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1. Introduction
In the field of computational fluid dynamics
(CFD) simulation, the use of machine learn-
ing has experienced significant growth in recent
years, partially driven by the increase in avail-
able computational resources. Machine learn-
ing allows for the improvement of turbulence
models that are often ineffective for complex
flow situations by leveraging simulated data or
experimental measurements. This involves uti-
lizing functional structures such as neural net-
works, which are flexible and adaptable, to learn
models from reference numerical data obtained
through Direct Numerical Simulations (DNS).
However, such data-driven learning presents a
major drawback: it can produce models that do
not conform to the laws of physics, resulting in
predictions that are not guaranteed beyond the
training domain. In fluid mechanics, a turbu-
lence model must adhere to several invariances,
notably Galilean and rotational invariances.
This document presents the continuation of the
work on machine learning of the Reynolds tensor
for Reynolds-Averaged Navier-Stokes (RANS)
calculations, building upon the work of Cai et
al. [2]. The focus of this work is on the clo-
sure of the Reynolds tensor, particularly the

low-Reynolds k − ε model.
This master’s thesis, conducted in the LMSF
laboratory of the French Atomic Energy Com-
mission (CEA), aims to perform an a posteri-
ori validation of the Reynolds tensor predicted
through the neural networks trained by Cai et
al. [2]. The advantage of this approach is to
benefit from a functional structure proposed by
Pope [6], which ensures all invariances on the
Reynolds tensor, and to leverage the learning
capabilities of a neural network. The combina-
tion of the tensor basis and a neural network is
referred to as TBNN (Tensor Basis Neural Net-
work). The training of TBNN was conducted
on databases derived from DNS calculations on
turbulent flows in plane channels. The neural
models obtained were then integrated into the
TrioCFD computation code. This significant
step allowed for the first low-Reynolds number
RANS simulations with TrioCFD using machine
learning based models.
This document is structured as follows. Sec-
tion 2 describes Pope’s RANS closure model and
analyzes the TBNN architecture in the case of
the flat channel. Section 3 presents the ma-
chine learning based RANS closure model object
of validation in this work. Section 4 provides
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details on the integration of the low-Reynolds
neuronal model in the TRUST/TrioCFD solver.
Section 5 is dedicated to the a posteriori vali-
dation of the neural models through simulations
with TrioCFD. Finally, Chapter 6 concludes the
note, discussing the encountered challenges and
presenting numerous prospects for the future.

2. Context of Study
2.1. Pope’s closure model
Pope proposed one of the most widely used
Nonlinear Eddy Viscosity Models (NLEVM) to
extend the applicability of Reynolds-Averaged
Navier-Stokes (RANS) closure models [6].
Pope’s approach is based on the Reynolds stress

anisotropy tensor b =
Rij

2k
− 1

3
δij and postulates

that it can be expressed as a function of normal-
ized strain-rate S∗ and rotation-rate R∗ tensors
for homogeneous flows:

b (S∗,R∗) =
∑
n

g(n)(λ∗
1, λ

∗
2, ...)T

∗(n) (1)

Where the tensors S∗ and R∗ are normalized us-
ing a turbulent timescale formed with the tur-
bulent kinetic energy and dissipation rate, and
they read as follows:

S∗
ij =

1

2

k

ε

(
∂ūi
∂xj

+
∂ūj
∂xi

)

R∗
ij =

1

2

k

ε

(
∂ūi
∂xj

− ∂ūj
∂xi

)
Moreover, g(n) are coefficient functions depen-
dent on physical independent invariants λ∗

i ,
while T∗(n) are basis tensors dependent on S∗

and R∗.
From the Pope’s model it has been demon-
strated that for flows where the mean velocity
and variation of mean quantities in a specific
direction are zero, such as the turbulent plane
channel, only two invariants and a basis of three
tensors are sufficient (0 ≤ n ≤ 2). The choice of
the tensors T∗(n) depends on the flow’s charac-
teristics, such as the direction of invariance. For
instance, if the flow exhibits invariance and zero
mean velocity along the x3 direction, the iden-
tity tensor I2 is set to be equal to diag(1,1,0).
Therefore, now b reads:

b = g(0)(λ∗
1, λ

∗
2)T

∗(0) + g(1)(λ∗
1, λ

∗
2)T

∗(1)+

+g(2)(λ∗
1, λ

∗
2)T

∗(2)

with 
T∗(0) =

1

2
I2 −

1

3
I3

T∗(1) = S∗

T∗(2) = S∗R∗ −R∗S∗

(2)

2.2. Generalized T∗(0) tensor
In this subsection it is presented a summary of
the work of Cai et al. [2] on the generalized
T∗(0) tensor, that is the theoretical basis of the
model validation performed in this work.
Addressing another concern linked to the selec-
tion of the constant tensor T∗(0), an identifi-
cation has been made. It has been discovered
that two alternative permutations of I2 can yield
T∗(0) configurations that also establish an in-
tegrity basis alongside T∗(1) and T∗(2). This as-
sertion is evidenced by the following relations:

T∗(01) = diag(−1/3, 1/6, 1/6) = −1

2
T∗(03)− 1

4λ∗
1

T∗(2)

and

T∗(02) = diag(1/6,−1/3, 1/6) = −1

2
T∗(03)+

1

4λ∗
1

T∗(2)

To circumvent an arbitrary selection of one
among the three potential T∗(0) configurations
Cai et al. proposed a novel formulation for
T∗(0). This new expression generalizes T∗(0) as
a linear combination of each of the alternative
forms, denoted as T

∗(0)
gen :

T∗(0)
gen = g01T

∗(01) + g02T
∗(02) + g03T

∗(03)

where g01, g02 and g03 are coefficient functions
depending on α, instead of some fixed constants,
in order to make the generalization as broad as
possible under Pope’s framework.
It’s interesting to mention that the information
about α in T∗(2) is contained in T

∗(0)
gen . Because

of this, one can get rid of T∗(2). In the scenario
of turbulent channel flow, the modified Equa-
tion 1 becomes:
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b = T∗(0)
gen (α) + g(1)(α)T∗(1)

Consequently, four distinct representations of
the Reynolds stress anisotropy tensor have been
established. These formulations utilize either
one of the three constant T∗(0) tensors or the
newly introduced T

∗(0)
gen . Subsequently, the in-

tention is to study each of these representations
of Pope’s model, examining the potential advan-
tages of T∗(0)

gen in the model validation.

2.3. Tensor Basis Neural Networks
The Tensor Basis Neural Network (TBNN), de-
signed by Ling et al. [5], is based on Pope’s
model. This innovative architecture, illustrated
in Figure 1, incorporates two input layers: one
for the invariants λi, λj and another one for the
tensors T∗(n) for n = 1, ..., 10. The output of
the final layer, gn, is then combined with the
basis tensors input layer through element-wise
multiplications to predict the Reynolds stress
anisotropy tensor. The TBNN architecture en-
sures Galilean invariance and rotational invari-
ance, as Pope’s model does.

Figure 1: TBNN architecture.

2.4. Low-Reynolds number TBNN
Cai et al. added to the TBNN architecture two
extra input values, y+ =

uτy

ν
and Reτ =

uτh

ν
,

where uτ =

√
ν
dū1
dx2

∣∣∣∣
y=0

. Indeed, in their work

they have shown that the anisotropic Reynolds
tensor do not depend only on the invariants λ∗

1

and λ∗
2, as considered in the previous studies

on the turbulent plane channel, but also on y+

and Reτ , especially in the near wall region. In
particular since λ∗

1 and λ∗
2 only depend on α =

k

ε

∂ū1
∂x2

, the neural network proposed by Cai et

al. is exhibited in Figure 2.

Figure 2: Diagrams of the neural network archi-
tectures used in the work of Cai et al. [2]

3. Low-Reynolds number neu-
ronal model

In this thesis, it is proposed a low-Reynolds
number k − ε model. The requirement for a
low Reynolds number neural model arises from
the intention to fully leverage the neural net-
work trained by Cai et al. [2], which is capable
of predicting the Reynolds stress anisotropy ten-
sor, b, across the entire domain, including the
near wall region. The rationale behind the def-
inition of the model is to adapt the neuronal
k − ε model introduced by Angeli et al. [1] to
the Launder-Sharma low-Reynolds k − ε model
[4].
The model proposed in this thesis retains the
structure of the Low Reynolds number model
proposed by Launder and Sharma but incor-
porates the computation of certain terms us-
ing a neural network. Consequently, the low-
Reynolds neuronal k − ε model is expressed as
follows:

∂ūi
∂xi

= 0

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
(ν + ν̃t)

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2kbNL

ij

]
∂k

∂t
+ ūi

∂k

∂xi
=

∂

∂xi

[(
ν +

ν̃t
σk

)
∂k

∂xi

]
+ P̃ − ε−D

∂ε

∂t
+ ūi

∂ε

∂xi
=

∂

∂xi

[(
ν +

ν̃t
σε

)
∂ε

∂xi
+

ε

k

(
Cε1f1P̃ − Cε2f2ε

)]
+ Ẽ

ν̃t = C̃µ
k2

ε

The terms C̃µ, ν̃t and P̃ are expressed with the
tilde to highlight the difference with respect to
the standard model, while bNL

ij is not expressed
with a tilde since it is not found in the stan-
dard model. Table 1 summarizes the differences
between the classical low-Reynolds models and
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the model proposed above.

Low-Reynolds
Classical Models

Low-Reynolds
Neuronal Model

bNL
ij 0

∑
k ̸=1

gkT
∗(k)
ij

Cµ 0.09fµ −g1

νt 0.09fµk
2/ε −g1k

2/ε

P 2νtSijSij −2kbijSij

Table 1: Low-Reynolds k−ε Models: Differences
between Classical and Neuronal.

The parameters σk, σε, D, Cε1, Cε2, f1, f2 and
Ret are taken as in the Launder-Sharma model;
E and νt keep the same formulas of the Launder-
Sharma model but with their terms affected by
the neural network; Cµ and bNL are directly
obtained from the neural network while fµ is
excluded from the model since the adaptation
of the value of Cµ close to the wall is no more
needed thanks to the neural network. Table 2
present the parameters selection for the low-
Reynolds neuronal k− ε model used to perform
the validation.

C̃µ -g1
σk 1.0

σε 1.3

D 2 ν

(
∂
√
k

∂y

)2

Ẽ 2 ν ν̃t

(
∂2u

∂y2

)2

Cε1 1.44

Cε2 1.92

fµ -

f1 1.0

f2 1− 0.3 exp (−Re2t )

Ret k2/νε

Table 2: Low-Reynolds number neuronal k − ε
model: Parameters selection

In summary, the distinctions between this model
and the high-Reynolds neuronal k−ε model pro-
posed by Angeli et al. [1] can be synthetically

described as follows. The present model incor-
porates additional terms to adjust values in the
vicinity of the wall, specifically: f1, which is gen-
erally set to 1 in most widely-used models and
thus does not significantly influence the results;
f2, D and Ẽ. However, it is important to note
that fµ has no bearing in the low-Reynolds neu-
ronal model, as Cµ is determined through the
utilization of the neural network.
This model employs two distinct neural net-
works. To perform the subsequent validation
using the low-Reynolds model, the neural net-
works presenting the most promising results in
the a priori validation by Cai et al. [2] were se-
lected. These networks are denoted as follows,
maintaining the notation from Cai et al.: Case5
corresponds to the selection T∗(0) = T∗(01), and
Case8 corresponds to T∗(0) = T

∗(0)
gen .

4. Code integration
The methodology of the neural networks train-
ing underwent significant modifications in tran-
sitioning from the high-Reynolds neuronal
model framework to the low-Reynolds one. The
work presented in this thesis fits into the con-
text of this transition. For this reason, the
main aim of this project is to integrate the
TRUST/TrioCFD code so that it can treat
low-Reynolds models based on neural networks.
These alterations cover two principal branches.
Firstly, due to the shift from a high-Reynolds
regime to a low-Reynolds one, two extra vari-
ables, that are y+ and Reτ necessitated incor-
poration into the neural network architecture.
Consequently, their computation had to be in-
tegrated in the class treating the neural net-
work. Secondly, adaptations were introduced to
the code to facilitate the execution of the neural
network. This transition involved the adoption
of a new library, frugally-deep [3], designed to
streamline the use of the neural network within
a C++ environment.
The code implementation consists of the modifi-
cation of three classes in the TRUST/TrioCFD
solver. They are the following:
• PrePostNN has the role of reading from an

external file which variables have to be pre-
treated and post-treated, and to get the rel-
ative pre- and post-treatment values.

• TBNN has the role of pre-treating the in-
puts, applying the neural network and post-
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treating the outputs.
• Tenseur_Reynolds_Externe_VDF_Face

has the role of computing the tensor bNL

from the post-treated neural network
outputs and injecting bNL into the rest of
the code.

5. Validation of the low-
Reynolds neuronal k − ε
model

In this section, it is presented the validation of
the low-Reynolds neuronal model proposed in
Section 3. The aim of the present work is to
exhibit the results of the a posteriori validation,
this is after the RANS simulation, of the low-
Reynolds neuronal model.
Eight case studies are performed in this
work. The geometry of the problems is
always the turbulent plane channel. The
only parameter that differs from one case
to the other is the viscosity, ν, this yields
to a difference also in the friction Reynolds
number. The eight Reτ considered are:
[180, 550, 1000, 2000, 4000, 5200, 8000, 10000],
for matter of readability in this summary only
cases Reτ = [550, 5200] are showcased. This
is because their data were not used for the
training of the neural network and therefore
they represent a validation of the model in
extrapolation, for Reτ = 550, and interpolation,
for Reτ = 5200. The results for every Reτ are
exhibited in the thesis.
To evaluate the accuracy of the results, two dif-
ferent metrics are used in this work. The error
is always intended as the difference between the
velocity profile obtained from the RANS sim-
ulation and the one obtained from the DNS.
For the plane channel problem, the only non-
zero component of the velocity is along the x-
axis and depends only on y, thus it is noted as
U(y). The first metric, called Eq, computes the
squared relative error on the entire domain and
reads as follows:

Eq =
1

h

√√√√Ny−1∑
i=1

(
UDNS(yi)− URANS(yi)

UDNS(yi)

)2

(yi+1 − yi)

(3)

where h is half of the height of the canal, yi
is the y coordinate of the node i, Ny is equal
to the number of nodes of the mesh along the
y direction. The other metric aims to evaluate
the maximal relative error and reads as follows:

Emax = max

(
∥UDNS(yi)− URANS(yi)∥

∥UDNS(yi)∥

)
(4)

5.1. Grid Independence
The first step in validating the model involved
performing a grid independence study.
To determine the optimal mesh refinement, var-
ious simulations were conducted for each Reτ
value. Each simulation differed solely in the
number of mesh elements along the y direction
of the domain, ranging from 75 to 250 elements,
with an increment of 25 elements for each test.
The grid independence analysis includes both
qualitative and quantitative assessments. For
the quantitative aspect, the quadratic error,
Equation 3, was plotted against the mesh grid
resolution on the x-axis.
The values of the mesh refinement obtained
through this study, and therefore used for the
validation, are reported in Table 3. The condi-
tion y+ ≤ 1 for the first cell has been verified a
posteriori for every case.

Reτ Nx ×Ny ×Nz

180 4× 126× 4

550 4× 151× 4

1000 4× 176× 4

2000 4× 201× 4

4000 4× 226× 4

5200 4× 226× 4

8000 4× 226× 4

10000 4× 226× 4

Table 3: Low-Reynolds models mesh: Number
of nodes along the three directions for every
Reτ .

5



Executive summary Davide Repetto

5.2. Results
The results of the validation are separated in
two parts: the analysis of the error of the ve-
locity profile compared to the one of the DNS
and computational time required to reach the
convergence of the simulation. The aim of this
study is to understand whether the model pro-
posed outperforms the existing model in terms
of exactness of the RANS solution and compu-
tational cost.

Velocity Profile

The analysis of the validation begins with the
neural network called Case 5, that is with the
tensor T∗(0) = T∗(01). The velocity profile
of this RANS simulation is presented in Fig-
ure 3. One can observe that as the friction
Reynolds number Reτ increases, the Launder-
Sharma model provides a more accurate veloc-
ity profile. This is due to the model, which
is design specifically for the highly turbulent
plane channel case. The better performance of
the Launder-Sharma model goes together with
a better accuracy of the low-Reynolds neuronal
model performed with the Case 5 neural net-
work.
In Figure 4 the velocity profiles of the low-
Reynolds neuronal model based on the Case 8
neural network, T∗(0) = T

∗(0)
gen , is compared to

the ones coming from the DNS and the Launder-
Sharma model. One can observe that this neu-
ronal model provides a velocity profile similar to
the one based on the Case 5 neural network. In-
deed, in both cases one can observe that while
the Launder-Sharma model provides a slightly
greater velocity in the region 0.2 ≤ y ≤ 0.5
and a slightly lower one in the region 0.5 ≤
y ≤ 1.0, the neural method, which is based on
the Launder-Sharma one, emphasizes this same
error. This behavior of the Launder-Sharma
model is in accordance to the observation re-
garding the better performance with highly tur-
bulent problems done previously, since for high
values of Reτ the velocity profile tends to be
higher in the region 0.2 ≤ y ≤ 0.5 and lower in
0.5 ≤ y ≤ 1.0.
The analysis of the velocity profiles regarding
the low-Reynolds models ends with the study of
the near-wall region. This study is performed, in
the scientific literature, with a plot of the dimen-
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Figure 3: Superposition of Velocity Profiles for
Reτ = [550, 5200]: RANS with case 5 neural
network vs. DNS Simulations.

sionless velocity, U+, against the dimensionless
distance from the wall, y+, in a logarithmic scale
on the x-axis. The dimensionless variables are
defined as follows:

U+ =
U(y)

uτ
y+ =

yuτ
ν

where uτ =

√
ν
dū1
dx2

∣∣∣∣
y=0

.

In Figure 5 the results of this analysis are pre-
sented. Both the Launder-Sharma and neuronal
models are able to provide a profile of U+(y+)
that follows the one of the DNS on the region
0 ≤ y+ ≤ 10 for every Reτ . In the region
y+ ≥ 10 the Launder-Sharma model is able to
capture the dimensionless velocity profile of the
DNS, while the values provided by the neuronal
models are higher than the ones of the DNS.
This is due to the fact that the values of uτ pro-
vided by the Launder-Sharma model and the
DNS are comparable, while the ones of the neu-
ronal models are smaller. Between the two neu-
ral networks one can observe that for Reτ > 500
the differences are undetectable, while for the
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Figure 4: Superposition of Velocity Profiles for
Reτ = [550, 5200]: RANS with case 8 neural
network vs. DNS Simulations.

cases Reτ = [180, 550] the Case8 neural network
is able to provide slightly more accurate values
of the velocity in the region y+ ≥ 10.

Error analysis

In Figure 6 is reported the errors Eq, Equa-
tion 3, and Emax, Equation 4, of the simula-
tions performed with the neural networks Case5
and Case8 compared to the error obtained from
the simulations performed with the Launder-
Sharma model. One can observe that for low
values of the friction Reynolds number, Reτ ≤
1000, the two errors are significantly higher for
the models based on the neural networks. This
can be explained by recalling that the problems
with Reτ = [180, 550] are in extrapolation with
respect to the training of the two neural net-
works. On the other side it can be observed
that, for values of Reτ greater than 2000, the
two models based on machine learning provide
similar velocity profiles and their Eq error fol-
lows the same trend of the one of the Launder-
Sharma model.
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Figure 5: Superposition of Velocity Profiles for
Reτ = [550, 5200]: RANS with case 8 neural
network vs. DNS Simulations.
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Figure 6: Low-Reynolds models: Eq and Emax

for every Reτ .7
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Computational Cost

The Launder-Sharma model significantly out-
performs the neuronal models proposed in this
work in terms of computational cost. Indeed
while around 100 seconds are required to reach
convergence in the Launder-Sharma model, the
time required for the neuronal models was ap-
proximately 5 to 10 times higher. Likely, this
occurred because the architecture of the solver
necessitated the neural network to be uploaded
at each time step, leading to a substantial in-
crease in computational time.

Final Considerations

This section examines the reasons contributing
to the less precise outcomes in terms of veloc-
ity profile of the machine learning based model
in comparison to those of the Launder-Sharma
model. Additionally, a potential explanation for
this situation is proposed.
From the previous results, one can deduce that
the low-Reynolds neuronal k − ε model does
not outperform the existing Launder-Sharma
model neither in the accuracy of the velocity
profile nor in the computational time required to
reach the converge point. Despite this statement
is true, it does not necessarily mean that the
machine learning based models perform worse
than the Launder-Sharma one in estimating the
Reynolds tensor. In Figure 7 one can observe
the Reynolds tensor computed by the neural
network at the convergence point of the sim-
ulation performed with the low-Reynolds neu-
ronal model. It has to be recalled that, since
the Launder-Sharma model is based on the lin-
earity assumption of Boussinesq the only non-
zero component of the tensor computed by this
model is b12. Therefore it is evident that the pre-
diction of b performed by the neuronal model
outperforms the one of the Launder-Sharma
model for Reτ = 5200.
It is a strong belief of the author that the main
weakness of the low-Reynolds neuronal k − ε
model proposed in this work is to be based on a
classical low-Reynolds k−ε model. As shown in
Table 2, most of the parameters are either kept
identical to the Launder-Sharma model, either
slightly changed by substituting the old νt with
the ν̃t computed from the neural network. These
changes are not sufficient because the rationale

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.2

0.0

0.2

0.4

b i
j

Re = 5200

b11 DNS
b12 DNS
b22 DNS
b33 DNS

b11 TBNN_Case8
b12 TBNN_Case8
b22 TBNN_Case8
b33 TBNN_Case8

Figure 7: Anisotropic Reynolds tensor com-
ponents, bij , for Reτ = 5200: Case 8 low-
Reynolds neuronal model vs. DNS .

behind the choice of the parameters of the clas-
sical models does not come from the physics of
the problem, but it is led by the necessity to
reach a velocity profile as close as possible to
the real one. The aim of the model is indeed to
provide a good estimate of νt, which is the only
quantity involved in the RANS equation for the
linear models, thus based on the Boussinesq as-
sumption. For the non-linear models it is crucial
to provide also a good estimate for the value of
k since it is involved in the computation of the
factor bNL.
The inadequacy of the existing k − ε models to
provide a good estimate for the turbulent kinetic
energy, k, is clearly shown in Figure 8. One can
observe that the neuronal model outperforms
the Launder-Sharma model regarding the shape
of k with respect to y both in the near-wall re-
gion and in the entire domain. On the other
side, the neuronal model pays its dependency
from the classical model for what concerns the
magnitude of the values that are similar to those
of the latter model.
The rate of dissipation of turbulent kinetic en-
ergy, ε, is strongly linked to k in the frame-
work of the k − ε models. Its values are dis-
played in Figure 9. One can observe that apart
from the small region 0 ≤ y ≤ 0.05, where ε
is forced by the model to reach 0 at y = 0,
the values obtained from the Launder-Sharma
model coincide with the ones obtained from the
DNS. The values of ε obtained from the neu-
ronal model are not dissimilar to the good val-
ues obtained from the Launder-Sharma model.
The only difference, particularly visible in the
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Figure 8: Low-Reynolds models: k comparison
for Reτ = 5200. General behavior and focus on
the near-wall region. k is expressed in [m2 · s−2]
and y in [m].

region 0.05 ≤ y ≤ 0.1 is a slightly lower value
probably due to a higher value of k in the corre-
sponding area. Following this consideration one
can think that the parameters of the equation
regarding ε, can be left unchanged; it has to be
kept in mind that this differential equation is
linked to the value of k, therefore some adjust-
ments have to be made in order to maintain the
values of ε close to the ones of the DNS while
fixing the values of k.
The analysis proceeds with the assessment of
the values of Cµ in the two low-Reynolds mod-
els, classic and neuronal, compared to the ones
of the Direct Numerical Simulation (DNS) pre-
sented in Figure 10. It is self-evident to ob-
serve that the value of Cµ directly obtained
from the neural network - in the neuronal model
Cµ = −g1 - significantly outperforms the ana-
lytical model proposed by Launder and Sharma
where Cµ is set to be equal to 0.09 times a func-
tion, called fµ, that aims to adjust its value in
the near-wall region. From the analysis of Cµ

it is clear that while the classical model only
aims to provide a Cµ such that the model can
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(b) Complementary region of the domain.

Figure 9: Low-Reynolds models: ε comparison
for Reτ = 5200.

give a good final result in terms of velocity pro-
file, the neuronal model aims to keep the model
linked to the physics and therefore is able to pro-
vide a Cµ similar to the one obtained from the
DNS. It has to be observed that the values pro-
posed for the neuronal model do not correspond
to the best values that this model can achieve
but to the ones related to the convergence point
reached with the low-Reynolds neuronal model,
the problems of which have already been dis-
cussed.
The analysis ends with the study of the behavior

of the turbulent viscosity νt = Cµ
k2

ε
. One can

remark that even if the neuronal model is able
to provide a more accurate profile of Cµ than
the one given by the Launder-Sharma model,
the profile of νt presents the opposite behavior.
This is probably due to the fact that, given an
analytical formula for Cµ, the parameters of the
equations of k and ε( σk, σε, D, E, Cε1, Cε2, f1,
f2 and Ret), are adapted to obtain the k and
ε profiles that provide a good value of νt. For
what concerns the neuronal model, the values
of νt are far from the ones of the DNS because
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Figure 10: Low-Reynolds models: Cµ compari-
son for Reτ = 5200.

of the wrong estimate of k and ε given by the
equations of the model. In particular, in the
region 0 ≤ y ≤ 0.6 νt is more influenced by the
low values of k while in the region 0.6 ≤ y ≤ 1
k approaches the DNS values and therefore the
lower values of ε influence the final result.

6. Conclusions
The low-Reynolds neuronal model exhibited
very promising results. Indeed, the values of the
quantities directly predicted by the neural net-
work, that is Cµ and bij , strongly outperform
the existing k− ε model.. Even if this result al-
ready represents an achievement itself, the per-
spectives of application of this neural network
to new models able to take advantage of these
results to provide better estimates of the other
quantities involved in the flow are impressive.
Despite the encouraging findings, some limi-
tations remain. Mapping complex fluid be-
haviors through neural networks involves per-
sistent difficulties in ensuring generalizability
across diverse scenarios. Significant data re-
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Figure 11: Low-Reynolds models: νt compari-
son for Reτ = 5200

quirements persist, necessitating reliance on
DNS databases. The high computational cost
also remains an issue, but it can be reduced by
adapting the code to upload only once the neu-
ral network for the entire simulation.
The present work can be developed by per-
forming further analysis with the low-Reynolds
model proposed. The validation of the model
on more complex geometries, such as the square
channel, is a crucial next step to understand
whether the model is able to confirm or even
meliorate its results with respect to the existing
models. This work opens the way to various sce-
narios in the field of machine learning based tur-
bulence models. In particular, the main work is
to provide a model entirely adapted to the neu-
ral networks. This model can be obtained start-
ing from the low-Reynolds neuronal k−ε model
proposed in this work by tailoring the empiri-
cal constants of the old models to the machine
learning based one. Another promising possibil-
ity is to directly estimate the values of k and ε
by means of a neural network.
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