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"This is the key of modern science and is the beginning of the true understanding of nature.
This idea. That to look at the things, to record the details, and to hope that

in the information thus obtained, may lie a clue to one or another
of a possible theoretical interpretation."

Richard P. Feynman,
in “The Character of Physical Law”, 1965
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Abstract

The present work focuses on the mechanical modeling of the bending behavior of metallic
stranded cables. Starting from a description of the hysteretic moment-curvature law of
the cross sections, a theoretical model for the self-damping is developed and applied to a
widespread typology of overhead electrical line conductors, namely the ACSR conductors.
The first part of the thesis deals with the modeling of the combined action of tensile and
bending loads, with emphasis on the applications of different radial pressures transmission
models and stick-slip mechanical laws for multilayer conductors under flexure.
A novel generalization of the problem through closed-form coefficients expressions describing
the admissible domain of the wire axial force is presented.
An ideal bi-linear approximating law for the description of the moment-curvature relationship
through closed-form equations is enforced and uniquely defined by the so-called construction
parameter. Such coefficient is determined for the different radial pressures transmission
models and sliding conditions, for a sample of 15 ACSR cross-sections.
The influence of the construction parameter is then investigated with reference both to the
static response of the metallic strand and to its dynamic behavior (i.e. its self-damping
properties).
In the second part of the work, the self-damping properties of ACSR conductors are studied
by comparing various experimental results with the non-dimensional dissipated power per
unit of length of the conductor predicted by an enhanced unified analytical model for both
the gross-sliding and micro-slip dissipation mechanisms.
Furthermore, the Energy Balance Principle (EBP) is used to predict the steady-state ampli-
tude of aeolian vibrations of the bare conductor: the results obtained with both empirical
and theoretical models for the cable self-damping are compared with field experimental data.
The influence of the construction parameter on the aeolian vibrations amplitude is also
assessed and parametric analysis are carried out.

Keywords: Aeolian vibrations, Stranded cables, Bending, Wire sliding, Overhead electrical
lines, Self-damping, Energy balance principle.
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Sommario

Il presente lavoro si focalizza sulla modellazione meccanica del comportamento flessionale di
funi metalliche spiroidali. Partendo da una descrizione della legge momento-curvatura per il
comportamento isteretico delle sezioni delle funi, viene sviluppato un modello analitico per
la descrizione del loro smorzamento proprio. Tale modello viene successivamente applicato
ad una tipologia ricorrente di conduttori delle linee elettriche aeree: i conduttori ACSR.
La prima parte della tesi si concentra sulla modellazione della risposta delle funi cari-
cate in modo combinato da azione assiale e momenti flettenti, con particolare attenzione
all’applicazione di diversi modelli di trasmissione delle pressioni radiali di contatto e di leggi
di scorrimento per conduttori multi-strato soggetti a flessione.
Una nuova generalizzazione del problema attraverso le espressioni in forma chiusa di coeffici-
enti che descrivono il dominio ammissibile dell’azione assiale nei fili è presentata.
Una legge bi-lineare approssimante per la descrizione della relazione momento-curvatura
attraverso equazioni in forma chiusa viene applicata e univocamente definita dal cosiddetto
parametro costruttivo del conduttore. Questo coefficiente viene determinato per diversi
modelli di trasmissione delle pressioni radiali di contatto e per diverse condizioni di scorri-
mento, per un campione di 15 conduttori ACSR. L’influenza del parametro costruttivo è
quindi indagata sia in riferimento alla risposta statica del conduttore che rispetto al suo
comportamento dinamico (lo smorzamento proprio).
Nella seconda parte del lavoro, le proprietà di smorzamento proprio dei conduttori ACSR
vengono investigate attraverso il confronto di diversi risultati sperimentali con le previsioni
teoriche di potenza dissipata adimensionale per unità di lunghezza ottenute attraverso
l’applicazione di un modello analitico unificato per due diversi meccanismi di dissipazione: il
micro-scorrimento e il macro-scorrimento dei fili.
In aggiunta, le ampiezze di vibrazioni eoliche del solo conduttore vengono predette attraverso
l’applicazione del Metodo del Bilancio Energetico: i risultati ottenuti attraverso l’utilizzo
di modelli empirici e del modello analitico di smorzamento proprio vengono confrontati
con i risultati di campagne sperimentali sul campo. L’influenza del parametro costruttivo
sull’ampiezza di vibrazione eolica viene anche valutata e delle analisi parametriche sono
esguite.

Parole Chiave: Vibrazioni eoliche, Funi spiroidali, Flessione, Scorrimento dei fili, Linee
elettriche aeree, Smorzamento proprio, Principio del bilancio energetico.
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Chapter 1

Introduction

1.1 The Considered Problem

Metallic stranded cables are widely employed structural members. Their use in several
engineering applications has become very diffused, due to their large flexibility and high
strength associated with light weight. Due to their good electric conductivity they are
also employed for overhead electrical transmission lines. The most widespread typology of
metallic stranded cable for overhead high voltage lines (OHL) is the so-called Aluminium
Conductor Steel Reinforced (ACSR).
As evidenced by extensive analytical and numerical investigations (e.g. in (Papailiou, 1997),
(Hong et. al, 2005), (Lalonde et al., 2017)), whenever a strand is bent, an axial force
gradient is generated along the length of the wires. Such gradient makes the wires prone to
sliding with respect to the neighboring ones and is counteracted by the tangential friction
forces acting on the internal contact surfaces between the wires. The possible activation of
these sticking/sliding frictional interfaces makes the bending behavior of strands inherently
non-linear and non-holonomic (Foti and Martinelli, 2018b).
As a consequence, bending vibrations of stranded cables are characterized by a hysteretic
damping mechanism (see e.g. (Hard and Holben, 1967),(Claren and Diana, 1969)).
The self-damping is a physical characteristic of the conductor that defines its capacity to dis-
sipate energy internally while subjected to vibrations. For conventional stranded conductors,
energy dissipation can be attributed partly to inelastic effects within the body of the wires
(hysteresis damping at the molecular level) but mostly to frictional damping, due to small
relative movements between overlapping individual wires, as the conductor flexes with the
vibration modal shape (CIGRE, 2011).
Conductor self-damping is generally not specified by the manufacturer and can be deter-
mined through measurements performed on a laboratory test span. Semi-empirical methods
are available and allow to estimate the self-damping parameters of conventional stranded
conductors without testing them.
The drawback is that these methods often lead to different results, depending on both the
test method and end-conditions, as well as measurement errors (CIGRE, 2011).
Moreover, the measurements of conductor self-damping are difficult because the dissipated
power is very small. In fact, usual order of magnitude of the dissipated power per unit of
length for typical testing conditions of common ACSR conductors ranges between 0.1-100
mW/m, depending on the frequency of excitation.
With the great interest and concern regarding the vibration of overhead conductors, there
is a growing requirement for reliable information on the self-damping characteristics of
conductors. This necessity is related to the emphasis on the improvement of existing methods
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Chapter 1. Introduction

for investigating and controlling the problem. Cable self-damping is a principal factor in
determining the response of a conductor to alternating forces induced by the wind.
The self-damping data are used for the computations of wind-induced conductor vibrations
mostly through deterministic methods based on the Energy Balance Principle (EBP).
However, stochastic approaches for the modeling of aeolian vibrations by considering the
wind as a narrow band stochastic process are also possible (see e.g. (Foti et al., 2020)) and
permit to overcome the principal drawback of the EBP, that is, the mono-modal oscillations
assumption.
The most important source of vibrations of overhead electrical conductors is aeolian vibration,
i.e. the name associated, in the field of transmission lines engineering, to Vortex Induced
Vibrations (VIV). Aeolian vibrations are caused by the alternate shedding of Karman vortices
from the top and bottom of the line’s conductor, and can take place when a smooth wind
flow of 1 to 7 m/s interacts with such a conductor (EPRI, 2006).
Aeolian vibrations are one of the major cause of fatigue failures of conductors, that may occur
at points where the flexural motion of the cable is constrained against transverse vibrations
(e.g. suspension clamps) (Rocha et al., 2021). Failures of overhead electrical conductors lead
to power interruption, thus to economic losses, people discomfort and serious injuries.
Recently, several research works are trying to reproduce the fretting conditions that occur
at the wire scale through fretting fatigue tests on individual wires, which provides a better
understanding of such phenomenon. In order to describe the stress state that leads to wires
failure, combined effect of both alternating tension loading and alternating bending should
be investigated (Omrani et al., 2021).
With practical engineering interest of a predictive and optimized maintenance of critical
regions of overhead electrical lines, the accurate assessment of aeolian vibrations amplitudes
for the prediction of fatigue life of components (see e.g. (Mendonça et al., 2021)) underlies
the necessity of an in-depth study of the cyclic bending behavior of conductors.
To this aim, a complete characterization of their moment-curvature response is of paramount
importance. As a part of this research work, novel closed-form expressions for the compu-
tation of the construction coefficient c0 (i.e. the parameter fully describing the bi-linear
approximating M -χ law) have been derived.
The first part of the work fits into this context throughout the investigation of the influence
of c0 parameter on the cross-sectional response of multilayer conductors under bending.
On this behalf, different radial transmission pressures models and physically-sound sliding
conditions (see e.g. (Carodu, 2013)) are enforced and applied to a sample of widespread
ACSR conductors. The characteristics of the interwire sticking/sliding dissipative mechanism
have also been extrapolated in past researchers’ works in order to characterize the hysteretic
behavior of the strand. The following evidences have been found:

• in the high-curvature regime, wires tend to slip with respect to the neighboring ones
and the power dissipation is mainly due gross-sliding mechanism (Goudreau et al.,
1998)(Foti and Martinelli, 2018a);

• for low curvatures, the wires of the strand tend to stick together and the dissipation is
mainly due to micro-slip phenomena at the contact surfaces, as it has been suggested
e.g. in (Goudreau et al., 1998).

An analytical formulation developed by Foti and Martinelli (2018b), on the basis of a
well-established mechanical model of the strand (Foti and Martinelli, 2016a, 2016b), has
permitted to distinguish between the two different dissipation mechanisms which can take
place before and after the activation of the interwire sticking/sliding phenomenon, namely
the Micro-Slip and Gross-Sliding dissipation mechanisms.
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1.2. Objectives

The aim of the second part of the present work is to apply such enhanced unified analytical
model for the cable self-damping to several experimental results of the literature, in order to
assess its capability to describe the real dynamic behavior of cables and to address in-depth
considerations on the predictions of the possible transition between the two dissipation
mechanisms.

1.2 Objectives

The following objectives are pursued in this thesis:

1. state of the art review of overhead transmission lines aeolian vibrations phenomenon
and conductors self-damping;

2. description of the cross-sectional response of metallic strands, solution of the axial-
torsional problem and of the non-linear bending problem;

3. analysis of various radial transmission pressures models and comparison of their
predictions for a sample of 15 ACSR conductors. Computation of approximated
radial contact forces on the pointwise distributed radial contact patches, for the same
conductors sample;

4. enforcement of two novel sliding conditions between wires of multilayer conductors
under bending. Expression of different slip conditions through a couple of coefficients
(a and b) governing the form of the differential equation that describes the wire axial
force limit domain;

5. description of the moment-curvature hysteretic behavior of stranded cables through a
perfect bi-linear approximating law fully defined by the so-called construction parameter
c0 and implementation of a novel approach for the determination of such coefficient in
a closed form;

6. determination of a range of values of c0 for the sample of 15 ACSR conductors of
different stranding and assessment of its influence on both the static response of the
metallic strand (application to a well-known bending test results coming from the
literature) and to its dynamic response (i.e. ACSR conductors Self-Damping);

7. Application of an analytical model for the self-damping of ACSR conductors and
comparison of the theoretical predictions for different values of the construction
parameter with experimental results coming from the literature;

8. Identification of the possible transition between Micro-Slip and Gross-Sliding dissipation
mechanisms, and assessment of a theoretical threshold on the basis of the analytical
model formulated according to a new parametrisation;

9. Implementation of the Energy Balance Principle for the assessment of aeolian vibrations
amplitude for the case of bare conductor. Analysis of the influence of various parameters,
i.e. the loading ratio, friction coefficient, turbulence intensity, stiffness reduction factor
and construction parameter;

10. Comparison between the predictions of the non-dimensional vibration amplitude
evaluated by means of both empirical and theoretical self-damping models with available
experimental results obtained through free-field tests.
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1.3 Overview

The present thesis is arranged in six different chapters. After this introduction, the state of
the art is presented in Chapter 2. The phenomenon of aeolian vibrations is discussed, as
well as the geometry and some construction aspects regarding overhead transmission line
conductors. Then, the experimental measurements commonly adopted for the determination
of conductors Self-Damping are described. Finally, empirical and theoretical models of the
literature for the characterization of cables self-damping are reviewed.
Chapter 3 analyses the cross-sectional response of stranded cables. Lateral and Radial contact
conditions are assessed, starting from well-known equations of the literature. Different radial
transmission pressures models are implemented, and their predictions are compared with
reference to a sample of 15 ACSR conductors cross-sections. Approximated values of
the radial contact forces are also computed by considering contact patches as pointwise
distributed. Both the axial-torsional problem and the bending problem are assessed. The
moment curvature law is approximated through an ideal bi-linear relationship, fully defined
by the construction parameter c0 of each cable. A novel approach for the generalization of
different stick-slip mechanical laws is presented. The influence of different radial pressure
models and sliding conditions on the construction parameter c0 is then investigated and
linear interpolations of the construction parameters as a function of the strand diameter are
provided for different stranding classes.
Additionally, the static response of the strand is studied with reference to a well-documented
bending test, for different values of the construction parameter.
Chapter 4 deals with the Self-Damping of ACSR conductors. After the presentation of an
enhanced unified analytical model for the description of the self-damping, experimental
results coming from various testing campaigns are compared with the predictions of the
theoretical models describing different dissipation mechanisms (i.e. Micro-Slip and Gross-
Sliding).
The influence of the construction coefficient on the Micro-Slip and Gross-Sliding dissipation
mechanisms predictions of the dissipated power is studied, with reference to different cartesian
and bi-logarithmic planes.
In Chapter 5 the Energy Balance Principle (EBP) for the assessment of the aeolian vibrations
amplitude of overhead electrical line (ACSR) conductors is applied. Experimental results are
compared with the predictions of non-dimensional vibration amplitude obtained though the
theoretical self-damping model previously applied and through empirical damping models.
The influence of the construction parameter c0 on the prediction of the non-dimensional
amplitude of vibration is also investigated.
Finally, in Chapter 6, the conclusions of such work are drawn, the possible drawbacks are
evidenced and some future developments are proposed.
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Chapter 2

State of the Art

In this chapter, existing literature about stranded cable and their self-damping properties is
discussed. Section 2.1 is focused on the description of the phenomenon of aeolian vibrations,
while Section 2.2 deals with the basic geometrical and mechanical characterization of the
overhead transmission line conductors, with emphasis on a widely diffused conductors
typology, namely the Aluminium Conductor Steel Reinforced (ACSR).
In Section 2.3, the experimental testing methodologies for the determination of the cable
Self-Damping properties, according to current engineering practice, are described, while in
Section 2.4 different self-damping models of the literature are presented.
In particular, subsection 2.4.1 deals with the description of the most diffused empirical models
for the cable self-damping, while in Subsection 2.4.2 several theoretical models developed in
the past years are presented.
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Chapter 2. State of the Art

2.1 Aeolian vibrations

Aeolian vibration is the name associated, in the field of transmission lines engineering, to
Vortex Induced Vibrations (VIV). This type of vibration due to wind forces is caused by the
alternate shedding of Karman vortices from the top and bottom of the line’s conductor.
Aeolian vibrations are one of the major cause of fatigue failures of conductors. They occur
when a smooth wind flow of 1 to 7-10 m/s interacts with a conductor; they are observed in
3-150 Hz frequency range and have peak-to-peak amplitudes of up to one conductor diameter
D (EPRI 2006). However, with reference to the non-dimensional single-peak antinode
vibration amplitude A (that will be extensively used in the following part of this work), the
application of the Energy Balance Principle (EBP) generally shows that aeolian vibrations
are characterized by values of A/D up to the order of 1 (for frequency f → 0).
Initially, the frequency f of vortex shedding is related to the velocity V of the incoming flow
and to the diameter D of the conductor, through the Strouhal equation:

fV S = St · V
D

(2.1)

where St is the Strouhal number, that ranges between 0.18-0.22.
Conductor vibration causes localized bending which, depending on its level, may cause,
sometimes in a short period of time, fatigue failures of the conductor strands at the suspension
clamps or at the clamps of spacers, dampers, and other devices installed on the conductor,
such as items associated with the support and protection of the conductor itself. Figure 2.1
shows an example of fatigue failure of the conductor strands at the suspension clamp.
Aeolian vibration is most serious when the conductor tensions are high, the spans are long,
the terrain is smooth, and wind occours with frequent, low-to-moderate, steady amplitude
(EPRI 2006).
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2.1 INTRODUCTION
Aeolian vibration is one of the most important prob-
lems in transmission lines because it represents the
major cause of fatigue failure of conductor strands or of
items associated with the support, use, and protection of
the conductor. 

Aeolian vibrations can occur on almost any transmis-
sion line and at any time, in low to moderate winds.

Measurements and analyses have revealed the following
facts:

• Aeolian vibrations are characterized by vibration fre-
quencies in the approximate range of 3–200 Hz. The
frequency range depends on the size and tensile load
of the conductor: lower frequencies are typical of
large conductors in low winds, while upper frequen-
cies are typical of small ground wires in moderate
winds.

• Vibration frequency f in Hz is approximately given by
the Strouhal formula: f = S V/D, where S is the Strou-
hal number (S = 0.18 - 0.22), V is the wind velocity in
m/s, and D is the conductor diameter in m.

• Vibration amplitudes can be, at maximum, about one
conductor diameter.

• Records of vibration at a point on a conductor usu-
ally show a beat pattern (Figure 2.1-1).

• Conductor vibration causes localized bending which,
depending on its level, may cause, sometimes in a
short period of time, fatigue failures of the conductor
strands at the suspension clamps or at the clamps of
spacers, spacer dampers, dampers, and other devices
installed on the conductor, as shown in Figure 2.1-2.
The conductor vibration may also cause fatigue dam-
age of items associated with the support and protec-
tion of the conductor itself—i.e., tower arms, spacers,
dampers, and warning spheres, etc. 

• This type of vibration is most serious when the con-
ductor tensions are high, the terrain is smooth, with
frequent, low-to-moderate, steady winds, and the
spans are long.

• Aeolian vibrations can be successfully controlled in
most cases using dampers and/or spacer-dampers. 

Reliable transmission-line design requires that aeolian
vibration of the conductors is controlled below critical
levels to avoid fatigue damage.

Approaches available to guide an assessment of the
severity of aeolian vibration can be pragmatic, through
design rules based on past experience. Also conditions
can be assessed through measurements on existing lines,
using special-purpose measuring instruments. 

Another way is to use an analytical approach to simu-
late the aeolian vibration behavior of conductor(s) plus
damping devices. This approach can be usefully used to
investigate alternatives in the design or redesign process
and, being aware of its limits, also in the direct design of
the damping system for a new line. The most used ana-
lytical models are based on the Energy Balance Princi-
ple (EBP), and they give an estimate of an upper bound
to the expected vibratory motions.

The aim of this chapter is to deal with the aeolian vibra-
tion phenomenon in such a way to: 

• give methods of assessment of the vibration severity 

• assess the influence of the line and environmental
parameters on the vibration severity

• give methods of assessment of the need for control
devices

• give methods of assessment of the effectiveness of
vibration control devices.

Whichever approach is used to assess aeolian vibration
severity, it is necessary to have a clear picture of the char-
acteristics of all the elements interacting in the aeolian
vibration phenomenon: wind, vortex-shedding mecha-

Figure 2.1-1 Record of vibration at a point on a 
conductor.

Figure 2.1-2 Fatigue failure of conductor strands at 
the suspension clamp. Figure 2.1. Fatigue failure of conductor strands at the suspension clamp (EPRI, 2006).

Aeolian vibrations can be clearly distinguished from other two types of wind-induced vibra-
tions: galloping and subspan oscillations. Galloping is characterized by low frequencies and
high amplitudes of vibration (up to several times the sag of the cable), occurring mainly in
the cross-wind direction. It is a vertical oscillation of the conductor span in one or a few
loops, but it usually incorporates other less visible twisting, lateral and longitudinal motions.
Galloping is usually caused by moderately strong, steady crosswinds (wind velocity over 15
m/s) and it is a form of instability due to the unstable shape assumed by the conductors
when they are covered with ice.
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2.1. Aeolian vibrations

Subspan oscillations occur for bundled conductors only and are caused by the wake produced
by the windward conductor on the leeward one. For this reason this phenomenon is referred
to as wake induced oscillations. They are characterized by intermediate frequency of the
order of a few Hz and amplitude of the order of the conductor spacing in the bundle. The
motion occurs in moderate to strong winds, usually in the range from 7 to 18 m/s.

Table 2.1. Types of wind-induced vibrations, adapted from (EPRI, 2006).

Descriptor Aeolian Vibration Galloping Wake-induced Oscillation

Types of Overhead Lines Affected All All Bundled conductors lines
Approx. Frequency Range (Hz) 3–150 0.08–3 0.15–10
Approx. Vibration Amplitude Range1 0.01–1 5–300 0.5–80
Wind Character Steady Steady Steady
Wind Velocity 1 to 7 m/s 7 to 18 m/s 4 to 18 m/s
Conductor Surface Bare or uniformly iced Asym. ice deposit Bare, dry
Approx. Time for severe damage 3 months–20+ years 1–48 hours 1 months–8+ years

1:Peak-to-Peak amplitude expressed in conductor diameters D.

The severity of aeolian vibration can be assessed through design rules based on past expe-
rience. Measurements on existing lines can also be performed to assess conditions, using
special-purpose measuring instruments.
Another way is to use an analytical approach to simulate the aeolian vibration behavior of
the conductor and eventually the behavior of conductor plus damping devices. This approach
can be used to investigate alternatives in the design or retrofit process and, being aware of
its limits, also in the direct design of the damping system for a new line.
The most used analytical models are based on the Energy Balance Principle (EBP), and they
give an estimate of an upper bound to the expected vibratory motions. The EBP approach
requires that the energy dissipated by the conductor and other devices used for its support
and protection and the energy input from the wind are known as a function of the vibration
frequency and amplitude.
Besides the use of a deterministic approach based on the EBP, a stochastic approach for the
modeling and investigation of aeolian vibrations is also possible (see e.g. Foti et al., 2020).
The Energy Balance Principle is indeed based on the simplifying assumption of mono-modal
oscillations. However, typical aeolian vibration records clearly show that several modes can
be simultaneously excited due to wind variations in time and along the span. On these
regards, random vibration analysis permits to overcome the basic assumption of mono-modal
vibrations by modeling wind forces as a narrow band stochastic process and with arbitrary
cross-correlation in space (Foti et al., 2020).

2.1.1 Excitation

Aeolian vibration is a form of instability generated by the wind blowing on conductors; it is
concerned with the details of the flow, which interacts with the motion of the conductor.
Aeolian vibration is closely related on the wind side, to the vortex-shedding phenomenon
and its energy input to the structure and, on the conductor side, to its damping ability.
The uniform flow of air or water across a stationary, rigid cylinder whose axis is normal to
the streamwise direction has been studied by many investigators; Strouhal (1878) and Von
Karman (1912) were among the first to do so. Various flow regimes can evolve, depending
on the Reynolds number Re.
This dimensionless number is defined as follows:

Re =
V D

ν
(2.2)
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where D is the cylinder diameter, V is the velocity of the incoming wind flows and ν
represents the kinematic viscosity of the fluid, that can also be expressed as:

ν =
µ

ρ
(2.3)

where µ is the dynamic viscosity of the fluid and ρ is its density.
Figure 2.2 shows the various flow regimes as a function of the Reynolds number. It is clear
that vortex shedding is continuous from Re = 40 to Re = 300000. This range of Re includes
that which corresponds with light to moderate winds blowing across overhead conductors
(Vecchiarelli, 1997). Reynolds number values are computed using the conductor diameter.
Vortex shedding generates alternating forces that act in the transverse direction of the flow
(lift forces). The frequencies of the vortex shedding can be approximately computed by the
Strouhal formula (Equation 2.1). When the body is fixed, the lift forces are generally out
of phase or unsynchronized, hence the net lift force is small. The motion of the conductor
(assumed as a cylinder) in the transverse direction may be initiated when the velocity of
the flow is such that the vortex-shedding frequency fV S is close to the natural vibration
frequency fn of the conductor itself.

Re 4 5 : Unseparated Flow 

S < Re c 40 : Attached Vortex Pair 

40 Re < 150 : Vortices Shed. Laminar Wake 

150 Re c 300 : Transition to Turbulent Wake 
300 < Re < 3 x 105: Çully Tut-bulent Wake -- 3 x 105 c Re < 3.5 x l o G :  Boundary l a y e r s  Turbulent, 

Disorganized Wake 

3.5 x 106 < Re: Turbulent Wake Re-organized 

Figure 1.10 Depiction o f  uniform flow across a stationary circular cyiinder, for various 
Reynolds nurnbers (Lienhard 1966). 

Figure 1.1  1 Vortex shedding from a stationary circular cylinder in a uniform crosswind 
(Koopmann 1 967). 

Figure 2.2. Regimes of fluid flow across a stationary circular cylinder (Vecchiarelli, 1997),(Lienhard,
1966).
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2.1. Aeolian vibrations

In such case, the conductor motion can (Vecchiarelli, 1997):

• subsequently increase the strength of the shed vortices, so that the magnitudes of the
vortex-induced lift forces along the conductor are amplified;

• enhance the spanwise correlation of vortex shedding, that causes vortex-induced lift
forces to act in phase and become synchronized;

• change the vortex-shedding frequency fV S to equal or almost equal fn, consequently the
Strouhal law is violated and the conductor takes control over the shedding phenomenon,
resulting in synchronization. This is the so-called lock-in phenomenon, because fV S
remains anchored to fn in a velocity interval denoted as lock-in range.

As a consequence of these effects, the conductor can experience a significant level of vibration.
Aeolian vibrations lead to conductor fatigue. The latter is caused by the cyclic bending of
the conductors where their motion is restrained, but it is not a bending fatigue situation. In
fact, the fatigue mechanism of vibrating conductors is a highly localized phenomenon called
fretting fatigue: it occurs on the outer surface of the wires because of the cyclic micro-slip
induced by the conductor motion (EPRI, 2006). Figure 2.3 shows an example of wear damage
and fretting marks on an ACSR conductor after a fatigue testing.
An in-depth knowledge and modeling of the conductor mechanics as well as its self-damping
is necessary to address a quantitative approach that permits to assess the conductor fatigue
phenomenon (see e.g. (Azevedo, 2009),(Redford, 2018)) and predict more clearly its remaining
lifetime (Mendonća, 2021).

3.2. Failure analysis results

Figs. 6 and 7 show the general aspect of the ACSR conductor cable after the fatigue testing, indicating that
the rupture of the strands occurred just at the end of the clamping region. The cable is composed of alternate
layering (right-hand lay followed by left-hand lay) and the contact points between wires of adjacent layers are,
therefore, ellipses, while between adjacent wires of the same layer it can be considered as rectangles. Investi-
gation of the external strands revealed the presence of broad rectangular marks caused by clamping and thin
lateral strand/strand marks. Internal aluminium strands revealed elliptical marks caused by the contact
between two wires of different layers. The visual inspection of the ruptured ACSR conductors located in
the clamping region showed: gross plastic deformation marks of the external layer of aluminium and presence
of Al2O3 and SiO2 debris; and elliptical strand/strand marks with the presence of Al2O3 debris at the end of the
clamping regions (confirmed by EDS microanalysis) in the internal layer. These results confirmed the occur-
rence of fretting wear on the ACSR conductor inside the clamping system.

The visual inspection of the ruptured aluminium strands identified three types of fracture topography (see
Figs. 8–11): V-type, 45!-type and quasi-normal surface. Table 2 shows the distribution of each type of fracture
according to the positioning of the aluminium strand (external or internal). The 45! fracture surface was the
predominant type for both external and internal layers of aluminium strands for failure under high bending

Fig. 6. General view of the conductor 1 (6.4 ! 106 cycles, bending amplitude: 0.9 mm) after the fatigue testing. (a) Detail showing
superficial damage (wear) on the external layer of the ACSR conductor and presence of two broken wires (plane fracture). (b) Detail
showing elliptical fretting marks (strand/strand) on the internal layer of the ACSR conductor. EDS microanalysis on the fretting marks
indicated preponderant presence of Al2O3 (hardness of approximately 2000 HV).

Fig. 7. General view of the conductor 5 (1.1 ! 106 cycles, bending amplitude: 1.3 mm) after the fatigue testing. (a) Detail showing intense
superficial damage (wear), with loss and fracture of tents, on the external layer of the ACSR conductor. (b) Detail showing elliptical
fretting marks (strand/strand) and 45! fracture of tents on the internal layer of the ACSR conductor. EDS microanalysis on the fretting
marks indicated preponderant presence of Al2O3 (hardness of approximately 2000 HV).

142 C.R.F. Azevedo et al. / Engineering Failure Analysis 16 (2009) 136–151

(a) Wear damage on external layer.

3.2. Failure analysis results

Figs. 6 and 7 show the general aspect of the ACSR conductor cable after the fatigue testing, indicating that
the rupture of the strands occurred just at the end of the clamping region. The cable is composed of alternate
layering (right-hand lay followed by left-hand lay) and the contact points between wires of adjacent layers are,
therefore, ellipses, while between adjacent wires of the same layer it can be considered as rectangles. Investi-
gation of the external strands revealed the presence of broad rectangular marks caused by clamping and thin
lateral strand/strand marks. Internal aluminium strands revealed elliptical marks caused by the contact
between two wires of different layers. The visual inspection of the ruptured ACSR conductors located in
the clamping region showed: gross plastic deformation marks of the external layer of aluminium and presence
of Al2O3 and SiO2 debris; and elliptical strand/strand marks with the presence of Al2O3 debris at the end of the
clamping regions (confirmed by EDS microanalysis) in the internal layer. These results confirmed the occur-
rence of fretting wear on the ACSR conductor inside the clamping system.

The visual inspection of the ruptured aluminium strands identified three types of fracture topography (see
Figs. 8–11): V-type, 45!-type and quasi-normal surface. Table 2 shows the distribution of each type of fracture
according to the positioning of the aluminium strand (external or internal). The 45! fracture surface was the
predominant type for both external and internal layers of aluminium strands for failure under high bending

Fig. 6. General view of the conductor 1 (6.4 ! 106 cycles, bending amplitude: 0.9 mm) after the fatigue testing. (a) Detail showing
superficial damage (wear) on the external layer of the ACSR conductor and presence of two broken wires (plane fracture). (b) Detail
showing elliptical fretting marks (strand/strand) on the internal layer of the ACSR conductor. EDS microanalysis on the fretting marks
indicated preponderant presence of Al2O3 (hardness of approximately 2000 HV).

Fig. 7. General view of the conductor 5 (1.1 ! 106 cycles, bending amplitude: 1.3 mm) after the fatigue testing. (a) Detail showing intense
superficial damage (wear), with loss and fracture of tents, on the external layer of the ACSR conductor. (b) Detail showing elliptical
fretting marks (strand/strand) and 45! fracture of tents on the internal layer of the ACSR conductor. EDS microanalysis on the fretting
marks indicated preponderant presence of Al2O3 (hardness of approximately 2000 HV).

142 C.R.F. Azevedo et al. / Engineering Failure Analysis 16 (2009) 136–151

(b) Elliptical fretting marks on internal layer.

Figure 2.3. General view of an ACSR conductor after the fatigue testing (Azevedo, 2009).
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2.2 Overhead transmission line conductors

Conductors of an overhead power line are stranded cables. They are considered the most
important part of the entire line, since their function is to transfer electric power. Strands
are made of helical wires, which are twisted around an initially straight core and grouped
in concentric layers. Wire ropes, in turn, are obtained by helically twisting and grouping
metallic strands. The core wire can be of the same material or different with respect to
the external twisted wires. In fact, overhead conductors can be realized with different
combination of materials, resulting in different strength-to-weight ratios. The latter is the
main mechanical parameter used to select the proper conductor for every specific application.
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particular, the bending stiffness of conductors; conduc-
tor self-damping; and suspension hardware.

2.3.2 Types and Basic Properties of Conductors
Overhead transmission lines transmit electric power
using stranded cables called conductors. In fact, con-
ductors are the only power-carrying component of a
transmission line and account for a significant propor-
tion of the overall costs of the line, which can be up to
40%. Conductors have to sustain a range of electrical,
mechanical, and environmental “loads” over the pro-
jected life expectancy of a line, which can be well over 50
years of service. As a result, special attention is given to
the selection of their constituent materials and their lay-
out and design. As part of this book’s comprehensive
coverage of the effects of conductor vibration, this sec-
tion summarizes the common types and basic properties
of conductors employed today in transmission lines in
this chapter (Aluminum Association 1982; Southwire
Company 1994).

The most widely used form of conductors is that of lay-
ers of round wires stranded, first, around a so-called
core, which can be of the same material or different, and
then around each other. In order to keep the integrity of
this construction, the stranding takes place in alternat-
ing directions from layer to layer. For aluminum con-
ductors, the usual convention is to wrap the outer layer
with a right-hand lay, as opposed to copper conductors,
which have a left-hand lay in their outer layer. For con-
ductors with equal-diameter wires, each lay has six wires
more than the layer beneath it, which provides, in most
of the cases, a good “fit” in every layer (see Figure
2.3-1). However, in order to tailor the conductor for var-
ious strength-to-weight ratios, unequal-diameter wires
are often used with success. Details of conductor design
and fabrication are covered extensively in a recent publi-
cation (Rawlins 2005a).

Most of the requirements for conductor design come
from mechanical constraints. The electrical aspects of
conductors are usually limited to current density, elec-
trical resistance, and the associated power loss and volt-
age gradient, which are solved by adding area and
adjusting the outside diameter or using multiconductor

bundles on the line. Some overhead conductors are con-
structed from commercially pure aluminum, known as
AA1350-H19 and referred to as All Aluminum Conduc-
tor (AAC) or Aluminum Stranded Conductor (ASC).
Because of its relative low strength-to-weight ratio
(which is the most important mechanical criterion),
these types of conductors are suitable for short spans in
distribution networks, and for areas where ice and wind
loads are limited (Figure 2.3-2), as well as for flexible
bus bars in substations.

For added strength, various aluminum alloys have been
developed, and these conductors are referred to as All
Aluminum Alloy Conductor (AAAC) or Aluminum
Alloy Stranded Conductor (AASC). Early versions of
these alloys used magnesium as the main alloying ele-
ment, which had strain-hardening properties. This pro-
duced mechanical characteristics that vary with wire
diameters, which is not desirable. For this reason, most
alloys used today are of the AA6000 series, which are
heat-treatable and more consistent. It should be noted
that any improvements in strength are usually to the
detriment of conductivity (see Figure 2.3-3). 

When a better strength-to-weight ratio is desired, a
strength member has to be added to the conductor. This
can be achieved by adding an aluminum alloy core to

Figure 2.3-1 Structure of a typical conductor.

Figure 2.3-2 Bare conductors—typical use.

Figure 2.3-3 Properties of aluminum and some alloys.Figure 2.4. Structure of a typical conductor (EPRI, 2006).

Conductor characteristics also include conductance, diameter, strength, weight and thermal
expansion coefficient, as well as stress-strain, creep and thermal loss-of-strength characteristics.
Proper conductor selection takes into account the interaction of these characteristics with
requirements of the electrical line: its voltage, capacity and load factor, the terrain it will
cross and the environmental loads that it must withstand.
All standard overhead conductors are concentric-lay, i.e. the strand axis cylinders for all
layers are concentric with the core. All standard overhead conductors are reverse-lay as well.
This means that the direction of rotation of each layer is made opposite to that of the layer
below (Rawlins, 2005).
It is worth noticing that using stranded conductors permits them to be flexible enough to be
reeled for shipping, and makes them more tolerant of minor damage than solid rods would
be. It also possible to manufacture conductors in great lengths, even though the maximum
size of ingots or spool loads, involved in the manufactoring process, may limit the weight of
individual component strands.
Helical lay, and concentric lay, in particular, is used to realize fully the flexibility offered by
multiple strand construction. Reverse lay improves the conductor’s structural integrity by
defining the space for each layer. Moreover, use of reverse lay reduces the torque created
in conductors when they are tensioned (which can cause problems during stringing) and
improves electrical characteristics (such as self-inductance and ac resistance). More detailed
information can be found e.g. in (Rawlins, 2005).

2.2.1 Conductor Geometry

Conductors are specified by type, size and stranding. The electrical conductance that is
required in a conductor determines its equivalent area in 1350 alloy aluminum, as minimum
value.
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2.2. Overhead transmission line conductors

The most used types of conductors are herein listed (EPRI, 2006):

• Aluminium Stranded Conductor (ACS) and All Aluminium Conductor (AAC) are
composed by commercially pure aluminium. They are suitable for short spans in
distribution networks, due to their relative low strength-to-weight ratio.

• All Aluminum Alloy Conductor (AAAC) and Aluminum Alloy Stranded Conductor
(AASC) are composed by an aluminum-magnesium alloy, that ensures a higher strenght.

• Aluminum Conductor Alloy Reinforced (ACAR), where same conductance is shought
through combination of 1350 alloy with higher strength.

• Aluminum Conductor Steel Reinforced (ACSR) and Aluminum Alloy Conductor Steel
Reinforced (AACSR), in which the minimum aluminium area is combined with various
area of steel to obtain different conductor strengths. ACSR is the most commonly used
conductor type.
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particular, the bending stiffness of conductors; conduc-
tor self-damping; and suspension hardware.
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ductors are the only power-carrying component of a
transmission line and account for a significant propor-
tion of the overall costs of the line, which can be up to
40%. Conductors have to sustain a range of electrical,
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jected life expectancy of a line, which can be well over 50
years of service. As a result, special attention is given to
the selection of their constituent materials and their lay-
out and design. As part of this book’s comprehensive
coverage of the effects of conductor vibration, this sec-
tion summarizes the common types and basic properties
of conductors employed today in transmission lines in
this chapter (Aluminum Association 1982; Southwire
Company 1994).

The most widely used form of conductors is that of lay-
ers of round wires stranded, first, around a so-called
core, which can be of the same material or different, and
then around each other. In order to keep the integrity of
this construction, the stranding takes place in alternat-
ing directions from layer to layer. For aluminum con-
ductors, the usual convention is to wrap the outer layer
with a right-hand lay, as opposed to copper conductors,
which have a left-hand lay in their outer layer. For con-
ductors with equal-diameter wires, each lay has six wires
more than the layer beneath it, which provides, in most
of the cases, a good “fit” in every layer (see Figure
2.3-1). However, in order to tailor the conductor for var-
ious strength-to-weight ratios, unequal-diameter wires
are often used with success. Details of conductor design
and fabrication are covered extensively in a recent publi-
cation (Rawlins 2005a).

Most of the requirements for conductor design come
from mechanical constraints. The electrical aspects of
conductors are usually limited to current density, elec-
trical resistance, and the associated power loss and volt-
age gradient, which are solved by adding area and
adjusting the outside diameter or using multiconductor

bundles on the line. Some overhead conductors are con-
structed from commercially pure aluminum, known as
AA1350-H19 and referred to as All Aluminum Conduc-
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Because of its relative low strength-to-weight ratio
(which is the most important mechanical criterion),
these types of conductors are suitable for short spans in
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loads are limited (Figure 2.3-2), as well as for flexible
bus bars in substations.

For added strength, various aluminum alloys have been
developed, and these conductors are referred to as All
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ment, which had strain-hardening properties. This pro-
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diameters, which is not desirable. For this reason, most
alloys used today are of the AA6000 series, which are
heat-treatable and more consistent. It should be noted
that any improvements in strength are usually to the
detriment of conductivity (see Figure 2.3-3). 

When a better strength-to-weight ratio is desired, a
strength member has to be added to the conductor. This
can be achieved by adding an aluminum alloy core to

Figure 2.3-1 Structure of a typical conductor.

Figure 2.3-2 Bare conductors—typical use.

Figure 2.3-3 Properties of aluminum and some alloys.

Figure 2.5. Typical use of bare conductors (EPRI, 2006).

computed values of Pd. Secondly, it relies on expensive and time
consuming testing both for finding the set of the exponents and the
proportionality coefficient k.

3. A novel mechanical approach for the evaluation of the cable
self-damping

Stranded conductors are made of metallic wires with circular cross
section, which are helically twisted around a straight core (core wire) and
grouped in concentric layers. The external layers are usually manufac-
tured with aluminiumwires. The core wire, instead, is oftenmade of steel
to achieve a good tradeoff between electrical and mechanical perfor-
mance. One or more layers of steel wires can also be wrapped around the
core, to further improve the strength-to-weight ratio of the conductor,
which is the main design parameter to control the sag-to-span ratio of the
suspended cable. Fig. 1 shows a schematic representation of the internal
geometry of such Aluminium Conductors Steel Reinforced (ACSR).
Although the formulation proposed in this paper can also be applied to
other strand constructions, the results will be systematically presented
with reference to ACSR cables, since they are widely used in practical
applications (EPRI, 2006).

Each wire of the conductor can be individually modeled as a curved
thin rod, reacting to a generic combination of axial stretch, torsion and
biaxial bending (Foti and Martinelli, 2016b). Within this context, the
centerline of a wire, can be represented as a circular helix in a Stran-
d-attached Reference System (SRS), whose axes xi (i ¼ 1;2;3) are
depicted in Fig. 2. By denoting as R and P, respectively, the radius of the
helix (i.e. the distance between the centroid of the wire cross section and
the strand centerline) and its pitch, the following position vector can be
defined to identify the centerline of a wire in the SRS:

xwðθÞ ¼
P
2π

ðθ $ θ0Þe1 þ RcosðθÞe2 þ RsinðθÞe3 (7)

where: feig are the unit vectors of the axes xi; θ is the swept angle, i.e. the
angle between the projection of xw on the plane x1 ¼ 0 and the axis x2
(see Fig. 2); and θ0 identifies the value of θ at x1 ¼ 0. A positive sign is
herein conventionally assumed for the pitch of helices that are twisted
around the centerline of the strand according to the right-hand rule.

The tangent vector to the wire centerline makes an angle α, also called
lay angle, with the centerline of the strand. The lay angle can be related
to the geometric parameters R and P through the following equation:

α ¼ tan$1
!
2πR
P

"
(8)

Conductors undergoing aeolian vibrations are mainly subjected to a
state of alternate planar bending, which is superimposed to the tensile

stress state due to the static loads (e.g.: the self-weight and the static
component of the wind loads, initial pretension whenever present). A
two-stage approach (Cardou and Jolicoeur, 1997), hence, turns out to be
very well suited to describe the cross-sectional response of the strand.
Accordingly, the solution of the bending problem can be superimposed to
the initial state of stress and strain due to the effects of the axial force
acting on the strand cross section.

The axial behaviour of the conductor can be modeled as linearly
elastic for typical service loading conditions, as it can be easily inferred
from both experimental and theoretical results (Utting and Jones, 1987;
Raoof and Kraincanic, 1994; Foti and de Luca di Roseto, 2016). Starting
from the description of the internal geometry of the strand and the
characterization of the elastic properties of the wires, simple closed-form
expressions can be derived to relate the axial force to the work--
conjugated elongation of the strand centerline. Moreover, the axial force
distribution in the wires of the strand can be easily evaluated, along with
the radial contact forces acting between the wires of the strand belonging
to adjacent layers (see e.g.: Foti andMartinelli, 2016a, 2016b). The radial
contact forces increase with increasing values of the axial force, which
clenches the wires together due to the helicoidal shape of their
centerlines.

The bending response, on the other hand, is inherently non-linear and
controlled by the stick-slip behaviour of the contact surfaces between the
wires of the strand. The activation of these frictional interfaces de-
termines a hysteretic dissipation mechanism, which can be clearly
highlighted from both quasi-static and dynamic bending tests (Papailiou,
1997; Zhu and Meguid, 2007), and also from the results of refined FE
models (see e.g. Fekr, 1999; Qi, 2013; Lalonde et al., 2017).

In the following, the main characteristic features of the hysteretic
bending behaviour of metallic strands will be first reviewed. Then,
starting from the results of a mechanical model recently proposed by the
authors (Foti and Martinelli, 2016a), a unified closed form estimate of
the energy per unit of length dissipated within a conductor subjected to
alternate bending is here proposed. This unified form is then adopted to
compute the dissipated power along the vibrating conductor.

3.1. A unified approach to the hysteretic bending behaviour of cable cross
sections

Whenever the strand is bent, an axial force gradient is generated
along the length of the wires, giving them the tendency to slip with
respect to the neighbouring ones. This tendency to slip is counteracted by
the tangential friction forces acting on the external surface of the wires.
As long as the friction forces are large enough to prevent any relative
displacement, all the wires are stuck together (full-stick state) and the
strand cross section can be modeled as a planar rigid body, leading the
bending stiffness to attain its maximum theoretical value which will be
denoted in the following as EImax. Due to the voids between the wires, the
value of EImax is close to, but not equal to, the one of a compact circular
cross section with the same diameter of the strand.

For each wire, the tangential friction forces can increase only up to a
maximum value, which is a function both of the geometric characteristics
and friction coefficient of the internal contact surfaces, as well as of the
value of the radial contact pressures. The gradient of the axial force alongFig. 1. Schematic representation of the internal structure of the ACSR strands.

Fig. 2. Internal geometry of the ACSR strands. (a) Side view; (b) cross-section
and definition of the polar coordinates: (R, θ).

F. Foti, L. Martinelli Journal of Wind Engineering & Industrial Aerodynamics 176 (2018) 225–238
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Figure 2.6. Schematic representation of the internal structure of a 54/7 ACSR conductor (Foti and
Martinelli, 2018a).
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Let us now introduce for convenience a numbering notation for the different layers of wires.
In particular, let us denote with i = 0 the core wire, and let us count in ascending order the
layers of wires starting from the one which is in contact with the core (i.e. i = 1).
In conductors where all wires have the same diameter, the number of wires in the i-th layer
is ni = 6 · i and the outside diameter of the layer is Di = (1 + 2 · i) · d, where d is the wire
diameter. Thus we have Di = (1 + ni/3) · d.
In conductors where the strands of the outer layers have a different diameter from the core
wire, the number of wires in the outer part still increases by six from layer to layer.
So that the following relationship (concentric-lay rule) is applied to these layers (Rawlins,
2005).

Di = (1 + ni/3) · di (2.4)

The pitch of the strand helices is called "length of lay" in conductor practice, and the ratio
of the length of lay of a layer of strands to the outside diameter of that layer is called the
"lay ratio" of the layer.
Lay ratio for conventional conductors are specified in various standards. Figure 2.7 shows
the lay ratios for aluminium layers given in (ASTM, 1980) and (IEC, 1966) standards. It
is evident that lay ratios less than 10 are prohibited, so that interference shouldn’t occur,
except in layers of less than 9 strands. Furthermore, both standards permit substantial gaps
to occur, especially in the inner layers.

Figure 2.7. Lay ratios permitted by ASTM and IEC standards (Rawlins, 2005).
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2.3 Experimental Measurements of the Self-Damping

In this section, different test procedures for the measurements of the cable self-damping are
reviewed, with reference to indoor laboratory spans.

2.3.1 General considerations

The variation of ambient temperature inside laboratory spans is minimal and should be
suitably controlled (values up to 0.2°C/h are considered acceptable). For consistent results,
a span length greater than 40m is recommended, even if satisfactory results can be obtained
with spans in the range of 30m. For shorter spans, a critical role on the results is given by
the influence of the termination losses and the distribution of the tensile load between the
conductor strands (CIGRE, 2011).
The free span length may affect the number of vibration modes that can be detected on
conductors. In fact, large conductors may require a higher starting frequency than would
be necessary, due to insufficient free span length. For instance, on a 50m span, when the
conductor is tensioned at 20% RTS, the minimum of ten loops, required for a suitable
measurement resolution, can be obtained with a frequency of 12 Hz. The minimum value of
loops would be achieved with a frequency of 6 Hz using a 100m span.
Another important issue is related to termination portion of the span length. In fact, the test
span shall be strung between two massive blocks with a weight not lower than 10 percent of
the ultimate tensile strength of the largest conductor to be tested. Each block should be a
single piece, generally made of reinforced concrete, and solidly connected with the concrete
floor slab. The stiffness of these blocks should be as high as possible in order to minimize
the losses and provide the maximum reflection of the waves.
Figure 2.8 shows an example of laboratory test span.

 
Figure 2 – Test span for conductor self-damping measurements 

4.2 Span terminations 

The test span should have the capability of maintaining a constant conductor tension. 
Hydraulic and pneumatic cylinders, springs, threaded bars and pivotal balance beams have 
been used successfully. The conductor tension is measured by a load cell located between 
the tension device and the dead end clamp (Figure 3) preferably equipped with a conspicuous 
display visible from any point of the test span.  

A rigid non-articulating square faced clamp similar to that shown in Figure 4 shall be used to 
minimize energy dissipation by the termination fixture. An example of a typical termination 
design is also provided in Figure 3 of IEEE Std. 563-1978. Terminating fixtures and rigid clamps 
shall be of sufficient stiffness to ensure that energy losses do not occur beyond the 
extremities of the free span. 

 

Figure 3 – Test span. Active extremity arrangement [11] 

Rigid end clamps (also called heavy clamps) equal to or up to ten times longer than the 
conductor diameters and with groove diameters not exceeding by more than 0.25 mm the 
diameter of the conductor have given good results. Generally, the clamp groove is 
dimensioned for the biggest conductor to be tested and a set of sleeves is made available to 
accommodate smaller conductor diameters.  

The rigid clamps should not be used to maintain tension on the span. However, the rigid 
clamps, once closed, will retain some load. Consequently, the tension devices can not fully 
control the conductor tension and the load cell is insensitive to the load variations in the free 
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Figure 2.8. Test span for conductor self-damping measurements (CIGRE, 2011).

The test span should also have the capability of maintaining a constant conductor tension.
The latter is measured by a load cell located between the tension device and the dead end
clamp. Terminating fixtures and rigid clamps should be of sufficient stiffness to ensure that
energy losses do not occur beyond the extremities of the free span.
One important aspect that should be considered, is related to the large dissipation of energy
that occurs near the end of the span. Preference should be given to a test arrangement which
would minimize energy dissipation at the span end terminations. If there is uncertainty
about this, the energy should be assessed and eventually accounted for, unless using the
Inverse Standing Wave Ratio (ISWR) method.
The termination losses may be minimized by terminating the conductor by a flexure member,
such as a wide, flat bar of sufficient strength to accommodate the span tension but also
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flexible enough in the vertical direction to allow it to bend readily and to avoid bending the
conductor through a sharp radius of curvature where it would normally enter the clamp. 

 
Figure 5.  Pivoted clamp and rigid clamp at span extremity 

According to IEEE 563-1978 [8], qualitatively, a termination may be considered sufficiently 
lossless if the logarithmic decrement of the conductor span is less than about 0.005 for the 
fundamental mode at double amplitudes less than twice the sag. However, this procedure is 
not recommended by the experts involved in the preparation of this report for lack of rationale. 

4.3  Shaker and vibration control system 

The vibration exciter used for these tests is generally an electro-dynamic shaker (Figure 6). 
Hydraulic actuators are also used.  

 

 
 

Figure 6 – Electro-dynamic shaker 

Modal shakers having light armature (0.2-0.6 Kg) and linear bearings can be used to excite 
resonance modes of the conductor with minimal distortion of the natural mode shape and to 
produce virtually zero stiffness and zero damping in the direction of the movement.  

The shaker shall be able to provide a suitable sinusoidal force to the test span.   
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Figure 2.9. Pivoted clamp and rigid clamp at span extremity (CIGRE, 2011).

Vibrations of the conductor are usually excited through an electro-dynamic shaker or
hydraulic actuators. The shaker should be able to provide a suitable sinusoidal force to the
test span, so that the alternating movement is a simple harmonic, with a distortion level of
less than 5%. It is required that both vibration amplitude and frequency are controlled to
an accuracy of ±2% (CIGRE, 2011). The use of computers and dedicated software, for the
shaker control and for the data acquisition, reduction and elaboration, is considered as a
normal practice.
Furthermore, the shaker should be placed within one of the end loops of the span, but not
necessarily at an anti-node. This location also makes it possible to excite greater amplitudes
even if a rigid connection between the shaker and the conductor is used. In this condition,
shaker forces are generally low.
It is worth noticing that, the armature of the shaker can be connected to the test span either
rigidly or by the use of a flexible connection. However, the fixture shall be as light as possible
in order to avoid the introduction of unwanted inertial forces and to prevent that, at the
higher frequencies, the force needed to vibrate that mass plus the shaker armature will be
beyond the capability of the shaker system.
To avoid distortion of the mode shape in the conductor vibration, the clamp mass must be
as low as possible and, in resonance conditions, the phase between force and acceleration,
at the driving point, must be as close as possible to 90 deg. In this case, the force applied
by the shaker has its minimum and equals the damping force. For angles different from 90
deg, inertia and elastic components are also present and these give rise to distortions. The
shaker connection shall be instrumented for force and vibration level measurements. The
latter is generally made using accelerometers, but also velocity transducers and displacement
transducer can be used.
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Figure 2.10. Example of electrodynamic shaker (CIGRE, 2011).

An example of flexible connection equipped with force and acceleration transducers is shown 
in Figure 10. 

                                                                    

Figure 10 – Example of flexible connection  

4.6 Transducers and measuring devices 

4.6.1 Type of transducers 

The following transducers are used for the self-damping measurements: 

A. Load cells: to measure the force transmitted by the shaker to the conductor. 
B. Accelerometers, velocity transducers and displacement transducers: to measure the level 

of vibration. 
In addition, strain gauges are sometimes used to control the tension of the individual wires of 
the outer layer and temperature probes may be used for monitoring the ambient and/or 
conductor temperature.   

There is no limitation or preference regarding the working principle of the transducers, 
providing their mass is small enough in order not to interfere with the system. Miniature load 
cells and miniature accelerometers (Figures 10, 11and 12) are most commonly used for in-
span measurements. 

Contactless displacement transducers (laser or eddy current based) have also been used for 
measurements of node and antinode amplitudes, especially with small and light conductors 
[30].  

Using transducers having a different working principle, for example a piezoelectric 
accelerometer and a strain gauge load cell, it is possible to have a phase shift between the 
two signals due to the different response time of the two transducers. This phase shift is 
frequency dependant and shall be taken into account in the determination of the phase angle 
between the measured quantities at each tunable vibration mode. A procedure to calculate 
the phase shift at each test frequency is presented in Annex D. 

In a computer controlled test system, the data acquisition software can be set up to perform 
automatically the phase shift correction. In any case, for sake of simplicity, it is recommended 
to use transducers having the same working principle so that no phase shift correction is 
required. 
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Figure 2.11. Flexible connection between shaker and conductor (CIGRE, 2011).
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Due to the large number of symbols that will be adopted in the following subsections for
the description of the test procedures, a table with the nomenclature is herein proposed.

Table 2.2. Nomenclature of the involved quantities.

Symbol Nomenclature Unit

Ediss Energy dissipated by the system Joule
Ekin Kinetic energy of the cable Joule
F Force transmitted by the exciter, peak value N
u Antinode cable displacement mm
uf Cable displacement at the force application point mm
θ Phase between F and uf deg
l Span length m
λ Wavelength m
T Conductor tension N
ω Circular frequency rad
f Frequency Hz
m Conductor mass per unit of length kg/m
n Number of vibrating loops in the span -
ξ Non-dimensional hysteretic damping coefficient -
h Non-dimensional viscous damping coefficient (h = 0.5ξ) -
ai Cable vibration single amplitude at the i-th node mm
Si Inverse standing wave ratio (ISWR) at loop i -√
Tm characteristic impedance of the conductor Ns/m

The test methods herein described for the determination of the dissipated power per unit of
length, require that the conductor reaches a resonant condition, with the exception of the
ISWR method for which tuning the span to resonance, although preferable, is not strictly
necessary. As a general comment, the natural frequencies of the span may be estimated by
applying the taut string model. The following equation holds:

f =
1

λ
·
√
T

m
=
n

2l
·
√
T

m
(2.5)

Equation 2.5 provides a good starting point for finding resonances, even if conductor stiffness
and the presence of the shaker on the span may influence the vibration modes, i.e. modify
the natural frequencies.

2.3.2 Power Method

The power method allows to determine the dissipation characteristics of a conductor by
the measurement of both the force and the vibration level imparted to the test span at the
point of attachment to the shaker. The conductor, tensioned on the experimental span, is
forced to vibrate at one of its resonant frequencies, with both amplitude and frequency being
controlled by means of the driving system.
The non-dimensional viscous damping coefficient h, can be calculated by dividing the energy
introduced in the conductor Ediss by the total kinetic energy of the conductor Ekin, where
Ediss and Ekin are average energies "per cycle" of vibration. It holds:

h =
1

4π

Ediss
Ekin

(2.6)

16



2.3. Experimental Measurements of the Self-Damping

If a displacement transducer is used at the forcing point, then the dissipated energy Ediss
can be computed as follows (Diana et al., 2000),(CIGRE, 2011):

Ediss =
P

f
=
π F uf f sin(θ)

f
= π F uf sin(θ) (2.7)

While the kinetic energy of the conductor is given by:

Ekin =
1

4
ml u2 ω2 (2.8)

For normal conductors, the non-dimensional damping coefficient h ranges between 0.0001
and 0.001.
Some general considerations and conclusions concerning with the capability of the power
method are here collected:

• the power method is simple and requires a limited number of measurement points;

• on the other hand, all the extraneous dissipation is part of the total calculation of the
conductor self-damping. As a consequence, special care must be devoted to reduce all
these extraneous loss sources or to account for them.

• The loops at the ends of the span and at the shaker connection behave differently from
the rest of the span, having an energy dissipation that can be much higher than that of
all of the rest of the span (see e.g (Noiseux, 1988)). The end losses can be determined
by comparing the power inputs for two spans of different lengths identically terminated.
Where it is not convenient to change the span length, it is necessary to minimize these
losses or to use the ISWR method.

2.3.3 Inverse Standing Wave Ratio Method

The ISWR method determines the power dissipation characteristics of a conductor by the
measurement of nodal and antinodal amplitudes on the span at each tunable harmonic.
In order to understand the principle involved in this method, it is necessary to trace the
waves leaving the vibration shaker as they are reflected at the span ends. Assuming that the
shaker is attached near one of the span terminations, it will induce impulses that will travel
to the far end of the span and then return as reflected waves.
If no losses are present in the system, the incident and reflected waves are equal. Perfect
nodes will be formed where the two waves meet and pass, so that zero motion will exist
at the nodes. The anti-nodes will have an amplitude equal to the sum of the incident and
reflected waves. If losses are present in the system, on the contrary, motion will appear
at the nodes. The amplitude of this motion will be the difference between the incident
and the reflected waves. The ratio between nodal amplitude and anti-nodal amplitude is
indicative of the dissipation within the system. Where low span losses are present, very
precise measurements are necessary for determining nodal amplitude. These measurements
may be a problem (CIGRE, 2011).
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The total power dissipated by the conductor can be computed from the following equation
(Diana et al., 2000),(CIGRE, 2011):

P =
V 2

2

√
TmSi (2.9)

where:

•
√
Tm is the characteristic impedance of the conductor;

• V = ω u is the antinode vibration velocity;

• Si = ai/u is the inverse standing wave ratio (ISWR) of loop i;

Performing two measurements in two different nodes j and k, the power dissipated by the
conductor between these loops will be:

P = Pk − Pj (2.10)

Therefore the energy dissipated by the conductor between these two nodes can be expressed
as:

Ediss,k,j = (Pk − Pj)
2π

ω
(2.11)

The kinetic energy between the two nodes is given by:

Ekin =
1

2
u2 ω2m

4

2π

ω

√
T

m
nv (2.12)

where nv is the number of antinodes between nodes k and j.
The value of the non-dimensional self-damping coefficient can be computed by the following
equation:

h =
Sk − Sj
π nv

(2.13)

where Sk and Sj are the ISWR respectively at loop k and j.
Some general considerations and conclusions concerning with the capability of the ISWR
method are here collected:

• An advantage of this method is that the measured dissipation relates to the considered
portion of conductor only. As a consequence, the estimated self-damping value is not
affected by the influence of span terminations and shaker-conductor connection;

• A critical aspect regards the measurement of the vibration amplitude in two different
nodes vibrating under steady state condition. In fact, the exact node positions should
be detected and the displacements to be measured are very small (on the order of a
few micrometers);

• Special care must be devoted in avoiding horizontal and torsional motion of the cable
in the test procedure, because the node vibration has a component only in the same
vertical direction as the antinode vibration, with zero component in the horizontal and
torsional directions.;

• In order to obtain the conductor self-damping, the aerodynamic losses should be
subtracted by the measured total damping.
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2.3.4 Decay Method

The decay method permits to determine the dissipation properties of a conductor by the
measurement of the decay rate of the amplitude of motion of a span following a period of
forced vibration at a natural frequency and fixed test amplitude. The rate of decay is a
function of the system losses: in fact, where low dissipation levels are present, decay times
are long.
Such method, if correctly employed, can give an estimation of the Self-damping values in a
large range of vibration amplitudes in one trial. Moreover, it is quick and easy, requiring, in
its simplest form, just one transducer measuring the decay.
However, as in the Power method, all the extraneous dissipation is part of the total calculation
of the conductor self– damping. It is necessary to minimize all these extraneous loss sources or
accounting for them. When this is not possible the use of the ISWR method is recommended
(CIGRE, 2011).
Decay rate is recorded and expressed in terms of logarithmic decrement, i.e. the natural
logarithm of the amplitude ratio of two successive cycles of vibration.
The logarithmic decrement δ can be computed as follows:

δ =
1

nc

Ya
Yz

(2.14)

where nc is the number of cycles between the two cycles considered, Ya and Yz are the single
antinode amplitude of the first and last cycle considered respectively.
The power dissipated by the conductor can be then computed according to the following
equation:

P =
1

2
f m · V 2

a · L · δ (2.15)

where Va is the antinode velocity at the initial antinode amplitude.
The non-dimensional damping coefficient is hence:

h =
δ

2π
(2.16)

The decay record may take the form of a series of steps occurring at the fundamental
frequency of the test span. The particular shape of the steps will depend upon where the
vibration is sensed and will obviously be more pronounced in highly damped spans.
The main advantage of the decay method is the possibility of a wide range of testing
amplitudes in one trial, while it is not recommended for test spans with unknown end and
drive point losses.

Comparison

As a general comment, the Inverse Standing Wave Ratio Method and Power Method are
considered costly to equip and tedious to perform. On the contrary, the Decay Method is
relatively easy to understand and perform, and requires minimal instrumentation. When
damping is low, the Decay Method has good accuracy and resolution while both the Power
Method and the ISWR Method suffer reduced accuracy. As a consequence, the decay test
may be a suitable complement to these methods. However, when conductor damping is low
the relative effect of other damping sources is larger and therefore the ISWR method may
be considered advantageous (CIGRE, 2011).
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2.4 Models for the cable self-damping

In this section, different models for the cable self damping of the literature are presented.
Subsection 2.4.1 deals with the description of the empirical approach that is currently adopted
for the evaluation of the cable self-damping, whereas in subsection 2.4.2 different theoretical
models proposed in the literature are described.
A new analytical model developed by (Foti and Martinelli, 2018a, 2018b), will be extensively
described in a fully dedicated section (4.1) and will be later on applied.

2.4.1 Empirical Models

The current engineering practice for the evaluation of the cable self-damping is based on
an empirical approach. Forced vibration tests are typically performed on laboratory test
spans, with length in the order of 30–90 m, according to two widely accepted international
standards (CIGRE, 1979), (IEEE, 1993).
Several laboratories around the world have performed conductor self-damping measurements
in accordance with the above mentioned standards. However, large disparities in self-damping
predictions have been found among the results supplied by the various laboratories.
The causes of these disparities can been identified into the following main points:

1. The different typology of test method adopted for the dissipated power measurements
(Power Test Method (PM), Inverse Standing Wave Ratio Test Method (ISWR), Decay
Test Method);

2. The different conductor conditioning before the test;

3. The different manufacturing processes of the conductor;

4. The different span end conditions (restraints) set up in the various test laboratories
(such as rigid clamps, pivoted clamps, flexure members);

5. The different types of connection between the electro-dynamic shaker and the conductor
(rigid or flexible) and the different location of the power input point along the span.

The experimental data are usually fitted through the following power law:

Pd = k
Al fm

Tn
(2.17)

where A (m) is the single-peak antinode vibration amplitude, T (kN) is the tension in the
cable and f (Hz) is the vibration frequency. Different sets of exponents (l,m,n) have been
determined by different research groups and are reported in Table 2.3. This discrepancies are
related to the reasons previously identified. The proportionality coefficient k that appears
into Equation 2.17 can be conveniently evaluated through the following empirical rule, valid
for the case of Aluminium Conductors Steel Reinforced (ACSR):

k =
D√

m ·RTS
(2.18)

where D is the conductor diameter, expressed in mm, RTS is the Rated Tensile Strength of
the conductor, expressed in kN and m is the mass per unit of length of the cable, expressed
in kg/m. The proportionality coefficient k is dimensional. Typical values of k for common
conductors are in the range of k ∈ [1.5, 2.5] and its dependence upon the strand diameter D
will be later on investigated (see Subsection 3.6.3).
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Table 2.3. Exponents of the empirical power law measured by different research groups.

Reference l m n Measurement Technique

Noiseux (1991) 2.44 5.63 2.76 ISWR1

Mech. Lab. Politecnico di Milano (2000) 2.43 5.50 2.00 ISWR1

Tompkings et al. (1956) 2.43 5.5 2 ISWR1

Rawlins (1983) 2.2 5.4 - ISWR1

Mocks and Schmid (1989) 2.45 5.38 2.4 PM2 (pivoted end)
Kraus and Hagedorn (1991) 2.47 5.38 2.8 PM2 (pivoted end)
1: Inverse Standing Wave Ratio
2: Power Method

2.4.2 Theoretical Models

During the past years, several theoretical models for the cable self-damping have been
proposed. The development of reliable and physically sound models for the self-damping of
stranded cables has two main advantages:

• the reduction of the uncertainties typically related to the application of empirical
damping models (see subsection 2.4.1);

• the reduction of the need for expensive and time consuming experimental tests on
laboratory spans or instrumented lines (see also the previous section 2.3).

As already anticipated in Chapter 1, the internal damping of transmission line conductors
can be attributed partly to inelastic effects within the body of the wires but mostly to
frictional damping, due to small relative displacements between the wires of the strand (see
e.g. (Claren and Diana, 1969)).
Based on this evidence, various theoretical models have been proposed in the literature to
characterize the power dissipated during the flexural oscillations of conductors, under a
physically sound mechanical description of the internal damping mechanisms.
One of the first theoretical models on the cable self-damping was proposed by Noiseux
(1992). He modeled the conductor as a taut beam and accounted for its energy dissipation by
means of a complex bending stiffness describing the hysteretic behavior of the cross-sections.
An experimentally calibrated hysteretic loss factor was then used to control the energy
dissipation.
Hardy (1990) studied the stick-slip frictional behavior of the external layer of wires of the
strand through the well-known Amontons–Coulomb friction law. He also calculated the
energy dissipated when a sinusoidal deflection is imposed to the cable centerline. However,
his model is limited to the description of the dissipation mechanism involved by the full-slip
of external wires (i.e. the so-called gross-sliding dissipation mechanism).
Goudreau et al. (1998) generalized Hardy’s model by taking into account also the tangential
compliance of the contact surfaces between wires. Such choice led to the possible occurrence
of the so-called micro-slip dissipation mechanism. The theoretical dissipated power per unit
of length according to Goudreau’s model can be expressed through the following power law:

Pd = k
A3 f7

T 4
(2.19)

Such power law exponents are significantly higher than those determined experimentally
from the tests in the laboratory spans (see Tab. 2.3).
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Expressions of the proportionality coefficient k were not provided, though.
Rawlins (2009) developed a model to evaluate the cable self-damping starting from the
analysis of the internal contact surfaces between the wires of the strand. Such model is
not restricted to the slip-state of the wires in the outermost layer of the conductor (on the
contrary to Goudreau’s one); however, it neglects the gross-sliding dissipation mechanisms
due to the activation of the wire sliding.
Rawlins’ model can be conveniently cast in the following form that simplifies the comparison
with Eq. 2.17.

Pd = k0(T )
A2 f5

T 2
+ k1(T )

A3 f7

T 3
(2.20)

where k0(T ) and k1(T ) are two dimensional coefficients, depending both on the geometrical-
mechanical properties of the strand and on the axial force T (Foti and Martinelli, 2018b).
The first term of Eq. 2.20 is only due to the hysteretic material damping in the wires of the
conductor, while the second one represents the effect of the frictional dissipation due to the
micro-slip between the wires of the strand.
Rawlins has also proposed a procedure for the estimation of the coefficients k0(T ) and k1(T ),
starting from the results of standard laboratory measurements of self-damping. However, a
quite poor agreement between the theoretical and experimentally determined values of such
coefficients is found.
Possible motivations of this conclusion can be associated to the main drawbacks of Rawlins’
model. The latter are stated as follows:

1. Experimental tests have shown that the material damping in the wires is almost
negligible if compared with the frictional dissipation due to interwire sliding phe-
nomenon. Rawlins’ formulation, on the contrary, highlights importance for both
physical mechanisms.

2. Rawlins’ formulation neglects the hysteretic dissipation due to the gross-sliding between
the wires of the strand. Such mechanism can indeed give a significant contribution to
the overall self-damping of the conductor, on the basis of the amplitude and frequency
of vibration.

Based on the results of the quasi-static bending tests on short cables collected by (Godinas,
1999), Guerard and Lilien (2011) derived the following proportionality relation for the
conductor dissipated power:

Pd : Pd ∝ (C∗T )δ+1/2A
3 f7

T 4
(2.21)

where C∗ is a unitary dimensional coefficient and δ = 0.25 is a parameter determined from
static bending tests.
Exponents of such power law are close to the ones obtained by Goudreau et al. (1998) but
higher than those obtained from experimental tests, which are collected in Table 2.3.
Finally, Foti and Martinelli (2018a, 2018b) have proposed a unified enhanced analytical
model for the description of the cable self-damping, starting from a in-depth modeling of the
mechanical behavior of such structures.
A unified non-dimensional expression for the estimation of the energy dissipated when the
strand cross section is subjected to alternate bending has been obtained. The knowledge in
closed-form of such dissipated energy has then been used to retrieve an analytical estimate
of the dissipated power per unit length of the conductor, i.e. Pd.
This model will not be further discussed here, but it will be extensively described in section
4.1, since it will be conveniently applied all along Chapter 4.
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Chapter 3

Modeling of the strand
cross-sectional response

In this chapter, the cross-sectional response of stranded cable is assessed. The linear axial-
torsional problem and the nonlinear bending problem are analyzed. Specific attention is
devoted to the application of different models for the transmission of radial contact pressures,
as well as for the formulation and implementation of different stick-slip mechanical laws.
A subsection is dedicated to the definition of the moment-curvature relationship through a
construction parameter c0 that accounts for the internal geometry of the strand, and it is
typical of each conductor. As a consequence of the application of different models (both for
the pressures transmission and for the stick-slip law), different values of c0 are obtained and
compared for each case. An application on the static response of the conductors is assessed.
In Section 3.1 the geometry of the strand is analyzed and useful quantities are introduced.
Section 3.2 deals with the description of the contact patches typologies, as well as their
numerical applications for the various ACSR conductors cross-sections.
Section 3.3 is about the formulation of the mechanical model of both at the wire level and
at the strand level, with the assessment of the cross-sectional response.
In Section 3.4 the solution of the linear axial-torsional problem is developed, with particular
interest on the presentation of three different radial contact pressure models, namely model
A,B and C and to their comparison in terms of predicted results (Subsection 3.4.2).
Section 3.5 deals with the solution of the nonlinear bending problem for the strand. Different
stick-slip mechanical models are enforced, and a novel generalization of the problem through
closed-form coefficient expressions is presented (Subsection 3.5.3). An entire subsection is
dedicated to the formulation of the moment-curvature relationship trough an "ideal" bi-linear
approximating law fully defined by the c0 coefficient (Subsection 3.5.4).
In Section 3.6 the procedures for the evaluation of the construction parameter c0 through
various user-coded programs are assessed. In particular, both a numerical evaluation and a
closed form solution are proposed.
Section 3.7 deals with the numerical applications for the evaluation of the model coefficients
in the case of different radial contact pressures transmission models and stick-slip mechanical
laws.
Results are discussed, analyzed and compared for the various stranding and conductors
typologies.
Furthermore, Section 3.8 collects a case study of the literature related to the description
of the mechanical response of an ACSR Drake conductor subject to a bending test. The
influence of c0 parameter is investigated as well.
Finally, in Section 3.9 some interesting conclusions are drawn.
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3.1 Geometry of the Strand

Overhead electrical conductors are spiral strands. The latter are made of metallic wires with
a round-shaped cross section. The wires are helically twisted around a central straight wire,
and grouped in concentric layers. The central wire is commonly known as core wire or "king"
wire. Wires in a layer are typically characterized by the same geometrical and material
properties, so that the symmetry of the strand with respect to its centerline is ensured.
A mathematical description of the internal structure of the strand can be provided within a
so-called Strand-attached Reference System (SRS). The following right-handed orthogonal
axes xi are then introduced:

• x1, that coincides with the strand centerline;

• x2 and x3, that are orthogonal axes on a strand cross-section, so that they are both
orthogonal to x1.

The SRS is shown in Figures 3.1a and 3.1b.
Each wire centerline (locus of wire centroids) is represented as a circular helix in the SRS. It
can be completely characterized through a couple of geometric parameters: the radius R,
and the pitch P . A positive sign is conventionally assigned to the pitch of helices which are
twisted around the strand axis according to the right-hand rule.
In the next developments, the pitch of the strand helices will be indicated as "length of lay"
(i.e. the term commonly used in conductor practice), while the ratio of the length of lay of a
layer of strands to the outside diameter of that layer (Pj/Dj) is called the "lay ratio" of the
layer.
As discussed in Section 2.2, wires of adjacent layers are generally laid in opposite directions,
according to the reverse-lay construction.
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Fig. 1. Spiral strand: (a) side view; (b) cross section; (c) polar coordinate system on the wire cross section. 
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or the Cartesian coordinate x 1 . In fact, by considering an infinitesimal segment of the helix, dS , and its developed length 
(see Fig. 2 ) the following differential relations can be obtained: 

sin ( α) d S = Rd θ , (5) 
cos ( α) d S = d x 1 . (6) 

The above equations can be integrated, together with suitable initial conditions, to relate the swept angle to the coordi- 
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components in the SRS are expressed as follows: 
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e3

e1

e3

e2

(a) Side view of the spiral strand.
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(b) Cross-section of the strand.

Figure 3.1. Reference system of the strand, adapted from (Foti and Martinelli, 2016a).

A position vector xw can be adopted to identify the points of the wire centerline. The
following equation holds:

xw(θ) =
P

2π
(θ − θ0) e1 +R cos(θ) e2 +R sin(θ) e3 (3.1)

where θ is the swept angle, i.e. the angle which the projection of the position vector on the
plane x1 = 0 defines with the direction of the axis x2.
θ0 is the value of the swept angle at x1 = 0.
The orientation of the wire cross-section can be described by introducing on the wire centerline
the local Serret–Frenet unit vectors f i(θ), where f1(θ) is the tangent unit vector, f2(θ) is
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the normal unit vector and f3(θ) is the binormal unit vector of the wire centerline. These
can be evaluated starting from Eq. 3.1 and related to the unit vectors ei of the SRS through
a rotation tensor Λw(θ), as follows:

f i(θ) = Λw(θ)ei i ∈ [1, 3] (3.2)

It is now necessary to define the lay angle α. The latter is the constant angle which the
tangent unit vector f1 defines with the strand axis x1.
The components of the rotation tensor [Λw(θ)]e can now be expressed as follows:

[Λw(θ)]e =

 cos(α) 0 sin(α)
− sin(α) sin(θ) − cos(θ) cos(α) sin(θ)
sin(α) cos(θ) − sin(θ) − cos(α) cos(θ)

 (3.3)

The lay angle α is related to the radius and pitch of the helix by means of the following
equation:

α = arctan
(2πR

P

)
(3.4)
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It is possible to provide an equivalent description of the wire centerline by means of an
arc-length coordinate S, that is a smooth mapping (i.e. of class C1).
By considering an infinitesimal segment of the helix, dS, and its developed length dx1,
according to Figure 3.2, the following differential relations can be obtained:

sin(α)dS = Rdθ (3.5a)
cos(α)dS = dx1 (3.5b)

Let us now focus on the strand cross-section, with reference to Figure 3.3, and consider a
generic point P belonging to the strand cross-section.

• The position of point P is described with respect to the centroid of the wire to which
it belongs, through the polar coordinates r and ϕ;

• Then, its position is transformed into the SRS.

Neglecting the difference between the wire cross-section and its projection on the strand
cross-section, a generic point P is described by the following position vector:

x(θ, r, ϕ) =
P

2π
(θ − θ0) e1 +

(
R cos(θ) + r cos(ϕ)

)
e2 +

(
R sin(θ) + r sin(ϕ)

)
e3 (3.6)

with ϕ ∈ [0, 2π] and r ∈ [0, d/2], where d is the wire diameter.
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Figure 3.3. Polar coordinate system of the wire cross-section, adapted from (Foti and Martinelli,
2016a).

With reference to the arc-length coordinate S, the variation of the local unit vectors
f i(θ(S)) along the wire centerline, is given by the well-known Serret-Frenet equations:

df1(S)

dS
= κf2(S) (3.7a)

df2(S)

dS
= τ f3(S)− κf1(S) (3.7b)

df3(S)

dS
= −τ f2(S) (3.7c)

The symbols κ and τ are the curvature and the torsion of the wire centerline, that can be
evaluated as follows:

κ =
sin2(α)

R
(3.8a)

τ =
sin(α) cos(α)

R
(3.8b)

It is worth noticing that, the radius of normal curvature of the wire centerline ρw is defined
as the inverse of the wire curvature:

ρw =
1

κ
=

R

sin2(α)
(3.9)

The equations 3.7 can be also used to express the derivative of the rotation tensor Λw with
respect to S. The following equation is easily obtained:

dΛw(S)

dS
= Λw(S) Ωw (3.10)

where Ωw is a skew-symmetric tensor whose components in the local basis can be expressed
as:

[Ωw]f =

0 −κ 0
κ 0 −τ
0 τ 0

 (3.11)

26



3.2. Description of the contact patches

3.2 Description of the contact patches

The wires of the strand interact between themselves at the internal contact surfaces, where
friction forces are present. These tend to contrast relative interwire displacements, allowing
for the transmission of tangential stresses between wires when the strand is loaded. In
general, a wire can be:

1. in contact with the neighbors belonging to the same layer. This condition can be
referred to as lateral or circumferential contact mode;

2. in contact with the neighbors belonging to the adjacent layers. This condition is named
as radial contact mode.

3. in contact with the neighbors belonging both to the same layer and to the adjacent
layers. This is the case of mixed contact mode.

Mixed contacts cannot be treated by neglecting the elastic tangential compliance of contact
patches. This fact is related to the nature of the problem, that is intrinsically statically
indeterminate on the strand cross-section, hence, a specific constitutive law is necessary (see
e.g. (Foti and Martinelli, 2019)).
In the following, we will focus on the description of the radial and lateral (circumferential)
contact modes, that will be treated in subsections 3.2.2 and 3.2.1 respectively.

3.2.1 Lateral Contact Mode

Figure 3.4 shows a scheme of the lateral contact between wires of the outermost layer of the
conductor.

Figure 3.4. Lateral contact mode.

In the past years, some authors did analyze the geometric conditions for the occurrence
of lateral contact (Costello, 1990), (Rawlins, 2005) with reference to the case of a straight
strand without imperfections. In this ideal case, the friction forces tend to contrast the
onset of relative intra-layer displacements (intra-layer sliding). The contact takes place along
continuous lines and the normal forces on the contacting surfaces are hoop actions, depending
only on the geometry and the stresses of the layer components (Foti and Martinelli, 2016b).
However, it is worth noting that typical strand constructions allow for interlayer clearances
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Chapter 3. Modeling of the strand cross-sectional response

(Feyrer 2015, Rawlins, 2005). Moreover, even if the theoretical geometrical conditions for
lateral contact are satisfied, intra-layer gaps can be generated by manufacturing imperfections
and strand ageing or by the loading process of the strand.
In order to have compact packing, Rawlins (2005) has shown that the lay angle α and the
lay ratio P/D of a certain layer of wires, must satisfy the following two nonlinear equations.

sin
(2πζ

P
− ϕ′

2

)
· cos

(2πζ

P
− ϕ′

2

)
= −2πζ

P
·

[
1

πd
P ·
(
D
d − 1

)]2 (3.12)

sin2
(2πζ

P

)
=
d2 − 4 ζ2

(D − d)2
=

(
π d
P

)2
−
(
2πζ
P

)2
(
π d
P

)2
·
(
D
d − 1

)2 (3.13)

These equations in the unknowns 2πζ/P and P/D must be solved numerically, due to their
nonlinearity. As an alternative, the following equation yields a good approximation of the
exact theoretical lay ratios (reported in Figure 2.7).

P

D
=

1

1 + 3
n

· π√(
n2

9 − 1
)

tan2
(
π
n

)
− 1

(3.14)

It is worth noticing that Equation 3.14 does not apply to the inner-most layer, with n = 6.
In this case it yields an infinite lay ratio, corresponding to α = 0 deg, i.e. to straight wires.
However, from a user point of view, for a given conductor, the number of wires in each layer
is known, as well as the outer diameter D and the wires diameter d. Thus, Eq. 3.14 may be
used to obtain the lay ratio for each layer. This leads to the pitch P of the helix formed by
a strand in the layer and to the maximum lay angle α (corresponding to contacting wires).
Indeed, for a circular helix, lay angle α, wrapped on a cylinder of diameter (D − d), and
pitch length P , one has the well-known formula:

tan(α) =
π(D − d)

P
(3.15)

P

π(D − d)

α

Figure 3.5. Lay angle determination scheme.

As already mentioned, eq. 3.14 doesn’t apply to the innermost layer (i.e. i = 1). This
means that the formula cannot be applied to 6/1 conductors.
In such cases, another equation proposed by Foti and Martinelli 2019 can be adopted.
One has that the maximum admissible lay angle for the first layer of wires is given by:

α0,max,adm = arccos
(√ tan2(π2 −

π
m)

(1 + ξ−10 )2 − 1

)
(3.16)
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where m = 6 is the number of wires in the first layer of the conductor and

ξ0 =
dw0
dc0

(3.17)

is the ratio between the diameter of the external wires and the one of the core. If radial
contact is present, the latter should be lower than one.
In the following table, calculations for the typical conductor cross-sections are performed,
in order to assess whether or not the lateral contact mode can take place, for each layer of
wires. In particular, the maximum admissible lay angle αmax,adm is computed through the
equations 3.14 and 3.15, ∀i > 1, while Eq. 3.16 is used for i = 1.
It is worth noticing that Eq. 3.16 predicts an admissible lay angle equal to zero, if the
diameters of steel and aluminium wires are equal (that is the case of the 6/1 conductors
studied in this work) or in the case in which both the core and the first layer of wires are
characterized by the same material, involving wires of equal diameters. The latter is the case
of multi-layer conductors considered in the present work, because there are always 7 steel
wires with the same diameter in the center of the cable, that are the core and the first layer.
The lay angle αmax,adm is compared with the actual one (α) obtained via Equation 3.4. In
this last case, the value of the preferred helix pitch is adopted (Pp), leading to a preferred
value of the lay angle (αp), according to the ASTM standard (1).
However, for the seek of completeness, the assessment of the lateral contact conditions for
the various ACSR conductors is also performed by adopting the maximum and minimum
values of the lay angles, always with reference to the ASTM standard.
This comparison is conveniently reported into Appendix C.
Lateral contact cannot take place if the angle αmax,adm is greater than α, because a small
gap between wires belonging to this layer is present. In this case, contact may be considered
as radial contact between adjacent layers.
This consideration can be analytically formulated stating that the geometric condition
ensuring lateral contact in the reference configuration of the strand, for the generic layer of
wires i, is:

αp,i ≥ αmax,adm,i (3.18)

The results of the computations are reported in the tables 3.1-3.5.
It is also worth noticing since now that the lay angles α and αmax,adm of the various layer
are independent from the conductor typology, and they depend only upon the stranding.
As it can be seen, lateral contact is usually present only between the first layer of wires
(i = 1) and the core wire (i = 0).

Table 3.1. Lateral contact condition for 6/1 conductors. Preferred lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αp Lateral Contact

Innermost Layer i = 1.

Sparrow 6/1 8.01 1 2.67 2.67 0.00 9.15 Yes
Pigeon 6/1 12.75 1 4.25 4.25 0.00 9.15 Yes
Penguin 6/1 14.31 1 4.77 4.77 0.00 9.15 Yes
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Table 3.2. Lateral contact condition for 26/7 conductors. Preferred lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αp Lateral Contact

Outermost Layer i = 3.

Partridge 26/7 16.28 3 2.00 2.57 16.33 13.52 No
Hawk 26/7 21.80 3 2.68 3.44 16.33 13.52 No
Drake 26/7 28.10 3 3.45 4.44 16.33 13.52 No

Middle Layer i = 2.

Partridge 26/7 16.28 3 2.00 2.57 14.56 10.53 No
Hawk 26/7 21.80 3 2.68 3.44 14.56 10.53 No
Drake 26/7 28.10 3 3.45 4.44 14.56 10.53 No

Innermost Layer i = 1.

Partridge 26/7 16.28 3 2.00 2.57 0.00 4.79 Yes
Hawk 26/7 21.80 3 2.68 3.44 0.00 4.79 Yes
Drake 26/7 28.10 3 3.45 4.44 0.00 4.79 Yes

Table 3.3. Lateral contact condition for 48/7 conductors. Preferred lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αp Lateral Contact

Outermost Layer i = 4.

Carillon 48/7 30.48 4 2.84 3.66 16.79 14.11 No
Gatineau 48/7 33.00 4 3.08 3.96 16.79 14.11 No
Bersfort 48/7 35.60 4 3.32 4.27 16.79 14.11 No

Layer i = 3.

Carillon 48/7 30.48 4 2.84 3.66 16.33 11.50 No
Gatineau 48/7 33.00 4 3.08 3.96 16.33 11.50 No
Bersfort 48/7 35.60 4 3.32 4.27 16.33 11.50 No

Layer i = 2.

Carillon 48/7 30.48 4 2.84 3.66 14.55 10.53 No
Gatineau 48/7 33.00 4 3.08 3.96 14.55 10.53 No
Bersfort 48/7 35.60 4 3.32 4.27 14.55 10.53 No

Innermost Layer i = 1.

Carillon 48/7 30.48 4 2.84 3.66 0.00 4.79 Yes
Gatineau 48/7 33.00 4 3.08 3.96 0.00 4.79 Yes
Bersfort 48/7 35.60 4 3.32 4.27 0.00 4.79 Yes
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Table 3.4. Lateral contact condition for 54/7 conductors. Preferred lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αp Lateral Contact

Outermost Layer i = 4.

Duck 54/7 24.21 4 2.69 2.69 16.87 14.24 No
Crow 54/7 26.28 4 2.92 2.92 16.87 14.24 No
Curlew 54/7 31.59 4 3.51 3.51 16.87 14.24 No

Layer i = 3.

Duck 54/7 24.21 4 2.69 2.69 16.54 11.70 No
Crow 54/7 26.28 4 2.92 2.92 16.54 11.70 No
Curlew 54/7 31.59 4 3.51 3.51 16.54 11.70 No

Layer i = 2.

Duck 54/7 24.21 4 2.69 2.69 15.50 10.94 No
Crow 54/7 26.28 4 2.92 2.92 15.50 10.94 No
Curlew 54/7 31.59 4 3.51 3.51 15.50 10.94 No

Innermost Layer i = 1.

Duck 54/7 24.21 4 2.69 2.69 0.00 4.79 Yes
Crow 54/7 26.28 4 2.92 2.92 0.00 4.79 Yes
Curlew 54/7 31.59 4 3.51 3.51 0.00 4.79 Yes

Table 3.5. Lateral contact condition for 72/7 conductors. Preferred lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αp Lateral Contact

Outermost Layer i = 5.

Falcon 72/7 37.69 5 2.51 3.77 16.95 17.81 Yes
Nelson I 72/7 40.60 5 2.71 4.06 16.95 17.81 Yes
Nelson II 72/7 43.20 5 2.88 4.32 16.95 17.81 Yes

Layer i = 4.

Falcon 72/7 37.69 5 2.51 3.77 16.74 15.74 No
Nelson I 72/7 40.60 5 2.71 4.06 16.74 15.74 No
Nelson II 72/7 43.20 5 2.88 4.32 16.74 15.74 No

Layer i = 3.

Falcon 72/7 37.69 5 2.51 3.77 16.19 11.39 No
Nelson I 72/7 40.60 5 2.71 4.06 16.19 11.39 No
Nelson II 72/7 43.20 5 2.88 4.32 16.19 11.39 No

Layer i = 2.

Falcon 72/7 37.69 5 2.51 3.77 13.74 10.27 No
Nelson I 72/7 40.60 5 2.71 4.06 13.74 10.27 No
Nelson II 72/7 43.20 5 2.88 4.32 13.74 10.27 No

Innermost Layer i = 1.

Falcon 72/7 37.69 5 2.51 3.77 0.00 4.79 Yes
Nelson I 72/7 40.60 5 2.71 4.06 0.00 4.79 Yes
Nelson II 72/7 43.20 5 2.88 4.32 0.00 4.79 Yes
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3.2.2 Radial Contact Mode

According to the radial contact mode, each wire is assumed in contact with those of the
adjacent layers (interior and/or exterior) and the friction forces contrast relative inter-layer
displacements (sliding). Figure 3.6 shows a scheme of the radial contact mode.

Figure 3.6. Radial contact mode.

The contacts in the case of radial mode are as follows:

• the innermost layer is in contact with the core wire along a continuous helix;

• all the other layers are characterized by interlayer contact surfaces that are pointwise
distributed along helical paths (i.e. contact helices).

By neglecting changes in the internal geometry of the strand with respect to its reference
configuration we have that:

• the contact helix of a generic wire with the internal layer is characterized by the same
pitch of the wire centerline and helix radius equal to RC,int = Ri − di/2 = Ri − ri;

• the contact helix of a generic wire with the external layer is characterized by the same
pitch of the wire centerline and helix radius equal to RC,ext = Ri + di/2 = Ri + ri;

where di and ri are the wire diameter and wire radius of layer i.
The geometric condition ensuring radial contact in the reference configuration of the strand,
for the generic layer of wires i, is the counterpart of Eq. 3.18. One simply has:

αi < αmax,adm,i (3.19)

Distance between contact points

One can obtain an approximate value of the contact forces by multiplying the force per unit
of length computed assuming a line contact situation by the distance between contact points
at a given interface. For a generic layer i, the quantity of interest is the distance of contact
points with layer i− 1.
Cardou (2013) has shown that this distance, calculated on the contact helix of layer i (i.e.
on a wire outer fiber which is in contact with layer i− 1) is given by:

dCi =
2π RC,i
ni−1

cos(α′′i−1)

sin(α′i + α′′i−1)
(3.20)
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where:

• RCi is the radius of the contact cylinder between layers i and i− 1, that is
RC,int = Ri − ri;

• ni−1 is the number of wires of the (i− 1)-th layer;

• α′i and α
′′
i−1 are slightly different angles from the corresponding lay angles. The reason

is that they correspond to the wire "fibre" which is on the contact cylinder and not to
the centerline. These fibers are helical curves having practically the same lay length as
the center line helix. However, because the contact cylinder radius is slightly different
than the lay cylinder radius (as already pointed out), the helix angle is also different.

Pi

2π(Ri − ri)

α′i

Figure 3.7. Determination of angle α′i.

Pi−1

2π(Ri−1 + ri−1)

α′′i−1

Figure 3.8. Determination of angle α′′i−1.

If the difference between the angles α′i and α
′′
i−1 (measured on the contact cylinder) and the

lay angles αi and αi−1 is neglected, one gets the following equation (Chouinard, 1994):

dCi =
2π RCi
ni−1

cos(αi−1)

sin(αi + αi−1)
(3.21)

A different expression was proposed by Papailiou (1995). In his work, contact point distance
is measured on the centerlines of layer i or i− 1. The distance of contact points measured
on the contact helix of layer i is given by:

dCi =
2πRCi
ni−1

· (1− γ2i ) cos(αi−1)

(1 + γi) sin(αi−1) cos(αi) + (1− γi) sin(αi) cos(αi−1)
(3.22)
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where γi = ri/RCi, having denoted with ri the wire radius of layer i.
If the wire radius is small with respect to the contact cylinder radius RCi (i.e. γi → 0),
then Eq. 3.21 and Eq. 3.22 are identical.
It is worth noticing that, in multilayer conductors this equation may apply only to the outer
layers. In fact, for the contacts between the core wire and the first layer of wires, one has:
RC = r, leading to γ = 1 and the equation is meaningless.
As previously recalled, the innermost layer (i.e. i = 1) is in contact with the core wire along
a continuous helix. For this reason, distances between contact points at the interface between
the core wire and the first layer are not here computed, just because they are not assumed
to be pointwise distributed.
The distances between contact points are computed according to Equations 3.20, 3.21 and
3.22 and reported in tables 3.6-3.9, for different stranding.

Table 3.6. Distances (mm) between contact points for 26/7 conductors.

Code Word D (mm) ni−1 (−) γ (−) Rc (mm) dC,i (Eq 3.20) dC,i (Eq 3.21) dC,i (Eq 3.22)

Contacts between layer i = 2 and layer i = 3.

Partridge 16.28 10 0.231 5.57 8.16 8.44 8.24
Hawk 21.80 10 0.231 7.46 10.93 11.30 11.03
Drake 28.10 10 0.231 9.62 14.09 14.57 14.22

Contacts between layer i = 1 and layer i = 2.

Partridge 16.28 6 0.428 3.00 12.38 11.85 11.55
Hawk 21.80 6 0.428 4.02 16.59 15.88 15.48
Drake 28.10 6 0.428 5.18 21.37 20.44 19.92

Table 3.7. Distances (mm) between contact points for 48/7 conductors.

Code Word D (mm) ni−1 (−) γ (−) Rc (mm) dC,i (Eq 3.20) dC,i (Eq 3.21) dC,i (Eq 3.22)

Contacts between layer i = 3 and layer i = 4.

Carillon 30.48 16 0.158 11.04 9.72 9.89 9.80
Gatineau 33.00 16 0.158 12.54 10.99 11.16 11.07
Bersfort 35.60 16 0.158 13.52 11.84 12.04 11.93

Contacts between layer i = 2 and layer i = 3.

Carillon 30.48 10 0.231 7.38 11.65 12.34 11.73
Gatineau 33.00 10 0.231 8.58 13.43 14.13 13.52
Bersfort 35.60 10 0.231 9.25 14.47 15.23 14.57

Contacts between layer i = 1 and layer i = 2.

Carillon 30.48 6 0.428 3.72 15.86 14.91 13.81
Gatineau 33.00 6 0.428 4.62 19.07 18.25 17.78
Bersfort 35.60 6 0.428 4.98 20.56 19.67 19.17
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Table 3.8. Distances (mm) between contact points for 54/7 conductors.

Code Word D (mm) ni−1 (−) γ (−) Rc (mm) dC,i (Eq 3.20) dC,i (Eq 3.21) dC,i (Eq 3.22)

Contacts between layer i = 3 and layer i = 4.

Duck 24.21 18 0.143 9.42 7.26 7.36 7.31
Crow 26.28 18 0.143 10.22 7.88 7.98 7.94
Curlew 31.59 18 0.143 12.29 9.47 9.60 9.54

Contacts between layer i = 2 and layer i = 3.

Duck 24.21 12 0.200 6.73 8.63 8.98 8.68
Crow 26.28 12 0.200 7.30 9.36 9.74 9.42
Curlew 31.59 12 0.200 8.78 11.25 11.72 11.33

Contacts between layer i = 1 and layer i = 2.

Duck 24.21 6 0.333 4.04 15.77 15.53 15.90
Crow 26.28 6 0.333 4.38 17.12 16.86 17.26
Curlew 31.59 6 0.333 5.27 20.58 20.27 20.75

Table 3.9. Distances (mm) between contact points for 72/7 conductors.

Code Word D (mm) ni−1 (−) γ (−) Rc (mm) dC,i (Eq 3.20) dC,i (Eq 3.21) dC,i (Eq 3.22)

Contacts between layer i = 4 and layer i = 5.

Falcon 37.69 21 0.125 15.08 7.72 7.85 7.79
Nelson I 40.60 21 0.125 16.25 8.32 8.46 8.40
Nelson II 43.20 21 0.125 17.28 8.85 9.00 8.93

Contacts between layer i = 3 and layer i = 4.

Falcon 37.69 15 0.167 11.31 10.08 10.18 10.18
Nelson I 40.60 15 0.167 12.19 10.86 10.97 10.97
Nelson II 43.20 15 0.167 12.96 11.55 11.67 11.67

Contacts between layer i = 2 and layer i = 3.

Falcon 37.69 9 0.250 7.54 13.23 14.03 13.89
Nelson I 40.60 9 0.250 8.13 14.26 15.12 14.36
Nelson II 43.20 9 0.250 8.64 15.17 16.08 15.28

Contacts between layer i = 1 and layer i = 2.

Falcon 37.69 6 0.500 3.77 16.12 15.12 13.89
Nelson I 40.60 6 0.500 4.07 17.39 16.32 15.01
Nelson II 43.20 6 0.500 4.32 18.49 17.35 15.94

As a general conclusion, it is possible to observe that Eq. 3.20 and Eq. 3.22 give quite
close results for each interface of the various conductor cross-sections.
Eq. 3.21 predicts in general higher values for the distances between contact points. However,
the overestimation decreases as the evaluation of the distances moves to the outer interfaces.
As a matter of fact, γ coefficient depends only upon the stranding typology.
Finally, the calculated distances between contact points will conveniently used later on, in
order to compute the approximate values of the radial contact forces at the various interfaces
of each conductor cross-section considered in the present work.
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3.3 Mechanical Model of the Strand

In this section, the mechanical model of stranded cables is presented. First, the mechanical
model of a single wire according to the classical theory of curved thin rods is assessed in
Subsection 3.3.1. Afterwards, the cross-sectional response of the whole strand is investigated
in Subsection 3.3.2. Additionally, Subsection 3.3.3 deals with a kinematic model of the
strand, that is conveniently introduced in order to evaluate the axial force in the wires
(Subsection 3.3.4).

3.3.1 Wire Mechanical Model

Wires are the basic components of the strand and can be considered as curved thin rods.
They can be described according to the classic theory of Kirchhoff–Clebsch–Love (KCL)
(Love, 1944) under the following assumptions:

1. elastic material;

2. small displacements of the cross-section;

3. small rotations of the cross-section.

Under the previous assumptions, the cross-sections remain plane and normal to the deformed
centerline of the rod, so that a linear strain field is assumed. Shear deformability is
considered negligible due to the inherent slenderness and flexibility of typical metallic wires.
Finally, variation of the strand internal geometry with respect to the reference (undeformed)
configuration are disregarded.
It is convenient to study the mechanical response of wires within a moving reference frame
centered on the centroid of the cross section and with axes directed as the Serret–Frenet
unit vectors, f i(S), with i = 1, 2, 3, function of the arc-length coordinate S (Section 3.1).
In this context, the vectors f i identify a set of principal axes for round wire cross sections.
The generalized stresses of the curved thin rod model are defined as the axial force, Fw1, the
torsional moment Mw1 and the bending moments Mw2 and Mw3.
These are the moments acting with respect to the directions of the vectors f i.
The generalized strains (i.e. the work-conjugated quantities) are:

• the wire axial strain εw, that is the elongation of the wire centerline;

• the mechanical curvatures χwi (i = 1, 2, 3), that are collected into the vector χw,
expressed in Equation 3.23a

The well-known kinematic equations are here re-written, in a more concise matrix notation,
as it follows:

χw(S) =

3∑
i=1

χwi(S)f i(S) =
dϕw
dS

+ Ωw ϕw (3.23a)

ϕw(S) =

3∑
i=1

ϕwi(S)f i(S) (3.23b)

where Ωw is the tensor defined in Equation 3.11 and components ϕwi(S) of the vector ϕw(S)
represent the cross sectional rotations about the moving reference system of the wire.
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The constitutive equations according to Love’s formulation and under the assumption of
round cross section read:

Fw1 = EAw εw (3.24a)

Mw1 =
EIw
1 + ν

χw1 (3.24b)

Mw2 = EIw χw2 (3.24c)
Mw3 = EIw χw3 (3.24d)

where:

• E is the Young modulus of the material;

• ν is the Poisson coefficient of the material;

• Aw is the area of the cross-section;

• Iw is the second are moment of the wire cross-section about its principal inertia axes.

Let us now consider a generic system of external forces t(S) and couples m(S) per unit
length of the wire centerline and define the vectors of internal actions as follows:

Fw(S) =
3∑
i=1

Fwi(S)f i(S) (3.25a)

Mw(S) =
3∑
i=1

Mwi(S)f i(S) (3.25b)

The indefinite equilibrium equations can be written as:

dFw

dS
+ Ωw Fw + t = 0 (3.26a)

dMw

dS
+ ΩwMw + f1 × Fw +m = 0 (3.26b)

where the symbol × is used to denote the vectorial product.
As a general comment, the shear forces Fw2 and Fw3 can only be evaluated a-posteriori
through the equilibrium equation. This is a consequence of the model formulation, because
shear forces are not generalized stresses in such model, as it happens in the classical case of
Euler-Bernoulli beam theory.
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Chapter 3. Modeling of the strand cross-sectional response

3.3.2 Cross Sectional Response of the Strand

The mechanical response of the strand cross-section can be described in terms of the resultant
axial force Ns(x1, t), the torsional moment Ms1(x1, t) and the bending moments Msi(x1, t),
with i = 1, 2.
Neglecting the shear deformability, one can describe the kinematics of the strand according
to the classic Euler-Bernouilli beam theory.
Considering an infinitesimal segment of the strand of length dx1, the axial strain of the
strand can be defined starting from the relative axial displacement dus (Figure 3.9), as
follows:

εs(x1, t) =
dus
dx1

(3.27)
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Figure 3.9. Axial elongation for an infinitesimal portion of the strand, adapted from (Foti and
Martinelli, 2016a).

Considering the same infinitesimal segment of the strand of length dx1, one can also
introduce the relative rotation dψs (Figure 3.10), so that the bending curvature can be
computed as follows:

χs =
dψs
dx1

(3.28)
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Figure 3.10. Bending curvature for an infinitesimal portion of the strand, adapted from (Foti and
Martinelli, 2016a).

The virtual work per unit of length of the strand δWs can be expressed as:

δWs = Nsδεs +
3∑
i=1

Msiδχsi = σT
s δεs (3.29)
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where σs and εs are column vectors that collect the work-conjugated stress and strains
variables of the strand:

[σs] = [Ns,Ms1,Ms2,Ms3]
T (3.30a)

[εs] = [εs, χs1, χs2, χs3]
T (3.30b)

For the next developments, it is convenient to collect the strand curvatures in a unique
vector, according to the following expression:

χs(x1, t) =
3∑
i=1

χsi(x1, t)ei =
∂ϕs
∂x1

(3.31)

where ϕs(x1, t) is the rotation vector of the strand, whose components ϕsi(x1, t) (in the
basis ei) represent the cross-sectional rotations about the SRS axes:

ϕs(x1) =

3∑
i=1

ϕsi(x1, t)ei (3.32)

The strand resultant axial force and moments can be evaluated by summing up all wire
contributions, applying the equilibrium equations.
A vector Fwp can be obtained by projecting the generic wire axial force Fw1 on the Strand-
attached Reference System (SRS), according to the components of the first column of the
tensor Λw(θ):

Fwp = Fw1

(
cos(α)e1 − sin(α) sin(θ)e2 + sin(α) cos(θ)e3

)
(3.33)

Denoting with m the number of layers and with nj the number of wires belonging to the
j-th layer, one can evaluate the strand axial force through the following equation:

Ns =

m∑
j=0

nj∑
i=1

Fw,ij cos(αj) (3.34)

where the subscript "0" denotes the core wire.
In order to compute the strand resultant moments, it is necessary to project the wire moments
on the SRS and then add the contribution coming from the vector Fwp. The following
equations hold:

Ms1 =
m∑
j=0

nj∑
i=1

cos(αj)Mw1,ij + sin(αj))Mw3,ij +Rj sin(αj)Fw1,ij (3.35)

Ms2 =
m∑
j=0

nj∑
i=1

− sin(αj) sin(θi)Mw1,ij − cos(θi)Mw2,ij+

+ cos(αj) sin(θi)Mw3,ij +Rj cos(αj) sin(θj)Fw1,ij

(3.36)

Ms3 =
m∑
j=0

nj∑
i=1

sin(αj) cos(θi)Mw1,ij − sin(θi)Mw2,ij+

− cos(αj) cos(θi)Mw3,ij −Rj cos(αj) cos(θj)Fw1,ij

(3.37)
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Chapter 3. Modeling of the strand cross-sectional response

3.3.3 Kinematics of the Strand

In this subsection the kinematic of the strand is assessed, according to the formulation
developed by (Foti and Martinelli, 2016b-2019). The deformation of a generic wire can
be computed by relating the strand generalized strains, i.e. the vector εs (Eq. 3.30b),
containing the strand axial strain εs (Eq. 3.27) and its mechanical curvatures χs (Eq. 3.31),
to the generalized strain variables of the wire, defined in Subsection 3.3.1 according to the
Kirchhoff-Clebsch-Love theory, i.e. the wire axial strain εw and its mechanical curvatures,
the latter being collected in the vector χw (Eq. 3.23a).

Evaluation of the wire axial strain

Let us make reference again to Figure 3.9 and adopt an incremental formulation for the sake
of simplicity, where the dot symbol denotes the derivative with respect to time t.
When a cross-section of the strand undergoes a small incremental translation du̇s along the
direction x1, the points of a generic wire cross-section displace of a quantity cos(α) du̇s, in
the direction of the tangent to the wire centerline.
The incremental wire axial strain ε̇w,a(S, t) can be expressed as it follows:

ε̇w,a(S, t) = cos(α)
∂u̇s
∂S

(3.38)

By recalling Eq. 3.5b and exploiting Eq. 3.27, the incremental strain of the points of the
wire centerline can be rewritten according to the following expression:

ε̇w,a(S, t) = cos2(α)ε̇s(x1(S), t) (3.39)

The latter expression only accounts for the effect of axial elongation of the strand.
If a combination of axial load and torsional moment applied is applied at the conductor ends,
the mechanical problem becomes axisymmetric. As a consequence, all wires belonging to
the same concentric layer behave identically and the hypothesis of preservation of the wire
helicoidal geometry can be adopted to study the axial-torsional behavior of the strand (see
e.g. (Lanteigne, 1985)).
Considering also the small strains hypothesis and negligible changes in the internal geometry
of the strand, the following expression can be derived:

ε̇w,at(S, t) = ε̇w,a(S, t) + ε̇w,t(S, t) (3.40)

where the incremental torsional wire strain contribution is given by:

ε̇w,t(S, t) = R sin(α) cos(α)χ̇s1(x1(S), t) (3.41)

so that, by recalling Equation 3.39, Eq. 3.40 becomes:

ε̇w,at(S, t) = cos2(α)ε̇s(x1(S), t) +R sin(α) cos(α)χ̇s1(x1(S), t) (3.42)

The latter is a linear kinematic equation expressing the incremental axial-torsional contribu-
tion of the wire strain.
At this stage it is important to notice that whenever a strand is bent, an incremental axial
strain will arise due to a small change in the strand bending curvature.
Two limit kinematic assumptions have been proposed in the literature and have been widely
adopted in recent studies. They are the so-called full-slip state and full-stick state:
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1. under the full-slip kinematic condition, the external surfaces of the wires are assumed to
be perfectly lubricated, such that the strand is modeled as a bundle of individually bent
wires (i.e. curved thin rods). The wire length remains unchanged and the displacements
in the direction of the strand axis, x1, are proportional to the distance from a wire
diameter parallel to the strand neutral axis of bending. The bending contribution to
the axial strain of the wires is then equal to zero, so that the total incremental wire
strain coincides with the axial-torsional strain incremental contribution (see Eq. 3.44);

2. under the full-stick kinematic condition the wires are ideally welded together, such
that any relative displacement among them is prevented. All wires are considered as a
part of an “ideal” strand cross section, planar and normal to the deformed centerline of
the strand. In this case, the points of the cross section of the wire are subjected to an
additional displacement in direction x1(S) which is proportional to the distance of the
wire centroid from the axis x2. The additional incremental strain due to bending of
the strand about x2 and x3 axes can be computed respectively as:

ε̇stickw,b2 (S, t) =R cos2(α) sin(θ(S))χ̇s2(S, t) (3.43a)

ε̇stickw,b3 (S, t) =R cos2(α) cos(θ(S))χ̇s3(S, t) (3.43b)

The total incremental wire strain in the sticking state can be then computed by adding
the bending contributions about x2 and x3 axes (Eqts. 3.43) to the axial-torsional
wire strain increment (Eq. 3.42), according to Eq. 3.45.

The incremental axial strain can be then expressed by distinguishing between full-slip
and full-stick states, according to what was just presented, as it follows:{

ε̇w(S, t) = ε̇w,at(S, t) slipping case

ε̇w(S, t) = ε̇w,at(S, t) + ε̇stickw,bi (S, t) sticking case i = 2, 3

(3.44)

(3.45)

The total strain is a function of time t and depend upon the past history of the strand,
according to the following integral equation:

εw(S, t) =

∫ t

0
ε̇w(S, t)dt (3.46)

It is also possible to simplify the previous expression by noting that the dependency on the
past history of the total strain is only due to the term which describes the strain due to
bi-axial bending of the strand. One has:

εw(S, t) = εLw(S, t) + εNLw (S, t) (3.47)

where:

εLw(S, t) = εw,at(S, t) = cos2(α)εs(x1(S), t) +R sin(α) cos(α)χs1(x1(S), t) (3.48)

and the nonlinear part of the total strain is given by:

εNLw (S, t) = εstickw,bi (S, t) =

∫ t

0
ε̇stickw,bi (S, t)dt , with i=2,3 (3.49)
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Evaluation of the wire curvatures

By assuming that the wire cross section rotates rigidly with the cross section of the strand
(Foti and Martinelli, 2016b-2019), the following equation can be conveniently introduced to
relate the strand rotation vector, ϕs (see Eq. 3.32) to that of a generic wire, ϕw (see Eq.
3.23b):

ϕw(S, t) = ΛT
w(S)ϕs(x1(S), t) (3.50)

where Λw is the rotation tensor which relates the orientation of the local Serret-Frenet unit
vectors of the wire cross-section with respect to the basis ei of the SRS, already introduced
in Section 3.1 (see Eqts. 3.2 and 3.3).
At this stage, by recalling the definition of the mechanical curvatures of the strand (Eq.
3.31) and the useful differential relation reported in Eq. 3.5b, one can express the derivatives
of the wire rotations with respect to S in the following manner:

∂ϕw
∂S

= cos(α)ΛT
w(S) χs(x1(S), t) +

dΛT
w

dS
ϕs(x1(S), t) (3.51)

By solving Eq. 3.50 for ϕs and substituting in Eq. 3.51, and recalling Eq. 3.10, the following
equation is readily obtained:

∂ϕw
∂S

= cos(α)ΛT
w(S) χs(x1(S), t)−Ωw(S)ϕw(S, t) (3.52)

By recalling Eq. 3.23a, Eq.3.52 permits to obtain the following result:

χw(S, t) = cos(α)ΛT
w(S)χs(x1(S), t) (3.53)

so that the vector collecting the mechanical curvatures of a generic wire of the strand is fully
related to the one collecting the mechanical curvatures of the entire strand.

3.3.4 Evaluation of the axial force in the wires

It is now convenient to focus on the determination of the expression of the resultant axial
force on the wire cross-section, that will be useful for the next developments of this work.
The resultant axial force on the generic wire cross-section can be expressed as:

Fw1(x1(S), t) =

∫
Aw

σ(S, t)dAw (3.54)

where:
σ(S, t) = Eε(S, t) (3.55)

is the normal stress at a generic point of the wire cross-section, evaluated under the assumption
of linear elastic thin rods.
After some straightforward substitutions, one can express the the axial force acting on the
wire cross-section as the sum of a linear contribution FLw1 related only to the axial-torsional
contribution of the strain, and a non-holonomic non-linear one, FNLw1 , representing the
contribution due to bending of the strand to the axial force of a generic wire in case of
full-stick kinematic assumption.
The equation simply reads:

Fw1(x1(S), t) = FLw1(x1(S), t) + FNLw1 (x1(S), t) (3.56)
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3.3. Mechanical Model of the Strand

The linear component of the wire axial force can be evaluated as it follows:

FLw1(x1(S), t) =

∫
Aw

E
[

cos2(α)εs(x1(S), t) +R sin(α) cos(α)χs1(x1(S), t)
]
dAw (3.57)

but due to the polar symmetry of the round wire section, the contribution of the torsional
curvature of the strand is null, so that the above expression can be rewritten as:

FLw1(x1(S), t) = EAw cos2(α)εs(x1(S), t) (3.58)

On the other hand, the non-linear component of the wire axial force can be evaluated through
the following more general expression:

FNLw1 (x1(S), t) =

∫
Aw

E εNLw (S, t)dAw (3.59)

By summing up the two contributions presented in Eqts. 3.58 and 3.59, one can finally
obtain the total axial force in a generic wire Fw1.

Remark

It is worth noticing that the contribution of the non-linear component of the wire axial force
(FNLw1 ) averaged on a generic layer of wires, gives a resultant almost equal to zero.
By recalling Eq. 3.34 it is in fact possible to express the strand axial force Ns.
The stresses normal to the strand cross-section are defined on each wire through the projection
σ cos(α). So that, by denoting with m the total number of layers and with nj the number
of wires in the j-th layer, the strand axial force can be computed as:

Ns(x1, t) =
m∑
j=0

[
nj cos3(αj)EAwj

]
εs(x1(S), t) +

m∑
j=0

[
cos(αj)

nj∑
i=1

FNLw1 (x1(S), t)
]

(3.60)

The second term of the previous equation has the physical meaning of an additional contri-
bution to the strand resultant axial force, related to the bending of the strand.
Such term is strictly equal to zero both under full-slip state and full-stick state (see Foti
and Martinelli, 2016a).
Preliminary analysis developed by Foti in his PhD thesis (18) show that such term can
be neglected in most practical applications, leading to the introduction of the following
convenient approximation:

Ns
∼=

m∑
j=0

[
nj cos3(αj)EAwj

]
εs (3.61)

Hence, as an important conclusion, the contribution of the nonlinear component of the wire
axial force averaged on the entire cross-sections of the strand, practically returns a null
contribution of the axial force on the strand.
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Chapter 3. Modeling of the strand cross-sectional response

3.4 Axial-torsional Problem

In this Section the axial-torsional mechanical model of the strand is presented.
The experimental evidence clearly shows that the axial-torsional behavior of metallic stranded
cables is essentially linear under typical service loading conditions (Foti and de Luca di
Roseto, 2016),(Foti and Martinelli, 2019). This is an important difference with respect to
the bending problem, which is by far more complex to solve due to its intrinsic non-linear
and non-holonomic nature. The latter will be assessed in the next Section (3.5).

3.4.1 Stiffness Matrix

According to the previous developments, the generalized strains of the generic wire can
be evaluated according to Equation 3.47 and 3.53. Due to the linearity property of the
axial-torsional problem, the wire axial strain can be here conveniently introduced in integral
form, i.e. it is not necessary to rely on an incremental formulation, as it was previously done
in Paragraph 3.3.3.
Once the wire generalized strains have been introduced, by direct application of the linear
constitutive laws (Eqts. 3.24), it is immediate to obtain the resultant generalized forces (i.e.
axial force and bending moments) acting on the cross-section of the generic wire.
Then, the strand cross-sectional resultants can be conveniently computed by straightforward
application of Equations 3.34, 3.35, 3.36 and 3.37.
Let us now focus on the derivation of the stiffness matrix for the axial-torsional problem and
consider a strand loaded by an axial force Ns and a torsional moment Ms1 only.
In this context, a common hypothesis is to assume that the cross-sections remain plane, so
that the kinematic filed can be described by means of the axial strain εs and of the torsional
curvature χs1.
The vectors of generalized stresses and strains in this particular case are simply:

[σs] = [Ns,Ms1]
T (3.62a)

[εs] = [εs, χs1]
T (3.62b)

At this stage, one can write the elastic energy of the strand per unit of length, by expressing
it as a quadratic form, introducing the stiffness matrix of the strand section Ks.
The elastic energy per unit of length of the strand reads:

dU

dx1
=

1

2
σTs εs =

1

2
εTs Ks εs (3.63)

The axial-torsional stiffness matrix Ks,at has to be positive definite and symmetric, as direct
consequence of the elasticity assumption. Its structure is herein collected:

Ks,at =

[
EA CAT
CAT GJ

]
(3.64)

where EA and GJ denote respectively the axial and torsional stiffness of the strand, while
CAT is the axial-torsional stiffness coupling term, that is present due to the direct consequence
of the helicoidal geometry of the wires centerlines.
The vector of generalized stresses can then be expressed as follows:[

Ns

Ms1

]
=

[
EA CAT
CAT GJ

] [
εs
χs1

]
(3.65)

44



3.4. Axial-torsional Problem

The axial-torsional cross-sectional stiffness can be expressed according to the following
equations (Foti and Martinelli, 2016b):

EA =

m∑
j=0

nj cos3(αj)EAw,j (3.66)

GJ =

m∑
j=0

nj

(EIw,j
1 + νj

[
cos3(αj) + (1 + νj) sin2(αj) cos(αj)

]
+ sin2(αj) cos(αj)R

2
j EAw,j

) (3.67)

CAT =

m∑
j=0

nj Rj sin(αj) cos2(αj)EAw,j (3.68)

3.4.2 Radial Contact Pressures Models

In a homogeneous, isotropic bar under axial load, there is no radial stress, while in a conductor
under tension, there are clenching forces between layers, i.e. normal forces acting at the
contact points between wires (Cardou, 2013). Their presence can be intuitively explained.
In fact, the axial force in each wire tends to “straighten up” the helix, and thus tends to
induce a decrease of the radius of the lay cylinder. This inward radial motion is blocked by
internal layers of wires, thus an interlayer pressure arises.
Such pressure is already present even before the application of the tension T on the strand,
because of the stranding process. The contribution of these "residual" clenching forces was
highlighted e.g. in (Foti and Martinelli, 2016b), (Frigerio et al., 2016). They can play a
significant role in slack stranded cables and the importance of their effects decreases as the
axial force acting on the strand increases. Foti and Martinelli have also found that the
value of residual radial contact forces heavily influences the reference value of the transition
curvature (and corresponding bending moment) from the initial full-stick behavior and the
full-slip regime.
One could account for the effect of the residual radial contact forces Rj acting on the generic
j-th layer, by slightly modifying the expressions 3.72a and 3.72b which will be derived in the
next paragraph (see (22) for further details).
At the current time there is not a well-established formulation to model such "residual"
pressures. In fact, this is still an open research topic. However, residual radial contact forces
won’t be further considered in the present work.
In this subsection, three different radial contact pressure models of the literature are presented.
The predictions of these different models will be then compared for each layer of wires, for
various ACSR conductors.
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Chapter 3. Modeling of the strand cross-sectional response

Radial Contact Pressures Model A (P.M. A)

This radial contact pressures model was developed by Foti and Martinelli and originally
presented in (22).
Let us consider an infinitesimal wire segment dS. Figure 3.11 shows a scheme of the wire
portion subjected to a system of distributed radial forces acting on the contact helices
(internal and external).
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Figure 3.11. Radial forces contributions of an infinitesimal wire segment.

By stating the equilibrium of the infinitesimal wire along the radial directions the following
equation is obtained:

Fw1(S, t)κ+ cextfextr − cintf intr = 0 (3.69)

where κ denotes the initial curvature of the wire centerline, while cext and cint are two
non-dimensional coefficients that account for the difference between dS and the length of
the infinitesimal segments of the contact helices. Foti and Martinelli have expressed this
coefficients as follows:

cint =1− κ d

2
(3.70a)

cext =1 +
κ d

2
(3.70b)

The radial contact conditions can be studied starting from the literature assumption that
all the wires in a layer are subjected to the same external radial contact forces. Hence, the
equilibrium in the radial direction at the interface between two generic layers , j and j − 1
requires that:

nj f
int
r,j = nj−1f

ext
r,j−1 (3.71)

where the symbol nk denotes the number of wires in the k-th layer.
The radial equilibrium equation of a wire (3.69) can then be iteratively solved together with
the condition (3.71) starting from the outermost layer (layer m), where the external radial
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3.4. Axial-torsional Problem

forces are assumed equal to zero (unloaded strand lateral surface).
The following expressions can be obtained:

fextr,j =
1

nj

m∑
l=j+1

Γ(l, j)δl F
av
w1,j (3.72a)

f intr,j =
1

nj
δj F

av
w1,j + γj f

ext
r,j (3.72b)

where F avw1,j is the average axial force of the wires in the j-th layer:

F avw1,j =
1

nj

nj∑
i=1

Fw1,ij (3.73)

It is worth noticing that, for the axial-torsional loading scenario only, the average axial force
of the wires in the j-th layer exactly coincides with the wire axial force previously determined
through Equation 3.58, that is the linear component of the wire axial force.
If a bending deformation is superimposed, then the induced non-linear components of the
wire axial forces averaged on the layer of wires is negligible, as already remarked in Subsection
3.3.4.
The function Γ(i, j) is defined according to the following equation:

Γ(l, j) = Πl−1
k=j+1γk (3.74)

Coefficients δj and γj which appear in the above equations, depend only on the geometric
characteristics of the j-th layer through the non-dimensional coefficients cintj and cextj and
the initial curvature of the wire centerline κj :

δj =
nj κj
cintj

(3.75a)

γj =
cextj

cintj
(3.75b)

Radial Contact Pressures Model B (P.M. B)

As the number of layers of typical ACSR conductors increases, the effect of the non-
dimensional coefficients cext and cint on the radial contact pressures tends to become lower.
The aim of this part of the work is to rigorously evaluate the consequences of neglecting such
coefficients on the radial contact forces values for typical multi-layer ACSR conductors.
On this behalf, one can introduce the following approximated equations:

cint ∼=1 (3.76a)
cext ∼=1 (3.76b)

So that, if the difference between the segment dS of the wire and the length of the
infinitesimal segments of the contact helices is disregarded, Radial Pressures Model B is
found.
As a direct consequence of the imposition of Eqt.s 3.76, one has: δj = nj κj and γj = 1.
Equations 3.74 simplifies as it follows:

Γ(l, j) = Πl−1
k=j+11 (3.77)
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Chapter 3. Modeling of the strand cross-sectional response

and the external and internal radial contact forces can be computed much more easily,
according to the following equations:

fextr,j =
1

nj

m∑
l=j+1

Γ(l, j)nl κl F
av
w1,j (3.78a)

f intr,j =κj F
av
w1,j + fextr,j (3.78b)

Radial Contact Pressures Model C (P.M. C)

This model was originally developed by Papailiou (1997) and has been later adopted, with
minor changes, also by Foti and Martinelli (2016a).
The main difference between this model and the previous ones, is that Papailou’s transfer
model does not take into account the different number of wires of the layers which are in
contact, as it can be see from Fig. 3.12.

1579 

In reality, since according to (15) every wire accomplishes 
the transition from stick to slip at a slightly different curva- 
ture, also the transition from mm to mmin is smooth, as indi- 
cated in Fig. 5.  

111. MULTILAYER CONDUCTORS 

The basic theory developed in the previous section for sin- 
gle layer conductors will be now extended to cover also mul- 
tilayer conductors. Bearing in mind the space limitations the 
following explanations shall be restricted to the basics. The 
complete analysis can be found in [3]. 

Consider a differential wire element of the penultimate layer 
of a multilayer conductor together with the: corresponding wire 
elements of the outer layer and the inner layer. These layers 
are in reality wrapped around the core in alternating direc- 
tions, but shown in Fig. 6 for better understanding as being 
parallel to each other. 

Fig. 6 .  Forces acting on a differential wire element in the penulti- 
mate layer of a multilayer conductor 

Comparing Fig. 6 with Fig. 4 (which shows a conductor 
element for a single layer conductor), we observe, that in the 
penultimate layer wire of Fig. 6, there act mot only the friction 
forces dRp=ppdNP=ppZp((p) sinppdcp , s.a. (S), caused by the 
tensile force in the same layer, but also friction forces arising 
from the tensile force in the outer layer. From the free body 
diagram for this wire element of the penultimate layer, we get: 

d z p ( c ~ ) =  ~ p ~ p ( q ) s i n p p d q  + ( p p  + p a  ) z a ( q ) s i n p o  dq (24) 
where the subscripts a and p mark quantities related to the 
outer and the penultimate layer. 

The maximum possible tensile force occurring during bend- 
ing in the penultimate layer wire Zp(cp), can be gained by inte- 
grating (24) over cp and observing a similar boundary condi- 
tion as for the single layer conductor, namely that the tensile 
force in an penultimate layer wire when it crosses the conduc- 
tor neutral axis (helix angle q=O) is equal to the tensile force 
ZTp in the same wire before bending, i.e.: 

z p  ('P = O) = zT,p (25) 
Assuming for a moment that, for a given conductor, all 

interlayer friction coefficients and all lay angles are approxi- 
mately constant, i.e. p=const. and p=const. , we obtain from 
(24) a simplified solution for the wire forces Z,(q) acting in 
the individual wires of the penultimate layer: 

zp(q) = ( z T , p  +2Z,,)e'"S'"PV -22 T.a 

z s , i p , p ( q )  = ( 2 T . p  + 2 z T , a ) ( e p s i n p V  -1) 

(26) 
From (26) the maximum possible wire force in the pendti- 

mate layer Z,,,(cp) , which can be sustained by the interlayer 
friction during bending, becomes: 

(27) 
Using a similar approach, the governing differential equa- 

tion for a wire element in any inner conductor layer (index i) 
is gained: 

JZ, (9) = p zi (q)sin p dq + psi sin p acp 

z,(cp) = ( z , ~  + ~ ~ ) e ~ ~ ~ ~ p q  -si 

~ , , , , ~ ( c p )  = ( z ~ , ~  +Si)(epsi++ - I )  

(28) 
with the solution for the wire force Zi(q)  in the wires of the 
layer i: 

(2 9) 
This is the maximum possible friction force Z,,,(cp) in the 

wires of this layer i after they have slipped: 

(3 0) 
In comparison with (6) and (8) the above formulas (29) 

and (30) for the multilayer conductor do include the term Si: 

(3 1) 

This term considers the influence during bending of the 
tensile forces of all layers "above" the layer i, to the tensile 
force ZTi of this layer. The factor 2 in (31) arises from the 
fact that each of these axial forces produces radial forces and 
axial friction forces between the layer i and its adjacent layers 
i-1 and i+l, s.a. Fig. 6. Of course in reality the wire axial 
forces in the term Si vary with the wire helix angle cp, but it 
has been shown in [3] that the error introduced here by as- 
suming Z(q)=ZT in Si is not significant. 

From these wire forces, the friction stresses for each wire 
of the conductor can be calculated and applyingthe same meth- 
odology as for single layer conductors, the variable bending 
stiffness EJ=~(K, 7) of a multilayer conductor can be obtained. 
The respective formulas are summarised in Appendix I. 

a 
= c 2 z T , j  

j= i+ l  
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curvature K [l/m] 

Fig. 7. Bending stiffness EJ of ACSR Cardinal as function of the 
conductor curvature K with the tension T as parameter 
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Figure 3.12. Forces acting on a differential wire element in the penultimate layer of a multilayer
conductor, from (Papailiou, 1997).

In fact, an approximation is clearly introduced by extending the model he developed for
single-layer conductors to the case of multi-layer conductors. By stating the equilibrium in
the radial direction at the interface between two generic layers , j and j − 1, one has:

f intr,j = fextr,j−1 (3.79)

and the condition directly translates in a drastically different model with respect to the
previous two (see also Eq. 3.71).
The basic assumption that is necessary to iteratively solve equation 3.69 is that all wires in
a layer are subjected to the same external radial forces.
In this way it is possible to start from the outermost layer, where fextr = 0 because the
surface is unloaded. With the usual notation (m denotes the number of layers and nj the
number of wires in the j-th layer) one gets:

fextr,j =
m∑

l=j+1

κl F
av
w1,l (3.80)

At this stage, by recalling the definition of the average axial force in wires of the l-th layer
(Eq. 3.73) and expression 3.56, one obtains the following equation:

fextr,j =
m∑

l=j+1

κl F
L
w1,l +

m∑
l=j+1

(κl
nl

nl∑
i=1

FNLw1,i

)
(3.81)
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3.4. Axial-torsional Problem

It is worth noticing that the second term which appears in the previous equation is directly
related to the resultant of wire axial forces due to the bending of the strand in each layer
and can be neglected without significantly affect the results (Foti and Martinelli, 2016a), as
already remarked several times (see Subsection 3.3.4).
So that, Eq 3.81 simplifies as follows:

fextr,j
∼=

m∑
l=j+1

κl F
L
w1,l (3.82)

Due to the simplicity of this model, closed-form expressions for the computation of the radial
contact forces as a functions of the strand axial force Ns can be derived in a straightforward
manner. From Equations 3.82 and 3.61, the linear component of the wire axial force can be
computed as:

FLw1,l =
cos2(αl)EAwl∑nw

k=1EAwk · cos3(αk)
Ns = νw,lNs (3.83)

where nw denote the total number of wires of the strand.
The non-dimensional coefficient νw,l accounts for the characteristics of the internal structure
of the strand, and express the non-dimensional axial force in the l-th layer of wires.
By substitution of Eq. 3.83, one finally obtains:

fextr,j
∼=

m∑
l=j+1

νw,l
ρw,l

Ns (3.84)

From the equilibrium equation of the wire in the radial direction one can also obtain the
internal radial contact forces:

f intr,j =
(
fextr,j + Fw1,j κj

)
∼=

m∑
l=j+1

νw,l
ρw,l

Ns + κj νw,j Ns (3.85)

Numerical Validation Test

In this paragraph, a validation test of the different radial transmission pressures models is
performed. Numerical results coming from a finite element model of a stranded cable (see Ref.
65) are compared with the theoretical predictions of the three different radial transmission
pressures models (P.M. A, B and C). The composition of the investigated strand is reported
in Table 3.10 for the sake of clarity.

Table 3.10. Composition of the Investigated spiral strand.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 4.50 0 217 0.28 0
1 6 4.25 -97.44 217 0.28 0
2 12 4.25 231.05 217 0.28 0
3 18 4.25 -322.06 217 0.28 0
4 24 4.25 413.08 217 0.28 0

The external diameter of the strand is equal to D = 38.50 mm, its Rated Tensile Strength is
RTS = 1310.475 kN and the cable is strung at a tension level T = 0.20 RTS. The finite
element model considers pure radial contacts between wires belonging to layers 1-4. However,
contact deformability is accounted for, whereas Pressures Models A-C are formulated under
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Figure 3.13. Comparison between the internal radial contact force per unit of length predicted by
the different models and the FE model results.

the assumption of fully rigid contacts. Additionally, the core wire is considered to be in
contact with the first layer of wires, through mixed-type patches (i.e. both radial and lateral
contacts). As it can be seen from Fig. 3.13 for what concerns the contacts between the
core wire and the first layer, almost perfect correlation between FEM results and P.M. B is
present. Additionally, FEM results obtained for contacts between layer 1 and layer 2 are
better approximated by P.M.A, while results obtained for contacts between layers 2 and 3
are better approximated by P.M.C. This fact could be related to the contact deformability,
which causes radial forces per unit length to be smaller with respect to the fully-rigid model
predictions. Theoretical predictions for the contacts between layer 3 and 4 are equally close
to FEM results.

Comparison among the different models

In this paragraph the radial pressures transmission models A, B and C are applied to a
sample of 15 conductors cross-sections, and their predictions of the internal and external
radial contact forces per unit of length are then compared.
The geometrical and mechanical properties of the investigated conductors are reported in
Appendix A, whereas their cross-sections schemes are conveniently reported in Appendix B.
The following plots show various bar charts for both the prediction of the internal and
external radial contact forces per unit of length for the different conductors, distinguished
by layers. Radial forces per unit of length are computed by considering an axial force of 1
kN acting on the strand. Due to the linearity property of the axial-torsional problem, the
following results can be easily scaled up in order to obtain the corresponding values of the
radial contact forces for any magnitude of the axial force Ns acting on the strand.
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ACSR 6/1
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Figure 3.14. ACSR 6/1 Sparrow: plot of the internal (a) and external (b) radial contact forces per
unit of length for the sole layer of wires.
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Figure 3.15. ACSR 6/1 Pigeon: plot of the internal (a) and external (b) radial contact forces per
unit of length for the sole layer of wires.
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Figure 3.16. ACSR 6/1 Penguin: plot of the internal (a) and external (b) radial contact forces per
unit of length for the sole layer of wires.
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Figure 3.17. ACSR 26/7 Partridge: plot of the internal (a) and external (b) radial contact forces per
unit of length for the three layers of wires.
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Figure 3.18. ACSR 26/7 Hawk: plot of the internal (a) and external (b) radial contact forces per
unit of length for the three layers of wires.
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Figure 3.19. ACSR 26/7 Drake: plot of the internal (a) and external (b) radial contact forces per
unit of length for the three layers of wires.
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ACSR 48/7
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Figure 3.20. ACSR 48/7 Bersfort: plot of the internal (a) and external (b) radial contact forces per
unit of length for the four layers of wires.
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Figure 3.21. ACSR 48/7 Carillon: plot of the internal (a) and external (b) radial contact forces per
unit of length for the four layers of wires.
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Figure 3.22. ACSR 48/7 Gatineau: plot of the internal (a) and external (b) radial contact forces per
unit of length for the four layers of wires.
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Figure 3.23. ACSR 54/7 Duck: plot of the internal (a) and external (b) radial contact forces per
unit of length for the four layers of wires.
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Figure 3.24. ACSR 54/7 Crow: plot of the internal (a) and external (b) radial contact forces per
unit of length for the four layers of wires.
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Figure 3.25. ACSR 54/7 Curlew: plot of the internal (a) and external (b) radial contact forces per
unit of length for the four layers of wires.
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ACSR 72/7
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Figure 3.26. ACSR 72/7 Falcon: plot of the internal (a) and external (b) radial contact forces per
unit of length for the five layers of wires.
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Figure 3.27. ACSR 72/7 Nelson I: plot of the internal (a) and external (b) radial contact forces per
unit of length for the five layers of wires.
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Figure 3.28. ACSR 72/7 Nelson II: plot of the internal (a) and external (b) radial contact forces per
unit of length for the five layers of wires.

From the previous figures, interesting conclusions can be drawn:

• As a trivial consideration, all the pressures models correctly predict null external radial
forces per unit of length on the outermost layer of wires;

• Radial Pressures Model C is systematically underestimating both the external and
internal radial contact forces per unit of length at each layer of the conductors cross-
sections, except for the internal radial force per unit of length of the outermost layer,
that coincides to the one predicted by the Pressure Model B for all the conductor
typologies. As a particular case, 6/1 conductors present just one layer of wires, for
which pressure models B and C give the same results;

• Radial Pressures Model A and B are predicting quite close results in every situation.
The difference between their predictions is mostly important in the innermost layer,
where the influence of correction coefficients cint and cext is higher;

• The relative difference between the predictions of Radial Pressures Models A and B
is practically constant for each layers of conductors belonging to the same stranding
class, both for the internal and external radial contact forces per unit of length. The
maximum relative difference is encountered for the internal redial contact force per
unit of length of 72/7 ACSR conductors and it is equal to 5.02%;

• Radial Pressures Model B is way more simple than P.M. A but can still be conveniently
applied with good approximation for the analysis of multillayer strands, predicting the
internal and external radial contact forces per unit of length with a relative percentage
difference respectively of 5.02% and 4.63% at most (corresponding to the case of ACSR
72/7 conductors, layer j = 1). In the case of ACSR 54/7 conductors, such difference
lowers down to 3.20% and 2.67% respectively for the internal and external contact
forces per unit of length of the first layer of wires. Furthermore, such relative difference
reaches its minimum for the outermost layer of the analyzed conductors, being less
than 1% for both the external and internal radial forces per unit of length;
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3.4. Axial-torsional Problem

• The relative difference between Radial Pressures Models A and C is practically constant
for each layers of conductors belonging to the same stranding class, both for the internal
and external radial contact forces per unit of length. Such difference is particularly
relevant for the innermost layer of multilayer strands. For ACSR 54/7 and 72/7
conductors, P.M. A predicts forces per unit length even 3 times larger than the ones
predicted by P.M. C, that is, a relative difference of 64.70% and 68.17% respectively for
the internal and external radial forces per unit of length in the case of 72/7 conductors.
Such values becomes 63.76% and 66.78% in the case of 54/7 conductors (respectively
for the internal and external contact forces per unit of length of the first layer of wires);

• Due to its more complex formulation, Pressures Model A appears to be the most
accurate among the three that were compared. In fact, a closer agreement was
generally found between the FEM results and the predictions obtained through the
Pressures Model A, especially for inner layers of wires.
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Chapter 3. Modeling of the strand cross-sectional response

3.4.3 Approximated Radial Contact Forces

In this Subsection, the approximated radial contact forces acting at the interfaces of the
different layers of wires are computed.
In particular, the approximated values of such contact forces can be obtained by multiplying
the radial force per unit of length computed assuming a line contact situation (i.e. results
obtained in Subsection 3.4.2) by the distance between contact points at a given interface
(that was computed in Subsection 3.2.2 for each interface of the various conductors).
Three different models for the radial pressures transmission were used, as well as three
different formulae for the computation of the distances between contact points (Eqts. 3.20,
3.21 and 3.22).
This means that a total of 9 possibilities for the estimation of the radial contact forces (both
internal and external) at each interface arise.
Results of the approximated radial contact forces are collected in the bar charts shown in
Fig.s 3.35-3.52. Each figure collects the results of either the external approximated forces
or the internal approximated forces of a specific ACSR conductor, computed by applying
the three radial pressure models (namely P.M. A, B and C) and the three distance formulae
(Carodu’s, Chouinard’s and Papailou’s ditances). Each subplot refers to a specif layer of
that conductor.
Results of the approximated radial contact forces are also reported in tabular form for the
sake of convenience in Appendix D.

Remarks

It is worth noticing that:

• distances between contact points are not computed for the case of 6/1 conductors and
for the first layer (i.e i = 1) of multilayer strands. This is due to the fact that contact
patches between the core and the first layer of wires are assumed to be continuous
and not pointwise distributed (see Sec. 3.2.2 for further details). As a consequence,
approximated radial contact forces are not computed for such cases;

• external approximated radial contact forces on the outermost layer of wires are null, as a
trivial consequence of the fulfillment of the different radial pressure models equilibrium
equations. For this reason, external radial contact forces for the outermost layer of
each conductor are not reported in the following figures, being zero;

• approximated radial contact forces are computed by considering the generic strand
loaded with an axial force of 1 kN. Due to the linearity property of the axial-torsional
problem, the following results can be easily scaled up in order to obtain the corre-
sponding values of the approximated radial contact forces for any magnitude of the
axial load Ns acting on the strand;

• approximated radial contact forces are here computed by passing from the radial
contact forces per unit of length (i.e. f intr and fextr ) to the normal contact forces acting
on contact points between adjacent layers (direct consequence of the alternate lays
of multilayer conductors). For this reason, internal and external approximated radial
forces will be referred to as P int and P ext, meaning that they act on contact points
between conductor layers.
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Figure 3.29. ACSR 26/7 Partridge: plot of P ext for the different layers.
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Figure 3.30. ACSR 26/7 Partridge: plot of P int for the different layers.
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Figure 3.31. ACSR 26/7 Hawk: plot of P ext for the different layers.
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Figure 3.32. ACSR 26/7 Hawk: plot of P int for the different layers.
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Figure 3.33. ACSR 26/7 Drake: plot of P ext for the different layers.
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(b) Layer 3.

Figure 3.34. ACSR 26/7 Drake: plot of P int for the different layers.
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(b) Layer 2.
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(c) Layer 3.

Figure 3.35. ACSR 48/7 Bersfort: plot of P ext for the different layers.
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(a) Layer 2.
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(b) Layer 3.
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(c) Layer 4.

Figure 3.36. ACSR 48/7 Bersfort: plot of P int for the different layers.
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(a) Layer 1.
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(b) Layer 2.
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(c) Layer 3.

Figure 3.37. ACSR 48/7 Carillon: plot of P ext for the different layers.
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(b) Layer 3.
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(c) Layer 4.

Figure 3.38. ACSR 48/7 Carillon: plot of P int for the different layers.
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(a) Layer 1.

Radial	Pressure	Model	A
Radial	Pressure	Model	B
Radial	Pressure	Model	C

Ex
te
rn
al
	R
ad
ia
l	C

on
ta
ct
	F
or
ce
	[N

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Cardou's	Distance Chouinard's	Distance Papailiou's	Distance

(b) Layer 2.
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(c) Layer 3.

Figure 3.39. ACSR 48/7 Gatineau: plot of P ext for the different layers.

68



3.4. Axial-torsional Problem

Radial	Pressure	Model	A
Radial	Pressure	Model	B
Radial	Pressure	Model	C

In
te
rn
al
	R
ad
ia
l	C

on
ta
ct
	F
or
ce
	[N

]

0

1

2

3

4

5

6

7

8

9

10

Cardou's	Distance Chouinard's	Distance Papailiou's	Distance

(a) Layer 2.
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(b) Layer 3.
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(c) Layer 4.

Figure 3.40. ACSR 48/7 Gatineau: plot of P int for the different layers.
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(b) Layer 2.

Radial	Pressure	Model	A
Radial	Pressure	Model	B
Radial	Pressure	Model	C

Ex
te
rn
al
	R
ad
ia
l	C

on
ta
ct
	F
or
ce
	[N

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Cardou's	Distance Chouinard's	Distance Papailiou's	Distance

(c) Layer 3.

Figure 3.41. ACSR 54/7 Duck: plot of P ext for the different layers.
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(a) Layer 2.
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(c) Layer 4.

Figure 3.42. ACSR 54/7 Duck: plot of P int for the different layers.
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(a) Layer 1.
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(b) Layer 2.
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(c) Layer 3.

Figure 3.43. ACSR 54/7 Crow: plot of P ext for the different layers.
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(a) Layer 2.
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(b) Layer 3.
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(c) Layer 4.

Figure 3.44. ACSR 54/7 Crow: plot of P int for the different layers.
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(a) Layer 1.

Radial	Pressure	Model	A
Radial	Pressure	Model	B
Radial	Pressure	Model	C

Ex
te
rn
al
	R
ad
ia
l	C

on
ta
ct
	F
or
ce
	[N

]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Cardou's	Distance Chouinard's	Distance Papailiou's	Distance

(b) Layer 2.
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(c) Layer 3.

Figure 3.45. ACSR 54/7 Curlew: plot of P ext for the different layers.
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(a) Layer 2.
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(c) Layer 4.

Figure 3.46. ACSR 54/7 Curlew: plot of P int for the different layers.
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(c) Layer 3.
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(d) Layer 4.

Figure 3.47. ACSR 72/7 Falcon: plot of P ext for the different layers.
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(c) Layer 4.
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(d) Layer 5.

Figure 3.48. ACSR 72/7 Falcon: plot of P int for the different layers.
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(d) Layer 4.

Figure 3.49. ACSR 72/7 Nelson I: plot of P ext for the different layers.
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Figure 3.50. ACSR 72/7 Nelson I: plot of P int for the different layers.
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Figure 3.51. ACSR 72/7 Nelson II: plot of P ext for the different layers.
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Figure 3.52. ACSR 72/7 Nelson II: plot of P int for the different layers.

81



Chapter 3. Modeling of the strand cross-sectional response

Comments

Some comments about the results collected in the previous graphs are herein proposed:

• considerations already evidenced about the general trend of the predictions of the
different radial pressures transmission models (A,B and C) hold and are confirmed by
the previous plots(see Subsection 3.4.2 for further details);

• considerations already evidenced about the general trend of the values of the contact
points distances obtained through the different equations (Eqts. 3.20, 3.21 and 3.22)
hold and are confirmed by the previous plots (see Subsection 3.2.2 for further details);

• as a matter of fact, the biggest difference in between the nine combinations is due to
the underestimation of the radial contact forces per unit of length obtained with the
Radial Pressures Model C;

• the slight overestimation of the distance between contact points obtained through
Cardou’s equation encountered for the innermost layer, decreases as the number of
layers of the conductor increases,

• predictions of P int and P ext for intermediate layers obtained with P.M.s A and B tend
to even out if combined with the contact points distances computed with Cardou’s
and Papailiou’s equations;

• for the innermost layer of any conductor, maximum values of the approximated internal
and external radial contact forces (P int and P ext) are obtained by combining Radial
Contact Pressures Model A (see Paragraph 3.4.2) with the distance between contact
points computed with Cardou’s equation (Eq. 3.20);

• for the innermost layer of any conductor, minimum values of the approximated internal
and external radial contact forces (P int and P ext) are obtained by combining Radial
Contact Pressures Model C (see Paragraph 3.4.2) with the distance between contact
points computed with Papailiou’s equation (Eq. 3.22);

• for the intermediate layer of any conductor, maximum values of the approximated
internal and external radial contact forces (P int and P ext) are obtained by combining
Radial Contact Pressures Model A (see Paragraph 3.4.2) with the distance between
contact points computed with Chouinard’s equation (Eq. 3.21);

• for the intermediate layer of any conductor, minimum values of the approximated
internal and external radial contact forces (P int and P ext) are obtained by combining
Radial Contact Pressures Model C (see Paragraph 3.4.2) with the distance between
contact points computed with Cardou’s equation (Eq. 3.20);

• as a particular result, internal approximated radial contact forces P int for the outermost
layer of wires of any conductor are almost equally predicted by the nine different
combinations adopted;

• as a particular result, external approximated radial contact forces P ext for the outermost
layer of wires of any conductor appear to lose the dependence upon the distance formula,
and to vary according to the radial pressures model characteristics only (that is, P.M.s
A and B gives practically the same results, whereas P.M.C slightly underestimates the
values of the radial contact forces).
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3.5. Bending Problem

3.5 Bending Problem

In this section, the bending problem of metallic stranded cables is assessed.
Its intrinsic nonlinear and non-holonomic features result in a more complex discussion with
respect to the solution of the axial-torsional loading scenario, discussed in Section 3.4.
A brief characterization of the flexural stiffness properties during the bending process is
provided in Subsection 3.5.1, whereas the formulation of the tangent stiffness matrix within
the context of iterative solution strategies for nonlinear structural problems is assessed in
Subsection 3.5.2. One of the most important part of the entire author’s research work is
collected in Subsection 3.5.3, in which different stick-slip mechanical models for multilayer
conductors under bending are implemented. A procedure for the obtainment of closed-form
expression of two coefficients governing the differential equation describing the wire axial
force limit domain is proposed. A generalization of such procedure is then retrieved.
Finally, Subsection 3.5.4 deals with the description of the moment-curvature law of metallic
stranded cables. An ideal bi-linear approximating relation is used to describe the hysteretic
behavior of such structures, fully defined by the so-called construction parameter c0.
The procedures for the computation of such parameter will be addressed in the next Section
(3.6).

3.5.1 Flexural Stiffness

Whenever a conductor is bent, interactions among adjacent wires occur at internal contact
surfaces. Here friction forces tend to contrast relative movement of internal wires, i.e. the
interwire displacements, so that transmission of tangential stresses between wires can take
place (full-stick condition). When the forces which tend to activate the sliding are greater
than the frictional ones, then, a wire can undergo to relative displacement with respect to
the neighbors. This process can proceed up to the situation for which all the wires are in
the so called full-slip condition (see e.g. (Foti and Martinelli, 2016a, 2016b)).
Hence, the bending of the strand is a non-linear problem, due to the variable axial strain
caused by bending itself (see Eq. 3.43) Equations 3.86 and 3.87 are the most simple
expressions that allow for the determination respectively of the maximum and minimum
bending stiffness of the conductor.

EImax =
∑
i

Ei Ii (3.86)

EImin =
∑
i

Ei I0i (3.87)

where Ei and Ii are respectively the Young’s modulus and the moment of inertia of the i-th
wire. The i-th moment of inertia Ii can be computed as:

Ii = I0i +Ai d
2
i (3.88)

where I0i is the moment of inertia of wire i relative to its own axis, Ai is the area of the
wire and di is the distance from the wire’s neutral axis to the conductor’s neutral axis. With
reference to figure 3.53, di is defined as follows:

di = rn sin(αi) (3.89)
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Chapter 2: Aeolian Vibration EPRI Transmission Line Reference Book—Wind-Induced Conductor Motion, Second Edition

2-22

ing stiffness is the sum of its components’ stiffness, as
shown in Equation 2.3-1.

 2.3-1

where EIC is the flexural stiffness of the conductor, and
Ii and Ei are the moment of inertia and Young’s modu-
lus of wire i, respectively.

The moment of inertia Ii relative to the neutral axis of
the conductor, for each wire is given by:

2.3-2

Where I0i is the moment of inertia of wire i relative to its
own axis, Ai is the area of the wire, and di is the distance
from the wire's neutral axis to the conductor's neutral
axis. Referring to Figure 2.3-8, di is defined as:

2.3-3

EIc then becomes,

2.3-4

This is the exact method of calculating EIC for a given
rigid section. This method assumes that all the wires act

together as a solid. The value that it yields is the maxi-
mum attainable value of stiffness for the conductor, and
for this reason, it is usually referred to as EImax. It can
be shown (Dane and Hard 1977; Appendix II in Papail-
iou 1995) that the sum of sin2(ai) over all k wires of a
layer is numerically equal to ki/2, which makes the cal-
culation of Equation 2.3-4 significantly easier. 

Another theoretical value of EIC assumes that all the
wires act independently of one another and therefore
ignores the factor rnsin(ai) in Equation 2.3-3. The calcu-
lation of EIC is given by:

2.3-5

Equation 2.3-5 yields a much lower value for EIC. This
is the lowest theoretical value that this factor can attain.
For this reason, it is called EImin. “Exact” calculation of
the bending stiffness also sometimes includes a factor to
take into account the lay angle of the conductor. This
results in 5 to 10% lower stiffness values, which is not of
great concern in the context of the other uncertainties in
determining this parameter, as will be explained in the
following. As an example, in Appendix 2.2, both bend-
ing stiffness values—i.e., EImin. and EIzp— are calcu-
lated for a 795 kcmil Drake ACSR.

Calculation of EI for conductors with Z-shaped or trap-
ezoidal wires becomes quite tedious, since the flexural
rigidity of each wire assumes a different value depending
on its location within the conductor cross section. 

Values to be used for modulus of elasticity of commonly
used conductor metals are given in Table 2.3-1. 

The Conductor Bending Phenomenon
Qualitatively, when a conductor is bent, the movement
of its wires is suppressed by the friction forces acting
between the wires and mainly between the wires of two
adjacent layers. Mechanically, this situation is described
in a first approximation by the axial force equilibrium of

Figure 2.3-7 Parameters describing vibration near 
the suspension location.

Figure 2.3-8 Conductor cross section with 
parameters for bending stiffness calculation.
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Table 2.3-1 Modulus of Elasticity for Various Wire 
Components

Component
ASTM

Designation
IEC

Designation
E

(GPa)

Aluminum 
wires

• 1350-H19
• 6201-T81

• A1
• A2, A3

68.9
"

Steel wires

• Galvanized Steel 
(GA)
• High-Strength
Galvanized Steel (HS)

• S1, S2
• S3

210
"

Aluminium-
clad steel wires

• Aluminum-Clad Steel 
(AW)

• 20SA Type A
• 20SA type B
• 27SA
• 30SA
• 40SA

162
155
140
132
109

Figure 3.53. Conductor cross section: parameters for bending stiffness calculation (EPRI, 2006).

According to the model proposed by Foti and Martinelli (22), the upper and lower limit
values of the tangent bending stiffness can be evaluated through equations 3.90 and 3.91.
At small values of the curvature, friction forces are large enough to overcome the axial force
gradient along the wire, and all the wires are are ideally welded together such that any
relative displacement among them is prevented (full-stick state). The strand cross section
can be modeled as a planar rigid body, leading the bending stiffness to reach its maximum
theoretical value:

EImax = EImin +
m∑
j=1

nj
2

cos3(αj)EAw,jR
2
j (3.90)

If the external surfaces of the wires can be assumed perfectly lubricated, the strand behaves as
a bundle of independent curved thin rods (full-slip state). The kinematics of each individual
wire is described by means of the planar rigid body assumption, and the minimum theoretical
value of the flexural stiffness is attained:

EImin =
m∑
j=0

nj
2

cos(αj)EIw,j

(
1 + cos2(αj) +

sin2(αj)

1 + νj

)
(3.91)

It is worth notice that, as a consequence of the deformability of the internal contact interfaces
between the wires, the calculated values of the maximum theoretical value of the flexural
stiffness EImax tend to overestimate the bending stiffness of the strands in the small curvature
regime. This tendency has been recently recognized by different researchers (Baumann and
Novak 2017), (Paradis and Legeron 2011). A stiffness reduction factor β (with: β ∈ [0, 1]),
can then be introduced to approximately account for this effect. So that an effective maximum
flexural stiffness of the strand can be defined as follows;

EImax,ef = β EImax (3.92)

For typical ACSR conductors, β can be in the range 0.5-0.95.
The transition from the full-stick (i.e from small curvature regime) to the full-slip (i.e. to
large curvature regime) cross sectional behavior depends on the possible activation of relative
displacements between the wires and is inherently non-linear and non-holonomic.
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3.5.2 Tangent Stiffness Matrix

The tangent stiffness matrix Ks is important to be evaluated within the context of
displacement-based iterative solution strategies for nonlinear structural problems.
The tangent stiffness matrix relates the variations of the generalized cross sectional stress
and strain variables and can be evaluated by taking the derivatives of the stress-strain
relationships:

Ks =
∂σs
∂εs

(3.93)

where σs and εs are the vectors of generalized stresses and strains, respectively (see Eqts.
3.30). As it was previously discussed, the nonlinearities are only due to the contribution of
the wire axial strain components which are due to the bending of the strand.
The cross-sectional tangent stiffness matrix can be expressed as the sum between a constant
contribution, evaluated under the assumption of full-slip kinematic condition, and an
additional term, that generally varies during the analysis and account for the interwire
sliding phenomenon (22).

Ks = Ks,slip +Ks,add (3.94)

The constant contribution can be expressed as it follows:

Ks,slip =


EA CAT 0 0
CAT GJ 0 0

0 0 EImin 0
0 0 0 EImin

 =

[
Ks,at 0

0 Kb

]
(3.95)

where Ks,at is the axial-torsional stiffness matrix (already expressed in Eq. 3.64) and Kb is
the stiffness matrix containing the minimum and maximum flexural stiffness of the strand
along the principal diagonal:

Kb =

[
EImin 0

0 EImin

]
(3.96)

The additional contribution of the stiffness matrix Ks,add is non-symmetric and can be
generally written in the following form:

Ks,add =


0 0 k13 k23
0 0 k14 k24
0 0 k33 0
0 0 0 k44

 (3.97)

It is worth noting that out-of-diagonal terms of the matrix can be neglected without
significantly affecting the convergence properties of the numerical solution, in the context of
iterative solution strategies for nonlinear structural problems.
The expression of the direct stiffness terms k33 and k44 can be found in (Foti and Martinelli,
2016b).
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Chapter 3. Modeling of the strand cross-sectional response

3.5.3 Stick-Slip Mechanical Models

Sliding conditions of wires in multilayer conductors under bending have been studied by
some authors under different literature assumptions. Such hypothesis substantially differs
for the tangential contact forces direction (i.e. the friction forces direction) that arise at the
wire interfaces, as reported e.g. in (Cardou, 2013).
To the author’s knowledge, a rigorous comparison between the different slip conditions
assumptions on the strand bending response has never been assessed.
This fact is due to the lack of a general formulation that would permit to study the different
hypothesis under a general framework.
The aim of this part of the present work is to build such general framework, on the basis of
a generalization of the procedure already developed in (Foti and Martinelli, 2016a).
First of all, the analytical formulation for the obtainment of the closed-form expressions of
the coefficients governing the wire axial force limit domain differential equation is presented.
In the second part, different sliding conditions from the literature are analyzed and imple-
mented. As a novel result, two additional sliding conditions are proposed.
Finally, a straightforward generalization of such closed-form expressions through two addi-
tional parameters is proposed.

Formulation development

Let us refer just for the sake of simplicity to Radial Contact Pressure Model A. This is not
a specialization of the problem and will not cause any lack of generality in the following
derivations. Let us consider an infinitesimal wire segment dS. Figure 3.54 shows a scheme
of the wire portion subjected to a system of distributed radial and tangential forces acting
on the contact helices (internal and external).
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Figure 3.54. Equilibrium of an infinitesimal wire segment.

By stating the equilibrium of the infinitesimal wire segment along the tangential and radial
directions, the following equations are obtained:

∂Fw1
∂S

− cextfextt − cintf intt = 0 (3.98a)

Fw1(S, t)κ+ cextfextr − cintf intr = 0 (3.98b)
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where κ denotes the initial curvature of the wire centerline, while cext and cint are the
non-dimensional coefficients that account for the difference between dS and the length of
the infinitesimal segments of the contact helices already introduced in Eqs. 3.70.
At this stage, one can study the wire sliding condition by assuming that the tangential forces
per unit of length satisfy the Amontons-Coulomb inequalities:

fextt ≤ µextfextr (3.99a)

f intt ≤ µintf intr (3.99b)

where µext and µint indicate the friction coefficient of the external and internal contact
surfaces.
Substituting the previous expressions into equation 3.98a, and exploiting f intr from equation
3.98b one has:

∂Fw1
∂S

− cextµextfextr − cintµintf intr ≤ 0 (3.100a)

f intr =
1

cint

[
Fw1κ+ cextfextr

]
(3.100b)

Substituting Eq. 3.100b into Eq. 3.100a one gets:

∂Fw1
∂S

− µintFw1κ− (µext + µint)cext fextr ≤ 0 (3.101)

Accounting for a possible reversal in the direction of the wire axial force gradient, the
following tangential contact condition is obtained:

ψ(S, t) = |∂Fw1
∂S
| − µintFw1(S, t)κ− (µext + µint)cext fextr ≤ 0 (3.102)

It is worth noting that the domain of admissible values of the wire axial forces, at a generic
coordinate S is expressed by the function ψ(S, t). In particular (Foti and Martinelli, (2016b)):

• If ψ(S, t) < 0, the generic wire is in stick-state because the tangential contact forces
are large enough to prevent sliding;

• If ψ(S, t) = 0, the generic wire is in slip-state.

so that the sliding conditions can be expressed in the following form:{
ψ(S, t) = 0

ψ̇(S, t) = 0
(3.103)

By recalling Equation 3.5a one can operate a change of coordinates, expressing dS as:

dS =
Rdθ

sin(α)
(3.104)

Recalling also Eq. 3.8a, the following inequality is readily obtained:

|∂Fw1
∂θ
| − µintFw1|sin(α)| − (µext + µint)cext fextr

R

|sin(α)|
≤ 0 (3.105)
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At this stage, recalling that the axial force in the wire can be expressed through Eq. 3.56
and considering that:

∂FLw1
∂S

= 0 (3.106)

inequality 3.105 becomes:

|∂F
NL
w1

∂θ
| − µintFNLw1 |sin(α)| − µintFLw1|sin(α)| − (µext + µint)cext fextr

R

|sin(α)|
≤ 0 (3.107)

It is now possible to make reference to the radial forces per unit of length multiplied by the
radius of curvature of the wire:

f̂extr = fextr · ρw = fextr · 1

κw
(3.108)

So that:

fextr = f̂extr · κw = f̂extr · sin2(α)

R
(3.109)

Substituting into inequality 3.107 one gets:

|∂F
NL
w1

∂θ
| − µintFNLw1 |sin(α)| − µintFLw1|sin(α)| − (µext + µint)cext f̂extr |sin(α)| ≤ 0 (3.110)

At this point, it is possible to insert Eq. 3.83 in the previous expression, in order to express
the linear component of the wire axial force FLw1. Hence:

|∂F
NL
w1

∂θ
| − µintFNLw1 |sin(α)| − µintνw|sin(α)| − (µext + µint)cext f̂extr |sin(α)| ≤ 0 (3.111)

It is now convenient to express the previous inequality in a more general form, introducing
the coefficients a and b.
With reference to a single layer of wires (i.e. for a fixed j ∈ [1,m], where m denotes the
total number of layers), the following scalar equation can be used for reference:

|∂F
NL
w1

∂θ
|+ aFNLw1 + b = 0 (3.112)

Comparing Equations 3.111 and 3.112 one finally gets:

a =− µint|sin(α)| (3.113a)

b =− µint|sin(α)|νw − (µint + µext) cext · f̂extr |sin(α)| (3.113b)

Depending on the sign of the gradient of Fw1,NL, two limit conditions can be derived, namely
F lim,+w1,NL and F lim,−w1,NL.

If the gradient function has a positive sign, i.e. ∂FNLw1
∂θ > 0, then the positive limit condition

is derived:

∂F lim,+w1,NL

∂θ
− µintF lim,+w1,NL|sin(α)| − µintνw|sin(α)| − (µext + µint)cext f̂extr |sin(α)| = 0 (3.114)
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whereas if the gradient function has a negative sign, i.e. ∂FNLw1
∂θ < 0, then the negative limit

condition is derived:

−
∂F lim,+w1,NL

∂θ
−µintF lim,+w1,NL|sin(α)|−µintνw|sin(α)|− (µext+µint)cext f̂extr |sin(α)| = 0 (3.115)

The general solutions of the previous ordinary differential equations (3.114, 3.115) can be
expressed as:

F lim±w1,NL(θ) = C±0 exp
[
± µ| sin(α)|θ

]
+ Cp (3.116)

where Cp is a constant particular solution, linearly depending of the axial force acting on
the strand Ns:

Cp = Ns C̄p (3.117)

Integration constants C+
0 and C−0 should be determined by imposing suitable boundary

conditions.
Foti and Martinelli (2016a) have derived the integration constants for the special and
interesting case of uniform bending of the strand.
These can be expressed by distinguishing two cases:

1. Bending with tension side on the upper side of the strand.
The boundary conditions are (with z = 0, 1, 2, . . . ):

C+
0 = −Cp exp

[
− µ| sin(α)| (2πz)

]
(3.118a)

C−0 = −Cp exp
[

+ µ| sin(α)|(2z + 1)π
]

(3.118b)

So that the solutions are expressed as it follows:

F lim,+w1,NL(θ) = NsC̄p

(
1− exp

[
+ µ| sin(α)| (θ − 2πz)

])
(3.119a)

F lim,−w1,NL(θ) = NsC̄p

(
1− exp

[
+ µ| sin(α)| [(2z + 1)π − θ]

])
(3.119b)

2. Bending with tension side on the lower side of the strand.
The boundary conditions are (with z = 0, 1, 2, . . . ):

C+
0 = −Cp exp

[
− µ| sin(α)| (2z + 1)π

]
(3.120a)

C−0 = −Cp exp
[

+ µ| sin(α)|(2πz)
]

(3.120b)

So that the solutions are expressed as it follows:

F lim,+w1,NL(θ) = NsC̄p

(
1− exp

[
+ µ| sin(α)| [θ − (2z + 1)π]

])
(3.121a)

F lim,−w1,NL(θ) = NsC̄p

(
1− exp

[
+ µ| sin(α)| (2πz − θ)

])
(3.121b)
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Let us now introduce the so-called non-dimensional limit functions:

N lim,±(θ) =
F lim±w1,NL(θ)

Ns
(3.122)

The domain of admissible values for the function FNLw1 can be defined according to the
following inequality:

min(N lim,+, N lim,−) ≤
F lim,±w1,NL

Ns
≤ max(N lim,+, N lim,−), ∀θ (3.123)

For the sake of clarity, the plots of the non-dimensional limit functions versus the swept
angle θ ∈ [0, 360] deg for the sample of 15 conductors are reported into Appendix E.
The limit domain is represented by the continuous black lines, whereas the red dots indicate
the values of the non-dimensional limit functions at the swept angles identifying the wires
positions.
It is worth noting that the admissible domains are determined by considering the Radial
Contact Pressure Model A and the sliding condition shown in Fig. 3.54, which will be
referred to as Sliding Condition 1 in the following developments.
Each single limit domain of the previous graphs is related to the different layers of wires of
the strand. The ones with the lowest absolute values of N lim,+ and N lim,− are associated
with the outer layers, while the ones of the innermost layer are associated with the highest
absolute values of non-dimensional limit functions.

Comments

As a general comment, the proposed approach is practically convenient because it permits
to obtain the expressions of the coefficients a and b that are used to compute the constant
particular solution C̄p of the ordinary differential equations. In fact, with reference to the
general form of the tangential equilibrium equation:

|dF
NL
w1

dS
|+ aFNLw1 + b = 0 (3.124)

one can search for the constant particular solution by imposing:

FNLw1,p = C̄p (3.125)

so that, by backward substitution, one gets:

C̄p = − b
a

(3.126)

This means that once both coefficients a and b are known, the constant particular solution
can be easily computed regardless both the typology of radial contact pressures model and
the particular slip condition (also see Paragraphs 3.5.3 - 3.5.3) that is adopted, i.e. by
applying this procedure, there are not specialized expressions of C̄p depending neither on
the different radial pressure models, nor on the imposed slip condition.
In the following pages, different sliding conditions will be treated, in order to determine the
closed-form expressions of coefficients a and b for each case.
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3.5. Bending Problem

Sliding Condition 1 (S.C.1)

This sliding condition is the one already adopted, that is shown in Figure 3.55, in which
tangential forces are parallel and opposite to the direction of wire sliding. This scheme can
be regarded to as a sort of "Pullout" test.
Such sliding condition was introduced by Papailiou (1995) and has been extensively adopted
in the following years by many other authors (e.g. (Hong et al., 2005), (Foti and Martinelli,
2016a, 2016b)).
However, condition S.C.1 is difficult to justify physically. In fact, it is difficult to understand
why layer i + 1, being in the slip state, would oppose layer i slip. Thus, condition S.C.1
tends to have a strong retardation effect on inner layer slip.
Additionally, the slip phases are assumed to occur sequentially, without any overlap, from
one layer to the next. This hypothesis leads to an advantage, for the mechanical model, that
is, slip is complete on one layer, before it starts on the next (Cardou, 2013).
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Figure 3.55. Equilibrium of an infinitesimal wire segment, S.C.1.

The equilibrium equations, both along radial and tangential directions, read:

∂Fw1
∂S

− cextfextt − cintf intt = 0 (3.127a)

Fw1(S, t)κ+ cextfextr − cintf intr = 0 (3.127b)

The previous equations lead to the obtainment of the following coefficients:

a =− µint|sin(α)| (3.128a)

b =− µint|sin(α)|νw − (µint + µext) cext · f̂extr |sin(α)| (3.128b)

Such coefficients were already determined with reference to the explanation of the general
procedure previously assessed (Eqts. 3.113a and 3.113b).
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Chapter 3. Modeling of the strand cross-sectional response

Sliding Condition 2 (S.C.2)

This sliding condition describes in a more physical way the sliding process of the wire
under the assumption that the sliding starts at the outermost layer of the strand and then
"propagates" towards the core. In addition, the slip phases are assumed to occur sequentially,
without any overlap, as it occurs in condition S.C.1.
However, in this case, once the sliding is activated, the external tangential force is not
directed as the internal one, but points in the opposite direction, that is, along the sliding
direction.
The forces acting on an infinitesimal wire segment are shown in Figure 3.56.
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Figure 3.56. Equilibrium of an infinitesimal wire segment, S.C.2.

The equilibrium equations, both along radial and tangential directions, read:

∂Fw1
∂S

+ cextfextt − cintf intt = 0 (3.129a)

Fw1(S, t)κ+ cextfextr − cintf intr = 0 (3.129b)

By repeating the procedure previously shown, one can easily obtain the following coefficients:

a =− µint|sin(α)| (3.130a)

b =− µint|sin(α)|νw − (µint − µext) cext · f̂extr |sin(α)| (3.130b)

It is worth noting that the only modification with respect to the previous Sliding Condition
is the sign of the external friction coefficient. If µint = µext, then the previous equations
simplify as follows:

a =− µint|sin(α)| (3.131a)

b =− µint|sin(α)|νw = aνw (3.131b)
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3.5. Bending Problem

Sliding Condition 3 (S.C.3)

Sliding condition S.C.3 makes reference to the direction of tangential contact forces described
by sliding condition S.C.1. However, an important difference is present. In fact, an angle
βexti = αi + αi+1 is present and defines the inclination of the external tangential contact
force with respect to the axis of the wire.
The symbol αi have been adopted to denote the lay angles of the i-th layer of wires. Such
condition was presented for the first time in (Cardou, 2013).
This angle βext depends on the relative motion of the material points in contact.
In fact it is formed because layer i+ 1 is already slipping on layer i. The forces acting on an
infinitesimal wire segment are shown in Figure 3.57.
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Figure 3.57. Equilibrium of an infinitesimal wire segment, S.C.3.

The equilibrium equations, both along radial and tangential directions, read:

∂Fw1
∂S

− cextfextt cos(βext)− cintf intt = 0 (3.132a)

Fw1(S, t)κ+ cextfextr − cintf intr = 0 (3.132b)

By repeating the procedure previously shown, one can easily obtain the following coefficients:

a =− µint|sin(α)| (3.133a)

b =− µint|sin(α)|νw −
(
µint + µext cos(βext)

)
cext · f̂extr |sin(α)| (3.133b)

In this case, the modification is just related to the external friction coefficient µext.
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Chapter 3. Modeling of the strand cross-sectional response

Sliding Condition 4 (S.C.4)

Sliding condition S.C.4 considers the direction of the external tangential contact force as in
sliding condition S.C.2, with the addition of the angle βext that is formed with respect to
the axis of the wire, for the same reason explained in S.C.3.
The enforcement of this sliding condition arises from the need to rigorously quantify the
influence of the angle βext on the bending behavior of multilayer strands, under a more
physically-sound slip process (that is, S.C.2).
The forces acting on an infinitesimal wire segment are shown in Figure 3.58.
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Figure 3.58. Equilibrium of an infinitesimal wire segment, S.C.4.

The equilibrium equations, both along radial and tangential directions, read:

∂Fw1
∂S

+ cextfextt cos(βext)− cintf intt = 0 (3.134a)

Fw1(S, t)κ+ cextfextr − cintf intr = 0 (3.134b)

By repeating the procedure previously shown, one can easily obtain the following coefficients:

a =− µint|sin(α)| (3.135a)

b =− µint|sin(α)|νw −
(
µint − µext cos(βext)

)
cext · f̂extr |sin(α)| (3.135b)
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3.5. Bending Problem

Sliding Condition 5 (S.C.5)

This sliding condition is here presented for the first time within this context, to the author’s
knowledge. This slip condition arises from the direct consequence of the real sliding process
of wires. In fact, it is reasonable that slips of layer i slightly modifies the relative motion
with respect to layer i− 1. Thus, the corresponding friction force direction is also slightly
modified.
S.C.5 is based on the S.C.3. However, an angle of inclination βinti = αi + αi−1 is present on
the internal tangential contact force.
On the external tangential contact force, it acts and an angle βexti = αi + αi+1.
The forces acting on an infinitesimal wire segment are shown in Figure 3.57.
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Figure 3.59. Equilibrium of an infinitesimal wire segment, S.C.5.

In this case the equilibrium equations, both along radial and tangential directions, read:

∂Fw1
∂S

− cextfextt cos(βext)− cintf intt cos(βint) = 0 (3.136a)

Fw1(S, t)κ+ cextfextr − cintf intr = 0 (3.136b)

By repeating the procedure previously shown, one can easily obtain the following coefficients:

a =− µint|sin(α)| cos(βint) (3.137a)

b = + a νw −
(
µint cos(βint) + µext cos(βext)

)
cext · f̂extr |sin(α)| (3.137b)
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Sliding Condition 6 (S.C.6)

This sliding condition is here presented for the first time within this context, to the author’s
knowledge, and is the counterpart of S.C.5, already discussed.
S.C.6 is based on the S.C.4. However, the angle of inclination βinti = αi+αi−1 is also present
on the internal contact force.
On the external tangential contact force, it acts and an angle βexti = αi + αi+1.
This condition can be regarded to as the most physically-sound sliding process, because when
the wire is sliding, both internal and external tangential forces follow the relative motion of
the material points in contact.
Additionally, the external tangential contact force points towards the sliding direction.
The forces acting on an infinitesimal wire segment are shown in Figure 3.60.
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Figure 3.60. Equilibrium of an infinitesimal wire segment, S.C.6.

In this case, the equilibrium equations, both along radial and tangential directions, read:

∂Fw1
∂S

+ cextfextt cos(βext)− cintf intt cos(βint) = 0 (3.138a)

Fw1(S, t)κ+ cextfextr − cintf intr = 0 (3.138b)

By repeating the procedure previously shown, one can easily obtain the following coefficients:

a =− µint|sin(α)| cos(βint) (3.139a)

b = + a νw −
(
µint cos(βint)− µext cos(βext)

)
cext · f̂extr |sin(α)| (3.139b)
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Comments

It is worth noting that all the different sliding conditions that were presented, can be applied
to different radial contact pressure models, namely P.M. A, B and C.
As a general comment, if the difference between the segment dS of the wire and the length
of the infinitesimal segments of the contact helices is neglected (i.e. the Radial Pressure
Model B is used), different results in terms of admissible wire axial force domain are found.
These can be obtained by exploiting the same results obtained with the Radial Pressure
Model A, but neglecting the correction coefficients expressed by Equations 3.70, that is
imposing them to a unitary value:

cint =1 (3.140a)
cext =1 (3.140b)

So that the coefficients a and b for each case can be derived in a straightforward way.
By adopting the proposed formulation, one should provide the non dimensional radial contact
force per unit of length (i.e. the radial contact force per unit of length normalized by the
strand axial force and multiplied by the radius of curvature of the wire).
In the case of Radial Contact Pressure Model C one gets:

f̂extr
∼=

m∑
l=j+1

νw,l
ρw,l κw,l

(3.141)

Foti and Martinelli (2016a) have shown that the particular solution of the differential
equations 3.114 and 3.115, in the case of the radial contact pressure model C with the Sliding
Condition S.C.1, has the following expression:

C̄p = −
(
νw + 2ρw

m∑
l=j+1

νw,l
ρw,l

)
(3.142)

This can be easily verified by adopting the expression of a and b coefficients previously found
(Eq. 3.128a and 3.128b), by inserting the expression of f̂extr according to the Radial Pressure
Model C, that is reported in Eq. 3.141.
Table 3.11 shows the values of the constant particular solution C̄p computed in both ways,
according to the P.M. C and S.C. 1, for an ACSR 48/7 Bersfort conductor.

Table 3.11. Results of C̄p for the ACSR 48/7 Bersfort conductor.

Constant Particular Solution C̄p Layer 1 Layer 2 Layer 3 Layer 4

Foti and Martinelli 2016a, Eq. 3.142 -0.2229 -0.0690 -0.0529 -0.0166
Coefficients a and b, Eq. 3.126 -0.2229 -0.0690 -0.0529 -0.0166
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Generalization

As it is clear from the structure of the equations presented in the previous paragraphs (Eqts.
3.128, 3.130, 3.133, 3.135, 3.137 and 3.139), the expressions of the coefficients a and b may be
generalized. In fact, Sliding Conditions 1, 2, 3 and 4 clearly affect just the external friction
coefficient. On the other hand, Sliding Conditions 5 and 6 are affecting both the internal
and the external friction coefficients.
The generalized form of a and b coefficients can be formulated according to the following
equations:

a =− µint|sin(α)|ξint (3.143a)

b =− µint|sin(α)|ξintνw −
(
µintξint + µextξext

)
cext · f̂extr |sin(α)| (3.143b)

where ξext and ξint are two coefficients whose values depend upon the specific sliding condition.
It is clear that the determination of the coefficients a and b is based on the equilibrium
equation in the tangential direction. So it is possible to make reference to the generalization
of such equation, by adopting the same coefficients ξext and ξint previously introduced.
One has:

∂Fw1
∂S

− ξext cextfextt − ξint cintf intt = 0 (3.144)

The values of ξext and ξint for different sliding conditions are conveniently collected in Table
3.12.

Table 3.12. Expressions of ξext and ξint for different Sliding Conditions.

Sliding Condition ξext ξint

S.C.1 +1 +1
S.C.2 −1 +1
S.C.3 + cos(βext) +1
S.C.4 − cos(βext) +1
S.C.5 + cos(βext) + cos(βint)
S.C.6 − cos(βext) + cos(βint)

It is worth noticing that a big advantage of this formulation is that can be applied to
whatever sliding condition one would like to enforce.
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3.5.4 Moment – Curvature Law

In this section, an analytical formulation of the moment-curvature (M − χ) relationship is
presented. One can write such law in the form:

M(χ) = EIminχ+Madd(χ) (3.145)

where:

• the linear term EIminχ can be regarded as the theoretical response of the strand under
the full-slip assumption (perfectly lubricated internal contact surfaces);

• the term Madd(χ) is non-linear and non-holonomic and accounts for the additional
contribution to the bending moment of the strand coming from the axial force of each
wire.

Figure 3.61 shows the typical moment-curvature diagram for a generic conductor subject to
monotonic loading.
As it can be seen, the first loading branch is characterized by the initial stiffness EImax ,
corresponding to the full-stick state. The tangent stiffness, then, gradually decreases as a
consequence of the evolution of the interwire sliding phenomena. It is assumed that ±χmax
is sufficiently large to achieve the limit value EImin , which can be attained only if all wires
of the cross section are in the slipping state.
Then, to quantitatively characterize the shape of the first loading branch, the parameters χ0

and M0 are introduced as shown in Figure 3.61. They define the coordinates of the yielding
point of an “ideal” bi-linear elastic-plastic moment-curvature relation.
If a cyclic curvature is applied, then a typical hysteresis loop is obtained in the plane M −χ.
The ratio between the maximum moment reached and the associated curvature χmax is used
to define the secant stiffness of the cycle: EIsec. In order to compare different hysteresis
loops, the area enclosed within a full loop is denoted as Acycle. This is a very important
physical parameter, related to the energy dissipated in bending per unit of length during
vibrations of the cable.

Figure 3.61. Cross-sectional bending response for a generic conductor, in case of monotonic loading.
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Chapter 3. Modeling of the strand cross-sectional response

The energy dissipated per unit of length of a stranded cable subject to cyclic bending can be
calculated as the area Eds of the hysteresis loop enclosed by the moment-curvature diagram,
in the plane (M, χ), according to the following equation:

Eds =

∮
M(χ)dχ = EImax,ef χ

2
0

∮
M(χ)dχ (3.146)

Foti and Martinelli (2016b, 2018a, 2018b) have proposed an unified moment-curvature
diagram for ACSR conductors in the non-dimensional plane M − χ, with:

M =
M

M0
χ =

χ

χ0
(3.147)

The non-dimensional dissipated energy per unit of length ωds (see Equation 3.148) turns out
to be practically independent of the internal geometry, for common ACSR conductors, and
can be computed as:

ωds =

∮
M(χ)dχ̄ =

χ2
max

2
(3.148)

with:
χmax =

χmax
χ0

(3.149)

According to the theoretical developments presented by Foti and Martinelli (2018a, 2018b),
the "first yielding" curvature χ0 can be conveniently computed with the following equation:

χ0 = c0 µ η (3.150)

where µ is the friction coefficient between the wires of the stranded cable, η is the ratio
between the tensile force in the cable and its Rated Tensile Strength (RTS) and c0 is a
construction parameter depending only on the internal geometry of the strand, that generally
ranges between 0.050-0.450 m−1. A specific Section (3.6) is dedicated to the computation of
the model coefficient c0 for different conductor cross-sections and different assumption on
both the radial pressure models and the sliding conditions.
Equation 3.148 turns out to be valid to model dissipation in the large curvature regime, since
it is related to the activation of gross-sliding mechanism at the interwire contact interfaces.
Conversely, where dissipation is mainly due to micro-slip phenomena, i.e. in the small
curvature regime, it can be shown (Foti and Martinelli, 2018b) that the non-dimensional
dissipated power can be computed according to equation 3.151.

ωds =

∮
M(χ)dχ =

χ3
max

2
(3.151)

In the enhanced unified model proposed by (Foti and Martinelli, 2018b), the transition
between the micro-slip and the gross-sliding dissipation mechanisms, has been postulated
to take place for χmax = χ0, i.e. when χmax = 1. This means that once the "first yielding"
curvature is reached, the interwire sliding phenomenon is activated.
Summarizing, the non-dimensional dissipated energy per unit length is postulated to be
defined for any conductor as follows:

ωds(χmax) =

{
ωmsds = 1

2 χ
3
max ∀χmax ≤ 1

ωgsds = 1
2 χ

2
max ∀χmax > 1

(3.152)

More specific considerations about the dissipation mechanisms of overhead electrical line
conductors will be addressed in Chapter 4.
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3.6 Computation of the model coefficient c0

In this section, the procedures developed for the computation of the model coefficient c0 are
assessed. In particular, the user-coded programs in Matlab environment are presented with
reference to the main steps. It is worth noticing that the two implemented procedures are
equivalent in terms of final results.
As already mentioned in subsection 3.5.4, the geometric coefficient c0 permits to fully
describe the bi-linear approximated form of the moment-curvature relationship for each
conductor cross-section. This is a great advantage because a full range of c0 coefficients can
be determined by exploiting different combinations between radial pressure transmission
models and stick-slip mechanical models. This will be useful also for the assessment of the
self-damping properties of each conductor cross-sections.

3.6.1 Numerical Evaluation

A user-coded Matlab program has been implemented, as a part of this research work, in
order to numerically evaluate the coefficient c0. The program is articulated as follows.
First of all, a variable section is decleared for each conductor cross-sections, which has a
number of rows equal to the number of layers of wires of the conductor and 7 columns. These
contain, for each layer: the number of wires (nw), the wire diameter (d), the preferred pitch
with sign (Pp), the Young Modulus (E), the Poisson coefficient (ν), the friction coefficient
(µ) and the initial swept angle (θ0). The solution procedure is articulated as follows:

1. some preliminary geometrical calculation are performed, by the user-coded function
prel_calc: [core, layer, NL] = prel_calc(section);

2. the linear stiffness coefficients are computed thorough the user-coded function lin_stiff
[stiffness] = lin_stiff(core, layer, NL);

3. a for cycle over different level of tension on the conductor is performed, i.e.
∀η ∈ [0.1, 0.6], with η = T/RTS (loading ratio parameter).

4. the linear axial-torsional problem is solved for each value of η, through the user-coded
function axial_problem, the solution is stored in the data structure axtor_solution:
[axtor_solution] = axial_problem(options, input_data);

5. the nonlinear bending problem is solved for each value of η, through the user-coded func-
tion bending_problem, the solution is stored in the data structure bending_solution:
[bending_solution] = bending_problem(NL, layer, stiffness, axtor_solution
, options, core);

From the solution of the direct monotonic bending test, one can then obtain the values of
the maximum bending moment Mmax and the maximum curvature χmax.
Let us make reference to Figure 3.61.
By expressing the difference between maximum and minimum values of the bending stiffness
as:

∆EI = EImax − EImin (3.153)

one can obtain the "first-yielding" curvature χ0 in the following way:

χ0 =
Mmax − EImin χmax

∆EI
=
Madd
max + EIminχmax − EIminχmax

∆EI
=
Madd
max

∆EI
(3.154)
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So that the moment associated to χ0 will be computed as:

M0 = EImax χ0 (3.155)

At this stage, the coefficient c0 can be derived from the linear interpolation of the relation
χ0 − η, with fixed-end condition, so that:

χ0 = z0 + z1 · η (3.156)

with:
z0 ∼= 0 (3.157)

Comparing Equations 3.150 and 3.156 one obtains:

c0 =
z1
µ

(3.158)

For convenience, µ = 0.3 was used (that is supposed to describe the condition of a new
conductor).
It is worth underlining that the friction coefficient only slightly affects the values of c0
depending on the assumed sliding condition and radial pressures model.

The user-coded program for the numerical evaluation of c0 allows to select different options:

• switch between direct and inverse bending problems;

• switch between time history and single step time grid;

• switch between closed-form expressions and solution of the axial-torsional problem for
the computation of the non-dimensional partition coefficient of axial force in each wire;

• switch between fixed ends and free ends, only for the case in which the axial force in
the wire is computed according to closed-form expressions. In fact, when the solution
of the axial-torsional problem is used, the real boundary conditions are enforced (e.g.
a rotational spring);

• switch between different radial contact pressure models, namely the Radial Pressure
Models A, B and C;

• switch between different sliding conditions, namely the Sliding Conditions
1, 2, 3 ,4, 5 and 6;

Such code was extensively used for the computations of c0 parameters which will be reported
and discussed in the next section.

102



3.6. Computation of the model coefficient c0

3.6.2 Closed-Form Solution

The coefficient c0 can also be obtained through a closed form solution. Another user-coded
Matlab program is adopted for such computations. Both the case with conductor fixed-end
and the one with free-end case are considered.
The important difference with respect to the numerical solution is that in this case, the
additional bending moment due to the nonlinear axial force contribution is computed in a
closed form. In fact, according to what was discussed in Section 3.5 one has:

Madd
s (x1, t) =

m∑
j=0

[
cos(αj)Rj

nj∑
i=1

sin(θi)F
NL
w,i (x1, t)

]
(3.159)

and its non-dimensional counterpart can be computed by substituting FNLw,i (x1, t) with the
respective value of the non-dimensional limit function (see Eq. 3.122) and dividing by the
conductor diameter. The non-dimensional additional bending moment due to the nonlinear
axial force contribution is then given by:

Madd,ND
s (x1, t) =

m∑
j=0

[
cos(αj)Rj

nj∑
i=1

sin(θi)N
lim(θ)

]
· 1

D
(3.160)

The additional bending momentMadd is then computed as follows, for the sake of convenience:

Madd = Madd,ND
s η RTS D (3.161)

Then the first-yielding curvature χ0 can be finally computed as:

χ0 =
Madd

EImax − EImin
=
Madd

∆EI
(3.162)

At this stage, the coefficient c0 can be derived from the linear interpolation of the relation
χ0 − η. Equations 3.156, 3.157 and 3.158 apply.
The difference between the free-ends or fixed-ends boundary conditions is limited to the
different admissible domain of the wire axial force. The latter is influenced by the coefficients
a and b that specialize for the two different cases:

1. fixed ends, where the non-dimensional radial contact forces per unit of length are
computed by using the partition coefficients expressed into Eq. 3.83, here recalled for
the sake of clarity:

νfixw,l =
cos2(αl)EAwl∑nw

k=1EAwk · cos3(αk)
(3.163)

2. free ends, where the non-dimensional radial contact forces per unit of length are
computed by using the partition coefficients expressed by the following equation:

νfreew,l =

[
cos2(αl)− CAT sin(αl) cos(αl)

]
EAwl∑nw

k=1EAwk · cos3(αk)
(3.164)

The user-coded program for the closed-form solution of c0 allows to select different options:

• switch between different radial contact pressure models, namely the Radial Pressure
Models A, B and C;

• switch between different sliding conditions, namely the Sliding Conditions
1, 2, 3, 4, 5 and 6;
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3.6.3 Preliminary analysis for ACSR conductors

In this Section, some preliminary analysis regarding the dependence of some mechanical
parameters on the strand diameter are performed.
The following mechanical properties (Young’s modulus and Poisson’s ratio) for steel and
aluminium wires have been adopted for all the analysis:

Est = 200GPa νst = 0.3

Eal = 69GPa νal = 0.3

The geometric characteristics of ACSR conductors are collected in Appendix A for convenience.
Let us now define the parameter γ as the square root of the ratio between the minimum and
maximum bending stiffness of the cable, or equivalently, parameter γ2 as:

γ2 =
EImin
EImax

· 100 (%) (3.165)

Let us also recall the definition of the proportionality coefficient k of the empirical self-
damping power law (Eq. 2.17), typical of each conductor, here reported for the sake of
convenience:

k =
D√

m ·RTS
where D is the conductor diameter expressed in mm, RTS is the Rated Tensile Strength,
expressed in kN and m is the mass per unit of length of the cable, expressed in kg/m. This
unities of measure lead the proportionality coefficient k to be dimensional.
Table 3.13 collects such parameters for each type of ACSR conductor treated in this work.

Table 3.13. Geometric and mechanical characteristics of commercial ACSR conductors.

Code Word Stranding D (mm) RTS (kN) m (kg/m) γ2 (%) k

Sparrow 6/1 8.01 12.4 0.136 16.01 6.168
Pigeon 6/1 12.75 29.6 0.344 16.01 3.996
Penguin 6/1 14.31 37.3 0.434 16.01 3.557

Partridge 26/7 16.28 50.0 0.546 2.89 3.116
Hawk 26/7 21.80 86.1 0.977 2.89 2.377
Drake 26/7 28.11 138 1.626 2.89 1.877

Carillon 48/7 30.48 136 1.745 1.62 1.979
Gatineau 48/7 33.00 155 2.042 1.62 1.852
Bersfort 48/7 35.58 180 2.375 1.62 1.720

Duck 54/7 24.21 101 1.160 1.58 2.237
Crow 54/7 26.28 117 1.371 1.58 2.075
Curlew 54/7 31.59 163 1.980 1.58 1.758

Falcon 72/7 37.69 172 2.501 1.11 1.817
Nelson I 72/7 40.61 200 2.902 1.11 1.687
Nelson II 72/7 43.20 226 3.277 1.11 1.587

As it can be clearly assessed:

• γ2 parameter is constant for conductors having the same stranding, i.e. it does not
depend upon the different mechanical and/or geometrical characteristics of different
conductors belonging to the same stranding class (Figure 3.62);

• the proportionality coefficient k decreases as the diameter of the conductor increases,
within the different stranding classes (Figure 3.63).
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Figure 3.62. Plot of the non-dimensional parameter γ2 versus conductor diameter D.
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Figure 3.63. Plot of the proportionality coefficient k versus conductor diameter D.

In the following Figures, the plots ofM0−η and χ0−η relationships are reported for some
of the ACSR conductors listed in Table A.1, with η ∈ [0, 1/2], for the sake of completeness
and to exemplify the procedures explained Subsections 3.6.1 and 3.6.2.
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Figure 3.64. Penguin conductor: plots of the relationships M0 − η and χ0 − η, P.M.C and S.C.1.

0 0.1 0.2 0.3 0.4 0.5
0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

10-5

Figure 3.65. Hawk conductor: plots of the relationships M0 − η and χ0 − η, P.M.C and S.C.1.
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Figure 3.66. Drake conductor: plots of the relationships M0 − η and χ0 − η, P.M.C and S.C.1.
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Figure 3.67. Bersfort conductor: plots of the relationships M0 − η and χ0 − η, P.M.C and S.C.1.
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Figure 3.68. Curlew conductor: plots of the relationships M0 − η and χ0 − η, P.M.C and S.C.1.
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Figure 3.69. Nelson I conductor: plots of the relationships M0 − η and χ0 − η, P.M.C and S.C.1.
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3.7 Construction parameter c0: Results

In this section, the values of the construction parameter c0 obtained for the different radial
pressure models and sliding conditions are reported and discussed.
Such values of c0 have been obtained by applying the numerical procedure implemented in a
user-coded Matlab program, which have been addressed in Subsection 3.6.1.
The mechanical and geometrical properties of the considered sample of 15 ACSR conductors
are listed in Appendix A, whereas their cross-sections schemes are conveniently reported in
Appendix B.
In particular, a total of 18 combinations of c0 values for each conductor cross-sections are
possible, coming from the product of total number of sliding conditions implemented and
the total number of radial pressures models considered, i.e. 6× 3 = 18.
In order to allow for an easier assessment of the various results, the full tables are collected
in Appendix F.
In this section, some considerations are done and the more relevant results are reported.
First of all, after the considerations made in Subsection 3.4.2, it is possible to observe that
the Radial Pressure Model B is slightly different from the Radial Pressure Model A, just
because it neglects the correction coefficients cint and cext. So in this section, only the P.M
A and C will be considered, for the sake of simplicity, being the most different ones.
For what concerns the sliding conditions, it is possible to recognize a very little difference
between sliding condition 1 and 3 and between sliding condition 2 and 4 (being radial
pressures model fixed). For this reason, only sliding conditions 5 and 6 will be reported here
and will be compared with the reference situation given by sliding conditions 1 and 2.
In fact, as a general comment, the angles βext and βint considered in Sliding Conditions
3-4-5-6 are small, so that their cosine won’t be far from 1, leading to a slight difference in
term of results with respect to the reference situations in which tangential contact forces are
horizontal (S.C.1 and S.C.2).
See subsection 3.5.3 for further details about the various slip conditions and their closed-form
expressions for the characterization of the differential equation describing the wire axial force
admissible domain.
At the and, a total of 8 combinations are here considered, i.e. 4 S.C.s × 2 P.M.s = 8.
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3.7.1 ACSR 6/1 Conductors

The values of c0 coefficient for 3 ACSR 6/1 are reported in Table 3.14, 3.15 and 3.16.

Table 3.14. ACSR 6/1 Sparrow: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.267 0.267
S.C. 2 0.267 0.267
S.C. 5 0.263 0.267
S.C. 6 0.263 0.267

Table 3.15. ACSR 6/1 Pigeon: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.158 0.158
S.C. 2 0.158 0.158
S.C. 5 0.156 0.158
S.C. 6 0.156 0.158

Table 3.16. ACSR 6/1 Penguin: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.141 0.141
S.C. 2 0.141 0.141
S.C. 5 0.139 0.141
S.C. 6 0.139 0.141

As it can be clearly assessed, for S.C.1 and S.C.2 there is no difference in the prediction
of c0 by applying the Radial Pressure Models (as well as for S.C.3 and S.C.4). The difference
arises in the case of Sliding Conditions 5 and 6, where the angle βint on the internal side of
the conductor slightly influences the result of c0.
This was of course expected, since the Radial Pressures Model has no influence at all on
single-layer conductors. The difference in the results between the P.M.A and P.M.C (for
fixed S.C.s 5 or 6) is only due to the coefficient cext.
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3.7.2 ACSR Multilayer Conductors

As in can be assess from Tabl. 3.17 to Tab. 3.28, the situation drastically changes in the
case of multilayer conductors.
Different values of construction parameter c0 are attained for the different cases.
It is interesting to notice that the value of c0 for Slip Condition 2 is not influenced by the
Radial Pressures Model. This is a direct consequence of the fact that, in all the analysis
performed, the internal friction coefficient coincides with the external one, i.e: µint = µext.
This leads the second term into Eq. 3.143b to vanish, so that the dependence upon the
non-dimensional radial contact forces per unit of length f̂extr is lost.
This is a general comment that is valid also for all the other conductors, with different
stranding, provided that the external friction coefficient is equal to the internal one.
Another general comment is about the obtainment of the maximum and minimum values of
the construction parameter c0. In particular, the maximum value is attained for the case of
P.M.A, with S.C.1, while the minimum for the case of P.M.A, with S.C.6.

Table 3.17. ACSR 26/7 Partridge: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.404 0.300
S.C. 2 0.177 0.177
S.C. 5 0.400 0.300
S.C. 6 0.173 0.177

Table 3.18. ACSR 26/7 Hawk: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.290 0.215
S.C.2 0.127 0.127
S.C. 5 0.287 0.215
S.C. 6 0.124 0.127

Table 3.19. ACSR 26/7 Drake: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.217 0.161
S.C. 2 0.095 0.095
S.C. 5 0.214 0.161
S.C. 6 0.093 0.095
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Table 3.20. ACSR 48/7 Bersfort: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.190 0.139
S.C. 2 0.069 0.069
S.C. 5 0.189 0.139
S.C. 6 0.068 0.069

Table 3.21. ACSR 48/7 Carillon: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.228 0.167
S.C. 2 0.083 0.083
S.C. 5 0.227 0.167
S.C. 6 0.081 0.083

Table 3.22. ACSR 48/8 Gatineau: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.205 0.150
S.C. 2 0.074 0.074
S.C. 5 0.204 0.150
S.C. 6 0.073 0.074

Table 3.23. ACSR 54/7 Duck: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.412 0.295
S.C. 2 0.138 0.138
S.C. 5 0.409 0.295
S.C. 6 0.135 0.138

Table 3.24. ACSR 54/7 Crow: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.373 0.267
S.C. 2 0.125 0.125
S.C. 5 0.370 0.267
S.C. 6 0.122 0.125

Table 3.25. ACSR 54/7 Curlew: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.248 0.178
S.C. 2 0.084 0.084
S.C. 5 0.246 0.178
S.C. 6 0.083 0.084
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Table 3.26. ACSR 72/7 Falcon: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.261 0.184
S.C. 2 0.075 0.075
S.C. 5 0.259 0.184
S.C. 6 0.073 0.075

Table 3.27. ACSR 72/7 Nelson I: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.243 0.171
S.C. 2 0.070 0.070
S.C. 5 0.241 0.171
S.C. 6 0.068 0.070

Table 3.28. ACSR 72/7 Nelson II: coefficient c0 (1/m).

P.M. A P.M. C

S.C. 1 0.228 0.161
S.C. 2 0.066 0.066
S.C. 5 0.226 0.161
S.C. 6 0.064 0.066

It is now convenient to plot the construction parameters c0 against the conductor
diameters D, subdivided by stranding. Since four slip conditions were reported in the
previous tables, then four graphs (one for each imposed sliding condition) are realized
(Figures 3.70, 3.71, 3.72 and 3.73). In this way, it is possible to appreciate both the trend of
c0 versus D for different stranding classes and the difference in terms of results caused by
the Radial Contact Pressures Models A and C.
Moreover, other four graphs are realized for the case of multilayer conductors, in which the
Radial Contact Pressures Model is fixed, and the difference in the results of c0 within the
various sliding conditions can be appreciated (Figures 3.74, 3.75, 3.76 and 3.77).
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Figure 3.70. Plot of construction parameters c0 vs strand diameters D for Slip Condition 1.
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Figure 3.71. Plot of construction parameters c0 vs strand diameters D for Slip Condition 2.
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Figure 3.72. Plot of construction parameters c0 vs strand diameters D for Slip Condition 5.
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Figure 3.73. Plot of construction parameters c0 vs strand diameters D for Slip Condition 6.
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Figure 3.74. Plot of construction parameters c0 vs strand diameters D for Pressure Model A. ACSR
26/7 and ACSR 48/7 conductors.
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Figure 3.75. Plot of construction parameters c0 vs strand diameters D for Pressure Model C. ACSR
26/7 and ACSR 48/7 conductors.
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Figure 3.76. Plot of construction parameters c0 vs strand diameters D for Pressure Model A. ACSR
54/7 and ACSR 72/7 conductors.
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Figure 3.77. Plot of construction parameters c0 vs strand diameters D for Pressure Model C. ACSR
54/7 and ACSR 72/7 conductors.
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Conclusions

From the previous graphs, some interesting conclusion can be drawn:

1. In general terms, the construction parameter c0 decreases as the conductor diameter
D increases, within the same stranding class;

2. Radial Pressures Models A and C do not affect results of c0 for 6/1 conductors both
for Slip conditions 1 and 2, while for Slip Conditions 5 and 6 they have a very little
influence;

3. Results of c0 obtained with Slip Conditions 2 are not influenced by the Radial Pressures
Transmission Models, because in general, for a generic layer of wires j, it holds:
µintj = µextj and the dependence upon f̂extr is lost, as already recalled;

4. Radial Pressure Models A and C slightly affect results of c0 for all the different stranding
classes, in the case of Slip Condition 6 (Fig. 3.73);

5. The biggest differences in the results of c0 (by changing the Radial Pressures Model)
are obtained for Slip Conditions 1 and 5: here the Radial Pressures Models play a big
role, and in general, a vertical translation of the curves for different stranding classes
is observed, passing from P.M.C to P.M.A. (Fig.s 3.70 and 3.72);

6. The maximum values of the construction parameter c0 are attained by applying the
Radial Pressures Model A and enforcing Slip Condition 1, within the same conductor
cross-section;

7. The minimum values of the construction parameter c0 are attained by applying the
Radial Pressures Model A and enforcing Slip Condition 6, within the same conductor
cross-section;

8. The "median" values of the construction parameter c0 are attained by applying the
Radial Pressures Model C and enforcing Slip Condition 1, within the same conductor
cross-section;

9. By fixing one radial pressure model (either P.M.A or P.M.C.), the difference of results
of c0 obtained with S.C.1 and S.C.5 is negligible (Fig.s 3.74-3.77);

10. By fixing one radial pressure model (either P.M.A or P.M.C.), the difference of results
of c0 obtained with S.C.2 and S.C.6 is negligible (Fig.s 3.74-3.77).

11. At the end, what plays a big role in the variation of c0 due to the sliding conditions, is
the direction of tangential forces, because angles βext and βint are obviously small, so
that their effect is limited.

12. As a final conclusion of this part of the work, the linear interpolations of the construction
parameter c0 as a function of the strand diameter D are provided for different stranding
classes and for the most three significant combinations of Radial Pressure Models and
Sliding Conditions (namely, the one declared at points 6, 7 and 8 of this list). See the
next paragraph for the obtainment of the linear regression coefficients.
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Linear Interpolation

In this paragraph, the linear interpolation of the construction parameter c0 as a function of
the strand diameter D is performed.
The regression coefficients of the linear fitting will be useful for the application of theoretical
self-damping models for ACSR conductors (see Chapter 4).
The case of single-layer conductors is distinguished from the case of multi-layer conductors.
This is an obvious consequence of the results obtained in this section, being the construction
parameter c0 of 6/1 conductors slightly affected by the sliding conditions 5 and 6 only (see
Subsection 3.7.1).
Figure 3.78 shows the linear interpolation of the construction parameter for the case of
ACSR 6/1 conductors, P.M.s A or C and S.C.s 1 or 6.
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Figure 3.78. Linear interpolation of c0 vs D for single-layer conductors.

The interpolating line has the following equation:

c0 = 0.4273− 0.0205D (3.166)

Figures 3.79, 3.80 and 3.81 show the plots of c0 as a function of the strand diameters D and
its linear interpolation for the case of multi-layer conductors, distinguishing on the basis of
the stranding classes. Tables 3.31, 3.30 and 3.29 collects the equations of the linear fitting
for the various stranding classes. Three situations are considered:

• Plot of the minimum values of c0, attained for the combination of Radial Pressures
Model A and Sliding Condition 6 (see Fig. 3.79 and Tab. 3.29).

• Plot of the median values of c0, attained for the combination of Radial Pressures Model
C and Sliding Condition 1 (see Fig. 3.80 and Tab. 3.30).

• Plot of the maximum values of c0, attained for the combination of Radial Pressures
Model A and Sliding Condition 1 (see Fig. 3.81 and Tab. 3.31).
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Figure 3.79. Linear interpolation of c0 vs D for Pressure Model A and S.C.6. Multi-layer conductors.
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Figure 3.80. Linear interpolation of c0 vs D for Pressure Model C and S.C.1. Multi-layer conductors.
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Figure 3.81. Linear interpolation of c0 vs D for Pressure Model A and S.C.1. Multi-layer conductors.

Table 3.29. Linear Interpolations of c0 vs D for different stranding in the case of P.M.A and S.C.6.

Stranding Linear Interpolation

ACSR 26/7 c0 = 0.2784 − 0.0067D
ACSR 48/7 c0 = 0.1577 − 0.0025D
ACSR 54/7 c0 = 0.3077 − 0.0071D
ACSR 72/7 c0 = 0.1345 − 0.0016D

All c0 = 0.2089 − 0.0038D

Table 3.30. Linear Interpolations of c0 vs D for different stranding in the case of P.M.C and S.C.1.

Stranding Linear Interpolation

ACSR 26/7 c0 = 0.4831 − 0.1170D
ACSR 48/7 c0 = 0.3324 − 0.0055D
ACSR 54/7 c0 = 0.6853 − 0.0160D
ACSR 72/7 c0 = 0.3413 − 0.0042D

All c0 = 0.3153 − 0.0044D

Table 3.31. Linear Interpolations of c0 vs D for different stranding in the case of P.M.A and S.C.1.

Stranding Linear Interpolation

ACSR 26/7 c0 = 0.6505 − 0.0157D
ACSR 48/7 c0 = 0.4525 − 0.0074D
ACSR 54/7 c0 = 0.9595 − 0.0225D
ACSR 72/7 c0 = 0.4867 − 0.0060D

All c0 = 0.4133 − 0.0054D
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3.8 Application: description of the strand static response

In this Section, the impact of the different values obtained for the coefficient c0 (see Section
3.7) is assessed with reference to a well-documented bending test (Baumann and Novak,
2017) performed on a short stretch of 2 m length of an ACSR Drake conductor.
The cable was first subjected to an horizontal force H = 0.2RTS and then loaded with a
transverse force F applied at midspan.
The force F was growing from zero up to the maximum value 0.05H.
Geometric and mechanical parameters (D,RTS,EImax, EImin,m) of the ACSR Drake are
reported in Appendix A, whereas its cross-section is depicted in Appendix B (see Fig. B.2c).
By assuming a unitary stiffness reduction parameter (i.e. β = 1), the ratio of the bending
stiffness results:

γ2 =
EImin
EImax,ef

=
EImin
βEImax

=
EImin
EImax

= 2.89% (3.167)

Furthermore, an interwire friction coefficient µ = 0.5 was selected, coherently with the
consideration reported in (3).
The scheme of the tested ACSR Drake conductor, as well as a photo of the test bench are
reported in Figures 3.82 and 3.83.
The aim of the simulations is to verify the sensitivity of the cable response to the parameter
c0, by means of a user-coded Matlab program which solves the boundary value problem
formulated in (Foti et al., 2021).
In particular, the cable response can be studied by solving the following non-linear second
order differential equation:

EImax,ef

[
γ2 + (1− γ2) exp

(
− |dθ/ds|

χ0

)]d2θ
ds2

= H sin(θ)− (V − ws) cos(θ) (3.168)

with the boundary conditions accounting for the symmetry of the problem:

θ(s = 0) = θ(s = l/2) = 0 (3.169)

where s is an arc-length coordinate running over the cable span, θ(s) is the inclination angle
of the cable centerline to the horizontal direction, and V is the vertical reaction arising at
the supports, which is calculated by considering simultaneously two loading conditions:

1. the suspended cable subject to a constant load per unit of length w = mg;

2. the suspended weightless (w = 0) cable subject to the concentrated force F applied at
midspan.

Then, the vertical reaction is simply:

V =
wl + F

2
(3.170)

It is worth noting that the dependence of the cable response to the parameter c0 is hidden
into the evaluation of the first-yielding curvature χ0:

χ0 = c0 µ η (3.171)

where η is the ratio between the axial force in the cable and its Rated Tensile Strength RTS:

η(s) =
N(s)

RTS
(3.172)
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Figure 3.82. Schematic of the test bench, from (Bauman and Novak, 2017).
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Figure 3.83. Photo of the test bench with the ACSR Drake conductor, from (Bauman and Novak,
2017).

It is also possible to rely on the non-dimensional formulation of the problem, that will
conveniently adopted for the following developments (see (29) for further details).
One can introduce the non-dimensional arc-length coordinate:

ξ = s/l, ξ ∈ [0, 1/2] (3.173)

leading to the obtainment of the following differential equation:

ε2
[
γ2 + (1− γ2) exp

(
− |Θ

′|
X0

)]
Θ′′ = sin(Θ)−

[
(ω + ψ)/2− ωξ

]
cos(Θ) (3.174)

where Θ = θ(s(ξ)) and:

ε2 = EImax,ef/(Hl
2), X0 = χ0 l, ω = wl/H, ψ = F/H (3.175)

The boundary conditions naturally translate to:

Θ(ξ = 0) = Θ(ξ = 1/2) = 0 (3.176)
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3.8.1 Cable Deflection

The following plot shows the prediction of the non-dimensional transverse displacement
v∗ = v(s(ξ))/l of the cable for different values of the construction parameter c0.
Such values have been computed and collected in Section 3.7 according to the numerical
procedure explained in Subsection 3.6.1.
The full range of values of c0 for the ACSR Drake conductor can be conveniently read in
Appendix F (see Tab. F.6).
Due to the symmetry of the cable, quantities are plotted for the non-dimensional abscissa
ξ ∈ [0, 1/2]. The two curves obtained from the application of the model by Foti et al. (2021)
under the simplifying assumption of linearly elasticity and constant bending stiffness equal
to EImin and EImax are also shown.
The experimental results and the results obtained with a Finite Element Model developed
with beam elements by Baumann and Novak are reported as well.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
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Figure 3.84. Plot of the non-dimensional transverse displacement v∗(ξ) over the interval ξ ∈ [0, 1/2]
for different values of construction parameter c0.
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Chapter 3. Modeling of the strand cross-sectional response

It can be observed that, as c0 decreases, the predicted non-dimensional deflection is increas-
ing. The FEM solution by Baumann and Novak is a little bit stiffer with respect to the
experimental results; this is consistent with the intrinsic nature of the solution procedure,
which lead to the converge of displacements from below.
On the other hand, the model proposed by Foti et al. in (29) leads to a slight overestima-
tion of v∗, which is on the safe side. However, the predicted non-dimensional deflection
with construction parameter c0 = 0.217 m−1 is giving very accurate results, especially for
ξ ∈ [1/4, 1/2].
In the first branch of the curves, for ξ < 0.25 the overestimation of the non-dimensional
deflection is bigger and the difference between different values of c0 is not so important. The
latter, is indeed important at the midspan of the cable.
It is worth noticing that the non-dimensional deflection predicted by the simplified model
with constant bending stiffness EI = EImax is dangerously underestimating the real response
of the cable. The relative difference of the non-dimensional deflections at midspan is about
32.3%. On the contrary, the non-dimensional deflection predicted by the simplified model
with constant bending stiffness EI = EImin is overestimating the real response of the cable
of about 13.5% (at midspan).
At the end, it is possible to say that, in the need of a precise ad reliable estimation of the cable
response under a generic loading condition, the correct choice of the construction parameter
c0 is indeed an important aspect, in order to retrieve a representative and appropriate
modeling of its real behavior.

3.8.2 Cable Bending Stiffness

Figure 3.85 shows the variation of the non-dimensional bending stiffness EI∗ = EI/(Hl2)
predicted by the model for different values of the construction parameter c0.
Such values were determined in Section 3.7 according to the numerical procedure explained
in Subsection 3.6.1.
The non-dimensional bending stiffness EI∗ is normalized by the parameter ε2. One has:

EI∗(ξ)

ε2
=
EI(ξ)

Hl2
· Hl2

EImax,ef
=

EI(ξ)

βEImax
=
EI(ξ)

EImax
(3.177)

Eq. 3.177 has the following meaning: once EI∗/ε2 reaches the unitary value, the maximum
bending stiffness is attained. Conversely, if the straight line representing γ2 is touched,
then the bending stiffness is at its minimum value. As it can be seen from Fig. 3.85, the
models with different values of construction parameters substantially differ in the interval
ξ ∈ [0.05, 0.20] and, symmetrically for ξ ∈ [0.3, 0.45].
The γ2 parameter is constant and equal to the ratio of the minimum bending stiffness EImin
and the maximum bending stiffness EImax, having considered a unitary stiffness reduction
coefficient β = 1.
For the sake of convenience, the curves obtained under the simplifying assumption of linearly
elasticity and constant bending stiffness equal to EImin and EImax are also shown in Fig.
3.85.
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Figure 3.85. Plot of the non-dimensional bending stiffness EI∗ over the interval ξ ∈ [0, 1/2] for
different values of construction parameter c0.

It is hence shown that parameter c0 plays a significant role in the bending stiffness
variation along the cable and can be used to predict such variation inside the boundary layers
in cables, i.e. zones where stress and strain fields are markedly different with respect to the
one predicted by the perfectly flexible structural models (that is the catenary solution).
In the context of comparing experimental results of an ACSR Drake conductor, it has been
shown that the maximum of the construction parameters c0 was the one better representing
the real response of the cable. As it is clear from Table F.6, this value was computed
according to Pressure Model A and considering equivalently Slip Condition 1 or 3. Such a
physical interpretation of the sliding mechanism might be due to the experimental set-up,
such as the support conditions and the cable span length.
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3.9 Conclusions

In this last Section, some interesting conclusions about the topics presented in this Chapter
are drawn.

• Radial Contact condition has been proven to be the most diffused condition in the
external layers of ACSR conductors;

• Radial Transmission Model A appears to be the most accurate among the three
considered in this work, since it takes into account the difference between dS and the
length of the infinitesimal segments of the contact helices, through the coefficients
cint and cext, especially for the predictions of internal radial contact forces per unit of
length acting on the inner layers of wires, as it has been shown through the comparison
with numerical (FEM) results;

• Radial Pressure Model C is strongly and systematically underestimating both internal
and external radial forces per unit of length, especially at inner layers of multilayer
conductors;

• The effects of different Sliding Conditions on the wires can be conveniently taken
into account throughout a and b coefficients, which uniquely identify the differential
equation in the non-linear component of the wire axial force FNLw1 ;

• A generalization is possible by considering two additional coefficients ξint and ξext that
account for the direction and inclination of the tangential forces of the infinitesimal
wire dS;

• Both the different radial transmission models and the various sliding conditions clearly
affect the computation of the parameter c0;

• The parameter c0 can be evaluated by means both of a numerical procedure and a
closed-from expression, involving the determination of the admissible wire axial force
domain. Both procedures give equivalent results;

• A range of values of c0 is provided for 15 conductors cross-sections, for the description
of their moment-curvature relationship as an equivalent ideal bi-linear law defined by
c0 itself;

• As a general result, c0 decreases as the diameter of the strand increases within the
same stranding class. Linear interpolations relationship have also been provided;

• The maximum of c0 is always attained for Radial Pressure Model A and Sliding
Condition 1, whereas the minimum is attained in the case of Sliding Condition 6, for
the same radial pressure transmission model;

• The first yielding curvature is affecting the static response of the strand, i.e. the
parameter c0 affects the prediction of the cable deflections and contributes to the
determination of the bending stiffness variation;

• Due to the description of the moment-curvature law, c0 will surely affect the dissipation
characteristics of stranded cables, and more particularly the Self-Damping properties
of ACSR conductors, as it will be assessed in Chapter 4.
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Chapter 4

Self-damping of Stranded Cables

In this chapter, the Self-Damping properties of stranded cables are investigated, with direct
applications to ACSR conductors.
In Section 4.1 the enhanced unified analytical model proposed by (Foti and Martinelli, 2018a,
2018b) for the theoretical predictions of the cable self-damping is presented.
Afterwords, a new parametric form for a convenient application of such model is proposed in
Subsection 4.1.1, according to the developments presented by (Foti et al., 2021).
Section 4.2 deals with the comparison between the experimental results obtained through
different testing campaigns ((EPRI, 2006), (Southwire, 1996), (Paradis, 2022)) and the
theoretical predictions of the self-damping obtained by direct application of the analytical
model.
The influence of the different values of the construction parameter c0 (which were obtained
in Section 3.7) on the theoretical predictions of the dissipation models is also investigated.
To this aim, different graphical representations are introduced, and both cartesian and
bi-logarithmic planes are used in order to facilitate the identification of possible transitions
between two dissipation mechanisms and also to assess the capability of the theoretical
models in the predictions of experimental results.
Finally, in Section 4.3, some interesting conclusions are drawn.
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4.1 The adopted enhanced unified analytical model

Foti and Martinelli (2018b) have proposed an analytical model for the self-damping of stranded
cables that accounts for both the gross-sliding and micro-slip dissipation mechanisms (see
Subsection 2.4.2).
Let us recall the moment-curvature law of stranded cables that was treated in Subsection 3.5.4
and in particular, let’s focus on Eq. 3.152, which expresses the non-dimensional dissipated
energy per unit of length in the cases of Gross-Sliding and Micro-Slip mechanisms.
Let us assume that the natural modes of the conductor can be described by means of the
sinusoidal function (according to the taut-string model):

y = A sin
(2πx

λ

)
(4.1)

By deriving the previous equation two times, one can easily obtain the modal curvatures as:

χmod = |d
2y

dx2
| = 4π2

λ2
A| sin

(2πx

λ

)
| (4.2)

The latter can be used to evaluate the position of the transition point x0, which corresponds
to the transition from the "low" curvature zone (where the dissipation is mainly due to the
Micro-Slip phenomenon), to the "high" curvature zone, i.e. χmax = χ0 (where the dissipation
is assumed to be mainly related to the Gross-Sliding of wires).
Due to the symmetries of the modal shape, point x0 will be located at λ/4 from a modal
shape node (see Foti and Martinelli 2018a, 2018b).
One has then:

0 ≤ x0
λ

=
1

2π
arcsin

( λ2 χ0

4π2A

)
≤ 1

4
(4.3)

By taking 4.3, it is possible to express the dissipated energy per unit of length as:

Ed =
M0 χ0

λ

∫ λ

0
ωds(x)dx =

4M0χ0

λ

(∫ x0

0
ωmsds (x)dx+

∫ λ
4

x0

ωgsds(x)dx
)

(4.4)

and the following results are obtained:

4M0χ0

λ

∫ x0

0
ωmsds (x)dx =

128π5m3RTS EImax,ef
c0 µ

G1

(x0
λ

) A3f7

T 4
(4.5)

4M0χ0

λ

∫ x0

0
ωgsds(x)dx = 4π3m2EImax,ef G2

(x0
λ

)A2f5

T 2
(4.6)

The dissipated power per unit of length Pd can then be expressed as the sum between the
two contributions, weighted through the functions G1 and G2, according to the following
equation:

Pd =
128π5m3RTS EImax,ef

c0 µ
G1

(x0
λ

) A3f7

T 4
+ 4π3m2EImax,ef G2

(x0
λ

)A2f5

T 2
(4.7)
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where:
G1

(x0
λ

)
=

1

3
− 3

8
cos
(

2π
x0
λ

)
+

1

24
cos
(

6π
x0
λ

)
(4.8)

G2

(x0
λ

)
= π − 4π

x0
λ

+ sin
(

4π
x0
λ

)
(4.9)

The two conceptual limit cases reported in table 4.1 can be obtained by imposing different
values of x0/λ. In case of no sliding, one has the condition x0/λ = 1/4, so that G1(1/4) = 1/3
and G2(1/4) = 0. The dissipated power per unit of length is entirely due the micro-slip
phenomenon:

Pd = Pmsd =
128π5m3RTS EImax,ef

3 c0 µ

A3f7

T 4
(4.10)

If the cable is completely in gross-sliding, one has the condition x0/λ = 0, so that G1(1/4) = 0
and G2(1/4) = π. The dissipated power per unit of length becomes:

Pd = P gsd = 4π4m2EImax,ef
A2f5

T 2
(4.11)
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Figure 4.1. Plot of the non-dimensional weight functions G1 and G2, according to the model proposed
by (Foti and Martinelli, 2018b).

Such analytical model can be cast in the form expressed by the empirical power law,
with different set of exponents and different proportionality coefficients. The latter are
conveniently collected in Table 4.1.
The formulation proposed by Foti and Martinelli (2018b) has the following advantages:

• it is derived from mechanical considerations;

• it is dimensionally homogeneous;

• it leads to a proportionality coefficient physically justified, for both the dissipation
mechanisms.
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Table 4.1. Exponents an proportionality coefficient of the empirical power law obtained through an
analytical formulation.

Reference l m n k Dissipation Mechanism

Foti and Martinelli 2018a 2 5 2 4π4m2EImax,ef Gross-Sliding (GS)
Foti and Martinelli 2018b 3 7 4 128π5m3RTS EImax,ef

3 c0 µ
Micro-Slip (MS)

4.1.1 Formulation of the analytical model in a new parametrisation

In this section, the analytical model proposed by (Foti and Martinelli, 2018a, 2018b) is
casted in a new form that accounts for a new convenient parametrisation, that allows for a
more effective comparison of the theoretical predictions with available experimental data of
the literature.
Let’s start again with the hypothesis previously introduced. Let us assume, according to the
taut-string model, that the natural vibration modes of the cable can be described by means
of sinusoidal functions.

x

y(x)

λ

A

Figure 4.2. Natural modes of the suspended cable. Definition of the modal amplitude A and of the
wavelength λ.

Defining with y = y(x, λ) the modal displacement of the cable centerline, one has:

y = A sin
(2πx

λ

)
(4.12)

where A is the single-peak antinode vibration amplitude, x is a spacial coordinate running
over the span of the cable (x ∈ [0, l]) and λ is the wavelength of the mode, defined as follows:

λ =
1

f

√
T

m
(4.13)

where f is the vibration frequency, T is the axial force in the cable and m is the mass per
unit length of the conductor.
By deriving with respect to the coordinate x one and two times, the modal rotations and
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curvatures can be respectively obtained, as shown in Equation 4.14 and 4.15.

ϕmod =
dy

dx
=

2π

λ
A cos

(2πx

λ

)
= Φ cos

(2πx

λ

)
(4.14)

χmod =
d2y

dx2
= −4π2

λ2
A sin

(2πx

λ

)
= −K sin

(2πx

λ

)
(4.15)

In the previous equations, the following parameters have been introduced:

Φ =
2πA

λ
K =

4π2A

λ2
(4.16)

Both of them have a clear physical meaning: Φ is the absolute value of the angle of rotation
of a node of the mode shape, and K is the maximum absolute value of the modal curvature.
The energy per unit of length dissipated through the Gross-Sliding or Micro-Slip dissipation
mechanisms (Egsds , E

ms
ds ) and its non-dimensional counterpart (ωgsds, ω

ms
ds ) can be computed

substituting χmax = |χmod| into Equations 3.146, 3.148, 3.151.
The dissipated power per unit of length can be obtained averaging over the wavelength λ
and multiplying by the vibration frequency f :

P gsd =
C

λ∗
·
∫ 1

0
ωgsds(ξ)dξ (4.17)

Pmsd =
C

λ∗
·
∫ 1

0
ωmsds (ξ)dξ (4.18)

where λ∗ is the non-dimensional wavelength and ξ is a non-dimensional abscissa.

ξ =
x

λ
λ∗ =

λ

2l
(4.19)

C is a coefficient having the same units of a power per unit of length, defined as:

C =
1

2
EImax,ef χ

2
0

√
T

ml2
(4.20)

The Non-dimensional power per unit of length dissipated through the Gross-Sliding and
Micro-Slip mechanisms can be computed with equation 4.21 and 4.22 respectively.

Πgs =
P gsd
C

=
1

λ∗
·
∫ 1

0
ωgsds(ξ)dξ (4.21)

Πms =
Pmsd

C
=

1

λ∗
·
∫ 1

0
ωmsds (ξ)dξ (4.22)

Solving the previous integrals, one gets:

Πgs =
J

4
· 1

(χ0l)2
(4.23)

Πms =
2π2

3
· J · Φ

λ∗
· 1

(χ0l)3
(4.24)
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where the parameter J is defined as follows:

J =
Φ2

(λ∗)3
(4.25)

and represents a sort of "mean curvature" of the conductor.
As already pointed out, this new parametrisation proposed in (Foti et al., 2021) allows for
a more effective comparison with available experimental data of the literature, and will be
largely adopted in Section 4.2.
In particular, transition between different dissipation mechanisms in the tests may be
graphically identified, as it will be later on assessed.
A preliminary theoretical prediction threshold between the different dissipation mechanisms
can be obtained by equating the maximum absolute value of the modal curvature K (Eq.
4.16) to the "first yielding" curvature χ0 (Eq 3.150).
One has:

K =
4π2A

λ2
= c0 µ η = χ0 (4.26)

so that:

Φ

λ∗
=

2πA

λ
· 2l

λ
=
Kl

π
=
c0 µ η l

π

The theoretical value of the threshold can be evaluated as follows:

Φ

λ∗
=
c0 µ η l

π
(4.27)
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4.2 Comparison between experimental and theoretical results

In this section, the available experimental results of the dissipated power for the commercial
ACSR conductors listed in Table A.2 are compared with the theoretical predictions of the
analytical model described in Subsection 4.1.1.
For the different ACSR conductors, the following procedure is adopted:

1. Plot of the experimental dissipated power per unit of length Pd versus the non-
dimensional antinode amplitude A/D;

2. Plot of the non-dimensional dissipated power (2χ0 l)
2Π vs. J parameter. The theoretical

predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping models for
different values of the construction parameter c0 (see also Section 3.7 and Appendix F)
are compared with the experimental data;

3. Plot of the non-dimensional dissipated power (2χ0 l)
2Π vs. Φ/λ∗. The theoretical

predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping models for
different values of the construction parameter c0 (see also Section 3.7 and Appendix F)
are compared with the experimental data. This graph will be useful for the evaluation
at point 5;

4. A linear interpolation of the experimental non-dimensional dissipated power vs J
parameter is performed: (2χ0 l)

2Π = p0+p1 J . The same interpolation is also performed
for the logarithm of the previous quantities: log

(
(2χ0 l)

2Π
)

= q0 + q1 log(J). The
linear regression coefficients p0, q0 and p1, q1 are then collected, as well as the coefficient
of determination R2;

5. Assessment of the experimental threshold value Φ/λ∗ related to a possible transition
from a region controlled by the Micro-Slip and the Gross-Sliding dissipation mechanism,
if it can be identified (see also subsection 4.1.1);

6. Comparison between the experimental and theoretical threshold values. The latter can
be computed by means of Equation 4.27;

7. Plot of the non-dimensional dissipated power predicted with the theoretical models for
different values of c0 (see also Section 3.7 and Appendix F) versus the experimental
non-dimensional dissipated power. That is, plot of both theoretical and experimental
results in the plane Πexp - Πth.
Such plane is conveniently introduced to assess the capability of the theoretical models
to predict the experimental results;

8. A linear interpolation of the non-dimensional dissipated power in the plane introduced
at point 7 is performed, i.e Πth = s0 + s1Πexp. The linear regression coefficients
s0 and s1 for each theoretical model are then collected, as well as the coefficient of
determination R2. The more s1 tends to 1 (i.e. the slope of the bisector), the more
the theoretical models are correctly predicting experimental results;

9. Plot of the moment-curvature diagram under cyclic loading conditions.

Useful information regarding the tested ACSR conductors considered in this work are reported
in Table 4.2.
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Table 4.2. Parameters of the tested ACSR conductors.

Code Word Condition β (−) µ (−) l (m) η (%) Subsec. Ref.

Bersfort New 0.5 0.3 63 15, 20, 25, 30 4.2.1 E
Bersfort New 0.5 0.3 450 15, 25, 35 4.2.2 P
Curlew New 0.5 0.3 92 22 4.2.3 E
Nelson I New 0.5 0.3 24 20 4.2.4 E
Hawk New Greased 0.5 0.15 28 10, 20, 30 4.2.5 E
Hawk Old Greased 0.5 0.45 28 10, 20, 30 4.2.6 E
Penguin New 0.5 0.3 36 16 4.2.7 E
Drake New, Initial State 0.5 0.3 33 15, 20, 25 4.2.8 S
Drake New, Final State 0.5 0.3 33 15, 20, 25 4.2.9 S
S: (Southwire, 1996), Laboratory Report
E: (EPRI, 2006), Appendix-A, "The Orange Book"
P: (Paradis, 2022), PhD Thesis

For the sake of clarity, an example of linear interpolation of the experimental results is
reported as follows.
In particular, a linear interpolation of the experimental data (2χ0 l)

2Π-J is performed, as
well as a linear interpolation of the quantities log((2χ0 l)

2Π)-log(J).
Both straight lines are reported in Figure 4.3 along with experimental results obtained
through the ISWR method by Paradis (2022).
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Figure 4.3. Example of linear interpolation of the experimental data in the plane (2χ0 l)
2Π-J .
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4.2.1 ACSR 48/7 Bersfort

In this subsection, the ACSR 48/7 Bersfort conductor is considered. Its mechanical and
geometrical properties are collected in Appendix A, whereas its cross-section is depicted in
Fig. B.3c (see Appendix B). The power per unit of length (Pd) dissipated during forced
vibration tests, performed at different values of frequency f and antinode vibration amplitude
A and for different values of the tension T , was measured through the Inverse Standing Wave
Ratio (ISWR) technique and corrected to subtract the aerodynamic damping.
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Figure 4.4. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data from
(EPRI, 2006), Appendix-A. Bersfort conductor.

Figure 4.5 and 4.6 show the non-dimensional dissipated power predictions with the theoretical
damping models for different values of the construction parameter c0 (see sections 3.6 and
3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and (2χ0 l)
2Π -

Φ/λ∗ planes.

135



Chapter 4. Self-damping of Stranded Cables

10-3 10-2 10-1 100

10-4

10-3

10-2

10-1

100

101

Figure 4.5. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Bersfort conductor.
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Figure 4.6. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Bersfort conductor.
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In this case, two different slopes of the predicted dissipated power values according to the
Gross-Sliding and Micro-Slip dissipation mechanisms theoretical models, can be observed.
According to Figure 4.5 and 4.6, it is possible to recognize that, for small values of J , the line
interpolating experimental data has a similar slope to the one predicted by the Micro-Slip
model. On the contrary, for large values of J (over the recognized experimental threshold), the
data are in closer agreement with the theoretical predictions of the Gross-Sliding dissipation
mechanism.
Table 4.3 collects the linear regression coefficients for the experimental data.

Table 4.3. ACSR Bersfort: Regression Coefficients of experimental data.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

-0.0083 0.9287 0.9903

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

-0.104 1.084 0.9912

From Fig. 4.6 an experimental threshold (Φ/λ∗)exp = 0.02 could be identified, as reported
in Tab. 4.4.

Table 4.4. ACSR Bersfort: Experimental Threshold.

Identifiable (Φ/λ∗)exp

Yes 0.02

The predictions of the theoretical thresholds are computed and reported in Table 4.5.

Table 4.5. ACSR Bersfort: Theoretical thresholds for different values of c0.

Theoretical Thresholds (Φ/λ∗)th

c0 (m−1) η = 0.15 η = 0.20 η = 0.25 η = 0.30

0.068 0.039 0.052 0.065 0.078
0.139 0.080 0.106 0.133 0.159
0.190 0.109 0.145 0.181 0.218

The closest prediction of the theoretical threshold is the one obtained for c0 = 0.068 m−1

and η = 0.15, corresponding to Φ/λ∗ = 0.039. As a matter of fact, by adopting different
sliding conditions, and having computed various construction parameters, the theoretical
predictions of such threshold values have improved with respect to the open research question
evidenced in (Foti et al, 2021).

Figure 4.7 shows the plot of Πth vs. Πexp. An enlargement of the previous plot is also
included in Fig. 4.8 for convenience.
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Figure 4.7. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Bersfort conductor.
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Figure 4.8. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Enlargement. Bersfort conduc-
tor.
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As it can be assess from the linear regression coefficients of the theoretical dissipated
power predictions (see Table 4.6), the Gross-Sliding dissipation model is the one which better
represent experimental results, because the slope of its linear interpolation is the closest to 1
(i.e. the slope of the bisector, that is the locus of the points which are in perfect agreement
with experimental results).
And among the different Gross-Sliding models, the one with c0 = 0.068 m−1 appears to be in
good agreement with the experimental results, as is can be graphically assessed in Fig. 4.7.

Table 4.6. ACSR Bersfort: Regression Coefficients of theoretical predictions.

Model c0 (m−1) s0 s1 R2

Gross-Sliding 0.068 0.033 1.059 0.994
Gross-Sliding 0.139 0.008 1.059 0.994
Gross-Sliding 0.190 0.004 1.059 0.994

Micro-Slip 0.068 -2.104 22.926 0.971
Micro-Slip 0.139 -0.242 11.149 0.971
Micro-Slip 0.190 -0.095 8.157 0.971

Some others considerations are here proposed:

• the determination coefficient R2 do not vary for varying c0 parameter, within the same
dissipation model. This is because c0 is affecting only the slope and/or the intercept of
the linear interpolation and not the data dispersion;

• the construction parameter c0 for the case of Gross-Sliding dissipation mechanism
affects just the regression coefficient s0 i.e., the intercept of the interpolation line. That
is, the slope of the interpolating line remains the same and data are just affected by a
vertical translation in the plane Πexp - Πth;

• the construction parameter c0 for the case of Micro-Slip dissipation mechanism affects
both coefficients s0 and s1 i.e., both the intercept and the slope of the interpolating
line.

These are general conclusions that hold also for analysis that will be addressed in the next
subsections.
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Finally, the moment-curvature diagrams for different loading ratios η are reported in
Figure 4.9.
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Figure 4.9. Bersfort conductor (µ = 0.3): plot of the Moment-Curvature diagrams in the case of
cyclic loading, for different values of the tension T .
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4.2.2 ACSR 48/7 Bersfort (New Results)

In this section, the available experimental results of the dissipated power for an ACSR
Bersfort conductor from Paradis (2022) are compared with the analytical model described in
Subsection 4.1.1.
The experimental results are collected in Annex G of her PhD thesis (see Ref. (58)).
Such results that have been obtained with multi-frequencies measurements technique.
However, for the application of the analytical model, we are just interested to the single
frequency excitation of the strand.
The properties of the ACSR Bersfort that was tested are listed in Table 4.7 for convenience,
being slightly different from the one reported in Appendix A.

Table 4.7. ACSR Bersfort: geometrical and mechanical properties.

Quantity Value UoM

Diameter D 35.56 mm
Mass per unit length m 2.369 kg/m
Rated Tensile Strength RTS 180.1 kN
Max. Bending Stiffness EImax 4130 Nm2

Min. Bending Stiffness EImin 60.8 Nm2

Contact conditions of the ACSR 48/7 Bersfort are related to a new state and such conductor
span was tested for three different tension levels (η = 15, 25, 35%).
Self-Damping measurements were performed on the experimental line of Varennes (Québec)
according to two different methods, namely the Power Method and the Inverse Standing
Wave Ratio (ISWR) Method. The differences between such methods and the experimental
procedures have been assessed in Section 2.3.
Results obtained with the Power Method are analyzed in Paragraph 4.2.2, while the ones
obtained with the ISWR Method are analyzed in Paragraph 4.2.2.
As an additional comment, the slightly different mechanical and geometrical properties of
the testes ACSR Bersfort (reported in Tab. 4.7) would lead in principle to the obtainment
od different values of c0 coefficients with respect to the ones found in Section 3.7.
However, since the difference is practically negligible, the values already determined (see
Tab. 3.20) will be adopted for the next developments.
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Results from Power Method

Figures 4.10 and 4.11 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.

10-2 10-1 100 101
10-3

10-2

10-1

100

101

102

Figure 4.10. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Bersfort conductor.

It is worth noticing that different values of the construction parameter c0 lead to different
predictions of both Micro-Slip and Gross-Sliding dissipation mechanisms. However, in both
planes (2χ0 l)

2 Π - J and (2χ0 l)
2 Π - Φ/λ∗, the points associated to the GS model prediction

do not vary. The same consideration obviously holds for the experimental data.
On the contrary, the difference for the Micro-Slip predictions can be appreciated. The
non-dimensional dissipated power Π, multiplied by (2χ0 l)

2 is increasing as the construction
parameter c0 decreases.
Table 4.8 collects the linear regression coefficients for the experimental data.

Table 4.8. ACSR Bersfort: Regression coefficients of experimental data, Power Method results.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

-0.296 6.02 0.902

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

1.721 0.899 0.903
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Figure 4.11. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Bersfort conductor.

In this case, the experimental threshold couldn’t be identified, as it can be seen from
Tab. 4.9. However, the predictions of the theoretical thresholds are computed and reported
in Table 4.10.

Table 4.9. ACSR Bersfort: Experimental Threshold, Power Method.

Identifiable (Φ/λ∗)exp

No -

Table 4.10. ACSR Bersfort: Theoretical thresholds for different values of c0.

Theoretical Thresholds (Φ/λ∗)th

c0 (m−1) η = 0.15 η = 0.24 η = 0.30

0.068 0.436 0.710 1.061
0.139 0.896 1.459 2.089
0.190 1.224 1.995 2.856
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Figure 4.12 shows the plot of Πth vs. Πexp. An enlargement of the previous plot is also
included in Fig. 4.13 for convenience.
As it can be assess from the linear regression coefficients of the theoretical dissipated power
predictions (see Table 4.11), the Micro-Slip dissipation model with c0 = 0.068 m−1 is the
one which better represent experimental results, because the slope of its linear interpolation
is the closest to 1 (i.e. the slope of the bisector, that is the locus of the points which are in
perfect agreement with experimental results).
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Figure 4.12. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp.

Table 4.11. ACSR Bersfort: Regression Coefficients of theoretical predictions, Power Method results.

Model c0 (m−1) s0 s1 R2

Gross-Sliding 0.068 0.025 0.135 0.915
Gross-Sliding 0.139 0.006 0.135 0.915
Gross-Sliding 0.190 0.003 0.135 0.915

Micro-Slip 0.068 -0.031 0.411 0.966
Micro-Slip 0.139 -0.004 0.200 0.966
Micro-Slip 0.190 -0.001 0.146 0.966
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Figure 4.13. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Enlargement.
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Results from ISWR Method

Figures 4.14 and 4.15 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.
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Figure 4.14. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Bersfort conductor.

Table 4.12 collects the linear regression coefficients for the experimental data.

Table 4.12. ACSR Bersfort: Regression coefficients of experimental data, ISWR Method results.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

-0.4005 3.941 0.896

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

1.1408 1.0663 0.968

By comparing the R2 coefficient computed in the case of linear interpolation in the bi-
logarithmic plane for both the Power Method and the ISWR Method (Tables 4.12 and 4.12),
one can assess that results obtained through the ISWR Method are more accurate, in the
sense that the ordinary least squares better fits experimental values, as expected.
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Figure 4.15. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Bersfort conductor.

Also in this case, the experimental threshold couldn’t be identified (see Tab. 4.13).
However, the predictions of the theoretical thresholds are computed and reported in Table
4.14.

Table 4.13. ACSR Bersfort: Experimental Threshold, ISWR Method.

Identifiable (Φ/λ∗)exp

No -

Table 4.14. ACSR Bersfort: Theoretical thresholds for different values of c0.

Theoretical Thresholds (Φ/λ∗)th

c0 (m−1) η = 0.15 η = 0.24 η = 0.30

0.068 0.436 0.710 1.061
0.139 0.896 1.459 2.089
0.190 1.224 1.995 2.856
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Figure 4.16 shows the plot of Πth vs. Πexp. An enlargement of the previous plot is also
included in Fig. 4.17 for convenience.
As it can be assess from the linear regression coefficients of the theoretical dissipated power
predictions (see Table 4.11), the Micro-Slip dissipation model with c0 = 0.068 m−1 is the
one which better represent experimental results, because the slope of its linear interpolation
is the closest to 1 (i.e. the slope of the bisector, that is the locus of the points which are in
perfect agreement with experimental results).
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Figure 4.16. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp.

Table 4.15. ACSR Bersfort: Regression Coefficients of theoretical predictions, ISWR Method results.

Model c0 (m−1) s0 s1 R2

Gross-Sliding 0.068 0.024 0.210 0.935
Gross-Sliding 0.139 0.006 0.210 0.935
Gross-Sliding 0.190 0.003 0.210 0.935

Micro-Slip 0.068 -0.030 0.633 0.971
Micro-Slip 0.139 -0.004 0.308 0.971
Micro-Slip 0.190 -0.001 0.225 0.971
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Figure 4.17. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Enlargement.
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Results Summary

In this paragraph, results of experimental campaigns by E = (EPRI, 2006) and P = (Paradis,
2022) obtained through the Inverse Standing Wave Ratio (ISWR) technique for the ACSR
48/7 Bersfort conductor are presented in an aggregate form.
Figure 4.18 and 4.19 show the non-dimensional dissipated power predictions with the
theoretical damping models (for different values of the construction parameter c0) and the
comparison with the experimental data, in both (2χ0 l)

2Π - J and (2χ0 l)
2Π - Φ/λ∗ planes.

Both sets of results are plotted.
It is worth recalling that the two tested ACSR Bersfort conductors are characterized by
slightly different mechanical and geometrical parameters. A summary of the main parameters
for both conductors is collected in Tab. 4.2.
Detailed information about the mechanical and geometrical properties of the ACSR 48/7
Bersfort conductor tested in E = (EPRI, 2006) can be found in Appendix A. Its cross-section
is depicted in Fig. B.3c.
Mechanical and geometrical properties of the ACSR 48/7 Bersfort conductor tested in P =
(Paradis, 2022) which differ from the previous ones, are reported in Tab. 4.7.
The difference in between such parameters is therefore not permitting a direct comparison
between the two set of results.
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Figure 4.18. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Bersfort conductors by E and P.
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Figure 4.19. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Bersfort conductors by E and P.

Some considerations are still interesting to do.
Fig 4.18 clearly shows how the theoretical predictions obtained through the Gross-Sliding
dissipation mechanism for both conductors, lie on the same straight line. This is a direct
consequence of the choice of the quantity that has been used on the y axis, i.e. (2χ0 l)

2Π.
In such way, the dependence upon the span length and the first yielding curvature is lost.
Conversely, the predictions obtained through the Micro-Slip dissipation mechanism diversify
both for the conductor geometrical characteristics and for its hysteretic behavior, described
by the construction parameter c0.
Gross-Sliding theoretical predictions appear to be the most suitable to describe the set of
experimental data by (EPRI, 2006) and with minor accuracy, the one by (Paradis, 2022).
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4.2.3 ACSR 54/7 Curlew

In this subsection, the ACSR 54/7 Curlew conductor is considered. Its mechanical and
geometrical properties are collected in Appendix A, whereas its cross-section is depicted
in Fig. B.4c (see Appendix B). Its contact conditions are related to a new state (µ = 0.3
is adopted). The power per unit of length (Pd) dissipated during forced vibration tests,
performed at different values of frequency f and antinode vibration amplitude A and for
different values of the tension T , was measured through the Power Method technique.
It is worth notice that during this test, the end-point damping (dead end losses) was not
minimized. In fact, in such case, the power method provides high uncertainty limits, because
the dead end losses may be quite relevant. As it can be seen in Figure 4.20, the quality of
the measured dissipated power per unit of length is clearly affected by this phenomenon.
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Figure 4.20. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data
from (EPRI, 2006), Appendix-A. Curlew conductor.

Figures 4.21 and 4.22 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.
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Figure 4.21. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Curlew conductor.
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Figure 4.22. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Curlew conductor.
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Table 4.16 collects the linear regression coefficients for the experimental data.

Table 4.16. ACSR Curlew: Regression Coefficients of experimental data.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

0.2399 1.4432 0.578

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

0.5640 0.5942 0.7174

In this case, the experimental threshold couldn’t be identified (see Tab. 4.17) and experimental
results appear to be better represented by the predictions obtained through the Micro-Slip
dissipation model with c0 = 0.259 m−1. However, the predictions of the theoretical thresholds
are computed and reported in Table 4.18.
As an additional comment, from Fig. 4.22 it is possible to recognize that for low values
of the parameter Φ/λ∗, experimental data are in closer agreement with the predictions of
the MS dissipation model, whereas, for high values of Φ/λ∗, the trend is inverted and GS
dissipation model predictions are better representing the experimental results.

Table 4.17. ACSR Curlew: Experimental Threshold.

Identifiable (Φ/λ∗)exp

No -

Table 4.18. ACSR Curlew: Theoretical thresholds for different values of c0.

c0 (m−1) (Φ/λ∗)th

0.178 0.062
0.248 0.087
0.259 0.091

Figure 4.23 shows the moment-curvature diagram for the conductor subject to a tension
level equal to η = 0.22.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-4

-3

-2

-1

0

1

2

3

4 104

Figure 4.23. Curlew conductor (µ = 0.30): plot of the Moment-Curvature diagram in the case of
cyclic loading.
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4.2.4 ACSR 72/7 Nelson I

In this subsection, the ACSR 72/7 Nelson I conductor is considered. Its mechanical and
geometrical properties are collected in Appendix A, whereas its cross-section is depicted
in Fig. B.5b (see Appendix B). Its contact conditions are related to a new state (µ = 0.3
is adopted). The power per unit of length (Pd) dissipated during forced vibration tests,
performed at different values of frequency f and antinode vibration amplitude A and for
different values of the tension T , was measured through the Power Method technique.
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Figure 4.24. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data
from (EPRI, 2006), Appendix-A. Nelson I conductor.

Figures 4.25 and 4.26 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.
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Figure 4.25. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Nelson I conductor.
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Figure 4.26. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Nelson I conductor.
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Table 4.19 collects the linear regression coefficients for the experimental data.

Table 4.19. ACSR Nelson I: Regression Coefficients of experimental data.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

0.0019 4.4779 0.952

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

1.2519 0.9466 0.933

From Fig. 4.26 an experimental threshold (Φ/λ∗)exp = 0.01 could be tentatively identified
(see also Tab. 4.20). The closest prediction of the theoretical threshold is the one computed
with c0 = 0.070 m−1 (see Tab. 4.21) and is equal to the double of the experimental one.

Table 4.20. ACSR Nelson I: Experimental Threshold.

Identifiable (Φ/λ∗)exp

Yes 0.01

Table 4.21. ACSR Nelson I: Theoretical thresholds for different values of c0.

c0 (m−1) (Φ/λ∗)th

0.070 0.020
0.171 0.049
0.243 0.070

Figure 4.27 shows the moment-curvature diagram for the conductor subject to a tension
level equal to η = 0.20.
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Figure 4.27. Nelson I conductor (µ = 0.30): plot of the Moment-Curvature diagram in the case of
cyclic loading.
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4.2.5 ACSR 26/7 Hawk (New Greased)

In this subsection, the ACSR 26/7 Hawk conductor is considered. Its mechanical and
geometrical properties are collected in Appendix A, whereas its cross-section is depicted
in Fig. B.2b (see Appendix B). Its contact conditions are related to a greased new state
(µ = 0.15 is adopted). The power per unit of length (Pd) dissipated during forced vibration
tests, performed at different values of frequency f and antinode vibration amplitude A and
for different values of the tension T , was measured through the Power Method technique.
The end-point damping (dead end losses) was minimized, in order to reduce the uncertainty
limits.
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Figure 4.28. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data
from (EPRI, 2006), Appendix-A. Hawk conductor.

Figures 4.29 and 4.30 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.

158



4.2. Comparison between experimental and theoretical results

10-4 10-3 10-2 10-1 100
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Figure 4.29. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Hawk (New) conductor.
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Figure 4.30. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Hawk (New) conductor.
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Table 4.22 collects the linear regression coefficients for the experimental data.

Table 4.22. ACSR Hawk (New Greased) Regression Coefficients of experimental data.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

-0.0107 2.9129 0.978

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

0.5255 0.9464 0.926

In this case, the experimental threshold couldn’t be identified (see Tab. 4.24). However, the
predictions of the theoretical thresholds are computed and reported in Table 4.24.

Table 4.23. ACSR Hawk (New Greased): Experimental Threshold.

Identifiable (Φ/λ∗)exp

No -

Table 4.24. ACSR Hawk (New Greased): Theoretical thresholds for different values of c0.

Theoretical Thresholds (Φ/λ∗)th

c0 (m−1) η = 0.10 η = 0.20 η = 0.30

0.124 0.042 0.083 0.125
0.215 0.072 0.144 0.216
0.290 0.097 0.195 0.292

Figure 4.31 shows the plot of Πth vs. Πexp. An enlargement of the previous plot is also
included in Fig. 4.32 for convenience.
As it can be assessed from the linear regression coefficients of the theoretical dissipated
power predictions (see Table 4.25), the Micro-Slip dissipation model with c0 = 0.215 m−1

is the one which better represent experimental results, especially for small values of the
non-dimensional dissipated power, as can be assessed in Fig. 4.32.

Table 4.25. ACSR Hawk (New Greased): Regression Coefficients of theoretical predictions.

Model c0 (m−1) s0 s1 R2

Gross-Sliding 0.124 0.244 0.346 0.982
Gross-Sliding 0.215 0.081 0.346 0.982
Gross-Sliding 0.290 0.045 0.346 0.982

Micro-Slip 0.124 -13.32 19.22 0.989
Micro-Slip 0.215 -2.56 11.09 0.989
Micro-Slip 0.290 -1.04 8.22 0.989
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Figure 4.31. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Hawk (New) conductor.
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Figure 4.32. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Enlargement. Hawk (New)
conductor.
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Finally, the moment-curvature diagrams for different loading ratios η are reported in
Figure 4.33

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-4

-2000

-1000

0

1000

2000

3000

4000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-4

-4000

-2000

0

2000

4000

6000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-4

-6000

-4000

-2000

0

2000

4000

6000

8000

Figure 4.33. Hawk conductor (µ = 0.15): plot of the Moment-Curvature diagrams in the case of
cyclic loading, for different values of the tension T .
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4.2.6 ACSR 26/7 Hawk (Old Greased)

In this subsection, the ACSR 26/7 Hawk conductor is considered. Its mechanical and
geometrical properties are collected in Appendix A, whereas its cross-section is depicted
in Fig. B.2b (see Appendix B). Its contact conditions are related to a greased old state
(µ = 0.45 is adopted). The power per unit of length (Pd) dissipated during forced vibration
tests, performed at different values of frequency f and antinode vibration amplitude A and
for different values of the tension T , was measured through the Power Method technique.
The end-point damping (dead end losses) was minimized, in order to reduce the uncertainty
limits.
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Figure 4.34. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data
from (EPRI, 2006), Appendix-A. Hawk conductor.

Figures 4.35 and 4.36 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.
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Figure 4.35. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models. Hawk (Old) conductor.
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Figure 4.36. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models. Hawk (Old) conductor.
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Table 4.26 collects the linear regression coefficients for the experimental data.

Table 4.26. ACSR Hawk (Old Greased) Regression Coefficients of experimental data.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

0.1042 2.2060 0.126

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

1.7122 1.2158 0.876

As it appears clear from table 4.26, the coefficient of determination R2 of the experimental
data linear interpolation indicates that the fitting is non representative of the whole set of
data. This is due to the presence of few outliers, that are clearly visible in the previous
figures. It is onsequently convenient to remove the outliers and re-work the same plots.
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Figure 4.37. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data
from EPRI 2006, Appendix-A. Hawk conductor (Outliers removed).
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Figure 4.38. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Hawk (Old) conductor (Outliers removed).
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Figure 4.39. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Hawk (Old) conductor (Outliers removed).
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Table 4.26 collects the linear regression coefficients for the experimental data after the
outliers removal.

Table 4.27. ACSR Hawk (Old Greased) Regression Coefficients of experimental data (Outliers
removed).

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

-0.032 4.488 0.974

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

1.833 1.252 0.972

From Fig. 4.36 an experimental threshold (Φ/λ∗)exp = 0.03 could be tentatively identified
(see Tab. 4.28). The closest prediction of the theoretical threshold is the one computed with
c0 = 0.124 m−1 and η = 0.10 is equal to 0.111, as can be seen from Tab. 4.29.

Table 4.28. ACSR Hawk (Old Greased): Experimental Threshold.

Identifiable (Φ/λ∗)exp

Yes 0.03

Table 4.29. ACSR Hawk (Old Greased): Theoretical thresholds for different values of c0.

Theoretical Thresholds (Φ/λ∗)th

c0 (m−1) η = 0.10 η = 0.20 η = 0.30

0.124 0.111 0.221 0.332
0.215 0.192 0.383 0.575
0.290 0.258 0.517 0.775

Figure 4.40 shows the plot of Πth vs. Πexp. An enlargement of the previous plot is also
included in Fig. 4.41 for convenience.
As it can be assessed from the linear regression coefficients of the theoretical dissipated
power predictions (see Table 4.25), the Micro-Slip dissipation model with c0 = 0.215 m−1

is the one which better represent experimental results, especially for small values of the
non-dimensional dissipated power, as can be assessed in Fig. 4.41.

Table 4.30. ACSR Hawk (Old Greased): Regression Coefficients of theoretical predictions.

Model c0 (m−1) s0 s1 R2

Gross-Sliding 0.124 0.028 0.214 0.993
Gross-Sliding 0.215 0.009 0.214 0.993
Gross-Sliding 0.290 0.005 0.214 0.993

Micro-Slip 0.124 -0.504 3.688 0.977
Micro-Slip 0.215 -0.097 2.127 0.977
Micro-Slip 0.290 -0.039 1.577 0.977
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Figure 4.40. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Hawk (Old) conductor.
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Figure 4.41. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Enlargement. Hawk (Old)
conductor.
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Finally, the moment-curvature diagrams for different loading ratios η are reported in
Figure 4.42.
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Figure 4.42. Hawk conductor (µ = 0.45): plot of the Moment-Curvature diagrams in the case of
cyclic loading, for different values of the tension T .
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4.2.7 ACSR 6/1 Penguin

In this subsection, the ACSR 6/1 Penguin conductor is considered. Its mechanical and
geometrical properties are collected in Appendix A, whereas its cross-section is depicted in
Fig. B.1c (see Appendix B).
The EPRI results indicate this conductor typology as a 6/1 Pigeon, but the outer diamater
D = 14.31 mm corresponds to the one of a Penguin conductor, as well as other mechanical
properties, with the exception of the Rated Tensile Stength RTS. For this reasons, in the
following, this data will be associated to the test of a commercial ACSR "Penguin" conductor,
and not to a commercial ACSR "Pigeon" conductor.
The power per unit of length (Pd) dissipated during forced vibration tests, performed at
different values of frequency f and antinode vibration amplitude A and for different values
of the tension T , was measured through the Inverse Standing Wave Ratio (ISWR) technique
and corrected to subtract the aerodynamic damping.
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Figure 4.43. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data
from (EPRI, 2006), Appendix-A. Penguin conductor.

Figures 4.44 and 4.45 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.
As it can be seen, since the two values of the construction parameters are approximately
equal, the Micro-Slip dissipation predictions are almost equivalent.
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Figure 4.44. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Penguin conductor.
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Figure 4.45. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Penguin conductor.
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Table 4.31 collects the linear regression coefficients for the experimental data.

Table 4.31. ACSR Penguin: Regression Coefficients of experimental data.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

-1.9997 1.5303 0.919

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

-1.2485 1.4817 0.972

In this case, the slope of the line interpolating experimental data is approximately equal to
one predicted by the MS damping model, for all values of J. This fact may be related to the
influence of the tangential contact compliance mechanism between the external wires and the
core. Further studies are needed to correctly understand the dissipation mechanisms of 6/1
conductors accounting for the tangential contact compliance mechanism (Foti and Martinelli,
2019). As a matter of fact, the transition curvature between micro-slip and gross-sliding
dissipation mechanisms cannot be identified (see Tab. 4.32).

Table 4.32. ACSR Penguin: Experimental Threshold.

Identifiable (Φ/λ∗)exp

No -

The predictions of the theoretical thresholds for different values of c0 are computed for the
sake of completeness and are reported in Tab. 4.33.

Table 4.33. ACSR Penguin: Theoretical thresholds for different values of c0.

c0 (m−1) (Φ/λ∗)th

0.139 0.096
0.141 0.098

Figure 4.46 shows the moment-curvature diagram for the conductor subject to a tension
level equal to η = 0.16.
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Figure 4.46. Penguin conductor (µ = 0.30): plot of the Moment-Curvature diagram in the case of
cyclic loading.
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4.2.8 ACSR 26/7 Drake (Initial State)

In this subsection, the ACSR 26/7 Drake conductor is considered. Its mechanical and
geometrical properties are collected in Appendix A, whereas its cross-section is depicted in
Fig. B.2c (see Appendix B). According to the self-damping tests performed by Southwire,
the conductor was tested at 15%, 20% and 30% of its Rated Tensile Strength (RTS). In the
following, reference will be made to this three levels of the test tension as "Initial State".
Upon completion of the 30% level, the conductor was stretched by raising the tension to
50% RTS and then this level of tension was held for one hour. This stretching is necessary
to help facilitate the final loading/unloading conditions of the conductors.
At the end, reversing the order, the conductor was tested again at 30%, 20%, and 15% of its
RTS. In the following, reference will be made to this other three levels of the test tension as
"Final State" (see Subsection 4.2.9).
The power per unit of length (Pd) dissipated during forced vibration tests, performed at
different values of frequency f and antinode vibration amplitude A and for different values of
the tension T , was measured through the Inverse Standing Wave Ratio (ISWR) technique.
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Figure 4.47. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data
from (Southwire, 1996).

Figures 4.48 and 4.49 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.
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Figure 4.48. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Drake conductor, Initial State.
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Figure 4.49. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Drake conductor, Initial State.
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Table 4.34 collects the linear regression coefficients for the experimental data.

Table 4.34. ACSR Drake (Initial State): Regression Coefficients of experimental data.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

-0.0008 2.6769 0.895

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

-0.6132 0.7839 0.799

In this case, the experimental threshold couldn’t be identified (see Tab. 4.35). However, the
predictions of the theoretical thresholds are computed and reported in Table 4.36.

Table 4.35. ACSR Drake (Initial State): Experimental Threshold.

Identifiable (Φ/λ∗)exp

No -

Table 4.36. ACSR Drake (Initial State): Theoretical thresholds for different values of c0.

Theoretical Thresholds (Φ/λ∗)th

c0 (m−1) η = 0.15 η = 0.20 η = 0.30

0.093 0.060 0.080 0.120
0.161 0.104 0.138 0.208
0.217 0.140 0.186 0.279

Figure 4.50 shows the plot of Πth vs. Πexp. An enlargement of the previous plot is also
included in Fig. 4.51 for convenience.
As it can be assessed from the linear regression coefficients of the theoretical dissipated
power predictions (see Table 4.37), the Micro-Slip dissipation model with c0 = 0.093 m−1 is
the one which better represent experimental results.

Table 4.37. ACSR Drake (Initial State): Regression Coefficients of theoretical predictions.

Model c0 (m−1) s0 s1 R2

Gross-Sliding 0.093 0.004 0.324 0.941
Gross-Sliding 0.161 0.001 0.324 0.941
Gross-Sliding 0.217 0.001 0.324 0.941

Micro-Slip 0.093 -0.022 1.73 0.940
Micro-Slip 0.161 -0.004 1.00 0.940
Micro-Slip 0.217 -0.002 0.74 0.940
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Figure 4.50. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Drake conductor, Initial
State.
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Figure 4.51. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Enlargement. Drake conduc-
tor, Initial State.
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Finally, the moment-curvature diagrams for different loading ratios η are reported in
Figure 4.52.
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Figure 4.52. Drake conductor (µ = 0.3): plot of the Moment-Curvature diagrams in the case of
cyclic loading, for different values of the tension T .
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4.2.9 ACSR 26/7 Drake (Final State)

As already anticipated, in this section the ACSR 26/7 Drake conductor is considered. ts
mechanical and geometrical properties are collected in Appendix A, whereas its cross-section
is depicted in Fig. B.2c (see Appendix B). According to the self-damping tests performed by
Southwire, the conductor was stretched by raising the tension to 50% RTS and then this
level of tension was held for one hour.
After this stretching, the conductor was tested again at 30%, 20%, and 15% of its RTS. In
this section, reference is made to this three levels of the test tension as "Final State". The
power per unit of length (Pd) dissipated during forced vibration tests, performed at different
values of frequency f and antinode vibration amplitude A and for different values of the
tension T , was measured through the Inverse Standing Wave Ratio (ISWR) technique.
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Figure 4.53. Dissipated power per unit of length vs. non-dimensional antinode amplitude. Data
from (Southwire, 1996).

Figures 4.54 and 4.55 show the non-dimensional dissipated power predictions with the
theoretical damping models for different values of the construction parameter c0 (see sections
3.6 and 3.7), and the comparison with the experimental data, in both (2χ0 l)

2Π - J and
(2χ0 l)

2Π - Φ/λ∗ planes.
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Figure 4.54. Non-dimensional Dissipated power vs. J parameter. Comparison between experimental
data and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”)
damping models, for different values of c0. Drake conductor, Final State.
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Figure 4.55. Non-dimensional Dissipated power vs. Φ/λ∗. Comparison between experimental data
and theoretical predictions of the gross-sliding (“GS”) and micro-slip (“MS”) damping
models, for different values of c0. Drake conductor, Final State.
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Table 4.38 collects the linear regression coefficients for the experimental data.

Table 4.38. ACSR Drake (Final State): Regression Coefficients of experimental data.

(2χ0 l)
2Π = p0 + p1 J

p0 p1 R2

-0.0017 3.3314 0.938

log((2χ0 l)
2Π) = q0 + q1 log(J)

q0 q1 R2

-0.2853 0.8313 0.877

In this case, the experimental threshold couldn’t be identified (see Tab. 4.39). However, the
predictions of the theoretical thresholds are computed and reported in Table 4.40.

Table 4.39. ACSR Drake (Final State): Experimental Threshold.

Identifiable (Φ/λ∗)exp

No -

Table 4.40. ACSR Drake (Final State): Theoretical thresholds for different values of c0.

Theoretical Thresholds (Φ/λ∗)th

c0 (m−1) η = 0.15 η = 0.20 η = 0.30

0.093 0.060 0.080 0.120
0.161 0.104 0.138 0.208
0.217 0.140 0.186 0.279

Figure 4.56 shows the plot of Πth vs. Πexp. An enlargement of the previous plot is also
included in Fig. 4.57 for convenience.
As it can be assessed from the linear regression coefficients of the theoretical dissipated
power predictions (see Table 4.41), the Micro-Slip dissipation model with c0 = 0.093 m−1 is
the one which better represent experimental results.

Table 4.41. ACSR Drake (Final State): Regression Coefficients of theoretical predictions.

Model c0 (m−1) s0 s1 R2

Gross-Sliding 0.093 0.005 0.273 0.977
Gross-Sliding 0.161 0.002 0.273 0.977
Gross-Sliding 0.217 0.001 0.273 0.977

Micro-Slip 0.093 -0.018 1.45 0.978
Micro-Slip 0.161 -0.004 0.84 0.978
Micro-Slip 0.217 -0.002 0.62 0.978
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Figure 4.56. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Drake conductor, Final State.
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Figure 4.57. Theoretical predictions of the non-dimensional dissipated power Πth vs. non-dimensional
dissipated power computed from experimental data Πexp. Enlargement. Drake conduc-
tor, Final State.
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Finally, the moment-curvature diagrams for different loading ratios η are reported in
Figure 4.58.
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Figure 4.58. Drake conductor (µ = 0.3): plot of the Moment-Curvature diagrams in the case of
cyclic loading, for different values of the tension T .
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4.3 Conclusions

In this Chapter, the Self-Damping properties of overhead electrical conductors have been
studied, with particular emphasis on the Aluminium Conductors Steel Reinforced typology.
The enhanced unified analytical model proposed by Foti and Martinelli (2018a, 2018b) was
applied and compared to various experimental results coming from EPRI (2006), Southwire
(1996) and Paradis (2022).
The experimental threshold between the region of curvatures controlled by the Micro-Slip
dissipation mechanism and the one controlled by the Gross-Sliding dissipation mechanism
couldn’t be always identified.
The theoretical threshold (corresponding to the enforcement of the transition curvature
between the two dissipation mechanisms, see Eq. 4.27) was computed for different values of
the construction parameter c0 and compared with the experimental one, when identified.
Conclusions of this part of the work are herein collected:

• Experimental results largely influence the possibility to observe a transition between
the Micro-Slip and Gross-Sliding dissipation mechanisms;

• Self-Damping measurements are a quite delicate issue and the choice of most suitable
measurement method is of paramount importance to obtain accurate results;

• Gross-Sliding dissipation mechanism appears to be the most suitable to describe the
Self-Damping results of conductors, both for the low and high curvature regions;

• The parameter c0 significantly influences the prediction of the Micro-Slip dissipation
mechanism, in both plane (2χ0 l)

2 Π - J and (2χ0 l)
2 Π - Φ/λ∗;

• The plane Πexp - Πth can be effectively used to assess the capability of the theoretical
models for experimental results predictions. In some cases, it has been shown that the
Micro-Slip dissipation model with the minimum or median value of the construction
parameter c0 was providing the best estimation of the experimental results;

• The parameter c0 significantly influences the prediction of the Gross-Sliding dissipation
mechanism, in the plane Πexp - Πth;

• The transition between the Micro-Slip and Gross-Sliding dissipation mechanisms could
be observed in few cases only. In such cases, the minimum value of c0 appeared to
be the most suitable to reproduce the experimental results and to obtain a closer
theoretical threshold to the experimental one;

• Such values of theoretical thresholds have considerably improved the preliminary
predictions obtained by (Foti et al., 2021, 2022). However, a difference with respect to
the experimental threshold is still present, highlighting the need for further research;

• As a general conclusion, a full range of construction parameter c0 for each conductor
cross-section see Appendix F can be adopted to correctly describe the dissipation
properties of ACSR conductors by applying the enhanced unified analytical model that
has been applied in this section (see Section 4.1). An estimation of the proper value
of c0 can also be obtained by means of the linear interpolating laws that have been
provided in Sec. 3.7, as functions of the strand diameter D.
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Chapter 5

Assessment of Aeolian Vibrations
Amplitude

This chapter focuses on the application of the Energy Balance Principle (EBP) for the
assessment of aeolian vibrations amplitudes of bare conductors.
In particular, different on-field experimental results for an ACSR 48/7 Bersfort conductor
strung at different tension levels are considered. The latter have been collected by Langlois
and Legeron (2014) and from Hardy and Van Dyke (1995).
The objective of Section 5.1 is the assessment of the influence of various parameters on the
prediction of the non-dimensional amplitude of vibration, such as the friction coefficient µ,
the stiffness reduction factor β, the loading ratio η, the turbolence intensity Iv and most
importantly, the construction parameter c0.
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5.1 Application of the Energy Balance Principle

In this section, an application of the Energy Balance Principle (EBP) is presented, with
reference to the case of an ACSR 48/7 Bersfort conductor.
Under the assumption that the cable vibrates according to one vibration mode only, it is
possible to compute the maximum steady-state (single-peak) vibration amplitude A, for
each of the excited natural frequencies f . This can be done by imposing the energy balance
over one oscillation cycle between the average input wind power Pw and the average power
dissipated by the conductor Pd.
The following nonlinear algebraic equation holds:

Pw(A, f)− Pd(A, f) = 0 ∀f (5.1)

and can be solved for any frequency f , to evaluate the amplitude of vibration A that allows
to satisfy the Energy Balance Principle.
The wind power input data can generally be expressed through the following relationship
(Lilien, 2013):

Pw(A, f) = Bw(Iv)D
4f3

(
− 99.73

(A
D

)3
+ 101.62

(A
D

)2
+ 0.1627

A

D
+ 0.2256

)
(5.2)

where:

Bw(Iv) =
(

1 +
( Iv
IL

)2)− 1
2 (5.3)

The parameter IL present in Equation 5.3 is the “lock-in” index and takes the value of 0.09
(see (Lu, 2015)), whereas Iv is the turbolence intensity. Typical values reported in test
settings and in in-situ measurements are in the range Iv ∈ [0, 15%].

The aim of this section is to compare the theoretical predictions for the cable Self-Damping
obtained through the application of the enhanced unified model proposed by (Foti and
Martinelli, 2018b) (Subsection 4.1.1) with available experimental data.
Furthermore, the influence of the different parameters such as the loading ratio η, the
stiffness reduction factor β, the turbolence intensity Iv, the friction coefficient µ and most
importantly, the construction parameter c0 (which was largely studied and computed in
Chapter 3) is assessed.
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5.1.1 ACSR 48/7 Bersfort, η = 20%

In this Subsection, the filed experimental data obtained by Langlois and Legeron (2014) are
considered. Such data are related to the tests of an ACSR 48/7 Bersfort conductor strung at
tension T = 0.2 RTS.
Its geometrical and mechanical properties are collected in Appendix A, while its cross-section
is depicted in Fig. B.3c of Appendix B.
Vibration records have been performed in the proximity of the suspension clamps and then
processed to derive the value of the antinode vibration amplitude as a function of the
vibration frequency.
The following figures show the comparison of the maximum non-dimensional vibration am-
plitude (A/D) predicted by the analytical self-damping models (full model "FM", micro-slip
"MS" and gross-sliding "GS") with the experimental data. Two different turbulence intensi-
ties are considered (Iv = 0% and Iv = 15%). The friction coefficient and the construction
parameter are assumed respectively equal to µ = 0.3 and c0 = 0.068 m−1 for Figure 5.1,
µ = 0.5 and c0 = 0.139 m−1 for Figure 5.2, µ = 0.7 and c0 = 0.190 m−1 for Figure 5.3.
The reduction stiffness coefficient β varies for each subplot.

Three sets of plots are realized, by considering:

1. the best condition in terms of dissipation capacity, where both µ and c0 takes their
minimum values, i.e. µ = 0.3 and c0 = 0.068 m−1 (see Fig. 5.1). This simulation can
be considered representative of a situation in which the conductor is new and lubricated,
with a respective construction parameter computed according to a sophisticated radial
pressure model (P.M.A), under a physically-sound sliding condition (S.C.6).

2. a sort of "mean" situation, in which both µ and c0 takes their median values, i.e.
µ = 0.5 and c0 = 0.139 m−1 (see Fig. 5.2). This simulation can be considered
representative of a situation in which the conductor is not new, but is still lubricated,
and with respective construction parameter computed according to a simplified radial
pressure model (P.M.C), under a relatively simple sliding condition (S.C.1);

3. the worst condition in terms of dissipation capacity, in which both µ and c0 takes their
maximum values, i.e. µ = 0.7 and c0 = 0.190 m−1 (see Fig. 5.3). This simulation can
be considered representative of a situation in which the conductor is weathered and
has several decades of service life, with a respective construction parameter computed
according to a sophisticated radial pressure model (P.M.A), under a relatively simple
sliding condition (S.C.1).
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Figure 5.1. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: c0 = 0.068 m−1, µ = 0.3,
η = 20% and β varies for each subplot.
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Figure 5.2. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: c0 = 0.139 m−1, µ = 0.5,
η = 20% and β varies for each subplot.
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Figure 5.3. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: c0 = 0.190 m−1, µ = 0.7,
η = 20% and β varies for each subplot.
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The following figures show the comparison of the maximum non-dimensional vibration
amplitude predicted by adopting the analytical self-damping models (full model "FM",
micro-slip "MS" and gross-sliding "GS") with the experimental data.
Three different values of the construction parameter are considered (c0 = 0.068 m−1,
c0 = 0.139 m−1 and c0 = 0.190 m−1) in order to assess its influence on the evaluation
of the aeolian vibration amplitude.
Additionally, the empirical power law defined in Equation 2.17 is applied for two sets of
exponents (see also Table 2.3): SET A (l = 2.44; m = 5.63; n = 2.76) and SET B (l = 2.43;
m = 5.50; n = 2.0).
Figures 5.4 and 5.5 show the comparison of experimental results with the predictions of such
empirical damping models.
The friction coefficient is assumed equal to µ = 0.3 in Figures 5.4 and 5.6, µ = 0.5 in Figure
5.7 and µ = 0.7 in Figures 5.5 and 5.8. The turbolence intensity is set to Iv = 0% and the
reduction stiffness coefficient β varies for each subplot.
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Figure 5.4. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 15%, µ = 0.3,
η = 20%, c0 = 0.139 m−1 and β varies for each subplot. Comparison of the results with
the empirical damping model for two sets of exponents.
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Figure 5.5. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 15%, µ = 0.7,
η = 20%, c0 = 0.190 m−1 and β varies for each subplot. Comparison of the results with
the empirical damping model for two sets of exponents.
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Figure 5.6. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 0%, µ = 0.3, η = 20%
and β varies for each subplot.
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Figure 5.7. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 0%, µ = 0.5, η = 20%
and β varies for each subplot.
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Figure 5.8. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 0%, µ = 0.7, η = 20%
and β varies for each subplot.
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Conlcusions

From the previous graphs, the following conclusions can be drawn:

• The Gross-Sliding energy dissipation mechanism is practically never activated for the
loading conditions herein considered. As a consequence, the Micro-Slip dissipation
mechanism is predicting a curve of non-dimensional amplitudes that coincides with
the one predicted by the Full model;

• Both the friction coefficient µ and the construction parameter c0 influence the Micro-
Slip dissipation mechanism. In particular, as they decrease, the Micro-Slip term in
Equation 4.7 increases, so that the total dissipated power predicted by the analytical
model will be larger. This fact is evident in turn of a reduced non-dimensional amplitude
of vibration of the cable;

• The experimental data by Langlois and Legeron (2014) are gradually better represented
as the friction coefficient µ increases, as well as the construction parameter c0 increases,
i.e. when the dissipated power due to the Micro-Slip dissipation mechanism (and
consequently, the total dissipated power) decreases;

• The non-dimensional amplitude predicted by the different models increases as the
stiffness reduction factor β decreases. This is obviously clear, because it directly affects
the conductor maximum flexural stiffness. In particular, as the maximum bending
stiffness increases, the cable response is more stiff and lower non-dimensional vibration
amplitudes will be reached;

• Experimental data by Langlois and Legeron (2014) are gradually better represented as
the stiffness reduction factor β decreases;

• The increasing of the turbolence intensity positively affects the prediction of the non-
dimensional vibration amplitudes. In fact, if the turbolence intensity is higher, the
wind dissipated power will be higher too, leading to the obtainment of lower vibration
amplitudes (by maintaining constant the conductor dissipated power). On the contrary,
if a smooth wind flow acts on the conductor (i.e. Iv = 0), vibration amplitudes will be
higher;

• Experimental data by Langlois and Legeron (2014) are gradually better represented as
the turbolence intensity Iv decreases;

• The curve that is better representing the experimental data is the one obtained with
the Full Model ("FM"), with parameters β = 0.5, c0 = 0.190 m−1, µ = 0.7 and Iv = 0
(see Fig. 5.3a or Fig. 5.8a). One can then compute the first yielding curvature as:

χ0 = µ η c0 = 0.0266 m−1

However, as already recalled, the theoretical predictions obtained with the Full-Model
coincide with the ones obtained by applying the Micro-Slip dissipation model. As a
consequence, the computed value of the first-yielding curvature is practically never
reached for vibration levels herein considered.
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• The predictions of the non-dimensional vibration amplitude obtained with the empirical
self-damping model (i.e. the empirical power law, Eq. 2.17) drastically differ on the
basis of the set of exponents that is adopted. In particular, the predictions obtained
by adopting SET B exponents (l = 2.43; m = 5.50; n = 2.0) are better representing
experimental data of Langlois and Legeron (2014) with respect to the ones obtained
by adopting SET A exponents (l = 2.44; m = 5.63; n = 2.76), which lead to a strong
overestimation.
This consideration holds for any value of the reduction stiffness factor β.

• Almost perfect agreement between the predictions of the non-dimensional amplitude
obtained with the Full-Model (FM), and the ones obtained with the empirical damping
model with SET B exponents is found for the following parameters: β = 1.0, c0 =
0.190 m−1, µ = 0.7 and Iv = 0 (see Fig. 5.5b).
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5.1.2 ACSR 48/7 Bersfort, η = 25%

In this Subsection, the filed experimental data obtained by Hardy and Van Dyke (1995) are
considered. Such data are related to the tests of an ACSR 48/7 Bersfort conductor, strung
at tension T = 0.25 RTS.
Its geometrical and mechanical properties are collected in Appendix A, while its cross-section
is depicted in Fig. B.3c of Appendix B.
The following figures show the comparison of the maximum non-dimensional vibration ampli-
tude predicted by adopting the analytical self-damping models (full model "FM", micro-slip
"MS" and gross-sliding "GS") with the experimental data.
Three different values of the construction parameter are considered (c0 = 0.068 m−1,
c0 = 0.139 m−1 and c0 = 0.190 m−1) in order to assess its influence on the evaluation
of the aeolian vibration amplitude.
Additionally, the empirical power law defined in Equation 2.17 is applied for two sets of
exponents (see also Table 2.3): SET A (l = 2.44; m = 5.63; n = 2.76) and SET B (l = 2.43;
m = 5.50; n = 2.0).
Figure 5.9 shows the comparison of experimental results with the predictions of such empirical
damping models.
The friction coefficient is assumed equal to µ = 0.3 in Figures 5.9, 5.10 and in Figure 5.12,
while it is assumed equal to µ = 0.5 in Figure 5.11 and in Figure 5.13.
The turbolence intensity is set equal to Iv = 0% both for Fig. 5.10 and 5.11, while it is equal
to Iv = 15% in Figures 5.9, 5.12 and 5.13.
The reduction stiffness coefficient β varies for each subplot.
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Figure 5.9. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 15%, µ = 0.3,
η = 25%, c0 = 0.139 m−1 and β varies for each subplot. Comparison of the results with
the empirical damping model for two sets of exponents.
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Figure 5.10. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 0%, µ = 0.3,
η = 25% and β varies for each subplot.
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Figure 5.11. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 0%, µ = 0.5,
η = 25% and β varies for each subplot.
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Figure 5.12. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 15%, µ = 0.3,
η = 25% and β varies for each subplot.
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Figure 5.13. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 15%, µ = 0.5,
η = 25% and β varies for each subplot.
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Conclusions

From the previous graphs, the following conclusions can be drawn:

• The Gross-Sliding energy dissipation mechanism is practically never activated for the
loading conditions herein considered. As a consequence, the Micro-Slip dissipation
mechanism is predicting a curve of non-dimensional amplitudes that coincides with
the one predicted by the Full model;

• As already recalled, both the friction coefficient µ and the construction parameter
c0 influence the Micro-Slip dissipation mechanism. In particular, as they decrease,
the Micro-Slip term in Equation 4.7 increases, so that the total dissipated power
predicted by the analytical model will be larger. This fact is evident in turn of a
reduced non-dimensional amplitude of vibration of the cable;

• The same general considerations previously done about the influence of the stiffness
reduction factor β and the turbolence intensity Iv hold (see Subsection 5.1.1);

• The experimental data by Hardy and Van Dyke (1995) are gradually better represented
as the friction coefficient µ decreases, as well as the construction parameter c0 decreases,
i.e. when the dissipated power due to the Micro-Slip dissipation mechanism (and
consequently, the total dissipated power) increases;

• Experimental data by Hardy and Van Dyke (1995) are gradually better represented as
the stiffness reduction factor β increases;

• Experimental data by Hardy and Van Dyke (1995) are gradually better represented as
the turbolence intensity Iv increases.

• The predictions of the non-dimensional vibration amplitude obtained with the empirical
self-damping model (i.e. the empirical power law, Eq. 2.17) drastically differ on the
basis of the set of exponents that is adopted. In particular, the predictions obtained
by adopting SET B exponents (l = 2.43; m = 5.50; n = 2.0) are better representing
experimental data by Hardy and Van Dyke (1995) with respect to the ones obtained
by adopting SET A exponents (l = 2.44; m = 5.63; n = 2.76), which lead to a strong
overestimation.
This consideration holds for any value of the reduction stiffness factor β.

• Almost perfect agreement between the predictions of the non-dimensional amplitude
obtained with the Full-Model (FM) and the ones obtained with the empirical damping
model with SET B exponents is found for the following parameters: β = 0.5, c0 =
0.139 m−1, µ = 0.3 and Iv = 15% (see Fig. 5.9a).
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5.1.3 ACSR 48/7 Bersfort, η = 30%

In this Subsection, the filed experimental data obtained by Hardy and Van Dyke (1995) are
considered. Such data are related to the tests of an ACSR 48/7 Bersfort conductor, strung
at tension T = 0.30 RTS.
Its geometrical and mechanical properties are collected in Appendix A, while its cross-section
is depicted in Fig. B.3c of Appendix B.
The following figures show the comparison of the maximum non-dimensional vibration ampli-
tude predicted by adopting the analytical self-damping models (full model "FM", micro-slip
"MS" and gross-sliding "GS") with the experimental data.
Three different values of the construction parameter are considered (c0 = 0.068 m−1,
c0 = 0.139 m−1 and c0 = 0.190 m−1) in order to assess its influence on the evaluation
of the aeolian vibration amplitude.
Additionally, the empirical power law defined in Equation 2.17 is applied for two sets of
exponents (see also Table 2.3): SET A (l = 2.44; m = 5.63; n = 2.76) and SET B (l = 2.43;
m = 5.50; n = 2.0).
Figure 5.14 shows the comparison of experimental results with the predictions of such
empirical damping models.
The friction coefficient is assumed equal to µ = 0.3 in Figures 5.14, 5.15 and in Figure 5.17,
while it is assumed equal to µ = 0.5 in Figure 5.16 and in Figure 5.18.
The turbolence intensity is set equal to Iv = 0% both for Fig. 5.15 and 5.16, while it is equal
to Iv = 15% for Figures 5.14 5.17 and for Fig. 5.18.
The reduction stiffness coefficient β varies for each subplot.
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Figure 5.14. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 15%, µ = 0.3,
η = 30%, c0 = 0.139 m−1 and β varies for each subplot. Comparison of the results with
the empirical damping model for two sets of exponents.
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Figure 5.15. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 0%, µ = 0.3,
η = 30% and β varies for each subplot.
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Figure 5.16. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 0%, µ = 0.5,
η = 30% and β varies for each subplot.
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Figure 5.17. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 15%, µ = 0.3,
η = 30% and β varies for each subplot.
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Figure 5.18. Non-dimensional vibration amplitude A/D evaluated through the application of the
Energy Balance Principle for an ACSR Bersfort. Parameters: Iv = 15%, µ = 0.5,
η = 30% and β varies for each subplot.

202



5.1. Application of the Energy Balance Principle

Conclusions

From the previous graphs, the following conclusions can be drawn:

• The Gross-Sliding energy dissipation mechanism is practically never activated for the
loading conditions herein considered. As a consequence, the Micro-Slip dissipation
mechanism is predicting a curve of non-dimensional amplitudes that coincides with
the one predicted by the Full model;

• As already recalled, both the friction coefficient µ and the construction parameter
c0 influence the Micro-Slip dissipation mechanism. In particular, as they decrease,
the Micro-Slip term in Equation 4.7 increases, so that the total dissipated power
predicted by the analytical model will be larger. This fact is evident in turn of a
reduced non-dimensional amplitude of vibration of the cable;

• The same general considerations previously done about the influence of the stiffness
reduction factor β and the turbolence intensity Iv hold;

• The experimental data by Hardy and Van Dyke (1995) are gradually better represented
as the friction coefficient µ decreases, as well as the construction parameter c0 decreases,
i.e. when the dissipated power due to the Micro-Slip dissipation mechanism (and
consequently, the total dissipated power) increases;

• Experimental data by Hardy and Van Dyke (1995) are gradually better represented as
the stiffness reduction factor β increases;

• Experimental data by Hardy and Van Dyke (1995) are gradually better represented as
the turbolence intensity Iv increases.

• However, even if the general trend of the single parameters is the one just exposed,
an adequate trade-off between such parameters should be found in order to correclty
represent the experimental data. In particular, the prediction of the non-dimensional
vibration amplitude through the Full-Model of Fig 5.18a, with c0 = 0.068 m−1 appears
to be the most accurate compared to experimental data.

• The predictions of the non-dimensional vibration amplitude obtained with the empirical
self-damping model (i.e. the empirical power law, Eq. 2.17) drastically differ on the
basis of the set of exponents that is adopted. In particular, the predictions obtained
by adopting SET B exponents (l = 2.43; m = 5.50; n = 2.0) are better representing
experimental data by Hardy and Van Dyke (1995) with respect to the ones obtained
by adopting SET A exponents (l = 2.44; m = 5.63; n = 2.76), which lead to a strong
overestimation.
This consideration holds for any value of the reduction stiffness factor β.

• Almost perfect agreement between the predictions of the non-dimensional amplitude
obtained with the Full-Model (FM) and the ones obtained with the empirical damping
model with SET B exponents is found for the following parameters: β = 0.5, c0 =
0.139 m−1, µ = 0.3 and Iv = 15% (see Fig. 5.14a).
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Chapter 6

Conclusion

This chapter summarizes the results obtained in this dissertation thesis, regarding the me-
chanical modeling of stranded cables and the self-damping properties of ACSR conductors for
aeolian vibrations applications. The novel approaches proposed as a part of the research work
are evidenced, an the consequent practical implications are illustrated. Some disadvantages
are also shown. Based on the achieved results, some future developments are finally proposed.

6.1 Conclusions

In the present work, different radial transmission pressures models of the literature for
metallic stranded cables under bending have been assessed and implemented. The predicted
external and internal radial contact forces per unit of length have been rigorously compared
for the first time, to the author’s knowledge (Subsection 3.4.2). Results have shown the in-
fluence of the assumptions initially introduced for the description of the mechanical behavior
of such complex structures.
Moreover, a novel approach for the computation of the construction parameter of stranded
cables under different radial transmission pressures models and stick-slip mechanical laws
was presented. The differential equation describing the admissible domain of the wire axial
force (see Appendix E) was uniquely determined throughout coefficients a and b, which
depend only upon the sliding condition that is enforced (Subsection 3.5.3).
Additionally, a generalization of both the expressions of such coefficients, and the equilibrium
equation in the tangential direction, was obtained by means of ξint and ξext parameters,
influencing the internal and external friction coefficients respectively (Paragraph 3.5.3).
A full range of construction parameters c0 was then determined for a sample of 15 widespread
ACSR conductors (which geometrical-mechanical properties and cross-sections are collected
in Appendix A and B respectively), through both a numerical evaluation (Subsection 3.6.1)
and a closed-form solution (Subsection 3.6.2).
The latter uses a novel expression involving the maximum additional bending moment due
to the non-linear contribution of the wire axial force.
Results of c0 clearly show the influence of both the radial transmission pressures models and
the stick-slip mechanical laws on the bending response of multi-layer strands (Subsection
3.7.2). Conversely, results of c0 for single-layer strands are only slightly influenced by the
most severe sliding conditions enforced (Subsection 3.7.1).
Such coefficient permits to describe the hysteretic behavior of stranded cables in a more
accessible and accurate way and synthetically accounts for the geometrical and mechanical
properties of conductor cross-section, as was extensively treated in Subsection 3.5.4, where
the approximated bi-linear relationship for the moment-curvature law was introduced.
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Chapter 6. Conclusion

An important conclusion of the work regards the influence of the construction parameter on
both the static response of the cable and its dynamic behavior, with particular interest on
its self-damping properties.
In fact, in Section 3.8 a well documented bending test of the literature was used to assess the
different response of an ACSR 48/7 Bersfort in view of the various values of c0 previously
determined. A not negligible influence on the cable deflection as well as on the bending
stiffness transition was found.
Furthermore, in Section 4.2 theoretical predictions of the self-damping of ACSR conductors
were analyzed by applying the enhanced unified analytical model derived in Section 4.1.
It has been shown that the predicted dissipated power through the Micro-Slip dissipation
mechanism is significantly affected by the variation of c0, in the plane (2χ0 l)

2Π - J .
However, as a general conclusion, a better correlation between the experimental results and
the predictions obtained through Gross-Sliding dissipation mechanism was generally found.
The activation of the Micro-Slip dissipation mechanism was present in few cases only.
Additionally, if the transition between Micro-Slip and Gross-Sliding dissipation mechanisms
was observed, the theoretical thresholds predicted by applying the analytical model described
in Section 4.1 have been improved, i.e. the introduction of a range of c0 values have led
to the obtainment of closer theoretical thresholds with respect to the experimental ones, if
compared to past researchers’ results (Foti et al., 2021, 2022).
Moreover, the influence of the construction parameter on the theoretical self-damping predic-
tions obtained through the Gross-Sliding dissipation mechanism was conveniently assessed
in the plane Πexp-Πth. It has been shown that c0 only affects the intercept of the regression
lines, being their slope unchanged.
In the last part of the work, the severity of aeolian vibrations was assessed with reference to
the bare conductor, through the application of the Energy Balance Principle. The influence
of the construction parameter on the non-dimensional vibrations amplitude predictions by
means of the theoretical damping models was investigated. Results show that the magni-
tude of the predicted vibrations amplitude can significantly vary, on par with well-known
parameters such as the friction coefficient µ and the stiffness reduction factor β.

A disadvantage of the proposed approach lies in the difficulty of identification of the correct
sliding condition that should be enforced for the computation of a construction parameter
that is representative of the real cable behavior. This is obviously not an easy task, and
requires further experimental campaigns on the real on-field conductors flexural behavior.
Furthermore, additional studies are still required for the complete characterization of self-
damping properties of ACSR conductors, especially for their hysteretic behavior at small
curvature values, i.e. their dissipation capacities whenever the Micro-Slip phenomenon is
activated.
However, as a big advantage of the developed work, a full range of c0 values was provided
for a sample of 15 widespread ACSR conductors, resulting in strong simplification of the
proposed applications from the point of view of the common engineering practice.
The results obtained as a conclusion of this work paves the way for a more accurate character-
ization of the hysteretic behavior of stranded cables. Practical interests of the research work
are directly related to the possibility of a more accurate assessment of the Self-Damping of
overhead electrical line conductors as well as the evaluation of aeolian vibrations amplitude.
Such aspects will permit to predict the remaining life of the conductor more precisely, leading
to a predictive and optimized maintenance and supporting the decision-making about the
inspection methods for critical regions of the line.
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Chapter 6. Conclusion

6.2 Future Developments

Based on the achieved results, some future developments are proposed:

• analysis of additional radial transmission pressures models and sliding conditions, and
assessment on their influence of the construction parameter, according to the general
formulation of the proposed methodology (e.g. analysis of the radial pressures model
proposed by Foti and Martinelli (2019), which accounts for the deformability of contact
patches);

• computation of the construction parameters for other conductors cross-sections (i.e.
creation of a database for ACSR conductors), and validation of the proposed linear
interpolations for different conductor diameters;

• extension of the procedure to other conductor typologies, for instance to trapezoidal
wires conductors (namely ACSR TW conductors), in order to promote an easier
assessment of their self-damping properties;

• comparison of the approximated radial contact forces (normal contact forces acting
on contact points between adjacent layers) obtained through different formulas for
the computation of the distance between two contact points, with numerical results
coming from 2D and 3D Finite Elements Models. This proposal aims to verify the
influence of the contact points distance formula on the prediction of the approximated
values of the radial contact force with respect to FEM numerical results;

• realization of an accurate experimental campaign for the investigation of the transition
between Micro-Slip and Gross-Sliding dissipation mechanisms in ACSR conductors;

• establishment of a link between the cross-sectional response of stranded cables through
their hysteretic behavior characterization and the response at the micro-scale, i.e.
description of the tribological problem, involving fretting fatigue phenomenon and the
development of bending boundary layers. Such aspects surely involve the identification
of proper indicators concerning the damage assessment due to fretting fatigue. On
these regards, estimation of relative displacements between wires through micro-slip
and gross-sliding mechanisms could be adopted as a novel proposal;

• correlation of the "meso-scale" cross-sectional parameters for the bending response of
stranded cables and assessment of the response at the whole infrastructure level, in
the context of wind-structure interaction phenomena. The link between the stochastic
characteristics of the excitation and the stochastic characteristics of the structural
response can however be easily determined only when the structural model is linear.
On the contrary, in this case, the mechanical model describing the bending response
is inherently nonlinear and non-holonomic, so that the link to be established will be
surely nonlinear.
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Appendix A

Mechanical and Geometrical
Characteristics of ACSR Conductors

In this appendix, the geometrical and mechanical properties of the ACSR conductors used
in the different chapters of this thesis are reported.
The geometric characteristics of ACSR conductors are collected in Table A.1. The involved
quantities are: the outer diameter D; the number of layers nL; the diameter of steel and
aluminium wires, indicated respectively by the symbols dst and dal.

Table A.1. Geometric characteristics of commercial ACSR conductors.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm)

Sparrow 6/1 8.01 1 2.67 2.67
Pigeon 6/1 12.75 1 4.25 4.25
Penguin 6/1 14.31 1 4.77 4.77

Partridge 26/7 16.28 3 2.00 2.57
Hawk 26/7 21.80 3 2.68 3.44
Drake 26/7 28.10 3 3.45 4.44

Carillon 48/7 30.48 4 2.84 3.66
Gatineau 48/7 33.0 4 3.08 3.96
Bersfort 48/7 35.60 4 3.32 4.27

Duck 54/7 24.21 4 2.69 2.69
Crow 54/7 26.28 4 2.92 2.92
Curlew 54/7 31.59 4 3.51 3.51

Falcon 72/7 37.69 5 2.51 3.77
Nelson I 72/7 40.60 5 2.71 4.06
Nelson II 72/7 43.20 5 2.88 4.32
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Appendix A. Mechanical and Geometrical Characteristics of ACSR Conductors

The mechanical characteristics of the ACSR conductors are reported in Table A.2. The
involved quantities are: the outer diameter D; the Rated Tensile Strength RTS; the mass
per unit length of the cable m; the maximum and minimum theoretical values of the tangent
bending stiffness EImax and EImin.
Such mechanical parameters have been computed according to the ASTM standard (1) and
by considering a Young’s modulus for steel and aluminium wires of Est = 200 GPa and
Eal = 69 GPa respectively. The Poisson’s ratio was set equal to ν = 0.3 for both steel and
aluminium wires.

Table A.2. Mechanical characteristics of commercial ACSR conductors.

Code Word Stranding RTS (kN) m (kg/m) EImax (Nm2) EImin (Nm2)

Sparrow 6/1 12.4 0.136 9.47 1.52
Pigeon 6/1 29.6 0.344 60.8 9.73
Penguin 6/1 37.3 0.434 96.4 15.4

Partridge 26/7 50.0 0.546 167 4.8
Hawk 26/7 86.1 0.977 537 15.5
Drake 26/7 138 1.626 1487 42.9

Carillon 48/7 136 1.745 2021 32.8
Gatineau 48/7 155 2.042 2774 45.0
Bersfort 48/7 180 2.375 3749 60.8

Duck 54/7 101 1.160 814 12.9
Crow 54/7 117 1.371 1130 17.9
Curlew 54/7 163 1.980 2359 37.3

Falcon 72/7 172 2.501 4492 49.9
Nelson I 72/7 200 2.902 6051 67.1
Nelson II 72/7 226 3.277 7751 86.0

The composition of the different stranded cables is reported in Tables A.3-A.17.
For each layer of wires, the following quantities are indicated: number of wires nw, diameter
of wires dw, preferred helix pitch with sign Pp (a positive sign is conventionally assigned to
the pitch of helices which are twisted around the strand axis according to the right-hand
rule), Young’s modulus E, Poisson’s ratio ν and initial swept angle of the wires θ0 (see
Section 3.1).
Each section of this appendix is fully devoted to a stranding typology.
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Appendix A. Mechanical and Geometrical Characteristics of ACSR Conductors

A.1 ACSR 6/1 Conductors

Table A.3. ACSR 6/1 Sparrow: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.67 0 200 0.3 0
1 6 2.67 -104.13 69 0.3 0

Table A.4. ACSR 6/1 Pigeon: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 4.25 0 200 0.3 0
1 6 4.25 -165.75 69 0.3 0

Table A.5. ACSR 6/1 Penguin: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 4.77 0 200 0.3 0
1 6 4.77 -186.03 69 0.3 0

A.2 ACSR 26/7 Conductors

Table A.6. ACSR 26/7 Partridge: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.00 0 200 0.3 0
1 6 2.00 -150.00 200 0.3 0
2 10 2.57 144.82 69 0.3 0
3 16 2.57 -179.08 69 0.3 0

Table A.7. ACSR 26/7 Hawk: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.68 0 200 0.3 0
1 6 2.68 -201.00 200 0.3 0
2 10 3.44 193.96 69 0.3 0
3 16 3.44 -239.80 69 0.3 0
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Table A.8. ACSR 26/7 Drake: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 3.45 0 200 0.3 0
1 6 3.45 -258.75 200 0.3 0
2 10 4.44 249.99 69 0.3 0
3 16 4.44 -309.21 69 0.3 0

A.3 ACSR 48/7 Conductors

Table A.9. ACSR 48/7 Carillon: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.84 0 200 0.3 0
1 6 2.84 -213.00 200 0.3 0
2 10 3.66 205.92 69 0.3 0
3 16 3.66 -301.08 69 0.3 0
4 22 3.66 355.28 69 0.3 0

Table A.10. ACSR 48/7 Gatineau: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 3.08 0 200 0.3 0
1 6 3.08 -231.00 200 0.3 0
2 10 3.96 223.08 69 0.3 0
3 16 3.96 -326.04 69 0.3 0
4 22 3.96 363.00 69 0.3 0

Table A.11. ACSR 48/7 Bersfort: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 3.32 0 200 0.3 0
1 6 3.32 -249.00 200 0.3 0
2 10 4.27 240.50 69 0.3 0
3 16 4.27 -351.52 69 0.3 0
4 22 4.27 391.38 69 0.3 0
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A.4 ACSR 54/7 Conductors

Table A.12. ACSR 54/7 Duck: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.69 0 200 0.3 0
1 6 2.69 -201.75 200 0.3 0
2 12 2.69 174.85 69 0.3 0
3 18 2.69 -244.79 69 0.3 0
4 24 2.69 266.31 69 0.3 0

Table A.13. ACSR 54/7 Crow: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.92 0 200 0.3 0
1 6 2.92 -219.00 200 0.3 0
2 12 2.92 189.80 69 0.3 0
3 18 2.92 -265.72 69 0.3 0
4 24 2.92 289.08 69 0.3 0

Table A.14. ACSR 54/7 Curlew: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 3.51 0 200 0.3 0
1 6 3.51 -263.25 200 0.3 0
2 12 3.51 228.15 69 0.3 0
3 18 3.51 -319.41 69 0.3 0
4 24 3.51 347.49 69 0.3 0
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A.5 ACSR 72/7 Conductors

Table A.15. ACSR 72/7 Falcon: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.51 0 200 0.3 0
1 6 2.51 -188.25 200 0.3 0
2 9 3.77 195.91 69 0.3 0
3 15 3.77 -293.93 69 0.3 0
4 21 3.77 391.95 69 0.3 0
5 27 3.77 -414.59 69 0.3 0

Table A.16. ACSR 72/7 Nelson I: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.71 0 200 0.3 0
1 6 2.71 -203.25 200 0.3 0
2 9 4.06 211.25 69 0.3 0
3 15 4.06 -316.81 69 0.3 0
4 21 4.06 422.37 69 0.3 0
5 27 4.06 -446.71 69 0.3 0

Table A.17. ACSR 72/7 Nelson II: strand composition.

Layer nw dw (mm) Pp (mm) E (GPa) ν (-) θ0 (deg)

0 1 2.88 0 200 0.3 0
1 6 2.88 -216.00 200 0.3 0
2 9 4.32 224.64 69 0.3 0
3 15 4.32 -336.96 69 0.3 0
4 21 4.32 449.28 69 0.3 0
5 27 4.32 -475.20 69 0.3 0
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Appendix B

Cross-sections of ACSR conductors

In this Appendix, the cross-section of each ACSR conductor analyzed in this thesis work is
reported.
The mechanical and geometrical properties of ACSR conductors are listed in Appendix A.
Each Figure is fully dedicated to a stranding typology, whereas the different subfigures collect
the conductor cross-sections belonging to the same stranding class.

ACSR 6/1 Sparrow
ACSR 6/1 Pigeon

ACSR 6/1 Penguin

ACSR 26/7 Partridge

ACSR 26/7 Hawk

ACSR 26/7 Drake

(a) ACSR 6/1 Sparrow.

ACSR 6/1 Sparrow
ACSR 6/1 Pigeon

ACSR 6/1 Penguin

ACSR 26/7 Partridge

ACSR 26/7 Hawk

ACSR 26/7 Drake

(b) ACSR 6/1 Pigeon.ACSR 6/1 Sparrow
ACSR 6/1 Pigeon

ACSR 6/1 Penguin

ACSR 26/7 Partridge

ACSR 26/7 Hawk

ACSR 26/7 Drake

(c) ACSR 6/1 Penguin.

Figure B.1. Cross-sections of ACSR 6/1 conductors.
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ACSR 6/1 Sparrow
ACSR 6/1 Pigeon

ACSR 6/1 Penguin

ACSR 26/7 Partridge

ACSR 26/7 Hawk

ACSR 26/7 Drake

(a) ACSR 26/7 Partridge.

ACSR 6/1 Sparrow
ACSR 6/1 Pigeon

ACSR 6/1 Penguin

ACSR 26/7 Partridge

ACSR 26/7 Hawk

ACSR 26/7 Drake

(b) ACSR 26/7 Hawk.

ACSR 6/1 Sparrow
ACSR 6/1 Pigeon

ACSR 6/1 Penguin

ACSR 26/7 Partridge

ACSR 26/7 Hawk

ACSR 26/7 Drake

(c) ACSR 26/7 Drake.

Figure B.2. Cross-sections of ACSR 26/7 conductors.
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ACSR 48/7 Carillon

ACSR 48/7 Gatineau

ACSR 48/7 Bersfort

ACSR 54/7 Duck

ACSR 54/7 Crow

ACSR 54/7 Curlew

ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(a) ACSR 48/7 Carillon.

ACSR 48/7 Carillon

ACSR 48/7 Gatineau

ACSR 48/7 Bersfort

ACSR 54/7 Duck

ACSR 54/7 Crow

ACSR 54/7 Curlew

ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(b) ACSR 48/7 Gatineau.
ACSR 48/7 Carillon

ACSR 48/7 Gatineau

ACSR 48/7 Bersfort

ACSR 54/7 Duck

ACSR 54/7 Crow

ACSR 54/7 Curlew

ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(c) ACSR 48/7 Bersfort.

Figure B.3. Cross-sections of ACSR 48/7 conductors.
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ACSR 48/7 Carillon

ACSR 48/7 Gatineau

ACSR 48/7 Bersfort

ACSR 54/7 Duck

ACSR 54/7 Crow

ACSR 54/7 Curlew

ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(a) ACSR 54/7 Duck.

ACSR 48/7 Carillon

ACSR 48/7 Gatineau

ACSR 48/7 Bersfort

ACSR 54/7 Duck

ACSR 54/7 Crow

ACSR 54/7 Curlew

ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(b) ACSR 54/7 Crow.

ACSR 48/7 Carillon

ACSR 48/7 Gatineau

ACSR 48/7 Bersfort

ACSR 54/7 Duck

ACSR 54/7 Crow

ACSR 54/7 Curlew

ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(c) ACSR 54/7 Curlew.

Figure B.4. Cross-sections of ACSR 54/7 conductors.
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ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(a) ACSR 72/7 Falcon.

ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(b) ACSR 72/7 Nelson I.
ACSR 72/7 Falcon

ACSR 72/7 Nelson I

ACSR 72/7 Nelson II

(c) ACSR 72/7 Nelson II.

Figure B.5. Cross-sections of ACSR 72/7 conductors.
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Appendix C

Assessment of Lateral Contact
Conditions for ACSR Conductors

In this appendix, the lateral contact conditions for ACSR conductors are ssessed, with
reference to the different lay angles α, according to ASTM standard (1). The values of the
maximum and minimum helix pitch (i.e. Pmax and Pmin) are adopted, leading respectively
to the minimum and maximum lay angles (i.e. αmin and αmax).
The latter are obviously compared with the maximum admissible lay angle αmax,adm computed
according to the procedure explained in Subsection 3.2.1.
Sections C.1 and C.2 deal with the assessment of lateral contact conditions by considering
respectively the maximum and minimum lay angle for a sample of 15 ACSR conductors.
The mechanical and geometrical properties of ACSR conductors are listed in Appendix A,
whereas their cross-sections schemes are conveniently reported in Appendix B.
As a matter of fact, by considering the minimum lay angle αmin computed according to the
ASTM standard (1), the lateral contact condition is only present between the core wire and
the first layer of wires.

C.1 Maximum Lay Angle

Table C.1. Lateral contact condition for 6/1 conductors. Maximum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmax Lateral Contact

Innermost Layer i = 1.

Sparrow 6/1 8.01 1 2.67 2.67 0.00 9.90 Yes
Pigeon 6/1 12.75 1 4.25 4.25 0.00 9.90 Yes
Penguin 6/1 14.31 1 4.77 4.77 0.00 9.90 Yes
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Table C.2. Lateral contact condition for 26/7 conductors. Maximum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmax Lateral Contact

Outermost Layer i = 3.

Partridge 26/7 16.28 3 2.00 2.57 16.33 14.82 No
Hawk 26/7 21.80 3 2.68 3.44 16.33 14.82 No
Drake 26/7 28.10 3 3.45 4.44 16.33 14.82 No

Middle Layer i = 2.

Partridge 26/7 16.28 3 2.00 2.57 14.56 13.59 No
Hawk 26/7 21.80 3 2.68 3.44 14.56 13.59 No
Drake 26/7 28.10 3 3.45 4.44 14.56 13.59 No

Innermost Layer i = 1.

Partridge 26/7 16.28 3 2.00 2.57 0.00 6.64 Yes
Hawk 26/7 21.80 3 2.68 3.44 0.00 6.64 Yes
Drake 26/7 28.10 3 3.45 4.44 0.00 6.64 Yes

Table C.3. Lateral contact condition for 48/7 conductors. Maximum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmax Lateral Contact

Outermost Layer i = 4.

Carillon 48/7 30.48 4 2.84 3.66 16.79 15.45 No
Gatineau 48/7 33.00 4 3.08 3.96 16.79 15.45 No
Bersfort 48/7 35.60 4 3.32 4.27 16.79 15.45 No

Layer i = 3.

Carillon 48/7 30.48 4 2.84 3.66 16.33 14.81 No
Gatineau 48/7 33.00 4 3.08 3.96 16.33 14.81 No
Bersfort 48/7 35.60 4 3.32 4.27 16.33 14.81 No

Layer i = 2.

Carillon 48/7 30.48 4 2.84 3.66 14.55 13.58 No
Gatineau 48/7 33.00 4 3.08 3.96 14.55 13.58 No
Bersfort 48/7 35.60 4 3.32 4.27 14.55 13.58 No

Innermost Layer i = 1.

Carillon 48/7 30.48 4 2.84 3.66 0.00 6.64 Yes
Gatineau 48/7 33.00 4 3.08 3.96 0.00 6.64 Yes
Bersfort 48/7 35.60 4 3.32 4.27 0.00 6.64 Yes

222



Appendix C. Assessment of Lateral Contact Conditions for ACSR Conductors

Table C.4. Lateral contact condition for 54/7 conductors. Maximum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmax Lateral Contact

Outermost Layer i = 4.

Duck 54/7 24.21 4 2.69 2.69 16.87 15.60 No
Crow 54/7 26.28 4 2.92 2.92 16.87 15.60 No
Curlew 54/7 31.59 4 3.51 3.51 16.87 15.60 No

Layer i = 3.

Duck 54/7 24.21 4 2.69 2.69 16.54 15.07 No
Crow 54/7 26.28 4 2.92 2.92 16.54 15.07 No
Curlew 54/7 31.59 4 3.51 3.51 16.54 15.07 No

Layer i = 2.

Duck 54/7 24.21 4 2.69 2.69 15.50 14.11 No
Crow 54/7 26.28 4 2.92 2.92 15.50 14.11 No
Curlew 54/7 31.59 4 3.51 3.51 15.50 14.11 No

Innermost Layer i = 1.

Duck 54/7 24.21 4 2.69 2.69 0.00 6.64 Yes
Crow 54/7 26.28 4 2.92 2.92 0.00 6.64 Yes
Curlew 54/7 31.59 4 3.51 3.51 0.00 6.64 Yes

Table C.5. Lateral contact condition for 72/7 conductors. Maximum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmax Lateral Contact

Outermost Layer i = 5.

Falcon 72/7 37.69 5 2.51 3.77 16.95 19.46 Yes
Nelson I 72/7 40.60 5 2.71 4.06 16.95 19.46 Yes
Nelson II 72/7 43.20 5 2.88 4.32 16.95 19.46 Yes

Layer i = 4.

Falcon 72/7 37.69 5 2.51 3.77 16.74 20.13 Yes
Nelson I 72/7 40.60 5 2.71 4.06 16.74 20.13 Yes
Nelson II 72/7 43.20 5 2.88 4.32 16.74 20.13 Yes

Layer i = 3.

Falcon 72/7 37.69 5 2.51 3.77 16.19 14.67 No
Nelson I 72/7 40.60 5 2.71 4.06 16.19 14.67 No
Nelson II 72/7 43.20 5 2.88 4.32 16.19 14.67 No

Layer i = 2.

Falcon 72/7 37.69 5 2.51 3.77 13.74 13.26 No
Nelson I 72/7 40.60 5 2.71 4.06 13.74 13.26 No
Nelson II 72/7 43.20 5 2.88 4.32 13.74 13.26 No

Innermost Layer i = 1.

Falcon 72/7 37.69 5 2.51 3.77 0.00 6.64 Yes
Nelson I 72/7 40.60 5 2.71 4.06 0.00 6.64 Yes
Nelson II 72/7 43.20 5 2.88 4.32 0.00 6.64 Yes
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C.2 Minimum Lay Angle

Table C.6. Lateral contact condition for 6/1 conductors. Minimum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmin Lateral Contact

Innermost Layer i = 1.

Sparrow 6/1 8.01 1 2.67 2.67 0.00 8.22 Yes
Pigeon 6/1 12.75 1 4.25 4.25 0.00 8.22 Yes
Penguin 6/1 14.31 1 4.77 4.77 0.00 8.22 Yes

Table C.7. Lateral contact condition for 26/7 conductors. Minimum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmin Lateral Contact

Outermost Layer i = 3.

Partridge 26/7 16.28 3 2.00 2.57 16.33 11.50 No
Hawk 26/7 21.80 3 2.68 3.44 16.33 11.50 No
Drake 26/7 28.10 3 3.45 4.44 16.33 11.50 No

Middle Layer i = 2.

Partridge 26/7 16.28 3 2.00 2.57 14.56 8.09 No
Hawk 26/7 21.80 3 2.68 3.44 14.56 8.09 No
Drake 26/7 28.10 3 3.45 4.44 14.56 8.09 No

Innermost Layer i = 1.

Partridge 26/7 16.28 3 2.00 2.57 0.00 3.99 Yes
Hawk 26/7 21.80 3 2.68 3.44 0.00 3.99 Yes
Drake 26/7 28.10 3 3.45 4.44 0.00 3.99 Yes
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Table C.8. Lateral contact condition for 48/7 conductors. Minimum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmin Lateral Contact

Outermost Layer i = 4.

Carillon 48/7 30.48 4 2.84 3.66 16.79 12.00 No
Gatineau 48/7 33.00 4 3.08 3.96 16.79 12.00 No
Bersfort 48/7 35.60 4 3.32 4.27 16.79 12.00 No

Layer i = 3.

Carillon 48/7 30.48 4 2.84 3.66 16.33 9.39 No
Gatineau 48/7 33.00 4 3.08 3.96 16.33 9.39 No
Bersfort 48/7 35.60 4 3.32 4.27 16.33 9.39 No

Layer i = 2.

Carillon 48/7 30.48 4 2.84 3.66 14.55 8.09 No
Gatineau 48/7 33.00 4 3.08 3.96 14.55 8.09 No
Bersfort 48/7 35.60 4 3.32 4.27 14.55 8.09 No

Innermost Layer i = 1.

Carillon 48/7 30.48 4 2.84 3.66 0.00 3.99 Yes
Gatineau 48/7 33.00 4 3.08 3.96 0.00 3.99 Yes
Bersfort 48/7 35.60 4 3.32 4.27 0.00 3.99 Yes

Table C.9. Lateral contact condition for 54/7 conductors. Minimum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmin Lateral Contact

Outermost Layer i = 4.

Duck 54/7 24.21 4 2.69 2.69 16.87 12.12 No
Crow 54/7 26.28 4 2.92 2.92 16.87 12.12 No
Curlew 54/7 31.59 4 3.51 3.51 16.87 12.12 No

Layer i = 3.

Duck 54/7 24.21 4 2.69 2.69 16.54 9.55 No
Crow 54/7 26.28 4 2.92 2.92 16.54 9.55 No
Curlew 54/7 31.59 4 3.51 3.51 16.54 9.55 No

Layer i = 2.

Duck 54/7 24.21 4 2.69 2.69 15.50 8.41 No
Crow 54/7 26.28 4 2.92 2.92 15.50 8.41 No
Curlew 54/7 31.59 4 3.51 3.51 15.50 8.41 No

Innermost Layer i = 1.

Duck 54/7 24.21 4 2.69 2.69 0.00 3.99 Yes
Crow 54/7 26.28 4 2.92 2.92 0.00 3.99 Yes
Curlew 54/7 31.59 4 3.51 3.51 0.00 3.99 Yes
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Table C.10. Lateral contact condition for 72/7 conductors. Minimum lay angle.

Code Word Stranding D (mm) nL (−) dst (mm) dal (mm) αmax,adm αmin Lateral Contact

Outermost Layer i = 5.

Falcon 72/7 37.69 5 2.51 3.77 16.95 15.21 No
Nelson I 72/7 40.60 5 2.71 4.06 16.95 15.21 No
Nelson II 72/7 43.20 5 2.88 4.32 16.95 15.21 No

Layer i = 4.

Falcon 72/7 37.69 5 2.51 3.77 16.74 12.90 No
Nelson I 72/7 40.60 5 2.71 4.06 16.74 12.90 No
Nelson II 72/7 43.20 5 2.88 4.32 16.74 12.90 No

Layer i = 3.

Falcon 72/7 37.69 5 2.51 3.77 16.19 9.29 No
Nelson I 72/7 40.60 5 2.71 4.06 16.19 9.29 No
Nelson II 72/7 43.20 5 2.88 4.32 16.19 9.29 No

Layer i = 2.

Falcon 72/7 37.69 5 2.51 3.77 13.74 7.89 No
Nelson I 72/7 40.60 5 2.71 4.06 13.74 7.89 No
Nelson II 72/7 43.20 5 2.88 4.32 13.74 7.89 No

Innermost Layer i = 1.

Falcon 72/7 37.69 5 2.51 3.77 0.00 3.99 Yes
Nelson I 72/7 40.60 5 2.71 4.06 0.00 3.99 Yes
Nelson II 72/7 43.20 5 2.88 4.32 0.00 3.99 Yes
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Appendix D

Approximated Radial Forces for
ACSR Conductors

In this Appendix, the approximated radial forces computed in Subsection 3.4.3 are reported
in tabular form for the sake of convenience. Results are distinguished for each layer of
the various conductor cross-sections. The mechanical and geometrical properties of ACSR
conductors are listed in Appendix A, whereas their cross-sections schemes are conveniently
reported in Appendix B.
It is worth noticing that:

• distances between contact points are not computed for the case of 6/1 conductors and
for the first layer (i.e i = 1) of multilayer strands. This is due to the fact that contact
patches between the core and the first layer of wires are assumed to be continuous and
not pointwise distributed (see Subsection 3.2.2 for further details). As a consequence,
approximated radial contact forces are not computed for such cases;

• radial contact forces per unit of length that are adopted for the computation of such
approximated radial forces, have been computed in Paragraph 3.4.2 with reference
to an axial load of 1 kN acting on the strand. Due to the linearity property of the
axial-torsional problem, the following results can be easily scaled up in order to obtain
the corresponding values of the approximated radial contact forces for any magnitude
of the axial load Ns acting on the strand.

Each section of this Appendix is fully dedicated to a stranding typology.
Tables D.1-D.12 collect the approximated radial contact forces P int and P ext computed at
each layer of the considered conductor for three radial pressures models (P.M A, B and C)
and for three different distances between contact points, computed according to the equations
proposed by Cardou (2013) (Eq. 3.20), Chouinard (1994) (Eq. 3.21) and Papailiou (1995)
(Eq. 3.22).
See Subsection 3.4.2 for the description of the three radial pressures transmission models
and Subsection 3.2.2 for further details on the computation of the distances between contact
points through the application of the three different equations of the literature.
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D.1 ACSR 26/7 Conductors

Table D.1. Approximated Radial Contact Forces, ACSR 26/7 Partridge.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 3.

Cardou 2,95 0,00 2,92 0,00 2,92 0,00
Chouinard 3,05 0,00 3,02 0,00 3,02 0,00
Papailiou 2,98 0,00 2,95 0,00 2,95 0,00

Layer i = 2.

Cardou 6,82 4,72 6,67 4,67 5,13 2,92
Chouinard 6,53 4,88 6,38 4,83 4,91 3,02
Papailiou 6,36 4,76 6,22 4,72 4,79 2,95

Layer i = 1

Cardou - 11,37 - 11,12 - 5,13
Chouinard - 10,88 - 10,64 - 4,91
Papailiou - 10,61 - 10,37 - 4,79

Table D.2. Approximated Radial Contact Forces, ACSR 26/7 Hawk.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 3.

Cardou 1,71 0,00 1,69 0,00 1,69 0,00
Chouinard 1,77 0,00 1,75 0,00 1,75 0,00
Papailiou 1,72 0,00 1,71 0,00 1,71 0,00

Layer i = 2.

Cardou 6,82 2,73 6,67 2,70 5,13 1,69
Chouinard 6,53 2,83 6,38 2,80 4,91 1,75
Papailiou 6,37 2,76 6,22 2,73 4,79 1,71

Layer i = 1

Cardou - 11,37 - 11,12 - 5,13
Chouinard - 10,88 - 10,64 - 4,91
Papailiou - 10,61 - 10,37 - 4,79
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Table D.3. Approximated Radial Contact Forces, ACSR 26/7 Drake.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 3.

Cardou 1,71 0,00 1,69 0,00 1,69 0,00
Chouinard 1,77 0,00 1,75 0,00 1,75 0,00
Papailiou 1,73 0,00 1,71 0,00 1,71 0,00

Layer i = 2.

Cardou 6,83 2,74 6,67 2,71 5,13 1,69
Chouinard 6,53 2,83 6,38 2,80 4,91 1,75
Papailiou 6,36 2,76 6,22 2,73 4,79 1,71

Layer i = 1

Cardou - 11,38 - 11,12 - 5,13
Chouinard - 10,88 - 10,64 - 4,91
Papailiou - 10,61 - 10,37 - 4,79
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D.2 ACSR 48/7 Conductors

Table D.4. Approximated Radial Contact Forces, ACSR 48/7 Bersfort.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 4.

Cardou 0,75 0,00 0,74 0,00 0,74 0,00
Chouinard 0,76 0,00 0,76 0,00 0,76 0,00
Papailiou 0,76 0,00 0,75 0,00 0,75 0,00

Layer i = 3.

Cardou 2,14 1,03 2,11 1,02 1,76 0,74
Chouinard 2,25 1,05 2,22 1,04 1,86 0,76
Papailiou 2,16 1,04 2,12 1,03 1,78 0,75

Layer i = 2.

Cardou 6,63 3,43 6,43 3,37 4,15 1,76
Chouinard 6,34 3,61 6,15 3,55 3,97 1,86
Papailiou 6,18 3,45 5,99 3,39 3,87 1,78

Layer i = 1

Cardou - 11,04 - 10,72 - 4,15
Chouinard - 10,56 - 10,25 - 3,97
Papailiou - 10,30 - 9,99 - 3,87
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Table D.5. Approximated Radial Contact Forces, ACSR 48/7 Carillon.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 4.

Cardou 0,72 0,00 0,71 0,00 0,71 0,00
Chouinard 0,73 0,00 0,73 0,00 0,73 0,00
Papailiou 0,73 0,00 0,72 0,00 0,72 0,00

Layer i = 3.

Cardou 2,01 0,99 1,98 0,98 1,66 0,71
Chouinard 2,13 1,01 2,10 1,00 1,76 0,73
Papailiou 2,03 1,00 1,99 0,99 1,67 0,72

Layer i = 2.

Cardou 5,97 3,22 5,79 3,17 3,74 1,66
Chouinard 5,61 3,41 5,45 3,36 3,52 1,76
Papailiou 5,20 3,24 5,05 3,19 3,26 1,67

Layer i = 1

Cardou - 9,95 - 9,66 - 3,74
Chouinard - 9,36 - 9,08 - 3,52
Papailiou - 8,67 - 8,41 - 3,26

Table D.6. Approximated Radial Contact Forces, ACSR 48/7 Gatineau.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 4.

Cardou 0,75 0,00 0,74 0,00 0,74 0,00
Chouinard 0,76 0,00 0,76 0,00 0,76 0,00
Papailiou 0,76 0,00 0,75 0,00 0,75 0,00

Layer i = 3.

Cardou 2,14 1,03 2,11 1,02 1,77 0,74
Chouinard 2,25 1,05 2,22 1,04 1,86 0,76
Papailiou 2,16 1,04 2,12 1,03 1,78 0,75

Layer i = 2.

Cardou 6,62 3,43 6,43 3,37 4,15 1,77
Chouinard 6,34 3,61 6,15 3,55 3,97 1,86
Papailiou 6,18 3,45 5,99 3,39 3,87 1,78

Layer i = 1

Cardou - 11,04 - 10,71 - 4,15
Chouinard - 10,57 - 10,25 - 3,97
Papailiou - 10,29 - 9,99 - 3,87
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D.3 ACSR 54/7 Conductors

Table D.7. Approximated Radial Contact Forces, ACSR 54/7 Duck.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 4.

Cardou 0,66 0,00 0,65 0,00 0,65 0,00
Chouinard 0,67 0,00 0,66 0,00 0,66 0,00
Papailiou 0,66 0,00 0,66 0,00 0,66 0,00

Layer i = 3.

Cardou 1,77 0,87 1,75 0,87 1,49 0,65
Chouinard 1,85 0,89 1,82 0,88 1,55 0,66
Papailiou 1,78 0,88 1,76 0,87 1,50 0,66

Layer i = 2.

Cardou 6,70 2,66 6,52 2,62 4,45 1,49
Chouinard 6,59 2,77 6,42 2,73 4,38 1,55
Papailiou 6,75 2,68 6,57 2,64 4,49 1,50

Layer i = 1

Cardou - 13,39 - 13,03 - 4,45
Chouinard - 13,19 - 12,84 - 4,38
Papailiou - 13,50 - 13,14 - 4,49
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Table D.8. Approximated Radial Contact Forces, ACSR 54/7 Crow.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 4.

Cardou 0,66 0,00 0,65 0,00 0,65 0,00
Chouinard 0,66 0,00 0,66 0,00 0,66 0,00
Papailiou 0,66 0,00 0,66 0,00 0,66 0,00

Layer i = 3.

Cardou 1,77 0,87 1,75 0,87 1,49 0,65
Chouinard 1,85 0,89 1,82 0,88 1,55 0,66
Papailiou 1,78 0,88 1,76 0,87 1,50 0,66

Layer i = 2.

Cardou 6,70 2,66 6,52 2,62 4,45 1,49
Chouinard 6,59 2,77 6,42 2,73 4,38 1,55
Papailiou 6,75 2,68 6,57 2,64 4,49 1,50

Layer i = 1

Cardou - 13,39 - 13,04 - 4,45
Chouinard - 13,19 - 12,84 - 4,38
Papailiou - 13,50 - 13,14 - 4,49

Table D.9. Approximated Radial Contact Forces, ACSR 54/7 Curlew.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 4.

Cardou 0,55 0,00 0,55 0,00 0,55 0,00
Chouinard 0,56 0,00 0,55 0,00 0,55 0,00
Papailiou 0,55 0,00 0,55 0,00 0,55 0,00

Layer i = 3.

Cardou 1,49 0,73 1,47 0,73 1,25 0,55
Chouinard 1,55 0,74 1,53 0,74 1,30 0,55
Papailiou 1,50 0,74 1,48 0,73 1,26 0,55

Layer i = 2.

Cardou 5,62 2,23 5,47 2,20 3,74 1,25
Chouinard 5,54 2,33 5,39 2,29 3,68 1,30
Papailiou 5,67 2,25 5,52 2,21 3,77 1,26

Layer i = 1

Cardou - 11,24 - 10,94 - 3,74
Chouinard - 11,07 - 10,78 - 3,68
Papailiou - 11,34 - 11,03 - 3,77
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D.4 ACSR 72/7 Conductors

Table D.10. Approximated Radial Contact Forces, ACSR 72/7 Falcon.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 5.

Cardou 0,53 0,00 0,52 0,00 0,52 0,00
Chouinard 0,54 0,00 0,53 0,00 0,53 0,00
Papailiou 0,53 0,00 0,53 0,00 0,53 0,00

Layer i = 4.

Cardou 1,62 0,68 1,59 0,67 1,39 0,52
Chouinard 1,64 0,69 1,60 0,69 1,41 0,53
Papailiou 1,64 0,69 1,60 0,68 1,41 0,53

Layer i = 3.

Cardou 3,75 2,27 3,63 2,22 2,54 1,39
Chouinard 3,98 2,30 3,85 2,25 2,70 1,41
Papailiou 3,94 2,30 3,81 2,25 2,67 1,41

Layer i = 2.

Cardou 8,98 6,25 8,57 6,05 4,29 2,54
Chouinard 8,43 6,63 8,04 6,42 4,02 2,70
Papailiou 7,74 6,56 7,38 6,36 3,70 2,67

Layer i = 1

Cardou - 13,48 - 12,85 - 4,29
Chouinard - 12,64 - 12,06 - 4,02
Papailiou - 11,61 - 11,08 - 3,70
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Table D.11. Approximated Radial Contact Forces, ACSR 72/7 Nelson I.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 5.

Cardou 0,53 0,00 0,52 0,00 0,52 0,00
Chouinard 0,54 0,00 0,53 0,00 0,53 0,00
Papailiou 0,53 0,00 0,53 0,00 0,53 0,00

Layer i = 4.

Cardou 1,62 0,68 1,59 0,67 1,39 0,52
Chouinard 1,64 0,69 1,60 0,69 1,41 0,53
Papailiou 1,64 0,69 1,60 0,68 1,41 0,53

Layer i = 3.

Cardou 3,75 2,27 3,63 2,22 2,54 1,39
Chouinard 3,97 2,29 3,85 2,24 2,69 1,41
Papailiou 3,77 2,29 3,66 2,24 2,56 1,41

Layer i = 2.

Cardou 8,99 6,25 8,57 6,05 4,29 2,54
Chouinard 8,43 6,62 8,04 6,42 4,03 2,69
Papailiou 7,76 6,29 7,40 6,09 3,70 2,56

Layer i = 1

Cardou - 13,48 - 12,86 - 4,29
Chouinard - 12,65 - 12,07 - 4,03
Papailiou - 11,64 - 11,10 - 3,70

Table D.12. Approximated Radial Contact Forces, ACSR 72/7 Nelson II.

Distance Pressure Model A Pressure Model B Pressure Model C
Formula P intr (N) P extr (N) P intr (N) P extr (N) P intr (N) P extr (N)

Layer i = 5.

Cardou 0,53 0,00 0,52 0,00 0,52 0,00
Chouinard 0,54 0,00 0,53 0,00 0,53 0,00
Papailiou 0,53 0,00 0,53 0,00 0,53 0,00

Layer i = 4.

Cardou 1,62 0,68 1,59 0,67 1,39 0,52
Chouinard 1,64 0,69 1,60 0,69 1,41 0,53
Papailiou 1,64 0,69 1,60 0,68 1,41 0,53

Layer i = 3.

Cardou 3,75 2,27 3,63 2,22 2,54 1,39
Chouinard 3,98 2,30 3,85 2,24 2,69 1,41
Papailiou 3,78 2,30 3,66 2,24 2,56 1,41

Layer i = 2.

Cardou 8,99 6,25 8,57 6,05 4,29 2,54
Chouinard 8,43 6,63 8,04 6,42 4,03 2,69
Papailiou 7,75 6,30 7,39 6,10 3,70 2,56

Layer i = 1

Cardou - 13,48 - 12,86 - 4,29
Chouinard - 12,65 - 12,06 - 4,03
Papailiou - 11,62 - 11,08 - 3,70

235





Appendix E

Nondimensional Wire Axial Force
Limit Domain for ACSR Conductors

In this appendix, the plots of the non-dimensional limit functions for the nonlinear component
of the wire axial force of different ACSR conductors are reported.
The mechanical and geometrical properties of ACSR conductors are listed in Appendix A,
whereas their cross-sections schemes are conveniently reported in Appendix B.
The admissible limit domain of the wire axial forces is represented by the envelope of the
continuous black lines, whereas the red dots indicate the values of the non-dimensional limit
functions at the swept angles θ identifying the wires positions.
Each curve correspond to the limit domain associated to a specific layer of wires and it is
indicated with its proper number, according to an ascending numbering starting from the
inner layers towards the outer ones (i.e. i = 1 denotes the first layer of wires in contact with
the core and max(i) denotes the outermost layer of wires, for the considered strand).
Such admissible domains are determined by considering the Radial Contact Pressure Model
A (see Subsection 3.4.2) and Sliding Condition 1 (see Subsection 3.5.3), according to the
developments presented in Section 3.5.
Each section of this appendix is fully dedicated to a stranding typology.
Figures E.1-E.15 show the non-dimensional axial force limit domain for the different ACSR
conductors.

237



Appendix E. Nondimensional Wire Axial Force Limit Domain for ACSR Conductors

E.1 ACSR 6/1 Conductors
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Figure E.1. Limit Domain of FNL
w1 /Ns for an ACSR 6/1 Sparrow.
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Figure E.2. Limit Domain of FNL
w1 /Ns for an ACSR 6/1 Pigeon.
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Figure E.3. Limit Domain of FNL
w1 /Ns for an ACSR 6/1 Penguin.
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E.2 ACSR 26/7 Conductors

0 50 100 150 200 250 300 350
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

i = 2

i = 1

i = 1

i = 2

i = 3

i = 3

i = 2

i = 1

i = 1

i = 2

i = 3

i = 3

Figure E.4. Limit Domain of FNL
w1 /Ns for an ACSR 26/7 Partridge.
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Figure E.5. Limit Domain of FNL
w1 /Ns for an ACSR 26/7 Hawk.
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Figure E.6. Limit Domain of FNL
w1 /Ns for an ACSR 26/7 Drake.
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E.3 ACSR 48/7 Conductors
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Figure E.7. Limit Domain of FNL
w1 /Ns for an ACSR 48/7 Bersfort.
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Figure E.8. Limit Domain of FNL
w1 /Ns for an ACSR 48/7 Carillon.
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Figure E.9. Limit Domain of FNL
w1 /Ns for an ACSR 48/7 Gatineau.
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E.4 ACSR 54/7 Conductors
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Figure E.10. Limit Domain of FNL
w1 /Ns for an ACSR 54/7 Duck.
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Figure E.11. Limit Domain of FNL
w1 /Ns for an ACSR 54/7 Crow.
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Figure E.12. Limit Domain of FNL
w1 /Ns for an ACSR 54/7 Curlew.
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E.5 ACSR 72/7 Conductors
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Figure E.13. Limit Domain of FNL
w1 /Ns for an ACSR 72/7 Falcon.
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Figure E.14. Limit Domain of FNL
w1 /Ns for an ACSR 72/7 Nelson I.
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Figure E.15. Limit Domain of FNL
w1 /Ns for an ACSR 72/7 Nelson II.
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Appendix F

Construction Parameter c0 of ACSR
Conductors

In this appendix, the construction parameter c0 for the description of the bi-linear approxi-
mated moment-curvature relationship is reported, for different radial pressures models (P.M.,
see Subsection 3.4.2) and sliding conditions (S.C., see Subsection 3.5.3).
See Subsection 3.5.4 for further details on the introduction of the construction parameter c0
for the description of the hysteretic behavior of metallic stranded cables.
The mechanical and geometrical properties of ACSR conductors are listed in Appendix A,
whereas their cross-sections schemes are conveniently reported in Appendix B.
Since 6 sliding conditions were enforced and 3 radial pressures models were studied, then 18
combinations for the computation of c0 arises for each conductor cross-section.
The results obtained for the construction parameter are collected in the following tables
(F.1-F.15). Such values were determined according to the numerical procedure presented in
Subsection 3.6.1. However, the closed-form expressions provided in Subsection 3.6.2 give
equivalent results.
Each section of this Appendix is fully dedicated to a stranding typology.

249



Appendix F. Construction Parameter c0 of ACSR Conductors

F.1 ACSR 6/1 Conductors

Table F.1. ACSR 6/1 Sparrow: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,267 0,267 0,267
S.C. 2 0,267 0,267 0,267
S.C. 3 0,267 0,267 0,267
S.C. 4 0,267 0,267 0,267
S.C. 5 0,263 0,263 0,267
S.C. 6 0,263 0,263 0,267

Table F.2. ACSR 6/1 Pigeon: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,158 0,158 0,158
S.C. 2 0,158 0,158 0,158
S.C. 3 0,158 0,158 0,158
S.C. 4 0,158 0,158 0,158
S.C. 5 0,156 0,156 0,158
S.C. 6 0,156 0,156 0,158

Table F.3. ACSR 6/1 Penguin: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,141 0,141 0,141
S.C. 2 0,141 0,141 0,141
S.C. 3 0,141 0,141 0,141
S.C. 4 0,141 0,141 0,141
S.C. 5 0,139 0,139 0,141
S.C. 6 0,139 0,139 0,141

250



Appendix F. Construction Parameter c0 of ACSR Conductors

F.2 ACSR 26/7 Conductors

Table F.4. ACSR 26/7 Partridge: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,404 0,399 0,300
S.C. 2 0,177 0,177 0,177
S.C. 3 0,404 0,399 0,300
S.C. 4 0,178 0,178 0,177
S.C. 5 0,400 0,395 0,300
S.C. 6 0,173 0,173 0,177

Table F.5. ACSR 26/7 Hawk: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,290 0,286 0,215
S.C. 2 0,127 0,127 0,127
S.C. 3 0,290 0,286 0,215
S.C. 4 0,127 0,127 0,127
S.C. 5 0,287 0,283 0,215
S.C. 6 0,124 0,124 0,127

Table F.6. ACSR 26/7 Drake: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,217 0,214 0,161
S.C. 2 0,095 0,095 0,095
S.C. 3 0,217 0,214 0,161
S.C. 4 0,095 0,095 0,095
S.C. 5 0,214 0,212 0,161
S.C. 6 0,093 0,093 0,095
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F.3 ACSR 48/7 Conductors

Table F.7. ACSR 48/7 Bersfort: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,190 0,187 0,139
S.C. 2 0,069 0,069 0,069
S.C. 3 0,190 0,187 0,139
S.C. 4 0,069 0,069 0,069
S.C. 5 0,189 0,186 0,139
S.C. 6 0,068 0,068 0,069

Table F.8. ACSR 48/7 Carillon: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,228 0,225 0,167
S.C. 2 0,083 0,083 0,083
S.C. 3 0,228 0,225 0,167
S.C. 4 0,083 0,083 0,083
S.C. 5 0,227 0,223 0,167
S.C. 6 0,081 0,081 0,083

Table F.9. ACSR 48/8 Gatineau: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,205 0,202 0,150
S.C. 2 0,074 0,074 0,074
S.C. 3 0,205 0,202 0,150
S.C. 4 0,075 0,075 0,074
S.C. 5 0,204 0,201 0,150
S.C. 6 0,073 0,073 0,074
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F.4 ACSR 54/7 Conductors

Table F.10. ACSR 54/7 Duck: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,412 0,406 0,295
S.C. 2 0,138 0,138 0,138
S.C. 3 0,412 0,406 0,295
S.C. 4 0,138 0,138 0,138
S.C. 5 0,409 0,403 0,295
S.C. 6 0,135 0,135 0,138

Table F.11. ACSR 54/7 Crow: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,373 0,368 0,267
S.C. 2 0,125 0,125 0,125
S.C. 3 0,373 0,368 0,267
S.C. 4 0,125 0,125 0,125
S.C. 5 0,370 0,365 0,267
S.C. 6 0,122 0,122 0,125

Table F.12. ACSR 54/7 Curlew: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,248 0,245 0,178
S.C. 2 0,084 0,084 0,084
S.C. 3 0,248 0,245 0,178
S.C. 4 0,084 0,084 0,084
S.C. 5 0,246 0,243 0,178
S.C. 6 0,083 0,083 0,084
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F.5 ACSR 72/7 Conductors

Table F.13. ACSR 72/7 Falcon: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,261 0,255 0,184
S.C. 2 0,075 0,075 0,075
S.C. 3 0,261 0,255 0,184
S.C. 4 0,075 0,075 0,075
S.C. 5 0,259 0,253 0,184
S.C. 6 0,073 0,073 0,075

Table F.14. ACSR 72/7 Nelson I: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,243 0,237 0,171
S.C. 2 0,070 0,070 0,070
S.C. 3 0,243 0,237 0,171
S.C. 4 0,070 0,070 0,070
S.C. 5 0,241 0,235 0,171
S.C. 6 0,068 0,068 0,070

Table F.15. ACSR 72/7 Nelson II: construction parameter c0 (1/m).

P.M. A P.M. B P.M. C

S.C. 1 0,228 0,223 0,161
S.C.2 0,066 0,066 0,066
S.C. 3 0,228 0,223 0,161
S.C. 4 0,066 0,066 0,066
S.C. 5 0,226 0,220 0,161
S.C. 6 0,064 0,064 0,066
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Acronyms

ACSR Aluminium Conductor Steel Reinforced

VIV Vortex Induced Vibrations

OHL Overhead High voltage Lines

EBP Energy Balance Principle

SRS Strand-attached Reference System

ISWR Inverse Standing Wave Ratio

PM Pressures Model

SC Sliding Condition

MS Micro-Slip

GS Gross-Sliding

FM Full-Model
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