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1. Introduction

In the face of climate change and the search for
new forms of renewable energy, biogas presents
itself as a new opportunity and a solution to
both problems. The objective of this work is the
study and implementation of a model of anaer-
obic digestion plant for the production of bio-
gas, with the aim of optimizing the costs related
to the operation of the plant. Robust optimiza-
tion models have been implemented to deal with
the possible presence of uncertain parameters
present in the plant. Multiple uncertainty mod-
els have been used with the aim of obtaining
solutions that can deal with uncertainty in the
least conservative way.

2. The structure of the plant

A biogas plant transforms biomass into bio-
gas through a series of anaerobic transforma-
tions. Generally the structure of a biogas plant
is quite standardized, and its main components
are: storage areas, digester, gasometers, biogas
treatment systems, cogeneration and digestate
storage areas. The process that leads to the for-
mation of biogas is called anaerobic digestion,

which is, in extreme synthesis, a complex bio-
logical process in which, in the absence of oxy-
gen, the organic substance is transformed into
biogas. From anaerobic digestion, in addition
to biogas, another product is formed, called di-
gestate, which is made up of the non-degraded
organic fraction rich above all in nitrogen. Di-
gestate is often used as a natural fertilizer. In
this work a 1 MW biogas plant is considered.
The plant is small in size and works on a lo-
cal scale. In this case, the biomasses treated
for the production of biogas are corn harvest-
ing waste and pig manure. The latter have been
added as biomass entering the plant for various
reasons. The �rst is that they bring useful sub-
stances to the biogas production process, while
the second is that they are used to bring the
percentage of dry matter below a certain thresh-
old (we will see in more detail what this second
point means later). The biomasses are bought
and transported from the respective farms/pig
farms, to then be prepared for the process inside
the anaerobic digesters. Inside the digesters,
through the process of anaerobic digestion, bio-
gas and digestate, which will be sold as fertilizer,
will be formed.
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3. The model

First of all, an �ideal� biogas plant model was
implemented, without taking into consideration
any uncertain parameters. In particular, an op-
timization model was built, because as previ-
ously described, the objective of this work is to
obtain optimal management of the plant, and
therefore to maximize its pro�t. An optimiza-
tion model is a system composed of speci�c char-
acteristics which are the objectives, the vari-
ables, the parameters and the constraints. The
goal is usually de�ned by an objective function.
The variables are controlled by us and depend on
the relationships de�ned within the model, while
the parameters, which describe the data of the
problem, are predetermined and cannot be mod-
i�ed. In our model, the variables considered are
the quantity of corn and slurry purchased, es-
sential for the operation of the plant, the quan-
tity of biogas and fertilizer sold, and the number
of trips necessary for the transport of biomass
and fertilizer. Speaking of constraints instead,
these de�ne the necessary conditions that the
model must respect in order to �nd feasible so-
lutions. Usually the constraints are represented
by equations or inequalities. In our model there
are several constraints that can be divided ac-
cording to the functions or characteristics they
represent. For example, there are production
constraints, which limit the maximum amount
of corn/slurry produced for a farm/pig farms;
there are constraints that relate biomass and
biogas/fertilizer, or the relationship constraints
for transport, which de�ne the link between the
quantities of biomass purchased and the num-
ber of trips necessary for their transport. As
a demonstration, we represent in mathemati-
cal form the constraint that de�nes the limit of
dry substance present in the digester. In fact it
should be emphasized that biomass cannot en-
ter the digester as it is, but must be processed
and treated beforehand in special storage areas
to prepare them for the anaerobic digestion pro-
cess. It is important that the percentage of dry
matter, which is the part of the material sample
that remains after dewatering, does not exceed
a certain threshold. If the dry part were to ex-
ceed this threshold, the anaerobic digestion pro-
cess would not guarantee the correct production
of biogas and digestate. The total dry matter
threshold admissible in the digester in this case

cannot be more than 10%, while for corn and
slurry it is respectively thirty and �ve per cent
(data found in the literature). The constraint
that describes it is the following:

0.3

J∑
j=1

Xj+ 0.05

K∑
k=1

Yk ≤ 0.10 (

J∑
j=1

Xj+

K∑
k=1

Yk)

where J and K represent respectively the num-
ber of farms and pig farms considered, while X
and Y are the variables representing the quan-
tity of corn and slurry purchased.
The objective function, as previously described,
has the purpose of optimizing the pro�t of the
biogas plant, therefore to maximize the di�er-
ence between revenues and total costs. All the
pro�ts we get from the sale of biogas and di-
gestate that are produced by the plant are con-
sidered revenues. The costs, on the other hand,
refer to the purchase of biomass and the trans-
port costs (of biomass and digestate).

3.1. The model uncertainty

After implementing the model in the absence of
uncertainty, we move on to consider the uncer-
tainty that may be present in the plant. This
serves to make the model more realistic due to
the random nature of the yields, but requires
the use of another type of optimization, called
robust, which will be described later. Now the
quantities of corn produced by the farms (SM

j )
are no longer considered constant but subject to
uncertainty. In fact, it is very probable to think
that during the year, due to various factors,
the production of corn is not constant, but sub-
ject to uncertainty. Climatic and environmental
factors can occur throughout the year and sig-
ni�cantly in�uence corn production. Obviously
the model will be subject to modi�cations, the
most important of which is the introduction of
a new variable, called r, which represents the
total quantity of corn imported into the plant,
which is now uncertain, and depends on the Xj ,
a variable that is rede�ned to represent the per-
centage of production capacity of a farm j. The
Xj variable was changed in meaning because if
it remained as the amount of corn bought, as
it was in the initial model, it would become an
uncertain variable beacuse the amount of corn
produced is uncertain in this model. There-
fore it has become necessary to introduce a new
variable, namely r, which by de�ning the to-
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tal amount of corn imported into the plant, is
not directly dependent on SM

j . In this way it
will be possible to build a robust model that is
not too conservative, as we would have only one
constraint in the system in which the uncertain
parameter will be present, and which also de-
termines the value of r (this constraint will be
shown later). The importance of the variable r
arises from the fact that it relates the uncertain
parameter SM

j to our optimization model.
The implemented constraints are mostly those
de�ned in the model without uncertainty. Of
particular interest, however, is the constraint
that de�nes the relationship between the total
quantity of corn produced on each farm and the
total quantity of corn imported into the plant,
described below:

J∑
j=1

SM
j Xj ≥ r, (1)

This constraint is fundamental because it tells us
that r is limited from above by the total quan-
tity of corn produced, which is the sum of the
products between the uncertain capacities SM

j

and the proportions Xj . It could be said that
this constraint de�nes the level of uncertainty
of the model, because it contains all the vari-
ables and parameters a�ected by uncertainty. It
is precisely from this constraint that the imple-
mentation of the robust optimization model will
start.
As regards the objective function, however, it is
always the same, with the aim of maximizing the
pro�t of the plant.
Let us start talking about the optimization
model that we will use to deal with uncertainty.

4. Robust optimization

Robust optimization is a paradigm for modeling
optimization problems under uncertainty. In a
problem of this type, in addition to known pa-
rameters and variables, there are also uncertain
parameters, not known, of which we have no con-
trol. These parameters can vary within a well-
de�ned set of uncertainty. This set depends on
the type of uncertainty being treated and can be
de�ned by both linear and non-linear inequali-
ties and equations. For any uncertain parameter
value, the constraints de�ning the uncertainty
set must be satis�ed. It is also important to

underline the fact that we must try to de�ne
a set/range of uncertainty that is not too large
but narrow enough, to prevent a too conserva-
tive model.
The goal of robust optimization is to �nd a solu-
tion that is feasible for all possible values of the
uncertain parameters within the uncertainty set,
regardless of the realization of those parameters.
To explain it in the simplest way, one can think
that the uncertain parameters are decided and
controlled by an �opponent� [1]. After we solve
our optimization problem, the opponent sees our
solution and chooses the values of the uncer-
tain parameters that are most likely to harm
us. In practice the opponent solves an optimiza-
tion problem in which the uncertain parameters
are its variables, and with the aim of �nding a
solution that most damages ours (for example
by violating our constraints). Consequently we
will have to try to anticipate the moves of our
opponent. So we need to build a �robust coun-
terpart� to the optimization problem, in other
words we have to incorporate our opponent's op-
timization problem into the model. In practice
we will have to solve another optimization prob-
lem, called the �robust counterpart�, which will
have our uncertain parameter as variables and
will have the objective of �nding the solution
which is more unfavorable in our case. Here is
an example of what was said:

max 2x+ 3y

1 ≤ x ≤ 7

2 ≤ y ≤ 9

x+ y ≥ 6

max(ux+ y − v : u ≥ 0, v ≥ 0, u+ v ≤ 1) ≤ 5

where x and y are the variables, while u and
v are the uncertain parameters. The last con-
straint, the one in which the uncertain param-
eters are present, represents the robust coun-
terpart, i.e., the optimization problem solved
by our opponent, who in this case, through
the maximization operator, tries to violate the
constraint. However, by solving the optimiza-
tion model in this way, it may happen that a
non-linear constraint is obtained in the model
which signi�cantly increases the complexity of
the problem, as happens in the example above.
A solution to this eventuality can be found by
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applying the concept of duality.
The dual of a problem is a fundamental concept
in linear programming. In fact, each linear pro-
gramming problem can be associated with an-
other problem, called dual, which provides im-
portant information relating to the solution. By
resorting to duality we could transform the non-
linear problem into a linear one, without resort-
ing to overly complex computational e�orts. In
this case one could consider the model imple-
mented by the opponent as the primal problem,
on which the dual will then be built by apply-
ing the primal/dual correspondence rules that
can be found in any linear programming man-
ual. Finally, by replacing the dual problem with
the nonlinear constraint in which the uncertain
parameters are present, the robust optimization
model will be obtained.
In the following section we will show how the ro-
bust optimization model was implemented using
the approach just described.

5. Robust optimization model

5.1. Polyhedral uncertainty

In this case the uncertainty set in which the un-
certain parameter SM

J is de�ned is the following:

I = {SM
j , j ∈ J : SM

j ∈ [SmLBj , SmUBj ],∑J
j=1 S

M
j ≥ σLB,∑J

j=1 S
M
j ≤ σUB,

SM
j1

≥ 0.9 SM
j2
, SM

j2
≥ 0.9 SM

j1
∀(j1, j2) ∈ E}

The uncertainty set establishes that the
corn production for each farm is within a
certain range, de�ned by SmLBj and SmUBj ,
which are the lower and upper limits of corn
production for each farm, respectively. σLB
and σUB are two parameters representing the
lower and upper limit of total corn production.
Finally, there are also proximity relations
between neighboring farms. In other words in
a pair of farms (j1,j2) included in the set E,
which de�nes the set of pairs of neighboring
farms, the farm j1 cannot produce more than
a certain amount of farm j2 and vice versa.
The set E will be formed by the pairs of farms
that will be no more than 3 km apart. The
equations/inequalities representing this interval
de�ne a polyhedron of possible values of SM

j .
Now to build the robust model we apply the

following reasoning. The uncertain parameter
SM
j is present only in the constraint represented

by equation (1). In order to violate this con-
straint, the opponent could decide to build an
optimization model where SM

j is the controlling
variable, and the objective function aims to
minimize the left side of the constraint (1), in
this way:

min(
J∑

j=1

SM
j Xj) ≥ r (2)

Obviously the constraints of the opponent's op-
timization model will be those de�ned in the un-
certainty set. The robust counterpart will be
given by substituting the model just described
in constraint (1). In this way, however, the lin-
ear model becomes non-linear with all the prob-
lems that derive from it, including for example
a greater di�culty in its resolution. Remember-
ing what has been said previously, using duality,
we will be able to implement a linear optimiza-
tion model and overcome this problem. There-
fore from the primal problem, which would be
the model implemented by the opponent, the
dual problem is constructed through the rules
of primal/dual correspondence. Finally, by sub-
stituting this problem for constraint (1) of the
original model, the robust optimization model
will be obtained.

5.2. Budget uncertainty

Now we will test another class of uncertainty
sets to implement the robust model, which takes
the name of �Budget uncertainty� or �Gamma
uncertainty�. It was Bertsimas and Sim who
proposed this new approach in 2004 [3], with
the aim of reducing the level of conservatism
of the robust models implemented up to that
point. In short, budget uncertainty is a constant
that controls how many uncertain parameters
can deviate from their nominal values. For
example let us consider a set of parameters aj
belonging to a set J , and some of these are
subject to uncertainty. Uncertain parameters
deviate from their nominal value in a certain
way. Statistically it is improbable that all the
parameters aj , j ∈ J are subject to uncertainty,
therefore a parameter θ can be introduced
which represents the number of parameters
which can deviate from the nominal value. θ
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regulates the number of uncertain parameters
that can be considered, and consequently θ
controls the �trade-o�� between the level of
uncertainty and its e�ects on the objective
function of the nominal problem. This trade-o�
is referred to as the �price of robustness�. In
practice, by adjusting θ, the robustness of the
model can be controlled with respect to the
level of conservatism of the solution.
Returning to our problem, let us construct a
new uncertainty set that de�nes the uncertain
parameter SM

j , recalling the budget uncertainty
approach de�ned previously. The uncertainty
set is as follows:

I = {SM
j , j ∈ J : SM

j ∈ [SmLBj , SmUBj ],

SM
j ≥ SmNOMj (1− λbj) ∀j ∈ J,∑J
j=1 bj ≤ θ,

bj ≥ 0 ∀j ∈ J,
bj ≤ 1 ∀j ∈ J}.

The uncertainty set de�nes that the corn
production for each farm is within the range
de�ned by SmLBj and SmUBj . Furthermore,
a new variable called bj is introduced, which
determines the number of uncertain parameters
present. The bj variable is de�ned in the
range of zero to one. In fact, if bj is di�erent
from zero it means that the production of SM

j

corn is di�erent from the nominal value. The
parameter θ regulates the �price of robustness�,
i.e., it controls the trade-o� between the level
of uncertainty of the model and its e�ects on
the objective function. If θ is equal to zero
the sum of the variables bj must be equal to
zero and therefore there are no farms with
uncertain corn production. Instead increasing
the values of θ increases the upper limit on the
sum of the values of bj , and therefore increases
the level of uncertainty. New parameters have
been introduced, SmNOMj and λ, which
respectively de�ne the nominal production of
corn for each farm and the decrease in the
nominal production value of corn, when this
production is uncertain. To build the robust
optimization model we have to de�ne the robust
counterpart of our optimization problem. The
reasoning is always the same: we must think
that we have an opponent who wants to harm
us in some way. The adversary controls the
uncertain parameters, so he will try to damage

us by violating the only constraint in which the
uncertain parameter SM

j is present, which is the
inequality (1), trying to minimize the quantity
to the left of the sign. As previously done, the
optimization problem performed by our oppo-
nent is de�ned as a primal problem, with the
di�erence that the constraints imposed in this
case are those de�ned in the new uncertainty
set. Then, again with the same procedure, the
dual problem was constructed, and �nally by
substituting it for equation (1) of the original
model, the new robust optimization model was
obtained.

5.3. Scenario-based uncertainty

Finally we deal with a scenario-based type of
uncertainty. Scenarios are an e�cient way of
constructing robust optimization problems us-
ing historical data of uncertainties [2]. Suppose
we have a vector of uncertain parameters, but
we do not know an uncertainty set that �ts our
model. However, if we had a database contain-
ing the value of each uncertain parameter for a
given period of time, we could build a model for
which one or more constraints are satis�ed for
each register of the uncertainty vector. So even if
we do not have a well-de�ned set of uncertainty,
we could build a robust model considering the
set of scenarios as a sort of range of uncertainty.
In this case, the historical values of corn produc-
tion in a certain time range will be considered
(the data do not refer to a real plant but will be
obtained randomly using Python libraries). In
practice now the uncertain parameter SM

j is not

a row vector, but a matrix of values. In fact, SM
j

must represent the corn production values for all
farms considered over the years. Consequently
now the equation (1) is modi�ed in this way:

J∑
j=1

SM
n,j Xj ≥ r, ∀n ∈ 1..N

with N de�ning the number of past years taken
into account. It should be noted that by increas-
ing the number of scenarios, and therefore of
past years taken into consideration, the level of
uncertainty of the problem increases and there-
fore a more conservative model is obtained.

5.4. Solution

The following table shows the values of biogas
produced, in cubic meters, for the di�erent op-
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timization models implemented. We show these
values because biogas is the main source of in-
come, and therefore the pro�t of our plant di-
rectly depends on these results. The amount
of biogas produced, without uncertainty, is ob-
tained by solving the non-robust model for the
given SmNOMj . In this case the value corre-
sponds to 6220k cubic meter of biogas. The fol-
lowing table shows the values obtained for the
implemented robust optimization models.

∆ Poliedr. θ Budget N Scenarios

0.99 6155k 1 6088k 5 6161k

0.95 5907k 2 5955k 10 5953k

0.90 5597k 3 5822k 20 5892k

0.75 5443k 5 5573k 40 5852k

0.5 5443k 10 5443k 80 5757k

Table 1: Quantity of biogas produced in cubic
meters for the implemented models

The values in the table were obtained always
starting from a given SmNOMj vector and con-
sidering a single set of farms/pig farms with
their coordinates. ∆ is a parameter that reg-
ulates the values of σLB and σUB in polyhedral
uncertainty. The lower this value is, the more
the interval de�ned by σLB and σUB widens
and consequently the level of uncertainty in the
model increases. In the same way, increasing the
value of θ and N for the budget uncertainty and
for the scenario uncertainty, we increase the level
of uncertainty in the respective models. Obvi-
ously, an increase in uncertainty corresponds to
more conservative models and consequently to
more stringent solutions in terms of values, as
can also be seen from the table.

6. Conclusion

From the table we can draw some conclusions
about the utility of the type of uncertainty sets
chosen. The table shows us that by increasing
the level of uncertainty in each model we see a
decrease in the amount of biogas produced. In
fact, with the increase in uncertainty, the mod-
els become more conservative and consequently
the solutions report lower values. However, this
decrease in values is more or less rapid depend-

ing on the type of uncertainty considered.
In general, if the robust counterpart is imple-
mented for two di�erent sets of uncertainty, dif-
ferent values are obtained. However if one un-
certainty set is the subset of another, then its
robust counterpart will obtain larger values of
the objective function regardless of the type
of uncertainty set classes (in our case polyhe-
dral, budget or scenario-based uncertainty). Ul-
timately it can be said that depending on the
cases that may occur in reality, a set of uncer-
tainty may be more or less useful. For exam-
ple, it may be happen that not all plants have
historical data available, and therefore in that
case the scenario uncertainty model could not
be used. On the other hand, if one would like to
have tighter control over the trade-o� between
the level of uncertainty of the model and the
value of the objective function, one could use
budget uncertainty, and so on.
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