of our algorithm (with respect to energy con-
sumption).

5.2.4 Problem formulation

We consider a task-set τ = {τ1, τ2 · · · τn}, running on an uniprocesssor, where each
task τi ∈ τ is an implicit deadline periodic task, i.e., the task deadline equals its period.
Each task τi ∈ τ generates an unbounded number of jobs τi,j , where j can be an arbi-
trarily large number with j ≥ 1. We represent τi by a 5-tuple {Ti, CLO

i , C
HI
i , pETi, Li},

where Ti is the inter-arrival time between two subsequent jobs of τi, CLO
i and CHI

i re-
spectively denote the LO and HI-criticality Worst-Case Execution Time (WCET) of τi,
pETi the probabilistic profile, and Li is the criticality level, where Li ∈ {LO,HI}. We
also define, for convenience of the subsequent notation, the two complementary subsets
τ LO = {τi ∈ τ : Li = LO} and τ HI = {τi ∈ τ : Li = HI}.

The proposed approach works with non-preemptive fixed-priority schedulers. The
necessity of this restriction on scheduling will be detailed later in this section, while the
extension to dynamic priority schedulers is left as future work.

The system is assumed to be equipped with some sort of power/energy control tech-
niques of the hardware, such as the DVFS. To simplify the theoretical analysis, we
normalize the system speed such that it is assumed that the system executes all jobs at
speed sHI ∈ (0, 1] under HI-criticality mode, while sLO ∈ (0, 1] denotes the system
speed under LO-criticality mode. Specifically, s = 1 when the system is running at
its maximum speed; s < 1 when the system is slowed down to the fraction s of the
maximum speed. When s < 1, the execution times are linearly scaled according to s.
Note that the WCET and the probabilistic information of the task model always refers to
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Figure 5.2: Exemplification of the speed-change mechanism during mode transition
to HI-criticality and the switch back to LO-criticality mode after idle. (Original
Source: [29])

s = 1 condition, and they can be considered the amount of work to be executed. Given
the WCET Ci of the i-th task, the actual execution time in the system becomes Ci

s for
under executing speed of s. The period (and the deadline) does not scale according to
s and they remain fixed. Since, in our strategy, the speed can change only once per job
execution, any overhead to change the DVFS setting is assumed included in the WCET
and negligible with respect to the probabilistic execution time. The energy consumed
by the job of a task depends on s as well as the actual execution time of the job. We use
the symbol ε(x, s) to indicate the energy function that relates the execution time x and
the speed s to the energy consumption. Such function is hardware dependent and can
be arbitrary: the following analysis works with any energy model, including nonlinear
formulations for ε(x, s).

Mode switch mechanism and correctness requirements. Most of the existing pa-
pers on MC systems adopt the system mode switch effect, i.e., dropping LO-criticality
tasks when a HI-criticality task overruns its CLO

i . Instead, we adopted the speed-change
mechanism, so that each task τi (including LO-criticality ones) is guaranteed to be exe-
cuted under any condition. The system mode switch to HI-criticality causes an increase
of the processor frequency to guarantee that all jobs are correctly schedule. The pro-
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posed approach is depicted in Figure 5.2. Resource/Energy efficiency is achieved in
LO-criticality mode by optimizing the trade-off between the minimum system speed
and probability of mode-switch. Let sLO (and sHI) denote the processor speed when the
system is in LO-criticality (and HI-criticality, respectively) mode. Same as the classical
MC setting, the system switches its mode to HI when a HI-criticality task overruns its
CLO
i . During the HI-criticality mode, the processor runs at high frequency sHI in order

to be able to schedule all the jobs even in the most pessimistic assumptions. The sys-
tem reverts to LO-criticality at the end of each hyperperiod, or when the system is idle,
whichever comes earlier. The values of sLO, sHI, and CLO

i depend on the schedulability
of the task set and they impact the system energy consumption. For this reason, the goal
of our approach is to select such parameters so that the energy is minimized, according
to probabilistic information, while guaranteeing the schedulability of the whole task-set
according to deterministic WCET.

Definition 5.2.1 (Probabilistic profile). The probabilistic profile of the execution time
of a task τi is identified by the symbol pETi and it is a 3× k matrix defined as follows:

pETi =


e1 e2 · · · ek

fi(e1) fi(e2) · · · fi(ek)

Fi(e1) Fi(e2) · · · Fi(ek)

 (5.1)

where e1, e2, ..., ek are execution time values, f(·) is the pmf, and F (·) the cdf. Even
if the last two rows are redundant (pmf from the cdf is computable and vice versa), this
simplifies the notation in the subsequent sections. �

Example 5.2.1. Let consider the following execution profile:

pET1 =


5 7 12 19 20

0.10 0.60 0.25 0.04 0.01

0.10 0.70 0.95 0.99 1


It represents the statistical distribution of the execution time of the task τ1. The prob-
ability that a task requires 5 unit of execution time is 0.1, for 7 unit of execution time
case the probability is 0.6 and so on. The last row represents the cdf, for example the
probability that the execution time is less or equal to 12 is 0.95. The icdf in this case
would be F−1(0.95) = 12. �
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In this section, we considered the probabilistic profile, and the related statistical
functions, as discrete. To estimate the fi and Fi of the tasks, an experimental campaign
must be carried out to directly measure the execution time of the task. Since, in this sec-
tion, we are not interested in the probabilistic-WCET, but on the full probabilistic profile
of the execution time, the ecdf method described in Section 2.1.1 is used. This method
enables to estimate the values Fi by directly measuring n-samples of the execution time.
To obtain a precise estimation of the probabilistic profile, the task should experience as
much as possible execution conditions during the measurements, i.e. inputs and states.
The precision of the ecdf estimation is derived from the Dvoretzky-Kiefer-Wolfowitz
inequality described in Section 2.4.1. For example, if n = 10000 samples are acquired,
with a confidence of c = 10−6 the maximum absolute error on the cdf is lower than
ε ≤ 0.02. More sophisticated statistical techniques can obtained better results with a
smaller number of samples, but this analysis would be out of scope with respect to the
goals of this work. It is important to remark that this probabilistic information is used in
this work only for the optimization of the energy and it does not impact the schedulabil-
ity analysis. Consequently, inaccuracies in the probabilistic execution time estimations
affect only the optimality with respect to the energy consumption and it does not affect
the satisfaction of the real-time constraints.

WCET in LO-criticality mode. In most of traditional MC works, the value of WCET
in LO-criticality mode, i.e. CLO

i , is assumed to be given or empirically selected accord-
ing to a defined percentage of the HI-criticality WCET. In this work, instead, we com-
pute the CLO

i so that it minimizes the energy consumption1. In fact, there is a trade-off
between the probability to switch to HI-criticality mode and the minimum achievable
speed in LO-criticality mode. Large values for CLO

i would delay the activation of the
HI-criticality mode, thus reducing probability of this event to happen, but it requires to
increase the minimum speed in LO-criticality mode in order to guarantee the schedula-
bility. While, a small value forCLO

i would decrease the minimum speed in LO-criticality
mode, but increases the chances of a mode-switch and, if it happens too frequently, it
may produce the opposite effect of increasing the energy consumption. The approach
to select CLO

i in this work is based on the probabilistic profile, and in particular, by ex-
ploiting the icdf: a value pLO→HI, that represents the probability per job to switch from

1Although the calculation under such a purpose would technically lead to execution thresholds that have
nothing to do with ’worst-case’, we nevertheless still follow the traditional MC work in the real-time and
embedded systems community by calling them WCET under the LO-criticality mode.
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Figure 5.3: The overview of the proposed energy-optimization approach.

LO-criticality to HI-criticality, is selected according to the optimization problem and
used to compute the WCET with the icdf.

Solution overview. The flow of the approach proposed in this section to solve the
previously defined problem is outlined in Figure 5.3. Note that, real-time task schedul-
ing requires a strict timing guarantee. To ensure that the WCET prediction does not
compromise the system schedulability, we propose an approach composed of two opti-
mization algorithms that contribute to obtaining the schedule that requires a minimum
average energy consumption while guaranteeing that no task will miss the deadline.
The probabilistic information is used only for the energy minimization and not for
the schedulability test. Our schedulability test remains safe by using the determinis-
tic WCET, i.e., as far as the worst-case estimations are trustworthy, our solution will
guarantee worst-case correctness.

1. The outer optimization that selects the WCET of the task in LO-criticality mode,
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i.e. CLO
i , by choosing the best value for mode switch probability pLO→HI that

leads to the minimum average energy. This goal can be formally written with the
following optimization problem:

min
pLO→HI

E[ε(x, sLO)] (5.2)

where E[·] is the expected value operator over the execution time x and sLO is
computed by the inner optimization algorithm from pLO→HI.

2. The inner optimization chooses the minimal sLO, which ensures the task set to be
schedulable according to the response time analysis. This analysis is not reported
in this thesis but available in the original paper [29]. Once we compute sLO and
generate an output schedule, the energy estimation procedure takes this schedule
as input. This computes, thanks to the probabilistic information, the average
energy, which is, in turn, used in the outer optimization algorithm.

3. Finally, the optimal values for sLO and pLO→HI are computed, together with the
optimal schedule, with respect to the average energy minimization, to be applied
online.

5.2.5 From probabilistic execution time to average energy consump-
tion

According to the output of the response time analysis described in the original paper
[29] and a fixed priority assignment protocol, it is possible to build an ordered schedule
of m periodic jobs {J1, J2, ..., Jm} forming a complete hyperperiod. Note that Ji ∈
{τj,k} ∀j, k where τj,k is the definition of job of the previous section. The notation
change is necessary to highlight the job position in the overall job schedule. Formally,
we also assume that each job has the same properties of its parent task, e.g., the WCET
CHI
i of the job Ji is the same value CHI

k of the task τk such that Ji = τk,j for some k, j.
Because all the jobs are periodic and the scheduling is fixed-priority non-preemptive,
the job schedule is known at design-time and fixed. This restriction allows us to perform
the following energy analysis.
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5.2.6 Determining a mixture distribution for pET

As part of the minimization problem, we assume in this section to have selected a
system-level probability pLO→HI, as the probability of a HI-criticality job to overruns
its CLO

i . The value CLO
i is computed with the icdf of the pETi distribution: CLO

i =

F−1Xi
(1 − pLO→HI), where Xi is the random variable of the execution time distributed

according to pETi. In the task model we assumed that pETi, CLO
i , and CHI

i have been
computed for a processor speed of s = 1. According to the linearity assumption of the
execution time with respect to the processor speed, we define the random variable XLO

i

as the execution time in LO-criticality mode of the i-th task. The probabilistic profile of
its execution time is:

pET LO
i = Tx




sLO

1− pLO→HI

1− pLO→HI


�−1

� pETi

 (5.3)

where � is the symbol of Hadamard product2 and Hadamard power3, x is the column
number of CLO

i in pETi and Tx is the function that truncated the matrix from 3 × k to
3 × x by removing the upper part. For LO-criticality tasks, x = k, thus no truncation
occurs. Similarly we define the probabilistic execution time when the task starts in HI-
criticality mode pET HI

i and when it starts in LO-criticality but a mode switch occurs to
HI-criticality pETTRi :

pET HI
i =


sHI

1

1


�−1

� pETi (5.4)

pETTRi = T ′x




sHI

pLO→HI

pLO→HI


�−1

� pETi +


K · · · K

0 · · · 0

0 · · · 0


 (5.5)

where K = CLO
i /sLO − CLO

i , x is the column number of CLO
i in pETi and T ′x is the

function that truncated the matrix from 3× k to 3× (k − x) columns by removing the
2Each element in the i-th row of the left matrix is multiplied by the i-th number of the right vector; the

output has the size of the matrix.
3Element-wise power operation; the output has the size of the vector.
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lower part. The pETTRi represents only the upper-part of the execution time, i.e. after
the transition to HI-criticality mode. This means that it has already executed for a time
period of length CLO

i /sLO and the amount of work already completed is CLO
i .

Example 5.2.2. Given the task of Example 5.2.1 and choosing a HI-mode switch prob-
ability pLO→HI = 0.05 with sLO = 0.5 and sHI = 1, the WCET for the LO-criticality
mode will be CLO

i = 12 and the probabilistic execution time in LO-criticality mode is:

pET LO
1 =


10 14 24

0.11 0.63 0.26

0.11 0.74 1


The probabilistic execution time when the task starts HI-criticality mode is equivalent
to the original distribution because sHI = 1:

pET HI
1 = pET1 =


5 7 12 19 20

0.10 0.60 0.25 0.04 0.01

0.10 0.70 0.95 0.99 1


And the probabilistic execution time after a transition of the task from LO-criticality to
HI-criticality is:

pETTR1 = pET1 =


31 32

0.8 0.2

0.8 1


When the transition occurs, the task has already executed 12 amount of work in 24 time
units, while 7 and 8 units remain to be executed in HI-criticality mode, for a total of 31

and 32 units of time. �

Figure 5.4 depicts the probability tree diagram for a generic HI-criticality job Ji.
In particular, at the beginning of the execution of the job Ji, the system can be in LO-
criticality mode or in HI-criticality mode, respectively with probability 1 − pHI

i and
pHI
i . In the latter case, the job runs in HI-criticality mode and its execution time is dis-

tributed according to the pET HI
i distribution. In the first case, the job starts to run in

LO-criticality mode and possibly switches to HI-criticality if it overruns its CLO
i . This

happens with the already defined probability pLO→HI universally set for all tasks. The
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Figure 5.4: The probabilistic event tree of an HI-criticality job. (Original Source:
[29])

task execution time is distributed in the LO-criticality part according to the pET LO
i dis-

tribution, while after mode switch it is distributed according to the pETTRi distribution.
Consequently, we can write the probability mass function of the execution time of the
i-th job starting to run in LO-criticality mode as the following mixture of mass functions:

f LO+HI
i (x) = (1− pLO→HI)f LO

i (x) + (pLO→HI)fTRi (x) (5.6)

where f LO
i (x) is the pmf of pET LO

i and fTRi (x) is the pmf of pETTRi . This function
includes both the case that Ji exceeds its threshold and the case that it finishes before it.
To characterize the execution time distribution of Ji, we need to know the probability
that the job starts in HI-criticality mode: pHI

i , which depends on the previously executed
jobs. In particular, since the pLO→HI is the same values for all tasks, it depends on the
number of previous HI-criticality jobs and the probability of incurring in idle time (that
would switch back the system mode to LO-criticality). Informally, the probability pHI

i

can be written as:
pHI
i = P [(A ∪B) ∩ C] (5.7)

where the following events have been considered:

• A : Ji−1 starts in HI-criticality mode
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Algorithm 5.1 Estimation of the probability for a job to start in HI-criticality mode
(pHI
i ). (Original Source: [29])

1: pHI
1 ← 0

2: pETconv ← pET ∗1
3: for j ← 2 to i− 1 do
4: . Compute probability for P (A ∩ C)

5: P (A) = pHI
j−1

6: P (A|C) = 1− F ∗j−1
(
aj

∣∣∣⋃k<j(Xk > CP LO
k )

)
7: P (A ∩ C) = P (A)P (C|A)

8: . Compute probability for P (B ∩ C)

9: P (B) = P (Xj−1 ≥ CLO
i−1) = 1− F LO

j (CLO
j−1)

10: P (C) = P (
∑j−1
k Xj ≥ ai) = 1− F ∗conv(aj)

11: P (B ∩ C) = P (B)P (C)

12: . Update variables
13: pHI

j = P (A ∩ C) + P (B ∩ C)

14: pETconv ← convolute(pETconv, pET
∗
j )

15: end for

• B : Ji−1 exceeds CLO
i−1

• C : system not idle after Ji−1

The events are not independent, but the probability pHI
i can be computed incrementally

as follows. Equation (5.7) can be rewritten as pHI
i = P (A ∩ C) + P (B ∩ C), as the

events A and B are disjoint (consequently, the probability of the union of events is the
sum of their probability). P(B) is always 0 if the job is belonging to a LO-criticality
task. The computation of pHI

i is showed in Algorithm 5.1. The algorithm starts with
the fact (line 1) that the first job would run in LO-criticality mode (any HI-criticality
mode is reset to LO-criticality at the end of the hyperperiod). From this, it is possible
to compute the pET LO+HI thanks to Equation (5.6) and consequently compute the cdf
needed for P (A|C) (line 6). Then, P (B ∩ C) can be easily computed as B and C are
independent: the execution time of each job is independent with the previous ones. To
compute C we need the distribution of the sum of execution time, that is incrementally
built using the convolution operator (line 14).

Once the value pHI
i is recursively computed, we can compute the final mixture of
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probability mass distribution of the execution time of the job Ji that takes in account
any system mode conditions and switches:

f∗i (x) = (1− pHI
i )f LO+HI

i (x) + pHI
i f

HI
i (x) (5.8)

Average energy consumption. In our assumptions, the energy consumption of a job
is a function ε(x, s), where x is the execution time and s the processor speed. This
function can be either linear or superlinear (which is the case for almost all existing
energy models). To compute the average energy from the probabilistic information, it
is sufficient to apply the energy function to each element of the first rows of pET LO

i ,
pET HI

i , and pETTRi , with respectively s = sLO for the first and s = sHI for the last
twos, obtaining 3 new probabilistic energy profiles pECLO

i , pECHI
i , and pECTRi . The

energy analysis is performed by recomputing Equation (5.6) and Equation (5.8) using
the new matrices pEC·i . Consequently, the final f∗i (x) function becomes the statistical
distribution of energy. From this distribution we can compute the expected value of
the energy E[ε] =

∑
x · f∗i (x) that is, in turn, used as optimization cost function in

Equation (5.2). The computational complexity of the energy analysis is mainly domi-
nated by the convolution operator in line 14 of Algorithm 5.1. The perfect convolution
has exponential complexity, however, state-of-the-art approximated solutions exist with
complexityO(m logm) wherem is the number of columns of the previous pET matri-
ces. Algorithm 5.1 is executed for each job, so the overall complexity isO(n·m logm),
where n is the number of jobs. Even if the value of n is not necessarily small, the anal-
ysis is performed at design-time, it has no overhead at run-time, and the scheduler is
very simple.

Example 5.2.3 (Probabilistic energy computation). To better clarify the whole proba-
bilistic algorithm, we describe a toy, but complete, example. Let us consider a simple
task-set composed of one HI-criticality task and two LO-criticality tasks τ̄ = {τ1, τ2, τ3}
with the following characteristics:

τ1 = (15, CLO
1 , 6, pET1,HI)

τ2 = (30, 5, //, pET2,LO)

τ3 = (30, 3, //, pET3,LO)
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and the following probabilistic profiles4:

pET1 =


3 6

0.95 0.05

0.95 1

 , pET2 =


2 5

0.95 0.05

0.95 1



pET3 =


1 3

0.95 0.05

0.95 1


We set pLO→HI = 0.05 and sHI = 1. We compute the LO-criticality WCETs for the
HI-criticality task: CLO

1 = 3. The minimum speed computed according to the schedu-
lability analysis is sLO = 0.7. Then, we obtain – similarly to Example 5.2.2 – the three
probabilistic profiles in LO-criticality mode:

pET LO
1 =


30/7

1

1

 , pET LO
2 =


20/7 50/7

0.95 0.05

0.95 1



pET LO
3 =


10/7 30/7

0.95 0.05

0.95 1


Since sHI = 1, the HI-criticality profiles are equivalent to the original ones: pET HI

i =

pETi. The probabilistic profile for transitions is defined for the HI-criticality task only
(because LO-criticality tasks cannot generate a mode switch):

pETTR1 =


6 + 30/7− 3

1

1

 =


51/7

1

1


We consider a Rate Monotonic scheduler with hyperperiod H = 30. The schedule is
then: {J1, J2, J3, J4} ∈ {τ1, τ2, τ3, τ1}. The Algorithm 5.1 can now be used to obtain

4Please note that this is an abuse of notation for pETi, because its suffix i refers to the job and not to
the task. However, as subsequently presented, the first three jobs J1, J2, J3 correspond to the three tasks
τ1, τ2, τ3.
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the final probabilistic time profile. The simplicity of the example allows us to explain
step-by-step the solution:

1. pHI
1 = 0: the first job starts for sure in LO-mode

2. pHI
2 = pLO→HI: referring to Equation (5.7), the event B is not possible because J2

belongs to a LO-criticality task; C is always verified because the arrival times of
J2 and J3 are the same and the scheduler is work conserving

3. pHI
3 = pLO→HI: the considerations of the previous step are valid also for J3

4. pHI
4 = 0.000125, as subsequently explained

To compute pHI
4 we should have computed the pET ∗ and then the convolution of them,

to obtain the probability P (C), i.e. there is no idle time after J3. For the sake of this
example, this probability could be easily computed by the following reasoning: J4 can
start in HI-mode only if J1 switched to HI-mode (with probability 0.05) and there is no
idle time after J3. This happens when both J2 and J3 runs until their WCET 5 and 3: the
probability of this event is 0.05 ·0.05 = 0.0025. Then, pHI

4 = 0.05 ·0.0025 = 0.000125.
Assuming, for simplicity, that ε(x, s) = x, we compute the average energy per job:

E1[·] =
∑
x

x(0.95f LO
1 (x) + 0.05fTR1 (x))

E2[·] =
∑
x

x(0.95f LO
2 (x) + 0.05f HI

2 (x))

E3[·] =
∑
x

x(0.95f LO
3 (x) + 0.05f HI

3 (x))

f LO+HI
4 (x) = 0.95f LO

4 (x) + 0.05fTR4 (x)

E4[·] =
∑
x

x
[
(1− 0.000125)f LO+HI

4 (x) + 0.000125f HI
4 (x)

]
For example, the first term is computed as:

E1[·] = 30/7(0.95 · 1 + 0.05 · 0) + 51/7(0.95 · 0 + 0.05 · 1) = 4.44

The total average energy is then the sum of the individual energy components:

E[ε] = E1 + E2 + E3 + E4 = 4.44 + 3.02 + 1.54 + 4.39 = 13.39

�
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5.2.7 Simulation evaluation

In this section, we report the evaluation result of our algorithm regarding the energy
optimization. The results related to the scheduling analysis are available on the original
paper [29]. To simplify the experimental evaluation, without loosing generality, we
considered sHI = 1, i.e., the maximum achievable speed in HI-criticality mode is set at
the maximum processor speed.

Simulation parameters. In order to perform the simulation, we selected the NXP
i.MX6 SABRE board, for which the energy function and the relation voltage-frequency
is known [179]. The speed is assumed proportional to the frequency5. The considered
energy function is:

ε(x, s) = x
(
aC · V 2f + Pleak

)
aC = 3.4 · 10−10, Pleak = 0.052

V 2f =

(
0.95 + 0.0005

f − 396 · 106

106

)2

· f

where f is the frequency computed as f = s · max_freq, aC has been experimentally
obtained, V 2f comes from [179] and Pleak has been taken from the SoC datasheet. The
selected values for exploration are pLO→HI ∈ [0.01; 0.50] and sLO ∈ [0.5; 0.9]. The
considered fixed priority assignment algorithm is Rate Monotonic (RM).

Results. Figure 5.5 depicts the exploration of 10 random task-sets by varying pLO→HI,
i.e., the results of the external optimization algorithm. Figure 5.5a refers to a total
utilization of U = 0.25 and Figure 5.5b refers to a total utilization of U = 0.50.
The figures show the schedulability and the amount of energy saved with respect to
the minimum energy consumption of each dataset. When utilization is low, the task-
sets are schedulable for any value of pLO→HI (with only one exception for task-set 1).
Instead, when the utilization increases, it is possible to notice that pLO→HI represents
a critical choice to the schedulability: the schedulability for U = 0.50 increases to
90% compared to the range of 50%-70% from the schedulability analyses presented

5This is not necessarily true in architectures with variable timing instructions. However, in this case, the
workload would play a key role in the definition of the energy function, as also in the WCET analysis. In any
case, the presence of variable instructions timing would not invalidate our analysis, but it would add excessive
verbosity without adding any innovative content.
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(a) U = 0.25

(b) U = 0.50

Figure 5.5: Energy of the 10 datasets analyzed with our framework, depicted by the
energy loss percentage with respect to the minimum found for each dataset. The
(pLO→HI, sLO) couples with the minimal energy consumption are showed on the right
columns. (Original Source: [29])

in the original paper [29]. The choice of pLO→HI, as expected, also impacts on energy
optimization. The optimization function is clearly non-convex and numerical methods
are necessary. Some choices of pLO→HI are very far from the optimal, for example,
dataset 1 in the U = 0.25 case, the value pLO→HI = 0.24 leads to a energy consumption
value 1.79x times larger than the optimal value at pLO→HI = 0.4. For other task-sets,
like 6-9 in Figure 5.5a, the saved energy is instead small. No direct relationship can be
derived with respect to the sLO value: increasing utilization requires a larger sLO, but no
general conclusions can be drawn for a fixed utilization value.

We run a simulation with 2500 task-sets by varying the utilization in the range (0, 1].
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The analysis carries out the optimal value for pLO→HI that corresponds to the minimal
energy. Then, this value is compared to the baseline of randomly select pLO→HI. The
improvements on energy consumption corresponds to 10.0% on average and 46.4% on
maximum energy saved values.

5.2.8 Lesson learned

Previous works usually assumed given the value of LO-criticality WCET CLO
i , or fixed

to a given proportion of the HI-criticality WCET. However, when energy plays a role
in the analysis, that choice is critical to reach the optimality. This is especially evi-
dent when DVFS mechanism is used to reduce the power consumption during the LO-
criticality mode of the system, because the choice of sLO impacts on both schedulability
and energy consumption. Choosing these values to optimize the energy for the average-
case (the most common) is non-trivial. Our approach optimized the energy consumption
by selecting the best value for pLO→HI, and consequently the value of CLO

i , and the best
value of sLO, obtaining a significant value of saved energy.

Applicability to real systems. Despite this work is highly theoretical, the deploy-
ment of this approach is straightforward. In fact, both scheduling and probabilistic
analyses are performed offline and a well-known fixed-priority scheduler is used at
run-time, minimizing the impact on software development and integration. The proba-
bilistic profiles are obtained by measuring the execution time of the tasks directly on the
real platform, while the WCET is computed with a state-of-the-art static timing analy-
sis tool. Even if our analysis does not take into account scheduling and DVFS-change
overheads, the number of frequency changes is upper-bounded to only one time per HI-
criticality job. Assuming that the overheads are small compared to the execution time
of the tasks, they can be simply added to the tasks WCET, without a significant impact
on the solution optimality.

Future works. This work may trigger several future research directions. Here, we
restrict our attention to the uniprocessor platform and dual-criticality levels. We plan to
extend our work to adopt the multi-processor platform and to consider multi-criticality
levels. Another research direction includes the study of how to apply the analysis to
variable priority and/or preemptive schedulers, e.g., Earliest Deadline First. This may
include an on-board implementation of our algorithm to measure the actual energy sav-
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ings and to study online reactive algorithms. Such algorithms can potentially tune the
scheduling parameters at run-time in order to reach the optimal energy consumption
even in the case when external factors modify the initial assumptions.

5.3 Heterogeneous Computing and HPC

Section 1.4.2 discussed the emerging timing requirements of HPC applications. To
satisfy such requirements, the current approaches described in Section 2.5.3 are not
sufficient to obtain real-time performance, and traditional real-time techniques from the
embedded world are not applicable because moving HPC resources towards special-
ized components and custom real-time operating systems is not only hardly feasible
from the cost standpoint, but it would probably reduce the overall system utilization.
With specialized components, the general-purpose capability of the architecture is lost,
reducing the number of executed jobs and requiring applications to be specifically de-
veloped for the specialized architecture. Moreover, real-time software and hardware
components would sacrifice the overall average performance, which is not acceptable
for shared HPC systems, where the throughput and the system capacity are the flagship
performance metrics.

5.3.1 The proposed solution

To guarantee the timing predictability of the applications, without impacting the HPC
infrastructure and its overall average performance, we propose relying on probabilistic
real-time and, in particular, on MBPTA. In HPC, the safety requirements are less tight
than embedded applications because a full certification process is not required. More-
over, for several HPC applications, the scale of the time constraints is typically more
coarse-grained compared to embedded systems: the order of magnitude of the execution
time of a typical HPC job is minutes or hours. Conversely, in embedded systems, typi-
cal applications include tasks with deadlines below one second. In practice, this means
that missing a deadline for few processor cycles is negligible for HPC requirements –
while it may not be for some embedded scenarios. For these reasons, the HPC scenario
can still benefit from probabilistic real-time approaches, despite the work-in-progress
status of its theoretical framework. Finally, it is worth considering that accurate WCET
estimations are not only needed for satisfying application requirements, but they can be
very attractive to support the run-time resource management and job scheduling sys-
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tem. Suitable resource allocation and scheduling policies may, in fact, benefit from the
possibility of knowing in advance the number of computing resources to allocate to a
ready task, in order to guarantee a given WCET (or vice versa). This strategy would
implicitly minimize the resource over-provisioning, and thus costs while maximizing
the workload in execution.

In this section, we use the term Cyber-Physical Systems (CPS) to refer to the sys-
tems where MBPTA is usually applied, such as the embedded systems, as opposed to
the HPC.

5.3.2 From cyber-physical systems to high-performance computing

The use of probabilistic real-time techniques in CPS differs from the HPC case. This
section presents the difference in the task models, the current status and limits of prob-
abilistic real-time research in CPS, and the advantages of using this technique for HPC.

The differences of system models. Before proceeding with the following discussion,
it is necessary to clarify a difference in the terminology currently used in the respec-
tive contexts: CPS and HPC. In real-time CPS, a task is part of an application and it is
characterized as we presented in Section 2.4, i.e., in its simplest form, by the following
task model: τi = (Ti, Di, Ci). The task “spawns” jobs at (a)periodic intervals, that
are usually considered single-thread and they are characterized by an arrival time ai,j
and a finishing time fi,j . The difference si,j − ai,j represents the waiting time for the
job, where si,j is the starting time of the j-th job spawned by the i-th task. In HPC,
a job is a different concept: the user sends a request to the resource manager to run
a particular job with pre-defined resource requirements, such as the number of nodes
and processing cores. Once the resources are available, the resource manager launches
the job execution on one or more nodes. The HPC job is much more complex than the
CPS one. It usually consists of multiple threads and/or multiple processes that usually
need to synchronize and share data. Regarding the timing properties, similar to CPS, a
job has an arrival time ai,j , a starting time si,j , and a finishing time fi,j that should be
fi,j ≤ ai,j+Di. The difference fi,j−ai,j represents the turnaround time. The finishing
time in the HPC, and consequently the turnaround time, depends on many factors, even
considering the job to be non-preemptible. The starting time si,j is equal for all the
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processes and threads composing the job6, but the (worst-case) execution time depends
on the interaction among the processes and threads. If we consider the unusual case of
having the execution of processes and threads not synchronizing or sharing data among
each other, the WCET Ci is defined as the maximum WCET among all the threads/pro-
cesses. Otherwise, synchronization and data sharing have to be taken into account in the
model. To summarize, the job in the CPS sense is a simple single execution of a single
thread, while the job of in the HPC sense is a single execution of a complex entity, com-
posed of multiple threads and/or processes, possibly interacting with each other, likely
running on different processors and nodes. While the CPS timing properties are easy to
formalize, the HPC scenario presents several challenges even in the formal modeling,
due to the interactions among threads, processes, and computational resources. From
now on, in this section, any reference to job means the HPC definition: the single ap-
plication instance (possibly running on multi-cores and/or multi-nodes) (a)periodically
launched by the resource manager onto the computing nodes. The waiting time in HPC
depends not only on the scheduler itself but also on external factors, such as adminis-
trative decisions and the availability of nodes. For this reason, in this section, we focus
on the probabilistic estimation of the WCET Ci only.

A recent work by Fusi et al. [98] studied the applicability of probabilistic real-time
techniques for a geophysical exploration HPC application. In particular, they employed
a memory-placement randomization technique in software to reduce the cache interfer-
ence and improve the satisfaction of the iid hypothesis. The paper is the most similar
work to ours and the only one applying probabilistic real-time to HPC. However, there
is an essential difference in the two works: In the cited paper, the authors assumed the
task to run several jobs in the same process execution, i.e., they assumed the traditional
CPS concept of job. For this reason, the two papers are pursuing different goals: the
paper by Fusi et al. [98] studied the applicability of probabilistic real-time on the execu-
tions spawned by a single HPC job, while our paper deals with execution times across
job executions. In our work, the cache randomization would have no effect because no
cache data is maintained across job executions.

On the advantages of using pWCET in HPC. The novel idea proposed is to apply
the probabilistic WCET analyses for Cyber-Physical Systems (CPS) to HPC environ-

6Network delays and other overheads may delay the starting of the execution on some nodes, making the
starting time si,j to be slightly variable across the nodes.
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ments, as a solution to address the timing requirements of new emerging application
domains. The availability of a new WCET metric in HPC systems would open the
resource management research field to new possibilities, i.e., to investigate policies
aiming at guaranteeing minimal latency or task completion time in HPC. In this sec-
tion, we introduce the potential benefits of using the probabilistic WCET approach in
HPC, followed by a discussion on the applicability barriers that may prevent it from
actually being adopted. While the development process of CPS is focused on certifica-
tions, in HPC the focus is entirely on performance metrics. It is then possible to explore
more innovative approaches, even if they are not mature enough to be able to pass rig-
orous certification processes. For this reason, the employment of probabilistic-WCET
approaches in HPC would also open the door to novel improvements:

• The first goal aims at providing a way to specify the application time constraints.
The typical example is a maximum response-time latency constraint, where a task
must provide an output within a certain time frame. As previously discussed in
Section 1.4.2, this can be a critical requirement for some HPC applications, e.g.,
imminent disaster detection or real-time medical imaging.

• The second goal aims at providing the resource manager, both at node-level and
at cluster-level, with an estimation of the WCET value with a higher level of
confidence. In most current resource managers – e.g., SLURM [260] – the WCET
value is usually provided by the user and used to assign job priorities. Frequently,
the user either underestimates this value, leading to the forced termination of
the application and, consequently, waste of the resources or overestimates this
value, leading to unfair resource allocation. Computing the WCET thanks to a
measurement-based approach can enable the resource manager to autonomously
infer the WCET when the same application (or job) is executed several times,
instead of asking the user to provide an estimate of it, which is usually inaccurate.

• Finally, the last goal can be seen in several aspects. For example, from the WCET
it is possible to compute other non-functional metrics such as the Worst-Case En-
ergy Consumption (WCEC) and its probabilistic version pWCEC described in the
next Chapter 6. Similar reasoning can be applied for power or thermal behaviors.
Another different possible use case scenario can be the evaluation of time budgets
of HPC users. Novel time accounting mechanisms can be studied, for instance,
by giving latency-sensitive applications higher priority on resource allocation, but

132



5.3. Heterogeneous Computing and HPC

also a larger budget cost rather than non-time-sensitive applications.

5.3.3 Qualitative analysis of HPC systems

The complexity of HPC infrastructure makes it practically impossible to formally verify
the EVT hypotheses previously described. In this section, we qualitatively discuss the
general applicability of such conditions to HPC systems. Then, in Section 5.3.4, we
show experimental results collected by executing benchmark applications on a real HPC
infrastructure.

General considerations. Modern HPC systems are composed of an extensive set of
computing nodes connected through a high-speed network. Each node usually includes
multiple multi-core processors. In most of the cases, the hyper-threading configuration
of such processors is disabled, because it is not always favorable to HPC applications
[159, 203]. Some nodes may include, other than general-purpose processors (CPUs), a
heterogeneous set of processing units, like GPUs or specialized hardware accelerators.
The use of such resources requires the application to use specific programming models,
like OpenCL or CUDA, to enable the heterogeneous computing paradigm, which offers
more chances of improving performance and energy efficiency. From the user perspec-
tive, the goal is to minimize the job turnaround time. This time span includes the overall
time spent by the application in the waiting queue of the job scheduler and the actual
time spent on running. While the former contribution depends on the availability of
resources and, consequently, the contention due to the need to serve other users, the
execution time depends mainly on the application itself and how much it can scale on
parallel architectures. However, there is a variability in execution times, which depends
on several factors. First, a multi-threaded job is potentially affected by higher uncer-
tainty. This is because threads concurrently running on the same multi-core processor
can cause contention while accessing shared resources (e.g., cache memories, periph-
erals, memory buses). Second, the operating systems and other background services
are a further source of variability. This uncertainty can also be observed in the execu-
tion of maximum priority real-time tasks in general-purpose operating systems. Third,
modern COTS motherboards and CPUs may run unpredictable, and non-maskable SMI
routines, to manage the occurrence of low-level hardware events [146]. This problem
becomes worse when we move from an intra-node to inter-node parallelism. This is be-
cause network latencies are substantially unpredictable and affected by several factors:
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the operating system drivers, network congestion, hop distance between nodes, packet
loss, network devices’ internal logic, etc.

EVT hypotheses. In order to apply the pWCET and EVT process to the HPC sce-
nario, the hypotheses described in Section 2.2.3 must be verified. Guaranteeing such
hypotheses a priori is not easy and probably not practical on HPC systems due to their
complexity. For this reason, in the subsequent experimental evaluation, we use statis-
tical test procedures to verify the hypotheses. In the following paragraphs, instead, we
identify the possible barriers that may hinder their satisfaction.

• The iid hypothesis As we have already explained in Section 2.2.3, the i.i.d. hy-
pothesis can be divided into three sub-hypotheses: stationarity, short-dependence,
and long-dependence. The stationarity hypothesis is the major problem in HPC
systems. Let us consider a single-node job execution; if the job does not occupy
the whole node, other jobs running on the same node can affect its execution time.
Thus, in general, observing the execution times on a non-shared node with respect
to a shared node means observing two different distributions, and the execution
times can potentially be a non-stationary statistical process. The same happens
if nodes are not homogeneous in terms of configuration, e.g., different proces-
sor models, current cores frequency, or disk latencies. However, supercomputing
facilities are often composed of homogeneous nodes. Therefore, the hardware
could be not a real issue in practice. The management software, instead, may
represent a critical component, e.g., energy-saving strategies may perform Dy-
namic Voltage Frequency Scaling (DVFS) while jobs are in execution. Regarding
the two dependency requirements, it is hard to make any general conjecture. The
jobs are spawned potentially on different nodes of the HPC cluster, thus short-
or long-range dependence among them is difficult to imagine. Traditional prob-
lems, such as cache locality dependence, do not affect our scenario because the
goal is to estimate the pWCET at the job-level. In fact, a job instance is unlikely
to exploit the cached data of a previous job, which is a different fully-fledged
process. Moreover, there is no guarantee that a job is spawned on the same node
of the previous one. On the other hand, network and data locality may still play a
role, depending on the resource manager’s decision. For example, if the resource
manager assigns the same node to all the jobs of our application, it is possible
that some data might already be available in subsequent executions. The Storage
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Area Network (SAN) plays a role here: as shown by Unat et al. [248], recent SAN
strategies are created to guarantee data locality in HPC. The locality may hinder
our independence hypothesis. Luckily, independence is not a strict requirement
because, as shown by previous works [69], EVT can correctly estimate pWCET
distribution even in the presence of moderate dependency.

• The MDA hypothesis: This requirement has no direct correlation with hardware
or software features, it is rather a statistical property. From previous statistical
works, it is known that most of all continuous distributions satisfy this hypoth-
esis, provided that the measurements are correctly acquired [236]. During the
real measurements of our system, we clearly need to discretize the elapsed time.
However, if the time sampling has a sufficient resolution, this hypothesis can be
considered valid with a reasonable degree of confidence, as also shown by the
subsequent experimental evaluation.

• Representativity: The representativity hypothesis depends directly on the appli-
cation itself. The developer must make sure to have covered all the application
behaviors, so the time measurement samples must be acquired from all the possi-
ble statistical distributions that we can observe. Further details on this hypothesis
have been provided in Section 4.2.

Heterogeneous hardware and predictability. Despite the increasing complexity of
the HPC infrastructures, we believe that the presence of a heterogeneous set of com-
puting devices can offer some opportunities, in terms of allocation of tasks or jobs with
real-time requirements. Given this scenario, we formulate the following hypothesis: the
presence of heterogeneous processors in the infrastructure can help the fulfillment of the
EVT hypotheses and minimize the WCET overestimation. In the following experimen-
tal section, we aim to verify, through statistical testing procedures, this hypothesis and
the whole the discussion proposed in this section.

5.3.4 Experimental Setup

The previous section focused on a qualitative empirical analysis of the applicability of
EVT to the HPC domain. The goal of this subsection is to experimentally verify: (1)
how different parallelization strategies affect the result; (2) the degree of fulfillment of
the hypotheses of probabilistic real-time, by running appropriate statistical tests; (3) the
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ID
Processing

Unit

Multi-Node

MPI
Stressers

Extended

Data Size

1 CPU N N N

2 CPU N Y N

3 CPU N N Y

4 GPU N N N

5 GPU N Y N

6 CPU Y N N

7 CPU Y Y N

8 CPU Y N Y

Table 5.1: Execution conditions of the benchmarks running during the experimental
evaluation.

tightness and usability of the estimated pWCET distributions. The following paragraphs
are structured as follows: the first two parts describe the experimental setup and the
analyzed metrics; the last two parts describe the results and discuss the applicability of
probabilistic real-time techniques to HPC.

Benchmarks. For the tests, we used the NAS Parallel Benchmarks (NPB) suite, which
is a very common choice for HPC performance estimation [16]. For each benchmark
application different implementations are available: MPI, OpenMP and CUDA [76].
Among these, we selected the three pseudo-applications7: bt, lu and sp. This choice
was based on two main reasons: first, the availability of stable and tested MPI, OpenMP
and CUDA versions of the benchmarks, and second because the pseudo-applications
better emulate real applications, rather than simple kernels triggering very specific hard-
ware responses. The three benchmarks can leverage both intra-node and inter-node par-
allelism, by sharing data and synchronizing among OpenMP threads, CUDA kernels,
and MPI processes. They also contain correctness checks that ensure the validity of the
output and, consequently, the execution time. The time value is measured as wall-clock

7Please refer to the cited technical report for a detailed description of these benchmarks
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time via the Time Stamp Counter register, with a theoretical resolution of 1ns8.

Platform. We ran the benchmarks on the computing nodes of the GALILEO HPC
cluster located at the CINECA supercomputing facility. Each node is equipped with
a 2*18-core Intel Xeon E5-2697 v4 @ 2.30GHz, 128 GB RAM, and a Linux-based
operating system. In addition, some nodes include an NVIDIA K80 GPUs for General-
Purpose GPU computing. The nodes are connected via an InfiniBand Intel OmniPath
(100Gb/s) multi-switch network. For each benchmark, we tested several different con-
figurations, including CPU vs. GPU computing (CUDA framework), single-node vs.
multi-node (MPI framework, running on 8 nodes for a total of 288 cores), the presence
of stressers to introduce artificial interference (stress-ng program), and the different
benchmark classes B or C. The execution conditions are summarized in Table 5.1. We
refer to the C class of NPB benchmarks with the term Extended Data Size.

Execution parameters. For each execution condition, each benchmark was executed
500 times by using the default resource manager SLURM [260], which randomly se-
lects the nodes according to the resource requirements selected by us for each exper-
iment. This large number of executions made it possible to estimate the pWCET and
run the statistical tests with a reasonable degree of confidence. Regarding the other pa-
rameters of the EVT process, we selected the Block-Maxima approaches with a block
size ofB = 20, coherent with previous works in probabilistic real-time. The traditional
value of α = 0.05 was chosen as the critical value for the statistical tests.

Methods and metrics. Defining the correct metrics to be used for comparison is cru-
cial in an experimental evaluation based on a statistical framework. The metrics have
been divided into three categories, to identify three different characteristics to explore:
the variability, the adherence to EVT hypotheses, and the quality of the final pWCET
outcome.

Methods and metrics – General statistical information. The first set of computed
metrics comprises the traditional statistical measures: average and standard deviation.
Instead of providing these direct absolute values that would have had little significant

8The accuracy and precision is definitely worse when measured in software. The measurement error can
be in the order of hundreds of nanoseconds. In any case, conversely to many CPS applications, a lower
resolution is acceptable because the HPC tasks duration is usually in terms of several minutes or hours.
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informative content, we computed the coefficient of variation (CV) in order to make the
comparison of different benchmarks and different execution conditions possible. This
is because the CV is an indicator of the variability of the execution time, independently
of its magnitude. The CV indicator is computed as follow:

CV =

√
V AR[X]

E[X]

Even if the CV value does not have a direct impact on the EVT hypotheses satisfac-
tion, it gives us a way to compare, in a rough manner, the predictability of different
benchmarks and computing platforms.

Methods and metrics – Compliance with EVT hypotheses. The second set is com-
posed of five metrics representing different statistical tests to test the EVT hypotheses.
In this experimental evaluation, we did not need to check the input representativity
hypothesis: as previously discussed, its validity depends on the specific application,
and the NPB benchmarks fulfill it by design. This because their inputs are already
based on random uniformly distributed data. The iid hypothesis was checked by using
three tests: the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test to verify the station-
arity sub-hypothesis, the Brock-Dechert-Scheinkman (BDS) test for short-range inde-
pendence and the ReScaled range (R/S) test for long-range dependence. Then, the
Kolmogorov-Smirnov (KS) and the Anderson-Darling (AD) tests were used to check
the MDA hypothesis.

Methods and metrics – Tightness of the pWCET distribution. The last set of met-
rics contains the three parameters of the estimated GEVD. While µ and σ strictly de-
pend on the benchmark itself, ξ is extremely interesting for whatever concerns under-
standing the ability of the EVT process to obtain a distribution that can effectively be
used in practice, as previously explained in Section 2.4.1. To make its effect clear to
the reader, instead of providing the absolute values of µ, σ, and WCET, we computed
the difference between the estimated WCET at violation probability p = 10−6 and
the Worst-Case Observed Time (WCOT), presenting to the reader the percent incre-
ment: INC = 100 WCET−WCOT

WCOT . This value is not affected by the absolute values of the
execution time of the particular benchmark, and it makes the comparison of different
scenarios and benchmarks easy.
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Figure 5.6: The Coefficient of Variation for the three NAS benchmarks running with
the different execution conditions of Table 5.1. These data are not affected by the
absolute value of execution times.

5.3.5 Experimental results

In the following discussion and the presentation of the data, we voluntarily omitted the
absolute values of execution times, including average, variance, or maximum values.
This because it is not our goal to perform an analysis of the platform and the benchmark
itself. Instead, we are interested in their statistical metrics previously discussed. All the
raw data of such experiments is made available online for any further analyses9.

General statistical information

Figure 5.6 shows the Coefficient of Variation for the three benchmarks. We can easily
notice that the GPU version of the benchmarks presented much less variability than
the other ones. This result was expected, as we said, since GPU threads are usually
less affected by external interference. Regarding the other scenarios, it is not possible
to find a general trend. On average, network communications contributed to a larger
variation, but this was not true for all the benchmarks, e.g., the case of the sp.

9Repository URL: https://doi.org/10.5281/zenodo.3743352
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Stationarity Short-range dep. Long-range dep.

KPSS BDS R/S

CV 0.46149 1.9600 1.7470

Sc. bt lu sp bt lu sp bt lu sp

1 0.2726 0.8849 0.6410 2.0971 1.7994 1.5721 1.2790 1.8467 2.9726

2 0.1430 0.0226 0.1028 0.6964 2.2011 0.6857 1.3991 0.7438 1.2659

3 0.5082 0.0741 1.1961 1.9268 1.6072 3.0267 2.4314 1.09445 2.6035

4 0.1830 0.0603 0.1630 1.5743 0.9996 0.2335 1.0960 1.0960 1.1574

5 0.3406 0.0787 0.0952 0.5110 0.4240 0.4024 1.2927 0.9580 1.0843

6 0.0887 0.3647 2.4540 0.6279 2.3357 2.1319 1.1944 1.8665 2.9344

7 0.0455 0.0727 0.2126 1.1789 3.1038 2.4183 0.8945 1.2801 1.2332

8 0.5370 0.8509 0.3584 2.9611 1.3055 1.8211 1.9413 1.9291 1.1731

Table 5.2: Result of the statistical tests used to check the i.i.d. EVT hypotheses, for
each benchmark and for each execution condition of Table 5.1. A statistical test
fails when the value of its statistic is greater than the critical value (cells in red).

Finding 5.3.1. The execution time variability when GPU computational units are used
is considerably lower than using CPU.

Compliance with EVT hypotheses

The adherence of the measured execution time datasets to EVT hypotheses is presented
in Table 5.2 and Table 5.3. Starting from the stationary property, both the GPU scenarios
(4 and 5) were able to pass the test and fulfill the stationary hypothesis with a good result
(mostly all under 0.1 over a critical value of 0.46). We can also see that the presence
of stresser tasks (2 and 7) had a positive effect on the stationarity hypothesis, making
the CPU version also compliant. This is due to the fact that the interference caused by
the stressers reduced the effect of spurious latencies. Previous works on cyber-physical
systems showed similar results [111].

Finding 5.3.2. The stationarity property of EVT is satisfied for all benchmarks of GPU
scenarios and when stresser tasks are present. It is found to be invalid for at least one
benchmark in the other scenarios.

Looking at the raw data and resource manager logs, we observed how the network
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KS AD

CV 0.2716 variable (≈2.50)

Sc. bt lu sp bt lu sp

1 0.1093 0.0608 0.0604 0.2575 0.2167 0.1525

2 0.1066 0.1102 0.0696 0.4767 0.4599 0.2650

3 0.1644 0.0683 0.2536 1.3099 0.3275 2.5158

4 0.1637 0.1594 0.0979 0.8369 0.9340 0.5791

5 0.1696 0.1179 0.0953 1.7366 1.4799 0.3255

6 0.1335 0.2090 0.2173 1.1849 2.5319 1.8093

7 0.0947 0.0883 0.0673 0.2984 0.5376 0.1543

8 0.1313 0.1665 0.0604 0.8118 1.2691 1.013

Table 5.3: Result of the statistical tests used to check the MDA hypothesis, for each
benchmark and for each execution condition of Table 5.1. A statistical test fails
when the value of its statistic is greater than the critical value (cells in red).

latencies affected the execution time, depending on the topological location of the node:
the distribution of execution times when the jobs were scheduled on nodes under the
same network switch was significantly different from the distribution of execution times
when the jobs were scheduled on far nodes. This made the stationarity hypothesis
harder to be achieved.

Finding 5.3.3. The stationarity property is negatively affected by a complex and hier-
archical network topology.

The dependency tests, both short- and long-range, failed in several cases. The cause
was mainly the resource manager choices: jobs were often spawned on the same nodes,
thus causing the network storage locality to create a dependency. This locality was ini-
tially observed in GPU datasets (4 and 5) because the resource manager was configured
with a strict policy that always provided the same node for the same user. After elimi-
nating this limitation, the obtained results, shown in Table 5.2, are definitely compliant
with the dependency hypothesis.

Finding 5.3.4. The two dependency properties are affected by the data locality of the
SAN.

Finding 5.3.5. If data locality is removed, the GPU scenarios pass the dependency tests
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ξ WCET/WCOT ratio

Sc. bt lu sp bt lu sp

1 0.213 0.213 0.282 +162% +62% +549%

2 0.282 -0.065 0.249 +48% +3% +317%

3 0.287 -0.064 -0.481 +260% +6% +6%

4 -0.735 -0.421 -0.668 <0.1% <1% <0.1%

5 -0.213 -0.342 -0.0803 <0.1% <0.1% 1%

6 0.584 0.577 0.562 +11994% +12644% +9336%

7 -0.169 0.365 -0.0180 +7% +619% +14%

8 0.574 0.371 0.885 +8873% +991% +57911%

Table 5.4: The estimated pWCET for each benchmark and for each execution condi-
tion of Table 5.1. Only the ξ parameter and the WCET increment with respect to
the WCOT are shown. The green cells indicate Weibull distributions, the red cells
indicate a Fréchet distributions, and the yellow cells indicate Gumbel distributions.

for all the benchmarks.

It should be noted that in any case, the scenarios that resulted in a statistical test
reject, have low or moderate dependency (the value of the statistic is not too far from the
critical value). It was then possible to estimate a correct distribution even in the presence
of dependency, as shown by the GoF tests in Table 5.3. In fact, the resulting distribution
is valid for any scenarios according to KS and failed in only one scenario (6/sp) with the
AD test. The rejection of the case 6/sp is due to several possible reasons, including the
MDA hypothesis being indeed false in this case. Another possibility is a false negative:
in fact, the test level of significance was set to 5%, so it is possible that it was a spurious
test failure. The non-rejection of most of the final distributions makes us confident that
the estimation process was correctly executed and that the final pWCET distributions
match the real data.

Finding 5.3.6. KS and AD tests do not reject any distribution (with one exception),
corroborating the MDA hypothesis.
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Tightness of the pWCET distribution. The pWCET distribution parameter ξ, es-
timated for the different scenarios, is shown in Table 5.4. Weibull distributions are
highlighted by green cells (ξ < 0), near-Gumbel distribution with the yellow cells
(ξ ≈ 0), and Fréchet distributions with red cells (ξ > 0). The two GPU versions gen-
erated a clear Weibull distribution, which in turn provided a very tight WCET than the
worst-case observed. In particular, the computed WCET, at the probability of violation
p = 10−6, for all the three benchmarks had a very low overestimation (≤ 1%), that
made the estimation very tight. Conversely, all the Fréchet distributions generated large
values for WCETs, with the worst for scenario 8/sp that has about +58000% of overes-
timation. So large values would make the duties of the resource manager very difficult,
since the estimated worst-case time is far from the observed ones and probably the real
one. Finally, the two near-Gumbel distributions were able to overestimate the WCET
by less than 10%, which is definitely acceptable.

Finding 5.3.7. GPU scenarios and a few CPU scenarios generated a Weibull distri-
bution, which allows us to estimate a tight WCET. In the other scenarios, a Fréchet
distribution has been estimated, making it difficult to obtain a tight and non-pessimistic
WCET.

Discussion. From the experimental results we notice that there is no direct correlation
between the three groups of metrics: for example, 8/lu has a lower CV than 3/lu, but
8/lu failed in both stationarity and R/S tests, while 3/lu is compliant with all the tests.
The same scenarios show that the relation is not valid for the ξ metric as ξ > 0 for 8/lu
and ξ < 0 for 3/lu, but this is the opposite for 4/bt and 1/bt.

The introduction of heterogeneous computing is winning for all the metrics: the
GPU benchmarks presented the lowest variation, satisfied all the EVT hypotheses, and
produced a tight estimation for the WCET, even in the presence of stressers. The
stressers have beneficial effects on the CPU cases because they can mask the variation
caused by external factors, such as the operating systems or different node configura-
tion. They also improved the final distribution ξ value, even if not sufficient in all the
cases (the overestimation in 2/sp and 7/lu is still very high).

The introduction of network communications did not provide a clear answer to the
hypotheses’ satisfaction: the specific benchmark and scenarios must be considered and
tested. We noticed that in some cases, even if the short- and/or the long-range inde-
pendence hypotheses are not satisfied, it is possible to obtain good pWCET estimations
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(cases 2/lu, 3/sp, 7/sp). Some CPU benchmarks (3/lu, 7/bt) satisfied all the hy-
potheses and produced a tight pWCET. This result suggested that, in any case, proper
statistical tests must be run during, before and after the estimation of the pWCET, to ver-
ify that the system is compliant with the EVT hypotheses. Besides the evident improve-
ments of exploiting heterogeneous computing, no general conclusions can be drawn for
CPU-only computing, and each case must be verified.

Table 5.5 summarizes, for each hypothesis, the qualitative discussions, the experi-
mental method and the results obtained on the real platforms.

5.3.6 Lesson learned

The experimental results of the previous section showed us how the resources are al-
located to HPC applications impact the ability to satisfy the EVT hypotheses and the
importance of heterogeneous resources for probabilistic real-time. Assigning proper re-
sources to the jobs is essential to estimate a correct pWCET and consequently guarantee
the constraints of time-sensitive applications.

Job scheduling and resource management exploitation. In a heterogeneous sce-
nario, the decisions of the resource allocation strategy, performed by the job sched-
uler/resource manager or by the operating system, play a key role in the WCET char-
acterization of the applications, and, consequently, in the satisfaction of their timing
requirements. It is possible to summarize the following guidelines for future resource
management policies based on pWCET:

• the resource manager should avoid spawning jobs of the same applications on the
same nodes in a row, to avoid the introduction of data locality and dependency
due to the SAN network;

• the network topology can introduce significant latencies in node-to-node commu-
nications, and a non-uniform allocation of the jobs may produce different timing
behaviors due to the interconnection hierarchy, and consequently invalidate the
stationarity hypothesis of the pWCET;

• the heterogeneous non-CPU resources should be preferred because they are less
affected by uncontrollable latencies;
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• a promiscuous allocation of different jobs on the same node can be considered as
masking the system-level (software and hardware) interference, provided that the
average performance degradation is an acceptable price;

• an a priori evaluation of the pWCET hypotheses satisfaction is not easy in com-
plex HPC systems, making mandatory the verification of the statistical properties
of the timing measurements to ensure the correctness, reliability, and tightness
of the pWCET distribution. A non-tight pWCET distribution makes resource
management or job scheduling policies ineffective.

Conclusions. In HPC centers, resource management is a strategic activity to improve
resource utilization and application performance satisfaction. This aspect becomes crit-
ical with emerging applications having timing requirements beyond the simple average
QoS guarantees. In this section, we proposed to exploit the probabilistic real-time the-
ory for applications running on an HPC infrastructure. We discussed the advantages and
limitations of this analysis when applied to HPC and the possible benefits for hetero-
geneous platforms. The experimental evaluation showed the degree of applicability of
probabilistic approaches to HPC configured in different execution conditions. The con-
siderations of this work can lead to the development and study of resource management
policies aiming to guarantee the mixed timing requirements of the applications.
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Hypothesis Qualitative assessment
Quantitative assessment

Method Results
Representativity It depends on the application it-

self and, in particular, on its in-
put space.No a priori considera-
tions can be made.

- -

iid Stationarity Shared nodes, inhomogeneous
hardware across the cluster,
thermal and power management
strategies, and network topol-
ogy may hinder the satisfaction
of this hypothesis.

KPSS The use of GPU processing
units make this hypothesis true,
because it limits the effect of
operating system thermal/power
management strategy. In the
other cases the hypothesis is of-
ten invalid, with the exception
of the case when stressers are
present.

Short-range

dependence
These two hypotheses can be
made invalid by the network
topology and data locality in the
SAN. Conversely to CPS sce-
nario, these hypotheses are un-
likely to be influenced by pro-
cessor cache locality.

BDS This hypothesis appears true
only when GPU computational
units are used, while it is false
for at least one benchmark in all
the other cases.

Long-range

dependence
R/S This hypothesis appears true

only when GPU computational
units or stressers are involved..

Maximum

Domain

of Attraction

Being a pure statistical prop-
erty with no direct correlation
with hardware or software, it is
not easy to draw any qualitative
conclusion.

KS

AD

The MDA hypothesis, verified
with both tests, is substantially
true for all the scenarios and
benchmarks. The only excep-
tion is the 6/lu case. It can be
a false positive, a consequence
of the failure of the dependence
tests, or the actual MDA hy-
pothesis being invalid. Also for
this hypothesis, GPU scenarios
satisfy this hypothesis.

Table 5.5: Summary of the qualitative and quantitative analysis performed related to
the satisfaction of EVT hypotheses.
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CHAPTER6
Beyond Timing Constraints

The probabilistic real-time theory and the EVT can be exploited not only for the execu-
tion time but also for other metrics. This chapter shows how the EVT and the previous
analyses can be applied for energy estimation in embedded systems. This can be very
useful in a certain class of applications because modeling the power/energy of a system
is usually very challenging.

6.1 Introduction to the Worst-Case Energy Problem

The increasing complexity of the computing architectures described in Chapter 1 makes
not only the WCET problem challenging, but it also hinders the development of accu-
rate power and thermal models for the processors and other computational resources.
Moreover, without a proper characterization of the workload, such models usually lead
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to unrealistic results [122]. Similar to the timing problem, the difficulties in the power
model estimation for both hardware and software characteristics make the problem of
estimating the Worst-Case Energy Consumption (WCEC) hard. The WCEC value is
extremely valuable for some applications, for instance, the example later described in
Section 6.3.

6.1.1 Related works

To the best of our knowledge, the first work on WCEC analysis was presented in 2006
by Jayaseelan et al. [137]. The worst-case energy estimation was based on static code
analysis and energy models at the micro-architectural level, similar to the SPTA ap-
proach for the WCET. More recently, the 0g tool [251] presented two approaches to
WCEC estimation: a static code analysis and a measurement-based technique. The for-
mer was used to characterize the energy consumption of critical tasks, while the latter
was used to estimate the consumption in non-critical tasks, due to the unreliability of
the results. Similar to the previous approach, the employment of the static code anal-
ysis requires the availability of the platform-specific per-instruction characterization of
energy consumption. The same authors proposed recently static WCEC system-wide
methods, including the analysis of peripherals [252]. In 2017, a work by Pallister et al.
[199] proposed an estimation of the WCEC, at instruction-level, performed by fitting
a Weibull distribution. However, selecting a single-class distribution and the focus on
instruction-level limit the applicability to the accurate and safe WCEC estimation of
the whole system. Finally, Morse et al. [190] presented an analysis of the limitations
of the current WCEC analysis techniques, demonstrating that it is an NP-hard problem
and no efficient approximation algorithms exist. The authors suggested the possibility
of moving towards statistical methods, explicitly citing the EVT, that is exactly the cor-
nerstone of our approach proposed in Section 6.2. Before describing the application of
EVT to the energy metrics, we define in the next subsection the models related to the
energy-constrained problem.

6.1.2 Task and system model

This section presents the task and the system model used in this chapter to deal with
energy requirements. A set of n periodic tasks is identified as: T = {τ1, τ2, ..., τn}.
Each task activation is called job and it is represented by the notation Ji,j , to iden-
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tify the j-th job of the i-th task. Each task is defined with the following tuple: τi =

(Ci, Di, Ti, Ei, Li), where Ci is the worst-case execution time1, Di is the task relative
deadline, Ti is the period (or the minimal inter-arrival time in case of sporadic tasks),
Ei is the WCEC, and Li is the criticality level.

The criticality level can assume different types of values. In this subsection (and
similar to the mixed-criticality approach of Section 5.2), we use two levels labeled
HI and LO, to respectively identify high-criticality tasks, for which job’s execution
must be guaranteed, and low-criticality tasks, for which the job’s execution can be
guaranteed only if enough energy budget is actually available. If a job is not executed
due to lack of energy, we say that this task is dropped; conversely, we say that the task
is admitted to the scheduling queue.

Energy-constrained system model. Following the same approach proposed by Völp
et al. [250], the system model is characterized by two parameters: the energy budgetB∗

and the survival period T ∗. This notation denotes that the system is allowed to consume
a maximum amount B∗ of energy in the continuous period of time T ∗. In order to
make the subsequent theoretical discussion easier, we define the budget function B(t)

as the total amount of remaining energy budget as a function of time, with B(0) =

B∗. A couple of examples of the budget function are depicted in Figure 6.1. This
function decreases at least at the rate of the power consumption in the idle state. We use
EIDLE to indicate the energy consumption of the system in idle for the whole timespan
(0, T ∗). Consequently, the inequality B(0) − B(T ∗) > EIDLE holds regardless of any
job admission or scheduling decision.

Possible use cases of the presented energy-constrained mixed-criticality models in-
clude several battery-powered applications, such as devices powered by unreliable en-
ergy harvesting sources, mobile devices, and space applications [84].

Scheduling model. The High-Level Schedule (HLS) is defined as the set S = {S1,j ,

S2,j , ..., Sn,j} where Si,j is a boolean value indicating if the job Ji,j can be scheduled
or not. Therefore, Si,j = 1 means that Ji,j is allowed to run, while Si,j = 0 indicates
that the job is dropped. The traditional notion of schedule, including the task execution
ordering, is out of the scope of this work and it can be performed by any state-of-the-art
scheduler having the S set as input.

1In traditional mixed-time criticality task models Ci is a set of WCETs, one for each criticality level.
However, in this chapter we consider only one WCET.
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Figure 6.1: Budget function B(t) examples varying the number of tasks in the survival
period T ∗.

Definition 6.1.1. An HLS S is said to be energy-feasible if the energy budget is suffi-
cient to run all the jobs, thus B(T∗) ≥ 0.

Definition 6.1.2. An HLS S is said to be correct if and only if all the HI-crit tasks are
scheduled: Sk,j = 1 ∀τk s.t. Lk =HI.

These definitions are the basis for the first schedulability requirement, called mini-
mal energy-schedulability condition:

Lemma 6.1.1. An energy-feasible and correct HLS exists only if:∑
k s.t. Lk=HI

∑
j

Ek,j < B(0)− EIDLE (6.1)

where Ek,j is the energy consumed by the j-th job of the k-th HI-crit task. This energy
does not include the static energy consumed by the system in idle EIDLE.

Lemma 6.1.1 states that the energy budget must be sufficient to guarantee at least
the execution of the HI-crit tasks, otherwise no energy-feasible and correct HLS exists.
Since the energy of the single job Ei,j is hard to predict, we rely on the upper-bound
represented by the WCEC of the task Ei. Unfortunately, as already discussed in Sec-
tion 1, estimating Ei in modern architectures running complex workload is either not
trivial or leads to very over-approximated results. Moreover, the introduction of the
WCEC value in Lemma 6.1.1 would mean to consider an overly pessimistic scenario,
in which all the jobs consume the worst-case amount of energy, that seldom occurs on
real systems.

150



6.2. Probabilistic Worst-Case Energy

6.2 Probabilistic Worst-Case Energy

In the following paragraphs, we show how to determine a reliable not underestimated
WCEC value (Ei) by exploiting the same probabilistic measurement-based approach
for WCET described in the Chapter 2 and used by the other chapters of this thesis. A
measurement-based approach comes with important advantages:

1. The system is considered as a black-box (accurate platform models are not re-
quired).

2. No need to perform in-depth static analyses of the task source code.

3. The output is a worst-case estimation (and not a mean-case estimation) within
a given level of confidence, that represents the probability of failure to meet the
energy budget requirement B∗.

While point (2) enables the possibility to estimate the WCEC for previously unknown
tasks, point (3) is a fundamental requirement for mission-critical systems.

6.2.1 Formal definition

Let us assume we measured several times the energy consumed for executing the jobs
of a specific task. The energy samples x1, x2, ..., xn represent the realization of the
input random variables of the Glivenko-Cantelli theorem (described in Section 2.1.1).
These values can be fed into the previously described EVT process to obtain a GEVD
representing the tail of the distribution, i.e., the probability of extreme events. We call
this function probabilistic-WCEC (pWCEC). Through this distribution, it is possible to
exploit its iccdf to obtain an estimation of the WCEC, given a violation probability level
p.

The pWCEC model. By exploiting the EVT, it is possible to compute the two random
variables Ei and EIDLE, respectively representing the worst-case value of Ei and EIDLE.
Thanks to this measurement-based approach, we can verify the condition of Lemma
6.1.1 without having accurate models of system and workload. The introduction of
random variables complicates the application of the schedulability condition of Lemma
6.1.1. To combine those random variables, two possible approaches can be considered:
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1. Setting a value for the probability of failure p and use the iccdf of Ei to obtain
scalar worst-case values for Ei.

2. Performing the actual sum of the random variables.

The first option is the simplest one, but it probably leads to excessive overestimation
since we always consider the worst-case value for all the jobs. The second option in-
stead requires the application of the convolution operator previously described in Sec-
tion 2.1.2. In this work, we consider the second option, since it allows us to obtain
a tight estimation of the real WCEC. Solving the integral of the convolution operator
is hard to obtain analytically, especially for GEVD, but easy to obtain using one of
the several numerical algorithms available in the literature. Regarding the EIDLE value,
we simply compute the worst-case value at the predefined probability failure p, i.e.
ĒpIDLE = iccdfEIDLE(p).

By using the probabilistic model just defined, the previous Lemma 6.1.1 can be
rewritten as:

Lemma 6.2.1. Given the set {E∗k} of random variables defined as the following convo-
lution (~):

E∗k =

nr_jobs

~ Ek ∀k s.t. τk ∈ T (6.2)

an energy-feasible and correct HLS, with a violation probability p exists only if:∑
k s.t. Lk=HI

Ēpk < B(0)− ĒpIDLE (6.3)

where Ēpk is the WCEC value of all the jobs of the k-th task, with violation proba-
bility p, computed by using the convoluted random variables: Ēpk := iccdfE∗k (p). The
term ĒpIDLE represents instead the WCEC estimation in idle mode.

If the number of tasks is extremely high, the use of another convolution operator
replacing the sum operator in Equation (6.3) should be considered to reduce the over-
approximation. For convenience, we indicate the left-hand term of the Equation (6.3),
i.e., the WCEC of all the HI-crit tasks, with ĒHI.

6.2.2 Energy-aware job admission protocol

In this subsection, we focus on the job admission problem, i.e., to whether a job can
enter the scheduling queue or not. In traditional mixed-criticality systems, the admis-
sion of HI-crit jobs must be guaranteed in any case. Consequently, we need to define a

152



6.2. Probabilistic Worst-Case Energy

policy for the admission of LO-crit tasks, based on the energy required by the tasks and
the system energy budget available. We can derive the energy budget for LO-crit tasks
from Lemma 6.2.1, as follows:

BLO(t) = B(t)− ĒHI. (6.4)

Accordingly, if there exists an energy-feasible and correct HLS, then it is alwaysBLO(t)

≥ 0. Following the same probabilistic approach of HI-crit tasks, we can state the
maximum energy consumption condition for LO-crit tasks as:

Lemma 6.2.2. Given a failure probability p and the survival period T ∗, LO-crit tasks
energy consumption upper bound is:∑

k s.t. Lk=LO

Ēk(p) < BLO(0)− ĒpIDLE (6.5)

We refer to the left-hand part of Equation (6.5) as ĒLO, deriving the overall remain-
ing unused energy budget as follows:

B(T ∗) = B(0)− ĒHI − ĒLO − ĒIDLE (6.6)

The job admission algorithm assigns the values to the set Sk,j , in accordance with
the aforementioned conditions. Relying on the previous WCEC estimations, this sec-
tion aims at proposing a policy that minimizes B(T ∗), while maintaining a fair energy
distribution among LO-crit tasks. An algorithm carrying out the minimal positive value
of B(T ∗), among the values carried out by all the algorithms, is said to be optimal.

The job admission pseudo-code is shown in Algorithm 6.2. The policy considers
the scheduling of HI-crit tasks first, followed by the LO-crit ones. The algorithm sets
Si,j = 1 for all the jobs of the HI-crit tasks (lines 10-12), so that it complies with
the HLS correctness requirement (Definition 6.1.2). The remaining energy budget B is
reduced by the WCEC value estimated for the scheduled task with violation probability
p (line 13). If B < 0, no energy-feasible and correct HLS exists (line 13).

Once all the HI-crit tasks are admitted for scheduling, we can compute the energy
budget for LO-crit tasks as in Equation (6.4). In this version of the algorithm, we ap-
ply a fair policy by distributing the same budget over all the tasks (line 20). In case a
task τi does not use the entire budget assigned (lines 21-25), all the jobs are admitted.
Conversely, if the budget is not sufficient to execute all the jobs (lines 25-30), then the
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maximum number of allowed jobs must be computed (line 26). The convolution opera-
tor must then be re-applied to get the new energy consumption estimation (lines 27-28).
In both cases, the overall LO-crit budget is decremented by the WCEC estimation of
the task, Ēpi (line 31), thus preserving the unused energy for other tasks. It is worth
mentioning that, as it requires the exploration of a large number of possible convolu-
tions to compute the random variable in Equation (6.2), the function max_jobs(τi, Bi)
is computationally intensive. In particular, since state-of-the-art convolution algorithms
have a complexity of O(n log(n)) and the exploration is performed at most for n times,
then the overall worst-case complexity of the Algorithm 1 for n tasks is upper-bounded
by O(n · M · log(M)), where M is the total number of jobs. Once the number of
jobs to schedule is computed, a proper selection policy must be applied to get the Si,j
assignment (line 29). This policy depends on the specific scenario and application re-
quirements. A couple of possible trivial approaches are: (1) to select only the first
nr_jobs tasks or (2) to generate a uniformly distributed assignment. In the subsequent
experimental evaluation, we applied the latter approach. Finally, BNULL = B(T ∗) is
the remaining not yet assigned energy. Sorting the tasks by energy consumption (line
18) guarantees that no dropped job exists with WCEC lower thanB(T ∗): the algorithm
is optimal.
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Algorithm 6.2 Mixed-Energy Criticality Job Admission Protocol. (Original
Source: [213])

1: Input: τi, Ēp
k , Ēp

IDLE, B∗, T ∗, p.

2: Output: Sk,j (the HLS).

3: procedure SCHEDULE

4: B ← B∗ − Ēp
IDLE

5: BLO ← ScheduleHITasks(B)
6: BNULL ← ScheduleLOTasks(BLO)
7: end procedure
8: procedure SCHEDULEHITASKS(B)
9: for all k s.t. Lk = HI do

10: for all j job of task k do
11: Sk,j ← 1

12: end for
13: B ← B − Ēk(p); assert(B > 0)
14: end for
15: return B
16: end procedure
17: procedure SCHEDULELOTASKS(B)
18: T ← sort {τi : Li = LO} by Ēp

i ascending order; n← size(T )

19: for all τi ∈ T do
20: Bi ← B

n

21: if Ēp
i ≤ Bi then

22: for all job j in τi do
23: Si,j ← 1

24: end for
25: else
26: nr_jobs← max_jobs(τi, Bi)
27: E∗i ←~nr_jobs

j Ei
28: Ēp

i ← iccdfE∗i (p)

29: Si,{1,2,...,m} ← selection_policy(τi, nr_jobs)
30: end if
31: B ← B − Ēp

i ; n← n− 1

32: end for
33: return B
34: end procedure
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Figure 6.2: The WCEC estimation validation. The solid line represents our worst-case
model, while the dots indicate the frequency of the energy consumption observed
probability. (Original Source: [213])

6.2.3 Experimental validation

For the experimental validation, we performed two classes of tests. The first one aimed
at verifying (1) the upper-bound of the energy consumption estimation of the single job
execution of each task, and (2) how the convolution operator helps in carrying out tight
but still safe estimations. In the second one, instead, we evaluated the job admission
algorithm, checking its ability to guarantee the energy budget constraint while keeping
a tight estimation of the energy consumption.

Experimental setup. The selected hardware platform was an Odroid XU-3 equipped
with a big.LITTLE CPU, featuring 4 Cortex-A7 and 4 Cortex-A15 cores. The se-
lection of such a complex architecture was made to show the validity and effectiveness
of probabilistic approaches in the black-box estimation of energy consumption. This
platform would have been really tough to be analyzed with traditional model-based ap-
proaches. The tasks under analysis were pinned onto the big cores, while the scheduler
and the energy measuring task onto the LITTLE ones. The Dynamic Voltage and Fre-
quency Scaling (DVFS) was disabled, forcing the frequency of big cores to be 1.8 GHz.
This prevents the unwanted thermal throttling effect that would also improve the repro-
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ducibility of the experiments. The pWCEC estimation is theoretically agnostic w.r.t.
the presence of a DVFS mechanism. However, further dedicated studies are required
to assess the validity of the i.i.d. EVT condition when DVFS is enabled. The energy
consumption we refer to in this subsection is measured for the big cores only, where
the tasks under analysis were running, by exploiting on-chip power sensors.

The considered workload was made up of 4 multi-threaded applications from the
RODINIA benchmark suite [52] (lavaMD (la), streamcluster (st), leukocyte
(le), and particlefilter (pa)) characterized by the same order of magnitude of
execution times. The Linux operating system was equipped with the PREEMPT_RT
patch, in order to maximize the software determinism and increase the experiment re-
producibility.

Energy estimation upper bounding. The first set of experiments focused on the es-
timation of the WCEC and the verification of the performance of the convolution oper-
ation from Equation (6.2). First, we ran 500 jobs of each task to get the X1, X2, ..., Xn

measures necessary to perform the EVT estimation. The i.i.d. hypothesis of the samples
was verified by using the Ljung-Box statistical test. Then, the distribution estimation
was performed. For instance, the pWCEC of the st benchmark is the distribution
GEV (11.596025, 0.425034,−1.178425), with its cumulative distribution function de-
picted in Figure 6.2. By setting failure probability value to p = 10−9, the correspond-
ing WCEC is 11.9567J . In other words, the probability of observing a job consuming
more than 11.9567J is 10−9 or lower. To empirically check the estimation’s quality,
we acquired other 10 000 samples of st job energy consumption. The observed proba-
bility was computed from these samples and depicted in Figure 6.2. The GEVD safely
over-estimates the real energy consumption, as expected by the theory.

Once we estimated the pWCEC for each task, we applied the convolution operator
to the interval j = [1; 100] to estimate the energy consumption of the sequences of jobs
of size 1, 2, ..., 100, considering a violation probability p = 10−9. In a real scenario,
the violation probability depends on the criticality of the application. This estimation is
shown in Figure 6.3 (dashed lines) with respect to the number of jobs j. We verified the
results by running 100 jobs of each task and measuring cumulative energy consumption.
The real energy consumption is depicted in Figure 6.3 with solid lines. As it might be
seen, the convolution operator produced tight estimations (the maximum overestimation
value is 7%) and no underestimations. By running the same experiment, while using
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Figure 6.3: The energy estimated and measured varying the number of convolutions
for the four benchmarks considered. (Original Source: [213])

Scenario Energy budget B∗ Survival period T ∗

(1) 100 000 J 10h = 36 000 s

(2) 50 000 J 7h = 25 200 s

(3) 8 000J 1h = 3 600 s

Table 6.1: Experimental setup by considering three scenarios with different energy
budget and survival period. (Original Source: [213])

the mean energy value instead of the worst-case provided by EVT, we found that 24%

of the cumulative scenarios of pa were underestimated and thus unsafe.

Job scheduling and energy budget. From the previous results on the WCEC per-job
estimations, we used the proposed job admission/scheduling algorithm in three different
scenarios. The benchmarks la and pa were considered as HI-crit tasks, while le and
st represented two LO-crit tasks. The scheduling periods were configured as follows:
Tla = 30s, Tpa = 100s, Tle = 100s, Tst = 60s. The four tasks were scheduled,
considering the following three scenarios and a high level of confidence (p = 10−9),
with the budgets presented in Table 6.1.

The proposed algorithm generated HLSs with the number and percentage of admit-
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Scenario la (HI) pa (HI) le (LO) st (LO)

(1) 1200 (100%) 360 (100%) 290 (81%) 600 (100%)

(2) 840 (100%) 252 (100%) 15 (6%) 110 (26%)

(3) 120 (100%) 36 (100%) 7 (19.4%) 52 (86.7%)

Table 6.2: Schedulability result for each benchmark and scenario. (Original Source:
[213])

Scenario Theoretical Energy Real Energy Overestim.

(1) 99 982.3 J 96 858.9 J 3.23 %

(2) 49 988.0 J 48 206.8 J 3.70 %

(3) 7 996.3 J 7 739.6 J 3.32 %

Table 6.3: Energy estimation and results. (Original Source: [213])

ted jobs indicated in Table 6.2. As expected, the HI-crit jobs are all executed, while
some LO-crit jobs are rejected to meet the energy budget requirements. The difference
between the percentage of allocated jobs between le and st is due to the energy-fair
scheduling: the le energy consumption is much higher than st. We executed these
three scenarios using the computed HLS and the energy results presented in Table 6.3
were observed.

In the previous table, the theoretical energy is the energy budget subtracted by the
unused energy (i.e., B∗ − B(T ∗)) while real energy is the energy measured during
the whole HLS execution. As expected by the theoretical guarantees, the proposed
approach has never under-estimated the real energy in the three considered scenarios.
Simultaneously, the estimation was maintained very tight, showing an over-estimation
in the 3−4% range compared to 20−30% of the previously cited state-of-the-art tools.

6.2.4 Lesson learned

The computation of the pWCEC with the EVT provides an important tool for task
scheduling. This characterization becomes essential when modeling and implementing
energy-harvesting systems, as described in the following section. The use of a mixed-
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criticality workload increases the interest in this topic for future works, which may also
include timing constraints.

6.3 Resource Management for Energy-Harvesting Systems

The use of Internet of Things (IoT) devices is increasing in many domains, including
industry, automation, communication, medicine, and transportation. Several applica-
tions in these domains require such devices to be small and constrained with respect
to the energy and power usage while maintaining sufficient performance levels. These
constraints are also because many IoT devices run on batteries, thus having a limited
amount of energy and power. This problem is even exacerbated when dealing with
energy harvesting systems, i.e., systems relying on an electrical power source self-
harvested from the environment, such as a wind turbine or a solar panel. The constraint
on the energy budget availability, in these devices, is given by the limited battery capac-
ity and the future quantity of available input power, which cannot be easily predicted. In
fact, the external power sources are usually unreliable since they are heavily dependent
on weather conditions, yielding to high volatility in the exploitable energy budget. En-
ergy harvesting systems are usually auto-sufficient, i.e., they are designed to guarantee
the highest uptime possible with the least human intervention possible.

6.3.1 A motivational use case: a transponder tracking system

The transponder is an on-board device of an aircraft that periodically broadcasts its
position together with some flight information, e.g., altitude, direction, etc. The ADS-
B standard is widely used by almost all commercial airplanes for airborne collision
avoidance or tracking purposes. This system is widely known with the name of its
commercial implementation: Traffic Collision and Avoidance System (TCAS). ADS-B
signals are also received on the ground by institutional operators (such as airport control
towers) and amateurs. However, an ADS-B transponder is usually too expensive and
too much power-hungry for gliders and ultralight aircraft. In these cases, a preferable
choice is to use less common technologies, enabling a simpler anti-collision system and
ground tracking. The tracking of such an aircraft from the ground requires to build a
dedicated network of receivers because neither the government nor the amateur net-
work for ADS-B can be exploited. For example, flying clubs face the necessity to track
their small aircraft, without having the financial capability to build a network of re-
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Figure 6.4: Block diagram of the hardware architecture. (Original Source: [59])

ceivers. The solution currently under investigation in Lombardy (Italy) is to place a few
receivers on some mountain tops to cover the largest possible area with the minimum
number of devices. Such devices in these remote areas limit the possibility of using the
electrical grid as a power source. Consequently, the devices are equipped with a battery
and a solar panel to harvest energy. The energy source is then non-reliable for the al-
ready explained reasons. We need a resource management strategy able to guarantee a
good trade-off between energy consumption and performance by knowing the weather
current information and forecast.

6.3.2 System architecture

In Figure 6.4, we sketched the hardware structure of the embedded platform our work
focuses on. The core is represented by a computing system, featuring a networking
device (usually a 4G modem) for remote control and data transmission, and a dedicated
set of “weather sensors”. The energy budget is defined by the power provided by a solar
panel and a battery pack. A charge controller is then responsible for recharging the
batteries and regulate the power supply for the computing platform. The energy budget
is characterized by a certain degree of variability, given by the weather conditions,
which, in turn, affect the solar panel output, and by the current charge level of the
batteries. On the software hand, the running tasks and applications may reasonably use
a variable amount of resources (CPU, memory, etc.) over time, which increases the
variability of the overall system’s power consumption.

6.3.3 Energy budget prediction and management

To estimate the budget, we used two sources of information: a remote weather forecast
and a local weather station composed of a set of sensors (which provide temperature,

161



Chapter 6. Beyond Timing Constraints

humidity, visible light, and barometric pressure). More specifically, we want to explore
the interplay of weather forecast information coming from a remote service on the Web
and the data provided by weather sensors, locally connected to the system. This is
motivated by the fact that the weather forecast services typically provide coarse-grained
information, both from the spatial (city) and the temporal perspective (one prediction
per hour), although obtained through accurate models and observations. Instead, the
weather sensors allow the system to 1) gather data at high rate and 2) capture extremely
local conditions, like, for example, transient clouds covering the sky and decreasing the
solar irradiance for a few minutes.

When solar panels are used to harvest energy, the problem of modeling the input
power as a function of weather forecast is split into two parts (also in accordance with
previous works [234]):

1. Finding the model that links weather data to solar irradiance.

2. Finding the model that links solar irradiance to solar panel’s output power.

The first model is needed when the information source is the local weather station.
We need, in fact, to infer the solar irradiance (SI) from the visible light value (L) by
using the following formula:

SI

[
W

m2

]
= 0.0079 · L[lx] (6.7)

Instead, the remaining sensors – temperature, humidity, and pressure – allow us to
create the precipitation potential as model feature, as proposed by a previous work
[187]. The features are then fed to a Support Vector Machine to train a machine learning
model.

The second model is the solar panel’s output power, which strongly depends on the
Sun’s incidence angle on the solar panel. Formulas to compute such value exist, but
they are affected by the non-ideality of the sonar panel, by its installation, and other
parameters challenging to control a priori. The considered features are the day of the
year, the current time, and the solar irradiance SI . A Support Vector Machine is also
used to train this second model.

The details of the machine learning model are omitted in this manuscript, and the
reader can refer to the original paper [59]. We reported the experimental evaluation
result in Table 6.4, performed by running a real system connected to a solar panel, a
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Model % of SV SCC

Solar irradiance 18.76 0.968

Power generation 28.64 0.857

Table 6.4: Confidence results on the Support Vector Machine model. (Original Source:
[59])

local weather station, and a remote weather service. The results are expressed in terms
of percentage of support vectors (% of SV) and Squared Correlation Coefficient (SCC).
It is possible to notice a low number of SV, which shows we are not underfitting the
data, and a good high value for SCC, which means the correlation between input and
output of the model is good.

6.3.4 A proposed energy budget model for future works

In this subsection, we improve the previous model for the energy budget in energy-
harvesting systems, based on pWCEC. The model is currently used in ongoing works
and, consequently, no experimental evaluation is available yet. The model is presented
in the following paragraphs as a reference for possible future works.

The main goal of this model is to make the system survive in a given time period
[0;T ∗] by considering both input and output power. For instance, in the previous ex-
ample of Section 6.3.1, the time period [0; 24h] is a reasonable interval. Let P IN(t) the
input power from the energy-harvesting device (e.g. the solar panel) at a generic time
t. The input power is used to charge an energy storage device (e.g., a battery), which
has a finite maximum capacity, identified by Ēstore-max. The input budget function can
be then written as:

B(t) = min
(
Ēstore-max, B(0) + EIN(t)− EOUT(t)

)
(6.8)

where B(0) ≥ 0 is the energy already available in the storage at t = 0, and EIN(t) is
the total input energy harvested during the period [0; t]:

EIN(t) =

∫ t

0

P IN(x)dx (6.9)
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and the consumed energy EOUT(t) is computed in ideal conditions as follows:

EOUT(t) =

∫ t

0

P OUT(x)dx =

∫ t

0

(
PIDLE + P tasks(x)

)
dx

= PIDLE · t+

∫ t

0

P tasks(x)dx

(6.10)

where PIDLE is the minimum power consumption when the system is idle, and P tasks is
the power consumption to execute the set of tasks.

The optimization problem has to goal to maximize the power used by the task, that
implicitly, in first approximation, improves the total throughput. It can be written as
follows:

max

∫ T∗

0

P tasks(x)dx

s.t. B(t) ≥ Ēlow-thr ∀t ∈ [0;T ∗]

(6.11)

where Ēlow-thr ≥ 0 is the minimum amount of energy that must be maintained in the
storage. This value is ideally 0, but in practical applications, a minimum amount of
energy must be maintained to keep the system online and run the next allocation by
the resource manager. To optimize the problem of Equation (6.11) we need to dis-
cretized the integral. This is needed for two reasons: 1) computing an analytical form
for P tasks(x) is difficult for the power modeling issues discussed at the beginning of this
section, and 2) we can not perform a continuous allocation of tasks. For these reasons,
we consider a time period T alloc < T ∗ that corresponds to a single allocation decision.
This value must be T alloc > maxj Cj , for a reason that will be clear later on. This
means that in our target survival timespan T ∗, we have a total of

⌈
T∗

Talloc

⌉
decisions to

take. We can use this interval to approximate and split the maximum problem with a
sum: ∫ t

0

P tasks(x)dx ≤
d t

Talloc
e∑

i=1

∫ iTalloc

(i−1)Talloc
P tasks(x)dx (6.12)

Then, the integral can be written by exploiting a similar concept of HLS described in
Section 6.1.2. We define the symbol Sij as the allocation decision for task τj in the
i-th time period, i.e. if the jobs of task τj are admitted or not to schedule in the time
period [(i− 1)T alloc; iT alloc]. With this symbol, the last integral can be replaced with
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Figure 6.5: An example of the proposed model. For illustrative purpose only, axes not
in scale.

a function f such that
∫ iTalloc
(i−1)Talloc P

tasks(x)dx = f(i, T alloc) defined as:

f(i, T alloc) =
∑
j:Sij=1

Nj · F−1j (p̄) (6.13)

where F−1 is the icdf of the pWCEC of the task τj , Nj is the number of jobs of τj in
a time period of length T alloc. In this way, the optimization algorithm consists of only
selecting Sij for each allocation period.

An illustrative and comprehensive example of the symbols defined in this model is
depicted in Figure 6.5.
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6.3.5 Lesson learned

This proposed model is part of ongoing activity to build a better resource management
policy in energy-constrained systems, conceivably with a real-time workload. We are
currently studying algorithms to build the allocation matrix Sji , by considering mixed-
criticality workload similar to the model previously proposed in Section 5.2. The pro-
posed model has been developed in ideal conditions; future works may take into account
the non-ideality of the energy storage or the charger to improve the result accuracy.
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CHAPTER7
Developed Tools and Datasets

7.1 The chronovise Tool

The software chronovise [212]1 has been developed to support the experimental
evaluation of this thesis. This framework is open-source and aims at standardizing the
flow of the MBPTA process, integrating both estimation and testing phases needed to
carry out a valid pWCET.

This is not the first software developed for MBPTA. In 2010, Lu et al. [173] pro-
posed an algorithm called RapidRT to estimate via Block-Maxima the pWCET, but it
is unclear if the software has been released or not. The authors stated that part of the
software is based on a proprietary library, and, consequently, we suspect it is not acces-

1Last version could be found in the following git repository: https://github.com/federeghe/
chronovise
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sible. In 2015, Lesage et al. [161] proposed a framework for MBPTA, but it is uncertain
if the software has been made available to the public and is usable for generic applica-
tions or only to the specific case described in the paper. The two open-source tools we
are aware of are MBPTA-CV [3] and diagXtrm [109]2. The first software has been de-
veloped for the particular algorithm MBPTA-CV, but it suffers from the issue described
in Section 3.2, and it provides the estimation part only. Instead, the diagXtrm tool is
more oriented to a user-friendly visualization tool, without integrating all the features
presented in this thesis for the EVT process. It is possible to state that diagXtrm is
complementary to chronovise , and a future integration is possible.

The chronovise software has been developed as a library written in C++, which
can be linked with any other program. The choice of C++ required to re-implement sev-
eral statistical libraries already available in other languages (e.g., Python or MATLAB),
but it guarantees the maximum speed of the algorithms. This choice has two advantages:
(1) the software can be easily converted to HPC programming models (e.g., MPI) if a
considerable computational power is needed to carry out the solution; (2) it enables the
possibility to run the algorithms online, i.e., during the execution of the system as a sort
of monitoring activity. This monitoring of the tasks is one of the possible future works,
as explained in Section 8.2.

7.1.1 Components and features

The software can be compiled with a C++14 compliant compiler and by using the
CMake tool. Even if tested only on Linux, chronovise works potentially on any
operating system because it does not use any specific function of Linux. Optionally, a
test suite could be run by exploiting the Google Test tool. The test suite’s availability
and the continuous integration guarantee that the results remain correct even when new
versions of the software are pushed in the repository. The codebase is divided into five
different areas:

1. The top-level code which implements the EVT process flow.

2. The EVT components, i.e., the BM, PoT, and MBPTA-CV algorithms, together
with the GEVD and GPD distributions.

2The original repository of diagXtrm was at this url: https://forge.onera.fr/projects/
diagxtrm/, however it is currently not accessible at the time of writing.
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3. The statistical tools, in particular the estimators (MLE, PWM) and a set of statis-
tical tests (AD, BDS, CvM, KPSS, KS, Ljung-Box, RS).

4. Input generators, to generate input values to be provided to the program according
to a given distribution.

5. Some utility functions, e.g. to read or write to a .csv file.

The framework is built as a C++ static library that can be linked to the user implemen-
tation. The user implementation must include a derivative class that implements the
abstract class methods provided by the framework to configure and adapt the frame-
work to the user-specific requirements.

In order to simplify some common uses of the framework, two applications based
on the chronovise library has been developed and distributed with the framework:
the algorithm to compute the PPI (described in Section 4.1) and a pWCET estimation
process based on BM (thus producing a GEVD).

The chronovise tool was used to carry out the results of most of the analyses
presented in this thesis.

7.2 Statistical Power Estimation and Dataset

The statistical power of the GoF tests is a critical parameter to estimate the result’s
uncertainty of MBPTA methods, as we explained in Section 3.3 and Section 3.4. The
analytical calculation of the statistical power is unfortunately not easy: for most of the
GoF tests, a closed-form expression does not even exist. In Section 3.3.3, we already
described why this estimation is necessary to properly select the sample size for test-
ing procedures. We created a novel dataset for statistical power estimation for GoF
tests in extreme distribution, which can be advantageous for several fields, not only for
probabilistic real-time; in fact, the selection of the sample size is often performed with
empirical procedures and where the results are often interpreted in a too optimistic view
[165].

Among the previous works on statistical power estimation, Heo et al. [126] esti-
mated the critical values and statistical power for AD and MAD tests by using a Mon-
tecarlo approach for GoF tests of EVT distributions. The critical values were computed
for a scenario where the model parameters to be tested were estimated from the same
data used for the test. This scenario is commonly referred to as case 3, i.e., the assumed
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distribution parameters are unknown. Instead, the case 0 scenario (also called external
validation) is when the samples used to perform the test are a different set with respect
to the samples used to estimate the reference distribution. In particular, to the best of
our knowledge, quantitative information of only case 3 scenarios is available in the lit-
erature because the traditional applications of EVT have little data to deal with, while
probabilistic real-time can gather thousands of samples with a low effort. However,
to the best of our knowledge, no case 0 power analysis for such distribution classes is
available in the literature. Generally, statistical power estimations for case 0 are not
representative of case 3 and vice versa. The dataset proposed in this section wants ex-
actly to fill this knowledge gap. The case 0 is also more powerful that case 3, leading
to the most stringent and unbiased test [102].

7.2.1 Estimation method

This work presents the estimated statistical power of three Goodness-of-Fit (GoF) tests:
Kolmogorov-Smirnov (KS), Anderson-Darling (AD), and Modified Anderson Darling
(MAD) described in Section 3.3.2. Other common tests have been excluded, for exam-
ple, the Chi-Squared (CS) and Cramer-von Mises (CvM) tests, because state-of-the-art
works already showed that they have a lower statistical power compared to KS or AD
[261, 10].

The analytical computation of the statistical power, and consequently the selection
of the appropriate sample size for testing, is usually not possible due to the frequent lack
of the effect size knowledge, i.e., the real characterization of the population’s distribution
from which the samples are collected. To estimate it, Muthén and Muthén [191] studied
the usage of Monte Carlo methods to select the sample size and determine the testing
power. We follow the same approach to estimate the statistical power of our scenarios,
identified by a set of tuples representing the test conditions. In particular, the Monte
Carlo sampling is executed for every tuple (D,n, α,G1,G2), where D is the statistic
of the test under analysis, n is the sample size, α the level of significance, G1,G2 are
respectively the reference distribution with cumulative distribution function F (x) and
the empirical distribution with cumulative distribution function Fn(x). The statistics
and critical values for KS, AD, and MAD tests are computed by using the formulas of
Appendix B.

The pseudo-code of the analysis is presented in Algorithm 7.3. For each scenario,
the critical value is computed (line 4), and a large number of explorations N is per-
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Algorithm 7.3 Power estimation algorithm with Monte Carlo simulations. (Original
Source: [217])

1: Input: N (number iterations), D (test statistic), n (sample size), α (significance
level), G0,G1 (null and alternative distributions)

2: Output: W (test power)

3: reject = not_reject = 0
4: critical_value = get_critical_value(D, G0, n, α)
5: for i ∈ [1;N ] do
6: X = collect_sample(G1, n)
7: if D(FG0(·), X) > critical_value then
8: reject++
9: else

10: not_reject++
11: end if
12: end for
13: W = reject / (reject + not_reject)

formed (lines 5-12). Each time, we draw a sample from the reference distribution (line
6), and we check if the statistic D of the ecdf matches or not with the drawn sample,
comparing it with the critical value (line 7). If the statistic value is higher than the crit-
ical value, then the sample is rejected (line 8), otherwise not (line 10). Finally, the ratio
rejection over total samples provides us the statistical power W (line 13). If the test is
able to detect the differences between G1 and G2, we expect to get a value near 1 for
this ratio. In this specific Monte Carlo simulation, the standard error of W is computed
as [262]:

√
R(N −R)

N3
(7.1)

where R ≤ N is the number of rejects (the accumulation variable of line 12).

The selected values for parameters of each Monte Carlo estimation are:

• N = 109: number of Monte Carlo iterations;

• D: the test statistics previously described;
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• n: the sample size. Exploring all the possible values would have increased in a
non-sustainable way the computational effort required by the Monte Carlo simu-
lations. Since the power test function is a non-decreasing function of n, we ex-
plored them easily selecting the following values: n = (50, 100, 150, 200, 300,

400, 500, 750, 1 000, 2 500);

• α: the significance level. We studied the traditional values of 0.05 and 0.01.

The simulations ran on 4 nodes of the CINECA supercomputing facility (GALILEO-
A1 cluster, 2 x Intel Xeon E5-2697v4@2.3GHz per node) for a total of 144 CPU cores.
It took ≈ 13h for KS tests, ≈ 17.5h for AD test, ≈ 16h for the MAD test.

7.2.2 Results

In the following pages, Table 7.1, Table 7.2, and Table 7.3 present the results of the
Monte Carlo estimation, by showing the statistical power obtained for each scenario
considered. These tables can be very useful as a reference for future works on prob-
abilistic real-time, but also in other scientific fields that use the EVT and the related
tests. Each table is composed of three macro rows indicating the reference distribu-
tion (G1) and the actual distribution from where the samples have been generated (G2).
The results in Table 7.1 show that the KS test is not able to reach the target probability
(1− 10−9) even while using 1 000 samples, while with 2 500 samples the test is always
correct. AD and MAD are much more sensible as shown in Table 7.2 and Table 7.3:
both of them needs only 750 samples to reach the target probability. No significant
difference between AD and MAD has been observed.
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Chapter 7. Developed Tools and Datasets
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7.3 Benchmarks

In many scientific works, researchers use benchmark suites to carry out the experimen-
tal results by running them on real platforms or via simulation. Regarding the WCET,
the following three free and open-source suites (written in C) have been extensively
used in research articles regarding real-time systems in embedded scenario:

• Mälardalen WCET [118]: Probably the most famous benchmark suite for WCET
applications, it is a collection of research and small industrial use cases. Most of
the included programs are simple algorithms, such as array ordering, basic math
operations, or synthetic programming structure to test specific behaviors.

• TACLeBench [88]: Similarly to the previous, the TACLeBench is a collection
of benchmarks, which have been rewritten to match a defined coding style and to
remove the dependencies on external libraries and operating system. The suite is
composed of 53 benchmarks, including synthetic and pseudo-applications.

• MiBench [119]: Inspired to a commercial benchmark suite, it is a mix of differ-
ent algorithms, organized in the following application categories: Industrial and
Control, Consumer, Office, Network, Security, and Telecommunication.

These three benchmark suites are publicly available, stable, and widely used in research.
However, they have some issues, explained in the following paragraph, which make
them unsuitable for testing measurement-based methods and, in particular, the MBPTA
methods.

7.3.1 Current limitations and solutions

Some of the programs, especially of the Mälardalen WCET suite, come from previously
existent software, often written with deprecated C standards. In addition, many bench-
marks contain debug code, OS-specific libraries, different programming techniques,
and non-configurable constants. All these factors increase the necessary effort for the
scientist to use such benchmark suites, increasing the possibility of committing mis-
takes, and reducing the time spent in research activities. Another unwanted effect we
noticed is due to the compiler optimizations. Many modern compilers perform smart
optimizations that reduce the executed code by computing as much as possible at com-
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pile time. In some corner cases, we observed the compiler even replacing an entire
complex algorithm with the solution, if all the input data is known at compile-time.

All the programs of the previous benchmark suites use constant values for inputs,
mainly because of the necessity to remain independent from external software. This
can be acceptable for static analyses, but not for measurement-based, for the compiler
optimization problem just described and the necessity to observe different execution
behavior at run-time. For this reason, we created a new benchmark suite by taking the
programs from the aforementioned suites and applying the following modifications:

• Getting rid of the deprecated C syntax (e.g., as the K&R constructs) and porting
it to C99 standard.

• Code cleaning to uniform the code style, remove the unnecessary constants and
primitives used for debugging.

• Adding an external, user-provided, way to measure the execution time, to allow
the developer to use external tool instead of the C library <time.h>.

• Removing the dependency from external libraries and architecture-specific in-
structions; when possible, the dependency on the C library was removed.

• Replacing the hard-coded inputs with randomly generated inputs by a PNRG,
according to the uniform distribution or, for some cases, to a distribution selected
by the user.

The detailed description of the modifications and the preliminary results are explained
in the recent master’s thesis of Confalonieri [55], which is the exploratory report of
the currently ongoing scientific work. A preliminary experimental evaluation showed
how the original benchmarks meet the EVT hypotheses, according to the PPI index
described in Section 4.1, for the 50% of the benchmarks, while with the introduced
modifications, this percentage increases to 81%.

7.3.2 The necessity of input-independent software

The obtained result of the satisfaction of the PPI hypotheses for 81% of the benchmarks
does not represent a realistic situation. To show this, we implemented two complex al-
gorithms used in real applications: the TCAS3 and an audio compression benchmark.

3The Traffic Collision Avoidance System is a system used on-board of aircraft to detect imminent colli-
sions and suggest the best collision avoidance manoeuvres to pilots

177
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Both of them obtained excellent results when fed by random inputs, obtaining the sat-
isfaction of the hypotheses for all the considered time traces. However, when we tried
to use real data – coming from, respectively, a flight simulator and real audio files –
the PPI values and the EVT hypotheses’ satisfaction drastically dropped, making the
obtained pWCET unsafe and possibly underestimated. This result perfectly exempli-
fies the problem of representativity we discussed in Section 4.2. All these preliminary
results are available in the previously mentioned master’s thesis [55].

Currently, we are developing a solution to this problem based on randomized algo-
rithms. This solution, already described in Section 4.2.4, makes the algorithm timing
independent from the input, and consequently compliant with EVT hypotheses. For
example, we obtained preliminary results with the bubble sort algorithm, showing that
sorting an array and its flipped version in a row and removing some optimizations make
the execution time independent from the values in the array itself. Clearly, the aver-
age execution time got worse (up to 2.5x), but it enables the possibility to compute the
pWCET. Similar approaches are available from the cryptography and security worlds:
to avoid side-channel attacks, some cryptographic algorithms are built to exhibit an
execution time independent from the input data and the key, to avoid any leakage of
information. Such techniques and novel techniques can be studied in future works to
generalize input-independent algorithms and remove this problematic aspect of repre-
sentativity.
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CHAPTER8
Future Works and Conclusions

As the last chapter of this thesis, we present the possible future works and research
trends related to timing-sensitive systems and, particularly, on probabilistic real-time
computing, which is the main subject of this manuscript. Finally, the conclusion sec-
tion summarizes the achievements and the research advances obtained by the works
presented in this thesis.

8.1 Trends in Real-Time Systems

As the industry is moving towards more complex architectures due to the end of Den-
nard’s scaling and the imminent end of Moore’s law [189], traditional approaches to es-
timate the WCET are becoming difficult to be effectively used. Probabilistic real-time
solutions are promising for future approaches, as later discussed in Section 8.2. The
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current inability to safely estimate a tight WCET has led the researchers to focus on the
MC framework (described in Section 5.2.1) in the last decade. MC scheduling is still a
very hot topic in real-time research. A good candidate in this regard for future works
is exploiting probabilistic real-time information to improve the schedulability, or other
non-functional metrics, in MC context. In this thesis, we proposed an example (Sec-
tion 5.2), which used probabilistic information to optimize energy consumption. Many
derivative works are possible, from the moving towards a dynamic-priority scheduler
to multi-criticality levels. The interest in energy optimization is also critical for energy-
constrained embedded systems, as we described in Section 6.3. In addition to energy,
future research can pursue other goals:

• Using the probabilistic information (pWCEC or pET) to improve the schedula-
bility of LO-criticality tasks, while maintaining the formal guarantees for HI-
criticality tasks. More than two criticality levels can also be considered to exploit
the probabilistic information more thoroughly.

• Optimizing other metrics, such as reliability and power consumption, which in-
terest is rapidly increasing in modern architectures due to components’ miniatur-
ization.

• Dealing with fault-tolerance requirements by allowing tasks to re-execute if a
failure occurs. Probabilistic information can be exploited to verify the probability
of transient faults to happen and perform probabilistic scheduling on the task re-
execution.

The last possible future research is becoming remarkably important in some safety-
critical applications, such as embedded systems for aviation and space. The reason is
the miniaturization of the components, which makes the electronic devices also more
susceptible to transient faults. The development of software techniques for such sce-
narios can improve reliability while not requiring the usual triple redundancy setup or
a heavy radiation shield, which would increase the costs, space, and weight of the final
system.

8.2 The Future of Probabilistic Real-Time

Probabilistic real-time and, in particular, MBPTA are a controversial topic in the real-
time community. They are attractive from an industrial standpoint, thanks to the sim-
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plicity of the black-box approach, which hides the software and hardware complexity.
Whether such approaches can be certified in the future is an open question, due to the
numerous open challenges [139]. The most crucial challenge for the success of prob-
abilistic real-time is, most probably, the representativity hypothesis. In Section 4.2.4,
we have already identified the major obstacles and the possible future research direc-
tions regarding this condition. Further theoretical studies are required, supported by the
development of novel architectures compliant with the representativity hypothesis.

EVT process choices (e.g., block size selection), uncertainties of estimators, and
statistical power of tests are other sources of errors that must be quantified to obtain a
safe pWCET. This thesis presented some theoretical tools to deal with and estimate such
uncertainties. Further investigations are needed to close the circle on this uncertainty
quantification. For example, the choice of the block-size for BM (or the threshold value
for PoT) were only partially and empirically investigated by previous work, and a more
theoretical approach is needed.

Even if the pWCET cannot be considered safe for WCET estimation, it could be
useful as a monitoring tool. The estimated distribution and/or the statistical test outputs
can be used to monitor the system’s health from the timing standpoint and recognize any
unexpected change before an extreme event occurs. For example, a run-time monitor
may continuously check the goodness-of-fit of the pWCET distribution with the timing
samples, detecting, in this way, changes to the timing behavior. The monitoring can be
exploited in different manners, e.g., reacting to maintain soft real-time requirements or
identifying security threats. Preliminary studies, not presented in this thesis, suggest
that pWCET is a promising solution as a change detection algorithm for the timing
behaviors of applications.

The first results in using pWCET estimation techniques for non-embedded systems,
such as HPC, as we showed in Section 5.3, are encouraging, especially when dealing
with heterogeneous architectures. Future works are needed to assess the role of each
subcomponent (e.g., network, SAN, etc.) in the satisfaction or not of the i.i.d. hy-
potheses and, consequently, in the accuracy of the pWCET estimation. The use of the
Linux PREEMPT_RT patch described in Section 5.1 can help in pursing the accuracy
goals. How to use the pWCET information not only for timing requirements but also to
improve the job and resource management in such systems is another interesting topic
to study in-depth.

Other approaches exploiting pWCET not directly to compute the WCET can be
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Figure 8.1: Conceptual map of the possible topic for future works.

the subject of future studies. The model for energy-constrained systems described in
Section 6.3.4, together with the pWCEC concept of Section 6.2, can trigger many future
works. Conversely to time requirements, the energy requirement is rarely required to be
formally proved, making the probabilistic theory very interesting. Different quantities
can also be explored, such as maximum power consumption, temperatures of the cores,
reliability, etc.

All the keywords related to these proposed research directions for future works are
summarized in the conceptual map of Figure 8.1.
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8.3 Conclusions

This manuscript reported the scientific works published during the Ph.D. course of the
author. It began by explaining the difficulties in estimating the WCET on modern ar-
chitectures with traditional static methods, which push the research to find alternative
solutions. One of the state-of-the-art solutions is probabilistic real-time computing,
born about 20 years ago and developed in the last decade, which is the central topic of
this thesis. The main advances in terms of improvement of the scientific knowledge are
outlined with the following list:

1. Uncertainties analysis for the pWCET estimation process, by focusing on differ-
ent aspects of it. We proved a common misconception in previous works regard-
ing the distribution upper-bounding (Section 3.2), which may lead to optimistic
and unsafe pWCET estimations; the concept of statistical power and its impact
on the pWCET uncertainties (Section 3.3) were explained; we developed a math-
ematical tool, called Region of Acceptance, to explore the area of uncertainties
on the GEVD parameters (Section 3.4).

2. The most crucial hypothesis, i.e., representativity – which is currently the main
barrier to the use of probabilistic real-time for industrial systems – was discussed
and possible solutions proposed (Section 4.2).

3. Evaluation of the EVT hypotheses satisfaction on real platforms. To perform such
an analysis, we developed a new statistical test called PPI (Section 4.1), which
was exploited to test embedded platforms (Section 4.1.2), including a Linux PRE-
EMPT_RT and a complex HPC platform (Section 5.3). The latter scenario was
also studied with heterogeneous architectures, identifying the benefits of hetero-
geneity in probabilistic real-time hypotheses satisfaction.

4. The probabilistic theory was applied to the energy problem to estimate the pWCEC
instead of the pWCET. The pWCEC was then experimentally validated on an
embedded platform (Section 6.2). This metric can also be used in the context of
energy-constrained and energy-harvesting systems (Section 6.3), for which a task
and system models were proposed for future works.

5. On the same energy aspect, we proposed a probabilistic approach to energy-aware
mixed-criticality scheduling (Section 5.2), such that the hard real-time constraints
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are met in any condition by using a static WCET, while the energy-optimization
is based on the pWCET evaluation.

6. To perform the analyses of the previous points, we developed an open-source
software called chronovise (Section 7.1), we estimated the statistical power
with a high degree of confidence (Section 7.2), and, finally, we started to develop
a custom WCET benchmark suite targeted to probabilistic approaches (Section
7.3), which will be the subject of a forthcoming future work.

In summary, thanks to the research activity of this thesis, we improved the knowl-
edge of the uncertainties affecting the pWCET and how to quantify and deal with them.
We explored the major obstacles to certification by using both theoretical reasoning and
experimental evaluations. Possible future solutions to these obstacles were discussed,
including their potentials and limits. In addition, unconventional uses of the pWCET
were proposed and tested.

The scientific community is far from reaching a consensus on the future of prob-
abilistic techniques for WCET estimation in safety-critical systems. Many challenges
are still open, creating significant interest in the research community in the last decade.
During these recent years, the research articles, including the works presented in this
thesis, improved the knowledge on the pWCET estimation. However, the theoretical
setup is still unfledged and requires consistent effort to make it mature. For this rea-
son, many future works arise, as shown in the previous Section 8.2, forecasting a great
ferment on this topic for the next years.
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APPENDIXA
List of Publications

In this appendix we provide the list of scientific articles resulting from the research
conducted during the PhD and presented in this thesis. Each paper is summarized with
the following structure:

Title

Authors

Publication venue (Journal/Proceedings/etc.)

Year Bibliographic info DOI (if any) Cit.

Reference to thesis chapters or sections
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Section A.1 lists the main papers related to this thesis and presented in
the previous chapters. Unless otherwise stated, the author of this thesis
is the main contributor to these papers for both the theoretical and ex-
perimental parts. Section A.2, instead, presents the articles related to the
works which are subject of this thesis, but present only in minimal part in
this thesis. The author of this thesis provided a significant contribution to
these manuscripts. Finally, Section A.3 lists all the manuscripts currently
under review.
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APPENDIXB
Computation of the Statistics of Tests

This appendix provides the state-of-the-art formula to compute the sta-
tistical tests used in this thesis.

B.1 KPSS

Omitting the mathematical proofs available in the original paper [154],
the test statistic DKPSS can be computed as:

η(X) =

(
n∑
i=1

(Xi − X̄)

)2

− n2
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DKPSS(X) =
η(X)

σX,l

where σX is the consistent estimate of the error variance computed for
lags 1, ..., l. The value of l can be computed with the following well-
known formula [232]:

l = 12 4

√
n

100

B.2 BDS

The test statistic can be computed with the following formula:

DBDS =
√
n−m+ 1

cm,n − cm1,m−n+1

σm,n
(B.1)

where n is the sample size, m is the embedding dimension, σm,n the
consistent variance estimator and ca,b is defined as follow [141]:

ca,b = 2
1

(b− a+ 1)(b− a)

b∑
s=a

b∑
t=s+1

a−1∏
j=0

I(Xs−j, Xt−j)

where

I(Xs−j, Xt−j) =

1 if |Xs−j −Xt−j| < ε

0 otherwise

for some ε > 0. We do not provide here a detailed explanation of the
above formulas, leaving the reader to examine them in detail in the cited
statistical articles.

Under independence conditions, the DBDS is normally distributed,
therefore the critical region is obtained using the well-known t-student
inverse-cdf.
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B.3 R/S - Hurst

Given the time series X = {X1, X2, ..., Xn} and its mean value X̄ =
1
n

∑n
i=1Xi the function cumulative sum is defined as:

Zc(X) =
c∑
i=1

(Xi − X̄)

The test statistic is the defined as:

DR/S(X) =
1√
n

maxc(Zc(X))−minc(Zc(X))

σX

where σX is the sample standard deviation. If the values are uncorrelated
the statistic follows the distribution having the following cdf:

F (v) = 1 + 2
∞∑
i=1

(1− 4k2v2) · e−2(kv)2

from which the critical values can be computed by numerical methods.

B.4 KS

Given the cdf F (x) of a reference distribution and an ecdf F̂n(x) com-
puted on a set of measurements of size n by Equation (2.1), the statistic
of the Kolmogorov-Smirnov test is [142]:

DKS = sup
x
|Fn(x)− F (x)|

The critical value is computed with the following closed form – valid
for n > 30 – for KS test [227]:

CVKS =

√
−1

2
log α

2√
n
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B.5 AD and MAD

Given the cdf F (x) of a reference distribution and an ecdf Fn(x) com-
puted of a set of measurements of size n, the statistic of the Anderson-
Darling test is [12]:

DA2 = −n− 1

n

n∑
i=1

(2i−1) log(F (xi))−
1

n

n∑
i=1

(2n−2i+1) log(F (1−xi))

while for modified Anderson-Darling test is [240]:

DAU2 =
n

2
− 2

n∑
i=1

F (xi)−
n∑
i=1

2n− 2i+ 1

n
log(F (1− xi))

For (M)AD test no critical value closed form is available because the
critical value computation procedure strongly depends on the real (un-
known) distribution. To obtain them, a dedicated Monte Carlo estima-
tion, similar to the method used by Heo et al. [126], can be used to
compute CV(M)AD.
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Acronyms

BM Block Maxima.

ccdf Complementary Cumulative Distribution Function.

cdf Cumulative Distribution Function.

CFG Control-Flow Graph.

COTS Commercial-Off-The-Shelf.

DVFS Dynamic Voltage and Frequency Scaling.

ecdf Empirical Cumulative Distribution Function.

EVT Extreme Value Theory.

FLOPS Floating-Point Operations per Second.

GEVD Generalized Extreme Value Distribution.

GoF Goodness-of-Fit test.

GP2D Generalized Pareto Distribution (2-parameters).

GP3D Generalized Pareto Distribution (3-parameters).

GPD Generalized Pareto Distribution (generic).
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Acronyms

GPOS General-Purpose Operating System.

HLS High-Level Schedule.

HPC High-Performance Computing.

i.i.d. Independent and Identically Distributed.

iccdf Inverse Complementary Cumulative Distribution Function.

icdf Inverse Cumulative Distribution Function.

IoT Internet of Things.

MBDTA Measurement-Based Deterministic Timing Analyses.

MBPTA Measurement-Based Probabilistic Timing Analyses.

MC Mixed-Criticality.

MDA Maximum Domain of Attraction.

pdf Probability Distribution Function.

pET Probabilistic Execution Time.

pmf Probability Mass Function.

PoT Peak-over-Threshold.

PPI Probabilistic Predictability Index.

PRNG Pseudo-Random Number Generator.

pWCEC Probabilistic Worst-Case Energy Consumption.

pWCET Probabilistic Worst-Case Execution Time.

Qos Quality-of-Service.

RCU Read-Copy-Update.

SAN Storage Area Network.

SDTA Static Deterministic Timing Analyses.

SLA Service Level Agreement.

SMI System Management Interrupts.

SPTA Static Probabilistic Timing Analyses.

WCEC Worst-Case Energy Consumption.

WCET Worst-Case Execution Time.

WCOT Worst-Case Observed Time.
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Index

Best Fit Point, 59
Block Maxima, 28
Budget function, 149

case 0, 170
case 3, 169
ccdf, see also distribution function
cdf, see also distribution function
chronovise, 167
Commercial Off-The-Shelf, 5
Computing Continuum, 3
Control-Flow Graph, 39
critical systems, 4
critical value, 50
criticality, 110
Cyber-Physical Systems, 130

distribution function
complementary cumulative, 21
cumulative, 21

empirical cumulative, 21
mass, 20
probabilistic, 20

Dvoretzky-Kiefer-Wolfowitz inequality, 37
Dynamic Voltage and Frequency Scaling,

111, 156

effect size, 170
exascale, 41
external validation, see also case 0
Extreme Value Theory, 24

firm real-time, 9
Floating-Point Operations per Second, 8,

41

General-Purpose Operating Systems, 104
Generalized Extreme Value Distribution,

25
Generalized Pareto Distribution, 27
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Index

Goodness-of-Fit test, 53
GP2D, 27
GP3D, 27

hard real-time, 9
High-Level Schedule, 149
High-Performance Computing, 6
hyperperiod, 35

independent and identically distributed, 29
indicator function, 21

job, 34
Job admission algorithm, 153

Life-critical system, see also
Safety-critical systems

location parameter, 25, 27

Maximum Domain of Attraction, 30
Measurement-Based Deterministic Timing

Analyses, 32
Measurement-Based Probabilistic Timing

Analyses, 32
Mission-critical system, 4
Mixed-Criticality, 110
mode switch, 111

p-value, 50
pdf, see also distribution function
Peak-over-Threshold, 28
pmf, see also distribution function
PREEMPT_RT, 104
Probabilistic Execution Time, 36
Probabilistic Predictability Index, 80
probabilistic profile, 115
probabilistic-WCEC, 151
probabilistic-WCET, 36
pWCET, 36

Quality-of-Service, 41

Read-Copy-Update, 106
real-time system, 9
Region of Acceptance, 59
Representativity, 30
representativity, 94

deterministic, 94
stochastic, 95

Safety-critical systems, 4
scale parameter, 25, 27
Service Level Agreement, 13
shape parameter, 25, 27
soft real-time, 9
standard

DO-178, 32
IEC-61508, 33
ISO-26262, 33

Static Deterministic Timing Analyses, 31
Static Probabilistic Timing Analyses, 32
statistic, 50
statistical power, 55
Storage Area Network, 135
supercomputer, 6
Support Vector Machine, 162
System Management Interrupts, 13

task, 34
test result function, 58
theorem

Fisher-Tippett-Gnedenko, 25
Glivenko-Cantelli, 21
Pickands-Balkema-de Haan, 27

throughput, 41
time-utility function, 10

Worst-Case Energy Consumption, 148
Worst-Case Execution Time, 13
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“Somewhere, something incredible is waiting to be known.”

(Misattributed to Carl Sagan, probable author Sharon Begley)
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