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ABSTRACT 

 
Cellular materials are those materials which is made by interconnection of solid beam, truss 

plates that form the edges of the unit cells. Cellular structures possess superior properties 

over their solid counterpart such as strength-to-weight ratio and surface area properties. 

Apart from the mentioned advantages, these structures due to their high performance, high 

strength-to-weight ratio, low heat conduction properties, superior energy absorption and 

excellent thermal and acoustic insulation have attracted much attention in the engineering 

industries especially medical field. Auxetic cellular material are a type of cellular materials 

which provide unique properties due to their negative Poisson’s ratio. These sort of material 

expand laterally in the direction perpendicular to the stretching loading direction. On the 

other hand if they are compressed longitudinally they contract in transverse directions. One 

of the biggest weaknesses of all cellular structures including conventional and auxetic one is 

their buckling instability when they are under the action of compressive stress, which leads to 

premature collapse in cellular structures. The critical compressive stress required for the 

collapse of the cellular structure is far less than the critical compressive stress of the material 

that makes up the cellular structure. Structural parameters of cellular structures play an 

important role in the performance of these structures. They can help improve the static and 

dynamic properties of the structure or, conversely, their improper design can jeopardize the 

stability of the structure. As a result, determining the optimal cellular structure parameters is 

essential for a particular application. 

In order to investigate more precisely the effect of structural parameters on the buckling and 

post-buckling behavior of cellular structures, two different geometry of plate and cylinder 

have been studied. 84 plate models and 45 cylindrical models have been designed by 

exploiting the re-entrant honeycomb model proposed by Gibson. While defining the structural 

parameters of the cellular structure, we will describe the models created by the variation of 

these parameters. All models were analyzed by finite element method and the accuracy of 

the results obtained from the numerical method has been investigated by fabricating 

reference models (three reference models for plate geometry and two reference models for 

cylindrical geometry). All five reference models are fabricated by additive manufacturing 

technology and buckling mechanical test have been conducted on them. The experimental 
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results for all reference models follow the simulation results so well, and there is a perfect 

agreement between the two results. 

The results show that in the cellular plate structure, the stiffness-weight-normalized critical 

stress in cellular plates with different Poisson's ratio gains its maximum value generally in the 

auxetic region and close to Poisson's ratio equals to zero. On the other side, in a cylindrical 

structure, the normalized critical stress increases with increasing Poisson's ratio. It can also 

be interpreted that for sufficient slender cellular plates the post-buckling behavior of the 

cellular plate with a Poisson's ratio close to zero has the least dependence on the out-of-plane 

thickness of the plate and its dependence on the out-of-plane thickness increases by moving 

away from zero Poisson’s ratio. On the other side, the results of the data of the cylindrical 

structure show that the post-buckling behavior of this structure for the maximum Poisson's 

ratio is the most affected by the change in membrane thickness. The structure also has a larger 

negative slope for the maximum Poisson's ratio. As a result, although the cellular cylinder with 

maximum Poisson's ratio has a higher buckling resistance, it is more unstable in the post-

buckling regime. Moreover it seems that for plate models when the ratio of the in-plane 

thickness of the struts to the scaling parameter increases, the auxeticity has practically less 

effect on the post-buckling behavior of the structure. The results have also reveals the 

superiority of using a cellular plate with zero Poisson’s ratio over a bulk plate with the same 

Poisson’s ratio especially in smaller thicknesses. In general, all structural parameters including 

the Poisson's ratio (for both plate and cylindrical models), the out-of-plane thickness (for plate 

models), the membrane thickness (for cylindrical models), the in-plan thickness of the struts 

(for plate models), the width (for plate models), the scaling parameter of the unit cells (for 

both plate and cylinder models) and the height-to-width ratio of the unit cells (for both plate 

and cylinder models) have undeniable effects on the critical buckling load and post-buckling 

behavior of structures. In fact, by changing the geometric parameters, a wide range of post-

buckling slopes of the structure can be achieved in both plate and cylindrical geometry and 

the post-buckling behavior of the structure can be tuned by designing geometric parameters. 

 

Keywords: Auxetic Materials, Additive Manufacturing, Buckling and Post-buckling Behavior, 

Cellular Structures, Finite Element Analysis, Structural Parameters 
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Chapter 1 

1 
 

In this chapter, we first define the Poisson ratio and its historical developments. The reader 

then becomes familiar with the definition of auxetic materials and its relevance to the 

Poisson's ratio. We will also review the history of auxetic materials. Thereafter we will get 

acquainted with natural auxetic materials as well as those auxetic materials that are made 

by humans. Auxetic cellular materials which are basis of our studies will be explained in more 

details. Then we review on the definition of buckling and post-buckling behavior of a 

structure. Finally, the classical relations governing both plate and cylindrical structures 

made of auxetic materials under compressive uniaxial stress will be expressed. Since our 

study is based on models built in these two structures (plate and cylinder), this introduction 

will help us to have a better understanding of how auxetic materials behave in the two 

aforementioned structures and make it more efficient and straightforward to compare our 

results with the classical behavior of these materials. 

 

1.1 Poisson’s ratio 

Suppose there is a bar of a given material. Based on visual and empirical evidences it is quite 

clear that if the bar is stretched in longitudinal direction, it contracts in the transverse 

directions as presented in Figure 1.1.1 (top). As a consequence if the material is contracted 

rather than stretched, it is prone to expand perpendicularly to the direction of contraction 

which is shown in Figure 1.1.1 (bottom). Poisson’s ratio in material science and solid mechanics 

has been defined as a ratio of transverse deformation to longitudinal deformation in the 

direction of applying force. It follows that Poisson’s ration can be defined as: 

 

                                                                                   𝜐 = −
𝜀𝑝

𝜀𝑙
                                                               (1.1.1) 

 

Where 𝜀𝑙 is the strain in the direction of applying load and 𝜀𝑝 is considered as the strain in the 

direction of perpendicular to the loading direction. As it mentioned above in most materials, 

contraction in one direction is a consequence of expansion in other directions and vice versa. 

Therefor in 𝐸𝑞. (1.1.1) 𝜀𝑝 and 𝜀𝑙 possess opposite signs, i.e. When 𝜀𝑙 owns a positive sign the 

value of 𝜀𝑝 is negative and the ratio 
𝜀𝑝

𝜀𝑙
 would be negative. As a result a minus sign has been 

added to 𝐸𝑞. (1.1.1) to obtain a positive Poisson’s ratio for the normal materials. 

By knowing the value of Poisson’s ratio and implementing mathematical rules, the relative 

change of volume 
Δ𝑉

𝑉
 of an isotropic solid for a very small strain can be obtained as: 

   

                                                                      
Δ𝑉

𝑉
= (1 − 2𝜐)

Δ𝑙

𝑙
                                                           (1.1.2) 



Introduction 

2 
 

 

Where, 𝜐, 𝑙 and Δ𝑙 are respectively Poisson’s ratio, initial length and length deformation in the 

direction of the applying load.  

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth mentioning that for an isotropic material each elastic constant can be expressed as 

a function of two other elastic constants [1]. Elastic constants such as bulk modulus 𝐾, Young 

modulus 𝐸 and shear modulus 𝐺 possess same units. However the only elastic constant which 

is dimensionless is the Poisson’s ratio. It follows that the ratio between each two elastic 

constants is unit less and can be represented by only Poisson’s ratio. The following relations 

express some of these ratios: 

  

                                                                            
𝐸

𝐺
= 2(1 + 𝜐)                                                              (1.1.3) 

                                                                           
𝐸

𝐾
= 3(1 − 2𝜐)                                                            (1.1.4) 

                                                                           
𝐺

𝐾
=

3(1 − 2𝜐)

2(1 + 𝜐)
                                                           (1.1.5) 

 

 

FIGURE 2.1.1 Three-dimensional schematic of how conventional materials 

with positive Poisson’s ratio deform under uniaxial force 
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1.2 History of Poisson’s ratio 

Young was the first one who observed the resulted transverse contraction due to applied 

stretching load [2]. Twenty years later Poisson could derive a constant value of 𝜐 = 0.25 by 

implementing the theory of molecular interaction [1]. Later in 1859 Kirchhoff worked on 

several metals. He measured their Young and shear modulus and then by implementing 

𝐸𝑞. 1.1.3 he could obtain the Poisson’s ratio of such metals [1]. The results of Kirchhoff's work 

as well as subsequent measurements of the Poisson’s ratio revealed that the Poisson's ratio 

not only does not have a constant value but also varies in different materials.  

 

1.3 Auxetic materials 

In the previous section we mentioned that normal materials have positive Poisson’s ratio. On 

the contrary, there are some solid materials which possess negative Poisson’s ratio. Auxetic 

is the name which is given to these sort of materials. Unlike conventional materials with 

positive Poisson’s ratio they stretched laterally in the direction perpendicular to the tensile 

loading direction. On the other hand if they are compressed longitudinally they contract in 

transverse directions. Deformation of auxetic materials under tension and compression loads 

are shown in Figure 1.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Now it is turn to introduce five turning points of Poisson’s ratio of solid isotropic materials. At  

each of these turning points one of the quality of the described material is preserved without 

any changes. In the case of Poisson’s ratio equals to zero (𝜐 = 0) cross section is Preserved. 

FIGURE 1.3.1 Three-dimensional schematic of how auxetic materials with 

negative Poisson’s ratio deform under uniaxial force 
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According to the 𝐸𝑞. (1.3.1) Young modulus and shear modulus possess the same value in the 

case of 𝜐 = −0.5, therefor these two most common engineering moduli are preserved. When 

𝜐 = −1  caused lateral strains have equal value and sign as applied longitudinal strain. It 

follows that the material is deformed (expanded or compressed) in all direction equally. 

Therefore no changes in shape is observed and it will be preserved. In the two dimensional 

deformation, when a solid possess 𝜐 = 1, it means that the strain in the direction of applying 

load has an equal but opposite sign of the strain in the perpendicular direction. For that reason 

this area is preserved. And the last turning point is for those materials which have Poisson's 

ratio of 0.5. Under this condition, substation of 𝜐 = 0.5 in 𝐸𝑞. (1.1.2) gives Δ𝑉 = 0. It follows 

that the value of volume of the solid will not change due to deformation, and the material is 

considered incompressible [1]. The contents presented above are summarized in Table 1.2.1.  

 

 

 

 

 

 

 

 

 

 

1.4 History of negative Poisson’s ratio 

In the year 1848 Saint-Venant was the first one who proposed negative value for Poisson’s 

ratio of the anisotropic materials [1]. By expressing Cauchy relations in his words he also 

suggested that Poisson’s ratio can be greater than 0.5 [1]. This property later in 1910 was 

identified and reported by Woldemar Voigt who was working on iron pyrite [3]. He suggested 

the crystals of iron pyrite expanded transversely when stretched longitudinally. Negative 

Poisson’s ratio have also been reported for pyrites [4], single crystal [5], biological tissues [6], 

Alpha-quartz [7], re-enterant hexagonal honeycomb [8], shape-preserved three-dimensional 

isotropic structures build up rods, hinges and springs [9] and cellular materials [10]. 

Evans in 1991 used the word auxetic for the first time to refer to the negative Poisson’s ratio 

materials [11]. The term auxetic has the same root as the word auxetikos which means “that 

which tends to increase”. 

TABLE 1.3.1 Five turning points of isotropic solid materials and 

corresponding physical interpretation 
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1.5 Natural auxetic materials  

Alpha-cristobalite, a silicon dioxide is the first naturally occurring material reported by Yegane-

Haeri et al which presents negative Poisson’s ratio [12]. They carried out a tonsorial analysis 

on Alpha-cristobalite and found that although the average Poisson’s ratio for its single-phased 

aggregate was -0.16 but its Poisson’s ration can reach to -0.5 in certain directions. 

  

1.5.1 Auxetic biomaterials 

Biomaterials that exhibit auxetic behaviors under certain conditions are called Auxetic 

biomaterials. These materials have been reported in some biological sources. For instance, 

Williams et al [13] during their investigation on tibia found negative Poisson's ratio properties 

for the spongy bone of the proximal tibial epiphysis. Studies on the cat skin by Veronda et al 

[14] have shown that it exhibits auxetic behavior under limited deformation. Also, uniaxial and 

biaxial experiments performed on the cow teat skin by Lis et al [15] demonstrated that at low 

strains it can give negative Poisson's ratio properties. It seems that fibrillar structures at the 

microstructural level cause such a property in these materials [16]. 

Auxetic behavior in biological materials has been observed also on the microscopic scale. 

According to Bogman [17], the membranes in the cytoskeleton of the red blood cells show 

auxetic properties. In another study, Wang [18] stated that the nucleus of embryonic stem 

cells (ESCs) of mouse exhibited auxetic behavior during the differentiation process. 

 

1.6 Man-made auxetic materials 

1.6.1 Auxetic foams 

In spite of the fact that some materials are not naturally-occurring auxetic materials, they can 

exhibit negative Poisson’s ratio if they are composed in some certain ways. As an example 

consider conventional foams which can give auxetic properties by bending the struts of each 

unit cells inward. The re-entrant structure has been firstly suggested by Lake [19]. A collapsed 

cubic re-entrant unit cell which exhibit negative Poisson’s ratio is depicted in 1.6.1. 

 

 

 

 

 

 

FIGURE 1.6.1 A cubic re-entrant unit cell based on 

collapse of polyhedron which exhibit negative 
Poisson’s ratio [1] 
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1.6.2 Auxetic liquid crystalline polymers (LCR) 

Liquid crystalline polymers was firstly introduced by He et al [20] as the polymeric auxetic 

materials. By connecting molecular rods to the polymeric chain one can compose these type 

of auxetic materials. The molecular rods are originally oriented in the direction of the 

polymeric chain. As it shown in Figure 1.6.2 when the load is applied to the chain it stretches 

and molecular rods orient in the direction perpendicular to the chain to give the polymeric 

material negative Poisson’s ratio.   

 

 

 

1.6.3 Auxetic yarn and textile 

In order to make an auxetic yarn two types of strings are needed. For this purpose first an 

inflexible string which has smaller diameter is twisted around an elastic string of larger 

diameter in a helical way as depicted in Figure 1.6.2 (a). When the yarn is longitudinally 

stretched, the inflexible string is no longer wrapped helically and becomes stiff. It follows that 

the originally straight elastic string starts to develop a new helical configuration as shown in 

Figure 1.6.2 (b). Although the elastic string due to its positive Poisson’s ratio contracted 

transversely, the overall configuration of the yarn expands laterally to exhibit negative 

Poisson’s ratio. Now if a number of such yarn are placed next to each other as depicted in 

Figure 1.6.2 (c), and stretched in the longitudinal direction, each single yarn develops a helical 

FIGURE 1.6.2 Concept of liquid crystalline polymers which gives auxetic properties [1] 
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shape and in meanwhile it pushes its adjacent yarn aside which leads the aligned group of 

yarns become thicker (Figureh 1.6.2 (d)). It is worth mentioning that each yarn must be placed 

symmetrically to its neighbor yarn to give more effective auxetic properties which leads to 

maximum dilating of the longitudinally stretched yarns. However if the yarns are all placed in 

a similar way rather than symmetrical as depicted in Figure 1.6.2 (e), it still gives negative 

Poisson’s ratio. However it is very little in magnitude in comparison to the former 

configuration (see Figure 1.6.2 (f)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Salon et al [21] performed a study of the yarn to investigate its auxetic behavior. They stated 

that the wrapping angle 𝜃 of the inflexible string has the most effect on auxetic behavior of 

FIGURE 1.6.3 Schematic of auxetic yarn: (a) single yarn consists of inflexible and elastic 

strings, (b) stretched helical yarn which gives negative Poisson’s ratio, c out of phase 
arrangement of yarns, (d) efficient auxetic property due to out of phase alignment of 
yarns, (e) in phase arrangement of yarn, (f) weak auxeticity due to in phase alignment of 
yarns [1] 
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the yarn. They made a yarn from conventional available filaments with positive Poisson’s ratio 

and observed that the minimum Poisson’s ratio of such yarns is −2.7 

 

1.6.4 Auxetic cellular materials 

Cellular materials are those materials which is made by interconnection of solid beam, truss 

plates that form the edges of the unit cells. Various examples of such materials like wood, 

cork and bone can be found in nature [22]. Cellular structures possess superior properties over 

their solid counterpart such as strength-to-weight ratio and surface area properties [23, 24]. 

The main advantage of cellular structure over solid structure is that cellular structure is 

designed so that the material is added to the structure only when it needs to be used for 

specific applications such as medical application (bone scaffold, implant and etc.), aerospace 

and automotive industries. Since the use of cellular structures saves expensive materials and, 

as a result, reduces the final cost, construction time and energy consumption, innovative 

design and fabricating methods are used for these structures [25]. These structures due to 

their high performance, high strength-to-weight ratio [26, 27], low heat conduction properties 

[28, 29], superior energy absorption [30] and excellent thermal and acoustic insulation [26, 

31, 32] have attracted much attention in the aerospace, automotive, and biomedical 

industries. Medical applications of cellular structures include their use for femoral stem 

implant using powder-bed fusion [33], dental implants [34] and tissue engineering [35]. The 

parameters of permeability, surface-to-volume ratio and pore size play a major role in bone 

implant success [36]. Auxetic cellular material are a type of cellular materials which provide 

unique properties due to their negative Poisson’s ratio. For clarifying properties of auxetic 

cellular materials, two well-known types of cellular materials with different architecture have 

briefly been reviewed in following sections.  

 

1.6.4.1 Re-entrant honeycomb model 

To investigate the behavior of a conventional honeycomb cellular structure, Gibson et al used 

a conventional two-dimensional model [8]. As it can be seen in Figure 1.6.4 when the unit cells 

are stretched horizontally the vertical ribs tend to move outwards resulting auxetic 

properties. It should be noted that in many honeycomb structures, oblique ribs are prone to 

bend due to the interaction of the struts with each other, and part of the auxetic behavior of 

the structure is due to the bending of the oblique ribs [37]. Based on their model, Poisson's 

ratio and Young's modulus in the direction of applying force are expressed as follows: 

 

                                                                    𝜈12 =
𝑠𝑖𝑛𝜃(ℎ 𝑙 + 𝑠𝑖𝑛𝜃⁄ )

𝑐𝑜𝑠2𝜃
                                                 (1.6.1) 
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                                                                        𝐸1 = 𝑘
(ℎ 𝑙 + 𝑠𝑖𝑛𝜃⁄ )

𝑏𝑐𝑜𝑠3𝜃
                                                    (1.6.2) 

                                                                                 𝑘 = 𝐸𝑠𝑏 (
𝑡

𝑙
)

3

                                                         (1.6.3) 

 

 

Where as shown in Figure 1.6.5, ℎ, 𝑙, 𝑏, 𝜃 are respectively the half of the length of vertical struts, 

the oblique struts length, the out-of-plane thickness of the struts and the angle between the 

vertical and oblique struts. 𝐸𝑠 is Young modulus of the basis material from which unit cells are 

made. 

 

 

 

 

 

 

 

1.6.4.2 Rotating square model 

Another early category of auxetic structures is the rotating polygonal model. This model has 

been extensively investigated by Grima Alderson et al [39-41]. Rafsanjani et al [42] also 

conducted studies in the development of this model. Grima et al [39] presented a new model 

in which by placing rigid squares next to each other and connecting their vertices by hinges, 

FIGURE 1.6.4 Illustration of auxeticity of re-entrant honeycomb structure 

FIGURE 1.6.5 Single cell of a re-entrant honeycomb structure and its defined parameters [38] 

 



Introduction 

10 
 

a new structure is obtained that exhibits auxetic behavior. A unit cell of the rotating square is 

depicted in Figure 1.6.6. It is worth mentioning that in designing this model, two basic 

assumptions have been considered. First, it is assumed that the squares are not deformable 

in the directions of applying load and the rotating squares are resistance to shear.  

 

 

Considering the two aforementioned assumptions and applying the mathematical relations, 

Young's modulus, Poisson's ratio and compliance matrix of the rotating squares model can be 

presented as follows:  

 

                                                                            𝜈12 = 𝜈21 = −1                                                          (1.6.4) 

                                                                      𝐸1 = 𝐸2 = 𝑘ℎ

8

𝑙2
∙

1

1 − 𝑠𝑖𝑛𝜃
                                           (1.6.5) 

                                                            𝑆 = (
𝑆11 𝑆12 0
𝑆21 𝑆22 0
0 0 0

) =
1

𝐸
(

1 1 0
1 1 0
0 0 0

)                                 (1.6.6) 

 

Where 𝑙, 𝑘ℎ , 𝜃 are the length of each edge of the square, stiffness coefficient of the hinges 

and the angle between the squares, respectively and depicted in Figure 1.6.6. 

 

FIGURE 1.6.6 Illustration of auxeticity of rotating square structure 
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1.7 Medical application of auxetic materials 

Due to the unique properties of these substances, auxetic materials are finding their place in 

various fields like biomedical. In recent years, some potential applications of the auxetic 

materials in the biomedical field have been reported, which will be discussed below. 

Nowadays, materials with a positive Poisson’s ratio are mainly used in manufacturing of 

arterial prostheses. In such conventional materials, when pressure of the blood flowing in 

vessels opens the lumen of blood vessels the wall thickness of the prostheses reduced. 

However results of using a material with a negative Poisson's ratio such as PTFE will be in 

reverse [43]. It follows that, as blood flow passes through the vessel and the lumen of the 

vessel increases under blood pressure, the thickness of the prosthesis wall increases and as a 

result, the possibility of its wall rupture decreases (Figure 1.7.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smart bandages shown in Figure 1.7.2 are another application of auxetic materials in the 

biomedical industries [45]. The micro proes between fibers of such smart bandages are 

impregnated by anti-inflammatory agents. When the infected wound becomes swollen, the 

auxetic fibers of the bondage are stretched. As a result of stretching, a controlled amount of 

anti-inflammatory agent is released on the wound. Therefore it speeds up the wound healing 

process. As the swelling of the wound heals, the bandage return to its original shape and the 

release of anti-inflammatory substance stops followed by closure of microfilament pores.  

 

FIGURE 1.7.1 Schematic of deformation in artificial blood vessel: (a) conventional 

material (b) auxetic material [44] 
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Another application of auxetic material in biomedical field refer to a dilator which can be used 

in coronary angioplasty by implementing an expandable sheath made by an auxetic material 

[46] (Figure 1.7.3). Applying tension to the auxetic sheath make it expand laterally and open 

the coronary artery. auxetic stents have been proposed based on the similar concept [47]. 

 

 

Sutures and Ligament-muscle anchors that made by auxetic material and benefit from pull-

out resistance have been proposed by Simkins et al [48]. When a conventional suture or 

anchor subjected to tensile stress it becomes thinner as shown in Figure 1.7.4 (b). Therefore, 

it moves away from the surrounding material, which leads to the failure of the interface 

between stature and biomaterial. However an anchor made of auxetic material expands when 

stretched and locks in the surrounding biological material to prevent interface failure (Figure 

1.7.4 (c)). 

FIGURE 1.7.2 Schematic functionality of a smart bondage made by auxetic fibers containing 

anti-inflammatory agents [45] 

 

FIGURE 1.7.3 Dilator with an auxetic end sheath. Opening of the artery can be reached by 

inserting tension force on the finger apparatus which makes the auxetic end sheath 
expands laterally [46] 
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Esophageal cancer is the ninth most common cancer in the world, which is caused by a tumor 

in a patient's esophagus that causes obstruction and difficulty passing and digesting food. 

Therefore, in order to remove the obstruction and relieve the patient's pain, auxetic stent can 

be used. As demonstrated in Figure 1.7.5, Ali et al [49] designed and fabricated an auxetic film 

and developed it as an auxetic stent to relieve esophageal cancer pain and prevent further 

dysphagia.  

 

 

 

 

 

 

 

 

 

 

FIGURE 1.7.4 Different behavior of the conventional and auxetic medical stature 

under pull-out tension [48]  

 

FIGURE 1.7.5 An auxetic stent used for remaining open the obstructed part of the esophagus [16] 
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Auxetic structures can be used in the design of angioplasty stents [50] and annuloplasty rings 

[51]. Cardiovascular disease is one of the most important health concerns in the world and 

requires considerable attention for its prevention and treatment. Due to the fact that the 

vascular system of the body has anisotropic properties [52], the implementation of 

commercially available isotropic coronary stents leads to a mismatch between the 

anisotropic-isotropic properties of the stent and the arterial wall. Therefore, good mechanical 

adhesion is not achieved. For this reason, it seems that the use of an auxetic stent, which has 

inherently anisotropic characteristic can eliminate this mismatch between the stent and the 

arterial wall and provide good mechanical adhesion. Amin et al [52] for the treatment of 

coronary heart disease developed the coronary stent demonstrated in Figure 1.7.6 based on 

an auxetic geometry which allows the stent to give negative Poisson’s ratio. They stated that 

the auxetic stent would have desirable adhesion to the arterial wall due to its anisotropic 

mechanical properties. They concluded that when the stent is expanded by the balloon 

catheter, it stretches in both radial and longitudinal directions, and the stent does not show 

any foreshortening. In addition, it seems that the auxetic property of the stent has a 

significant effect on maintain of luminal patency and avoids the problem of stent migration. 

 

 
 

FIGURE 1.7.6 (a) 3D schematic of the auxetic coronary stent exploiting rotating 

square model, (b) magnified single unit cell of the coronary stent [52] 
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Another application of the auxetic structure refer to the total hip replacement, where hip 
stems can be created by using the logical pattern of auxetic and non-auxetic materials as 
depicted in Figure 1.7.7 to create a unique feature of compressive stress on both side of hip 
implants stem [52]. When the hip stems are bent, lateral side of the implant is stretched while 
the medial side is compressed. When stems are made only by conventional materials, the 
medial side of the hip implant which is under pressure will expand laterally, thus putting 
pressure on the surrounding bone tissue. Compression of the implant surface to the 
surrounding bone tissue is desirable because while eliminating the possibility of implant 
failure, it increases the stimulation of bone remodeling and also prevents the entry of wear 
particles into the areas between the surrounding bone tissue and implant, which increases 
the risk of interface failure. However, the lateral side of the implant which is under tension 
shrinks transversely and therefore tends to move away from the surrounding bone tissue. As 
a result, the tensile stress created between the surface of the implant and the surrounding 
bone causes the interface failure. The entrance of the wear particles can also easily occur into 
the area between the bone and the implant which in turns can cause an inflammatory reaction 
which leads to osteolysis. It seems the only way to address the problem is to use a material 
with a negative Poisson's ratio on the side that is under tension. In this way, it is pulled laterally 
and can increase the probability of implant success. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.7.7 Combination of conventional and auxetic material (top) 

which leads to peripheral compression around hip stems (below) [53] 
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Polyurethane open cell foams are commonly used to make seat cushion pads [55]. A common 

open cell foam with a positive Poisson's ratio has an uneven distribution of normal stresses 

during indentation, which localizes the maximum stress around the contact area. However, a 

uniform stress distribution with lower maximum stress will be provided by implementing an 

auxetic foam with negative Poisson’s ratio. These features make auxetic foam pads an 

excellent option as a cushion pads for patients suffering from disability or poor medical 

condition. Moreover, the two properties of mechanical stress distribution and mechanical 

flexibility of these pads make them suitable for use in knee prostheses [55]. 

 

1.8 Buckling of a structure 

The sudden collapse of a structural member that has been subjected to a compressive axial 

load is called buckling. When the compressive axial load exceeds a threshold (critical load), a 

sudden lateral deflection occurs in the structure. That means the buckling load is obtained 

when this sudden lateral deflection occurs under axial pressure. From this point on, the 

structure enters the post-buckling phase. Under these conditions, the load-bearing capacity 

of the structure usually decreases and the structure shows relatively larger changes in 

response to relatively smaller loads. The post-buckling behavior of the structure depends 

significantly on its characteristics. This means that the structure can regain its load-bearing 

capacity, which is lost after reaching the critical load, in the post-buckling area. But in some 

cases, the structure fails and as a result collapses completely. Considering the buckling load in 

structural design is of great importance. It follows that when designing the structure, it should 

be considered that the critical buckling load of the structure should be more than the 

maximum load on it to prevent the structure from entering the buckling phase and the 

possible collapse. In general, narrow structures such as columns, shells and thin plates are 

prone to go under buckling. It should be noted that buckling instability depends solely on the 

geometry of the structure, and other nonlinear properties (such as nonlinearity of materials) 

have no effect on its formation. 

In order to investigate the behavior of a structure under buckling compressive load, load 

displacement diagrams are usually used. Same diagrams are also implemented to study the 

behavior of the structure in the post-buckling area. Figure 1.8.1 shows the schematic buckling 

and post-buckling behavior of the structure in terms of in-plane displacement. The same 

diagram but in terms of out-of-plane displacement is drawn in Figure 1.8.2 

 

1.8.1 Load vs in-plane displacement 

Bucking behavior in shell structures (structures in which the thickness of at least one 

dimension is much smaller than the other dimensions) is accompanied by a sudden decrease 

in post-buckling strength. It should be pointed out that the slope of the load displacement 
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curve in the post-buckling region can be negative or positive, which determines the stability 

of the structure in the post-buckling regime. This means that a positive slope refers to the 

post-buckling strength of the structure even after reaching a critical point, while a negative 

slope indicates that the structure loses its strength completely and will simply collapses. It is 

worth mentioning that in the post-buckling regime, after reaching a certain amount of axial 

displacement (snap), the structure regains its post-buckling strength and can withstand loads 

even more than the critical load. 

 

 

 

1.8.2 Load vs out-of-plane displacement 

As it is mentioned above, when a shell structure is subjected to axial compressive load, after 

reaching the critical load, it loses its load bearing capacity and then undergoes a significant 

lateral displacement. This lateral displacement usually occurs locally. Moreover when the 

structure reaches the critical point, it releases its strain energy accumulated by applying axial 

load in the form of kinetic energy. In the post-buckling area, after reaching a certain amount 

of lateral displacement (snap), the structure regains its load-bearing capacity and can 

withstand loads even beyond the critical load. 

FIGURE 1.8.1 Schematic curve of buckling and post-buckling behavior of a structure in terms of 

in-plane displacement 
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1.8.3 Buckling of cellular structures 

One of the biggest weaknesses of cellular structures is their buckling instability when they are 

under the action of compressive stress, which leads to premature collapse in cellular 

structures. The critical buckling load required for the collapse of the cellular structure is far 

less than the critical buckling load of the basis material that makes up the cellular structure. 

Structural parameters of cellular structures play an important role in the performance of the 

structures. Static and dynamic properties of the structures can be improved by Structural 

parameters or, conversely, their improper design can jeopardize the stability of the structures 

[56]. As a result, determining the optimal cellular structure parameters is essential for a 

particular application. Qianqian et al [57] studied 1D lattice truss composite structures in 

uniaxial compression by developing theoretical and numerical finite element methods and 

found that the length of the cellular column significantly effects the buckling modes of the 

structure. Magnucka-Blandzi [58] analyzed the buckling behavior of a pores plate under 

uniformly distributed compressive stress. The dependency of the buckling behavior of a 2D 

cellular structure on geometrical shapes has been investigated by Overvelde et al [59] and the 

authors expressed that geometry of the structure effects the buckling behavior of the soft 

porous structures. The effect of cellular structure geometry, out-of-plane thickness of the 

FIGURE 1.8.2 Schematic curve of buckling and post-buckling behavior of a structure in 

terms of out-of-plane displacement 
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plate and different boundary condition on the buckling behavior of functionally graded 

porous plate has been investigated by Jabbari et al [60]. Tang et al [61] revealed that different 

patterns of porosity distribution have different effects on the critical buckling load of the 

pores structure. Pihler et al [62] demonstrated that buckling behavior of a cellular structure 

can be significantly affected by that the pore size of the cellular structure. Aamer et al [56] 

studied uniform and variable-density cellular columns. They investigated buckling and post-

buckling behavior of such columns and expressed improved critical buckling load resistance 

due to innovative construction of cellular column in which the beams located in the outer 

sides of the column are thicker than internal beams. In another survey, the same author found 

that height of the column and size of the unit cell can significantly affect the critical buckling 

load [63]. 
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1.9 Buckling of a rectangular auxetic plate 

Consider a plate of edges 𝑎 and 𝑏 and thickness ℎ which is subjected to compressive load as 

depicted in Figure 1.9.1 The critical buckling load for such a plate in the case of uniaxial 

compression is [64]:  

                                                                      𝐹𝑐𝑟 =  
𝜋2𝐷

𝑏2
∙ (

𝑎

𝑏
+

𝑏

𝑎
)

2

                                                    (1.9.1) 

 

Where D is bending stiffness of the plate and can be expressed as: 

                                                                          𝐷 =  
𝐸ℎ3

12(1 − 𝜈2)
                                                         (1.9.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.9.1 3D schematic of a thin 

rectangular plate subjected to in-
plane uniaxial compression load 
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Obrecht et al [65] investigated the buckling behavior of a flattish rectangular plate under 

uniaxial compressive and shear stresses. The numerical results depicted in Figure 1.9.2 show 

how the critical stresses (normalized to the critical stresses at the Poisson's ratio equals to 

0.3) change with respect to Poisson's ratio variations between 0.5 and around −0.9. As can 

be seen from the graph, when the Poisson's ratio approaches to minus one, the critical stress 

increases significantly. In fact, the order of magnitude of the increase is such great that it 

hardly happens in practice. 

They suggested that a significant weight efficiency could be achieved by designing a 

macroscopic structure made of conventional non-auxetic materials. The critical force 

(normalized by weight) as a function of 𝛼 (corresponding to the Poisson's ratio) is plotted in 

Figure 1.9.3. As it can be seen, critical loads and hence the critical stresses have different trend 

from what is shown in Figure 1.9.2 (related to a thin homogeneous auxetic plate). Here the 

maximum critical load occurs at a relatively small negative 𝛼. Moreover, the maximum load at 

this point is almost three times greater than the magnitude of critical load at 𝛼 = +30 which 

indicates weight efficiency can be increased by designing an auxetic structure with non-

auxetic materials.   

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.9.2 Variation of critical 

buckling stress of a flattish plate with 
respect to Poisson’s ratio under uniaxial 
compression and shear 

FIGURE 1.9.3 Dependence of the 

weight-normalized critical buckling load 
on the unit cell angle α 
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1.10 Buckling of a cylindrical auxetic shell 

The critical buckling load of a cylinder shell of radius 𝑅 and thickness ℎ under compressive 

axial pressure as illustrated in Figure 1.10.1 is: 

 

                                                                           𝐹𝑐𝑟 =
𝐸ℎ2

𝑅√3(1 − 𝜈2)
                                                 (1.10.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The critical load as a function of Poisson's ratio is shown in Figure 1.10.2. While it is clear from 

the 𝐸𝑞 1.10.1 and can be seen in the Figure, the critical buckling load is symmetric around 𝜐 =

0. 

 

FIGURE 1.10.1 Buckling of a cylindrical 

shell under axial compression load 
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1.11 Research questions 

As described in part 1.6.4, the use of cellular structures has many advantages over solid 

structures. Due to these advantages, such structures are finding their place in various fields, 

such as biomedical industries. Moreover, since cellular structures allow the penetration of 

surrounding tissues into their porous space, the use of such structures with a high resistance 

to weight ratio will provide better stabilization of medical implants in the surrounding tissues. 

On the other hand buckling instability is one of the biggest weaknesses of such structures 

when they are under the action of compressive stress, which leads them to undergo 

premature collapse. The two aforementioned facts about cellular structure show the 

importance of the buckling analysis performed in this study on cellular plate and cylindrical 

structures. The motivation of this study is to find out how a structure with a desired buckling 

strength and stability can be designed by adjusting the structural parameters. In fact, we are 

trying to answer to the following questions: 

 

 How does the auxetic property change the mechanical buckling behavior of a 

cellular plate and cylinder? 

FIGURE 1.10.2 Dependence of critical buckling load 

(normalized by Young modulus) on Poisson’s ratio in 
different thickness to radius proportion 
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 How does changing the geometric parameters of a structure affect its buckling 

behavior and critical load? 

 

 Do the structural parameters have similar effects on the buckling and post-

buckling behavior of two different geometries of plate and cylinder? 

 

 How the post-buckling slope of a structure (which indicates its stability) can be 

tuned by designing its structural parameters? 

 

 Are the effects of geometric parameters on the mechanical behavior of the 

structure interdependent? How? 

 

 

1.12 Study outline 

In order to answer the above questions, we investigated on both plate and cylindrical models 

separately. For this purpose, we used the cellular structure model proposed by Gibson et al. 

to create our cellular models. We designed three primary reference models for cellular plates 

and two primary reference models for cellular cylindrical structures. Then for studying each 

of these five reference models numerical finite element method in ABAQUS has been 

implemented. In order to validate the numerical method, reference models were fabricated 

by additive manufacturing technology and subjected to buckling test. After verifying the 

numerical results extracted from the finite element method, we created other models by 

changing the geometric parameters of both plate and cylindrical structures to investigate how 

variable geometric parameters can tune buckling and post buckling behavior of the both plate 

and cylindrical cellular structures. A total of 84 solid models in plate geometry and 45 solid 

models in cylindrical geometry were designed in SOLIDWORKS and simulated in ABAQUS 

software. After performing numerical solution on all models, the relevant results were 

extracted and investigated to reveal the effect of geometric parameters on the buckling and 

post-buckling behavior of the plate and cylindrical cellular structures. 
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In this chapter, we intend to describe in detail the models created by changing the geometric 

parameters of the structure. For this purpose, we used the cellular structure model 

proposed by Gibson et al. which has briefly described in section 1.6.4.1. In fact, we designed 

our models in both plane and cylindrical geometries consisting of re-entrant honeycomb 

unit cells shown in Figure 1.6.5. In the following, we comprehensively explain this type of 

cellular model and the corresponding conventional and auxetic cellular plates and cylinder 

designed by variable structural parameters 

 

2.1 Auxetic cellular plate 

Auxetic cellular plates are designed as rectangular patterns of single re-entrant honeycomb 

unit cells shown in Figure 2.1.1. As you can see in the Figure below, an enlarged image of a cell 

unit with its structural parameters is displayed. As it mentioned earlier, dependency of 

buckling and post-buckling behavior of the structure on these geometric parameters in 

macroscopic scale is investigated. 

 

 

Now let's define each of these independent parameters: 

FIGURE 2.1.1 Three-dimensional schematic of an auxetic cellular plate and a magnified image 

of a unit cell characterized by geometric parameters 
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𝒉: The out-of-plane thickness of the plate along the axis 𝑍. It should be noted that since there 

is only one unit cell in the thickness of the plate, then both plate and unit cell have identical 

out-of-plane thicknesses.  

𝒕𝒉: The in-plane thickness of all cell members including diagonal and vertical struts. 

𝒙: The length of the vertical struts 

𝒚: The length of the diagonal struts 

𝜽: The angle between the diagonal and vertical struts. 𝜃 is the value of the angle that the 

diagonal strut makes with the vertical strut by rotation around the point 𝑂. 

𝑳: The length of the plate. This is the direction in which compressive stresses are applied on 

the plate 

𝒘: The width of the plate. 

It is worth mentioning that in order to design structures with different Poisson's ratios, each 

unit cell is limited to a reference cube with dimensions of 𝑎, 𝑏 and ℎ (see Figure 2.1.1). In fact, 

variation of the angle 𝜃, which it turn changes the unit cell from conventional honeycomb to 

the auxetic one occurs in a constant height-to-width ratio 𝑎/𝑏  of the unit cells. The plate 

models are designed as rectangular arrangements of the defined unit cells. It consists of 𝑛 

unit cells in length and 𝑚 in width. By doing a simple mathematics these two parameters can 

be determined as the following: 

 

                                                                             𝑛 = 𝐿 𝑎⁄                                                                      (2.1.1) 

                                                                            𝑚 = 𝑤 𝑏 ⁄                                                                    (2.1.2) 

 

Another parameter that has been investigated is the size of the unit cells. As mentioned 

earlier, each unit cell is housed inside a reference rectangle of dimensions 𝑎  and 𝑏 . Now 

suppose we multiply the sides of this rectangle by a constant. The resulting rectangle will have 

sides equal to 𝑎′ and 𝑏′. 𝑅 = 𝑎′ 𝑎 = 𝑏′ 𝑏⁄⁄  is the constant which determines the size of the 

unit cells. As a result, by changing the 𝑅 , the shape of the reference rectangle will be 

preserved and only the ratio of the corresponding sides will change. 

In order to calculate the analytical Poisson's ratio and Young modulus of the unit cell we used 

the expression provided by Gibson et al. If the applied force is in the direction of the vertical 

struts, ie in the direction 1 in Figure 2.1.2, the Poisson's ratio and Young modulus in the 

direction of the applied force can be obtained from Equation 1.6.1. and 1.6.2 respectively. 

However since we have considered a different definition of 𝜃, these two equation can be 

rewritten by change of the variables as the following: 
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    𝜃 → −
𝜋

2
+ 𝜃, ℎ → 𝑥,                𝑙 → 𝑦 

                                                           𝜈12 =
𝜀2

𝜀1
= −

𝑐𝑜𝑠𝜃(𝑥 𝑦 − 𝑐𝑜𝑠𝜃⁄ )

𝑠𝑖𝑛2𝜃
                                          (2.1.3) 

                                                                       𝐸1 = 𝑘
(𝑥 𝑦 − 𝑐𝑜𝑠𝜃⁄ )

𝑏𝑠𝑖𝑛3𝜃
                                                    (2.1.4) 

                                                                             𝑘 = 𝐸𝑠𝑏 (
𝑡

𝑙
)

3

                                                             (2.1.5) 

 

In order to analyze the dependence of buckling and post-buckling behavior of the structure 

on the structural parameters, three reference models of an auxetic cellular plate 

characterized by the values in Table 2.1.1 were defined. 

 

FIGURE 2.1.2 2D schematic of a re-entrant unit cell under axial compression load 
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Based on the three reference models, another 81 cellular plates were created. The later 

models are characterized by range of variations in the out-of-plane thickness ℎ, in the angle 

𝜃, in the ratio 𝑎/𝑏, in the in-plane thickness 𝑡ℎ, in the scaling parameter 𝑅 and in the width 𝑤 

of the plate. In the following sections, we will comprehensively expound each of these 

structural parameters and their corresponding models. 

 

2.1.1 Models created by change of the Poisson’s ratio  

The change in the Poisson's ratio is a consequence of a change of the angle 𝜃. When 𝜃 < 𝜋 2⁄ , 

the Poisson's ratio possess negative value and the structure gives auxetic properties. As the 

theta increases to 𝜋 2⁄ , the auxeticity of the model decreases and the Poisson's ratio tends to 

zero. Then, by increasing 𝜃 and passing beyond 𝜋 2⁄ , the Poisson's ratio becomes positive and 

the structure enters to the non-auxetic phase. In order to obtain both auxetic and 

conventional models, a relatively wide range of the angle 𝜃  (48 ≤ 𝜃 ≤ 120)  has been 

covered. The mentioned interval is divided into 9 equal parts. It follows that the angle can 

possess 10 (2 boundary values and other 8 values in the interval) different values in total as 

summarized in table 2.1.1. 

As mentioned earlier and also shown in the Figure 2.1.2, all unit cells designed for different 

angles are bounded inside a rectangle with length 𝑎 and width 𝑏. This is because the final 

cellular plates have the identical length and width, regardless of the value of their unit cells 

angle. For this purpose, using simple mathematical equations and what is presented in the 

Figure 2.1.2, the length of the vertical and oblique struts of the unit cell can be obtained as a 

function of the angle 𝜃. Then we have: 

 

2𝑦𝑠𝑖𝑛𝜃 = 𝑏 

                                                                             ⇒ 𝑦 =
𝑏

2𝑠𝑖𝑛𝜃
                                                             (2.1.6) 

TABLE 2.1.1 Values of the geometric parameters used for the references models of 

cellular plate  
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𝑥 + 2 (
𝑥

2
− 𝑦𝑐𝑜𝑠𝜃) = 𝑎 

⇒ 2𝑥 − 2𝑦𝑐𝑜𝑠𝜃 = 𝑎 

                                                                        ⇒ 𝑥 =
𝑎

2
+ 𝑦𝑐𝑜𝑠𝜃                                                          (2.1.7) 

In the primary models the values of 𝑎 and 𝑏 are constant and equal to 7.5 and 5, respectively. 

It should be noted that, these two parameters are not always constant and will be changed 

when the effect of their variation is studied. By substitution the values of 𝑎 , 𝑏  and  𝜃  in 

𝐸𝑞. (2.1.6)  and 𝐸𝑞. (2.1.7)  the value of vertical and oblique struts corresponding to each 

angle can be obtained. After that by implementing 𝐸𝑞. (2.1.3) the corresponding Poisson’s 

ratio can be determined (see Table 2.1.1). By changing Poisson’s ratio a set of ten cellular plates 

were designed. Values of structural parameters with respect to variations of Poisson’s ratio 

are summarized in the Figure 2.1.3. Values of the reference models are highlighted by the blue 

color. 

 

 

 

 

 

 

 

 

 

2.1.2 Models created by change of the out-of-plane thickness 

The out-of-plane thickness is another important parameter that has been investigated in our 

study. Beside ℎ = 5 𝑚𝑚 which is considered for the reference models other five values have 

been chosen to figure out how the change of the out-of-plane thickness can modify buckling 

and post-buckling behavior of the models. It should be noted that the ℎ = 26 𝑚𝑚  is 

considered only for five models with 𝜈 = −1.35, −0.49, −0.05, 0.37, 0.87 . However, other 

TABLE 2.1.1 Ten different values of the angle between the 

vertical and oblique struts and the corresponding Poisson’s 
ratio 
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thicknesses regardless of the value of the Poisson ratio have been applied to all models. It 

follows that, another 45 models were obtained by changing the thickness ℎ. Values of the 

structural parameters with respect to variations of the out-of-plane thickness are shown in 

Figure 2.1.4. The blue color values refer to the reference models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3 Models created by change of the in-plane thickness 

As mentioned above, the in-plane thickness is actually the thickness of the oblique and vertical 

struts of the unit cells. Here, the effect of variation of in-plane thickness was studied only in 

two models with maximum and minimum Poisson's ratio, ie 𝜈 = −1.35, 0.87. Considering four 

thicknesses of 𝑡ℎ = 0.1275 𝑚𝑚, 0.255 𝑚𝑚, 0.3825 𝑚𝑚, 0.6375 𝑚𝑚  for these Poisson’s 

ratio, other 8 models were designed. Values of the structural parameters with respect to 

variations of the in-plane thickness are represented in Figure 2.1.5. It is worth mentioning that 

in order to have better understanding and comparison, instead of the numerical value of the 

thickness we used the fraction 𝑡ℎ 𝑡ℎ𝑟⁄ , which is the ratio of the thickness of a secondary 

model to the thickness of the reference model. For instance, since the in-plane thickness of 

the references models equal to 𝑡ℎ𝑟 = 0.51 𝑚𝑚 then 𝑡ℎ 𝑡ℎ𝑟 = 0.25 ⁄ and 𝑡ℎ 𝑡ℎ𝑟 = 1.25 ⁄ refer 

to the thickness of 0.1275 and 0.6375 respectively.  

FIGURE 2.1.3 3D schematic of the plate models created by changing the 

angle 𝜃: (a) auxetic plate (b) conventional honeycomb plate 



Chapter 2 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.1.4 3D schematic of the plate models created by changing the out-of-plane 

thickness. The auxetic plate depicted in (a) is two times thicker than the one shown 

in (b). * ℎ = 26 is considered only on five models with 𝜃° = 48, 72, 88, 104, 120 

FIGURE 2.1.5 3D schematic of 

the plate models created by 
changing the in-plane thickness 
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2.1.4 Models created by change of the width of the plate 

Three other different width (𝑤 = 46.155 𝑚𝑚, 184.62 𝑚𝑚, 369.24 𝑚𝑚) for only two cellular 

plate with maximum and minimum Poisson’s ratio (𝜈 = −1.35, 0.87) have been considered to 

investigate how the width of a plate can play a role in tuning of the buckling and post-buckling 

behavior of a cellular re-entrant honeycomb plate. Variation of the width of the plate gives 6 

new models. Like what mentioned about the in-plane thickness, here again the fraction 𝑤 𝑤𝑟⁄ , 

which is the ratio of the width of a secondary model to the width of the reference model, has 

been implemented. For instance, since the plate width of the references model equals to 𝑤𝑟 =

92.31 𝑚𝑚 , then 𝑤 𝑤𝑟 = 0.5 ⁄ and 𝑤 𝑤𝑟 = 4 ⁄ refer to the width of 46.155  and  369.24 

respectively. Values of the structural parameters with respect to variations of the plate width 

are demonstrated in Figure 2.1.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.5 Models created by change of the scaling parameter 

Three different scaling parameters (𝑅 = 0.75, 1.5, 3) only for the two maximum and minimum 

Poisson’s ratio (𝜈 = −1.35, 0.87) is considered which in turn offers 6 new models. Figure 2.1.7 

represented the values of the structural parameters with respect to different scaling values.    

 

FIGURE 2.1.6 3D schematic of the 

plate models created by 
changing the plate width 
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2.1.6 Models created by change of the ratio a/b 

In order to prevent the mutual interfusion of diagonal struts of a unit cell, the following 

constraint is imposed to its angle (see also Figure 2.1.2): 

 

                                                        𝑦𝑐𝑜𝑠𝜃 < 𝑥 2⁄ ⇒  𝜃 < 𝐴𝑟𝑐𝑐𝑜𝑠 (𝑥/2𝑙)                                       (2.1.8) 

 

The value of 𝑏 is kept constant and the ratio 𝑎/𝑏 is changed by only changing the parameter 𝑎.  

Thus, by increasing and decreasing the numerical value of 𝑎, two different 𝑎/𝑏 = 1, 2 used for 

five different Poisson's ratios (𝜈 = −1.35, −0.73, 0.05, 0.37, 0.87). It should be noted that due 

to the geometric constraint presented in 𝐸𝑞. (2.1.8), it is not possible to design a model with 

𝜃 = 48 and 𝑎/𝑏 = 1.    The values of the structural parameters with respect to variation of the 

ratio 𝑎/𝑏 is demonstrated in Figure 2.1.8. 

 

FIGURE 2.1.7 3D schematic of the plate models created by changing the scale R. Unit 

cells of the auxetic plate depicted in (a) is two times smaller than the one shown in (b) 



Materials and Methods 

35 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to investigate the behavior of the structure under the influence of buckling force, 

each of the three reference models were subjected to compressive load as depicted in Figure 

2.1.9. First, the models were analyzed numerically and then we performed buckling test on 

the reference models to validate the numerical approach. In the following sections both 

numerical and experimental approaches are comprehensively discussed.  

 

2.1.7 Numerical simulation 

The commercial finite element software ABAQUS/Explicit was implemented to study buckling 

and post-buckling behavior of the conventional and auxetic cellular plates designed in the 

Computer-Aided Design software SOLIDWORKS. Linear buckling analysis is firstly conducted 

by applying unit compressive force on the top of the plate and extracting its displacements as 

an output. By considering the first mode shape, calling the extracted data and applying 12% 

strain with imperfection scale factor of 1, non-linear general static analysis executed to obtain 

post-buckling behavior of the structures. Isotropic elastic material with 𝐸 = 3500 𝑀𝑃𝑎 and 

𝜐 = 0.3 is assigned to the models. In all simulations the lower surface of the structure could 

just freely rotate around axis 𝑋 (see Figure 2.1.7). Rotation around axis 𝑋 and translation in 

FIGURE 2.1.8 3D schematic of the plate models created by changing the ratio 𝑎/𝑏. 

* 𝑎/𝑏 = 1 is not applied to 𝜃° = 48 due to the geometric restriction 
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the direction 𝑌 is the boundary condition which is applied to the top surface of the structure. 

The solid model was discretized by linear hexagonal element without reduced integration 

(𝐶3𝐷8) with approximate mesh size 1. The mesh size was selected after performing mesh 

convergence analysis for the reference models. 

 

2.1.8 Sample preparation and experimental setup 

As it mentioned above we performed buckling test only on the reference models to validate 

the numerical approach. In order to perform buckling tests in a more efficient and precise 

manner, a griper which is able to mimic the simulated boundary condition is needed. The 

gripper consists of two different parts as depicted in Figure 2.1.10. Hard parts which are 

FIGURE 2.1.9 3D schematic of the cellular 

plate models under in-plane uniaxial 
compression load  
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printed by Vero Cyan with  𝐸 = 2000~3000 𝑀𝑃𝑎, 𝜐 = 0.3 and the soft part that is made by 

black rubberlike material with Shore Hardness 85. The most challenging part of design of such 

gripper is to allow the sample to rotate around axis 𝑋. As it can be seen in Figure 2.1.10 a, the 

sample is mounted on the solid part and the soft part allows it to rotate around intended axis 

(Figure 2.1.8 (b)). The soft part of the gripper should be flexible enough allowing models 

rotate and strong enough not to undergo buckling before buckling of the structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cellular plates were fabricated by additive manufacturing technology and printed by 

Ultimaker 3D printer with the PLA (infill40%, 𝐸 = 3500 𝑀𝑃𝑎, 𝜐 = 0.3). Three samples are 

fabricated in three different colors white (𝜐 < 0), green (𝜐 = 0) and red (𝜐 > 0) based on 

dimensions of the reference models (Figure 2.1.11). Samples are mounted on grippers and all 

together are connected to the loading machine equipped with a 100 N load cell allowing us to 

perform a uniaxial buckling test and measure the axial force with respect to the axial 

compressive displacement. For each sample quasi static compression test with strain rate of 

0.002 𝑠−1 were conducted. 

FIGURE 2.1.10 Different parts of the designed gripper. (a) Before loading: plate 

mounted on the gripper and (b) after loading: rotation of the sample around axis 
𝑋 due to use of soft material 
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It worth mentioning that each experiment performed three times with the same setup and 

conditions (like measuring tools, time period etc.) to prove repeatability of our experimental 

setup. It verifies that the results are true and are not just by chance. 

 

So far, we described cellular plate and its structural parameters, models made, numerical and 
experimental approaches. Similar to the plate models, the role of structural parameters on 
the buckling and post-buckling behavior of a cylindrical structure has been investigated and 
will be discussed in more details in the following sections.   

 

 

 

FIGURE 2.1.11 Three fabricated cellular plate samples for buckling test before loading: (a) auxetic plate 

with negative Poisson’s ratio, (b) auxetic plate with almost zero Poisson’s ratio and (c) conventional 
honeycomb plate with positive Poisson’s ratio 
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2.2 Auxetic cellular cylinder 

Auxetic cellular cylinder are designed as cylindrical patterns of single re-entrant honeycomb 

unit cells. In fact if the auxetic cellular plate depicted in Figure 2.1.1 is wrapped around the tube 

with outer radius, membrane thickness ℎ and length of 𝐿 shown in Figure 2.2.1, an auxetic 

cellular cylinder will be created. 

 

 

 

 

 

 

 

 

 

 

 

In order to analyze the dependence of buckling and post-buckling behavior of the cellular 

cylinder on the structural parameters, two reference models characterized by the values in 

the table 2.2.1 were defined. 

  

 

 

 

 

 

Based on the two reference models, another 43 cellular cylinder models were created. The 

models are characterized by range of variations in the membrane thickness ℎ, in the angle 𝜃, 

in the ratio 𝑎/𝑏  and in the scaling parameter 𝑅 . In the following sections, each of these 

structural parameters and their corresponding models will be comprehensively described. 

TABLE 2.2.1 Values of the geometric parameters used for the cellular 

cylindrical reference models 

FIGURE 2.2.1 3D illustration of an 

auxetic cellular cylinder 
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2.1.1 Models created by change of the Poisson’s ratio  

As it obvious variation in the Poisson's ratio is a consequence of the change of the angle 𝜃. In 

order to obtain both auxetic and conventional cellular cylindrical models, a relatively wide 

range of the angle 𝜃 (48 ≤ 𝜃 ≤ 120) has been also covered for the cylindrical geometry. By 

choosing the other three Poisson’s ratio (𝜈 = −0.49, −0.05, 0.37) a set of five auxetic and 

conventional cylinders were designed. Values of structural parameters with respect to 

variations of Poisson’s ratio are summarized in the Figure 2.2.2. Values of the reference models 

are highlighted by the green color. 

 

2.2.2 Models created by change of the membrane thickness  

Another significant parameter that has been investigated in our study is the thickness of the 

cylinder membrane. Similar to the plate models, ℎ = 5 𝑚𝑚 is considered for the reference 

models and other four values (ℎ = 1 𝑚𝑚, 2.5 𝑚𝑚, 7.5 𝑚𝑚, 10 𝑚𝑚)  have been chosen to 

Figure out how the change of the out-of-plane thickness can tune buckling and post-buckling 

behavior of the models. It follows that another 20 models were obtained by changing the 

membrane thickness ℎ. Values of the structural parameters with respect to variations of the 

membrane thickness are shown in the Figure 2.2.3. Green color values refer to the reference 

models. 

FIGURE 2.2.2 3D schematic of the cylinder models created by changing the angle 𝜃. (a) auxetic cylinder 

(b) conventional honeycomb cylinder 



Materials and Methods 

41 
 

 

 

2.2.3 Models created by change of the scaling parameter 

Here again three different scaling parameters (𝑅 = 0.75, 1.5, 3)  but this time for all five 

Poisson’s ratio (𝜈 = −1.35, −0.49, −0.05, 0.37, 0.87) were considered which in turn offers 15 

new cellular cylinder models. Figure 2.2.4 demonstrates the values of the structural 

parameters with respect to different scaling values. Values of the reference models are 

highlighted by the green color. 

 

2.2.4 Models created by change of the ratio a/b 

As it mentioned in the section 2.1.1, the unit cell membranes angle must obey the restriction 

expressed in 𝐸𝑞. (2.1.8) to avoid compenetration.  The ratio of 𝑎/𝑏 is changed by keeping the 

value of 𝑏 constant and only changing the parameter 𝑎.  Two different ratio 𝑎/𝑏 = 1, 2 used 

for only 3 different Poisson's ratios (𝜈 = −1.35, 0.05, 0.87). It should be noted that due to the 

geometric constraint presented in 𝐸𝑞. (2.1.8), design of a model with 𝜃 = 48 and 𝑎/𝑏 = 1 is 

not practical. It follows that variation of the ratio 𝑎/𝑏 provides five new cellular cylinderical 

models. Values of the structural parameters with respect to different ratio are represented in 

Figure 2.2.5.  Values of the reference models are highlighted by the green color. 

FIGURE 2.2.3 3D schematic of the cylinder 

models created by changing the cylinder 
membrane thickness. The auxetic cylinder 
depicted in (a) is two times thinner than the 
one shown in (b).  
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FIGURE 2.2.4 3D schematic of the 

cylinder models created by changing 
the scaling parameter  R. Unit cells of 
the auxetic cylinder depicted in (a) is 
two times smaller than the one shown 
in (b) 

FIGURE 2.2.5 3D schematic of the 

cylinder models created by changing the 
ratio 𝑎/𝑏  *  𝑎/𝑏 = 1  is not applied to 

𝜃° = 48 due to the geometric restriction  
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In order to investigate the behavior of the cellular cylinder structure under the influence of 

buckling force, each of the two reference models were subjected to compressive load as 

depicted in Figure 2.2.6. First, the models were analyzed numerically and then for repeatability 

three buckling test were performed on each reference models to validate the numerical 

approach. In the following sections both numerical and experimental approaches are 

comprehensively discussed.  

 

2.2.5 Numerical simulation 

The commercial finite element software ABAQUS/Explicit was implemented to study buckling 

and post-buckling behavior of the cellular cylinders designed in the Computer-Aided Design 

software SOLIDWORKS. Linear buckling analysis is firstly conducted by applying unit 

FIGURE 2.2.6 3D schematic of the 

cellular cylinder models under in 
axial compression load  
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compressive force on the top of the cylinder and extracting its axial displacements as an 

output. By considering the first mode shape, calling the node coordinates extracted in linear 

buckling analysis and applying 18% strain with imperfection scale factor of 1, non-linear Risk 

analysis executed to obtain post-buckling behavior of structures. Neo-Hookean hyper-elastic 

material with 𝐶10 = 0.117733  and 𝐷1 = 0  is assigned to the models. In all simulations the 

bottom surface of the structure is fixed with ENCASTER boundary condition which provides 

no degree of freedom.  However the top surface of the model has only one degree of freedom 

moving freely along 𝑌 direction (see Figure 2.2.8). The solid model was discretized by linear 

hexagonal element without reduced integration (𝐶3𝐷8) with approximate mesh size 1. The 

mesh size was selected after performing mesh convergence analysis for the reference 

models. 

 

2.2.6 Sample preparation and experimental setup 

As it mentioned above we performed buckling test only on the reference models to validate 

the numerical approach. In order to perform buckling in a more efficient and precise manner, 

a griper which is able to mimic the simulated boundary condition is needed. Samples are 

mounted on the solid part and undergo compression load. Cellular cylinder were fabricated 

by 3D printer with the black soft material with shore hardness 80. Two samples with different 

angles (𝜃 = 48)  and (𝜃 = 120) are printed based on dimensions of their corresponding 

reference models (Figure 2.2.7). Samples are mounted on grippers and all together are 

connected to the loading machine equipped with a 100 N load cell allowing us to perform a 

uniaxial buckling test and measure the axial force with respect to the axial compressive 

displacement. For each sample quasi static compression test with strain rate of 0.002 𝑠−1 

were conducted. 

 

 

 

 

 

 

FIGURE 2.2.7 Two fabricated 

cellular cylinder samples for 
buckling test before loading: (a) 
auxetic tube with negative 
Poisson’s ratio and (b) 
conventional honeycomb tube 
with positive Poisson’s ratio 



Materials and Methods 

45 
 

 



Chapter 3 

46 

In the previous chapter, we first had an overview of the structural parameters of the 

fundamental unit cells of the models used in this study. Then, how the models were designed 

in both plate and cylindrical geometry were studied in more details. It was also mentioned 

that all models were analyzed by finite element method and the accuracy of the results 

obtained from the numerical method has been investigated by fabricating reference models 

and performing mechanical test on them. In this chapter, in order to validate results of the 

finite element method, they have been compared with the experimental approach and 

presented together in the following sections. In the later sections, the effect of each of the 

structural parameters on the buckling behavior of the structure in both plate and cylindrical 

geometry will be studied. The effects of these structural parameters on each other was also 

investigated. We will also point out the behavioral differences between cellular and classical 

bulk structures. Finally, we survey on the post-buckling behavior of structures and discuss 

how by changing the structural parameters, the slope of the strain stress diagram in the 

post-buckling area, which indicates the stability of the structure, can be tuned. 

3.1 Results of the cellular plate models 

In this section, we present the results of numerical and experimental analysis performed on 

cellular plate models. Then, the results related to changes in the mechanical behavior of 

cellular plate models while changing the values of structural parameters will be expressed. 

3.1.1 Validation of the FEM method 

As it mentioned in previous chapter we designed and performed finite element analysis on 84 

cellular plate models. In order to validate the numerical method, three reference models were 

fabricated and underwent buckling experimental setup. The three reference models in the 

three different colors white (𝜐 < 0), green (𝜐 = 0) and red (𝜐 > 0) with their initial and final 

states, deformation during buckling test and load displacement diagram are depicted in 

Figure 3.1.1, Figure 3.1.2 and Figure 3.1.3 respectively. Part (a) of each of these Figures shows 

the front view of the real fabricated model. In segment (b) how the model deforms during 

compression load until it reaches to the critical load and buckling and post-buckling regions 

has been depicted. In this part each frame has been made after one millimeter displacement 

in the direction of the loading. Section (c) shows the perspective view of the final buckled 

deformation of the analyzed model in ABAQUS software. Synclastic, cylindrical and anticlastic 

curvatures are obviously recognizable in the Figures and corresponds to negative, zero and 

positive Poisson’s ratio respectively.  The force-displacement data extracted from the 

ABAQUS simulation and the buckling test are given in the diagram in part (d). The black dots 

are related to the experimental results and the colored dots are related to the model with the 

corresponding Poisson’s ratio. As can be seen from Section (d) of these Figures, the 

experimental results for all three reference models follow the simulation results so well, and 

there is a perfect agreement between the two results. This is evidence of the claim that the 

numerical finite element analysis used in this study for investigating the buckling and post-

buckling behavior of plate cellular structures is highly accurate and reliable.  
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FIGURE 3.1.1 Experimental and numerical results of the auxetic cellular plate with negative Poisson’s 

ratio: (a) front view of the real fabricated model mounted on the gripper, (b) deformation and buckling 
of the model under compression load, (c) perspective view of the buckled auxetic plate and its final 
synclastic surface, (d) very nice and perfect match between experimental (black) and FEM (red) results 
in both buckling and post-buckling region 
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FIGURE 3.1.2 Experimental and numerical results of the auxetic cellular plate with almost zero 

Poisson’s ratio: (a) front view of the real fabricated model mounted on the gripper, (b) deformation 
and buckling of the model under compression load, (c) perspective view of the buckled auxetic plate 
and its final cylindrical surface, (d) very nice and perfect match between experimental (black) and FEM 
(cyan) results in both buckling and post-buckling region 
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FIGURE 3.1.3 Experimental and numerical results of the conventional cellular plate with positive 

Poisson’s ratio: (a) front view of the real fabricated model mounted on the gripper, (b) deformation 
and buckling of the model under compression load, (c) perspective view of the buckled conventional 
plate and its final anticlastic surface, (d) very nice and perfect match between experimental (black) 
and FEM (violet) results in both buckling and post-buckling region 
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Before discussing the results of changing the structural parameters, we first define the Φ 

parameter as the following: 

 

                                                                                   Φ =
𝑉𝑐

𝑉𝑏
                                                                 (3.1.1) 

 

Where 𝑉𝑐 is the volume of the solid material and 𝑉𝑏 is the volume of the solid material plus 

the volume of the pores. It is well known that the porosity of a structure is defined as 

follows: 

 

                                                                          𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
𝑉𝑏 − 𝑉𝑐

𝑉𝑏
                                                    (3.1.2) 

Then it follows that Φ = 1 − 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 and is related to the solid part of the structure and 

contributes to the overall mass of the models. For each of the designed models, the value of 

the parameter Φ is obtained by calculating the volume of the solid part of the model through 

ABAQUS software and dividing it over the total volume occupied by the structure. Later, in 

order to eliminate the effect of structure weight on the results, the extracted data are 

normalized by dividing them to the value of the Φ to provide a set of pure data which are only 

affected by changing structural parameters. The values of Φ  for each models will be 

presented later in the relevant tables. 

As it discussed in chapter two based on the three reference models, another 81 cellular plates 

were created. The later models are characterized by range of variations in the out-of-plane 

thickness ℎ , in the angle 𝜃 , in the ratio 𝑎/𝑏 , in the in-plane  thickness 𝑡ℎ , in the scaling 

parameter 𝑅 and in the width 𝑤 of the plate. The results of the numerical analysis for each of 

the structural parameters are extracted and will be present in the following sections one by 

one. 

 

3.1.2 Results corresponding to change of the Poisson’s ratio 

The values of the critical load, the parameter Φ and other structural parameters for the three 

reference models and the other seven models created by changing the Poisson's ratio are 

given in Table 3.1.1. As it can be understood from Table 3.1.1, the value of the Φ decreases by 

increasing the angle 𝜃 and Poisson's ratio. In fact, by passing through the auxetic region and 

entering to the non-auxetic area, the porosity of the structure increases and its weight 

decreases. Also, the maximum critical load occurs in 𝜈 = −1.01 . Values of the reference 

models are highlighted by the blue color. 
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As it expressed before, since the Young's modulus (𝐸𝑐) and the weight of the cell structure 

change due to variation of the structural parameters, then in order to investigate only the 

effect of the Poisson's ratio on the structure's mechanical behavior, the critical stresses are 

normalized by dividing to the 𝐸𝑐 and Φ of the corresponding models. The normalized strain 

stress curves of the ten models presented in the table 3.1.1 are shown in Figure 3.1.4. 

 

TABLE 3.1.1 Values of the critical load, the weight parameter 𝛷 and other geometrical parameters for 

ten models designed by variation of the Poisson’s ratio.  

 

 

 

 

FIGURE 3.1.4 Normalized stress-strain 

curves for ten models with structural 
parameters summarized in table 3.1.1  
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3.1.3 Results corresponding to change of the out-of-plane thickness 

The values of critical load, the parameter Φ and other structural parameters for the four sets 

of ten models with ℎ = 1 𝑚𝑚, 2.5 𝑚𝑚, 7.5 𝑚𝑚, 10 𝑚𝑚 are extracted and presented in the 

table 3.1.2, table 3.1.3, table 3.1.4 and table 3.1.5, respectively. The same values are given in 

Table 3.1.6 for those models that were designed with the out-of-plane thickness of 26 𝑚𝑚. It 

is obvious that although the out-of-plane thickness changes however weight parameter Φ will 

be constant for each Poisson’s ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3.1.2 Values of the critical load, the weight parameter 𝛷 and 

geometry parameters for models with ℎ = 1 𝑚𝑚  

 

 

 

TABLE 3.1.3 Values of the critical load, the weight parameter 𝛷 and 

geometry parameters for models with ℎ = 2.5 𝑚𝑚 
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TABLE 3.1.4 Values of the critical load, the weight parameter 𝛷 and 

geometry parameters for models with ℎ = 7.5 𝑚𝑚 

 

 

 

TABLE 3.1.6 Values of the critical load, the weight parameter 𝛷 and 

geometry parameters for models with ℎ = 26 𝑚𝑚 

 

 

 

TABLE 3.1.5 Values of the critical load, the weight parameter 𝛷 and 

geometry parameters for models with ℎ = 10 𝑚𝑚 
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The normalized strain stress curves of the 45 models presented in the table 3.1.2, table 3.1.3, 

table 3.1.4, table 3.1.5 and table 3.1.6 are depicted in Figure 3.1.5. 

 

 

 

From the stress-strain curves shown in the Figure 3.1.4 and Figure 3.1.5, it can be inferred that 

the slope of these curves in the post-buckling regime changes by the variation of the Poisson's 

ratio and out-of-plane thickness of the cellular structure. These changes are plotted in the 

Figure 3.1.6. The dependence of the post-buckling slope on the two parameters of Poisson's 

ratio and out-of-plane thickness is shown in Figures 3.1.6 (a) and Figures 3.1.6 (b), respectively. 

As can be seen in Figures 3.1.6 (a), for structures sufficiently slender, the post-buckling slope 

gradually decreases by increasing the negative Poisson's ratio and reaches to its minimum for 

the Poisson's ratio of zero. But after passing this turning point and entering to the non-auxetic 

regime, the post-buckling slope increases again. Another interesting result is that as the out-

of-plane  thickness of the structure increase, this descending trend from 𝜈 = −1.35 to 𝜈 ≈ 0 

and ascending trend from 𝜈 ≈ 0  to 𝜈 = −1.35  occurs with a larger gradient as shown in 

Figures 3.1.6 (a). Moreover, the post-buckling slope of the structure with zero Poisson’s ratio 

remains almost constant, regardless of the amount of the out-of-plane thickness. However, 

by increasing out-of-plane thickness, the more one goes to the negative or positive Poisson’s 

ratio, the more the post-buckling slope increases divergently. This means that the more 

FIGURE 3.1.5 Normalized stress-strain curves for 45 models created by change of out-of-plane 

thickness: (a) ℎ = 1, (b) ℎ = 2.5, (c) ℎ = 7.5, (d) ℎ = 10 and (e) ℎ =  26 
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auxetic or conventional the structure, the greater the effect of variation in the out-of-plane 

thickness on the post-buckling behavior of the structure. Conversely, the closer the Poisson's 

ratio of the structure is to zero, the less the post-buckling behavior of the structure is affected 

by changes of out-of-plane thickness. Figure 3.1.6 (b) shows that the post-buckling slope 

becomes greater with increasing the out-of-plane thickness, regardless of the value of the 

Poisson's ratio. However, as mentioned above, this enhancement is more noticeable in 

structures with maximum and minimum Poisson ratio. 

For sufficiently large ℎ, the structure regardless of its Poisson’s ratio possess a negative post-

buckling slope. This means that the structure loses its strength after buckling and is more 

unstable.  

 

 

 

The dependence of the stiffness-and-weight-normalized stress on the two parameters of 

Poisson's ratio and out-of-plane thickness is shown in Figures 3.1.7 (a) and Figures 3.1.7 (b), 

respectively. The results plotted in the Figure 3.1.7 (a) reveals that for thin cellular plates the 

value of the normalized critical stress slightly changes but in a constant range. However for 

very thick plate with ℎ = 26𝑚𝑚 , the normalized critical stress increases sharply. This is 

FIGURE 3.1.6 Post-buckling slopes driven from normalized stress-strain curves for models with 

different: (a) Poisson’s ratio and (b) out-of-plane thickness 
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probably due to the fact that the structure is no longer slender and as a result shows more 

buckling resistance under compression load. The dependence of the normalized critical stress 

with respect to the Poisson's ratio also demonstrates that for the thin plate the maximum 

critical stress occurs mainly in the auxetic region and close to the zero Poisson's ratio (Figure 

3.1.7 (b)). This is consistent with the results presented by Obrecht et al. in Figure 1.9.3 in the 

chapter one. However by approaching to the thicker plates maximum of the normalized 

critical stress is no longer in the auxetic region and moves toward conventional area. 

 

 

 

 

 

 

 

 

 

FIGURE 3.1.7 Dependence of the normalized critical stress to: (a) out-of-plane thickness and (b) 

Poisson’s ratio 
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3.1.4 Results corresponding to change of the in-plane thickness 

Table 3.1.7 presents the values of the critical load, weight parameter Φ  and structural 

parameters for two reference models 𝜈 = −1.35, 0.87  and other eight models made by 

variation of the in-plane thickness. As can be interpreted from last two column of the table 

3.1.7, by increasing the in-plane thickness of the cell members, the porosity of the cellular 

structure decreases and the structure tends to behave like a bulk structure. As a result, the 

critical load increases significantly in both auxetic and conventional models.  

 

 

However the curves shown in Figure 3.1.8 indicates otherwise. In fact, the stiffness and 

weight-normalized stress strain curves extracted for different in-plate thicknesses, shows that 

increasing the in-plate thickness of the unit cell members reduces the normalized stress. For 

instance, according to the Figure 3.1.8 a, when the in-plate thickness of the auxetic cellular 

plate increases five times from 𝑡ℎ 𝑡ℎ𝑟 = 0.25 ⁄ to 𝑡ℎ 𝑡ℎ𝑟 = 1.25 ⁄ , the normalized stress is 

reduced to approximately one-third of its previous value. 

The normalized strain stress curves of the models presented in the table 3.1.7 are depicted in 

Figure 3.1.8. The blue curves are related to the reference models.  

TABLE 3.1.7 Values of the critical load, the weight parameter 𝛷 and other geometrical parameters for 

cellular plate models created by variation of the in-plane thickness. Reference models are highlighted 
by the blue color.  
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As it is shown in Figure 3.1.8, the post-buckling slope of the both auxetic and conventional 

cellular and plates varies with changing the in-plane thickness of the unit cells struts. This 

variation in post-buckling slope is demonstrated in Figure 3.1.9. As can be seen, with increasing 

the in-plane thickness of the grids members, the slope of the strain stress relation in the post-

buckling region decreases. It follows that the post-buckling strength declines and the 

structure becomes more unstable. The noteworthy point in this diagram is that when the in-

plane thickness of the cell members becomes greater, the post-buckling slope of the two 

auxetic and conventional structures gradually converges to a same value. Therefore in smaller 

in-plane thickness the auxeticity has practically significant effect on the post-buckling 

behavior of the structure. 

 

 

 

 

 

FIGURE 3.1.8 Normalized stress-strain curves for models with different in-plane thickness: (a) auxetic 

cellular plate (b) conventional cellular plate 

 

 

 

 

FIGURE 3.1.9 Post-buckling slopes driven from 

stress-strain curves for cellular plate models 
with different in-plane thickness: the red and 
violet triangles in the graph correspond to 
auxetic and conventional models, respectively 
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3.1.5 Results corresponding to change of the width of the plate 

The values of the critical load, the weight parameter Φ and structural parameters for two 

reference models 𝜈 = −1.35, 0.87 and other six models made by variation of the plate width 

are presented in the table 3.1.8. As can be interpreted from weight parameter column of the 

table 3.1.8, by increasing the plate width the weight parameter keeps constant. This is because 

as the plate width increases, the cellular and bulk volumes increase proportionately and the 

porosity remains intact as well. However, by increasing the width, the final width of the 

models become larger than their lengths and the structures gain more strength under axial 

buckling load.  

 

 

As mentioned above, since increasing the width of the plate brings it out from slender state 

in the axial direction. Therefor strength of the structure along its length becomes higher and 

the critical load gains dramatically. However, the stiffness and weight-normalized stress strain 

diagram of the models depicted in Figure 3.1.10 demonstrates that by increasing the plate 

width in both auxetic and conventional cellular models, the normalized critical stress decrease 

gradually. 

The normalized strain stress curves of the models presented in the Table 3.1.7 are depicted in 

Figure 3.1.10. The blue curves are related to the reference models.  

 

TABLE 3.1.8 Values of the critical load, the weight parameter  𝛷  and geometrical parameters for 

cellular plate models created by variation of the plate width 
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A closer look of the results obtained from the normalized strain stress curves of models with 

different width depicted in Figure 3.1.10 reveals that by increasing the plate width, the slope 

of the curves in the post-buckling area decreases non-linearly. This reduction means a 

decrease in the post-buckling strength of the structure and an increase in its instability. Post-

buckling slope of the auxetic and conventional cellular and plates with different plate width 

are depicted in Figure 3.1.11. It is worth mentioning that all post-buckling slopes are positive 

regardless of the width of the plate and its Poisson’s ratio. 

 

 

 

 

 

 

 

FIGURE 3.1.10 Normalized stress-strain curves for cellular plate models with different plate width: (a) 

auxetic plate (b) conventional plate 

 

 

 

 

FIGURE 3.1.11 Post-buckling slopes driven from 

stress-strain curves for cellular plate models 
with different width: the red and violet triangles 
in the graph correspond to auxetic and 
conventional models, respectively 
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3.1.6 Results corresponding to change of the scaling parameter 

Table 3.1.9 exhibits the values of the critical load, the weight parameter Φ and structural 

parameters for two reference models 𝜈 = −1.35, 0.87  and other six models created by 

changing in the scaling parameter R. As can be interpreted from last two column of the table 

3.1.9, by increasing the scaling parameter of the unit cell, the sealed and open pores expand 

and. It follows that the weight parameter Φ becomes smaller and the structure tends to 

behave like a more prose structure. As a result, the critical load diminishes significantly in both 

auxetic and conventional models.  

 

 

However the stiffness and weight-normalized stress strain curves extracted from different 

scaling parameters models shown in Figure 3.1.12 reveals a different scenario. In fact, it shows 

that increasing the scaling parameter of the unit cell leads to an increase in the normalized 

critical stress. For instance, according to the Figure 3.1.12 a, when dimensions of the unit cell 

of the auxetic cellular plate becomes four times as great from 𝑅 = 0.75   to 𝑅 = 3 , the 

normalized stress gets almost tripled in value. 

The normalized strain stress curves of the models presented in the table 3.1.9 are depicted in 

Figure 3.1.12. The blue curves are related to the reference models.  

 

 

TABLE 3.1.9 Values of the critical load, weight parameter 𝛷  and geometrical parameters for plate 

models created by variation of the scaling parameter 𝑅 
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As it is shown in Figure 3.1.12, the post-buckling slope of the both auxetic and conventional 

cellular plates varies by alteration the dimensions of the unit cells. This variation in post-

buckling slope is demonstrated in Figure 3.1.13. As can be seen, by increasing the scaling value 

the post-buckling slope for both auxetic and conventional structure becomes greater. The 

noteworthy point in this diagram is that when the dimensions of the cell unit are reduced, the 

post-buckling slope of the two auxetic and conventional structures converges to a same 

value. Like what happens while changing the in-plane thickness of the cells struts. There, as 

the in-plane thickness increases, post-buckling behavior of the auxetic and conventional 

plates converges as well. In fact, it seems that when the ratio of the thickness of the members 

of the unit cell to the dimensions of the unit cell, i.e. 𝑡ℎ/𝑅 , increases, the auxeticity has 

practically less effect on the post-buckling behavior of the structure. 

 

 

 

 

 

FIGURE 3.1.12 Normalized stress-strain curves for plate models with different scaling parameters: (a) 

auxetic cellular plate (b) conventional cellular plate 

 

 

 

 

FIGURE 3.1.13 Post-buckling slopes driven from 

stress-strain curves for cellular plate models 
with different scaling parameter: the red and 
violet triangles in the graph correspond to 
auxetic and conventional models, respectively 
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3.1.7 Results corresponding to change of the ratio a/b 

The values of the critical load, the weight parameter Φ and structural parameters for three 

reference models 𝜈 = −1.35, −0.05, 0.87 and other eleven models made by variation of the 

ratio 𝑎/𝑏 are given in the table 3.1.10. As can be interpreted from weight parameter column 

of the table 3.1.10, by increasing ratio 𝑎/𝑏 the weight parameter becomes slightly smaller due 

to expansion of the sealed and open pores of the cellular plates. However the interesting 

thing is that despite the decrease in the weight of the cellular structure due to the change in 

the ratio 𝑎/𝑏, the critical load increases.  

 

As a result the stiffness and weight-normalized stress strain curves extracted from models 

with different ratio 𝑎/𝑏  shown in Figure 3.1.14 restates the same results. In fact, it 

demonstrates that by increasing the ratio 𝑎/𝑏 in all cellular models, the normalized critical 

stress becomes greater.  

TABLE 3.1.10 Values of the critical load, the weight parameter  𝛷  and geometrical parameters for 

models created by variation of the ratio 𝑎/𝑏. Reference models are highlighted by the blue color.  
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The normalized strain stress curves of the models presented in the table 3.1.10 are depicted in 

Figure 3.1.14. The blue curves are related to the reference models.  

 

Here again a closer look at the results driven from the normalized strain stress curves of 

models with different ratio a/b demonstrated in Figure 3.1.14 reveals that the post-buckling 

slope of the cellular plates varies by alteration ratio a/b  of the reference rectangle. This 

variation in post-buckling slope is depicted in Figure 3.1.15. As can be seen, by increasing the 

ratio a/b  the post-buckling slope of the four models with υ = −1.35, −0.73, 0.37, 0.87 

becomes smaller. However, although the value of the slope for the model with zero Poisson’s 

ratio seems almost constant but it slightly increases as the ratio a/b grows.  

 

 

 

 

 

FIGURE 3.1.14 Normalized stress-strain curves for plate models with different ratio 𝑎/𝑏 :(a) auxetic 

cellular  plate with 𝜐 = −1.35, (b) auxetic cellular  plate with 𝜐 = −0.73, (c) auxetic cellular  plate with 
𝜐 = −0.05, (d) conventional cellular plate with 𝜐 = 0.37, (e) conventional cellular plate with 𝜐 = 0.87 
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3.1.8 Comparison of a cellular plate with a bulk plate 

In order to compare the behavior of the cellular plates investigated in our study with a flat 

bulk plate shown in Figure 1.9.1, the two diagrams in Figure 3.1.16 are presented. In these two 

diagrams, the dependence of the ratio 𝐹𝑐𝑟𝑐
𝐹𝑐𝑟⁄

𝑏
 on the Poisson's ratio and the out-of-plane 

thickness is shown. 𝐹𝑐𝑟𝑐
 and 𝐹𝑐𝑟𝑏

 refer to the critical load of a cellular plate and bulk plate 

under buckling load, respectively. As stated in the chapter one, the critical load for a thin 

rectangular plate under axial compression load is obtained from 𝐸𝑞. (1.9.1). It should be 

noted that since the Poisson's ratio for an isotropic and linear elastic material is between −1 

and 0.5, then  𝐸𝑞. 1.9.1 always possess a positive value. However, by substitution Poisson’s 

ratio less than −1, amount of critical load becomes negative, which is not physically 

meaningful. For this reason, in the plots depicted in Figure 3.1.16, the ratio 𝐹𝑐𝑟𝑐
𝐹𝑐𝑟⁄

𝑏
 for 𝜐 =

−1.35 is always negative. Also for 𝜐 = −1.01, the critical load for a bulk plate according to the 

𝐸𝑞. (1.9.1) tends to infinity. Therefore, the ratio 𝐹𝑐𝑟𝑐
𝐹𝑐𝑟⁄

𝑏
related to the models with 𝜐 =

−1.01 is close to zero. According to the 𝐸𝑞. (1.9.1), the critical load for a bulk plate is 

proportional to the power of three of the out-of-plane thickness ℎ. While according to the 

results of our study, this proportion is less for a cellular plate. For this reason, as shown in 

Figure 3.1.16 (a), by increasing out-of-plane thickness, 𝐹𝑐𝑟𝑏
 grows faster than 𝐹𝑐𝑟𝑐

 and then the 

ratio 𝐹𝑐𝑟𝑐
𝐹𝑐𝑟⁄

𝑏
 decreases and tends to zero. However, when the plate becomes too thick, the 

ratio increases again. This is probably due to the fact that by sufficiently increasing of ℎ, the 

structure is no longer Slander. Under these conditions, the resistance of the cellular structure 

against buckling increases and more force is needed to reach the critical point. 

FIGURE 3.1.15 Post-buckling slopes driven from 

stress-strain curves for plate models with 
different ratio 𝑎/𝑏: the red, orange, cyan, dark 
blue and violet triangles in the graph correspond 
to models with 𝜐 = −1.35 ,  𝜐 = −0.73 , 𝜐 =
−0.05, 𝜐 = 0.37and 𝜐 = 0.87, respectively 
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With a closer look at Figure 3.1.16 b, it can be revealed that the ratio 𝐹𝑐𝑟𝑐
𝐹𝑐𝑟⁄

𝑏
 reaches its 

maximum value when the Poisson's ratio approaches to zero and this extreme point 

decreases by increasing the out-of-plane thickness. An interesting point can be interpreted 

about thin-walled plates from Figure 3.1.16 (b). As can be seen in the this Figure, an auxetic 

cellular  plate with a thickness of one millimeter and a Poisson's ratio close to zero has a critical 

load of approximately 70% of the critical load of a bulk plate. However, according to Table 

3.1.2, the weight of such a plate is only 31% of the weight of a bulk plate. Therefor the 

superiority of using such a cellular plate over a bulk plate especially in small thicknesses is well 

proven. 

 

3.2 Results of the cellular cylindrical models 

In this section, we present the results of numerical and experimental analysis performed on 

cellular cylindrical models. 

 

3.2.1 Validation of the FEM method 

As it discussed in chapter two, we designed and performed finite element analysis on 45 

cellular cylindrical models. In order to validate the numerical method, two reference models 

FIGURE 3.1.16 Dependence of the critical load of the cellular plate normalized by the critical load of 

the bulk plate to: (a) out-of-plane thickness and (b) Poisson’s ratio 
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were fabricated and subjected to axial compression buckling load. The two reference models 

and their initial and final states with load displacement diagram are depicted in Figure 3.2.1 

and Figure 3.2.2, respectively. In part (a) of these two Figures how the model deforms during 

compression load until it reaches to the buckling and post-buckling regime has been 

presented. Section (b) shows the perspective view of the final buckled structure of the 

analyzed model in Abacus software. The force-displacement data extracted from the Abacus 

simulation and the buckling test are given in the diagram in part (c). The black dots are related 

to the experimental results and the colored dots are related to the model with the 

corresponding Poisson’s ratio. As can be seen in section (c) of these Figures, the experimental 

results for the both reference models follow the simulation results so well, and there is a 

perfect agreement between the two results. This is evidence of the claim that the finite 

element method implemented in this study for investigating the buckling and post-buckling 

behavior of cellular cylindrical structures is highly accurate and reliable.  

 

FIGURE 3.2.1 Experimental and 

numerical results of the auxetic 
cellular cylinder with negative 
Poisson’s ratio: (a) front view of the 
real fabricated model mounted on the 
gripper, (b) perspective view of the 
buckled auxetic cylinder and its final 
deformed shape, (c) very nice and 
perfect match between experimental 
(black) and FEM (red) results in both 
buckling and post-buckling regions. 
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As it mentioned before in chapter two based on the two reference models of the cellular 

cylinder another 43 models were designed and analyzed. The later models are characterized 

by range of variations in the out-of-plane thickness ℎ, in the angle 𝜃, in the ratio 𝑎/𝑏 and in 

the scaling parameter 𝑅 . The results of the numerical analysis for each of the structural 

parameters are extracted and in the following sections will be discussed.  

 

3.2.2 Results corresponding to change of the Poisson’s ratio 

The values of critical load, the parameter Φ  and other structural parameters for the two 

reference models and the other three models created by changing the Poisson's ratio are 

presented in table 3.2.1. As it can be understood from table 3.2.1, similar to the plate models 

the value of the Φ decreases by increasing the angle 𝜃 and Poisson's ratio. In fact, by passing 

through the auxetic region and entering to the non-auxetic area, the porosity of the structure 

FIGURE 3.2.2 Experimental and 

numerical results of the conventional 
cellular cylinder with positive Poisson’s 
ratio: (a) front view of the real 
fabricated model mounted on the 
gripper, (b) perspective view of the 
buckled conventional cylinder and its 
final deformed shape, (c) very nice and 
perfect match between experimental 
(black) and FEM (violet) results in both 
buckling and post-buckling regions. 
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increases and its weight decreases. By comparing the data given in table 3.2.1, it can be 

understood that, auxetic cylindrical structures show less resistance to buckling. This is 

because when an auxetic cylinder compressed and its length decreases, due to the auxitic 

properties, the radius of the structure also decreases, and as a result, the structure becomes 

more slender. It follows that the structure becomes more prone to buckling. In contrast, 

conventional cylindrical structures become thicker when compressed due to their positive 

Poisson's ratio, which in turn increases their buckling resistance.  

 

Similar to what have been done on cellular plat models, since the Young's modulus (𝐸𝑐) and 

the weight of the cell structure change due to variation of the Poisson's ratio, then in order 

to investigate only the effect of the Poisson's ratio on the structure's behavior, the critical 

stresses are normalized by dividing to the 𝐸𝑐  and Φ  of the corresponding models. The 

normalized strain stress curves of the models presented in Table 3.2.1 are shown in Figure 

3.2.3. 

  

TABLE 3.2.1 Values of the critical load, the weight parameter 𝛷 and other geometrical parameters for 

cellular cylindrical models designed by variation of the Poisson’s ratio.  

 

 

 

 

FIGURE 3.2.3 Normalized stress-strain 

curves for cellular cylindrical models with 
structural parameters summarized in 
table 3.2.1.  
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3.2.3 Results corresponding to change of the membrane thickness 

The values of the critical load, the parameter Φ and other structural parameters for the four 

sets of ten models with ℎ = 1 𝑚𝑚, 2.5 𝑚𝑚, 7.5 𝑚𝑚, 10 𝑚𝑚 are extracted and presented in 

the table 3.2.2, table 3.2.3, table 3.2.4 and table 3.2.5. It is obvious that although the cylinder 

membrane thickness changes however weight parameter Φ  remains almost constant for 

each Poisson’s ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3.2.2 Values of the critical load, weight parameter  𝛷  and geometry 

parameters for cellular cylindrical models with ℎ = 1 𝑚𝑚  

 

 

 

TABLE 3.2.4 Values of the critical load, weight parameter 𝛷 and geometry parameters 

for cellular cylindrical models with ℎ = 7.5 𝑚𝑚 

 

 

 

TABLE 3.2.3 Values of the critical load, weight parameter 𝛷 and geometry parameters 

for cellular cylindrical models with ℎ = 2.5 𝑚𝑚 
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The normalized strain stress curves of the 20 models presented in the table 3.2.2, table 3.2.3, 

table 3.2.4 and table 3.2.5 are depicted in Figure 3.2.4. 

  

 

 

From the normalized stress strain curves shown in the Figure 3.2.3 and Figure 3.2.4, it can be 

inferred that the slope of these curves in the post-buckling regime changes by the variation 

of the Poisson's ratio of the cellular cylinder and its membrane thickness. These changes are 

plotted in the Figure below. The dependence of the post-buckling slope on the two 

TABLE 3.2.5 Values of the critical load, weight parameter 𝛷 and geometry parameters 

for cellular cylindrical models with ℎ = 10 𝑚𝑚 

 

 

 

Figure 3.2.4 Normalized stress-strain curves for cellular 
cylindrical models created by change of cylinder 
membrane thickness: (a) ℎ = 1 , (b) ℎ = 2.5, (c) ℎ = 7.5 
and  (d) ℎ = 10 
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parameters of Poisson's ratio and the cylinder membrane thickness is shown in Figures 3.2.5 

(a) and Figures 3.2.5 (b), respectively. As can be seen in Figures 3.2.5 (a), in contrast with plate 

models, all cylindrical models have negative post-buckling slope. The post-buckling slope 

gradually decreases by increasing the Poisson's ratio and reaches to its minimum for the 

maximum Poisson's ratio. Figure 3.2.5 (b) shows that as the thickness of the cylinder 

membrane increases, the reduction in post-buckling slope occurs more rapidly. 

 

 

 

The dependence of the stiffness-and-weight-normalized stress on the two parameters of 

Poisson's ratio and membrane thickness is shown in Figures 3.2.6 (a) and Figures 3.2.7 (b), 

respectively. The results plotted in the Figure 3.2.6 (a) reveals that by increasing membrane 

thickness of the cellular cylinder the value of the normalized critical stress increase regardless 

of its Poisson’s ratio value. However, the increase in stiffness-and-weight-normalized is more 

noticeable in structures with maximum Poisson ratio (Figure 3.2.6 (b)). 

FIGURE 3.2.5 Post-buckling slopes driven from normalized stress-strain curves for cellular cylindrical 

models with different: (a) Poisson’s ratio and (b) membrane thickness 
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3.2.4 Results corresponding to change of the scaling parameter 

Table 3.2.6 exhibits the values of the critical load, weight parameter Φ  and structural 

parameters for two reference models with 𝜈 = −1.35, 0.87 and other 18 models created by 

changing in the scaling parameter R. As can be understood from last two column of the table 

3.2.6, by increasing the scaling parameter of the unit cell, the sealed and open pores expand. 

It follows that the weight parameter Φ becomes smaller and the structure tends to behave 

like a more prose structure. As a result, the critical load decreases significantly in all models. 

However the stiffness and weight-normalized stress strain curves extracted from different 

scaling parameters models shown in Figure 3.2.7 reveals a different scenario. In fact, it shows 

that increasing the scaling parameter of the unit cell leads to an significant increase in the 

normalized critical stress. For instance, according to the Figure 3.2.7 c, when dimensions of 

the unit cell of the cellular plate with zero Poisson’s ratio increases from 𝑅 = 0.75  to 𝑅 = 3, 

the normalized stress becomes four times as great in value.  

The normalized strain stress curves of the five models presented in the table 3.2.6 are 

depicted in Figure 3.2.7. The green curves are related to the reference models. Reference 

models are highlighted by the green color. 

 

 

FIGURE 3.2.6 Dependence of the normalized critical stress for the cellular cylindrical models to: (a) 

membrane thickness and (b) Poisson’s ratio 
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As it is shown in Figure 3.2.7, the post-buckling slope of the cellular cylinder varies by alteration 

the dimensions of the unit cells. This variation in post-buckling slope is demonstrated in Figure 

3.2.8. 

 

TABLE 3.2.6 Values of the critical load, the weight parameter  𝛷  and geometrical parameters for 

cellular cylindrical models created by variation of the scaling parameters 𝑅.  
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As can be seen, by increasing the scaling value the post-buckling slope regardless of the 

Poisson’s ratio structure becomes greater. The noteworthy point in this diagram is that when 

the dimensions of the cell unit becomes greater, the post-buckling slope of the structure 

changes its sign and will be positive. As a result the structure becomes more stable in post-

buckling regime. 

 

 

 

 

 

 

FIGURE 3.2.7 Normalized stress-strain curves with different scaling parameters for cellular cylindrical 

models with: (a) 𝜐 = −1.35 , (b) 𝜐 = −0.49, (c) 𝜐 = −0.05, (d) 𝜐 = 0.37, (e) 𝜐 = 0.87 

 

 

 

 

FIGURE 3.2.8 Post-buckling slopes driven from 

stress-strain curves for cellular cylindrical 
models with different scaling parameter 
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3.2.5 Results corresponding to change of the ratio a/b 

The values of the critical load, weight parameter Φ  and structural parameters for two 

reference models 𝜈 = −1.35, −0.05, 0.87 and other six models made by variation of the ratio 

𝑎/𝑏 are given in the table 3.2.7. The last column of the table states that by increasing the ratio, 

critical load also tends to be greater. Reference models are highlighted by the green color. 

 

 

The stiffness and weight-normalized stress strain curves extracted from models with different 

ratio 𝑎/𝑏 shown in Figure 3.2.9 states that by increasing the ratio 𝑎/𝑏 in all cellular models, 

the normalized critical stress becomes greater.  The normalized strain stress curves of the 

models presented in the table 3.2.7 are depicted in Figure 3.2.9. The green curves are related 

to the reference models.  

Here again a closer look at the results driven from the normalized strain stress curves of 

models with different ratio a/b demonstrated in Figure 3.2.9 reveals that the post-buckling 

slope of the cellular cylinder varies by alteration the ratio a/b of the reference rectangle. This 

variation in post-buckling slope is depicted in Figure 3.2.10. As can be seen, by increasing the 

ratio a/b the post-buckling slope of the models with negative and zero Poisson’s ratio slightly 

decreases. However post-buckling slope trend for the model with positive Poisson’s ratio is in 

reverse and tends to increase by increasing the ratio a/b. 

TABLE 3.2.7 Values of the critical load, weight parameter 𝛷 and geometrical parameters for cellular 

cylindrical models created by variation of the ratio 𝑎/𝑏. 
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FIGURE 3.2.10 Post-buckling slopes driven from 

stress-strain curves for cellular cylindrical 
models with different ratio 𝑎/𝑏 : the red, cyan 
and violet triangles in the graph correspond to 
models with 𝜐 = −1.35 , 𝜐 = −0.05  and 𝜐 =
0.87, respectively 

 

 

 

 

FIGURE 3.2.9 Normalized stress-strain curves for cellular cylindrical models with different ratio 𝑎/𝑏:(a) 

cellular cylinder with 𝜐 = −1.35, (b) cellular cylinder with 𝜐 = −0.05 
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4.1 Conclusions 

The purpose of this study is to investigate the buckling and post-buckling behavior of cellular 

structures under the influence of changing their geometric parameters. The models studied 

in this research were designed and analyzed in two plate and cylindrical geometries. The 

primary reference models first were analyzed by numerical finite element method and then 

fabricated by additive manufacturing technology and subjected to mechanical buckling test. 

The results of numerical simulation and experimental approach for all 5 reference models 

have a very good agreement, which is evidence that the numerical method used in this 

research has a high accuracy. The results show that in the cellular plate structure, Poisson's 

ratio has a small effect on the stiffness-weight-normalized critical stress of the structure. 

However the normalized critical stress in cellular plates with different Poisson's ratio gains its 

maximum value generally in the auxetic region and close to Poisson's ratio equals to zero. On 

the other side, in a cylindrical structure, the normalized critical stress increases with increasing 

Poisson's ratio. This is due to the fact that conventional cylindrical structures become thicker 

when compressed due to their positive Poisson's ratio, which in turn increases their buckling 

resistance. A close look on the results of sufficient slender cellular plates has shown that the 

post-buckling behavior of the cellular plate with a Poisson's ratio close to zero has the least 

dependence on the out-of-plane thickness of the plate. Moreover, the post-buckling slope of 

the strain stress diagram reaches its minimum value for the zero Poisson’s ratio. However, as 

the Poisson's ratio of the plate moves away from zero, the dependency of its post-buckling 

stability to the out-of-plane thickness increases. On the other side, the results of the data of 

the cylindrical structure show that the post-buckling behavior of this structure for the 

maximum Poisson's ratio is the most affected by the change in membrane thickness. The 

structure also has a larger negative slope for the maximum Poisson's ratio. As a result, 

although the cellular cylinder with maximum Poisson's ratio has a higher buckling resistance, 

it is more unstable in the post-buckling regime. Moreover it seems that for plate models when 

the ratio of the in-plane thickness of the struts to the scaling parameter, ie. 𝑡ℎ/𝑅 increases, 

the auxeticity has practically less effect on the post-buckling behavior of the structure. The 

results have also reveals the superiority of using a cellular plate with zero Poisson’s ratio over 

a bulk plate with the same Poisson’s ratio especially in smaller thicknesses. The scaling 

parameter has a greater effect on the post-buckling behavior of the cylindrical cellular 

structure, so that with increasing the scaling parameter of the structure, the slope value 

increases and changes from negative to positive. 

In general, all structural parameters including the Poisson's ratio (for both plate and cylindrical 

models), the out-of-plane thickness (for plate models), the membrane thickness (for 

cylindrical models), the in-plan thickness of the struts (for plate models), the width (for plate 

models), the scaling parameter of the unit cells (for both plate and cylinder models) and the 

height-to-width ratio of the unit cells (for both plate and cylinder models) have undeniable 

effects on the critical buckling load and post-buckling behavior of structures. In fact, by 

changing the geometric parameters, a wide range of post-buckling slopes of the structure can 
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be achieved in both plate and cylindrical geometry and the post-buckling behavior of the 

structure can be tuned by designing geometric parameters. 

 

4.2 Recommendations for future works 

As mentioned in chapter two, Gibson's re-entratn honeycomb model was used as a basis unit 

cell of cellular structures. one can also use other models of unit cells that provides auxetic 

properties. Also, as mentioned before, in this study structures were under action of the 

uniaxial compressive buckling load. While for the cylindrical cellular structure, other types of 

buckling can be studied, such as buckling under internal pressure (to simulate blood flow 

inside the vessel) or under bending moment. 
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