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Abstract

Predictive models have a pervasive role in many daily applications. The in-
creasing amount of generated and shared data has recently boosted their de-
velopment, shifting the model generation and improvement focus towards
a data-centric approach. As a result, an information system that manages
these data defines what can effectively discovered from them. Predictive
models are also used in scientific domains to simulate complex real-world
systems, replacing costly and time-consuming experiments. However, the
unique characteristics of the scientific data and domain requirements, such
as experimental uncertainty, low data quality, and confidentiality, make ap-
plying traditional methodologies to share and leverage the data challenging.
This interdisciplinary research investigates, as a whole, the development
process of a scientific predictive model and how it can be improved by
adopting data ecosystem and data science technologies. This thesis focuses
on the following requirements: 1) identification of the predictive model de-
velopment process, classification of scientific data, and their properties, 2)
the design of a sustainable data ecosystem to support a quality process, 3)
the definition of an effective model evaluation methodology, 4) the use of
appropriate data science techniques to guide the improvement and develop-
ment of scientific predictive models. These requirements and challenges are
valid across multiple scientific domains, but the interdisciplinarity of this
thesis focuses on a case study of the chemical kinetics field. First, I inves-
tigate the current model development process, analyzing the typical steps,
the data, and the roles involved. Then, I propose a data ecosystem that of-
fers the necessary services and addresses the unique scientific data proper-
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ties and domain requirements as data governance and management aspects
while fulfilling the open data guidelines. Finally, the proposed solution is
generalized with a set of challenges for designing and adopting sustain-
able data ecosystems and managing quality data in scientific domains. This
thesis presents a systematic, objective, and automatic evaluation methodol-
ogy for scientific predictive models while handling uncertainties, allowing
replicability and awareness of the results with provenance information and
fair validation. Finally, it discusses how the results of the model evalua-
tion analysis can inform model improvement and generation. To this end,
appropriate data science techniques are used and developed.
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CHAPTER

Introduction

1.1 Context

The quantity of generated and shared data is larger than ever [1], and, as
a result, many data-driven applications have been developed and used in
many aspects of our lives [2], spanning from finance [3] to healthcare [4,5].
One of the primary applications is to use data to make predictive mod-
els [6]. Since the application of predictive models is pervasive [7, 8], and
the amount of shared data is constantly increasing [9], the generation of
a predictive model is shifting from a model-centric approach to a data-
centric approach [10, 11]. One of the main challenges in this context is
to collect, organize, and effectively extract value from large quantities of
data when, for instance, their source, representation, and quality levels are
heterogeneous [12, 13], guaranteeing quality data and a sustainable data
life cycle [14]. Scientific predictive models (in short, predictive models, or
models, in the remainder of this work) are developed on scientific data rep-
resenting real-world chemical-physical phenomena. Some examples regard
meteorology [15], biology systems [16] or chemical kinetics [17]. The lat-
ter field, particularly combustion chemistry, is fundamental to the current
energy transition agenda since it studies optimizing fuel efficiency and con-

1



Chapter 1. Introduction

sumption and developing new sustainable and green fuels [18]. To match
the ambitious goal of a carbon-free planet [19], it is necessary to speed up
and refine the development process of new scientific predictive models and
improve their accuracy with ad-hoc data management, data science, and
data-sharing techniques [20].

1.2 Motivations

It is, therefore, necessary to improve the development process of scientific
predictive models to meet the goal of a sustainable process, more accurate
predictions, and faster delivery of predictive models for the current energy
transition. At the same time, the promising results of data science and
big data management in countless fields can match these needs [21-23].
However, applying such computer science disciplines into the scientific do-
mains, even though particularly promising, is challenging and requires a
transformation and adaptation of both sides [20], as explained in the fol-
lowing with more details. In summary, on the chemical kinetics side, the
current and consolidated process needs to be rethought. Instead, on the
computer science side, a plug-and-play solution using the already available
data science and data management technologies is not possible. Therefore,
this thesis aims to bridge this gap, explaining the challenges and proposing
a solution.
The challenges include:

* Unique characteristics of scientific data. These properties include rel-
atively low volumes, not negligible uncertainty, and heterogeneity in
terms of representation formats, sources, and quality levels [24]. Even
though a study by the European Commission has predicted that the
amount of data generated is increasing from 33 zettabytes in 2018
to 175 zettabytes in 2025, 80% of the data still remains unused'.
Scientific fields are having a harder time generating and sharing the
same amount of data with respect to others, such as social media [25].
Scientific data are much more costly and time-consuming to gener-
ate [26], and since they represent real-world phenomena, an infinite
number of domain configurations are possible. As a result, scien-
tific repositories are highly sparse and unbalanced. Real-world data
are inherently affected by uncertainty. Uncertainty of scientific data
depends on a multitude of factors, and assessing the ground truth is
not possible [27]. Moreover, ignoring or assuming a constant uncer-

Imttps://ec.europa.eu/commission/presscorner/detail/en/ip_22_1113
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1.3. Research Questions

tainty value leads to erroneous conclusions and low-quality data prod-
ucts [28]. Finally, due to their rarity and importance, scientific data are
being collected over decades, and all the data are a precious source of
information. On the other hand, it is necessary to deal with represen-
tation formats, sources, ontologies, and data quality levels that have
evolved over the years [29].

* Domain requirements and sustainability. Scientific domains, partic-
ularly chemical kinetics, are competitive research fields that have a
high impact on the industry [30]. Therefore, even if data sharing is
crucial for all data-driven applications, data confidentiality and intel-
lectual property recognition are important requirements for stakehold-
ers to keep the research advantage [31]. Data-sharing platforms have
demonstrated successful results, but it is not unlikely that their life-
time is limited due to a business model and system design that is not
sustainable [32].

* Engagement. The current scientific model development process is
heavily human-based [33]. Therefore, it is subjective, slow, and error-
prone. Data management systems can automate part of this process
[34], and data science techniques can generate new knowledge [24].
However, since the process is consolidated over decades, gaining trust
and users in a new technology is not effortless.

These challenges are not independent factors. For example, to increase
the volume of data, many users need to participate in a data-sharing plat-
form, but the low quality of the data can affect their engagement [35].
Furthermore, these challenges are not exclusively limited to scientific data
[13]; nevertheless, they take on a distinct significance and possess unique
characteristics in the context of scientific data and its applications. Given
the abovementioned factors, exploring methods customized explicitly for
this domain type becomes pertinent.

1.3 Research Questions

This interdisciplinary research investigates, as a whole, the development
process of scientific predictive models and how they can be improved by
adopting data management and data science solutions. All the following re-
quirements, derived from the previously discussed challenges (Section 1.2),
are investigated in chemical engineering, with chemical kinetics as a case
study.
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* The identification of the model development process, scientific data,
and their properties for predictive scientific models. The associate
research question is: "RQ1: Which is the approach to identify all the
aspects of a given process, such as the requirements, challenges, roles,
services, data, and their properties to be integrated into an automated
and systematic information system to improve it?".

* The design of an appropriate sustainable Data Ecosystem (DE) to
support such process. In this respect, the research question is: "RQ2:
Which design choices, services, and functionalities have to be in-
cluded in a scientific data ecosystem to support the scientific pre-
dictive model development process accounting for all the sustainable
challenges, domain requirements of the stakeholders, scientific data
properties and quality results?"

 The definition of an effective model evaluation methodology. The re-
lated research question is: "RQ3: How can a predictive model be
evaluated automatically and systematically in an effective, fair, stan-
dardized, and replicable way?"

» The use of appropriate data science techniques to guide the improve-
ment and development of a scientific predictive model. In this respect,
the research question is: "RQ4: How can the result of predictive model
validation and the collected scientific data be used to comprehend the
model behavior, and how can data science use this information to im-
prove it?"

The next section details the original contributions to each of these re-
quirements and corresponding research questions. These requirements fol-
low the generality principles and can meet the needs of many scientific
fields because they directly stem from the discussed data-related challenges.
Each requirement deals with a different perspective and collection of tasks
of the predictive model development process. This work focuses on a spe-
cific applicative domain and does not propose abstract approaches. Rather,
it suggests general methodologies and algorithms that can be evaluated on
any dataset in other domains. However, in some cases, the implementation
of the methodology, such as the development of a data-sharing platform, is
domain-specific, but the investigation procedure and the problem addressed
are generalizable and extendible to other domains.
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1.4 Original Contributions

The content and some parts of this thesis result from the following publica-
tions, where I am either first author, first co-author, or co-author. The publi-
cations are published in journals, proceedings of international conferences,
or as a book chapter. Some work is currently still under consideration for
publication or preparation.

* Ramalli E, Scalia G, Pernici B, Stagni A, Cuoci A, Faravelli T. Data
ecosystems for scientific experiments: managing combustion experi-
ments and simulation analyses in chemical engineering. Frontiers in
Big Data. 2021 [36]. Ideation, solution design, implementation, data
analysis, data preparation, and paper writing.

* Ramalli E, Pernici B. Challenges of a Data Ecosystem for Scientific
Data. Data and Knowledge Engineering. Accepted [37]. ldeation,
solution design, implementation, data analysis, data preparation, and
paper writing.

* Ramalli E, Pernici B. Sustainability and Governance of Data Ecosys-
tems. In Proc. 2023 IEEE ICWS. 2023 [38]. 1deation, solution design,
implementation, data analysis, data preparation, and paper writing.

* Ramalli E, Pernici B. From a prototype to a data ecosystem for exper-
imental data and predictive models. In Proc. of the First International
Workshop on Data Ecosystems (DEco’22). 2022 [39]. 1deation, solu-
tion design, implementation, data analysis, data preparation, and paper
writing.

* Ramalli E, Pernici B. Know your experiments: interpreting categories
of experimental data and their coverage. Proceedings of the 2nd
Workshop on Search, Exploration, and Analysis in Heterogeneous Data-
stores. 2021 [40]. Ideation, solution design, implementation, data
analysis, data preparation, and paper writing.

* Ramalli E, Pernici B. Knowledge graph embedding for experimental
uncertainty estimation. Information Discovery and Delivery. 2023
[41]. ldeation, solution design, implementation, data analysis, data
preparation, and paper writing.

* Bono C, Miilayim MO, Cappiello C, Carman MJ, Cerquides J, Fernandez-
Marquez JL, Mondardini MR, Ramalli E, Pernici B. A Citizen Science
Approach for Analyzing Social Media With Crowdsourcing. IEEE Ac-
cess. 2023 [42]. Implementation.
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* Bono CA, Cappiello C, Pernici B, Ramalli E, Vitali M. Pipeline De-
sign for Data Preparation for Social Media Analysis. ACM Journal of
Data and Information Quality. 2022 [43]. Ideation, solution design,
implementation, data preparation, and paper writing.

e Ramalli E, Parravicini A, Di Donato GW, Salaris M, Hudelot C, San-
tambrogio MD. Demystifying drug repurposing domain comprehen-
sion with knowledge graph embedding. In 2021 IEEE Biomedical
Circuits and Systems Conference (BioCAS). 2021 [44]. 1deation, solu-
tion design, implementation, data analysis, data preparation, and paper
writing.

* Ramalli E, Dinelli T, Nobili A, Stagni A, Pernici B, Faravelli T. Au-
tomatic validation and analysis of predictive models by means of big
data and data science. Chemical Engineering Journal. 2023 [45].
Ideation, solution design, implementation, data analysis, data prepa-
ration, and paper writing.

* Ramalli E. Data Quality, Data Diversity and Data Provenance: An
Ethical Perspective. Book chapter in "Improving Technology through
Ethics". SpringerBriefs in Applied Sciences and Technology. 2024
[46].

* Dilettis M, Ramalli E. Multiple Adaptive Delaunay Optimization. To
be submitted [47]. lIdeation, solution design, implementation, data
analysis, data preparation, and paper writing.

* Ramalli E, Pernici B, Faravelli T, Deng S. Chemical reaction neural
network with element conservation for hydrogen model. Under prepa-
ration [48].

The structure of this thesis and a summary of the main contributions is as
follows. Related work is presented in Chapter 2, while a brief introduction
to the running scenario of this thesis is described in Chapter 3.

Chapter 4, “Data Ecosystems for Scientific Data”, is based on [36-38].
Data management platforms are fundamental to managing a large amount
of information [49] and they define what can be discovered from the data
[50]. Moreover, even if the available size of data is limited, organizing the
data in the same platform enhances the reuse and the value of the data it-
self [51]. If multiple typologies of data are gathered in the same repository,
different kinds of cross-analyses can be applied to extract new knowledge.
However, regardless of the application domain, it is necessary to identify
the requirements of the stakeholders and the goals of such a platform. In the
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1.4. Original Contributions

case of scientific predictive model development, it is necessary to identify
the user roles, the data, and their properties. It is also fundamental to under-
stand how they interact in the process, the challenges posed by integrating
scientific data in such a system, which functionalities need to be offered
by the platform, and which are missing in the current model development
process.

In this respect, the main contributions of this thesis are:

* Identification of the scientific data and their properties in the context
of the development of a scientific predictive model.

* Development of the trust-user-data framework to analyze the chal-
lenges of developing a data-sharing platform for scientific data.

* Definition of the challenges that need to be addressed for adopting a
data-sharing platform to improve the development process of scientific
predictive models.

Chapter 5, “Data Ecosystem architectures for scientific data", is based
on [36—40]. Once the challenges are defined, this thesis dives into the pro-
posed approach to conciliate data management and data science within the
predictive model development process.

For this aspect, the main contributions can be summarized as follows:

* Definition of the DE architecture and the data management and gov-
ernance aspects that are important to account for to improve the en-
gagement and sustainability of the platform.

* Formalization of the new chemical kinetics development process, the
services, the user roles, and how to automatically interpret the seman-
tics of the data in a complex scientific domain.

* Starting from a previous prototype [52], the development of a new DE
that is currently used by different research groups in their daily work.

Based on the content published in [36, 37, 40—44], Chapter 6, “Data
Preparation", presents the contributions in terms of data preparation. This
is an essential step in many applications, particularly the data-driven ones.
The contribution of this thesis regarding this aspect concerns the investiga-
tion of which data preparation procedures are necessary for proper model
validation and improvement, sharing of scientific data, and engagement in
the data-sharing platform.

In particular, the following topics were investigated in the thesis:

7
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* How data transparency, in particular, data provenance, can be used to
analyze a given workflow to identify which pipeline stage needs im-
provement, and how the definition of a data provenance model for the
predictive model development process can improve the engagement
and trust of the users in the data sharing platform.

* The development of knowledge graph embedding to predict the miss-
ing uncertainty in the experimental data to validate and improve the
scientific predictive models properly.

* The definition of a measure to assess the data diversity of datasets
regardless of the domain, in a fast and comprehensive way.

The contributions presented in Chapter 7, “Model Evaluation and Im-
provement", are the results of the following publications [45-48]. It dis-
cusses how to leverage the data in the DE to evaluate and improve the sci-
entific predictive model.

* Definition of a systematic, automatic, and fair model validation and
analysis procedure.

* Development of a data science algorithm based on model validation
results to comprehend the behavior of a scientific predictive model.

* How to mitigate ethical problems in the model validation procedure.

* Development of an adaptive sampling algorithm for the design of ex-
periment, and integration of element conservation in the chemical re-
action neural network in the context of neural ordinary differential
equations.

This thesis concludes with Chapter 8 where the obtained results and
future work are discussed.



CHAPTER

Related Work

This chapter presents a general overview of the relevant literature to con-
textualize this thesis’s motivations and contributions to the state of the art.
The value of data in several contexts is clear. The current information
economy heavily relies on the quantity, quality, and organization of data for
future developments [53]. As a result, data markets have become increas-
ingly central. However, the process of systematically getting this value is
under investigation. Several approaches are emerging, both technologically
and as business models. Data sharing and reuse is an essential part in this
context. Unlike data exchange, which only concerns technical aspects, data
sharing refers to a broader set of concepts such as access policies, busi-
ness models, services roles, relationships, and responsibilities [54]. For
instance, in data science pipelines, this requirement involves both the pub-
lication phase and the preserve destroy phases [55]. In the publication
phase, not only making data available on portals, databases, and the like
is needed, but also code, workflow management [56], and collecting and
aggregating data. In an industrial context, creating data spaces is advo-
cated [57] as ““a foundation for the data economy in the European Union”.
In the Gaia-X initiative, data spaces involve multiple stakeholders, and a set
of infrastructural federation services is envisioned to guarantee ‘“‘identity

9
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29 6

and trust,” “sovereign data exchange,” “federated catalog,” and “compli-
ance.” In the European Open Science Cloud (EOSC)' and Consumer Data
Research Centre (CDRC) [58] initiatives the goal is to provide a cloud-
based infrastructure for sharing and managing scientific and non-scientific
data, enhancing their value, but also a conceptual framework for all needed
service, through the ongoing activities of its task forces?, among which
task forces for Authentication and Authorization Infrastructure Architec-
ture (AAI), for Quality Research Software, for Technical Interoperability
of Data and Services, and for Long-Term Data Preservation, where needed
challenges and new services are being discussed. Data Ecosystems (DEs)
are data-sharing platforms defined as “distributed, open, and adaptive infor-
mation systems with the characteristics of being self-organizing, scalable,
and sustainable” [59]. A DE shares data from a data producer to a data
consumer typically through web-services [60], managing the hosted data
and increasing their value. Data management is a precondition for the new
data science techniques. The data-sharing platform users can achieve re-
sults that would not be possible by individual participants [61]. Therefore,
it is fundamental to support the data science life cycle with adequate tools
and consider it a process composed of multiple phases in which different
strategies and tools are needed [62].

DEs, de facto, establish what can be discovered from data [50]. On the
one hand, these data-sharing platforms incentivize data reuse, value, and
proliferation. On the other open new challenges related to data manage-
ment [63], such as data quality [59], diversity [40], integration [64], trans-
parency [65]. For instance, if the data are not adequately managed, central-
ized data management can quickly propagate errors within the system and
to the data products [66]. Several studies have listed the design principles
of data spaces [67,68], the architectural components [69], particularly in in-
dustrial settings for the digitalization of the industries [70], but in practice,
each DE has its challenges, based on the application domain, that require
specific customization [71]. If not properly addressed, these challenges can
completely preclude the adoption of such a promising infrastructure, and
as a result, such data-sharing initiatives fail quickly due to the low adop-
tion or interest, such as in the case of the most recent personal data mar-
kets [53]. For instance, the medical sector requires a high level of trust and
security [72], whereas the main challenges in the energy sector also impose
to reach the fulfillment of regulations imposed by the data provider [73].
In general, the fil rouge between all DEs in terms of challenges consists

Ihttps://eosc-portal.eu/
’https://www.eosc.eu/eosc-task-forces
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in building trust between the stakeholders involved [74,75]. To achieve
this, a proper Data Quality (DQ) assessment and higher transparency are
examples of possible solutions [65]. Other factors, such as openness and
security, contribute to reaching a critical number of users necessary to keep
running the platform. On the other hand, pricing and non-interoperable
platforms are among the main failure factors [76]. In many cases, the role
of a coordinator within the data space enhances the trust between the data
consumer and the data provider [77]. Over time, four DE typologies have
been defined based on the policy to manage the data, the DE goal defi-
nition, the degree of participant interaction, and data exchange within the
ecosystem [78]. The first two typologies are Organizational and Distributed
DEs. Both have a central control system to fulfill a predefined goal, but the
DE participants can operate independently in the first one. In the latter,
changes in the DE and pooled resources require participant collaboration.
Meanwhile, federated and virtual DEs have no central management author-
ity. In federated DEs, participants interact voluntarily to reach a predefined
goal, while in the virtual DE, a coalition of participants can emerge to pool
resources to achieve a specific goal. These four types of DE describe the
edge cases of authority control, resources management, and participant in-
teractions, but not all scenarios can be restricted to design a DE confined to
only one of the previously mentioned DE categories.

One emerging problem of DEs projects is the lack of continuity in time.
Some DEs last the duration of a project or an initiative, while others strug-
gle to continue. For instance, previous attempts in the chemical kinetic area
are Prime [79] and CloudFlame [80], which started large collections of data
of chemical experiments but were discontinued or reduced mainly for the
lack of resources. Similarly, many of the data sources for COVID-19 info-
demics were discontinued as the pandemic started to be under control, even
if not yet terminated; in other cases, the Application Programming Inter-
faces (APIs) for accessing data may change, or their access policies (such
as in the recent changes in policies for Twitter APIs), thus making data in-
accessible for some of their previous users building applications on them.
Long-lasting initiatives usually have a “single” owner, such as business-
oriented companies like Google, or governmental organizations such as Na-
tional Statistical Offices, or large international organizations, as in the case
of data collection for Sustainable Development Goals Indications (SD)>.
When supported by a data sharing platform, such as in the case of data col-
laboratives®, data sharing initiatives may focus on a shorter period of time

3https://unstats.un.org/sdgs/dataportal/analytics/DataAvailability
‘https://datacollaboratives.org/
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linked to a given research, even if the platform remains available [81]. Data
spaces are multidisciplinary elements, and the business community has al-
ready investigated the aspects that threaten their lifetime. Most of these
data collaborative are limited, and their impact is contained by the com-
plexity that often a small entity faces in terms of legal, technical, ethical,
commercial, and organizational challenges [82]. Fortunately, the promoter
of such data collaborative initiatives can potentially circumscribe some of
these concerns by developing a more sustainable DE [82]. The most criti-
cal factors for data collaboratives are resources, their business model [83],
trust, incentives, and data quality [32]. There is, therefore, a gap in the cur-
rent state of the art for the design and development of the data spaces. At
the business level, the main threats are known [84], but there is no in-depth
discussion about technological solutions. On the other hand, the technical
community potentially has technological competencies for feasible solu-
tions but does not investigate the causes of a short-lifetime data space. This
work tries to close this gap by addressing the main business threats and
thus presenting technical solutions in terms of data governance [85] aspects.
In particular, the proposed solution tries to achieve voluntary data sharing
by incentivizing engagement [86, 87] and limiting operational costs [39].
In particular, in the last year, new prominent research results have been
about mechanisms to incentivize data sharing in federated learning. These
strategies prevent free-riding without the need for any payment mechanism,
which would be a deal-breaker in attracting new users into the data collab-
orative. These mechanisms try to maximize the amount of data generated
by each agent [88] or employ a data reward mechanism [89]. Therefore, it
is necessary to study the challenges and services needed to create a sustain-
able DE for a research community.

Such data management systems are fundamental for the Industry 4.0
domain [90], in many industry sectors, e.g., in airline, automotive, chem-
istry plants, or machine-building industries [90], and scientific sectors, e.g.,
atmospheric chamber data [91], tsunami-related data [92] and materials
science [93]. Supply chains are characterized by lengthy negotiations for
agreeing formats of shared data. These processes should ideally be semi-
automated, ensuring that they are negotiated, executed, and monitored for
contractual and legal compliance, efficiently. As a result, frameworks for
data sharing should be characterized by the capabilities of data analysis
and the tools for assessing DQ. In general, re-purposing data for analy-
sis and developing models using Artificial Intelligence (Al) technologies
require an understanding of the data and their associated characteristics.
The data properties are often represented as metadata and, in many cases,

12



are implicit. Data sharing is also a central element in the modern schol-
arly debate [94]. In the last years, it is recorded a steady growth in the
quantity of shared scientific data. This tendency is recorded across the re-
search groups’ disciplines, ages, and geographical locations. People are
nowadays more willing to share data to benefit from the citations of their
works [95]. Proof of this fact is that generally, a scientific publication that
shares data receives about 10% more citations than another work. Another
benefit of data sharing in the scientific domain is to reuse resources and in-
crease the dataset’s quality. The more users and the more data are present,
the more the data are cross-validated. A drawback of data-sharing prac-
tices is to agree on the structure, management, and infrastructure to share
the data. The more data, the more the representation formats and sources.
To address these challenges, it is necessary to define a general architecture
for scientific repositories. Such a data management system should address
the typical characteristics of data science applications on big data: large
volume, acquisition speed, and variety of data [96], but maintaining the
Findable, Accessible, Interoperable, and Reusable (FAIR) policy require-
ments [97] and a quality big data repository [98] since, otherwise, a data of
low quality can rapidly spread all over the DE. The recent NIST proposal
for a Research Data Framework RDaF° provides a well-defined infrastruc-
ture for sharing scientific data and tools for the data collection, sharing,
visualization, and analysis. It investigates all the phases of a data manage-
ment process and identifies the users’ roles and objectives of the platform.
Such domains include the genomic field [99, 100] or the chemical kinetics.
Both domains have the problem of sharing heterogeneous data with differ-
ent quality levels. A DE does not only share data but also services that
make the repository informative and capable of extracting valuable knowl-
edge [101]. For instance, in the combustion domain, since the first example
of the PrIMe (Process Informatics Model) system [79], these platforms do
not exist only as scientific data repositories but offer other domain-related
services. PrIMe, in particular, also had the purpose of collecting predictive
models and generating them based on specific user requests (e.g., operat-
ing conditions), providing services to control the consistency of the exper-
imental data [102,103], and validate the models [104]. The Bound-to-
Bound Data Collaboration (B2BDC) methodology is a part of the PrIMe
framework. It is rooted around the concept of consistency, and it is the
first methodology that uses data to define constraints to bound a feasible
space of variables [105]. As an evolution of PrIMe, CloudFlame® was

Shttps://www.nist.gov/programs-projects/research-data-framework-rdaf
Shttps://cloudflame.kaust.edu.sa/
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proposed [80,106]. It offers cloud simulation computing capabilities, a
data repository, and a model generation feature. Another framework is Re-
SpecTh (REaction kinetics, SPEctroscopy and THermochemistry experi-
ments)’, which contains reaction kinetics, high-resolution molecular spec-
troscopy, and thermochemistry data [107], and tools to carry on a large
number of simulations, validate models, and other functionalities [108].
The diffusion of experimental data facilitated the development of complex
models capable of predicting the behavior of thousands of subjects em-
ploying tens of thousands of equations. Given the size of these models, it
is not easy to keep their development under control and determine which
one is the best in some specific circumstances. Thus, several initiatives
were undertaken, such as CaRMeN (Catalytic Reaction Mechanism Net-
work) [109], those proposed by West et al. [110], or by Killingsworth et
al. [111], which offered tools to check the physical consistency of predictive
models, identify errors, and compare their performance. ChemKED? is an-
other example of a scientific repository [112]. In all these cases, to the best
of my knowledge, no scientific platform entirely embraces the “modern”
data-sharing perspective in which the collected big data becomes ‘“‘smart"
data [101], also leveraging the new data science technologies. There is no
formalization of the data and the stages involved in the scientific model de-
velopment process. In addition, it is necessary to identify the properties of
the scientific data and the domain requirements to design and implement
an open data-sharing platform that offers data and services to support and
improve the end-to-end process, guaranteeing, for instance, certain data
quality levels, transparency, interoperability, and scalability.

A central activity in the model development process is model validation.
In the case of scientific predictive models, typically, the model predictions
are validated against the experimental data. For decades, the methods to
establish whether or not the model predictions are congruent with experi-
ments have been of great interest in combustion research [113]. Some of
these methodologies take only into account the distance between measure-
ments and predictions, with metrics such as mean square error [114—116],
R? [117,118], or customization of them based on the application, referred
as objective error function [119]; others also consider the dissimilarities
and similarities among the shapes of the experimental and simulated data
curves [120,121]. However, a systematic approach to compare and analyze
different numerical model validations on very large quantities of data is
needed, in addition to new ways of analyzing in-depth critical cases when

"http://respecth.chem.elte.hu/
8http://www.chemked.com/
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identified, exploiting all available data. Therefore, an information system
is essential to manage, interpret correctly, and analyze scientific big data
automatically.

The word uncertainty is used to generally describe a lack of knowl-
edge about the explanation and description of phenomena [122]. Aleatoric
and epistemic are two macro-categories of uncertainty [123]. Aleatoric
uncertainty concerns the intrinsic randomness of the observation of phe-
nomena. For instance, the imprecision committed in the measurement of
experiments or the fuzziness of an image. On the other hand, epistemic
uncertainty is related to the representation of a complex domain in a pre-
dictive model with a reduced number of variables. Such simplifications
lead to uncertainty in the predicted values [123]. Uncertainty can be classi-
fied in more specific categories [124]. For instance, data uncertainty, due to
the finite precision of instruments to represent a continuous world, leads to
random errors or does not account for other uncertain sources, such as the
instrument drifts that, instead, lead to systematic errors, as well as sampling
errors [125]. Uncertainty, if provided, has to be properly managed [126]
and algorithms [127,128]. There are two ways to represent the uncertainty
in the data [129]. The first one represents the uncertainty as a probability
distribution of probabilities of the available data rather than deterministic
facts. Otherwise, it can be represented as metadata that specifies statistical
information, such as the average and standard deviation.

When it is necessary to develop a predictive model from experimental
data, the uncertainty of the data has a central role in the development pro-
cess. To mitigate the Garbage In - Garbage Out (GIGO) effects [130, 131],
experimental uncertainty is fundamental to assess the quality and reliability
of the data. If so, the data can be used to guide the model development, but
often, the uncertainty is not reported [132]. The lack of such investigation
regarding the uncertainty of the data in scientific fields is mainly due to two
elements: either the impossibility of replicating the experiment in the same
conditions or the high data collection and generation cost [132].

To correctly develop a of predictive model is necessary to estimate the
missing experimental uncertainty [133]. There are two possible method-
ologies to quantify the uncertainty of the measurements [134]. The most
accurate one is if it is possible to replicate the measurements inexpensively
to quantify the experimental uncertainty with an extensive experimental
campaign [135], where a sufficient number of measurements is needed to
estimate uncertainty accurately [136]. The average of the measurements is
the best estimate for the value to be reported, and the uncertainty is equal to
the standard deviation [134]. The second methodology leverages the Taylor
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series expansion when it is not possible to measure a quantity directly [137].
Another novel approach to estimating data uncertainty of physical phenom-
ena when it is not possible to replicate an experiment leverages the fact that
the dependent variable changes smoothly when each independent variable
changes a little while others are kept constant. This assumption allows
the use of regression models, and the model residuals can be used to es-
timate the uncertainty of the dependent variable [132]. Due to the cost of
the scientific data, The major challenge of such an approach is related to
the limited availability of data in similar conditions (i.e., independent vari-
ables). Moreover, in complex domains, the general assumption that a slight
change in the dependent variables corresponds to a small variation in the
independent one is not always true or easy to assess how much is a little
change. Finally, a naive approach is to use default domain values [115] to
complete the missing experimental uncertainty. However, the uncertainty
could differ significantly from the suggested default value [36].

Metadata is known to be used to model the DQ [138]. Since, uncer-
tainty can be seen as another metadata of the experiments, it can be linked
to DQ [139]. Generally speaking, data, DQ , and uncertainty are related
by data profiling [140]: current DQ reports are imprecise since they lack
complete descriptions of data uncertainty [139]. Moreover, DQ indicators,
independent from the accuracy of the procedure to account for the data
uncertainty, they do not account for the adequacy of the data for a given
goal [141]. Metadata can be used to construct an ontology of the domain
included in data [142, 143], and knowledge graphs [144] can define ontolo-
gies for scientific data domain [145]. Therefore it is possible to leverage
their structure to profile the data and measure the DQ effectively [146].

Knowledge Graph Embedding (KGE) is a field of Machine Learning
(ML) that learns how to represent a Knowledge Graph (KG) in a low-
dimensional space. Such embedded representation can be used by some
ML tasks such as “link prediction”, to infer missing relationships between
two existing entities in the graph [147,148], focusing on experiments and
their uncertainty value. Embedding represents a complex entity in a lower-
dimensional space such that entities with similar semantic meanings have
close embeddings.

Predictive models are developed following a data-driven black-box or
white-box approach. However, regardless of the methodology, the time
required for prediction or simulation can be particularly computationally
expensive and time-consuming. In the case of chemical kinetics, the pre-
diction time given a white-box model can last even weeks. The develop-
ment of an approximation of predictive models can overcome this limi-
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tation. In recent years, various adaptive sampling algorithms have been
studied to optimize the process of developing metamodels that approxi-
mate a function in a complex domain. These algorithms, at each iteration,
refine the sampling strategy balancing between exploration of the unknown
domain areas of the function response surface and exploitation of the in-
formation obtained from previous sampling steps. The choice of an ap-
propriate sampling algorithm hinges on the specific application. Several
interconnected factors influence this decision. Firstly, the user goal. It
specifies whether the interest is in generating a metamodel with general
approximation capabilities or focusing on optimizing the learning of the
prominent features of a complex function. Secondly, the known charac-
teristics of the function. These characteristics, such as patterns or strong
non-linearity, can be leveraged to select the most effective adaptive method.
Lastly, the properties of the experimental design. Such aspects regard the
initial sample size, the problem’s dimensionality, and the risk of cluster-
ing. For instance, exploration-focused techniques are preferred for smaller
initial sample sizes, while lower complexity methods are preferred to save
computational time in high-dimensional spaces. Similarly, to develop a
scientific black box using, for instance, Neural Network (NN) requires a
significant amount of data that is challenging to collect from experiments
or generate from simulations in scientific domains. Therefore, adaptive
sampling algorithms can be used to select the smallest and most informa-
tive set of data, therefore employed in the Design of Experiment (DOE)
phase. A recent review paper offers a comprehensive comparative analy-
sis of different adaptive sampling algorithms [149]. When the user goal
is global metamodeling, adaptive sampling techniques with a higher ex-
ploration component, such as MASA [150], MEPE [151], and MIPT [152],
are found to be more proficient. However, WAE [153] and EI [154] demon-
strate the worst performances. For optimization, MEPE [151] and EI [154]
outperform other strategies, although EI [154] is heavily dependent on the
initial sample size [149]. Regarding known response surface characteris-
tics, most adaptive sampling methods perform well for regular patterns,
with minor differences in performance. In the case of irregular patterns,
adaptive methods that emphasize exploration show better approximation
abilities. Concerning the properties of the initial experimental design, the
paper discusses the importance of initial sample size, the parametric di-
mension of the problem, and the risk of clustering. Techniques that em-
phasize exploration, such as MASA [150], MEPE [151], MIPT [152], and
SFCVT [155] are favored for smaller initial designs. Lower complexity
techniques are preferred to save computational time in cases of high para-
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metric space dimension. Additionally, the review considers supplementary
and miscellaneous criteria, such as versatility, computational costs, coding
complexity, and optimization problems given by cost functions. Across all
the examined criteria, MEPE [151] offers the most comprehensive perfor-
mance. This method is particularly recommended when there is no prior
knowledge about function characteristics. EIGF [156] and MIPT [152], an
exploration-based technique, provide reliable results and require less devel-
opment and user knowledge. However, there is no one-size-fits-all solution.
Achieving optimal results necessitates striking a balance among competing
factors, highlighting the necessity to introduce a novel algorithm that ad-
dresses these considerations more effectively.

The scientific domain of interest for this thesis, chemical engineering,
has demonstrated the successful adoption of data science [20, 116] or, more
in general, computer science such as Principal Component Analysis (PCA)
or KG approaches to extract new knowledge from data [157, 158], or in-
side an optimization procedure of existing models [119]. Furthermore,
since many black-box ML applications are spreading in this research area
[159-164], it is important to apply and adapt to the chemical engineering
domain the existing expertise in the computer science community to avoid
well-known issues, like model bias [165], and to gain knowledge from the
increasing amount of experiments, simulations, and predictive models. Few
of these black-box MLs models have included well-known physical laws in
the model discovery procedure to be leveraged during the training. Most of
them use this information to penalize wrong predictions during the train-
ing by adding penalization terms in the loss function, while others inher-
ently impose to satisfy physical constraints [166, 167]. However, it is still
an open issue to interpret black-box physical models. Chemical Reaction
Neural Network (CRNN) and its evolution [168], demonstrates that it is
possible to combine the generalization capabilities of NN with physical
constraint while learning an interpretable physical model. Applications of
such framework are successfully applied to optimize a pre-existing kinetic
model [169] for battery thermal stability analysis [170] and biomass pyrol-
ysis cases [171]. Itis still to investigate the application of such a framework
for other kinetic models, such as Hydrogen.
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Scenario

For this thesis, having prior knowledge of chemical engineering is unnec-
essary. However, this section briefly describes the domain scenario with-
out detailed technical explanations and limits the description to the con-
cepts needed to better understand the challenges, requirements, proposed
methodology, and results. Over the past few decades, the progress in com-
puting power, the availability of more and more data, and the tendency
to share information boosted the development of many research and in-
dustrial areas [172]. The availability of predictive models to forecast a
system state brought new insights into comprehending the phenomena, in-
dustrial applications, and social benefits in many different sectors, from
engineering to social science [2]. The applicative scenario of this thesis is
in chemical engineering, more precisely, chemical kinetics. Chemical ki-
netics studies how experimental conditions influence the speed of a chem-
ical reaction [30]. The experiments are then used to derive information
about the reaction’s mechanism and transition states, with the final goal of
the construction of predictive models that can describe the evolution of a
system [30]. Due to a large amount of available data, the generation pro-
cedure of complex predictive models is changing from an approach solely
based on first principles to data-driven methodologies [17,173,174]. As
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these phases require a considerable effort, and due to the complexity and
the many possibilities to model a domain, the “many-data many-models”
problem originated [175]: many models are available to predict the same
subject (i.e., the quantity or property of interest), but they differ in the num-
ber and form of mathematical equations representing the phenomena or in
the selection of parameters [175,176]. These degrees of freedom and the
“many-data” led to the development of many models of various complexity
from different research groups concerning the same subject but based on
a different subset of experiments. The result was the generation of incon-
sistent and not general models [145]. In addition, a manual evaluation of
model quality through comparison with experimental data and a univocal,
quantitative ranking of the results are not straightforward operations [109].
The diffusion of experimental data facilitated the development of complex
models capable of predicting the behavior of thousands of subjects em-
ploying tens of thousands of equations [17]. Therefore, there is the need to
organize the available information and conceptualize the problem in terms
of big data, automate the model validation and analysis procedures, and ex-
tract knowledge from the data to speed up the development process while
reducing error-prone tasks [109]. For these reasons, chemical-physical pre-
dictive models often are data-driven models [120]. Over time, there were
several initiatives aimed at collecting experimental data in a so-called Data
Ecosystem (DE). Their typical challenges are the involvement of the scien-
tific community in data sharing, providing services to users, and the stan-
dardization of data representation in agreed formats [177].

Figure 3.1 describes the business process of the predictive model devel-
opment loop, involving four types of scientific data, experiments, models,
simulations, and analysis results, which will be described more precisely in
Section 4.1. This loop includes four main stages that have been identified
within this thesis, and, to the best of my knowledge, no prior formalization
has been done in the literature. This process is the starting point from which
the process needs to be improved, for example, including new phases, au-
tomating the existing ones, and defining roles and responsibilities. It begins
with the collection of experiments. Based on this new information, a new
model or a previous version is generated or improved to represent the new
experimental data, if necessary. Later, the predictive model simulates the
same domain condition of all or a subset of the available experiments. Fi-
nally, the analysis starts. Experiments, i.e., the “ground truth" values, are
used to compare the model predictions, i.e., the simulations. This particular
type of analysis is called model validation. The analysis results have syn-
thetic insights about the model performance. This information is then used
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in the model development phase to improve the current model. The model
development cycle is repeated until the analysis of the results is considered
satisfactory or no more new experimental data are available.

A DE to support this process needs to offer both data repository capa-
bilities and services on the data to speed up and improve the process. The
DE users belong to one or more scientific organizations or groups, such as
a department, research group, or university. In our scenario, Politecnico di
Milano, with the CRECK modeling group [178], is the founding partner of
this initiative, supported by the RAISE group for the information system
part [179]. This peculiarity defines the interdisciplinarity of this thesis.

The data, such as the experimental observation of a chemical system
and the predictive models used for this thesis, are from the combustion
kinetics domain. This research area is currently a central topic for the
energy transition to investigate the capabilities of carbon-free fuels, like
hydrogen or ammonia, to improve the efficiency of current fuels or to de-
velop new ones [18]. Experiments are experimental observations of a phe-
nomenon in a physical-chemical system. Different kinds of experiments
are, for instance, ignition delay time and concentration-time profile, and
are done in experimental facilities, “reactors”, such as a shock tube or a
plug flow. These experiments study how the initial composition and the
physical properties of the experiments, i.e., the initial mixture of species
contained in a reactor in a given environmental condition, such as tempera-
ture, pressure, and volume, evolves until the reaction process is completed.
ReSpecTh [107] defines the ontology of combustion experiments. Accord-
ing to the ReSpecTh ontology, to adequately describe an experiment, it
is necessary to define the source of the data and the initial environmental
conditions of the experiments that are considered the metadata of an exper-
iment. These metadata are fundamental since, for instance, the evolution
of a chemical system highly depends on the initial environmental condition
and mixture of species. Instead, the data are the variation of the measured
chemical-physical properties, i.e., the subject of the experimental investi-
gation, during the reaction process.
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Figure 3.1: Business process of the predictive model development loop.
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Data Ecosystems for Scientific Data

Data Ecosystems (DEs) collect, manage, and analyze large volumes of het-
erogeneous data. As introduced in Chapter 2, gathering data in the same
platform facilitates data reuse and sharing, as well as the discovery of la-
tent insights by applying data science techniques. The design of such a
platform differs from the purpose of the DE itself. As previously explained
in Chapter 1 and in Chapter 3, this work studies the design and applica-
tion of a DE to support and improve the development process of a scientific
predictive model. For this purpose, a set of services on the data hosted
in DE will be necessary to be provided to support such activity. The de-
tailed development of the DE depends on the specific application domain.
Generally, two elements mainly affect the design of such DE.

The former is the data to be hosted [63]. It is essential to identify the
distinct typologies of data used during the development process of scientific
predictive models. Data may differ in sources, representation formats, and
data quality levels, making conventional approaches for the DE design not
perfectly suitable and demand particular attention [63]. For this reason,
after identifying the main different types of scientific data in Section 4.1,
Section 4.2 investigates the scientific data properties and what makes the
data integration in the DE challenging.
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The latter aspect regards the domain requisites by stakeholders and the
specific circumstances for which the DE is conceived [63]. For instance,
one emerging problem of DE projects is the lack of continuity in time [32].
Some DEs last the duration of a project or an initiative, while others strug-
gle to continue. Consequently, Section 4.3 first introduces and examines the
business motivation and circumstances that drive and challenge the adop-
tion of a DE in a scientific domain. Then, it formalized the scientific do-
main requirements expressed by the scientific community that must also be
considered while designing a DE for scientific applications.

Finally, Section 4.4 summarizes the challenges that must be addressed
to design and develop a DE for a scientific domain. Therefore, this chapter
addresses the first research question introduced in Section 1.3.

4.1 Scientific Data

This thesis proposes to classify scientific data in four different types of data:
experiments, predictive models, simulations, and analysis results. These
data types are collected, used, or produced within a cyclic development
process aiming to deliver a predictive model, as introduced in Chapter 3.

Figure 4.1 presents a high-level and non-domain-specific class diagram
of scientific data with their main attributes (or metadata) and their relation-
ships. The detailed class diagram can involve additional classes, attributes,
and relationships in a real-world scenario in a specific domain. For in-
stance, Figure 4.2 depicts the class diagram of the different scientific data
for this work’s scenario.

4.1.1 Experiment

The term experiment represents data from an experimental campaign car-
ried out by an experimenter. According to the ReSpecTh ontology [107],
an experiment combines chemical-physical measurements and associated
metadata. The measurements account for quantifying a property under in-
vestigation, while the metadata provides essential details regarding how,
when, and by whom the measurement is carried out. Examples of this
information are the technical instruments used, the environmental setting,
the unit of measurement, the identification of the property of interest, the
experimental procedure, and so on. In essence, the experiment metadata
describes the experimental condition (or setting) of an experimental cam-
paign. On the other hand, the measurement is the numeric value detected
by the instruments and thus reported (Reported value(s)). Due to intrinsic
measurement errors, usually, an experimenter carries out an experimental
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Figure 4.1: General class diagram for scientific data.

campaign rather than single experiments, i.e., the same experiment is re-
peated multiple times in the same experimental condition, in order to be
able to quantify and report the uncertainty on the measurements. The ex-
perimental condition expressed by the metadata does not vary between the
multiple measurements. Usually, the experiments are published on a date
with an associate publication in a journal. In most cases, the digital size
of the data necessary to represent the essential digital information, i.e., the
experimental data that consists of the reported value and metadata, is quite
tiny. It is rarely bigger than 10MB, and often it is less than 1MB, even if
the entire material needed to derive the reported value can have a different
order of magnitude in size. Therefore, with a moderate storage cost, storing
a large amount of experimental data is generally possible.

4.1.2 Predictive Model

A scientific predictive model is the business driver of a DE for scientific
data [180]. The final purpose is to deliver an accurate model to predict
unknown outcomes. Nowadays, a popular type of predictive model is Neu-
ral Networks (NNs). NNs are black-box methods by design. On the other
hand, in the scientific domain, predictive models usually embed chemical-
physical laws into equations such as chemical reactions [17], which cannot
be violated. Most of the time, chemical-physical equations can be trans-
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Data Column Experiment Simulation Simulation Result Column
+(PK) id N +(PK) id N (PK)id N PRy id
+ name : string + reactor : string + start time : time + name : string
+ unit : string Ny experiment type : string + end time : time + unit : string
+ data : float ArrayList + DOl : string N + data : float ArrayList
N 1

File Paper Species Chemical Model Curve Matching
+(PK) id + (PK) id +(PK)id +(PK) id
+ reference : string + name : string + name : string + score : float
+ DOl : string + unit : string + kinetics file : string + error : float

+ amount : string + reaction file : string

Figure 4.2: Class Diagram for SciExpeM DE: Representing Experiments, Simulations,
Models, and Analyses (with (PK) denoting primary key). Some entities and attributes
are omitted.

lated into a set of interpretable differential equations [30]. Thus, these
are white-box methods. Black-box methodologies, such as Physically In-
formed Neural Network (PINN), can also be employed to develop predic-
tive models for scientific domains. PINNs incorporate chemical-physical
laws in the loss function to learn a set of parameters (NN weights) [181],
but they are not interpretable. PINN, and in general NN, require much
more data for the training and parameters to represent the domain, and they
usually do not generalize as well as the white-box methodology [181]. In
scientific domains, in the case of white-box models, which elements and
equations are included and how they are included in a scientific model is a
design choice of the researchers, and it is usually referred to as model pa-
rameters [175]. In general, the larger the number of equations in a scientific
model, the more complex and accurate it is to resolve it. Simplifying, in
the general case, a scientific model tries to predict how a chemical-physical
system evolves starting from a particular initial condition, solving a set of
equations that encode the elements and their interactions in a domain that
the model designer decided to represent. Like neural networks, scientific
models are also defined as data-driven since real-world observations, i.e.,
experiments, are used to validate and improve the predictive models.

4.1.3 Simulation

A predictive model, given a set of initial conditions, can forecast the fu-
ture state of the represented system. The predicted state is referred to as a
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simulation, which represents the solution to the model equations obtained
through a numerical solver. Numerical solvers are generally very complex,
thus time-consuming, since they need to resolve, for instance, differential
equations and, in general, need numerical tweaks to address the problem
correctly [182]. A wrong or inappropriate configuration of the numerical
settings can lead to incorrect results, even if the underlying model is ac-
curate. Additionally, improper numerical parameter settings may lead to
excessively long computational times and, in some cases, to failures to ter-
minate the computation. The output file size of a simulation can vary based
on the grain of the numerical settings and their complexity. For instance,
their file size can range from less than a MB to several dozens of MBs.

4.1.4 Analysis Result

The analysis results in the process of developing a predictive model serve
the purpose of generating synthetic information on scientific data. More
specifically, it is intended to provide aggregate information on the model’s
predictive capabilities in different domain settings. Which metric or proce-
dure to employ during the analysis is a parameter of this type of data.

4.2 Properties

This section discusses six properties of scientific data that make their man-
agement and integration in a DE challenging. Table 4.1 qualitatively sum-
marizes the high (H), medium (M), or low (L) impact or relevance of prop-
erty on a specific type of scientific data, as described in Section 4.1.

4.2.1 Low Volume - High Cost

Scientific data, unlike other types of data, such as social media, are less
available [25]. The collection of experimental data involves on-field mea-
surements using expensive equipment and materials, making it costly in
terms of both financial resources and time [26]. Consequently, experiments
are often unique and not easily replicable. Similarly, developing predictive
models is a complex process that demands extensive expertise, particularly
in white-box approaches [30], and extensive computational resources and
data for building models in black-box approaches, resulting in only a lim-
ited number of models being available for certain scientific domains. Sim-
ulations are also available in a limited quantity since they are very pricey in
terms of computational resources needed and, in some cases, space to store
them [182]. Consequently, the results of analyses based on the other three
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. Predictive . . Analysis
Property Experiment Model Simulation Result
Low-Volume
High-Cost H HM HM L
Uncertainty H H M M
ACCL.tracy H M L L
Consistency
Heterogeneity H/M M H/M L
Completeness M L M/L M
Reproducibility H M M H
Transparency

Table 4.1: Qualitative impact of a scientific data property on the corresponding scientific
data type - (H) high, (M) medium, (L) low.

types of scientific data are limited, too. Analyses are generally relatively in-
expensive to compute. Although scientific data volume is lower than other
types of data, manual management is still unfeasible and prone to human
error. The low volume and high cost of scientific data highlight the need
for a data management system, such as a DE, in the various scientific do-
mains to promote the reuse of all types of data and related development and
analysis services.

4.2.2 Uncertainty

Uncertainty can be classified into two macro-categories: epistemic and
aleatoric [123]. Experiments are real-world measurements, and they are
intrinsically affected by aleatoric uncertainty. Repeating the same experi-
mental measurement helps mitigate this issue, quantifying the uncertainty.
The reported value for an experiment corresponds to the mean value of
the measurements, and the standard deviation corresponds to the uncer-
tainty [135]. The source of uncertainty in the experiment is not only due
to measurement error but also a set of contributing uncertainty causes. For
instance, another source of uncertainty for the experiments is the digital-
ization of plots from physical documents, such as published papers and
reports, to extract the measurement values. Models, on the other hand,
are mainly affected by epistemic uncertainty. A model is an approxima-
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tion of a real-world system, inherently introducing errors. Simulations are,
most of the time, deterministic [182]. Repeating the exact simulation of an
experiment with the same model leads to the same result. However, numer-
ical errors can also affect the uncertainty of the model’s predictions [182].
Analyses are generally not uncertain, even though they are affected by the
propagation of uncertainty from the models, simulations, and experiments.
The uncertainties present in these underlying components can influence the
overall uncertainty in the analysis results.

4.2.3 Accuracy & Consistency

Experimental observations of the same chemical system should be close to
the (unknowable) ground truth and consistent with each other. If multiple
experimental measurements are available from different sources regarding
the same experimental conditions, all the reported values should be con-
sistent, also accounting for their uncertainty. In other words, the more the
reported values are accurate, the lower the experiment’s uncertainty is, the
easier it is to detect inconsistencies. Nevertheless, in reality, it is hard to
evaluate the consistency of the (many) experiments without uncertainty.
Models represent the interaction of the system elements. However, when
new elements are being investigated, they may not be standardized in the
representation [110]. For instance, models can represent different entities
using the same element name. As a result, it is not easy to compare the sim-
ulation results consistently. Numerical solvers differ mainly for numerical
implementation choices such as the number of digits or the employment of
a particular library [182]. Thus, giving the same model and conditions for
forecasting can lead to different numerical solutions (simulations). Usu-
ally, the difference is marginal. Finally, consistency is almost guaranteed
concerning analysis data, assuming the analysis procedure is well-detailed
and fixed on the same dataset.

4.2.4 Heterogeneity

Scientific data exhibit heterogeneity from three distinct perspectives: type,
source, and format [29]. Since many scientific domains have been active
for several decades, the sources, resolution, and methodologies for collect-
ing and doing experiments and models have evolved. At the same time, it is
likely not to have a standardization or an ontology by the scientific commu-
nities on the representation format [180]. However, there are (sometimes
also multiple) de-facto representation formats for all types of scientific data.
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4.2.5 Completeness

Experiments are usually produced and collected over several decades. As
the way of collecting them and scientific findings change over time, some
additional information may become essential to include among the exper-
iment metadata; however, some (old) experimental data may have incom-
plete information when more recent metadata are considered. Models are
incomplete by definition since they simplify a real-world system. For in-
stance, it may not include all the elements of the domain or all the inter-
actions. As previously stated, the effects of such decisions are reflected in
the model prediction accuracy and uncertainty. Simulations report all the
elements and interactions described in a model, but are quantified along
discrete and, thus, not continuous, dimensions.

4.2.6 Reproducibility/Transparency

Experiments are challenging to replicate since it is practically impossible
to reproduce the exact initial conditions of an experimental setting [183].
Models and simulations, instead, if adequately documented, are easily re-
producible. It is fundamental that models disambiguate the meaning of
represented elements [110] and, concerning the simulations, the numeri-
cal settings [182]. Regardless of the methodology to derive a predictive
model, white or black box, explaining the simulation results could be diffi-
cult [184]. Analysis results must be transparent about the analysis process
and the computational steps to avoid inappropriate conclusions [65].

4.3 Requirements

Chapter 2 introduces that both academic and industry research departments,
over time, have established principles, methodologies, and approaches to
address the initial challenges in designing and developing a DE. However,
there is ample room for improvement when it comes to thinking about
the countermeasures to sustain these projects over the long term. These
platforms often experience a significant rate of early-stage failure, primar-
ily due to low user engagement and high costs. Therefore, it is essential
to consider these factors, especially during the design and initial deploy-
ment phases. The factors contributing to this phenomenon, as introduced
in Chapter 2, are already being investigated at the business level. However,
the technical aspects of incorporating these findings into the design phase
and the technology require further discussion. Therefore, this section first
identifies the main reasons that threaten the long-term use and life of a DE
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while also formalizing the requirements in terms of costs and user engage-
ment. Later, Chapter 5 will discuss the mitigations at the design level and
the potential technological solutions.

Three main macro-phases depict the life cycle of a DEs [39]. The first
one, the Initial Creation, creates a data collaborative environment. Dur-
ing this stage, data is collected and curated, often in the context of specific
research projects, and is stored and shared with interested parties. In the
second Community Building phase, the data collection process is more sys-
tematic, and community computing services may be introduced to facilitate
data analysis. Finally, the third and last Maturity phase sees new DE ser-
vices development. Consequently, maintenance support becomes crucial,
and effective user engagement and management are essential for ensuring
the continuity of services. As shown in Table 4.3, these three macro-phases
may entail varying costs, frequencies, and partnership models.

To thoroughly analyze various scenarios in detail, Table 4.2 provides an
overview of several analysis dimensions. These dimensions represent char-
acteristics that impact sustainability and governance and are considered in
relation to the maturity of platforms in the later macro-phases as described
below. These dimensions differentiate between the roles played by involved
stakeholders, which, in some cases, may be undertaken by the same indi-
viduals or users. Typically, during the Initial Creation phase, these roles
are fulfilled by a single researcher (e.g., a Ph.D. candidate), a team, or a
project. However, multiple stakeholders usually become involved as the
DE evolves. Nonetheless, this division of responsibilities and participation
in the platform also influences the project’s sustainability. The table cate-
gorizes both Sustainability Challenges and Governance Challenges along
with some Technical Mitigations, all of which are discussed further in the
following sections.

It is not unlikely that DEs fall into disuse after the Initial Creation phase
that is supported by a starting investment and enthusiasm. In the long term,
one of the main reasons for this decline is the absence of a business sus-
tainability plan. In fact, sustainability considerations often do not enter, in
some form, into the technical requirements of the stakeholders during the
first phases of DE design and development. This thesis proposes the trust-
user-data framework to explain this pitfall, illustrated in Figure 4.3. The
framework foresees three elements that keep running a DE: user, data, and
trust. If any of these elements are missing, it can trigger a vicious cycle,
leading to the failure of the others and potentially the demise of the DE
itself. With more data, the trust in the DE increases (e.g., cross-data vali-
dation), and therefore more users (new and active) are attracted to use the
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Role Sustainability Governance Technical
Challenge Challenge Mitigation
Engagement Responsibility Data Architectures
s | CMEES | g |l
Consumer Costs Trust Computational Infrastructures
Manager Duration in Time Data Quality Interoperability Services
Sou(rg; ?:V?:tl:glhty Policies Data Lakes, Catalogues

Table 4.2: An overview of key dimensions of DE. The table provides a concise summary of
the roles, sustainability and governance challenges, as well as the technical mitigation
strategies discussed in this paper.

platform. It is also true vice versa (red-dashed arrows in Figure 4.3): the
more the number of users increases, the more the platform (and its data)
is tested, and thus it is more trustworthy. A trustworthy DE incentivizes
the existing user to share more data. With more data, more (new and ac-
tive) users are attracted to leverage the advantages of the platform. On the
other hand, an increased number of stakeholders raises additional issues
that require specific management services for identity and trust manage-
ment [57]. From the platform manager’s perspective, user, trust, and data
determine the sustainability of the DE, which can be investigated into two
macro business aspects: cost and engagement, as shown in Table 4.2. The
duration in time of a data-sharing platform can be seen as a consequence of
the high costs, low engagement, or discontinued source available data.
Sustainability poses a significant challenge, especially when resources
are scarce, and a DE relies on funding from a single entity rather than a
consortium representing the community it aims to serve. This study fo-
cuses on this (worst-case) scenario in which these conditions prevail. This
scenario is not uncommon, as there are numerous cutting-edge domains in
both research and industry where the DE serves as pioneering technology,
requiring acceptance from an established community, if present. In practi-
cal terms, the most common scenario arises when an organization, which
we will henceforth refer to as the “founder" (often a university), seeks to
implement this technology to advance research in a new or niche field by
facilitating data sharing. Consequently, in this context, the user is both data
producer and data consumer, affiliated with one or more organizations.
The founder could initiate a crowdfunding campaign targeting potential
future users. However, requesting a usage fee for the DE does not encour-

32



4.3. Requirements

Figure 4.3: New and active users trust the platform, and the data, quantity, quality, and
novelty of the data are the fundamental elements that keep running a Data Ecosystem

age its adoption and may deter the most skeptical organizations. In the
context of a DE, a sustainable business model should pivot toward a differ-
ent currency: data. In sectors where this technology has yet to be adopted
and finding partners is challenging, promoting and launching the initiative
implies that the available data is precious and scarce. Consequently, the
DE’s role in facilitating data sharing becomes even more critical, justify-
ing the initial solo investment. Over time, the value other users generate
through shared data will cover the initial investment costs.

4.3.1 Cost

Starting and maintaining a data-sharing platform entails various types of
expenses. In our specific scenario (as detailed in Chapter 3), a small or-
ganization, often referred to as the funding partner, founder, initiator, or
promoter, operates within a scientific research field focused on developing
a predictive model. While recognizing the value of data sharing, this or-
ganization typically operates with limited resources. Consequently, as the
platform expands to include more organizations or users, it necessitates in-
creased resource allocation to accommodate growing demand. However, if
the platform relies on limited resources and makes non-sustainable design
choices, it may result in unreliable services. Consequently, the platform’s
appeal and trustworthiness may deteriorate over time. Making judicious
design choices that enhance the platform’s cost sustainability is critical to
address these challenges.

Based on the experience of building a community for sharing high-
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quality data among researchers in the chemical kinetic domain [36] and
leveraging citizen science in social media analysis [42], Table 4.3 provides
a comprehensive overview of ten cost-related aspects. This includes a qual-
itative assessment of the costs, their frequency, the entities responsible for
covering these expenses, and the specific project phases in which these
costs should be sustained.

The founder takes on the initial expenses associated with platform de-
velopment and data collection. The platform’s viability hinges on reach-
ing a critical mass of data, as without it, the platform lacks purpose, and
users lack motivation to engage with it. In most cases, a DE should host
thousands of data whose typical file size is in the order of magnitude of a
few MB. In the current scenario discussed in this thesis, data is a scarce
resource, and the DE primarily serves the purpose of data collection and
information sharing. It is improbable that the DE would need to store mil-
lions of large video files, for instance. As a result, the cost of storing data is
relatively limited, especially considering that the average price per gigabyte
(GB) in 2023 is approximately 0.015 USD !. A single entity, such as the
funding partner, can generally cover such a cost.

Similar reasoning for the computational resources needed to provide the
DE services. The services enhance the user experience, and the ratio be-
tween service requests and data presented in the database is very high, so
they are very frequently requested. There are many kinds of services. Some
of them are computationally inexpensive, and others are very costly. With-
out fees or large funding, it is impractical for a single organization to bear
such expenses in this setting.

Together with the computational cost, the DE users should be in charge
of the data collection and their insertion into the platform. This could hap-
pen quite often with a non-negligible effort required. However, based on
the availability of ad-hoc tools in some scientific domains, some costly
and time-consuming data management aspects of the repository, such as
data collection, can be automated or semi-automated. For instance, Chem-
DataExtractor [185] is an automatic tool to extract chemical information
from the scientific literature. Nevertheless, in the end, the users’ purpose
and responsibility (as data providers and consumers) is to provide and con-
sume the data. Similarly, if an organization wants to implement other ser-
vices, it is free to do so since the platform’s source code should be open
source, and the platform manager should only integrate it after verification.
The effort, in this case, is high but only happens occasionally.

"https://diskprices.com/
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Item Cost Frequency Responsible Phase

Web Server ++ one-time Promoter Initial

Initial Development +++ one-time Promoter Initial

Initial Collection + one-time Promoter Initial

Data Store + + Promoter Initial

Data Collection ++ ++ User > Community Building
Data Insertion + ++ User > Community Building
Computing +++ +++ User > Community Building
New Services +++ + User Maturity
Maintenance + + Manager > Community Building
gzzréiﬁtizrll{etentlon & ++ ++ Manager > Community Building

Table 4.3: Technical costs that are needed to face to create and maintain a data ecosystem.

4.3.2 Engagement

User engagement is related to the number of active and new users that uti-
lize the DE. Following Figure 4.3, to increase engagement, it is necessary
to enhance the trust in the platform and in the data while increasing the
number of new data, i.e., incentivizing the sharing of the data among the
platform users.

Scientific domains are highly active research areas with a long history
of studies. Over the years, the research and scientific processes have un-
dergone continuous changes. Nowadays, the workflow is consolidated, but
recent technological advancements present new opportunities to improve
some aspects of the research process. New technologies such as machine
learning promise to enhance the comprehension of phenomena [186], while
data management systems are fundamental to automating and managing an
increasing amount of data [50].

However, even if the new technologies are promising, changing the
workflow that has guaranteed continuity of results over the years is prob-
lematic. Moreover, these technologies are often distant from a scientific
community’s expertise and, thus, harder to understand and trust. In the
end, proposing new technology, such as the DE, requires keeping the fi-
nal user and the community involved. Having data and services in the same
platform is a game changer because it incentivizes the user to stay inside the
platform and switch its usual workflow to a platform-oriented daily work-
flow. A hybrid configuration in which the data are hosted by the DE, but
the users have their own workflow using different technologies for apply-
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ing services on the data could not be a long-term solution. It would imply
splitting and doubling the workload among different technologies since it is
required to move the data back and forth frequently, which might be criti-
cal in case of large volumes. On the other hand, staying inside the platform
will naturally bring more data, requiring less organization effort, but the
DE must integrate all the usual services and sustain the computational cost,
as discussed previously.

In a DE where the central focus is data sharing, if users stop participat-
ing, it can lead to a decline in data sharing, ultimately discouraging others
from taking part. As said previously, in the scenario of this thesis, the data
consumer and the provider are not separate entities, but the entities have
both roles. In this situation, it is harder to incentivize data sharing because
all the users are interested in the platform for the information that they can
get from it. There are also other edge situations in which users are more
willing to use the DE to promote their data. However, this situation is rare
because data generation is generally costly; thus, the ratio between upload-
ing and downloading data is very low. Therefore, a DE can easily be in
a deadlock situation in which users are not incentivized to share their pre-
cious data if others share a few data.

Two factors require attention to break this negative vicious cycle. First,
providing a system that offers all the traditional functionalities and the new
ones in a user-friendly way. If some of the traditional functionalities are not
present or not working properly, then the final user will not be willing to
use multiple methodologies, thereby disrupting their workflow. Although it
is acknowledged that software or information systems have a higher prob-
ability of failure in the early stages, on the other hand, as user numbers and
usage increase, reliability improves. Thus, an increasing number of users
translates into more data and greater trust in the shared data and platform.
Users employ data in their daily work, and many of these applications are
data-driven; thus, data directly impacts their work results. Tracing the ori-
gin and keeping control of the quality of the data is, therefore, mandatory
to achieve trust in the data, as well as if more users use the data and the
platform services, more trust in the DE is generated.

Second, a large initial investment is needed at the beginning to collect
shareable data and to implement the DE services and functionalities that
can attract users to start using the system and contribute additional data to
increase the amount of shared data. Also, in this case, user involvement is
important, both for data collection and for defining and testing the needed
functionalities, as well as improving them.

In this thesis scenario, encountering data protected by confidentiality is
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highly likely. The development cost and potential applications of new ex-
periments and models render them exceptionally valuable. Both companies
and academic institutions often hesitate to release their work immediately
upon its development. These data provide a technological advance for their
upcoming generation of products. Typically, such data only become acces-
sible after publication in journals or through patents. Consequently, for a
DE aiming to host scientific data, ensuring confidentiality for data that has
not yet been published is critical. To achieve this, two critical factors need
to be enforced. First, users must trust the DE to guarantee the confiden-
tiality of their data. Second, it is essential that all data, whether subject to
confidentiality restrictions or open access, coexist within the same platform
but under appropriate access rules. Research institutions and organizations
are more likely to adopt such a system if it offers these features. Otherwise,
fragmenting scientific workflows across different platforms, technologies,
and methodologies based on data confidentiality levels leads to increased
workload and operational complexities. Such a cost might not be sustain-
able, making it difficult to justify the advantages of transitioning to a new
DE platform, even if it offers prominent features and services.

4.4 Challenges

As Section 1.3 anticipated the thesis’s research questions, this chapter has
identified and discussed what makes it challenging to address the research
question related to what is necessary to consider during the design of a
DE for improving scientific discovery. After introducing a classification of
the scientific data with their properties and the requirements arising from
the stakeholders and the domain circumstances, this section summarizes
three main challenges whose solutions will be presented in the following
chapters. This summary aims to generalize the challenges learned from the
chemical kinetics domain to be applicable to other scientific fields.

* C1: What services and functionalities should a Data Ecosystem im-
plement when applied to scientific data? (Section 5.3)

* C2: What are the peculiar design choices in the architecture and in the
workflow of a Data Ecosystem for scientific data? (Section 5.1)

* C3: What are the prerequisites to facilitate adopting and retaining user
engagement in a scientific Data Ecosystem? (Section 5.2)

The combination of the scientific data’s peculiarity and requirements
makes the adoption of DE not easy in such scientific domains. Therefore,
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Property | c1 c2 c3
Low-Volume High-Cost X X X
Uncertainty X X
Accuracy Consistency X X
Heterogeneity X X
Completeness X X
Reproducibility Transparency X X
Requirement cl C2 ¢C3
User Engagement X X X
Costs X
Confidentiality X X X

Table 4.4: Mapping the involvement of the properties of the scientific data and the domain
requirements onto the three challenges.

there is no unique intervention area to address this problem, but it is a multi-
faced problem. Table 4.4 summarizes the involvement of a property or
requisite of a scientific domain within a challenge.
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Data Ecosystem architectures for scientific
data

This chapter addresses the second research question presented in Section 1.3
after Section 4.4 has formulated the corresponding challenges as a result of
the analysis of scientific data properties and domain requirements. While a
single organization may support the upfront costs of initial development
and data collection, maintaining a data-centric system incurs a number
of operational expenses to guarantee the availability and adequate perfor-
mance of the system. These costs involve not only maintaining the server
infrastructure to provide services and data but also managing the data itself.
If the price of storing data and providing services is too high, an option is
the creation of an ad-hoc organization and requesting a fee from its member
to sustain these expenses. However, this approach is bureaucratically chal-
lenging and discourages the use and interest in adopting the Data Ecosys-
tem (DE). Another alternative solution is a federated or distributed DE. In
these settings, each group interested in the DE services or data can create a
copy of the repository or the system, eventually share data, manage them as
preferred, and dedicate as many resources as desired. It is highly scalable,
but it is particularly challenging to maintain all the databases synchronized
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and the software updated and ensuring a continuous willingness to share
data among the participants.

The proposed solution consists of a DE with central management but
a federated infrastructure. Therefore, following the categorization of DE
presented in Chapter 2, this solution is a hybrid configuration between an
organizational and federated DE. The proposed solutions carefully balance
the design principles of a general DE with the requirements presented in
Section 4.3. In the remainder of this chapter, first Section 5.1 presents the
mitigations to the challenges in terms of data management and governance
aspects. Data governance is a broad concept, but it is mainly related to
the policies established to guarantee that data is available, accurate, secure,
private, and usable. It specifies the actions, processes, and technologies
that people must embrace throughout the data life cycle'. Data governance
is a multidimensional term used on both a macro and a micro level. The
macro level is related to the political and organizational aspects, while the
micro level concerns the data management aspects. This chapter discusses
both levels but with particular attention to the technical (micro) aspects.
Since the challenges are interconnected, the data management solutions are
likewise interrelated. Therefore, each proposed solution indirectly influ-
ences the resolution of other research questions. It follows in Section 5.2
a brief introduction to the architecture of such DE. The chapter concludes
in Section 5.3 with the presentation of Scientific Experiments and Models
(SciExpeM), the DE developed as a case study.

5.1 Management and Governance

Centralized data management within a DE helps strengthen user engage-
ment by providing a single, reliable source of data and services. Developing
a DE with centralized management but a federated infrastructure requires
implementing some data governance policies in different data management
aspects. This section introduces a few of them, while the remaining are
then discussed in the next Chapter 6.

5.1.1 Sharing and FAIRness

Data are the key element in a DE, and its sharing functionalities help keep
the system active within a community. In the case of scientific data, their
value and scarcity make sharing even more crucial. Findable, Accessible,
Interoperable, and Reusable (FAIR) [187] data principles have shown to

1https ://cloud.google.com/learn/what-is—data-governance
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bring many benefits to DE. Following the recommendation from the liter-
ature [188], this section presents appropriate functionalities for each FAIR
principle implemented for the experimental data inside the DE.

Findable

Experiments are stored and used inside the DE through a relational database
that is flexible and easy to maintain. Nevertheless, a database representation
of the experiments is not findable. For this reason, for each experiment, we
create an XML representation of the experiment following an Extensible
Markup Language (XML) schema that is widely accepted in the scientific
community of the experiment’s domain. The file is then automatically up-
loaded to Zenodo? to assign to it a Digital Object Identifier (DOI) together
with other metadata that make the experiment searchable without necessar-
ily using our DE.

Accessible

Experiments inside the DE are identified both with a (numerical) primary
key and the associated DOI. A primary numerical key makes implement-
ing the relational instances in the database easier even before the DOI has
been generated. The DE offers data management services through a Hyper-
text Transfer Protocol (HTTP) Application Programming Interface (API),
accepting typical formats of the request such as Comma-separated Values
(CSV), JavaScript Object Notation (JSON), and XML. One of the advan-
tages of such HTTP API micro-services structures is that the final users
are not requested to use a particular software or programming language or
technical expertise to access data and services, and they can combine them
as preferred. Authentication is required to use the API upon a free sign-in
request procedure. Authentication enables traceability and accountability
of the operations and helps keep a quality level of the scientific repository
with respect to an open-access configuration.

Interoperable

Experiments in their XML representation format are a plug-and-play solu-
tion. Every researcher can use them as preferred, paying attention to the
definition of each XML tag. If the experiments are accessed through the
HTTP API, the same vocabulary of the XML representation format is used
to query the database and for the responses.

’https://zenodo.org/
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Reusable

One of the primary purposes of the DE is to reuse data, encourage their
sharing among institutions and avoid duplicates. Experimental data can
be uniquely cataloged through some metadata. Developing the database
around the uniqueness constraint of these metadata allows to maximize the
reuse.

5.1.2 Authentication, Permissions and Roles

DEs must pursue the open science policy, but authentication is fundamental
to prevent malicious uses. At the same time, authentication is critical to log
and trace the event in a DE. Authentication also ensures the identification
of users, thus allowing to define privileges and roles and making available
the designed resources from the proper organization.

The DE implements a set of policies for inserting, editing, controlling,
collecting, and deleting data and using the DE services. These correspond
to user privileges defined by a supervisor of each organization. The recom-
mended policies follow and concur, increasing and retaining the number of
users and new data. By default, each user can insert and collect data or use
services. A user with editing and deletion privileges can only delete data
inserted by its organization.

The open science policy coexists with confidentiality, which will be dis-
cussed in detail in the next section. The platform services are available to
the entire DE community, but they consume organization resources to run.
Therefore, an organization supervisor can grant service access to specific
users based on their credentials.

Authentication can be used to implement a reward or token policy to
incentivize good contributing behavior of the system. A user can gain to-
kens for its organization appropriately verifying and providing new data
and consuming them collecting data. The token counter is at the organi-
zation level. Bad sharing behavior of an organization can be limited by
limiting the data collection and services used for a certain time if the ratio
between the consumed and produced data is lower than a threshold.

Several organizations collaborate within a DE. An organization is an
abstract concept that groups several users. Sometimes it is possible to map
this concept to other familiar entities such as a university, a research cen-
ter, a department, or a research group. Each user belongs to at least one
organization to be part of a DE and has at least one role.

The DE has the role of publisher: as soon as a content item is made open
content, the DE generates, in the case of experiments, an XML representa-
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Figure 5.1: The main five roles inside our DE, and their main four activities.

tion file that is published in Zenodo® to associate a DOI to it and enhance
accessibility and findability.

Besides the publisher role, for our scenario, this thesis has identified five
user roles as follows. Figure 5.1 shows the five roles involved in four typi-
cal actions in the overall workflow for the model development process. The
actions represented are the experiments or models generation and insertion
into the DE; the collection of data, such as analyses, experiments, simu-
lations, and models, together with the creation of simulation and analysis
jobs.

Experimentalist

This role identifies a scientist who carries out the experiment and generates
the experimental data. Based on the situation, the experimentalist can de-
cide to immediately publish the results in a journal (or similar) or provide
the data directly to other entities through private communication and pub-
lish them later. Accordingly to this choice, the experiments have an open
or closed content policy, respectively. Even if a journal is not open ac-
cess or requires a subscription, its experiments are considered open content
because they are publicly available material.

Researcher

The researcher has mainly two functionalities in our DE and scenario. First,
it generates the predictive model, and, as in the case of the experimentalist,
it has the faculty to choose the publication policy. Second, it has the duty

Shttps://zenodo.org/
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to verify the experiments in their validation procedure as described before.
Suppose the experiment that has to be validated is open-content. In that
case, a cross-validation strategy is preferred: a researcher from a different
organization of the experiment ownership will perform the task to avoid
possible bias and enhance the DE’s overall trustworthiness. It is assumed
that there is at least one researcher per organization.

Reader

The reader represents the user that has permission to access the open con-
tents and all the closed contents belonging to its organization. Thanks to au-
thentication, transparently, it is possible to hide part of experiments, mod-
els, simulations, and analyses without changing the API.

Writer

The writer is a trained user who has the task of inserting all the collected
data into the DE. It is a trained user because, for this field, it is not a straight-
forward operation, and it requires basic domain knowledge, even if the sys-
tem and the researcher will check their validity later. The writers mainly
insert experiments and models. They can find these data in the literature, or
they can be provided through private communication. In any case, they are
responsible for associating the correct content policy with objects.

Executor

This role represents a kind of user that has the privilege to allocate resources
and generate new data in terms of simulations and analyses. In both cases,
the executor needs to have access to both experiments and models to create
a new simulation or perform analyses (like in the case when it is needed
to compare experiments against simulations). This kind of operation could
result in expensive operations. Also, in this case, domain experience is
required, for example, to set the optimal numerical configuration to solve
a simulation numerically and thus use the computational and storage re-
sources wisely. It is worth mentioning that even if an experiment is closed-
content and the user does not have the permissions, its metadata, i.e., in this
domain, the experimental condition, is, in any case, open, and therefore it
is possible to simulate this configuration. Nevertheless, all the analysis op-
erations concerning comparing the simulated data against the experimental
data will be hidden.
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5.1.3 Confidentiality

A trustworthy DE is one of the requirements for achieving high system en-
gagement. From the security perspective, it means ensuring authentication
and confidentiality. Authentication is more related to the business process
organization, user roles, and privileges. On the other hand, data confiden-
tiality is related to the management of user interactions across different
organizations within the DE in the different stages of the business process.
Data confidentiality addresses the domain requirement for scientific data
that need to use the DE services and ultimately share the data, but, on the
other hand, for some time, during model development, it also needs not
to be publicly accessible to guarantee academic and industrial advantages.
Requiring all data to be accessible to any user of the DE at all times could
potentially disrupt the workflow of a research team based on the usual sci-
entific data management policies. Poor data management policies could
ultimately discourage the adoption of the DE. In the scientific data domain,
experiments and models are the main types of data that require confidential-
ity. In particular, new experiments are confidential for the reported values,
while their metadata do not have confidentiality constraints. The metadata
of the scientific data should be accessible without any restriction. For in-
stance, the metadata of an experiment describes the experimental setting.
Knowing all the experimental settings discourages other researchers from
investing in performing an experiment that others have already investigated,
even if it has yet to be made publicly available, optimizing the resources
and reducing duplicates. Within organizations, groups of users that work
together and thus share the same resources can be defined. Examples of
organizations are universities, research groups, departments, or research
centers. Every user in the DE is affiliated with at least one organization.
Some examples of data confidentiality policies are presented below. All the
scientific data published or generated by a user belong to his/her organiza-
tion(s). The user, during the data publication, has to specify whether the
data are open or closed and under which conditions. All the closed-content
data will become open, for example, after an embargo of one year from
its insertion in the DE. Within the DE, each user could access all open-
content data of all organizations and all the closed-content data belonging
to his/her organization(s). In terms of implementation, data confidentiality
can be ensured by encrypting the confidential information with the public
key of the owner of the confidential data. The open science policy coexists
with confidentiality. The accessibility of confidential data can be granted
to other users belonging to a different organization of the confidential data
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ownership. In fact, the configuration in organizations described previously
allows an easy share of closed-content resources among them with differ-
ent levels of granularity and relationship: a single experiment or a group
of them could be shared with another organization, or an organization can
share in one direction or both directions the whole closed-content data. An-
other solution to address the problem of confidential data would be to use
multiple databases, one for the open data and as many other databases as
the number of organizations participating in the DE. This database could
stay physically in the organization itself but increase the sparsity of the
data and disincentives the creation of a data collaborative. Moreover, it is
technologically challenging to keep synchronized multiple databases.

5.2 Architecture

A DE for scientific data requires specific design choices regarding the over-
all architecture illustrated in Figure 5.2. First, it is fundamental to under-
stand the business expectations when employing a DE in a scientific do-
main. It enables identifying the relevant scientific data and characteristics,
required services, and actors involved in the business process. The unique
characteristics of the data guide the definition of the database schema. As
previously discussed in this chapter, data management should be central-
ized. This architectural decision aims to enhance trust, transparency, trace-
ability, and efficiency. The technological implementation of the database
could be distributed, even if it is not recommended, due to the risk of con-
sistency issues. Furthermore, central data management encourages users
to share data, promoting collaboration and knowledge exchange within the
DE. Figure 5.2 depicts four types of entities: data ecosystem, user, third-
party service, and worker. They communicate with each other through the
internet, in particular with the HTTPS protocol. The DE offers its services
to the users through microservices through API endpoints. This service-
oriented architecture allows flexibility, extensibility, and high maintainabil-
ity, and users can request and combine services as preferred. All the ser-
vices of the DE are available through authentication provided by the back
end. Such authentication prevents malicious usage of the system and al-
lows giving users different privileges and permissions. Through the back
end, the DE can offer services with a combination of legacy and developed
ad-hoc modules, both on-premises or in-cloud, with third-party services.
Finally, to maintain the scalability (please refer to Section 5.3.4 for more
details) of the system, the architecture foresees delegating the computa-
tional burden to external workers where the DE coordinates and distributes
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Figure 5.2: General overview of the architecture and the main actors of a DE for scientific
data.

the workload. From this point of view, the infrastructure is provided as a
DE federated configuration.

5.3 SciExpeM

This chapter presents SciExpeM *. It is the DE developed for the case study
of this thesis in chemical engineering starting from a prototype, in which
the primary services, the functional requirements, and the architecture to
support the needs emerging from the large-scale data-driven validation of
scientific models were discussed [189]. More specifically, it is a DE to sup-
port and improve the predictive model development process of chemical
kinetics models. It follows the architecture in Section 5.3.1, and in Sec-
tion 5.3.2, a detailed description of the process that SciExpeM improves
and supports. Then, Section 5.3.3 presents the implemented services, while
Section 5.3.4 explains how SciExpeM implements a scalable DE to meet
the sustainability requirements presented in the previous chapter.

5.3.1 Architecture

NIST Big Data Public Working Group presents the NIST Big Data Refer-
ence Architecture (NBDRA) guide that describes, using a functional com-

‘https://sciexpem.polimi.it
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ponent view, the roles with their actions and the components that carry out
the activities for a Big Data architecture [190]. According to these guide-
lines, this section presents in more detail the SciExpeM architecture, also
shown in Figure 5.3.

Figure 5.3 depicts a System Orchestrator that coordinates the configura-
tion and management of the other components of the Big Data architecture.
In our scenario, the System Orchestrator corresponds to the management
of SciExpeM.

SciExpeM, instead, is Big Data Application Provider that encodes the
business logic and executes a specific set of operations to the data. Sci-
ExpeM implements functionalities for collecting, preparing, visualization,
and access control to the repository and other services. According to the
following Section 5.3.2, the main functionalities that are included in the
SciExpeM architecture in Figure 5.3 are analysis, validation, control, in-
sert, and simulation.

The union of four submodules represents the Big Data Framework Provider,
with an additional transversal layer representing the HTTPS REST API
communication mode with the SciExpeM framework and a module of re-
source management and optimization. The implemented REST API fol-
lows the recommendation of Rodriguez et al. [191]. Beginning from the
bottom to get to the top, Figure 5.3 shows a layered structure of the DE.
The system functionalities are offered through the Services that are sup-
ported by Database Manager that utilizes the database. All of them need
the Computing Resources to run.

Finally, the Experiment Source represents the system’s Data Provider
in terms of both literature, private communications between research labs,
or experiments and predictive models entered by users. Instead, the Re-
searcher is the Data Consumer, representing all the typologies of the user
that interact with the system to manage it or request services. The systems’
interactions occur through a user-friendly interface or using the API.

The NBDRA defines three types of arrows. The Data arrow represents
the data flow between system entities. The arrow Software (SW) repre-
sents the transfer of software tools for data processing. For example, it is
necessary to provide software tools to interpret the data provider’s exper-
iments in different formats. Finally, the Service Use arc indicates all the
programmable interfaces between the system’s various entities.
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Figure 5.3: Sketch of the architecture adapted from the NIST Big Data Reference Archi-
tecture (cfr. [190]) for the management of experiments to support the development of
predictive models.

5.3.2 Chemical Kinetics Model Development Process

Chapter 3 has introduced a general model development process in a scien-
tific domain from a business perspective. The adoption of a DE to support
such a process has as a benefit a general speed-up of the overall process
and its refinement. Thus, the DE aims to deliver, in a faster way, better
predictive models. The process is improved both in terms of reliability, for
instance, automating human-error-prone tasks, and trustworthiness, intro-
ducing new aspects in the process. Therefore, this is an example where
the information system improves the pre-existing business workflow after
analyzing its characteristics.

As explained in Chapter 3, the model development process is a data-
driven procedure. Therefore, even if the final scope is to generate predic-
tive models, this process has two protagonists: experiments and predictive
models. Both of them are fundamental to starting the model development
process and undergo a similar process to be included in the repository of
SciExpeM. This procedure comprises four stages as shown in Figure 5.4
and described in the following.

1. Collection. A researcher can have the necessity to include a new ex-
periment or predictive model for different necessities. For instance,
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he/she wants to verify if a model can correctly represent new exper-
imental results or is reliable enough to be used in real-life applica-
tions, or needs improvements. Experiments and models are collected
following two possible events: private communication and literature
review. In the former, the data is not yet available in the literature and
need to be treated with confidentiality. In the latter, the researcher has
found new data that can be included in the repository as a result of a
literature review. The data can be found in many formats, both ma-
chine and human-readable. These formats include CSV, JSON, XML,
structured or unstructured xls, or general text files such as pdf or doc.

2. Insertion. Both predictive models and experiments, once collected,
are inserted in SciExpeM through a dedicated service. Based on the
ontology of the inserted data, SciExpeM requires all the mandatory
information. The completion of some fields is automated. For in-
stance, the literature reference of an experiment. Thus, the collected
data in various typologies and formats are translated into machine-
interpretable forms.

3. Control. It is counterproductive to validate a predictive model against
a wrong experiment and vice-versa. For this reason, SciExpeM con-
trols all the data inserted in the repository. This stage was not included
in the original business process of model development. Instead, it is
a critical stage since it enhances the quality of the repository and the
trustworthiness of the sharing platform. As the first step, the system
checks if the data is already included in the repository. Then, based
on the pre-defined data quality rules, performs automatic controls. If
the quality controls are not successful, the data is rejected. Otherwise,
the data is stored in the repository with an unverified status.

4. Verification. The syntactic and semantic checks in the previous step
can identify gross errors, but due to the domain complexity, it is not
straightforward to control all the aspects. Thus, since the quantity of
the data is limited, a manual and visual quality check performed by
an expert can ulteriorly improve the quality of the repository. If the
data succeeds in the verification step, its status is changed accordingly
(textitverified), otherwise is rejected.

Each activity requires different levels of knowledge of the domain, so
different roles can be identified within the process since there is no exact
mapping between the qualification of users (student, intern, researcher, etc.)
and the role responsible for a task. Duties are assigned every time, and for
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peM'’s repository.

this reason, the need emerges to provide great flexibility in defining the
roles and permissions in the system which is supporting the process.

Figure 5.5 presents the predictive model development loop within Sci-
ExpeM. It foresees five main phases as follows.

1. Simulate. Given a collection of experiments and a model, the first
step of the loop is to simulate the initial conditions expressed by the
experiment collection with the given model. If the simulation has not
been computed yet, the simulation is actually performed. Then, the
results of the simulations are stored within SciExpeM to enhance the
reuse of data and save the computational cost of running a simulation.
It is necessary to prepare specific input configuration files for each
experiment in a format comprehensible by the simulator, specifying
all the characteristics necessary to simulate the experiment.

2. Validate. This step involves comparing the results of the simulations
with the experimental data. This procedure was typically conducted
in qualitative way: an expert compares, based on his/her experience,
the simulation results against the experiments. Different experts can
have different opinions on the comparison. SciExpeM automates this
time-consuming and ambiguous procedure using a quantitative ap-
proach. SciExpeM adopts Curve Matching as a quantitative tool that
can measure the function shape similarity between the experimental
and the simulated data. The result of the validation is a kind of anal-
ysis results (Section 4.1) that are stored within SciExpeM and can
be further elaborated in the next stages. During the validation, some
outliers may appear: if a simulation diverges significantly from the ex-
perimental data, the experiment is very uncertain, or the model needs
improvement. Since disambiguating this operation requires expertise,
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this operation is manual. If an experiment is unreliable, the status of
the experiment will be changed to invalid to exclude it from further
utilization.

3. Evaluate. Based on the predictive performance of a model, the model
developer decides whether he/she is satisfied.

4. Analyze. If the model developer is not satisfied, now SciExpeM intro-
duces a new analysis stage. In the previous business process, it was
completely skipped. Instead, SciExpeM, with a collection data analy-
sis service, can automatically extract systematic information from the
analysis result data and guide the next model improvement.

5. Generation. Once the analysis results are available, it is possible to
improve the model to cover the gap from the experimental data. The
model for chemical kinetics is hierarchical and modular. This fea-
ture simplifies the simulation and allows researchers to work inde-
pendently on more modules at the same time. Each module covers a
portion of the domain regarding a specific species with precise time
scales and quantities. The following steps are:

(a) Module Selection. Various reasons can bring to the decision of
which modules of the model to improve, including social or in-
dustrial contexts or the availability of new experiments on a given
fuel are the main reasons.

(b) Theoretical Study. The model’s theoretical development begins,
trying to understand which reactions occur, estimating or calcu-
lating the constants of the reactions depending on the problem’s
complexity.

(¢) Integration. The developed module is translated into the simu-
lator model format and integrated into the combustion kinetics
model.

This thesis, with Chapter 7, discusses how to automate and improve
the generation stage using data science methodologies.

5.3.3 Services

SciExpeM adopts a modular service structure that is easy to extend. New
services can be offered through new endpoints in the API, implementing
new functionalities, or combining the pre-existing ones. Figure 5.6 shows
the dependencies among the current functionalities represented by an arrow,
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pursuing the decoupling and reuse principle of a microservices structure
[192,193]. A characteristic of SciExpeM derives directly from this strategy:
providing essential services to the end-users, then they can combine them
as preferred.

In the following, each paragraph describes a group of services, in par-
ticular:

1. Manage Scientific Data This group of services takes care of the man-
agement of scientific data.

2. Control: This set of services tries to keep high quality in the SciEx-
peM scientific repository.

3. Development: This group of services offers functionalities to investi-
gate and improve a predictive model.

4. Other Services: This collection of services represents all the other
services implemented by SciExpeM.

5. External Services: These services are external functionalities or soft-
ware that are not directly implemented in SciExpeM.

Ensuring convenient accessibility to SciExpeM services remains a cru-
cial goal. While employing communication endpoints for interface pur-
poses offers great flexibility, this approach might not be convenient for all
users. Two alternative methods of engaging with the system have been
conceived to address this concern, both leveraging the existing endpoints.
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Figure 5.6: Main services of SciExpeM system with their dependencies.

Firstly, users can interact with the system via a web interface, facilitating
tasks such as the insertion of new experiments or predictive models. Alter-
natively, users can leverage a Python library that wraps the database tables
illustrated in Figure 4.2 into Python objects and the services into function
calls without explicitly interacting with the HTTP APL.

Manage Scientific Data

This set of services represents the system’s functionalities to support the
life cycle of scientific data within the SciExpeM repository.

SciExpeM accepts new experiments and predictive models through the
Insert service. Scientific data can be collected in many machine-readable
representation formats, and SciExpeM accepts the most common ones.
However, SciExpeM stores the scientific data in a relational database whose
schema follows a pre-defined ontology. To accept data in other formats,
SciExpeM implements translation engines. At the same time, this charac-
teristic allows for easy export of the data from the system to other environ-
ments through the Export service in the desired format.

Once scientific data is in the repository, other services are critical for
maintenance and consultation. Update Experiment, Delete Experiment rep-
resent the services to update or delete scientific data from the system. How-
ever, to use these services, particular attention is needed. Updating, for
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instance, an experiment is intended to rectify errors entered during the in-
sertion of data and not modify the experiment itself. Since a DOI is asso-
ciated with an experiment, any modification from the original state would
invalidate the correspondence with the DOI. Any writing interaction with
databases triggers the Control service.

Query Database represents the service to query the repository to retrieve
scientific data.

As discussed previuosly in Section 5.3.2, automatic checks provided by
Control services reduce the possibility of errors, but they cannot be com-
pletely detected due to the domain’s complexity. In this case, an expert is
required to Verify the new inserted data, changing the status accordingly.

A verified experiment can be then used by a variety of others services.
However, SciExpeM must interpret correctly the semantic of an experiment
to know, for instance, which and how to compare the experimental to the
simulated data. This seemingly logical and straightforward problem, but it
is not easy to automate in a scientific domain. The Interpret Experiment
service address this aspect.

As explained in Section 4.1, experiments are records of measured prop-
erties and other metadata like the instruments used, the authors, etc. Be-
sides, among the measured properties is not rare to find also additional mea-
sured information that specifies, for example, the environmental conditions
of the measurement. However, there is no clear way to distinguish which
measurement is the subject of the experiment. Thus, the semantic hetero-
geneity of the measured data generates ambiguity and makes it impossible
to automatically distinguish the experiment’s actual subject (primary data)
from the other measurements (secondary data) without additional domain
knowledge.

For this reason, it is necessary to define a flexible methodology to dis-
tinguish the primary information from the secondary data in a complex
database model. In other words, it is critical to define an approach to trans-
fer the domain knowledge into the SciExpeM to interpret the semantics of
an experiment correctly and treat all the database entries with equal seman-
tics in the same way.

To explain this problem, it follows a simplified version of one scenario
coming from our case study. For each experimental data there are always
two measured quantities: pressure and temperature. Our database model
(NoSQL) for experimental data has, for this reason, two data entries (Post-
greSQL array fields) that store the temperature and the pressure, but it is im-
possible to know the primary data between the two. In fact, sometimes the
primary data is temperature, sometimes it is the pressure. In other words,
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it is fundamental to distinguish the independent, the dependent and the ac-
cessory measured variable, when there is no fixed relationship. Fortunately,
this ambiguity can be overcome by checking a variable number of experi-
ment metadata. Manual management of this complex database is not fea-
sible because an experiment could contain dozens of measured properties,
and, for example, we should tag each of them correctly if they are primary
data or not. Moreover, this procedure should be repeated hundreds of times,
once for each experiment, making it hard to analyze a large amount of data.

To address this problem, this thesis propes a dynamic and automatic in-
terpretation of a database model based on rules, similar to what is done for
data cleaning or to ensure consistency and accuracy in a database [194].
Given a model &, that is an abstract representation of a model affected by
ambiguity, we have to assign, for each entry e € &£, an interpreter entry of
the model Z. This model can save additional meta-information that could
be useful for other tasks. Each interpreter knows how to distinguish the pri-
mary data from the secondary information and correctly map them. This is
possible because the interpreter has multiple references M = {my, ..., m,}
to a mapping model M that knows, for example, the correct relation of
dependent-independent variable, or more in general, can separate the use-
ful information from the secondary one, and if necessary, pair them. In
order to associate an interpreter to an entry of the model £, we have to
associate a set of rules, R = {ry,..., 7}, to an interpreter. These rules r
are entries of another table in the database, rule, R, where each element
specifies a name of the model /V, the attribute’s name A and value V. A
rule » € R is fulfilled by an entry e € £ if A is an attribute for e and the
corresponding value of the attribute is equal to V. The model name N is
an optional field that, if defined, specifies that the rule is not directly on an
attribute of the model e, but it is related to an attribute of another model N
that has a reference to the entry e.

If an entry e fulfill all the rules r associated to an interpreter ¢ € Z, we
can associate the interpreter ¢ to the entry e.

Figure 5.7 shows a toy example. In this case, the table affected by ambi-
guity is the Data table, storing data related to an experiment in Experiment
(Exp.). In particular, in this case, it is important to distinguish which is
the independent variable. Each entry of the Exp. model has a reference,
INTER. ID, to an entry of the model Interpreter (INTER.). To assign the
correct interpreter to each entry, all rules from the model Rule related to
an interpreter through INTER. ID field should be respected by the entry of
Exp. model. A rule is fulfilled by an entry of the model Exp. if, in cor-
respondence with the attribute specified by the rule in terms of attribute
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ATTRIBUTE (ATTR.) EXPERIMENT (EXP.) DATA
NAME  VALUE m """""""""" > m‘,mkm T :' M DATANAME ~ VALUE
Reactor PFR 1 1 50 1 temperature | [1, 2, 3]
Exp. Type|  IDT 1 2 60 1 pressure | 10, 20, 301
Reactor | RCM 2 2 temperature | [4, 5, 6]
IDT Type | d/dt OH 2 i 2 0T [11, 22, 33]
RULE INTERPRETER (INTER.) i MAPPING
MODEL  NAME VALUE | INTER.ID:-----» INTER. 1D <- INTeR, ‘n;_ TYPE  DATA NAME
ATTR. Reactor PFR 50 50 50 X-Axis pressure
ATTR. Exp. Type DT 50 60 50 Y-Axis temperature
ATTR. Reactor RCM 60 60 Y-Axis DT
ATTR. IDT Type d/dt OH 60 60 X-Axis | temperature

Figure 5.7: An example of the rule-based interpretation. INTER. with ID 50 is assigned
to the Exp. with ID 1 because it fulfill all the rules (Rule table) associated with this
interpreter. For instance, the Exp. with ID 1 has an entry in the Attr. table where the
content of the name and value fields are respectively 'Reactor’ and 'PFR’ as requested
by the fields of the rule. The interpreter tells us the role of the entries in the Data table
related to an experiment. In this case, the pressure is the x-axis, and the temperature
is the y-axis as specified by the Mapping entries related to Inter. with ID 50.

name and value, the entry has the correct combination of Attribute (ATTR.).
Once the interpreter is assigned, the reference to the Mapping model helps
distinguish, for example, the primary data or the independent variable.

Control

Every data in the repository has to be syntactically and semantically cor-
rect. SciExpeM performs some controls and refuses the scientific data if
the controls are unsuccessful, notifying the user. The platform executes
the control on the data every time a service interacts with the database in
writing mode. The controls happen automatically and transparently with-
out invoking the service explicitly. SciExpeM adopts OptimaPP to check
the syntax of the experiments [195]. This software controls whether the
rules to define a chemical kinetics experiment in the ontology defined by
the ReSpecTh format are fulfilled [107]. To assess semantic errors in the
data, SciExpeM can automatically check some simple essential character-
istics. For instance, the agreement between the unit of measurement and
the measured property.
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Development

The analysis is a central task for improving the development process of
scientific models. As previously explained in Section 5.3.2, the first step
in this macro phase is to Simulate Experiments with a predictive model.
The second step includes comparing the simulation results with the ex-
perimental data to measure the predictive model’s performance using the
Validate Model service. This service quantitatively computes the predic-
tive model performance. SciExpeM adopts Curve Matching to measure the
difference between the predictive model’s simulation results and the exper-
imental data. The validation results are then used by the Analyze service
to extract information using data science techniques to guide the next pre-
dictive model improvement. Outlier Detection is an example of an Analyze
service. It provides more precise information regarding the model’s anoma-
lous behavior in some portion of the domain, collaborating with Categorize
Experiment service. SciExpeM automatically performs the analyses with
the Interpret Experiment service that provides the necessary knowledge to
correctly compare the simulator’s results with the experimental data.

Other Services

SciExpeM relies on other services that transparently provide additional
functionalities to support, for instance, the user interface, other services,
or the control over the platform itself. The User profile is a critical aspect
of the system since it allows users to request a SciExpeM service. SciEx-
peM uses authentication and service permission management to guarantee
a secure working environment, reliable scientific data, and correct use of
resources. For each service, the policy is to define its corresponding per-
mission. The permission can be organized in groups to facilitate their man-
agement. Therefore, when SciExpeM offers a new service, it is necessary
to associate it with permission and then add the corresponding authoriza-
tion to users needing access. Finally, among the Other Services, a logger
functionality keeps track of all events in the DE.

External Services

SciExpeM adopts external software or service to provide its functionali-
ties. It executes these services and collects the result from them as a black
box. For instance, OpenSMOKE++ is used as numerical simulator for the
experiments [182] , OptimaPP to check the experiments in the ReSpecTh
format [195], and Curve Matching (CM) to measure the similarity between
two sets of data [121].
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5.3.4 Scalability

A predictive model can theoretically simulate an infinite number of domain
conditions. Similarly, using the analysis tools and combining them as pre-
ferred, it is likely to generate a vast number of analysis data. Neglecting the
space needed to store such quantities of data, the first limitation that makes
this idea unfeasible is the amount of computational resources needed to
generate them. A centralized DE where all the computational burden is on
a single entity is not sustainable. Even if the cost is shared, the bureaucracy
behind sharing computational resources is very complicated. Moreover, as
previously discussed in Section 4.3, this practice can discourage the adop-
tion of the DE. A possible solution is a coordinator-worker paradigm where
the DE, i.e., the coordinator, collects the jobs and distributes them among
the workers, that in some cases can delegate the job to other machines as
shown in Figure 5.8. The coordinator-worker configuration is scalable and
allows each organization participating in the DE to decide how many com-
putational resources to dedicate and use only for their jobs.

In addition, simulating an experiment can take anywhere from a few sec-
onds to several days. For this reason, it is crucial to fulfill two requirements.
First, the simulation of an experiment must not be a blocking request. Sec-
ond, it is also necessary to verify that a simulation has not already occurred
or started to guarantee data reuse and save resources. Figure 5.9 shows a
Business Process Model and Notation (BPMN) that describes the interac-
tion between various services and entities to perform a simulation fulfilling
the previous requirements. When a user submits a request to start a sim-
ulation, the system creates a transaction. Within the atomic transaction,
SciExpeM checks that there are no other simulations already completed or
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Cluster

started. In any case, the system replies with the result, if available, oth-
erwise with a response containing information regarding the simulation’s
status. Referring also to Figure 4.2, if the request regards a new simula-
tion, the system forward the simulation to the worker after updating the
corresponding starting time field of the database’s entry. When the worker
finishes the simulation’s execution, the system saves the results and updates
the simulation ending time.
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CHAPTER

Data Preparation

Data preparation is one of the most important aspects of governance and
management of a scientific repository. As explained in Chapter 3 and in
Section 5.3.2, the four types of scientific data presented in Section 4.1 are
tightly connected in the predictive model development process. The pur-
pose of data preparation is threefold. First, since the predictive model de-
velopment procedure is a data-driven methodology, the quality of data dis-
cussed in Section 6.1 can significantly impact the final results. Section 6.2
introduces how the uncertainty of the scientific data is related to the data
quality dimensions, and it introduces a method to predict it. Second, since
the model development process is the result of a complex procedure, it is
important to provide all the necessary information to the researcher about
how this model has been developed. Therefore, Section 6.3 discusses how
to make this process transparent and thus enhance the trust in Data Ecosys-
tem (DE), using data provenance. Finally, the third aspect presented in
Section 6.4 discusses how and why it is important to assess the diversity of
the dataset for the validation of a predictive model.
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6.1 Data Quality

Data have a central role in all data-driven applications, and their quality
is critical since it directly influences the reliability of all the downstream
uses [196]. If the Data Quality (DQ) rules are correctly set, they mitigate
the typical Garbage In - Garbage Out (GIGO) hazard of all data-driven ap-
plications and the fast spread of wrong information in processes where data
are linked [197]. According to the process described in Section 5.3.2, the
four types of scientific data, experiments, predictive models, simulation,
and analysis results, are strictly related. Therefore, the scientific reposi-
tory must ensure a certain DQ level. Without proper DQ control, unre-
liable information will spread rapidly and negatively affect the other data
types in the DE. In the last decades, research on DQ has defined analy-
sis dimensions and metrics to define and assess the quality of data. DQ
identifies dataset characteristics and presents quantitative measures of the
corresponding quality dimensions. In the end, DQ quantifies and highlights
the strengths and criticalities of a dataset. Over time, hundreds of different
DQ dimensions were defined, each quantifying a different quality aspect of
the data [9].

Nowadays, predictive models are increasingly data-driven, even in do-
mains where a description with physical laws of the phenomena is avail-
able. For this reason, DQ plays a more and more central role in the model
development process since it directly impacts the prediction quality. In ad-
dition, as previously discussed in Section 4.3, ensuring certain DQ levels
within the DE enhances the platform’s trustworthiness, thus starting a loop
of increasing the number of users as a consequence of the increased amount
of collected data and vice versa. Following the fitness for use concept [9],
a DE for the development of data-driven models based on experimental
data needs to consider completeness, consistency, and accuracy as DQ di-
mensions since they are the most widely used across different domains and
provide a good assessment of the quality of data products. Timeliness is not
of interest in this thesis scenario, even if it is often used as a quality metric,
mainly for three reasons: first, even if older experiments are carried out with
older and less precise instruments, they still represent a valuable source of
information, and their imprecision should be included in their uncertainty
evaluation, which it “just” needs to be handled correctly. Second, since sci-
entific experiments are expensive and hence rare, it is pretty unlikely that
multiple experiments are carried out in exactly the same conditions, thus
“updating” the old values. The last one relates to the infeasibility of repeat-
ing an experiment since it is practically challenging to replicate the same
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environmental conditions. For a similar reason, since the predictive models
are deterministic, the simulated data does not change over time if forecast
with the same model and numerical configuration of the solver.

In the SciExpeM DE, the DQ control process discussed in Section 5.3.2
is composed of two parts, one automatic and the other manual, where the
automatic control is performed right after the insertion of new data in the
repository and not, for example, a posteriori based on a recurrent sched-
ule. Data that does not reach the minimum data quality requirements are
immediately rejected.

Completeness The domain ontology defines which metadata that describe
the data are mandatory and in which conditions. For example, according
to ReSpecTh ontology for combustion kinetics [107], the unit of measure-
ment is mandatory in every experiment. Therefore, in a DE that hosts ex-
perimental data, it is sufficient to specify a collection of rules that check the
completeness of the scientific data’s metadata.

Consistency By defining a list of rules, consistency quantifies whether the
information stored in different parts of the database but semantically re-
lated to each other and regarding the same data is congruent [9]. For in-
stance, considering the experiments as a scientific data type. An example
of a consistency rule between the type of a measured property and the unit
of measurement stored in two different database fields regarding the same
experiment is the plausibility of the unit of measurement regarding the re-
ported property. In practical terms, if the type of the measured property is
“pressure”, potential units of measurement are “atm”, “Pa” (Pascal), “bar”,
etc., but not, for instance, “K” (Kelvin).

Accuracy Accuracy is a challenging data quality dimension to assess. It is
related to the precision of the data in representing real-world values. Given
a ground truth, accuracy measures the discrepancy between the value re-
ported in the database and the real one. Following the previous example, a
bunch of valid units is plausible for “pressure”, but only one value is correct
for a measured value given the unit of measurement. However, accuracy is
also strictly connected to experimental uncertainty (that, unfortunately, is
not always provided together with experimental data [132]). Measuring
accuracy is challenging since a ground truth is needed for its evaluation.
The accuracy is determined using different data sources and thresholds for
numerical values. For instance, experiments do not have a ground truth be-
cause uncertainty is always present in the measurements [27], and assessing
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whether the measurements are correct or inaccurate is challenging. Uncer-
tainty gives scientific data a confidence of the reported values. In the case
of experiments, the same experiment is repeated multiple times to quantify
the uncertainty. However, repeating the same experiment, as said before, is
challenging by itself. Excluding this problem, after an experimental cam-
paign, the average of the measurements will be the reported value, and the
standard deviation will be the uncertainty range.

Section 6.2 discusses in detail how uncertainty is related to the DQ di-
mensions for scientific data. In this case, the concept of accuracy is also re-
lated to the DQ dimension of consistency (or agreement) of different exper-
iments concerning the same (or similar) experimental observation. There-
fore, evaluating the consistency between different experiments regarding
the same condition can be reduced to their accuracy evaluation.

6.2 Data Uncertainty

As introduced in Chapter 3, with the validation of the predictive model, the
model’s predictions are compared against the experimental data, and thus
the predictive model performance can be estimated. This model validation
step can not be appropriately performed if the experimental uncertainty is
missing. Uncertainty for the experimental data can be represented with er-
ror bars, as shown with an example in Figure 6.1. Uncertainty is a discrimi-
natory factor to establish whether the model predictions are congruent, i.e.,
the model predictions are inside the experimental error bars.

As discussed in Section 4.1, experiments are a particular kind of data
since they record physical measurements that, by definition, are affected
by experimental uncertainty, also known as experimental error [36]. This
is usually obtained by repeating the experiment under the same conditions.
Different sources of the same observations are hence used to build a ground
truth, that is used to estimate the uncertainty [135]. It is more likely that
only recent papers systematically report experimental uncertainties. How-
ever, this is not systematically true due to the cost of replicating them [132].
Similarly, experiments carried out in the past are more likely to be impre-
cise due to the adoption of more imprecise instruments to perform the mea-
surements. However, since they are already available to the community, it
is unlikely that someone is willing to invest in already present information,
so, often, scientific data and, in particular, experiments are unique. In any
case, with or without, with more or less uncertainty, scientific data are still
valuable sources of information.

Table 6.1 is an example of a possible large uncertainty present in a
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combustion experiment. The experimental data does not explicitly report
the uncertainty. At almost identical temperature and pressure conditions,
there is, for example, a significant variation in the measured ignition de-
lay times. There is over a 65% difference from the value recorded at
(930 K,3.586 atm) and (930 K,3.534 atm). Therefore, this is an ex-
ample to demonstrate that uncertainty is always present in the experiments,
but it is often not reported, although it is not negligible. Consequently, a
method for predicting missing uncertainties within the repository serves a
dual purpose: it enhances the overall data quality profiling and the reliabil-
ity of developing predictive models.

In Chapter 2, various methodologies for predicting experimental uncer-
tainty are presented, with a common assumption that multiple experiments
conducted under similar or identical conditions are available for robust sta-
tistical analysis. However, as previously mentioned, it is important to note
that the availability of multiple data points under such similar conditions is
rare in numerous application domains. Consequently, these methodologies
may not be applicable, necessitating reliance solely on the existing avail-
able information.

Instead, this thesis proposes a methodology that leverages only the al-
ready available information and Knowledge Graph Embedding (KGE) to
estimate the missing experimental uncertainty. Specifically, it leverages
three facts: first, even if they are affected by epistemic uncertainty [123],
predictive models represent more or less precisely the domain; thus, they
can be used to approximate the ground truth. Second, it is rare that two
different experiments from different sources measure the same phenom-
ena in the exact environmental conditions. However, experiments carried
out in similar environmental conditions should report similar values. Thus,
their embedding, derived from the knowledge graph, should be close. Fi-
nally, the metadata of an experiment has additional information, such as
the authorship or the instruments used. It is reasonable that sometimes the
aleatoric uncertainty [123] can have a systematic part due to, for example,
a wrong calibration of the instruments of a specific lab. In other words, the
KGE can learn hidden, systematic, and complex relationships between the
metadata of the experiments and the uncertainty.

To validate and study the new proposed methodology, multiple test cases
are constructed and used to train the KGE model and then assess its predic-
tive capabilities. Finally, the procedure is applied to the real case scenario
of chemical kinetics data highly affected by missing uncertainties. This
contribution demonstrates that it is possible to infer the missing experimen-
tal uncertainty when enough structured information about the experiments
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Figure 6.1: The relationship between experimental data, simulated data, and experimental
uncertainty. Experimental data without uncertainty do not allow for properly evaluat-
ing if the model predictions are correct.

and their uncertainty is available.

6.2.1 Knowledge Graph

Given a domain ontology, a Knowledge Graph (KG) can represent a repos-
itory of experiments. An experiment is the union of information from its
metadata and the reported observation. The ontology classes and properties
become KG entities, and their links become the KG predicates.

Definition 6.2.1 (Knowledge Graph). A Knowledge Graph (KG) is a col-
lection of facts, each connecting two entities with a specific relationship.
Formally, A KG, G = {E, R, F}, is a sets of entities (E), relations (R)
and facts (F), respectively. A fact, or triple, (h,r,t) € F is composed
by th 'Head’ (or subject) h , a 'Relation’ (or predicate) r and a ’Tail’ (or
object) t. The representation format of the triples is known as Resource
Description Framework (RDF) [199].

The literature defines a metamodel to describe an experiment [107,145],
and the corresponding KG is shown in Definition 6.2.1. This KG accounts
for the most popular and general metadata that describe an experiment.

Not all the relevant factors for predicting experiment uncertainty may be
considered in the KG. However, the model embedding validation can spot
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Table 6.1: Example of uncertainty in DOI:10.24388/g00000007 experiment by
[198]. In bold and underlined groups of nearby points but with significantly differ-
ent measured Ignition Delay Time (IDT).

Temperature [K]  Pressure [atm] Ignition delay [us]

930 3.586 7912
930 3.534 13090
938 3.651 7723
938 3.535 6973
938 3.52 6133

this boundary. Conversely, if the ontology lacks properties or classes that
are incongruent with experiment uncertainty, the accuracy of embedding
will have a negligible impact on the prediction of uncertainty links [44].

In particular, the ontology used for the scenario of this work accounts
for:

» Experiment. It is a unique identifier of the experiment.

* Author. It is a unique identifier associated with the author who pub-
lishes the experiment. This entity class can be extended with other
information, such as journals or affiliations.

* Performance. It is a performance index measuring the similarity be-
tween the experimental and simulated data, from O to 1, where 1 is
the best performance. The simulated data are generated by a model
used as a reference. In this study, the possible performance values are
discretized equally in ten parts from O to 1.

* Year. It is the publication year of the experiment.

 Target. It is the subject of the experiment. In the general case, an ex-
periment can have multiple properties under observation. It is possible
to represent such a case in the KG by adding a new experiment entry
for each subject where all the other metadata are unchanged except for
the performance and the uncertainty.

* Type. It is the typology of the experiment.
e Instrument. It is the instrument used for the experiment.
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Figure 6.2: Representation of the metamodel of a typical experiment using a KG.

* Uncertainty. It is the (relative) uncertainty of the experiment if it is
provided. The possible uncertainty values are equally discretized in
ten parts from O to 1. 0 implies that it is not possible to determine the
uncertainty.

6.2.2 Knowledge Graph Embedding

KGE generates a representation of a KG in a low-dimensional space of size
k, such that entities with similar semantic meanings have close embeddings
[200].

The embeddings differ in terms of the following characteristics known
as an embedding model: scoring function, representation space, encoding
models, and any other additional information that should be included in the
computation [201,202].

The most common class of embedding models uses Euclidean spaces,
such as the precursor TransE [200] and the more recent RotatE [203].

TransE interprets the embedding of the entities and the relationships as a
translation of the Euclidian space. The scoring function is in Equation (6.1)
where B, Tt € R* are the head h, relation r, and tail ¢ embeddings of a
triple (h,r,t). The score function, in the case of TransE, measures how
distant the vector representing the tail ¢ of a triple from the vector of the
head h plus (vector sum) the vector of the relation 7.

The training procedure minimizes the loss over a training set of triples
T as in Equation (6.2) within a number of given epochs.
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Figure 6.3: Two step of embedding procedure of a KG. First in Figure 6.3a is shown a possible
embedding of a triple in the case of TransE. Then in Figure 6.3b is depicted how the embedding
is computed for multiple triples, minimizing the loss.

Figure 6.3 illustrates a possible embedding representation for two en-
tities and a relation in the case of TransE with an embedding dimension
equal to 2.

fowny =h+7—1 (6.1)
Loss = Tt (6.2)

This thesis adopts RotatE. It is a good trade-off between computational
complexity and the accuracy of the representation [201]. It is capable of
representing, unlikely TransE, complex relational properties such as inver-
sion (e.g., child and parent), symmetry (e.g., marriage), and composition
(e.g., my parents’ parents are my grandparents). Similarly to TransE, Ro-
tatE projects the entities and relations into a complex space. The tail entity
is reachable from the head entity by a rotation defined by their relationship.
Formally, given a triplet (h, 7, t), RotatE learns the embedding h,7,t € C*
such that is satisfy the mathematical relation ¢ = h o 7, where o denotes the
Hadamard product.

Link Prediction

The embedded representation of a KG can be used for Machine Learning
(ML) tasks such as Link Prediction (LP), where are inferred the missing
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Figure 6.4: Example of link prediction of the missing entities in a triple. In this case
given the head Florence and the relationship is_in, the embedding model predict the
missing tail with the entity Italy since it has the lowest score, i.e., it has the highest
rank.

facts. In this work, LP is used to predict the missing uncertainty of an ex-
periment, illustrated by a set of entities representing an uncertainty value,
given the embedding of an experiment and the relationship “has_uncertainty”.

LP can complete a KG triple when it is missing, one at a time, the head,
the relation, or the tail. LP completes a triple with existing entities or re-
lationships during the embedding model’s training. For example, when the
tail entity is absent in a triple, the process involves the initial gathering of
embeddings for the head and the relation. Following this, embeddings for
all potential and semantically meaningful tail entities within the knowledge
graph are also collected. For each conceivable combination of the head en-
tity, relation, and potential tail entities, the embedding model’s score func-
tion is applied to compute a score, and the triples are ranked based on this
score. The triple with the lowest score, signifying the minimal distance or
error, is identified as the most suitable candidate for completing the triple.
Figure 6.4 is an example of LP using TransE as an embedding model. In
this case, the tail is missing in the triple (Florence,is_in,?).

Evaluation Metric

LP stands as a benchmark for assessing the accuracy of embeddings when
applied to a test set of triples denoted as (). In our case, to measure the
ability to forecast the missing uncertainties correctly. Hits@N (as defined
in Definition 6.2.2) is a metric to measure such performance.

Definition 6.2.2 (Hits@N). Hits@N (or H@N) refers to the ratio of cor-
rectly predicted triples among the top N predictions generated by the em-
bedding model, as defined following Equation (6.3).
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Hits@N has a value between 0 and 1, where higher is better.

Definition 6.2.3 (Diff). Dif f measures the average error in predicting
uncertainty. It is computed as the average difference between the predicted
uncertainty value, which is the top prediction of the embedding model, and
the actual uncertainty value.

2wev | Mi(t) — R(D)|
k

Given a set of triples V' (|V| = k), Diff computes, on average, for
each triple f = (h,r,t) € V, the average difference between the model’s
first top prediction M, (f) and the actual value R(f). This metric assesses
whether the embedding model effectively captures the intricate relation-
ships between experiment metadata and uncertainty. For example, consider
a triple f where the correct uncertainty value is R(f) = 0.5 for a given ex-
periment, and the embedding model’s first top prediction is M;(f) = 0.4.
While this prediction is incorrect, it is noteworthy that the model’s pre-
dicted value is relatively close to the actual value. This suggests that the
embedding model is learning to predict uncertainty with reasonable accu-
racy despite misprediction.

Diff = (6.4)

6.2.3 Uncertainty Prediction

Uncertainty strictly links the DQ dimensions of completeness, consistency,
and accuracy during data profiling. In experimental domains, uncertainty is
another experiment metadata; therefore, the scientific repository is "more
complete" when the uncertainty information is available. Conversely, when
two experiments share identical conditions but differ in authorship, and
both lack uncertainty information, several scenarios emerge: either they
both report the same observations, both report inaccurate data, or one of
them is erroneous. Thus, the presence of uncertainty data holds significant
importance in terms of ensuring consistency between experiments and, like-
wise, in preserving accuracy. Indeed, uncertainty provides a margin of error
that facilitates a more accurate evaluation of whether an experiment aligns
with simulated data, accounting for some level of deviation. This extends
beyond a simple point-to-point comparison of values.
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This section outlines the comprehensive methodology for predicting miss-
ing experimental uncertainties using KGE. The approach is delineated through
the following steps, also represented in Figure 6.5. The methodology starts
after collecting a scientific repository of experiments and the ontology for
their description. In this study, uncertainty is considered a metadata of the
experiment. (i) Experiment profiling is carried out for two primary ob-
jectives. Firstly, to assess the data quality level, thus ensuring the highest
possible quality for subsequent KG generation. Secondly, to quantify the
range and diversity of uncertainty values. (ii)) KGE models typically cannot
predict continuous values directly. To address this limitation, a finite yet
representative and comprehensive set of potential uncertainty values (re-
ferred to as buckets) is selected based on the specific application domain.
The input dataset’s uncertainties are then transformed using a bucketiza-
tion process, grouping similar or close values into the same bucket. (iii)
After separating experiments with uncertainty from those without, (iv) a
KG of the input experimental dataset is constructed following the provided
ontology (as detailed in [144]). Subsequently, training, validation, and test
sets are randomly generated, with allocations of 80%, 10%, and 10% of the
original dataset, respectively. (v) An embedded representation of the KG is
then learned. (vi) The embedded model is subjected to validation, and if the
results meet satisfactory criteria, (vi) the embedded model is employed to
predict missing uncertainties, with the task primarily centered around link
prediction.

The upcoming sections detail the scenarios carried out to examine and
affirm the validity of the proposed methodology for predicting uncertainty.

The purposes of the scenarios are the following:

1. Set a baseline against which to compare the performance of the other
scenarios.

2. Determine whether it is possible to learn how to predict uncertainty
values when it systematically depends on another experiment meta-
data.

3. Understand how complex the relationship between uncertainty and ex-
periment metadata can be to predict correctly the uncertainty.

6.2.4 Results

Each scenario utilizes the ontology presented in Figure 6.2 as a foundation
for constructing the KG, incorporating properties relevant to the specific in-
vestigation. These scenarios are intentionally crafted using synthetic data,
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Figure 6.5: Steps of the proposed methodology to predict the missing uncertainties of
experimental data.

Exp.
1’000

Author | Year | Type | Inst. | Target | Uncert. | Perf.
50 81 6 5 12 11 11

Table 6.2: The number of different values for each entity. “Exp.” stands for experiment,
“Inst.” for instrument, “Uncert.” for uncertainty, and “Perf.” for performance.
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making them highly suitable for conducting parametric analyses. Further-
more, they offer the flexibility to test the proposed methodology across
varying KG sizes, measured by the number of experiments and, conse-
quently, triples, while considering the associated training costs. These sce-
narios conduct tests with 1,000 experiments, generating a total of 7,000
random triples while ensuring compliance with domain constraints among
entities. Each experiment was randomly associated (with uniform probabil-
ity distribution) with entity types present in the ontology, maintaining the
appropriate relationships and feasible entity values. For instance, in our ap-
plication context, not all instrument types may be applicable to every exper-
iment type. To investigate the methodology’s robustness and its indepen-
dence from the number of triples, tests with a larger dataset are performed,
involving 50, 000 experiments generating 350, 000 triples. These scenarios
maintained a proportional distribution of entities for each typology. No-
tably, the results indicate that the methodology’s performance remains con-
sistent regardless of the number of triples. For reference, Table 6.2 provides
information on the number of possible values for each entity type.

The training process for the KGE model is repeated five times for each
scenario. Numerical results, referred to as “prediction performance" here-
after, are calculated as the arithmetic average of the outcomes from these
five test cases. The list of triples describing the KG for each scenario is
randomly divided into three datasets: training, validation, and test, consti-
tuting 80%, 10%, and 10% of the total triples, respectively. The settings for
the embedding model remain consistent across all test cases. Specifically,
RotatE is employed as the embedding model with a fixed embedding di-
mension of 64. The maximum number of training epochs is set at 15, 000,
with an early stopping mechanism based on the H @3 score computed every
500 epochs over the validation dataset. Early stopping is triggered when no
improvement is observed for three consecutive steps, with a minimum delta
of 5E—-03.

The scenarios are assessed in two ways: H@N (Equation (6.3) assesses
the prediction capabilities only on the link prediction task for the rela-
tionship that connects the experiments to the uncertainty entities. Dif f
(Equation (6.4)) evaluates the average error in the mispredictions.

Baseline

The KG is generated in the baseline scenario according to the ontology
outlined in Figure 6.2. During this generation process, consistency rules
are enforced, ensuring that experiments attributed to the same author have
plausible publication years within the author’s range of activity years. In
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Figure 6.6: Metadata correlation (Heatmap matrix) in the “Baseline” scenario.

this scenario, the uncertainty of each experiment is randomly assigned a
value between 0 and 1. The correlation heatmap displayed in Figure 6.6
reveals no discernible correlation among the ontology properties. As antic-
ipated, the embedding results align with these expectations. The model is
tasked with predicting the correct uncertainty value for experiments from a
pool of 11 possible values. The results presented in Table 6.3 demonstrate
that the predictive performance does not significantly exceed the theoreti-
cal limit since there is no systematic relationship between uncertainty and
other metadata. For instance, the metric H@Q5 measures the percentage of
times the correct value is found among the top five predictions made by
the embedding model. Given the availability of 11 possible values, the
probability that the correct value falls within the top 5 predictions is ap-
proximately 0.454, which closely aligns with the value of H@5 observed
in the model. Similar observations apply to the results for Dif f. These
outcomes underscore the intuition that when no discernible pattern exists
between uncertainty and experiment metadata, it becomes challenging to
learn how to predict missing experimental uncertainties. This suggests that
uncertainty may be contingent on other, potentially more complex factors
that are not explicitly represented in the knowledge graph.

Scenario 1

Previously, the baseline scenario illustrated that when uncertainty lacks a
discernible connection to any experiment metadata or ontology property,
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\H@S He@3 H@2 H@1 Diff

Mean 0.465 0.170 0.142 0.087 0.38
Median | 0479 0.167 0.142 0.073 0.38
Max 0490 0.177 0.142 0.115 0.39
Min 0.427 0.219 0.167 0.073 0.37
St.Dev. | 0.033 0.021 0.005 0.024 0.01
Var. 0.001 0.001 0.001 0.001 0.00

Table 6.3: Embedding model performance in the “Baseline” scenario.

the best performance achievable by the embedding model is akin to random
guessing when predicting missing uncertainty values. However, the current
scenario explores whether learning and predicting uncertainty is possible
when a systematic relationship exists between experiment metadata and
uncertainty. In this scenario, uncertainty values are determined based on
the values of other experiment metadata. More formally, given X1 an ex-
periment metadata and X1 = {X1;,..., X1,} the possible n value that
X1 can assume in a domain. Given U = {Uy, ..., U} where U; € [0, 1]
the & uncertainty values present in the knowledge graph. Specifying the
relationship VX1; € X1 — U; € U is needed. In this scenario, the rela-
tionships are initially selected at random from a uniform distribution and
remain constant throughout the knowledge graph generation process. As
a result, each potential value of X1; consistently corresponds to the same
uncertainty U;. However, this strict association is unlikely to hold true in
a real-world scenario. A parametric analysis is conducted to account for
this variability. This analysis involves increasing the cardinality of U while
introducing a run-time modification (i.e., during knowledge graph genera-
tion) in random deviations with bounded positive or negative values akin to
random noise. Specifically, the relationship between X1 and U is adjusted
from X1; — U; to X1; — U; & o, where o takes on values from the set
0.0,0.1,0.2,0.3,0.4,0.5. This analysis accounts for the more realistic sce-
nario where the association between X1 and U may exhibit some degree of
variability.

The outcomes of the parametric analysis, as depicted in Figure 6.7, are
assessed based on the H@5 score (Figure 6.7a) and the Dif f measure
(Figure 6.7b). The results reveal that the KGE model consistently delivers
strong performance, regardless of the number of uncertainty values, when
the absolute deviation is tightly bounded. This indicates the model’s ability
to discern and learn systematic patterns between experiment metadata and
uncertainty under such controlled conditions.

Conversely, when the absolute deviation is set to 0.5, replicating the
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Figure 6.7: HQ5 (Figure 6.7a) and Dif f (Figure 6.7b) result of the parametric analysis over
the number of possible uncertainty in the knowledge graph and the magnitude of the random
deviation in the relationship between an experiment metadata and its uncertainty.

conditions of the baseline scenario, the results align with the expectations
set by the baseline scenario. Given that uncertainty values are constrained
within the range of U; € [0, 1], introducing an absolute deviation of 0.5
from the mean uncertainty value of 0.5 effectively allows all possible values
to be associated with the same metadata. Consequently, no distinguishable
relationship exists between metadata and uncertainty in this scenario.

Scenario 2

The previous scenario demonstrated that KGE can effectively predict ex-
periment uncertainty when a systematic relationship exists between exper-
iment metadata and uncertainty, even in the presence of randomness. This
scenario wants to explore whether this methodology remains effective when
uncertainty depends on an increasing number of metadata factors, thereby
investigating the complexity of the relationship between experiment meta-
data and uncertainty values.

To evaluate this, a parametric analysis is conducted in which both the
cardinality of U and the number of metadata dependencies are expanded.
In the previous scenario, the relationship between experiment metadata and
uncertainty values was expressed as X1; — U;. However, in this case,
the general relationship is extended to (X1,,...., X4,,) — Uj, indicating
that uncertainty values can depend on 0, 1, 2, 3, or 4 experiment metadata
values.

Figure 6.8 presents the result of the parametric analysis. The results are
evaluated based on the H@Q5 score (Figure 6.8a) and the Dif f measure
(Figure 6.8b).
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Figure 6.8: HQ5 (Figure 6.8a) and Dif f (Figure 6.8b) show the results of the parametric anal-
ysis over the number of possible uncertainty in the knowledge graph and the number of depen-
dencies of the experiment metadata and the uncertainty values of an experiment.

As observed previously, when there is no dependency between experi-
ment metadata and uncertainty values, the performance closely resembles
that of the baseline scenario. When dependency exists for only one meta-
data value, it aligns with the patterns observed in the previous scenario.
However, as the number of metadata dependencies increases, the embed-
ding performance degrades, albeit still remaining significantly better than
the baseline results. This trend holds true regardless of the number of pos-
sible uncertainty values. These findings suggest that the KGE model en-
hances performance over the baseline scenario, although not to the same
degree as in simpler cases.

Scenario 3

In this real-world scenario, the same methodology is applied to a dataset of
chemical kinetics data accessible within the SciExpeM data ecosystem !. A
subset of 440 experimental data points, each with uncertainty information,
has been collected. The corresponding knowledge graph encompasses a
total of 11,000 triples, involving six different values of uncertainty. Addi-
tional information regarding the number of possible values for each entity
is provided in Section 6.2.4.

Similar to the earlier scenarios, the results presented in Table 6.5 in-
dicate that the embedding model can predict missing uncertainties, even
though the task is somewhat more manageable. This is because the num-
ber of distinct uncertainty values is reduced to six, as opposed to the 11
values considered in the general ontology setting for these scenarios. Con-

Imttps://sciexpem.polimi.it
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Exp. | Author | Year | Type | Inst. | Target | Uncert. | Perf.
440 37 40 5 5 58 6 9

Table 6.4: The number of different values for each entity. “Exp.” stands for experiment,
“Inst.” for instrument, “Uncert.” for uncertainty, and “Perf.” for performance.

\H@S He@2 H@1l Diff

Mean 093 088 062 0.17
Median | 093 0.85 0.61 0.16

Max 095 089 062 0.19
Min 091 087 0.60 0.15
StDev. | 0.02 002 002 0.01
Var. 0.001 0.001 0.001 0.00

Table 6.5: Embedding model performance in the “Real Case Study” scenario regarding
the estimation of missing uncertainties of the experimental data in the domain of com-
bustion kinetics.

sequently, measuring performance indexes beyond H @3 becomes imprac-
tical, as the model needs to make predictions from a more limited set of
potential values. Nevertheless, the obtained results remain promising and
encouraging.

In a broader context, the methodology described can be applied to gen-
erate knowledge graphs in various applications where an ontology can be
defined. The complexity of the relationships between entities within the
knowledge graph directly influences the learning potential of KGE tech-
niques. The approach outlined here can be employed to investigate whether
a dependency exists between ontology properties and uncertainty. In such
cases, the embedding model can evaluate the feasibility of predicting un-
certainty and provide insight into the possible values of such predictions.

Experimental uncertainty is fundamental for the DQ profiling of scien-
tific data, as well as for other predictive model development tasks in which
the experiments drive the model development. In the current state, other
methodologies are centered on modeling the available uncertainty or sta-
tistically estimating it by relying upon multiple observations in the same
domain condition. Since having multiple observations is rare in practice,
this contribution proposes a new methodology to predict the missing uncer-
tainty of experimental data. It leverages only the available information and
extracts hidden patterns between the experiment metadata and the uncer-
tainty values, categorized in n different classes, using the machine-learning
link prediction task. To do so, an embedded representation of the KG that
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corresponds to the experiment repository is learned . This methodology
is mainly studied with two parametric analyses focused on understanding
whether the KGE can learn hidden relationships and how complex they can
be to predict the uncertainty values. The results suggest that the embed-
ding model can predict the uncertainty values when there is a relationship
between experiment metadata and uncertainty values, even if with random
noise. If the relationship is more complex, the embedding model still out-
performs the random baseline scenario.

6.3 Data Transparency

Data provenance, also known as data lineage, is a field of data manage-
ment. It is related to the reproducibility and transformation history of data.
Data transparency specifies how and what should be represented concern-
ing the various stages that alter data. Provenance metadata is a solution to
enhance transparency and trustworthiness, enriching the final dataset by in-
corporating a set of metadata. This metadata encodes information about the
individuals, actions, and entities involved in the data transformation stages.
Provenance is suitable for tracking data transformations but also plays a vi-
tal role in recording data processing replicability and identifying errors in
data-driven applications [204,205].

The provenance data model outlines the structure of the provenance
metadata, defining how to represent entities, activities, and agents and their
interactions involved in data creation or transformation. In this work, the
W3C PROV data model? is employed to design the provenance data model.
Adhering to the guidelines set forth by data sheets directives [206], the
provenance data model aims to represent only the information essential to
the subject under study. Generally, a provenance data model can vary in
specificity, altering the verbosity level [205].

The W3C PROV data model relies on three fundamental concepts for
representing provenance metadata, namely Entity, Activity, and Agent [207].
An Entity is the subject of the provenance; it is something whose evolution
is tracked. An Activity denotes an action conducted on an Entity, result-
ing in the creation of a new version of itself or another Entity. An Agent
embodies the Entity responsible for carrying out a specific action or being
associated with a particular entity. The W3C data model, as depicted in
Figure 6.9, encompasses a blend of the “data” and “workflow” levels of
detail, presenting the requisite provenance metadata to describe the stages
within the business process outlined in Figure 5.5. However, it excludes the

2https://www.w3.org/TR/prov-dm/
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Figure 6.9: Representing provenance of the model development process in the context of
scientific data within a DE with the W3C PROV-Data model.

procedure related to the external collection of experiments and models. On
the other hand, it incorporates novel components introduced in this work’s
proposed solution. These additions include a verification step designed to
enhance data repository quality and the implementation of a coordinator-
worker configuration for distributed computational workload management.

Multiple experiments and models are stored in the DE. An experiment,
before entering the loop of the model development process, is submitted to
a validation process. The Data Ecosystem and Researcher automatically
and manually, respectively, verify whether a new Experiment is compliant
with the established quality thresholds in the policies defined by the DE
community.

As aresult, a Verified Experiment is derived and stored within the Data
Ecosystem. At the first iteration of the loop, a Model is given, and the
Researcher requests the Simulation of a set of Verified Experiments with
the Model. At this point, a computational task is assigned to the Workers
that simulate the Verified Experiment generating a Simulation. Once all the
Simulations are terminated, the Data Ecosystem can perform an analysis
of the results, such as model validation, thus providing Analysis Result,
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Figure 6.10: Data preparation pipeline design process

fundamental for the Researcher to generate a new, improved version of the
Model and start the model development process again.

6.3.1 Data Pipelines

High-quality datasets are fundamental to minimizing errors and risks in ap-
plications where analytics are the primary resource for supporting decision-
making. To achieve this, a comprehensive data preparation pipeline must
precede data analysis tasks, as discussed in the next Chapter 7. Data ana-
lysts must carefully select various operations to be included in the pipeline,
considering multiple aspects. This selection process often requires multi-
ple trials and errors. A few times, it leads to the most effective solution.
In this context, data transparency has a double purpose. Firstly, it serves
as a repository for different configurations of the data preparation pipeline,
incorporating quality and performance indicators. The data analyst then
uses such data to modify the design of the pipeline accordingly. Second,
to enable data sharing and reusability, the generation of metadata related to
the processing phases has been recognized as essential. Automatically an-
notating the dataset resulting from the pipeline with provenance metadata
addresses this issue. For this work, the case study is in the citizen science
field. More precisely, social media data. Extracting meaningful insights
from social media presents distinct challenges, including isolating pertinent
posts, contextual dependence, multimedia elements, and the potential for
inadvertent exclusion of informative content via automated filters. There-
fore, this section presents the proposed approach with a particular emphasis
on the provenance model for these purposes.

The data analyst, given an input dataset, a set of available tools to pro-
cess it, and a Goal, wants to identify the most suitable sequence of steps to
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be performed, the configuration of the selected tools, and an assessment of
the expected quality of the outcome of the preparation. The Data Prepara-
tion Pipeline Design is presented in Figure 6.10 and comprises two macro-
phases, Pipeline Configuration, and Pipeline Validation, briefly described
in the following.

The data analyst performs the following actions during Pipeline Config-
uration phase. A representative sample is extracted from the initial dataset
and annotated the relevance of the data items with respect to the predefined
goal (Data Collection and Annotation). The data analyst selects, from the
Component Library, the components that have to be included in the pipeline
and their execution order and settings (Components Selection and Work-
flow definition). Data analysts can also express some non-functional con-
straints related to performance and quality measures of the entire pipeline
(Constraints Definition). As a result, this phase produces three artifacts:
a Sample Annotated Dataset, a Pipeline Configuration, and a list of non-
functional Constraints. These objects are provided to the Pipeline Vali-
dation phase, which aims to evaluate the efficiency and effectiveness of
the initial pipeline configuration and improve it, if necessary. In particu-
lar, during the Pipeline Execution and Assessment, the pipeline is executed
on the sample dataset, and the quality of the result is assessed with re-
spect to the sample annotations. Execution information, including involved
components and related configurations, and components and pipeline per-
formances, are stored as Provenance Metadata. Later, during the Pipeline
Revision, the results of the pipeline execution in terms of performance and
quality are presented to the data analyst through a feedback dashboard. In
case of unsatisfactory outcomes, the data analyst might decide to modify
the pipeline going back to the Pipeline Configuration phase. The system
can also support the data analyst by suggesting enhancements such as com-
ponent substitution and/or reconfiguration.

When the data analyst is satisfied with the pipeline configuration, the
Data Preparation phase can be executed on the Source Dataset, i.e., the
entire data source from which the sample set has been extracted. The data
preparation pipeline takes as input such data together with their metadata
in order to obtain the Refined Dataset that will be used in the data analysis.
At the end of this phase, or even at a later moment, it might happen that the
data analyst is not satisfied with the obtained results. This could happen for
different reasons, e.g, the Source Dataset was not accurately represented by
the sample data, and/or the characteristics of data changed over time. In
this case, the redesign of the pipeline is needed, and the whole process is
reiterated.

83



Chapter 6. Data Preparation

The refined dataset generated through the pipeline can be used in a spe-
cific analysis but could also be published in a DE. In order to enhance the
reusability of the dataset and the transparency of the data preparation phase,
the refined dataset is enriched with metadata. Three types of metadata are
associated with it: (i) source metadata, directly obtained by the data source
and associated with the source dataset, (ii) execution metadata, collecting
information about the pipeline execution on the items of the source dataset;
(ii1) provenance metadata, generated in the configuration phase and cap-
turing the pipeline characteristics.

The availability of such metadata also makes our approach beneficial for
the creation of data spaces in which the trustworthiness among partners is
a key factor based on ensuring transparency in data preparation and high-
quality of the shared data. For example, in data lakes, there is usually a raw
data area containing ingested data and a revised data area where clean data
sets are stored [208]. The proposed approach can be used to generate clean
datasets from the raw data. Moreover, the availability of provenance meta-
data associated with the refined dataset allows data analysts to understand
better if the data preparation tasks performed are suitable for their analysis.

In this work, as in all user-driven data preparation approaches, prove-
nance is central when a series of pipeline steps for preparation manipulate
data. For example, in a pipeline that manages scientific data to develop a
data-driven model, it is hard to disambiguate which phase or procedure of
a long and complex process is responsible for the improvement or deterio-
ration of the model. Provenance, keeping track of each action on the data
and on the model, can help in this task and make it possible to replicate
scientific results [204]. In general, the data analyst can be motivated to
use provenance for multiple purposes such as accountability, reproducibil-
ity, or process debugging [205], but in our methodology, it also increases
transparency and trustworthiness.

The PROV data model is adopted to specifically track the provenance in
data preparation pipelines for social media data as shown in Figure 6.11.
Since it must fully track the evolution of the pipeline configuration and it
also must enable the reproducibility of the refined dataset generation.

The PROV data model records metadata about the Sample Dataset ex-
traction, the Pipeline configuration, and the execution of the pipeline with
a given configuration, as well as the sequence of revisions of the configura-
tion performed by the data analyst.

Following the case study, but without losing generality, a Sample Dataset
is generated by a Crawling action using a specific Crawler on a given
Source. For social media analysis, it is important to keep track of the search
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Figure 6.11: The conceptual provenance data model for social media data preparation
pipelines

parameters such as the query and the time interval, which are associated
with the Crawling action, and when the Crawler was interrogated to collect
data. Even the type of used Crawler could have an impact on the final re-
sults. For example, Twitter, which could be a Source of social media data,
has different types of Application Programming Interface (API) (developer,
academy, business, etc.), each with a different level of granularity in col-
lecting tweets and thus different final results. For this reason, inside the
Crawler agent, it is important to specify the crawler version. The resulting
Sample Dataset is a set of Posts. Once the Sample Dataset is available,
the Annotator is responsible for the execution of the Annotate action on
the collected data, generating the corresponding Annotated Dataset. The
Data Analyst generates also the first initial Configuration of the pipeline
with the Generate Configuration action. A Configuration includes Compo-
nents, their parameters, and the Components’ workflow. The Constraints
defined by the Data Analyst for the overall pipeline are recorded. Exe-
cute Configuration records the Component actions using a given Config-
uration to produce the resulting Output Dataset; for each Component its
characteristics are recorded (e.g., component version). The time and cost
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of the pipeline execution with a given configuration are recorded in Exe-
cute Configuration. The Evaluate action by the Data Analyst is based on
the assessment of the Output Dataset against the Annotated Dataset and
Constraints. Leveraging the quality performance information of the overall
pipeline and of each Component, the Data Analyst may decide to generate
(Generate Configuration) a new Configuration as an improvement of the
previous one (DerivedFrom on Configuration) or modify the Constraints to
reach the desired outcome. The actions Execute, Evaluate, and Generate
may be iterated until the Constraints specified for the pipeline are fulfilled
and the Data Analyst confirms the final Configuration. The whole process
is recorded as metadata associated with the prepared dataset, as it describes
how the Configuration for data preparation was achieved. Hence, they store
quality, cost, and time information about the pipeline execution.

6.4 Diversity

Model Validation (Section 7.1) involves assessing how well a model’s pre-
dictions align with actual experimental data. During this process, the re-
liability of the predictive model and subsequent analyses is not solely de-
termined by the quantity and quality of experimental data. It is equally
important to consider the diversity of the data used, specifically in terms of
how comprehensively it covers the domain that the model intends to repre-
sent. This discipline is named database coverage (or diversity) [165].

For instance, simply using many data for validation, all describing the
same portion of the domain, may not suffice to determine the reliability of
the model validation outcomes. Indeed, if a model has not been validated
under various environmental conditions, its performance may unexpectedly
deteriorate when employed to predict an unexplored (untested) yet physi-
cally relevant part of the domain.

A lack of adequate coverage in the dataset, thus limited testing of the
generality capabilities of a model, can lead to biased reliability in model
validation (Section 7.4) [209]. Ideally, the collection of experiments should
be as extensive and varied as possible, against which the model can be
validated. On the other hand, knowing the diversity of a database can be
leveraged to identify areas of the domain that are inadequately represented
by data, thus facilitating the Design of Experiment (DOE) process. This
thesis introduces a methodology that utilizes categorical attributes and a
multidimensional matrix to represent the diversity of a domain and establish
a database coverage index.

The assessment of dataset coverage C for a domain M with n attributes,
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denoted as A = Ay, ..., A,, is conducted in three step.

First, it is necessary to identify a subset of the domain fields (or at-
tributes) { A1, ..., A,} = A C A, and transform them into categorical at-
tributes. A categorical attribute of a domain is a field that can only take a
value from a restricted number of options. In this way, any attribute A; € A
can only have d 4, different ordered categorical values (or possible options).
If the attribute A; € A is a continuous numeric field, the minimum (min)
and the maximum (max) value that can be taken by A; in the domain, and
fix ¢ equidistant ticks from the range [min, maz| and associate the value of
the attribute to the closest tick. Instead, suppose the possible values of an at-
tribute are not continuous but with high cardinality. In that case, identifying
a subset of the possible values leveraging a hierarchy among them or using
the bucketization: similar values are associated with the same bucket [209].
Given an entry 7 of the domain M regarding an attribute A; € A, it has a
corresponding value of vy, = (vi4,...,v4, ;) for the attribute A; where
v;; = 1 if r has the corresponding categorical value for the attribute A;
otherwise is 0. In this way, it is possible to register an array field of the
model where an entry can assume multiple categorical values for the same
attribute. The notation vy, ,[k] to denote the k-th value of the attribute A;
with k£ € [1, d4,] for the entry 7.

In the first step are selected the most significant subset of the domain’s
attributes, denoted as Ay, ..., A, = A C A. Then, they are transformed into
"categorical attributes." A categorical attribute within the domain is a field
that can only assume values from a limited set of options. Therefore, for any
attribute A; € A, it can have only d 4, distinct ordered categorical values
or possible options. If attribute A; € A is a continuous numerical field,
it is computed the minimum (min) and maximum (max) values it can take
within the domain. Then, this range is divided into ¢ equidistant intervals
and associates the attribute’s value with the closest interval. Conversely,
if the possible values of an attribute are not continuous but possess a high
cardinality, a subset of these values is identified, using a hierarchy strategy
or employing bucketization, grouping similar values into the same bucket
[209]. For a given entry r within the domain M associated with an attribute
A; € A, it is assigned a corresponding value of va,, = (Vi ..., Va, i)
for that attribute. Here, v;; = 1 if entry r possesses the conespondfng
categorical value for attribute A;; otherwise, it is set to 0. Consequently, this
approach allows the recording of a database entry that can assume multiple
categorical values for the same attribute. Thee notation v4, ,[k] represents
the k-th value of attribute A;, with &k ranging from 1 to d4,, for entry r.

The second step involves constructing a multidimensional space that
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represents the coverage of our database across the set of attributes A, where
the cardinality of this set is denoted as |As| = s. Each attribute A; € A de-
fines a dimension in this space, and the dimension’s size is determined by
da,. Subsequently, the multidimensional space is translated into a mul-
tidimensional matrix known as the coverage matrix C,, with dimensions
dCa = dAy X ... X dy,. This matrix-based approach allows to investigate
the database diversity with different levels of granularity.

Finally, after initializing all the matrix cells to 0, it is necessary to it-
erate through every entry r in the model M and for every possible com-
bination of categorical attribute values. The coverage matrix is updated
following Equation (6.5) only if the specified condition expressed by Equa-
tion (6.6) holds true for entry » when i, # 0, where m ranges from 1 to
s. In other words, by employing a technique known as “bucketization," the
matrix is filled with the number of experiments available within a given
domain region corresponding to one or more cells (or boxes) of the mul-
tidimensional matrix. Bucketization involves grouping similar values into
the same bucket. For instance, if a dimension has been divided into buckets
with values of 0, 5, 10, 15, data points with values for that dimension of 2
are associated with bucket 0, while those with values of 3 are associated
with bucket 5, and so on. The definition of the buckets can be tailored to
the specific characteristics of the domain.

Ultimately, the database coverage can be assessed using a threshold ¢,
which is defined as the ratio between the number of different cells that have
at least ¢ associated experiments or data (denoted as |cells(t)|) and the total
number of cells in the matrix M, as expressed in Equation (6.8).

Coalir, .ois] +=1 (6.5)

Vaplit] == . == w4 i) == 1 (6.6)

The outcome is a density matrix that represents the coverage of our
database with respect to a specific set of categorical attributes. A database
coverage index can be defined as follows. By examining all the entries r
contained within the dataset D, counting the non-empty cells—those cells
with values distinct from zero—and normalize this quantity based on the
total number of cells, as illustrated in Equation (6.7).
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Figure 6.12: Visualization of the database coverage.
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Table 6.6: The experimental data set used for the running example in Figure 6.12.

|cells(t)|
C(t) = ————— 6.8
(t) M| (6.8)

One or multiple multidimensional matrices can be employed to depict
the diversity of a database in various scenarios.

Figure 6.12 illustrates a “small world” example where the dataset’s di-
versity is measured. The dimensions that characterize the diversity are tem-
perature (T), pressure (P), and experiment type (E). In this case, each ex-
periment in the dataset is characterized by a value property (dimension)
that positions it within a specific domain region. The temperature dimen-
sion ranges from 500K to 550K, the pressure dimension from 1 bar to 2
bar, and the possible experiment types are ’E1’ and ’E2’. In the case of
numerical dimensions like temperature and pressure, each dimension is
equally divided into two buckets. Categorical properties, such as ’exper-
iment type’ in this example, determine the number of buckets themselves.
As depicted in Figure 6.12, this configuration results in eight cells in the
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’ Box [T, P, E] Cardinality ‘
1 [(500, 525), (1.0, 1.5), E1] 2
[(500, 525), (1.5, 2.0), E1]
[(500, 525), (1.0, 1.5), E2]
[(500, 525), (1.5, 2.0), E2]
[(525, 550), (1.0, 1.5), E1]
[(525, 550), (1.5, 2.0), E1]
[(525, 550), (1.0, 1.5), E2]
[(525, 550), (1.5, 2.0), E2]
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Table 6.7: The results of bucketization for the running example in Figure 6.12 using as
data set Table 6.6.

matrix (or boxes) that partition the domain. Table 6.6 presents the exper-
imental dataset used, which includes four experiments, each characterized
by its temperature, pressure, and experiment-type features. Through the
process of bucketization, each experiment is associated with a specific box,
as shown in Table 6.7. Finally, the number of boxes with at least one asso-
ciated experiment is three. Consequently, the coverage index in this case is
C(1) = 3/8 ~ 38%, and if the threshold is set to two, the coverage index
becomes C'(2) = 1/8 ~ 13%.

Model validation is a central phase in the model development process.
To properly perform this activity, this chapter has presented why and how
it is necessary to use quality data, the correct pipeline to prepare them, a
diverse dataset, and how to guarantee the reusability of the data to enhance
trust and engagement through data transparency. Moreover, to properly val-
idate a scientific predictive model, it is necessary to know the experimental
uncertainty and predict it when missing. Once the model validation results
are properly generated, collected, and distributed, they can be used for the
following analyses and improvements described in the following chapter.
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CHAPTER

Model Evaluation and Improvement

The previous Chapter 6 debates the importance of data preparation in ev-
ery data-driven application and, in particular, for scientific data. Chapter 3,
and later in Chapter 5, explain how the adoption of a Data Ecosystem (DE)
changes the business process for the development of a scientific predictive
model. Such change not only speeds up the overall process, which was
mainly a manual procedure, but includes new steps that improve the reli-
ability and final quality of the predictive models, with, for instance, data
preparation, data transparency, and data science techniques. Moreover,
Chapter 3 and Section 5.3 describe how the validation and the following
analysis phases are central to the predictive model development process,
in particular, to improve the model’s predictive capabilities. However, as
stated in Chapter 2, there is no standardized procedure for doing so, and
a ubiquitous, fair, and transparent procedure is necessary to make, for in-
stance, different predictive model performances comparable and automate
the model improvement stages [110]. Therefore, Section 7.1 suggests a
systematic and automatic model evaluation procedure. Such a procedure
first objectively assesses the model’s predictive performance and then au-
tomatically and systematically studies the model’s predictive capabilities,
suggesting future improvements.
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Section 4.1 illustrates that simulations are particularly computationally
expensive. In many practical situations, it raises the necessity to develop
a surrogate model (or metamodel), usually with a black-box strategy [34].
Therefore, it is necessary to take a step forward in the context of predictive
model generation. Section 7.2 proposes a new adaptive sampling algorithm
that selects the smallest and most representative set of training data that
can be employed to create a metamodel for faster predictions and, thus,
reducing the expensive resources needed for training. In addition, adaptive
sampling algorithms can also be used for Design of Experiment (DOE),
identifying the domain settings that lack representative data.

Similarly, Section 7.3, centered around the Chemical Reaction Neural
Network (CRNN), studies the application of this particular Neural Ordinary
Differential Equation (NODE) that combines the generalization capabilities
of black-box neural networks with the integration of chemical-physical law,
typical of white-box predictive models, in the learning procedure. This
preparatory study aims to develop a predictive model for hydrogen data
integrating element conservation in the Neural Network (NN).

Finally, Section 7.4 discusses the ethical implication, hazard, and miti-
gation regarding the predictive model development process.

7.1 Model Evaluation

Even though scientific predictive models have been developed for decades,
no unique and detailed evaluation methodology exists. The model val-
idation (or assessment) procedure links the development of a predictive
model to the experimental data. It quantifies the predictive model’s per-
formance by comparing its predictions with corresponding experimental
measurements. Traditionally, this comparison has been conducted manu-
ally through a graphical approach, where experimental and simulated data
are plotted together in the same figure, and researchers assess whether the
model’s predictions are sufficiently accurate to consider the model accept-
able [175]. Even if model validation is a “poorly posed problem” [175],
this approach has two limitations: (i) It lacks objectivity because different
individuals can perceive the evaluation differently. (i1)) Manual validation is
not extensive due to its time-consuming nature, which is highly dependent
on the availability of human resources. Consequently, it is only possible to
modify the model occasionally since each change requires re-validation of
the model to check the impact of the modification on the predictive perfor-
mance. This problem is known as the “short blanket” dilemma [120]. Ad-
ditionally, a manual validation fails to extract systematic insights about the

92



7.1. Model Evaluation

model’s behavior from large datasets, which could be central in discovering
recommendations for enhancing the model [120]. Introducing a numerical,
hence objective, validation procedure addresses the first challenge by de-
livering an impartial assessment of the model’s performance. This section,
therefore, proposes the following model evaluation procedure that follows
the principles of objectivity and systematicity. It involves three main phases
(see Figure 7.1): data assessment, model validation, and model analysis.

As discussed in the previous Chapter 6, the data assessment phase is a
fundamental step. In this phase, various data characteristics are evaluated
since they directly influence the quality of the outcomes. It quantifies the
quality and diversity of the validation set of experimental data chosen for
the following model validation and analysis. It is crucial that the collection
of experimental data is as extensive, diverse, and high-quality as possible
to mitigate the risk of overfitting the model to the selected data or providing
erroneous information in the subsequent phases. This phase can be partially
conducted during the model evaluation procedure and partly supported by
automatic data quality control procedures defined within the management
of the DE. During the model validation phase (Section 7.1.1), the similar-
ity, represented as a score, between the experimental data and the model
predictions (or simulated data) is quantified. The similarity score, or index,
is a measure of how closely the simulated data aligns with the experimental
data, and it typically ranges from O to 1, where 1 indicates perfect simi-
larity. Finally, the model analysis, as described in Section 7.1.2, utilizes
the validation results and data science techniques to extract insights about
which aspects of the model perform inaccurately, where these inaccuracies
occur, why they occur, and how much they affect the model’s performance.

A DE is required to implement such an automatic procedure to elabo-
rate big data and promote collaboration within the scientific community.
It not only helps streamline and significantly reduce the time and human-
related errors involved but is also a prerequisite for successfully implement-
ing this automated approach. Table 7.1 provides an overview of the avail-
able techniques, categorized into quantitative and qualitative approaches.
These techniques regard both model validation tools and analysis technolo-
gies, which serve the purpose of systematically understanding the model’s
behavior. Validation and analysis methods are further classified into coarse
and fine-grain categories. Coarse-grain methodologies are capable of sum-
marizing multiple aspects and handling large volumes of data, while fine-
grain approaches involve deeper and more pinpointed investigations.
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Model Similarity
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Figure 7.1: The proposed model evaluation methodology.

Validation Analysis
Qualitative ‘ Quantitative Quantitative
Pattern Detection
= Coarse Trend Score ..
= Statistical
5 . e Point-Wise
O Fine Visualization " Interval
Score

Table 7.1: Techniques used to validate and analyze a model. * denote a tool that is
present in the literature, but it is not used in our approach. Each tool is quantitative or
qualitative and provides detailed (Fine grain) or general information (Coarse grain).
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7.1.1 Validation

The validation phase regards the quantification of the predictive model per-
formances. To be objective, the procedure employs a quantitative approach
that, by measuring the similarity between the trend (7rend score) of the ex-
perimental data points as a whole against the corresponding simulated data,
provides a synthetic index of the model’s performance. The similarity score
is computed for each experimental and simulated data pair. Once this oper-
ation is concluded, the average of all similarity indexes provides a synthetic
overview of the predictive model performance.

As introduced in Chapter 2, qualitative and quantitative are the two
macro families of model validation techniques used in the literature to com-
pare experiments to simulations (Table 7.1). Some of these techniques
rely on Cubic spline interpolation to derive a continuous function from
a discrete data set like in parametric experimental measurements. Cubic
spline interpolation defines piecewise function using third-order polynomi-
als, which pass through the given set of data points [210]. Visualization
is a subjective, and thus qualitative, comparison of the experiments against
the simulated data. Based on their expertise, the researchers evaluate the
predictive model performance without quantifying the prediction quality.
Moreover, different experts could have dissimilar opinions on the same ex-
perimental and simulated pair comparison.

Point-wise approaches define a set of score functions to measure quan-
titatively the similarity between the experimental and simulated dataset
evaluating the error point by point. These approaches are fast to com-
pute, but they do not consider that the points are stand-alone but belong
to a chemical-physical measurement trend of phenomena that could lead
to misleading results. In Figure 7.2a an example of this pitfall: even if the
trend of the simulated data point of Model 1 is quite different from Model 2,
the point-wise error of the models when computed against the experimental
data is the same. In such a family of scores, one of the most frequently used
is the following definition 7.1.1.

Definition 7.1.1 (Sum Squared Error (SSE)). SSE is defined as the sum
of the squared difference between the experimental f and the simulated G
data-points.

SSE =) (f(w:) = G(a:)* (7.1)

Similar definitions for Mean Squared Error (MSE), Mean Absolute Er-
ror (MAE), and Root Mean Squared Error (RMSE).
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Figure 7.2: Pitfall of the point-wise approaches (Figure 7.2a), and same explanatory examples of
curve matching between two functions (Figures 7.2b to 7.2d).
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Curve Matching (CM) is a quantitive trend approach, that overcames
the limitations of the point-wise approaches, accounting also for the fact
that each data point is a part of the trend. CM measures the similarity of
two functions f and g with a score € [0, 1], where 1 is the perfect similarity,
after normalization. A detailed description of the CM definition is available
in the work by Pelucchi et al. [120].

CM (Definition 7.1.2) is defined as the arithmetic mean of five indexes,
dy,,dp,, dpe, dp,, S. From a modeling point of view, using these indices
has different advantages. The Pearson indexes, both on the function d(}ge
and on its first derivative d},, and the SSE computed on both the function
d}, and the first derivative d} capture whether the model trend agrees or
disagrees with the experimental data, while the SSE on the function still
quantifies the difference point-to-point. The shift S instead measures if
the two functions are horizontally translated and are weighted twice since
it accounts for both the left and right horizontal shifts. CM also accounts
for experimental uncertainty, using a bootstrapping procedure [120]. If the
uncertainty is not provided, Curve Matching uses a default uncertainty as
suggested in the work of Olm et al. [115].

Definition 7.1.2 (Curve Matching (CM)).

dy, +di, +dp, + dp, + 25

CM(f,g9) = 5

(7.2)

Figures 7.2b to 7.2d show examples curves’ comparison using the same
indexes used by CM without normalizing neither the values of the indexes
or that of the curves. In all the examples, for simplicity, but without losing
generality, the axes are adimensional and the x-values range from O to 1.

7.1.2 Analysis

The third and last macro phase of the proposed evaluation procedure con-
sists of analyzing the similarity indexes computed during the model val-
idation. The model analysis leverages data science techniques to collect
knowledge about the predictive model’s behavior systematically.

As in many computer science applications, also in this case, there is
a need to address what is known as the “curse of dimensionality” [211].
In fact, for the model validation, each pair of experimental and simulated
data is computed as a similarity score, and an average of all of them is a
fair indicator of the general model performance. However, such an average
cannot provide detailed information about the behavior of the predictive
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Figure 7.3: Subdivision and average of the similarity scores of the experiments with the
same combination of categorical attributes (A, B, C).

model since it depends on many variables. Applying data science tech-
niques allows for managing the many dimensions that define a domain and
the thousands of similarity indexes computed during validation to extract
insights automatically.

The analysis phase is characterized by the following three steps that can
be used to study the model simulation results more in-depth: statistical
analysis, pattern detection, and interval analysis.

Statistical Analysis Experimental data are provided with additional informa-
tion (also referred to as characteristics, metadata, or properties) that can be
leveraged to statistically analyze the model performances in a complex and
multidimensional domain. First, it is possible to group the similarity in-
dexes based on common characteristics of the experiment to know which
combination of them indicates the worst model performance. Second, us-
ing correlation on the experiment metadata, it is possible to investigate why
the model does not perform well enough, i.e., outside the experimental un-
certainties, or in other words, the contributing causes.

First of all, a collection of experiments is filtered based on their sim-
ilarity score, whether it is below the first quartile (25" percentile or 1%
quartile). The percentile is computed with respect to the global distribution
of similarity scores. In such a way, the focus is immediately shifted to the
experiments with the associated worst predictive model performance.

However, it is necessary to find out which combinations of the proper-
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ties of the experiments correspond to such behavior. Without losing gen-
erality, let us assume that each experiment is characterized by the values
assumed in correspondence of three categorical properties A, B, C. Since
each property is categorical, only a precise set of values can be assumed,
and not all combinations of property values are possible in a domain. Let
us assume, for instance, that the values for each category are defined as
follows: A = {Al, A2} B ={B1,B2,B3,B4},C = {C1,...,C5}.

Following the idea pictured in Figure 7.3, it is possible to compute the
average (or other statistical measures) of the similarity scores of the exper-
iment that have a precise combination of experimental properties. Then the
combinations of properties that are statistically relevant are observed. A
combination is statistically relevant whether it has a considerable number
of cases in the quartile and a high percentage of them with respect to the
total number of existing ones with that combination of properties.

In a second moment, a correlation analysis between all the experiments
metadata, such as type of experiment and environmental conditions, to-
gether with the similarity score, suggests, for example, that the model per-
formance is due the use of particular conditions (like equipment) when a
specific variable (species for example) is measured. To this purpose, both
clustering and classification techniques can be adopted to analyze the re-
sults on a large scale.

The arithmetic mean, median, and standard deviation are mainly used as
statistical indexes for this work. In addition, the Pearson correlation [212],
the point-biserial [213] and the logistic regression [214] are used when it is
needed to correlate two variables that could be continuous or categorical.
All correlation indexes range from -1 to 1, where 1 indicates two closely
and positively correlated variables.

Pattern Detection Pattern detection algorithms, such as clustering, applied
to the similarity index, together with (numerical and continuous) physical
properties associated with an experiment such as temperature and pressure,
can automatically distinguish the portions of the domain where the model
does show larger mispredictions. Clustering algorithms group similar ex-
periments in the same cluster: taking the most representative cluster(s) with
the lowest variation of the associated performance scores, it is possible to
know which combination of physical property range is responsible for the
worst performance. Data mining is a field of data science that applies a
series of techniques to extract hidden features from large quantities of data.
In particular, pattern detection or recognition is the process of discovering
patterns and regularities in the data. Clustering is a typical unsupervised
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machine learning algorithm that allows examining a collection of data and,
given a measure of distance, groups them into clusters based on their sim-
ilarity [211]. Once the data are organized in clusters, it is possible to an-
alyze their common features and understand the pattern, the discriminant
that has brought the data together. In this work, Affinity Propagation [215]
is used as a hierarchical clustering algorithm. Affinity Propagation selects
a number of samples from the dataset as representatives of all the others.
The algorithm exchanges a message between pairs of samples to deter-
mine which one is suitable to represent the other one. Representatives are
continuously selected until convergence, at which point the final clusters
are given. Affinity Propagation, by definition, establishes the number of
clusters based on the data provided. However, two parameters need to be
set: the preference, which controls how many exemplars are used, and the
damping factor, which controls the message flow, damping some of them
to avoid numerical oscillations.

Interval analysis Once the analysis has been identified for which combina-
tion(s) of metadata and where the model is more deficient, with the devel-
oped ad-hoc analysis of the intervals, it is possible to quantify (how much)
the average deviation of the experimental curve from the simulated one.
CM, working with a large number of data, provides a synthetic score
about how good a model is. However, this synthetic result hides the de-
tailed behavior of a predictive model. Instead, interval analysis, given a
set of experimental and simulated data, computes the error of the model in
predicting specific targets, in terms of quantitative overestimation and un-
derestimation, in different ranges of a physical property (e.g., temperature).
The basic idea of dividing the physical domain into intervals for different
purposes has been used several times in the literature. However, either they
use a point-wise similarity score to assess the model performance in an in-
terval [114], or, leveraging the concept of data consistency and constraint
definition [216,217], they identify a region in the domain called "feasible
set" in which a model can be generated and optimized [218,219]. Interval
analysis, instead, uses a trend similarity score and measures the model per-
formance in each interval for model validation purposes. In other words,
curve matching summarizes the similarity between two curves, while the
interval analysis maintains the axial dimension and quantifies the overesti-
mation or underestimation of one curve with respect to the other.The dis-
advantage of maintaining a physical dimension comes with the curse of
dimensionality. However, in the procedure proposed in this paper, this al-
gorithm is used as the last step. The previous analyses have identified the

100



7.2. Adaptive Sampling

single physical dimension and group of experiments (in terms of common
features) that significantly impact the model performance.

Given as input a set of experimental and simulated data pairs having the
same variable on the abscissa and ordinate axes as input, the interval analy-
sis algorithm is divided into four phases. (i) (Figure 7.4a). Given the inde-
pendent variable operative domain, it is divided into n parts. The division
could be equally distributed or not. For example, if the independent vari-
able is the temperature and has an operating domain from 500K to 2500K,
this dimension can be divided into 200 sectors or bins, each of 10K, such as
(500K, 510K), (510K, 520K), and so on. (ii) (Figure 7.4b). For each pair of
experimental and simulated data, their corresponding splines are generated.
(ii1) (Figure 7.4c). For each bin in which the experimental and simulated
splines are defined, the area underlying the sub-portion of the domain de-
limited by the bin’s ends is calculated. Then, the ratio of the two areas is
calculated and stored, providing a precise quantification of overestimation
or underestimation of the simulated data concerning the experimental data.
(iv) (Figure 7.4d). Following the previously described procedure, once each
pair is analyzed, the model behavior can be summarized by averaging the
ratios for each bin, distinguishing for each case whether it is an underesti-
mation or an overestimation. The result of such analysis provides punctual
information about the model behavior as the value on the x-axis changes.

7.2 Adaptive Sampling

Predictive models are developed following a data-driven black-box or white-
box approach. However, regardless of the methodology, the time required
for prediction or simulation can be particularly computationally expen-
sive and, thus, time-consuming. The development of an approximation
of predictive models can overcome this limitation. Such approximations
are called metamodels and are characterized by a shorter prediction time,
even by several orders of magnitude. Their development involves three
phases: 1) DOE, also called the sampling phase, 2) development of a meta-
model, and 3) verification of the metamodel [155]. The DOE aims to select
the smallest and most informative set of points from the domain on which
the predictive model is evaluated. These data are then the training set on
which a metamodel is generated using, for instance, the kriging interpo-
lation method [220]. Finally, the metamodel approximation performances
are evaluated against a validation test. If the metamodel approximates the
predictive model well, it can be employed in many time-consuming ap-
plications, such as in optimization processes, to find the optimal solution.
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Figure 7.4: The four steps of the interval analysis procedure.



7.2. Adaptive Sampling

This work focuses on the DOE phase, thus on adaptive sampling algo-
rithms. These algorithms iteratively refine the selection of new points to
sample and can also be leveraged to optimize the training resources needed
to build a good predictive model. Selecting the smallest and most infor-
mative training set can reduce the resources needed to collect the data and
train a predictive model.

Given a function (or response surface) over a domain (or parametric
space) X, f : X — Y, where the input x € X C R” and the output is
y € Y C R. A surrogate model, or metamodel M approximates f with a
loss L(f, M, X). Given a point z € X, § = M|(x) represents the value pre-
dicted by the metamodel. Therefore, given a training dataset (or set of sam-
ples, or experimental design) of m points X = {z!,...,2™} C X, the cor-
responding training data set will be D = {(z%,%"), i = 1,...,m} where
y' = f(x'). The goal of adaptive sampling is to select and include, at each
iteration, following an adaptive strategy, anew z € Xto X (X <+ X U x)
such that M better approximate f after training on the new sample dataset
D (D < DU (z, f(z)). This procedure is repeated until a termination
condition is reached, such as the size of the sampled dataset D or a loss
L(f, M,X) value. Kriging is a standard algorithm used in the literature to
reconstruct the original response surface into model M given the training
dataset D selected by the adaptive sampling algorithm [149].

The trade-off in the generation of a surrogate model M with an adap-
tive sampling algorithm is to use the smallest set X that minimizes the
loss L. In other words, from a DOE perspective, which is the most infor-
mative point x that determines the biggest improvement in terms of £ for
M. As explained in Chapter 2, the literature identifies two major goals for
the design of an adaptive sampling algorithm: global meta-modeling and
optimization. In the first case, the focus is on the metamodel errors and
selecting the training set that best estimates the response surface over the
entire domain. In the second case, the sample points are selected from par-
ticular regions of the response surface domain, optimizing the location of
local and global minimum and maximum points. During the design of an
effective adaptive sampling algorithm, global exploration, local exploita-
tion, and the trade-off between these two should be considered [151,221].
With global exploration, the selection of the next point to be sampled re-
duces the dimension of significant unexplored domain areas by implement-
ing, for instance, distance criteria on the already available sample points.
Local exploitation, instead, guides the selection of the next point based on
the information available at the moment, such as the approximation error.
Designing a DOE algorithm should consider and balance both aspects cor-
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Figure 7.5: MADO algorithm flowchart.

rectly. Otherwise, the sampling performance and the metamodel trained on
these points will likely approximate the predictive model worse.

This work proposes an adaptive sampling algorithm, Multi Adaptive De-
launay Optimization (MADOQO), that considers all three aspects, unlike the
other adaptive sampling algorithms presented in Chapter 2. It combines
computational geometry, machine learning techniques, and a strategy to
combine these two. The generalization capabilities of NNs are leveraged
for the exploitation component. Instead, for the exploration part, the Delau-
nay triangulation conveys information about the unexplored areas with the
biggest representation errors. The results show competitive performance,
whether the goal is global metamodeling or optimization. The main steps
of the algorithm are shown in Figure 7.5 and presented in the following.
Figure 7.6 shows a visualization of the algorithm steps at a given iteration.

Delaunay triangulation is a space partitioning algorithm. Given a set
of P = x1,...,2,, z; € R?distinct (|P| = n > 3) points in a two-
dimensional space, the Delaunay triangulation of P, T (P), triangulates
the points P such that no point in P is inside the circumscribed circle of
any triangle in 7 (P). Given h as the number of convex hull of P, the
Delaunay Triangulation 7 (P) = {Aq, ..., Ag}, generates k = 2n — h — 2
triangles /\, where each triangle is a triple of vertices V € P, and A\; =
(X1, T, T5), Ty, T, ;) € P [222].

Initialization The MADO algorithm requires only a few starting points in
X located at the corners of the parametric space (or domain) X of the func-
tion f to be sampled, together with the corresponding y—values, i.e., the
sample set D. Without points X on the domain boundaries, the Delaunay
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triangulation 7 (X') would not cover the entire parameter space, potentially
excluding important regions. Without losing generability, this initialization
requirement can be combined with other typical techniques, such as Latin
Hypercube Design (LHD) (or also known as Latin Hypercube Sampling
(LHS)) or random sampling.

Neural Network Training A NN A is trained to approximate the function of
interest f, using as the training set D, i.e., the available sampled points as
expressed in Equation (7.3).

N < Train(D) (7.3)

The complexity of the NN, in terms of its architecture and hyperpa-
rameters, can significantly impact the algorithm’s effectiveness. A more
complex network or a more prolonged training procedure may be able to
approximate a complex function better but at the cost of increased com-
putational time and the risk of overfitting. Conversely, a simpler network
may be faster and less prone to overfitting, but it might not capture complex
function behavior. A good trade-off between architecture complexity and
appropriate training procedure can generate an NN good representation of
the domain while highlighting the complex domain area to represent.

Neural Network Evaluation The NN acts as an approximation function that
generalizes based on the limited information provided. When the true re-
sult deviates significantly from the NN prediction, it suggests an area of
the function domain that is more challenging to approximate. These areas,
highlighted by larger errors from the NN, are targeted for denser sampling
in the next iteration. This strategy efficiently directs the algorithm’s atten-
tion towards “difficult" areas, contributing to the exploitation part of the
algorithm. Equation (7.4) reports the computation of the error of the NN N
and the function f over X.

Delaunay Triangulation Once the NN is trained, MADO constructs a De-
launay triangulation 7 (X) of the current set of sampled points X'. Each
triangle A = {A,..A;} € T(X) represents a region of the parameter
space. k is the number of Delaunay triangulations. A; is the area (or vol-
ume if in the n-dimensional space) of each triangle A\;. The area of the
triangle is the explorative component of the algorithm.
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Centroid Computation For each triangle A; = (2}, 2, ;) = (Vi1, Vi, Vis),
Ty, Tm, x; € X in the Delaunay triangulation 7 ('), this steps computes the

centroid C; as a weighted mean of the vertices, where the weights are the

absolute errors at the vertices as shown in Equation (7.5). The centroids

tend to move towards the vertices with the highest prediction error, thus

directing the algorithm towards regions where the function approximation

can be most improved.

o 2?215(‘/@)%-
L 2?:15(‘/1'1')

For each A\;, &; is the total error of the triangle computes as presented in
Equation (7.6).

(7.5)

3
&= [EWVi) (7.6)
j=1

Triangle Ranking The algorithm then computes a score S; for each triangle
/A\; that represents the priority to sample a new point from it. This score
is a function of both the triangle’s area .4;, which represents the size of
the region it covers and the total estimated prediction error of the neural
network within this triangle &;. This dual criterion aims to balance with
the parameter ( the need to explore large unsampled domain regions and
exploit areas where the current function approximation is more uncertain
and, thus, more challenging to represent.

(AP
_gab

S; = (7.7)

New Sample Selection The last step of the algorithm loop concerns the se-
lection of the new point(s) z € X to be sampled and added in X" and then in
D after computing f(z). According to Equation (7.8), the next point to be
sampled will be from the triangle /\; with the highest score S. The value of
the new point x € X will be equal to the centroid C; computed previously
in Section 7.2, following Equation (7.5).

The number of points selected in each iteration can significantly im-
pact the efficiency and effectiveness of the algorithm. If only one point is
selected, the algorithm will need more iterations to sample the function’s
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Figure 7.6: Visual representation of the MADO algorithm steps at a certain iteration. (a)
It describes the NN evaluation on the already available sample points, the Delaunay
triangulation, and the centroid computation. (b) It depicts triangle ranking and the
selection of the next sample point.

domain, increasing computational load and execution time. However, se-
lecting one point per iteration allows it to adjust its adaptive strategy more
frequently based on the new information, potentially leading to a more re-
fined exploration and exploitation process. On the other hand, if the stop
criterion is to achieve a given number of points in D, selecting more points
in each iteration reduces the total number of iterations needed, thus poten-
tially reducing the total computational time. Moreover, selecting multiple
points can lead to a broader exploration of the function’s domain in each
iteration, as the selected points are likely to cover a wider range of the do-
main. As a drawback, this approach might also lead to less exploitation be-
havior. Therefore, selecting one or more points in each iteration represents
a trade-off between computational efficiency, exploration, and exploitation.
S = arg max S; (7.8)
7

Following the literature practices [149], the validation methodology is

as follows. The evaluation metrics include the Normalized Root Mean
Squared Error (NRMSE), Normalized Mean Absolute Error (NMAE), Min-
imum Normalized Mean Absolute Error (NMAE,,,;,,), and the coefficient
of determination (R?). This thesis employs the Gaussian Process Regressor
(GPR) [220] to approximate the target function for all experiments. The
MADO algorithm is tested against 14 test functions to generate 100 points
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as training data across the function domain and is evaluated over a 200 x 200
grid of the domain used as validation dataset. A visualization of the sam-
pled points by the MADO algorithm and the original and the reconstructed
function is depicted in Figure 7.7.

The experimental design comprises two objectives: assessing recon-
struction quality (Section 7.2.1) and analyzing algorithm features (Sec-
tion 7.2.2). For the first objective, this thesis conducts a comparative analy-
sis to assess the performance of the proposed adaptive sampling algorithm
against conventional sampling methods [223], such as LHD with both ba-
sic [224] and maximin sampling (LHD,,,qzimin) criteria [225,226]. Thus,
it evaluates the reconstruction quality achieved by GPR models trained on
datasets generated through these three sampling methods. This analysis en-
ables to determine the ability of each algorithm to select informative sam-
ples for reconstructing accurate surrogate models. The second goal is to
investigate the behavior of MADO in balancing the exploration or exploita-
tion component by adopting different criteria for calculating the 5 param-
eter according to the Ramp, Exponential, or Sigmoid function, normalized
between 0 and 1, and changing the number of selected points per itera-
tion (1, 5, and 10). The latter characteristic determines the granularity and
speed at which the algorithm explores the domain space. For instance, by
selecting more points at each iteration, the algorithm could reach the termi-
nation condition quicker but potentially at the expense of worse accuracy
in specific space areas. Both characteristics can be tuned to improve the
algorithm’s performance across different applications and scenarios.

7.2.1 Reconstruction Quality

Table 7.2 and Table 7.3 present a detailed illustration of each technique’s
performance metrics across the 14 test functions. From these tables, several
insights into the comparative performance of the LHS (both basic and max-
imin variations) and the proposed MADO sampling method can be drawn.
Firstly, in the majority of test functions, MADO consistently outperforms
both versions of LHS in terms of NMAE, NMAE,,,;,, NRMSE, and R?,
suggesting that MADO is more proficient in capturing the underlying be-
havior and complexities of the functions under examination. The partic-
ularly lower values of NMAE and NRMSE for MADO in functions such
as DropWave, Franke (Figure 7.8), and Griewank emphasize an ability to
accurately represent areas where the functions have sharp variations, peaks,
troughs, or changes in the sign of their derivatives. Furthermore, the R? val-
ues underline MADQ’s efficiency, as it consistently records values closer
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Figure 7.7: A comparison between the original test function (magenta surface) and its
reconstruction achieved by the MADO algorithm (cyan surface). The magenta dots
represent the sampled points used for reconstruction. The background displays the dis-
tribution of normalized absolute error between the original and reconstructed surfaces,
with darker regions indicating higher error. The plot highlights MADO'’s effectiveness
in generating informative sample points for accurate surrogate model construction.
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LHD pimin MADO,cpponential, 5

Error

Figure 7.8: Visualization of sample placements for the Franke function across three
sampling methods. (a) The LHD exhibits uniform distribution across intervals. (b)
LHD,,qzimin emphasizes a dispersed placement, enhancing point separations. (c)
MADO'’s samples focus on intricate function regions — peaks, troughs, and sign-
changing derivative points, indicating its precision. (d) LHD reveals its limitations in
normalized absolute error assessment against the Franke function, especially in com-
plex regions. (e) LHD,, ximin, despite its spread, presents errors in nuanced function
regions. (f) MADO showcases reduced and uniformly distributed errors, emphasizing
its detailed sampling capability.
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NMAE NMAE, ;..

LHDhn,sv' c LHDmu,:m',mv‘m MADO LHDIm sic LHDma,:r,i,m in MADO
Ackley 0.009 0.006 0.003 0.272 0.716 0.021
Bird 0.049 0.039 0.026 0.207 0.066 0.001
Bohachevsky 0.011 0.006* 0.006* 0.000 0.001 0.004
Booth 0.004 0.002* 0.002* 0.001* 0.001* 0.001*
Branin 0.033 0.015 0.009 0.006 0.007 0.000
DropWave 0.152 0.272 0.004 0.013 0.341 0.001
Franke 0.018 0.010 0.002 0.058 0.348 0.000
Griewank 0.218 0.215 0.076 0.334 0.288 0.036
Himmelblau 0.045 0.014 0.019 0.009 0.004 0.001
Levy 0.108 0.123 0.091 0.016 0.018 0.016
Michalewicz 0.082 0.081 0.047 0.425 0.445 0.341
Rastrigin 0.101 0.105 0.097 0.127 0.138 0.000
Rosenbrock 0.028 0.015 0.011 0.030 0.067 0.024
SixHumpCamel 0.175 0.074 0.009 0.042 0.260 0.004

Table 7.2: Comparison of MADO (our) with LHDyqs;c and LHD p,q2imin according to the
NMAE and NMAE,,;,, metrics against 14 test functions. Values in bold represent the
best score achieved for each respective test function (row), while asterisks (*) denote
the overall best score across all rows. Please note that due to rounding, some values
may appear identical, but only one holds the best score.

to 1, suggesting better prediction capabilities than the other two methods.
This distinction is more evident in Ackley, DropWave, and SixHumpCamel
functions.

Considering the LHS variants, the difference between LHS,, ;. and LHS,,,02imin
shows varied results across functions. However, LHS,,,,.imin 1S generally
slightly better, most likely due to its enhanced dispersion of samples, as in
the cases of Bohachevsky and Himmelblau.

7.2.2 MADO’s features

Tables 7.4 to 7.6 and section 7.2.2 show the performance result obtained
by varying both the S calculation criterion and the number of points se-
lected in each iteration. Instead, Figure 7.9 directly compares the different
B calculation criterion with the same number of sampled points for each
algorithm iteration for the DropWave test function. The Delaunay trian-
gulation, central to MADO, inherently imposes a spatial structure on the
sampling. Adding multiple points within a single iteration ensures that
these points are sampled in separate triangles, hence distinct regions of the
parametric space. This mechanism disperses the sample points, leading to
a geometrically spread-out distribution, thereby bolstering the explorative
characteristic of the algorithm. On the other hand, opting for a single point
per iteration allows the algorithm to delve deeper into a specific region by
splitting existing triangles. Moreover, when sampling more points at each
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Figure 7.9: Sampling strategies on the DropWave function and associated kriging model
errors. (a-c) Display 500 samples within [—0.6,0.9] x [—0.6,0.9] using Ramp, Expo-
nential, and Sigmoid criteria. (a) (Ramp) densely targets the function’s extremes, occa-
sionally sidelining peripheral regions. (b) (Exponential) strikes a harmonious balance
between exploration and exploitation, ensuring a more equitable point distribution. (c)
(Sigmoid) accelerates from exploration to intense exploitation, closely resembling the
Ramp’s concentration on function’s critical points. (d-f) Depict the reconstruction er-
rors from fitting a kriging model to these samples. (d) and (f), corresponding to Ramp
and Sigmoid, achieve high precision in primary areas but show discrepancies towards
the domain’s edges. Conversely, (e) (Exponential) maintains a uniformly distributed
error, reflecting its balanced sampling approach.
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NRMSE R?

LHDhn,sv' c LHDmu,:mmv‘m MADO LHDIm sic LHD maximin MADO
Ackley 0.041 0.032 0.005 0.356 0.601 0.990
Bird 0.074 0.056 0.042 0.766 0.868 0.926
Bohachevsky 0.021 0.015 0.012 0.992 0.996 0.997
Booth 0.010 0.004 0.003 0.997 0.999 1.000
Branin 0.068 0.032 0.021 0.820 0.959 0.983
DropWave 0.200 0.305 0.008 0.618 0.108 0.999
Franke 0.047 0.035 0.003 0.879 0.934 0.999
Griewank 0.263 0.259 0.134 0.098 0.126 0.765
Himmelblau 0.077 0.023 0.031 0.694 0.972 0.951
Levy 0.141 0.154 0.124 0.407 0.290 0.545
Michalewicz 0.122 0.127 0.076 0.533 0.494 0.818
Rastrigin 0.132 0.133 0.125 0.364 0.350 0.430
Rosenbrock 0.052 0.029 0.021 0.883 0.963 0.980
SixHumpCamel 0.339 0.138 0.018 0.092 0.709 0.987

Table 7.3: Comparison of MADO (our) with LHDyqs;c and LHD . 2imin according to the
NRMSE and R? metrics against 14 test functions. Values in bold represent the best
score achieved for each respective test function (row), while asterisks (*) denote the
overall best score across all rows. Please note that due to rounding, some values may
appear identical, but only one holds the best score.

iteration is combined with the Exponential beta criterion, which retains a
low beta value for most of the iterations, it favors a pervasive exploration of
the function’s domain. However, this can result in a later placement of the
sample points in the maximum or minimum of the test function. The Ramp
criterion offers an adaptable progression. It initiates with a phase remi-
niscent of the exponential’s broad exploration but can be tailored to shift
gears toward exploitation depending on the point where the ramp ascent is
set. The Sigmoid criterion selects high beta values earlier, resulting in a
prolonged exploitation phase than the Ramp. This characteristic, especially
when paired with multiple-point selections, can expedite the exploitation
algorithm’s behavior, potentially at the expense of global exploration. In
summary, the Sigmoid, with its extended high beta phase, might be the fron-
trunner for optimization-focused endeavors, whereas the adaptable nature
of the Ramp can serve as an intermediary, fusing the traits of both Exponen-
tial and Sigmoid. The Exponential criterion, particularly when paired with
multiple point selection per iteration, achieves detailed exploration, which
is necessary for global metamodeling. A visualization of these properties
is represented in Figure 7.10. However, the ideal configuration remains
intricately tethered to the specifics of the target function and the user goal.

This section proposes a new adaptive sampling algorithm that selects
the smallest and most informative data set to be included in the training.
Such capabilities reduce the computational resources needed to generate
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Figure 7.10: The figure illustrates the sampling results on the Ackley function, character-
ized by a smooth landscape with a prominent global minimum at the domain’s center,
using three different sampling criteria. In panels (a) to (c), the sampling distributions
for the Ramp, Exponential, and Sigmoid criteria are depicted, respectively. The Ramp
and Sigmoid criteria both tend to sample near the global minimum. Instead, the Ex-
ponential criterion delivers a more uniformly distributed sample set, lacking attention
near the minimum. Panels (d) to (f) present the associated reconstruction errors for
each criterion. While the Ramp and Sigmoid criteria achieve good precision around
the minimum, the Exponential approach, with its sustained explorative strategy, incurs
a larger reconstruction error.
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Exponential Ramp Sigmoid

N_selected 1 5 10 1 5 10 1 5 10

Ackley 0.005 0.003 0.001 0.008 0.021 0.016 0.002 0.026 0.019
Bird 0.026* 0.026 0.027 0.032 0.036 0.029 0.037 0.033 0.035
Bohachevsky 0.006 0.006 0.006%* 0.009 0.019 0.017 0.017 0.033 0.023
Booth 0.002  0.002*  0.002 0.005 0.005 0.007 0.005 0.009 0.013
Branin 0.012  0.009 0.010 0.016 0.014 0.023 0.022 0.021 0.030
DropWave 0.005  0.004 0.004* 0.010 0.007 0.008 0.024 0.016 0.016
Franke 0.003  0.002 0.006 0.003 0.005 0.003 0.006 0.004 0.030
Griewank 0.064 0.076  0.066 0.073 0.108 0.090 0.099 0.117 0.141
Himmelblau 0.019*  0.019 0.021 0.022 0.034 0.044 0.034 0.043 0.052
Levy 0.100  0.091 0.091 0.089 0.087 0.088 0.095 0.086 0.088
Michalewicz 0.049  0.047 0.051 0.067 0.054 0.055 0.072 0.059 0.064
Rastrigin 0.089  0.086* 0.087 0.095 0.089 0.086 0.091 0.093 0.087
Rosenbrock 0.011 0.011* 0.012 0.015 0.019 0.020 0.022 0.025 0.027

SixHumpCamel  0.011 0.009  0.009* 0.012 0.013 0.015 0.014 0.025 0.021

Table 7.4: NMAE metric scores for the examined test functions. Values in bold represent
the lowest NMAE score achieved for each respective test function (row), while asterisks
(*) indicate the overall best score across all rows. Please note that due to rounding,
some values may appear identical, but only one truly holds the best (lowest) NMAE
score.

or collect training data, addressing the problem of low availability of data
in scientific fields and the greediness of machine learning algorithms. The
following section will focus on using training data to generate scientific pre-
dictive models that are interpretable and do not violate the laws of physics.

7.3 Chemical Reaction Neural Network

This section presents a preliminary study regarding the application of CRNN
to develop a predictive model for hydrogen experiments in the field of
chemical kinetics. CRNN [227] is a particular NODE [228], that is aimed
at learning the reaction pathways combining the generalization capabili-
ties of NN, ingesting data and discovering patterns while ensuring that the
fundamental physic laws are fulfilled. CRNN is fully interpretable since
the model parameters correspond to the weights learned during the training
procedure. Other development of CRNN, B-CRNN [168], also accounts
for the experimental uncertainty.

VaA+vpB — voC +vpD (7.9)

A general elementary reaction is presented in Equation (7.9). Without
losing generality, it involves four species S = {A, B, C, D} with the cor-
responding stoichiometric coefficients v4, vg, Vo, Vp.
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Exponential Ramp Sigmoid

N_selected 1 5 10 1 5 10 1 5 10

Ackley 0.864 0.021  0.130 0.029 0.002* 0.002 0.074  0.008 0.005
Bird 0.002 0.001 0.012 0.000%* 0.008 0.000 0.000 0.000 0.000
Bohachevsky 0.004  0.004 0.001* 0.001 0.010 0.011 0.008 0.006 0.012
Booth 0.000 0.001 0.002 0.001 0.001 0.002 0.000% 0.001 0.006
Branin 0.000  0.000* 0.001  0.000 0.000 0.001 0.003 0.002 0.003
DropWave 0.002  0.001 0.001* 0.001 0.033 0.005 0.119 0.004 0.027
Franke 0.003  0.000 0.204  0.000 0.000 0.000 0.003 0.000% 0.263
Griewank 0.016 0.036  0.025 0.003 0.003* 0.068 0.019 0.045 0.291
Himmelblau 0.000% 0.001  0.000 0.002 0.001 0.008 0.001 0.003 0.007
Levy 0.019 0.016 0.020 0.020 0.020 0.019 0.024 0.016* 0.016
Michalewicz 0.002  0.341  0.010 0.328  0.000 0.000 0.000 0.000%* 0.000
Rastrigin 0.078  0.035 0.057 0.036 0.019 0.035 0.078 0.031 0.032
Rosenbrock 0.024  0.024 0.029 0.001 0.029 0.031 0.032 0.032 0.032

SixHumpCamel  0.003  0.004  0.001 0.008 0.003 0.001 0.003 0.012 0.000

Table 7.5: NMAE,,,;,, metric scores for the examined test functions. Values in bold repre-
sent the lowest NMAE,,;,, score achieved for each respective test function (row), while
asterisks (*) indicate the overall best score across all rows. Please note that due to
rounding, some values may appear identical, but only one truly holds the best (lowest)
NMAE,,;», score.

The law of mass action defines the reaction rate r of Equation (7.9) as
in Equation (7.10).

r— k[A]l/A[B]Z/B [C]Vc [D]I/D (7.10)

Equation (7.10) can be rewritten as in Equation (7.11)

r=exp(Ln k+valn [A]+vgLn [B] + vcLn [C]+vpLn [D]) (7.11)

The formulation of the law of mass action presented in Equation (7.11)
has the same structure as the formula of NN y = o(w x + b) (Figure 7.11),
where the weights w are the stoichiometric coefficients, the bias is the log-
arithm of the kinetic constant k, and the input x are the concentration of the
species [A], [B], [C], [D]. The output y corresponds to the formation rates
of the concentrations %, %, %, %. An ODE solver is able to com-
pute the concentration [A], [B],[C],[D], given their formation rate, thus
providing the predicted concentrations by CRNN. With the predicted con-
centration, it is possible to compute a loss function between the predictions
and the real concentrations. The loss function can then be employed in a
gradient descent algorithm to optimize the learned value of the stochiomet-
ric coefficients, i.e., the network weights w.

If the rate constants are also temperature dependent, it is possible to

include in a similar way the Arrhenius law as following Equation (7.12).
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Exponential Ramp Sigmoid

N° selected 1 5 10 1 5 10 1 5 10

Ackley 0.040 0.005 0.004 0.010 0.025 0.019 0.005 0.030 0.022
Bird 0.038 0.042 0.041 0.052 0.055 0.044 0.060 0.050 0.052
Bohachevsky 0.013  0.012 0.012* 0.016 0.024 0.022 0.029 0.042 0.029
Booth 0.004 0.003 0.004 0.008 0.007 0.009 0.008 0.013 0.017
Branin 0.025 0.021 0.019 0.026 0.026 0.033 0.036 0.033 0.038
DropWave 0.013 0.008 0.009 0.037 0.017 0.021 0.058 0.030 0.034
Franke 0.004 0.003 0.020 0.005 0.010 0.005 0.015 0.007 0.069
Griewank 0.109 0.134 0.114 0.112 0.177 0.149 0.159 0.186 0.221
Himmelblau 0.030 0.031 0.031 0.032 0.043 0.053 0.043 0.052 0.062
Levy 0.132 0.124 0.123 0.115 0.114 0.113 0.122 0.115 0.118
Michalewicz 0.081 0.076 0.082 0.117 0.090 0.085 0.123 0.091 0.094
Rastrigin 0.111  0.107 0.109 0.120 0.111 0.108 0.113 0.116 0.108
Rosenbrock 0.023 0.021 0.023 0.026 0.028 0.028 0.035 0.034 0.036

SixHumpCamel 0.021 0.018 0.017 0.021 0.023 0.028 0.021 0.038 0.039

Table 7.6: NRMSE metric scores for the examined test functions. Values in bold represent
the lowest NRMSE score achieved for each respective test function (row), while aster-
isks (*) indicate the overall best score across all rows. Please note that due to rounding,
some values may appear identical, but only one truly holds the lowest NRMSE score.

Eq
Ink=InA+bLnT AT (7.12)

This thesis investigates the characteristics of CRNN in different condi-
tions. Given a synthethic reference model in Table 7.8 of four reactions R
and five species S. The analysis dimensions regard the quantity of experi-
mental data used for the training, the diversity, and the noise level (or un-
certainty) in the experiments. In this preliminary evaluation are performed
392 tests. For each test, it is generated a different training dataset using the
synthetic model presented in Table 7.8. The 392 tests are generated accord-
ing to the following elements: the quantity of training data varies from 20
up to 1500, the wideness of the initial condition on which the experiments
are generated varies from 1 to 15, and the noise in the data from 0% up to
40%. An example of noisy experimental data and the corresponding ground
truth included in the training set is presented in Figure 7.12.

Figure 7.13 presents the correlation matrix between the analysis dimen-
sions of the test cases, computed using the Kendall correlation. The cor-
relation matrix suggests that CRNN is robust to noisy data and does not
require much training data. However, running the test cases, it has been
observed that some training instances diverge, as shown in the plot of the
loss function in Figure 7.14.

After investigating the source of such problem as in Figure 7.15, the dif-

117



Chapter 7. Model Evaluation and Improvement

Ln[4] [4]
va
Ln[B] vp PN / \ B]
Vo r\ +/\>—{\ exp(z) \l‘
Ln)| \ ’
€] " A \ - / €
Ln[D] D]
! E
R 4 YN
>¢\ +
\ T/
LnT
Ln A

Figure 7.11: Chemical Reaction Neural Network architecture.
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Figure 7.12: (a) Example of ground truth of experimental data. (b) Example of experi-
mental data in the training set of a given test case.
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Correlation Method: kendall
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Figure 7.14: Plot of the loss function for a divergent training instance.
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Exponential Ramp Sigmoid

N_selected 1 5 10 1 5 10 1 5 10

Ackley 0.377 0990 0994 0960 0.753 0.864 0.989 0.650 0.811
Bird 0939 0926 0928 0.886 0.873 0919 0.849 0.895 0.884
Bohachevsky 0.997 0.997 0.997% 0995 0988 0990 0.984 0.966 0.984
Booth 0999 1.000 0.999 0998 0998 0.997 0.998 0.995 0.991
Branin 0975 0983 0986 0973 0974 0958 0.950 0.957 0.943
DropWave 0.998 0.999*% 0.999 0987 0997 0996 0968 0.991 0.989
Franke 0.999 0.999% 0979 0999 0994 0998 0.988 0.997 0.744
Griewank 0.846 0.765 0.830 0.836 0594 0.712 0.672 0.550 0.365
Himmelblau 0953 0951 0950 0946 0906 0.853 0.904 0.858 0.801
Levy 0.484 0545 0551 0.607 0.615 0.623 0.555 0.607 0.586
Michalewicz 0.798 0.818 0.789 0.574 0.749 0.777 0.533 0.741 0.726
Rastrigin 0.602 0.633 0.622 0.542 0.606 0.630 0.590 0.571 0.627
Rosenbrock 0976 0980 0.977 0970 0966 0.965 0.946 0.950 0.943

SixHumpCamel 0.985 0990 0991 0986 0.983 0975 0986 0954 0.951

Table 7.7: R? metric scores for the examined test functions. Bold values indicate the
highest score achieved for each respective test function (row), and asterisks (*) denote
the overall highest score within each row. It’s important to note that due to rounding,
some values may appear equal, but only one is the true highest score.

2A — B
B—C
C—>D
B+D—FE

Table 7.8: Syntethic model. Four reactions, five species.

ference between the learned model before (Table 7.9) and after (Table 7.10)
consists in the consumption of the species F, even if it is never generated
and its initial concentration is 0. Therefore, during the learning procedure,
the model is proposing a unphysibale solution in which it is consuming a
species that does not exist, violiting the physic laws.

7.3.1 Element Conservation

A possible solution to ensure that the learned predictive model does not
violate the physical laws is to impose element conservation in each reaction.

0.1B+09C — 0.6A+0.1D+04F

0.7A+0.1B+0.1F — 0.5C +0.1D

294+ 0.1D - 14B+0.1C + 0.2FE
0.9B +0.9D — 0.4C + 0.5E

Table 7.9: Stochiometric coefficients before the loss function peak.
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Predicted Concentration pre-peak Predicted Concentration post-peak
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Figure 7.15: CRNN prediction of a given set of experimental data (a) before the peak and
(b) after the peak in the training loss function Figure 7.14.

0.6C +0.1F — 0.6A+0.2B+ 04D

1.1A+0.1F - 0.2B+0.9C + 0.4D

2.6A+0.5D +0.3E — 0.9B 4+ 0.2C
0.5B+1.1D — 0.2A + 0.4C

Table 7.10: Stochiometric coefficients after the loss function peak.

In other words, the number of elements generated and consumed in each
reaction must be preserved between the reaction reactants and products. In
the literature, there are two possible ways to enforce constraint in a neural
network [181]. The first one (Hard constraint) is enforcing the constraint in
the NN architecture [229,230], the second (Soft constraint) is to penalizes
the prediction of the NN does not fulfill the constraint [231-233]. The
second case is also known as Physically Informed Neural Network (PINN).

However, to the best of my knowledge, nobody has enforced the ele-
ment conservation in a NN. Therefore, this thesis proposes the following
methodology to ensure element conservation as a soft constraint.

A species A can be composed of multiple elements. For instance, water,
H50, is composed of two elements of hydrogen ' and one of oxygen O.

Given a model, it is possible to construct its stochiometric matrix Sy; =
|S| x |R| where each cell specifies the stochiometric coefficient of the
species ¢—th in the j—th reaction.
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For instance, given the model in Table 7.8, the S);is | 0 1 —1 0

0 0 0 1

The reactants have negative values, whereas they are positive for the prod- -
ucts. Similarly, it is possible to define an element composition matrix
Ey = |S| x |E|, where E is the set of the existing elements in the model.
Examples of elements are hydrogen H, Oxygen O, and Carbon C. For
instance if S = {H20;COs; Hy} and E = {H, O, C'}, the corresponding

2 1 0
Ey=10 2 0
1 -1 0

The element loss LossE; for each reaction in Sy, is computed con-
sidering the j—th column as follows in Equation (7.13). The element-
stochiometric matrix is defined as ES = Sy o (R; x 1151), where 11/ is
row-vector of ones of dimension |D|. « is a correction factor to normalize
the magnitude of the learned stochiometric coefficient. Two different o can
be defined, one for the reactants and one for the products, such as at least
one reactant, and one product has at least a stochiometric coefficient of 1.

Bl 58 B g
LossE; = J=1|z|:]’;|1 ! (7.13)

Finally, the total element loss of a model is the sum of the single element
loss of each reaction (Equation (7.14)).

|R|
LossE = Z LossE; (7.14)

j=1

Future works will investigate the application of such element loss in
CRNN. However, so far, different ideas have been investigated to evaluate
and develop a scientific predictive model objectively, but it is also impor-
tant to investigate some ethical considerations of such procedures and the
possible mitigations.
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7.4 Data Ethics

Predictive models are increasingly persuasive in every area of daily life,
from engineering to the social sciences. Their use is gradually going to
automate and replace areas that were typically done or are no longer sus-
tainable manually. Recently, their deployment has been facilitated by the
increasing amount of data on which it is possible to build predictive models
using a data-driven approach, often using data science techniques.

The first wave of data science aimed to improve predictive models in
terms of accuracy and efficiency. However, all the ethical implications and
the careless use of these models have been overlooked. After several ethical
problems arose during the second wave of data science, the focus shifted
from what could be done with data to what and how we should or should
not do with it. As a result of this new ethical attention to the use of the
data, methodologies were proposed to analyze the entire life cycle of the
data. Data Quality (DQ) is one of the main factors that are often under
the spotlight. It is fundamental to build an accurate and ethical predictive
model since it directly affects the model’s outcomes. However, other data-
related aspects are also important, such as diversity and provenance.

This section discusses that such aspects are also important and should
be regularly treated in the data science ethical-technical debate. Therefore,
starting from practical examples, the following first presents data quality,
diversity, and provenance problems. Then, it discusses the corresponding
trade-offs and mitigations and how they coexist and cooperate to address
ethical issues from a technical perspective.

In 2006, British mathematician Clive Humby used for the first time the
expression “Data is the new oil." That phrase, which at the time might have
seemed almost like a provocation, we know today that phrase is a reality.
From that time, there has been a real “data-oil"” rush, in which we have
witnessed the use of terms such as big data, data analytics, and artificial
intelligence entering the ubiquity of everyday life. Universities have also
adapted to this phenomenon. They started to propose entire degrees on
these topics to meet the growing demand for data-related positions. Com-
panies, sometimes also dazzled by the promising results of the employment
of a large amount of data and to maintain a certain appeal with the product’s
market, push hard to launch applications of this kind or create job positions
that include these main-stream terms in the name.

Artificial intelligence and, more in general, data science-related topics
have brought both positive and negative benefits. Indeed, due to the nu-
merous scandals, it is evident that there is a lack of responsible develop-

123



Chapter 7. Model Evaluation and Improvement

ment [234] creating even more accentuated social inequalities [235]. As a
countermeasure, the public sector is increasingly forced to pursue ethical
policy in its algorithms, constantly under scrutiny and criticism [235].

Nowadays, artificial intelligence capabilities are not in doubt. In some
fields and tasks, they even overpower human capabilities, although how
to actually evaluate these capacities is still a matter of debate [236]. To
achieve such levels, there is a need to manage, process, and analyze large
amounts of data. Then a data scientist uses the data to create a predictor.
A predictor is a tool that predicts a not known situation based on what they
have seen in the past. In these terms, the predictor has learned patterns in
the data, hence the term “machine learning". They are difficult-to-interpret
tools that are gradually supplanting many human tasks, even of social and
ethical significance, for their fast ability to perform tasks.

For these promising prospects, data scientists are often under pressure
to deliver a product quickly, such as a predictive model. However, the rapid
and, therefore, often uncontrolled development implies that they are not
considering aspects such as the ethical implications. These implications are
due to how the product has been used or built [237]. In other words, data
scientists often have no idea of the power they have by developing these
types of products, so they act careless and indifferent to these types of prob-
lems and their possible consequences [238]. Other scholars, on the other
hand, believe that this technical-social gap is not due to carelessness but
rather to the incredible complexity of the problems to be addressed [238].
In her book Weapons of Math Destruction Cathy O’Neil points out that data
scientists need to recognize how big companies use their skills to achieve
business goals without thinking about the consequences [239], even if it is
still under discussion [238]. What is not disputed is that given the obvious
problems and the active ethical and not ethical discussion, there is a regu-
latory emptiness, and the existing frameworks are not troubleshooters for
practitioners [234,235,238]. It is fundamental to cover this gap, includ-
ing in the discussion both ethical and technical perspectives and include
all kinds of persons involved in the design, delivery, and employment of a
data-driven product [235,240].

Nowadays, there is a need to process very large amounts of data with
fewer and fewer resources, including human resources. The only solution
to keep the rhythm is to employ automatic tools where possible, and in
the activities where there is a social or technological challenge (for now)
in replacing the human, you flank it with an intelligent component. In the
meanwhile, these algorithms are becoming much more complex and chal-
lenging to explain and interpret the results. Instead, it was easier in the past
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since they were also designed for simpler tasks. What is left is the trust in
algorithms, and technology in general, that can perform a human task fast,
precisely, and reliably.

The development of predictive models is the result of a long pipeline of
tasks, where data is processed, and it is the main protagonist. These tasks
vary from data collection and preparation to annotation and visualization.
Ethical requirements can be viewed in terms of DQ dimensions [241]. So
that only data that meet ethical requirements are to be considered of high
quality. Starting with DQ, this chapter describes, from a technical perspec-
tive, two other critical ethical aspects that can be seen as DQ dimensions:
Data Diversity and Data Provenance. In particular, it follows the design
principles for ethical research in the era of big data to achieve qualitative
research [242]. These topics are critical since they can be translated into
fairness, neutrality, and transparency in data analysis [243].

7.4.1 Data Quality

Nowadays, data is being generated and collected at an unprecedented rate.
DQ is a fundamental aspect of data management since it directly affects ev-
eryday life since many decision-making applications are built on a massive
amount of data, also known as Big Data [9, 196,244].

On the other hand, DQ has been increasingly investigated in recent
years. In fact, DQ, with the study and then the definition of several DQ
dimensions, objectively quantifies the quality of a data set, checking if the
DQ rules associated with a dimension are fulfilled and how often. The most
typical DQ dimensions are completeness, consistency, accuracy, unique-
ness, and timeliness. There are multiple examples of poor DQ with ethical
implications in the literature.

In 2000, the US Presidential election caused quite a stir due to, among
other issues, poor DQ of the voter registration database [245]. These data
were affected by duplicated registrations (uniqueness), incorrect addresses
(accuracy), and missing information (completeness). All these aspects could
be identified by a data profiling activity in which the proper DQ dimen-
sions are assessed. Similar problems are registered in the healthcare sys-
tem [246], supply chain [247] and finance [248], resulting in an estimated
cost of around billions of dollars per year [244,249,250].

From these examples, it looks straightforward that better DQ implies
ethical applications and vice versa. Although the application of the DQ rule
and its measurement is objective, the definition of the rules to be checked
and which DQ dimension should be investigated is not. In fact, the “fitness
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Name Age  Driving License ID
Tom 22 Al1234
Elizabeth A2321

Ben 25

Ashlee 7

Table 7.11: A toy example about the arbitrariness of the application of data quality rules.

for use" concept allows each data scientist to decide, based on the situation,
which are the DQ dimensions of interest. At the same time, based on a par-
ticular domain, there is no unique way of identifying the rules and verifying
their criteria.

Table 7.11 is a toy example of the challenges related to DQ. Let us con-
sider completeness as the DQ dimension under investigation. Thus, it has
been (more or less arbitrarily) decided that this DQ dimension is important
for this scenario and has to be investigated. In simple terms, completeness
measures how many cell data entries are missing in a data set. In other
words, if the data set can be represented as a table like in Table 7.11, the
completeness for each column counts how many empty cells. In this case,
the quantification of completeness and its definition are straightforward.
However, in practical terms, how to define and apply the rule is not. In Ta-
ble 7.11, considering the column Age, the completeness is three out of four
or 75%. Regarding Driving License ID, the completeness should be 50%.
If the data is observed more carefully, “Ashlee" is only seven, thus can not
have a Driving License ID. Therefore, her corresponding Driving License
ID cell is not empty. Thus it is not incomplete. Table 7.11 reports a simple
case to handle, but, in general, it requires a deep knowledge of the dataset’s
domain, and a user can define more restrictive rules with respect to others
and which DQ dimension to investigate. In the end, domain and problem
complexity determine subjectivity in the DQ check and, thus, together with
the assessment, are fundamental, providing additional details on how the
assessment is performed.

7.4.2 Data Diversity

Data diversity is often under the spotlight in the ethical debate but with a
different (related) concept: bias. A biased algorithm, predictive model, or
dataset causes a high glamor since the gravity of its implications are easily
tangible and immediate to comprehend, also by people without a techni-
cal background. In simple terms, bias in data occurs when elements of
a dataset are overrepresented with respect to others. Therefore, when em-
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ployed for data analysis or to build a data-driven predictive model, it results
in a prejudiced outcome due to the disproportion of information. In recent
years, we have witnessed (unfortunately) several news that have generated
buzz due to the ethical consequences of using biased data. Some exam-
ples are Florida’s recidivism risk system [251], the Amazon-Al recruiting
system [252], Pennsylvania child welfare screening tool [253], and Google
Translate gender bias [254]. All these applications have in common that
they are built on a dataset containing some bias, mainly regarding race or
gender. Studies also have shown a “meta" bias in academia. They have
highlighted that investigating possible ethical problems in Al-related fields
often does not look for misrepresentation regarding minority groups, such
as disabled people [255]. Learning from these experiences, it seems almost
easy to split into datasets with bias. Enhancing the diversity in a dataset
should bring benefits in two ways: first, to mitigate the risk of exclusion
of an underrepresented or overrepresented group for the ethical debate, and
second, to gain engagement in building more powerful and accurate appli-
cations [165].

Also in this case, assessing the heterogeneity (or coverage) of a dataset
is a time-consuming task; therefore, it is fundamental to employ a semi-
automatic approach that synthetically summarizes whether the ethical re-
quirements are fulfilled. One of the proposed solutions regards the quan-
tification of the database coverage, in which, after identifying the dimen-
sion that characterizes a domain, a corresponding multidimensional matrix
counts the number of data for each possible combination in the dataset [40].
More precisely, each data entry in the dataset, for each characteristic or
property of the domain, assumes a value. Hence, the matrix dimensions
correspond to the identified characteristics of the domain. Each dimen-
sion expects to be able to assume a given set of possible values, which will
therefore correspond to the cardinality of the dimension itself. As a result,
the final user has a qualitative and quantitative overview of the diversity of
the dataset. The solution also proposes a synthetic index that summarizes
the coverage of the dataset as a ratio between the number of accounted
combinations with at least k£ cases over the total number of the existing
combinations in a domain where £ is given.

A toy example in Figure 7.16 represents the visualization of this con-
cept: the domain is characterized by three dimensions or characteristics:
“Age", “Eye Color", and “Height". Each dimension can assume a precise
set of possible values. For instance, in the case of “Eye Color", the val-
ues are “Blue" and “Green". In this example, the total number of possible
combinations is eight. A diverse dataset that fulfills ethical requirements in
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Figure 7.16: A visualization of the assessment of a data diversity methodology.

terms of bias should include at least one element in each box (or bucket),
i.e., a combination of property values for each dimension, and, in the gen-
eral case, not boxes that are over or under-represented with respect to oth-
ers. However, as in the case of data quality, there are some drawbacks. The
index, and more in general, depending on how it is used, could result in mis-
leading and unethical results. Considering the example in Figure 7.16 with
respect to the case of “Eye Color". The multidimensional matrix accounts
only for the “Blue" and “Green" colors, but not, for example, “Brown".
Therefore, if the possible values of a domain dimension are not present,
or a dimension is not present at all, or the range of a bucket is improperly
generous, such as in the case of Age, there is the risk of having a high in-
dex score but without having in practice a diverse database. Solutions, like
the multidimensional matrix, are fundamental to processing large amounts
of data in the Big Data era, but it is also fundamental to properly set the
dimensions and their possible values. Data Provenance, in the next section,
will be fundamental to overcoming these limitations. Suppose every scien-
tific and non-scientific community can identify the diversity dimension and
their possible values uniquely. In that case, data diversity can be measured
with this methodology, thus assessing ethical requirements.
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7.4.3 Data Provenance

DQ and Data Diversity are two countermeasures that attempt to reconcile
the need to process large amounts of data and to check that ethical require-
ments are met. However, these approaches, for how they are defined to
digest “Big" Data, generally summarize the results in performance indexes.
Unfortunately, due to the domain complexity in which they are applied,
there is no unique way to define the indexes and how they are computed.
Therefore, these metrics could be subjective and thus responsible for mis-
leading the fulfillment of ethical requirements. Data transparency can miti-
gate these limitations. In the literature, data transparency is considered not
an ethical principle in itself, but rather it is a pro-ethical prerequisite to en-
able other ethical practices or principles [256]. In fact, Data transparency,
in practice, consists in providing a set of information describing the ori-
gin and process to which the data has been subjected. The data record that
contains this information is called the Data Provenance or data lineage.

Recently there has been increasing recognition of the importance of
Data Provenance in data-sensitive applications such as artificial intelligence
[257]. In other terms, the employment of provenance data is fundamental
in critical operations where there are several ethical hazards to establishing
and ensuring trust [258]. Trustworthiness must be shown at each level of
employment of the data and in terms of who uses it. From the raw data, the
methodology, the analysts, and the organizations that offer services from
the data. Each of them must show to be trustworthy and be able to decide
to use trustworthy elements. Data Provenance can be employed to keep
track of the adequacy of the process, i.e., the chain of trust [259]. Future
users of a service or data can redeem the trust by being allowed to reproduce
every single step [204]. In general, Data Provenance is not only helpful in
replicating results but also in tracking down errors and accountability [205].

In practical terms, Data provenance is a collection of metadata that con-
tains information about entities, activities, and users involved in producing,
transforming, or using data. Together with the provenance metadata, the
provenance data model has to be provided since it is fundamental to under-
standing what is stored in the provenance record. In fact, the provenance
data model defines the schema of the provenance metadata in a domain by
relating the various entities, activities, and people involved in the data cre-
ation or in the following data processing stages. According to the literature,
the design of the provenance data model should follow the data sheets di-
rectives [206]. They recommend representing what is strictly necessary for
the data preparation pipeline design. In fact, a provenance data model can
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have different levels of granularity [260], and thus different verbosity. In
any case, all the information to replicate the steps from the data source to
the final deployment of the data has to be present.

However, as in the case of data quality and data diversity, also in Data
Provenance, there is the human element, thus a subjective factor. Data
Provenance and hence trustworthiness depends on the definition of the model
that is used to keep track of the relevant aspects of the world [259]. In other
words, there is no unique definition of what is relevant to be reported on
what is not. In the end, we need to trust the analysts or the data providers,
and their training and accreditation are clearly important [259]. In any
case, regardless of what is actually stored inside Data Provenance, the Data
Provenance record enables a stronger assurance of the data since “more
eyes mean fewer lies, and fewer mistakes" [259].

The W3C PROV data model is often used to design the provenance data
model [207]. Figure 7.17 represents the W3C PROV data model, i.e., the
conceptual provenance model that is built around three elements: Entity,
Activity, and Agent [207]. An Entity is something for which we want to
trace the provenance. It could be a single entry in a dataset, like an im-
age or the entire dataset, or a single document. An Activity is an operation
performed on an entity to produce another entity or another version of it.
Typical activities could be the translation of a document into another lan-
guage or the cropping or tagging of an image. Finally, the Agent is some-
thing or someone that bears the responsibility for an action or an entity. An
example could be the annotator of a set of images or the data analyst that
made a particular decision based on some observations. Each element in
the W3C PROV data model is connected to another one by a pre-defined
set of relationships as shown in Figure 7.17.

7.4.4 Discussion

Nowadays, predictive models, or, more in general, algorithms that process
large amounts of information, are fundamental to continuously offer ser-
vices with limited resources. In particular, an AI component brings two
benefits: the first is the speeding up, and the second is transferring the re-
sponsibility. Today, it is possible to develop an intelligent agent to make
challenging decisions regarding social aspects of daily life. Even if it could
sound scary to rely, for instance, on an algorithm for a health diagnosis or
a court judgment, people are getting more used to this practice: relying on
technology to replace manual human tasks. From decades of technological
improvements, we have developed an unconscious trust in the technology
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Figure 7.17: The W3C PROV Data Model.

being able to deliver the result faster and reliably. However, until now, tech-
nology was replacing mainly repetitive and easy tasks, whose outcomes
were easy to understand and verify. Today, algorithms are very articulated
since they try to mimic human reasoning. However, due to their complex-
ity, it is not possible anymore to easily verify them, but it remains the same
trust and expectations in technology.

Due to the increasing demand for these promising tools, product design-
ers and developers are often under pressure to deliver them. As a result,
there are no resources to analyze in deep the implemented product from
an ethical perspective leading to ethical issues such as discrimination or
prejudice. These gaps have great media resonance, both because of the im-
plications and because these products are used in many aspects of daily life.
Most of the time, the problem is not the algorithm itself but the “corrupted”
data fed into it. Recent technologies, such as neural networks, “just" learn
the hidden patterns in the data. Thus, if, for example, the data is biased,
the algorithm is. A dataset could represent more or less a particular social
activity, meaning that the algorithm is probably biased because the society
is. However, when designing and developing an algorithm or a predictive
model, there is the opportunity to measure and mitigate ethical issues. It
should be easier than changing unethical behaviors in our society. Some-
times, it happens the opposite. The unethical behavior is enlarged when
delivering a data-driven product. In both cases, it is fundamental to be re-
silient to data management-related ethical issues accounting for Data Qual-
ity, Data Diversity, and Data Provenance.
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This chapter discusses these data management aspects as mitigation for
ethical issues from a technical perspective, even if the ethical debate per se
is still ongoing, and foresees many different perspectives. It first presents
the problems in terms of examples and then corresponding solutions. The
mitigations are introduced keeping in mind that we should address the eth-
ical issues in a way that is still feasible to process large amounts of data.
On the other hand, providing automatic or semi-automatic tools that do not
act unethically is very challenging. It could be opened an ethical debate
about whether it is better to use these tools to assess ethical requirements
but not totally reliably or not to use them at all. As discussed in this chap-
ter, the best thing we can do is create awareness in who will use a product
or data. Data Quality, Diversity, and Provenance are scalable techniques to
mitigate technical-ethical issues, but they come with limitations. DQ en-
sures that the garbage-in garbage-out paradigm of a data-driven model is
not reached, ensuring quality data for building these tools. However, which
DQ dimension to investigate and how to apply it is subjective. Similarly,
Data Diversity measures a dataset’s heterogeneity to create awareness of
the bias in the data and, thus, in the algorithms. As before, it is not always
objective on how to assess it. In the end, Data Provenance has the capability
to overcome the previous limitations. In principle, it records, using a given
model, all the actions that happened to an entity. Therefore, it can be used
to track all the aspects of the design and creation of a predictive model. Un-
fortunately, also in this case, simply providing the provenance record is not
sufficient. The provenance data tracks only what is specified in the prove-
nance data model. In this setting, the origin of the ethical problem in the big
data era could have a new different perspective: it is currently missing the
engineering part in the assembly of a long and complex pipeline of a prod-
uct, such as an algorithm, a predictive model, or an analysis report. Due
to other constraints, data scientists often just assemble various components
of a data pipeline without reasoning about the drawbacks of such linking.
On the other hand, the profession of the engineer should be characterized
by the ability to understand when and how it is safe to connect various
parts of a complex system. In this case, the engineers, after being properly
trained, should consider the provenance record and make conscious ethical
decisions in their product design.
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Discussion and Conclusion

This thesis investigates, as a whole, different aspects of the development
process of scientific predictive models. Its goal was to facilitate such re-
search workflow in terms of automation, speed-up, and effectiveness. There-
fore, it focuses on applying and developing specific data science and data
management methodologies and a Data Ecosystem (DE) to support such
a process. This work considers the chemical engineering domain, in par-
ticular, chemical kinetics, as a running scenario (Chapter 3). However,
the identification of the requirements and challenges and the correspond-
ing proposed solution are generalizable across many scientific domains in
which predictive models are developed.

Chapter 4 contributes to formalizing the scientific data, the properties,
and what makes adopting a data-sharing platform in a scientific domain
challenging. A DE in scientific domains can bring benefits for three rea-
sons: first, due to the scarcity and cost of scientific data, a DE can enhance
data sharing within the research community. Second, since the predictive
model development process foresees time-consuming steps and error-prone
sequences of tasks on scientific data, the DE can transform the tasks into
services that can help automate and speed up research workflows. Finally,
collecting and organizing the information in a DE can open new frontiers to
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discovering hidden insights in analyzing large amounts of data. Although
using a DE in this field promises great results, some challenges may arise
and impede successful accomplishment. The challenges to adopting a DE
in a scientific domain result from the combination of specific domain re-
quirements from the scientific research community and distinctive proper-
ties of scientific data. The literature has examples regarding the design and
the implementation of a sharing platform in which the data consumer and
producer are distinct entities, whereas, in scientific domains, a user is typ-
ically both simultaneously. Moreover, there needs to be more attention on
how to make such projects long-term initiatives, thus lacking a sustainabil-
ity plan from an information system perspective, whereas it is already under
study in the business community. The proposed user-trust-data framework
identifies the challenges into two macro-categories that threaten the long-
term use of a DE: cost and engagement. The challenges are then gener-
alized to be applicable in other scientific domains. Low engagement and
high-cost limit the number of users, trust in the platform, and the quantity
of shared data. These challenges are drawn from the research experience
both in the social media and chemical kinetics domains. In the future, a
more quantitative assessment of the analysis dimension could bring bene-
fit in assessing the efficacy of the proposed solution to reach an objective
function’s optimum. Moreover, since the threats and the causes of such
are already investigated in the business literature, mapping them and vice
versa in the information system domain would be helpful for both scientific
communities.

Chapter 5 proposes the solution to these challenges with the design and
implementation of a DE. A DE solution offers both the capabilities of a
scientific repository and a collection of services to support and improve the
predictive model development process with new functionalities. The liter-
ature has examples of centralized, federated, or distributed DE. There is a
central data management authority in a centralized or distributed DE. How-
ever, the centralized one allows for the independent participation of the DE
users, thus not requiring coordination between the participants to keep the
DE running with all the available data. A centralized data management
system has major control over the data and makes it easier to track the
use, misuse, and eventually, the right to be forgotten of data with simpler,
less expensive, and binding technologies such as the blockchain. A cen-
tralized data control system also allows for more reliable findability. In a
distributed DE, even if the data management is centralized, the availability
of some functionalities or the entire repository requires coordination and
reliable participants. For instance, if one participant went offline, not all
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the data could be available to the remaining participants. Therefore, as-
sessing some analyses, such as the data diversity of the repository, could
lead to incomplete or unreliable results. A similar situation occurs in a fed-
erated DE with no central data management authority. For instance, the
data quality policy to accept the data in the repository, such as the required
metadata to describe an experiment, could differ based on the participant.
In a centralized DE, the availability of services and data does not depend
on the participants, and the data management policies are the same among
all the participants. On the other hand, this approach is easier to scale
up. This work, to conciliate the design principles of DE and to address
the previous challenges, proposes a hybrid DE configuration: central data
management with federated computational resources. This hybrid archi-
tecture is a trade-off between the centrality of an organizational DE that
has control over the data but simultaneously encourages and promotes data
sharing and the scalability of the system. After identifying and analyzing
the existing model development procedure, a new process is defined, in-
troducing the identification and separation of roles and new stages, such
as data preparation. All the functionalities are implemented in a DE with
a micro-services architecture currently used by multiple research groups.
Therefore, this work, starting from the business level, has identified the
necessary organizational, architectural, and technological levels going to
affect the business level from which it had started by suggesting that some
of the steps already present be added, included, or modified. Future works
concern a deeper analysis of the possible confidentiality policy in a data-
sharing platform, the study of a token strategy to incentivize data sharing
and avoid free rides, and the integration of new architecture such as data
mesh and data lakes as possible solutions for such thesis objectives.

Chapter 6 focuses on the data preparation aspects of such a predictive
model development process. The development of a predictive model is a
data-driven activity. Thus, the data has a direct and massive influence on
the resulting products. Since the predictive model is the result of a long
pipeline, understanding the impact of each phase is not easy. This work
proposes a data pipeline design methodology using provenance informa-
tion to enhance the trustworthiness and improve the pipeline itself. Model
validation in the context of a predictive model is highly dependent on the
quality, quantity, and diversity of the data used for the validation. There-
fore, this thesis also proposes a new methodology to assess the diversity of
a dataset, ensure certain data quality in the scientific repository, and predict
the missing information. In particular, during model validation, the simu-
lated data by the predictive model are compared with the experimental data
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Chapter 8. Discussion and Conclusion

available in the DE repository. However, experimental data are affected by
uncertainty, and quite often, this information is missing, even if it is crucial
to properly assess the model performance. Given these challenges, this the-
sis demonstrates the application of knowledge graph embedding to predict
the missing uncertainty information. Future developments will concern the
analysis of such results using different embedding models and the impact
of the knowledge graph topology on the embedding quality. Finally, since
knowledge graph embedding has promising results for data quality-related
activities, we plan to use it for data cleaning and outlier detection tasks.

Chapter 7 finally proposes a standardized, objective, and systematic
model evaluation procedure to understand why, where, and how much the
prediction of the model deviates from the experimental data, developing
ad-hoc algorithms. The thesis also investigates the ethical impact of the
different model development process stages and proposes the correspond-
ing mitigations. Finally, it is presented a novel adaptive sampling algo-
rithm that achieves at the same time good generalization and optimization
capabilities, unlike other sampling algorithms, leveraging the generaliza-
tion capabilities of Neural Network (NN) and the geometric properties of
the Delaunay triangulation. Applications of such algorithms vary from the
Design of Experiments (DOEs) to selecting the most informative set of
training data and, thus, reducing the number of information and resources
needed to develop a predictive model. Regarding improving a chemical ki-
netic model, it is investigating the application of a promising technology
named Chemical Reaction Neural Network (CRNN) to develop a hydrogen
model. In the training process, this Neural Ordinary Differential Equa-
tion (NODE) combines the black-box approach of NNs with well-known
physical-chemical laws. After investigating the capabilities of such tech-
nology, this work proposes to incorporate element conservation in such
architecture. Current challenges and future works are related to numeri-
cal issues of CRNN on the hydrogen data and the systematic performance
assessment of the proposed adaptive sampling algorithm against the other
adaptive sampling algorithms. In the future, the investigation of large lan-
guage models for the generation of scientific predictive models will be a
promising area of research.
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Glossary

Al
API

BPMN
CDRC
CM
CRNN
CSv
DE

DOE
DOI

DQ
EOSC
FAIR
GIGO
GPR

HTTP

Artificial Intelligence.
Application Programming Interface.

Business Process Model and Notation.
Consumer Data Research Centre.
Curve Matching.

Chemical Reaction Neural Network.
Comma-separated Values.

Data Ecosystem.

Design of Experiment.

Digital Object Identifier.

Data Quality.

European Open Science Cloud.

Findable, Accessible, Interoperable, and
Reusable.

Garbage In - Garbage Out.
Gaussian Process Regressor.

Hypertext Transfer Protocol.
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Glossary

JSON

KG
KGE

LHD
LHS
LP

MADO
MAE
ML
MSE

NMAE
NN
NODE
NRMSE

PCA
PINN

RDF
RMSE

SciExpeM
SSE

XML

JavaScript Object Notation.

Knowledge Graph.
Knowledge Graph Embedding.

Latin Hypercube Design.
Latin Hypercube Sampling.
Link Prediction.

Multi Adaptive Delaunay Optimization.
Mean Absolute Error.

Machine Learning.

Mean Squared Error.

Normalized Mean Absolute Error.
Neural Network.

Neural Ordinary Differential Equation.
Normalized Root Mean Squared Error.

Principal Component Analysis.
Physically Informed Neural Network.

Resource Description Framework.
Root Mean Squared Error.

Scientific Experiments and Models.
Sum Squared Error.

Extensible Markup Language.
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