
PC-Gau: PCA Basis of Scattered
Gaussians for Shape Matching via
Functional Maps

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Michele Colombo

Student ID: 944962
Advisor: Prof. Giacomo Boracchi
Co-advisor: Prof. Simone Melzi
Academic Year: 2021-22

i

Abstract

Shape matching, i.e. finding correspondences between pairs of shapes, is a key problem in
geometry processing, with a wide range of applications, from texture transfer to statistical
shape analysis. The functional map approach frames the problem as a correspondence
between functional spaces defined on the shapes. Such correspondence admits a compact
matricial representation, once a functional basis is defined on each mesh. For many ap-
plications, however, dense point-wise maps are required and lots of methods have been
proposed to obtain accurate point-wise maps using functional maps. The majority of such
methods employed the eigenfunctions of the Laplace-Beltrami operator as the functional
basis. We found that a major limitation of the LB basis, though, is that its energy is
not evenly distributed on the mesh surface, providing vertices in different areas of the
mesh with an inconsistent quality of representation. Our analysis shows that this uneven
distribution is a source of errors in the maps obtained. We propose, thus, a new func-
tional basis whose energy is evenly distributed on the whole mesh. We build our basis
by applying PCA to a dictionary of Gaussian functions scattered on the mesh surface.
The rationale behind is to obtain a uniform representation power, by enforcing the uni-
form distribution of the initial dictionary. This procedure builds, by construction, an
orthonormal basis that is compatible with existing functional map pipelines designed for
the standard basis. Through experimental evaluation on established datasets, we show
that our basis produces significantly more accurate point-wise maps — compared to the
standard basis — when employed in the same shape-matching pipeline. Moreover, the
benefits coming from advanced pipelines add up to the benefits given by the adoption of
our basis, making our approach complementary to other improvements proposed to the
functional map framework. Finally, we devise some metrics to assess the quality of vertex
representation provided by our basis. Aside from evaluation, these metrics can be used
to perform an accurate choice of the construction parameters, introducing adaptivity in
our method.

Keywords: Shape Matching, Functional Maps, Functional Basis

Abstract in lingua italiana

L’allineamento di forme 3D, cioè il problema di stabilire corrispondenze tra di esse, è
un problema chiave nell’ambito delle elaborazioni geometriche, con un’ampia gamma di
applicazioni, dal trasferimento di texture all’analisi delle forme stesse. L’approccio delle
mappe funzionali formula il problema come una corrispondenza tra spazi funzionali definiti
sulle mesh. Questa corrispondenza ammette una rappresentazione matriciale compatta,
una volta che è stata definita una base funzionale su ogni forma. Molte applicazioni,
però, richiedono mappe punto-a-punto. Sono, dunque, stati proposti molti metodi per ot-
tenere mappe puntuali accurate, usando le mappe funzionali. La maggior parte di questi
metodi adotta le autofunzioni dell’operatore di Laplace-Beltrami come mappa funzionale.
Riteniamo, però, la base LB possiede il grande limite di avere un’energia che non è dis-
tribuita uniformemente sulla superficie della mesh, fornendo un’inconsistente qualità di
rappresentazione ai vertici in diverse aree della mesh. La nostra analisi evidenzia che
questa distribuzione disuniforme è fonte di errori nelle mappe ottenute. Noi proponiamo,
quindi, una nuova base funzionale, la cui energia è distribuita uniformemente su tutta la
mesh. La nostra base è costruita applicando PCA a un dizionario di Gaussiane sparse
sulla superficie della mesh. L’idea alla base, è quella di ottenere un potere di rappresen-
tazione uniforme, imponendo un’uniforme distribuzione del dizionario iniziale. Da questa
procedura si ottiene, per costruzione, una base ortonormale compatibile con gli attuali
metodi di allineamento, pensati per la base standard LB. Attraverso la valutazione sper-
imentale su dataset riconosciuti, mostriamo che la nostra base produce mappe puntuali
significativamente più accurate rispetto a LB, a parità di metodo di allineamento impie-
gato. Inoltre, i benefici provenienti dall’uso di pipeline più avanzate si somma ai benefici
derivanti dall’impiego della nostra base, rendendo il nostro approccio complementare ad
altre migliorie proposte per il framework delle mappe funzionali. Infine, proponiamo al-
cune metriche per verificare la qualità di rappresentazione dei vertici fornita dalla nostra
base. Oltre che alla sua valutazione, queste metriche possono anche essere impiegate per
operare una buona scelta dei parametri di costruzione, introducendo adattività nel nostro
metodo.
Parole chiave: Allineamento di forme 3D, Mappe funzionali, Base funzionale

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 3D shapes 5
1.1 Continuous case: 2D manifolds . 5

1.1.1 Laplace Beltrami operator . 6
1.1.2 Spectral analysis on manifolds . 6

1.2 Discrete case: 3D meshes . 8
1.2.1 Discrete Laplace-Beltrami operator 10

2 Shape Matching 13
2.1 Problem formulation . 13
2.2 Functional maps . 14

2.2.1 Finding C . 17
2.2.2 Conversion to point-wise map . 18

2.3 Relation to previous work . 20
2.3.1 Alternative bases . 21

2.4 Limits of LB . 21

3 Proposed Solution: PC-Gau 23
3.1 Building Procedure . 23

3.1.1 Selection of a subset of vertices . 25
3.1.2 Dictionary of Gaussian functions 25
3.1.3 Dimensionality reduction and orthogonalization 26

3.2 Properties of PC-Gau . 27

vi | Contents

3.2.1 Orthonormality . 27
3.2.2 Frequency ordering . 28
3.2.3 Isometry invariance . 29

4 Experimental Evaluation 33
4.1 Datasets . 34
4.2 Implementation . 35
4.3 Evaluation metrics . 36

4.3.1 Geodesic Error . 36
4.3.2 Distortion . 38

4.4 I setting: C computed from ground-truth 40
4.4.1 Technicalities . 40
4.4.2 Results . 40

4.5 II setting: C estimated with product preservation 44
4.5.1 Results . 44

4.6 III setting: C estimated with ZoomOut . 47
4.6.1 Results . 47

4.7 IV setting: Point-wise conversion with generalized embeddings 51
4.7.1 Ground-truth C . 52
4.7.2 ZoomOut . 53

5 Analysis 55
5.1 Spatial distribution of basis energy . 55

5.1.1 Discrimination power . 55
5.1.2 Locality Preservation . 57
5.1.3 Relation to point-wise error . 59

5.2 Parameter Selection . 63
5.2.1 Number of vertices q . 63
5.2.2 Amplitude of Gaussian functions σ 65
5.2.3 Predictive power of locality-preservation metrics 67

5.3 Number of atoms k . 69
5.4 Function approximation and transfer . 70

5.4.1 Approximation . 70
5.4.2 Transfer . 71

6 Conclusions 73
6.1 Limitations . 73
6.2 Future work . 74

Bibliography 75

List of Figures 79

List of Tables 81

List of Symbols 83

1

Introduction

Shape matching is a key problem in the context of computer graphics and geometry
processing. From an intuitive point of view, it consists in finding correspondences between
the points of two 3D shapes. Figure 1 shows an example of shape matching, where the
correspondence between two points — one on the man and one on the woman — is
rendered through the identity of color.

Figure 1: Example of non-rigid shape
matching, rendered as a color correspon-
dence between points.

Shape matching has a wide range of appli-
cations, including texture and deformation
transfer [24, 30], object retrieval [9], and sta-
tistical shape analysis [4]. It is often the pre-
liminary step of a wider processing pipeline. It
can be used, for instance, to apply data aug-
mentation on datasets of 3D shapes in order
to train better classifiers on them.

The problem is particularly challenging when
the shapes in the pair are related by non-rigid
deformations. This is the case, for instance,
of meshes representing the same human body
in different poses, different human bodies in
the same pose or a combination of the two,
as the example in Figure 1. In the non-rigid
setting, the space of possible correspondences
is exponential in size.

The initial approach was either to solve the problem by heuristic search or to find the cor-
respondence among few points and then extend the mapping to the whole shape (see [33]
for a complete survey). The seminal work of Ovsjanikov et al. [23] represented a break-
through in the field: instead of directly finding a point-wise map between shapes, they
proposed to put in correspondence functions defined on the shapes. Given a basis for
the functional space of each mesh, this functional correspondence can be represented

2 | Introduction

compactly as a matrix C and the optimization problem to find C has linear constraints.
This approach immediately imposed itself, due to the level of accuracy reached, and the
flexibility and efficiency of the method.

Functional maps provide a compact representation and a convenient way to transfer func-
tions from one mesh to another. However, for many applications it is necessary to recover
a dense point-wise map [8], for instance when transferring textures between different
shapes. Recovering a point-wise map from a functional map is not a straightforward task
and many works, starting from [23] itself, have proposed different methods to accomplish
this. Many subsequent works tried to improve point-wise accuracy focusing mainly on
improving the estimation of matrix C [16, 21, 26], or the algorithm applied to convert
functional maps into point-wise maps [8, 26, 27].

As mentioned before, any method involving functional maps presupposes the use of a
basis for the space of functions defined on a mesh. The choice of the basis is a critical
aspect of the framework, which heavily affects the final result. However, few alternatives
have been proposed in this regard, particularly with the aim of improving the quality of
point-wise maps. The vast majority of methods, starting from [23] itself, have adopted
the eigenfunctions of the Laplace-Beltrami operator as functional basis. Such basis, that
we will refer to as LB for brevity, is the mesh equivalent of the harmonic basis [32] and
is optimal for approximating smooth functions on meshes [2]. Nonetheless, LB presents
a major limitation in the context of point-wise conversion: its energy is not uniformly
distributed on the mesh. In other words, LB’s capability of discriminating between vertices
and providing them with a meaningful representation is uneven across the mesh surface.
In particular, the energy is concentrated on the massive areas, at the expense of narrower
extremities. As a consequence, the error of the point-wise maps obtained using LB is
localized on such areas, as the example in Figure 2 qualitatively shows.

Following the approach of few other works [10, 14, 20], we propose a new basis for the
functional space on a mesh. Our basis is designed to be employed in functional map
pipelines and its primary characteristic is to have an energy that is evenly distributed
on the mesh surface. We construct our basis by generating a set of Gaussian functions
scattered on the mesh and then applying PCA to obtain a set of orthogonal generators.
The idea is that PCA, by minimizing the reconstruction error on the samples, produces
a basis of a subspace that reflects the even distribution of the Gaussians in the initial
dictionary — and the uniform distribution of such Gaussians can be easily enforced.

The embedding space created by our basis provides vertices with a representation of suf-
ficiently good quality in all areas of the mesh. By quality of representation, we mean

| Introduction 3

(a) target

ours LB

(b) point-wise maps

ours LB

(c) error

Figure 2: Example of shape matching using functional maps. (b) shows two different point-wise
maps between the woman and the man, rendered with colors. They are obtained using our
basis and the standard LB basis. (c) shows the error of the respective maps in warm colors: the
darker, the higher. LB presents a high error on extremities, such as arms and feet.

the following properties of an embedding space: (i) to discriminate well between different
vertices and (ii) to preserve the locality of vertices. At the same time, our basis retains
good properties of LB, such as orthonormality, frequency ordering and isometry invari-
ance, making it a viable replacement in pipelines designed for LB. This compatibility
makes our approach complementary to other proposals tackling different aspects of the
functional map framework, since they can be used in combination with our basis to obtain
greater benefits.

Through experiments on established datasets, we show that the aforementioned properties
of our basis actually result in an improvement of the quality of the final point-wise map.
We compare the results of both our basis and LB in different shape-matching pipelines [16,
21] and also using functional maps computed from ground-truth correspondence. Note
that the last setting is not a viable option in practical applications, but allows us to rule
out the impact of the method used to estimate C from the comparison. Our basis reaches
significantly higher values of point-wise accuracy in all the analyzed settings.

4 | Introduction

Outline In Chapter 1 and 2 we start by providing the necessary background knowledge
on 3D shapes and shape-matching, with particular focus on the functional map framework.
We also present the notation used in the rest of the Thesis. In Chapter 3 we present the
procedure to build our basis, together with a brief analysis of the characteristics that
descend directly from its construction. These characteristics allow us to employ our basis
and LB in the same pipelines, in order to compare their results in terms of accuracy on
the final point-wise maps. We perform this experimental evaluation for different pipelines
in Chapter 4. In Chapter 5 we provide an analysis of the properties that make our basis
good for point-wise conversion, with a focus on their energy distribution on the mesh
surface. In Chapter 4, we also analyze the choice of the parameters used to build the
basis, and their impact on the final result. Finally, in Chapter 6, we sum everything up,
presenting some limitations of our work and some possible directions to explore in the
future.

5

1| 3D shapes

In this Chapter, we briefly present the models that we will adopt to represent 3D shapes.
We also provide the very essential background knowledge on functional analysis in the
context of 3D shapes. However, any detail that is not necessary to understand the main
topic of this Thesis is avoided: for an in-depth description, see [32]. We start by con-
sidering the continuous case in Section 1.1, which provides the theoretical ground of the
concepts and tools presented. Then, we switch to the discrete setting in Section 1.2 and
see how such concepts and tools translate to the discrete case. In the rest of the thesis
we will always consider the discrete setting, since it is the one that is used in practical
implementations.

1.1. Continuous case: 2D manifolds

In the continuous (theoretical) setting, we model shapes as compact two-dimensional
manifolds embedded in R3. The intuitive idea of manifolds is a surface in R3 that locally
resembles a two-dimensional plane. Let us consider a manifold X and two scalar functions
f : X → R and g : X → R defined on X . f and g assign a value in R to any point of X .
We can define the inner product between f and g as:

⟨f, g⟩L2(X) =

∫
X
f(x)g(x) dx

and the norm of f as:
∥f∥2X = ⟨f, f⟩L2(X)

We denote the space of square-integrable functions defined on X as

L2(X) =
{
f : X → R s.t. ∥f∥2X <∞

}

6 1| 3D shapes

1.1.1. Laplace Beltrami operator

The Laplace-Beltrami operator ∆X is a differential operator from L2(X) to L2(X), which
assigns to any function f ∈ L2(X) the divergence of its gradient: ∆Xf = − divX (∇f).
We omit other details on the definition of LB and we focus on its eigenfunctions, which
provide the tools for spectral analysis on a manifold.

An eigenfunction of an operator is a function ϕ that is only scaled by a factor, when
the operator is applied to ϕ. Referring to Laplace-Beltrami operator we have that its
eigenfunctions are such that:

∆Xϕi = λiϕi

The Laplace-Beltrami operator is self-adjoint, which means that

⟨∆Xf, g⟩L2(X) = ⟨f,∆Xg⟩L2(X)

From this property, two important consequences follow. First, its eigenvalues λi are
real non-negative and constitute a discrete set, therefore we can put them — and the
corresponding eigenfunctions — in ascending order:

λ1 < λ2 < . . . < λi < . . .

Second, its eigenfunctions ϕi are orthonormal according to the inner product:⟨ϕi, ϕj⟩L2(X) = 1 if i = j

⟨ϕi, ϕj⟩L2(X) = 0 if i ̸= j
(1.1)

Figure 1.1 shows the first eigenfunctions of the Laplace-Beltrami operator for an example
manifold. Note that λ = 0 is always an eigenvalue for ∆X , therefore ϕ1 is always the
constant function with ∥ϕ1∥X = 1 (we usually choose the positive one).

1.1.2. Spectral analysis on manifolds

The eigenfunctions of Laplace-Beltrami form an orthonormal basis ΦLB = {ϕi} for L2(X).
This basis is the equivalent of the Fourier basis on a mesh, and it is often referred to as
Manifold Harmonics [32]. Given an orthonormal basis Ψ = {ψi} for L2(X), we can

1| 3D shapes 7

Figure 1.1: An example of the first 8 eigenfunctions of the Laplace-Beltrami operator on a
manifold.

express any function f ∈ L2(X) as the series:

f =
∑
i

⟨f, ψi⟩L2(X)︸ ︷︷ ︸
f̂i

ψi (1.2)

where f̂i are the coefficients of f in Ψ. Note that the coefficients f̂i are easily computed
through an inner product thanks to the orthonormality of Ψ.

Dirichlet energy The Dirichlet energy is a measure of the smoothness of a function
f ∈ L2(X) on a manifold. It is computed as:

Ed(f) =
1

2

∫
X
∥∇Xf(x)∥22 dx = ⟨f,∆Xf⟩L2(X) (≥ 0)

The Dirichlet energy can also be interpreted as the frequency of a function on a mesh.
This is in accordance with the intuitive idea that the constant function has zero frequency
and the more a function has rapid variations, the more its frequency increases. Since
∆Xϕi = λϕi for an eigenfunction ϕi, the Dirichlet energy of ϕi coincides with its eigenvalue
λi, thus the eigenfunctions are ordered by increasing frequency. It can be shown that ΦLB

is the orthonormal basis with the lowest Dirichlet energy of the atoms.

Truncated basis The series in (1.2) can be truncated at i ≤ k, namely

f̃ =
k∑

i=1

⟨f, ψi⟩L2(X)︸ ︷︷ ︸
f̂i

ψi

In the this case, f̃ is an approximation of f and the truncated basis Ψk = {ψi}1...k is basis
of a subspace Rk ⊂ L2(X).

8 1| 3D shapes

Figure 1.2: Low-pass filter approximation of a function f , for a different number k of atoms
used. Smooth variations are well reconstructed already at k = 50, while for approximating rapid
variations well (knees and head) more atoms are needed.

In the case of the LB basis ΦLB, f̃ is a low-pass filter approximation of f , because the basis
functions are ordered in increasing frequency. Figure 1.2 gives a visual idea of what we
mean by low-pass filter approximation f̃ of a function f . It has been proven [2] that the
truncated basis provided by the first k eigenfunctions of the Laplace-Beltrami operator is
optimal for approximating smooth functions on manifolds.

1.2. Discrete case: 3D meshes

In the discrete setting, a manifold X is represented as a 3D mesh M (VM, EM, FM, XM):

• VM = {1, . . . , n} is the ordered set of the n vertices, each one represented through
an integer index

• EM ⊂ (VM × VM) is the set of edges

• FM ⊂ (VM × VM × VM) is the set of triangular faces

• XM ∈ Rn×3 is a matrix containing the Euclidean coordinates of the vertices VM in
R

3. They are obtained by sampling n points from X .

Note that the tuple (VM, EM) is a graph of n vertices, denoted as mesh graph.

The mass (or area) matrix AM is a diagonal n×n matrix containing the elements of area
associated to each vertex of M. The element of area aii associated to vertex i is computed

1| 3D shapes 9

as:
aii =

1

3

∑
jk s.t. (ijk)∈F

M̃

A(ijk)

where A(ijk) is the area of the face (ijk) ∈ FM

In the following, we present the discrete version of all the concept and tools presented in
Section 1.1.

Functions A function f defined on a discrete mesh M assigns a value in R to each
vertex of M: f : VM → R. Since the order of the vertices in VM is fixed, we can
represent f as a column vector of real values: f ∈ Rn. We denote the space of real valued
functions defined on M, or functional space of M, as F(M,R). In the discrete setting
the functional space has dimension equal to the number of vertices n. A functional basis
for F(M,R) is a linearly independent set of n generators belonging to F(M,R). As
done in the continuous setting, we can also consider a truncated basis of size k, in this
case the associated functional space is a k-dimensional subspace R ⊂ F(M,R).

We can store an (ordered) set of functions as column vectors of a matrix of size n × h,
where h is the size of the set. For instance, we will often consider functional basis as
matrices in Rn×k, where k ≤ n is the size of the basis.

Inner Product The inner product of two functions f ∈ F(M,R) and g ∈ F(M,R)

is computed using the usual scalar product between vectors, but weighted for the mass
matrix, in order to account for possible differences in vertex density [29]:

⟨f, g⟩M = fT · AM · g (1.3)

The norm of the function f is defined accordingly:

∥f∥2M = ⟨f, f⟩M = fT · AM · f

Orthonormality In the discrete setting, the orthonormality of a basis Φ = {ϕi} is
defined similarly to the continuous case (see (1.1)), but using the discrete inner product:⟨ϕi, ϕj⟩M = ϕT

i · AM · ϕj = 1 if i = j

⟨ϕi, ϕj⟩M = ϕT
i · AM · ϕj = 0 if i ̸= j

(1.4)

10 1| 3D shapes

Equivalently, we can also express orthonormality by considering the matricial form of a
basis Φ ∈ Rn×k. Φ is thus orthonormal if:

ΦTAMΦ = Ik

where Ik is the identity matrix of size k and k, with 1 ≤ k ≤ n, is the size of the
(truncated) basis.

The vector of coefficients f̂ , projection of a function f on an orthonormal basis Φ, is
computed, again, using the discrete inner product in (1.3):

f̂ = ΦTAMf (1.5)

The inverse operation, which is the reconstruction (synthesis) of function f̃ from its spec-
tral coefficients f̂ is performed as:

f̃ = Φ · f̂ (1.6)

Note that, in general, f̃ = ΦΦTAMf is a rank-k approximation of the original f when
the basis is to truncated to the first k atoms, and f̃ = f when the basis is complete.

1.2.1. Discrete Laplace-Beltrami operator

The Laplace-Beltrami operator can be discretized as a n× n matrix LM = A−1
MW . W is

the stiffness matrix, a sparse matrix that encodes information about the local geometry
of M. The elements in W are computed using the cotangent scheme [18, 25] as:

wij =

cotαij + cot βij
2

if (i, j) ∈ EM

−
∑
k ̸=i

wik if i = j

0 otherwise

where αij and βij are the angles insisting on edge (i, j), belonging to the two triangles
sharing edge (i, j). The eigenfunctions of the Laplace-Beltrami operator are computed as
solutions of the following generalized eigenvalue problem [29, 32]:

Wϕi = λiAMϕi

The set of eigenfunctions ΦLB = {ϕi}, with real eigenvalues {λ1 ≤ λ2 ≤ . . . }, forms an
orthonormal basis for F(M,R), where orthonormality is defined as in (1.4). Similarly to

1| 3D shapes 11

the continuous case, the atoms of ΦLB are ordered in frequency and provide a low-pass
filter approximation when truncated to k. The analysis and synthesis operations for a
function f ∈ F(M,R) are performed using (1.5) and (1.6).

13

2| Shape Matching

In this chapter we present in a formal way the problem we are addressing, namely shape
matching, and we define part of the notation that will be used throughout the thesis.
We also present in detail the functional map approach for shape matching, to which our
proposal fully belongs. Together with the original formulation of functional maps [23], we
also present subsequent works that are more related to our proposal.

2.1. Problem formulation

The input of shape matching are two meshes M and N , with sets of vertices VM and VN
respectively. We assume M and N to have some sort of similarity, which means that an
unknown correspondence T : VN → VM exists between the vertices of N and M. Note
that we are considering the case of non-rigid matching, so the transformation between
M and N is not restricted to a particular class. To picture an example of this kind
of relation, we can consider the relation that exists between different human bodies, or
between different poses of the same human body or a combination of the two.

The goal of shape matching is to estimate the unknown map T , therefore its output is
a function T̄ : VN → VM. We will refer to T̄ as point-wise map and we can represent it
either as a vector of vertex indices of size n = |VN | or as a matrix Π s.t. Πij = 1 if T̄ (i) = j

and 0 otherwise. Figure 2.1 shows an example of this setting: the two meshes, M and
N , and the two maps, T and T̄ . Point-wise maps are rendered as color correspondences:
a vertex on N is in correspondence with a vertex on M if and only if they have the same
color.

We want T̄ to be as close as possible to T , which means that T̄ should assign to each vertex
x ∈ VN a vertex on M geodesically close — ideally coincident — to the one assigned by
T . Assuming T to be provided, we evaluate the mapping error of each vertex x ∈ N as
the geodesic distance between its estimated and true image vertices:

e(x) = GeoDistM(T̄ (x), T (x)) ∀x ∈ VN

14 2| Shape Matching

(a) target (b) unknown map T (c) estimated map T̄ (d) geodesic error

Figure 2.1: Example of shape matching. The point-wise maps between N and M are represented
through color correspondence. (d) shows the geodesic error of the estimated map (c)

Note that the geodesic error e(x) is a function defined on the mesh N and it can be
visualized through color, as done in Figure 2.1(d). In this example, the error is higher on
the forearms and feet, where T̄ is assigning wrong vertices (see Figure 2.1(c)). To asses
the global accuracy of a point-wise map we take the average of the geodesic error on all
the vertices of N , computing the Average Geodesic Error (AGE). We will present in more
detail the evaluation of point-wise maps in Section 4.3.

In some of the experiment of Chapter 4, we will also assume that a small (∼ 6) set of
landmarks is provided. A landmark is a couple of points (x ∈ VN , y ∈ VM) in known
correspondence, namely T (x) = y. Note that landmarks are not necessary to build the
functional basis (either our basis or LB), but are only required to apply specific matching
pipelines.

2.2. Functional maps

The space of possible point-wise maps is exponential in size, and this makes the problem of
non-rigid shape-matching very difficult. Trying to optimize directly the point-wise map is
unfeasible. Even restricting the space of possible maps to isometric correspondences (see
Section 3.2.3) and optimizing for the map that best preserves geodesic distances has been

2| Shape Matching 15

shown to be a NP-hard problem [6]. The usual approach has been to find correspondences
between a small set of points and then extend them to a dense correspondence. Refer
to [33] for a complete survey.

The Functional Map framework was proposed by Ovsjanikov et al. in [23] and repre-
sented a breakthrough in the approach to the shape-matching problem. Let us consider
again meshes M and N and the unknown point-wise map T : VN → VN . Instead of esti-
mating T directly, the functional map approach proposes to solve for the correspondence
between functions defined on M and N first and then to extract from this functional
correspondence a point-wise map.

This approach is based on the observation that the point-wise map T induces a linear
operator TF : F(M,R) → F(N ,R) that maps functions from M to N via the composi-
tion:

TF (f) = f ◦ T ∀f ∈ F(M,R) (2.1)

where
g = f ◦ T ⇐⇒ g(x) = f(T (x)) ∀x ∈ VN

Let us suppose that both M and N are equipped with orthonormal functional bases
Φ = {ϕ}i and Ψ = {ψ}j, for F(M,R) and F(N ,R) respectively. By extension, we
denote with Φ and Ψ also their matricial form, where atoms are represented as column
vectors. As shown in Section 1.2, any function f ∈ F(M,R) can be written as

f =
∑
i

⟨f, ϕi⟩M · ϕi =
∑
i

aiϕi

Due to the linearity of TF , TF (f) can be written as:

TF (f) = TF

(∑
i

aiϕi

)
=
∑
i

aiTF (ϕi) (2.2)

Recall that ϕi ∈ F(M,R) and thus, due to (2.1), TF (ϕi) is a function in F(N ,R), which
can be expressed in the basis Ψ:

TF (ϕi) =
∑
j

⟨TF (ϕi), ψj⟩N︸ ︷︷ ︸
cji

ψj

16 2| Shape Matching

Substituting in (2.2) we obtain:

TF (f) =
∑
i

ai
∑
j

cjiψj =
∑
ji

aicjiψj =
∑
j

bjψj (2.3)

where bj =
∑

i aicji are the coefficients of TF (f) in Ψ. Recalling from Section 1.2 the
projection over an orthonormal basis, we can also write (2.3) in matricial form:

TF (f) = Ψb = ΨCa = ΨCΦTAMf (2.4)

where a = [ai], b = [bj] and C = [cji]. Note that coefficients cji, and thus C, depend only
on Φ, Ψ and TF . Therefore, given Φ and Ψ, we can transfer any function by knowing
a matrix C that maps the atoms of Φ on Ψ. Therefore, in the functional map frame-
work, matching two shapes resorts to finding the change-of-basis matrix C between the
functional bases defined on the meshes.

Truncated basis In practice, we never use bases of the complete functional space
F(·,R), which has dimension equal to the number of vertices n of the mesh. The bases
Φ and Ψ are truncated, instead, to the first k atoms, with k ≪ n. This corresponds to
truncating the series in (2.2) and (2.3) to k. This rank-k approximation of the functional
correspondence is good as long as:

1. the subspace RM ⊂ F(M,R) generated by the first k atoms of Φ provides a good
approximation of the functions in F(M,R)

2. the functional spaces spanned by the first k atoms of Φ and Ψ, respectively RM ⊂
F(M,R) and RN ⊂ F(N ,R), are reasonably aligned, even when the relation be-
tween M and N drifts from pure isometry.

These two properties of the bases are respectively called compactness and stability [23].
The standard choice of functional basis for the functional map framework, already consid-
ered in [23], is to use the first k eigenfunctions of the Laplace-Beltrami operator. We will
denote the standard basis as “LB” in the rest of the Thesis. Some alternative bases have
been proposed, we will briefly present them and compare to our work in Section 2.3.1.

For the sake of simplicity of this presentation of [23], we have assumed that both meshes
have n vertices and both truncated basis have size k. Note that these assumptions can
be easily removed, and indeed our implementation does not use them.

2| Shape Matching 17

2.2.1. Finding C

In the truncated formulation, C is a compact matrix of size k×k, independently of the size
of the meshes. It is computed through an optimization problem, as the matrix that best
preserve (in the least square sense), some constraints. The majority of these constraints,
moreover, are linear in C, therefore the optimization problem can be solved efficiently. In
the following, we briefly present various types of constraints, both as formulated in [23]
and in some subsequent works.

Functional constraints

Let {fi} and {gi} be two sets of m functions defined on M and N in known pair-wise
correspondence, namely:

gi = TF (fi) ∀i ∈ {1, . . . ,m} with fi ∈ F(M,R), gi ∈ F(N ,R) (2.5)

where TF depends on the unknown map T . Let us denote with F = [fi] and G = [gi] the
matrices containing the functions in {fi} and {gi} as column vectors. F and G can be
projected on two given (truncated) functional bases Φ and Ψ, for M and N respectively,
as F̂ = ΦTAMF and Ĝ = ΨTANG. Recalling (2.4), the Equation (2.5) can be formulated
in terms of an unknown functional map C:

Ĝ = C · F̂ (2.6)

and the corresponding least-square minimization problem:

min
∥∥∥CF̂ − Ĝ

∥∥∥2
2

(2.7)

As we mentioned before, functional constraints are linear in C.

Types of functional constraints Functional constraints in (2.7) can model the fol-
lowing constraints as special cases:

• Descriptor preservation: descriptors are family of functions designed to characterize
each point of a mesh as uniquely as possible and to be preserved under near-isometric
transformations. They usually exploit some isometry-invariant property, like heat
diffusion [31] or quantum mechanical properties of the shapes [3].

• Landmark correspondence: a landmark (x ∈ M, y ∈ N) can be transformed in two
corresponding functions fi and gi by considering the distance function from x and

18 2| Shape Matching

y or functions centered in x and y, such as Gaussians or Heat Kernels.

• Segment correspondence: segments can be modelled as (smooth) indicator functions
or a distance function from the segment.

Operator Commutativity

C can be required to commute with two discrete operators BM and BN defined on
F(M,R) and F(N ,R) respectively. This constraint is framed as

BNC = CBM =⇒ min ∥BNC − CBM∥22 (2.8)

(2.8) leads, again, to a linear constraint on C. The typical application of this constraint
is to enforce the commutativity with the Laplace-Beltrami operator.

In [21] operator commutativity has also been used to enforce the preservation of point-
wise products of functional constraints, through the definition of an operator for each
functional constraint. The point-wise product of two functions f(x), g(x) ∈ F(M,R)

is defined as f(x)g(x)∀x ∈ VM. Using the point-wise products of functional constraints
allows to extract more information from such constraints and thus to solve a better-
conditioned optimization problem, even when the number of linearly independent con-
straints is not high. In Section 4.5, we will use [21] to estimate C as a possible setting for
the experimental evaluation of our basis.

Regularization constraints

When the unknown map T underlying C is assumed to be an isometry, C is orthogo-
nal [23]. This requirement can be framed as

CT = C =⇒ min
∥∥CT − C

∥∥2
2

and is used as a regularization constraint.

In [26] an additional regularization term has been proposed to promote the preservation
of the orientation in the obtained map C.

2.2.2. Conversion to point-wise map

To completely solve the shape matching problem, as we formulated it in Section 2.1, the
functional map C from M to N needs to be converted to a point-wise map T̄ : VN → VM.
First, note that the knowledge of TF contains the knowledge of T , as we could, in principle,

2| Shape Matching 19

transfer Delta functions via TF and put in correspondence the peaks on M and N . This
method, however, is very inefficient and error prone, and never used in practice.

Embedding We define the embedding of a vertex x ∈ M, for a given basis Φ, as the
vector of values assumed by basis functions in x: Emb(x) = [ϕi(x)]. For a truncated
basis of size k, the embedding is thus a vector in Rk. Emb(x) corresponds also to the
projection coefficients, in the basis Φ, of a Delta function centered in the vertex x [23].
Thus ΦT contains the coefficients of all the Delta functions of M (one for each vertex)
as column vectors. Note that embeddings offers a different representation of vertices [29],
in a space that is independent of translations, rotations and isometric pose changes of
the mesh (as long as Φ is isometry-invariant). We denote this k-dimensional space as
embedding space. Note that similarity in the embedding space has always to be intended
regarding the Euclidean distance between embedding vectors, and by embedding distance
of two vertices x and y we mean ∥Emb(x)− Emb(y)∥2.

Original method A simple and efficient method for converting C, from M to N , into
a point-wise map, proposed already in [23], consists in finding, for each column of ΦT

N ,
the nearest neighbour in the columns of CΦT

M. The output is a map T̄ : N → M. This
method corresponds to transferring embeddings of vertices from M to N through C and
putting in correspondence similar points in the embedding space. This method is based
on the Plancherel’s theorem:

Theorem 2.1. Given two functions f1 and f2 defined on a manifold M, with spectral
coefficients a1 and a2, it holds that:

∥a1 − a2∥22 =
∫
M
(f1(x)− f2(x))

2µ(x) (2.9)

If f1 and f2 are two functions centered in two vertices x and y, we can assume that their
L2 difference (right-hand side in (2.9)) is strictly related to the geodesic distance between
x and y. Recalling that embeddings are the spectral coefficients of Delta functions, this
theorem provides a relation between the distance of two vertices in the embedding space
(left-hand side in (2.9)) and their geodesic distance.

Locality preservation For truncated bases, the equality in (2.9) does not hold precisely
and depends on the specific basis adopted. The more this relation between embedding
and geodesic distances from x is preserved among the neighbors of x, the more we say
that a certain basis is locality preserving for x. In the opposite case, when the relation

20 2| Shape Matching

between geodesic distances and embedding distances is not preserved well, we say that the
embedding space produces a distortion of geodesic distances. In this unfortunate case,
vertices that are far on the mesh may get similar embeddings, or vice versa. Since the
conversion is performed through a nearest neighbor search in the embedding space, we
are interested, in particular, that the ordering between geodesic distances and embedding
distances, from a given vertex x, is preserved. We will define proper metrics to evaluate
locality preservation quantitatively in Section 5.1.2.

2.3. Relation to previous work

In this section we briefly analyze some extensions of the original framework [23] and
we discuss their relation to our work. We have already seen some of these [21, 26] in
Section 2.2.1.

Point-wise conversion Some works have proposed alternative methods, with respect
to [23], for extracting better point-wise maps from functional maps. In [27, 28] they
propose to frame the problem of converting to point-wise map as the problem of finding
the point-wise map that maximizes the posterior probability of a particular probability
distribution. The probability distribution is defined over points in the embedding space,
thus locality preservation, as defined in Section 2.2.2, still plays an important role. In [8]
they introduce a smoothness prior on the point-wise map to regularize the conversion and
obtain better maps. A similar purpose is targeted in [26], where they propose a complex,
multi-step pipeline to promote continuity, coverage and bijectivity of the obtained map.

Iterative methods [27] can also act as refinement of an existing map T̄ . In this case,
the given T̄ is converted into a functional map and then back to a point-wise map with [27].
The ICP refinement proposed in [23] is based on the similar idea of alternating conversions
to and from point-wise map.

ZoomOut [16] further expands the usage of this technique — of alternating conversions
to and from point-wise maps — devising an iterative procedure which allows to extend
an initial functional map of size k′ × k′ to a much bigger map k × k. The key point is
that at each iteration i the size ki of the correspondence can be increased by converting
the point-wise map back to a functional map of size ki+1 > ki.

Relation to our work All these methods share with our work the general purpose of
improving the quality of shape matching via functional maps. However, they focus on
different steps of the general pipeline, namely on the estimation of C [16, 21, 26] or on

2| Shape Matching 21

the algorithm for converting it to a point-wise map [8, 26, 27]. As we saw in Section 2.2,
any method based on functional maps needs to define a functional basis on each mesh.
The methods presented here, despite being agnostic to the functional basis adopted, make
the implicit assumption, ubiquitous from [23] on, to be using the eigenfunctions of the
Laplace-Beltrami operator [11, 32]. We, instead, propose to use a different functional
basis. Note, as well, that our basis is agnostic to the methods used for computing the
map C and converting it to point-wise maps. This two-way compatibility makes the two
approaches, of using a different basis and using an improved shape-matching pipeline,
complementary.

2.3.1. Alternative bases

Other works followed an approach more similar to ours and proposed new bases for the
functional space of a mesh. However, they either target specific tasks, not directly related
to our work, or they present some limitations. Examples of specific tasks for which
alternative bases have been proposed include transfer of tessellation structure [17] and
transfer of step functions [13] from one mesh to another. [20] promotes the sparsity of
C, without bringing improvements to point-wise accuracy. Kovnatsky et al. [10] built a
coupled pair of bases by joint diagonalization, in order to overcome the instability of LB
in non-isometric pairs. With this method, the functional basis depends also on the other
mesh in the pair and on the landmarks used. With a purpose more similar to ours, Melzi
et al. [14] proposed a basis that extends LB in specific areas of the mesh. Their approach
is, however, different: the atoms of their bases are localized in predefined regions, which
must be provided as input. This is not trivial and presupposes the knowledge, at least
roughly, of the correspondence between the shapes. Our basis, on the contrary, does
not require any input other than the mesh itself. Finally, [22] and [12] showed that a
functional basis can be extended by considering also point-wise products of basis atoms.
This method provides great benefits to the obtained point-wise maps and can be applied,
in principle, to any basis, including ours. [22] and [12] are thus complementary to our
proposal.

2.4. Limits of LB

LB has been proven to be optimal for approximating functions with bounded variations on
meshes [2]. This fact makes it a compact basis, according to the definition of compactness
given in Section 2.2. It is also isometry invariant and moderately stable under non-
isometries (see again Section 2.2 for a definition of stability). These characteristics make

22 2| Shape Matching

it an appropriate basis for functional maps and, indeed, from [23] on, LB has been the
ubiquitous choice of functional basis in this framework.

Despite its many strengths, LB presents an important limitation: the basis energy is not
evenly distributed on the surface of the mesh, but is concentrated in the massive areas,
leaving narrower extremities less covered. To define the energy of a basis, we consider two
properties of the embedding space generated by the basis:

• discrimination power between different vertices

• locality preservation, as defined in Section 2.2.2

We claim that a lack of these properties in some areas of the mesh produces bad assign-
ments in the point-wise map, affecting its overall accuracy. It is thus desirable, for a
functional basis, to have the aforementioned properties evenly distributed on the mesh
surface.

We will present evidences for this claims in Chapter 5, when we will assess the energy
distribution of LB basis and compare it to the energy distribution of our basis.

23

3| Proposed Solution: PC-Gau

In this chapter we present the core contribution of this Thesis: the procedure for con-
structing PC-Gau, a new basis for the space of real-valued functions defined on a mesh.
Such basis is designed to be used as a truncated basis in functional map pipelines for
shape matching. It works as a replacement of LB, with the final purpose of obtaining
more accurate point-wise maps. Figure 3.1 shows a complete shape-matching pipeline
with functional maps, employing PC-Gau: it shows the most relevant steps of the build-
ing procedure (colored boxes), the computed functional map C and the final point-wise
map obtained.

In Section 3.1 we present in detail the procedure to build our basis. As the name suggests,
PC-Gau is obtained by taking the Principal Components of a dictionary of Gaussian
functions. The primary characteristic of our basis is to have an energy which is evenly
distributed on the whole mesh surface. As a consequence, PC-Gau induces an embedding
space more suited to point-wise conversion, producing benefits in the accuracy of the point-
wise maps obtained. At the same time, PC-Gau shares many of the good properties
of LB, such as orthonormality, frequency ordering and isometry invariance. This fact
makes our basis a suitable replacement of LB in existing functional map pipelines, with
virtually no modification needed. We analyse these properties, following directly from the
construction process, in Section 3.2.

3.1. Building Procedure

The core idea of our basis is quite simple and actually has been long employed in signal
processing: to represent signals, or functions, through a dictionary of Gaussian functions,
see for instance [7]. Instead of using the dictionary as it is, though, we reduce the di-
mensionality of its space through PCA. PCA produces an orthonormal set of generators
for the functional space spanned by the Gaussians. Generators are ordered according to
their capability of extracting information from the initial space, and thus their energy is
distributed in such a way as to approximate the initial dictionary as good as possible.
The idea is to obtain an even distribution of basis energy by controlling the uniformity of

24 3| Proposed Solution: PC-Gau

M

N

PCA

PCA

T̄
:
N

→
M

functional
map

C

(1) (2) (3)

Figure 3.1: Complete shape matching pipeline with functional maps: (1) definition of a func-
tional basis, (2) estimation of C and (3) conversion to a point-wise map. Here, step (1) shows
the building procedure of PC-Gau: selection of a subset of vertices (orange box), construction
of the dictionary of Gaussian functions (green box) and dimensionality reduction through PCA
(blue box).

scattering of the Gaussians in the initial dictionary, since such uniform scattering can be
easily enforced.

Algorithm 3.1 presents the step-by-step procedure to build PC-Gau for a mesh M with
n vertices. In the description, we also refer to Figure 3.1 as a visual reference.

Algorithm 3.1 Construction of PC-Gau
1: input: M, VM, AM, σ, q, normalize, k
2: Q = FPS(M, q)
3: for i ∈ VM, j ∈ Q do
4: Dij = GeoDistM(VM(i), Q(j))
5: Gij = exp

(
−D2

ij/σ
)

6: end for
7: if normalize then
8: for i ∈ VM, j ∈ Q do
9: Gij = Gij/

√
GT

∗jAMG∗j

10: end for
11: end if
12: P = PCA

(
GT , variableWeights=AM, center=false

)
13: Pk = P (:,1:k)
14: output: Pk

3| Proposed Solution: PC-Gau 25

Figure 3.2: Example of some Gaussian functions Gi, generated with σ = 0.05.

3.1.1. Selection of a subset of vertices

We start by selecting a subset Q of q vertices uniformly scattered on the mesh (line 2
of Algorithm 3.1). For this purpose, we use Farthest Point Sampling (FPS) [19] with
Euclidean distance. We want them to be evenly distributed on the surface in order to
induce an even distribution of the dictionary of Gaussians. This, in turn, translates into
an even distribution of of the final basis, thanks to the properties of PCA. We can see an
example of sampling in the orange box of Figure 3.1.

The final result, though, is pretty robust to the specific method employed, as long as it
provides a sufficiently even distribution of Q on the mesh. In Section 5.2.1 we will test
the use of random sampling for this phase. Even though random sampling depends on
the density of vertices on the mesh surface, it still provides good results, often equivalent
to FPS.

In our tests we used q = 1000 for all datasets, as this parameter is independent from the
total number of vertices. See Section 5.2.1 for an analysis on the choice of q.

3.1.2. Dictionary of Gaussian functions

Then, we compute q Gaussian functions, each one centered in a vertex of Q (lines 3-6). To
do so, we start by computing the geodesic distance from each vertex x ∈ Q to any other
vertex i ∈ VM (lines 3-4). For performance reasons, the geodesic distance is approximated
with the shortest path along the edges of the mesh, which can be easily computed with
the Dijkstra algorithm. We obtain a matrix D, of size n × q, in which each element Dij

is the distance between the j-th vertex in Q and the i-th vertex on the mesh. Then, we
apply

Gij = exp
(
−
D2

ij

σ

)
(3.1)

26 3| Proposed Solution: PC-Gau

and obtain a matrix G = [Gij], still of size n × q, in which each column is a Gaussian
function centered in a vertex of Q (line 5). The parameter σ in 3.1 is arbitrarily chosen
and sets the amplitude of the Gaussians. In our tests we used σ = 0.05 for all datasets,
since the meshes where normalized to unitary area and thus their scale was similar across
different datasets. See Section 5.2.2 for an analysis on the impact of the value of σ on the
basis and the point-wise maps obtained.

We can optionally normalize each column Gj of G for its norm (lines 7-11), computed as
∥Gj∥M =

√
GT

j AMGj, where AM is the matrix of area elements associated to the vertices
of M. In our experiments we used normalization. An example of some of the obtained
Gaussians can be seen in the green box in Figure 3.1 and in Figure 3.2.

3.1.3. Dimensionality reduction and orthogonalization

We compute the PCA of GT (line 12), meaning that each Gaussian function is considered
a sample and each vertex of the mesh a variable. We do not center the variables, but we
weight them for the element of area associated to each vertex. The result of PCA is a
set of q vectors of size n, called Principal Components (PCs). They can be interpreted
as q generators of the functional space S spanned by the Gaussian dictionary. Since
q < n, S is a q-dimensional subspace of F(M,R) (assuming the Gaussians are all linearly
independent).

Finally, we select the first k PCs to form our basis and we store them in a matrix Pk of
size n× k (line 13). They are a truncated basis of F(M,R) or, equivalently, a basis of a
k-dimensional subspace R ⊂ S ⊂ F(M,R). In particular, for the properties of PCA, the
first k PCs form the set of the k orthonormal generators with the lowest reconstruction
error on the initial samples [1]:

Pk = argmin
Pk∈Rn×k

{
q∑

i=1

∥∥Gi − PkP
T
k AMGi

∥∥2
2

}
s.t. P T

k AMPk = Ik (3.2)

where Gi is the i-th column of G, namely the i-th Gaussian function. Note that orthonor-
mality and projection in (3.2) are expressed with respect to the inner product defined
on the mesh (see Section 1.2). Our method uses property (3.2) to distribute evenly the
expressive power of the basis, starting from a set of sample functions {Gj} that is evenly
distributed on the mesh. Intuitively, this is because, if the Gaussians are evenly dis-
tributed, each variable (vertex of the mesh) presents a similar amount of variance in the
set G. Therefore, each variable (vertex) requires a similar expressive power of the basis
to be represented.

3| Proposed Solution: PC-Gau 27

Figure 3.3: Visual representation of the atoms of PC-Gau (top) and LB (bottom). Function
values are rendered through colors, positive values are red and negative values are blue.

We can see an example of the resulting basis atoms in the blue box in figure 3.1. Figure 3.3
presents a visual comparison between the first 9 atoms of PC-Gau and LB, for an example
mesh.

3.2. Properties of PC-Gau

In this Section, we analyze some of the basic properties of PC-Gau, that follow directly
from its construction. These properties make our basis compatible with functional map
pipelines designed for LB, with no or little modification required. We will analyze the
properties that differentiate PC-Gau from LB, making it more suited to obtain better
point-wise maps, in Chapter 5.

3.2.1. Orthonormality

As we mentioned in Section 3.1.3, our basis is orthonormal according to the inner product
of mesh M:

P T
k AMPk = Ik

In general PCA produces a set of Principal Components that is orthonormal according to
the usual scalar product between vectors. In order to enforce orthonormality according
to the inner product of the mesh M, we weighted the variables (the vertices) for the
corresponding element of area. In our notation, these are the elements on the diagonal of
AM.

The orthonormal property, common to LB, is useful because it makes the projection of a

28 3| Proposed Solution: PC-Gau

function f on the basis particularly simple and efficient, as we saw in Section 1.2:

f̂ = P T
k · AM · f (3.3)

(3.3) is used also when converting a given point-wise map Π : N → M, represented in
matricial form, to a functional map C:

C = P T
N · AN · Π · PM (3.4)

ΠPM are the atoms of the basis of M transferred on N through the ground truth corre-
spondence, which are then projected on the basis of N .

3.2.2. Frequency ordering

Figure 3.4 shows the Dirichlet energy of each atom of PC-Gau, comparing ours to LB,
computed on an example mesh. As we saw in Section 1.1.2, Dirichlet energy measures the
smoothness of a function f and can be interpreted as the frequency of f . Note that LB is
perfectly ordered in frequency because it is, by construction, the orthonormal basis with
the lowest Dirichlet energy. We observe that, despite not perfect, our basis presents an
approximate frequency ordering of the atoms. This means that the truncated PC-Gau

provides a low-pass filter approximation of a function, similarly to LB (see Section 1.1.2).
This fact, again, reinforces the choice to use the first k Principal Components as truncated
basis, which was introduced in 3.1.3. Qualitatively, we can asses the frequency ordering,
and also the similarity with LB, in Figure 3.3.

We also observe that the frequency of the atoms of PC-Gau rises much more rapidly than
LB from the 30-th atom. This fact suggests that some higher-frequency information about
the shape of the mesh is incorporated already in the first Principal Components. This
claim needs further investigation, which is out of the scope of this Thesis, but also sheds
the light on possible further application of PC-Gau, for instance in the approximation of
coordinate-related signals (i.e. functions) on meshes. We will briefly present the results
of some tests on signal approximation and transfer in Section 5.4.

3| Proposed Solution: PC-Gau 29

Figure 3.4: Values of the Dirichlet energy for each atom of PC-Gau and LB, computed on
a sample mesh. PC-Gau is approximately ordered in increasing frequency and presents, as
expected, Dirichlet energies higher than LB.

3.2.3. Isometry invariance

Isometries

Two meshes M and N are said to be isometric, or related by an isometry, if the underlying
T : N → M preserves the geodesic distance between any couple of vertices:

GeoDistN (x, y) = GeoDistM (T (x), T (y)) ∀x, y ∈ VN (3.5)

This concept, which should be Boolean in principle, has often been associated with a
degree, starting from [23] itself. So, we can say that two meshes are near-isometric or
related by a near-isometry if the distances in (3.5) are only approximately preserved.
The two meshes become less and less isometric as the difference between such distances
increases.

Note that discretization itself introduces some level of non-isometry. If we consider, for
instance, a continuous manifold X discretized independently into two meshes M and N ,
we have that, in general, M and N will not be perfectly isometric. We can intuitively
see this, by considering that edge lengths are not preserved and so it is not preserved the

30 3| Proposed Solution: PC-Gau

geodesic distance between neighbor vertices. As we consider couple of vertices that are
more and more far apart, though, the relative effect of discretization on their geodesic
distance will be more and more negligible, so we can still say that the meshes are near-
isometric.

Note also that deformations of real objects are not, in general, perfect isometries. It
is the case, for instance, of pose changes in a human body, because of the elasticity of
human tissues. We can still consider them, though, as near-isometries with reasonable
approximation.

In the following, we will often neglect non-isometries introduced by discretization and
pose change and we will refer to such relations, for simplicity, as isometries.

Isometry invariance of our basis

Since our basis is constructed purely on geodesic distances, if geodesic distances are pre-
served between two meshes, so it is the resulting basis, except for possible sign swaps in
the atoms. Isometry invariance implies that the functional map C between perfectly iso-
metric meshes is a diagonal matrix with ±1 elements on the diagonal. For near-isometric
pairs this is not exactly true, but the energy of C is still heavily concentrated on the
diagonal. For less-isometric pairs, the energy spreads away from the diagonal, especially
for higher frequencies, making C funnel-shaped. This behaviour is similar to LB, and is
due to the fact that lower frequencies contain more global information about the shapes,
that is preserved also for mild non-isometries [23]. You can see a comparison with LB on
a near-isometric pair and on a non-isometric pair in Figure 3.5.

3| Proposed Solution: PC-Gau 31

ours LB

near-isometric

non-isometric

Figure 3.5: Examples of functional maps between a near-isometric and a non-isometric pair of
meshes, both with PC-Gau and LB. Note the difference in the distribution of the energy in C:
the matrices are nearly diagonal for near-isometries and funnel-shaped for non-isometries.

33

4| Experimental Evaluation

In this chapter, we apply different functional map pipelines — using both PC-Gau and
LB as functional basis — to pairs of meshes extracted from established datasets. Since
the ultimate goal of PC-Gau is to improve the quality of shape matching, with respect to
the currently widely used LB, the experimental evaluation of the accuracy of the obtained
maps constitutes a crucial assessment for our basis. We will analyze the relation between
these results and the specific properties of PC-Gau in Chapter 5, to give evidence of our
claim that the improvement on quality of maps comes from the even distribution of the
basis energy.

In this chapter, in particular, we compare the performance of our basis and LB in four
different settings:

• In Section 4.4 we compute a functional map C from the ground-truth correspondence
and then convert it to point-wise maps with the method shown in [23] and briefly
explained in Section 2.2.2.

• In Section 4.5 we estimate a functional map C from an optimization problem, using
[21], and then convert it to a point-wise map using again the method explained in
Section 2.2.2.

• In Section 4.6 we compute a small functional map Cini with [21] and then extend it
using ZoomOut [16], which produces a point-wise map at each iteration.

• In Section 4.7 we use a slightly modified procedure for the conversion to point-wise
maps, with respect to the one explained in Section 2.2.2, and we apply it both to
ground-truth C and inside ZoomOut [16].

Let us recall, once again, that we are able to test PC-Gau and LB in the exact same set-
ting because of their compatibility. This makes the results from the two bases comparable
without further considerations.

In all the settings the metrics and the dataset considered are the same, providing compa-
rability also between different settings. Metrics are described in Section 4.3 and datasets

34 4| Experimental Evaluation

in Section 4.1. In Section 4.2, we define the global experimental setting, with the common
parameters used in evaluation, and we make a few remarks on the implementation used
in tests.

4.1. Datasets

The experimental evaluation has been carried out on the following established datasets.
We normalized all the meshes to unitary surface area, in order to make the error compa-
rable between different datasets.

FAUST [4] is a dataset of 100 meshes, composed by 10 people in 10 poses each (the
same across the meshes). Each mesh was independently remeshed to 5k vertices, in order
to avoid to introduce implicit knowledge from the common connectivity structure. Unless
otherwise specified, we randomly selected 200 pairs from this dataset. Due to remeshing,
the ground-truth correspondence between meshes is only partial and represented as a
(partial) relation T̃ (see Section 4.3.1).

MWG is a dataset of 24 meshes, composed by 5 meshes of a gorilla, 7 meshes of a man
and 12 meshes of a woman. Each class has a different number of vertices. We denote
with MWG iso the dataset with only man and woman meshes. We randomly selected
200 pairs from MWG and 120 pairs from MWG iso. The ground-truth correspondence is
provided as a partial relation T̃ , with |T̃ | = 900.

TOSCA [5] is a dataset of human bodies and animals in different poses. We used 5
meshes from the same person, totaling 20 pairs, in our tests. The meshes are high resolu-
tion (∼50k vertices) and share the connectivity (vertices are in 1:1 correspondence), there-
fore, this dataset provides a complete ground-truth correspondence T between meshes.

SHREC19 [15] is a dataset composed by 44 meshes taken from different sources.
Meshes in this dataset present wide variations in the discretization, both in the num-
ber of vertices and in the regularity of the tessellation. They are also present differences
in the type of model: computer generated, elaborated from real scans, puppets, real bod-
ies. All these facts provide additional challenges to shape matching and makes this a
challenging dataset. We randomly selected 200 pairs for our tests. The ground-truth
correspondence is provided as a partial relation T̃ , with |T̃ | = 6890.

4| Experimental Evaluation 35

4.2. Implementation

We implemented the procedure to build PC-Gau and the pipelines to perform the eval-
uation it in Matlab. The code for ZoomOut [16] and [21] is provided by the authors
and available online. In Table 4.1, we recap the parameters used throughout all the tests,
when not specified otherwise. Refer to Section 3.1 for a detailed explanation of their
meaning. In Section 5.2 we present a brief analysis on the selection of their values.

parameter value used
q: 1000

Q sampling method: FPS (Euclidean distance)
σ: 0.05

normalization: true
k: 60

Table 4.1: Parameters used in experiments

Computation time

Before presenting the core evaluation, we remark that the computation times of PC-Gau

and LB are comparable. We do not consider computation time as one of the main pa-
rameters of evaluation, but, since we are claiming that our basis is a suitable replacement
for LB, it is important from a practical perspective that the two bases are computable
in similar times. Table 4.2 presents the average computation time of PC-Gau and LB
on two datasets with very different mesh resolutions. To compute PC-Gau, we explicitly
stored the mesh graph for each mesh and then used the internal function of Matlab to
compute distances on a graph. For LB, we used the cotangent weight scheme [25], as
explained in Section 1.2.1. Note that, in our implementation, the computation time of
PC-Gau is independent of the number of atoms produced.

Note also that the computation of PC-Gau does not require to compute the distances
between any pair of vertices on the mesh, but it only needs the distances from any vertex
to the vertices in the subset Q. Since the size q of Q is independent of the mesh size n,
the memory requirement is linear in the number of vertices n, and not quadratic.

36 4| Experimental Evaluation

dataset ours LB(60 atoms) LB(200 atoms)
[s] [s] [s]

FAUST (remeshed at 5k vertices) 1,06 0,29 1,17
TOSCA (∼50k vertices) 8,58 3,05 10,01

Table 4.2: Computation times for PC-Gau and LB. For commonly used number of atoms
(60 ∼ 200), times are comparable. The computation time of our basis is independent of
the number of atoms.

4.3. Evaluation metrics

In this section, we present the metrics adopted in the following sections to asses the quality
of point-wise maps.

4.3.1. Geodesic Error

The geodesic error, as briefly mentioned in Section 2.1, is the main metric to asses the
accuracy of a point-wise map. Let us consider two meshes M and N and a point-wise
map T̄ : N → M. T̄ associates to each vertex of N a vertex on M. We also assume to be
provided with a ground-truth point-wise map T : N → M. For the moment, we assume
T to be a complete function, then we will relax this constraint. We define the Geodesic
Error e(x) for each vertex x ∈ VN as the distance between the image point of x on M
through T̄ and the ground-truth image point provided by T :

e(x) = GeoDistM
(
T̄ (x), T (x)

)
∀x ∈ VN (4.1)

For some datasets, the provided ground-truth correspondence is not a complete function
but a relation T̃ ⊂ VN × VM. This means that T̃ may not be defined for each vertex of
N and also that T̃ may associate two or more different vertices on M to the same vertex
x ∈ VN . We can easily extend equation 4.1 to this case, simply by assigning an index i

to each pair of vertices in T̃ and associating the error to the each.

e(i) = GeoDistM
(
T̄ (x), y

)
∀(x, y) ∈ T̃

The resulting e = [e(i)] is no longer a function defined on the mesh, but it is a generic
vector of geodesic errors.

4| Experimental Evaluation 37

Average Geodesic Error

In order to have a unique value to assess the global quality of the point-wise map, we
can compute the average on the values of e(i) and obtain the Average Geodesic Error (or
AGE):

AGE(T̄) = Avg
i

{e(i)} (4.2)

This works both in the case the ground truth correspondence is a total function T , in
that case i ∈ VN , and in the case it is a relation T̃ , in that case i ∈ {1 . . . |T̃ |}. When
evaluating multiple pairs taken from a dataset, we can simply consider the mean of the
AGE of the single pairs.

Mean Relative Error When we are comparing two point-wise maps T1 and T2, in
addition to the absolute value of AGE(T1) and AGE(T2), we can compute the relative
error of T1 with respect to T2:

RE =
AGE(T1)− AGE(T2)

AGE(T2)

In our tests, in particular, we are interested in assessing the relative error of a point-wise
map computed with PC-Gau with respect to point-wise maps computed with LB, for
the same setting. When evaluating multiple pairs, we can just compute the mean of the
relative error of each pair of meshes. We call this quantity Mean Relative Error, which,
in our case, reads:

MRE = Avg
p∈pairs

AGE(Tp,ours)− AGE(Tp,LB)

AGE(Tp,LB)
(4.3)

A negative value of MRE means that, on average, PC-Gau is performing better than LB
in terms of Average Geodesic Error. Note that, in general, the MRE does not coincide
with computing the relative difference, between PC-Gau and LB, of the mean AGE on
the dataset.

Cumulative Geodesic Error

AGE is good for assessing the global quality of a point-wise map with a unique value.
If we want more information on the composition of the error, though, we can consider
the curve of the Cumulative Geodesic Error. This metric associates to any given error
threshold t the percentage of correspondences d with a geodesic error lower that t. By
varying t and plotting d, we obtain an increasing function that shows the percentage of
correct correspondences for a given tolerance. In this case a higher value of the curve is

38 4| Experimental Evaluation

better. In the ideal case, it should coincide with a step function in zero. You can find an
example of such plots in Figure 4.2.

Error localization

Instead of computing the average of the geodesic error on all the vertices of the mesh, as
we did to compute the AGE in (4.2), we can represent the error in (4.1) as a function on
the mesh. In this way we can asses the localization, or spatial distribution of the error,
which in turn means to visually evaluate which are the areas where the error is higher.

If we are considering multiple pairs from a dataset, we can visualize on a mesh Y the
geodesic error averaged on all the pairs. We just need to align the error functions using
the ground truth correspondence. For instance, given a pair (M,N) with ground-truth
map T1 : N → M, and the ground-truth map T2 : Y → N , we can associate to each
vertex x of Y the error referred to the map T̄ : N → M as:

e(x) = GeoDistM
(
T̄ (T2(x)), T1(T2(x))

)
∀x ∈ VY (4.4)

In this way, by considering a sufficiently large number of pairs, we can assess if the error
presents a systematic spatial distribution pattern and, if yes, where the error is localized.

If the ground-truth correspondence is provided as a relation, we can still align errors across
different pairs. We just need to make sure that T1 is defined for some image value of T2.
In datasets, when the correspondence is not a total function, it is usually provided as a
relation for the same subset of vertices on all the meshes, therefore the previous condition
is met for all the vertices in the relation. Thus errors can be easily aligned on different
meshes. Note that (4.4) does not provide a complete function in this case. In order to
visualize it on a mesh, we interpolate values to fill in the holes.

4.3.2. Distortion

Smoothness Another desirable quality of a point-wise map T̄ , not necessarily related
to the global value of accuracy, is smoothness. For instance, smoothness is particularly
desirable in texture transfer and deformation transfer, because it ensures that there are
no gaps or bumps in the transferred texture or deformation. From an intuitive point of
view, smoothness means that vertices that are close to each other, are mapped by T̄ to
vertices that are still close to each other.
[16] proposes a metric to assess the smoothness of a point-wise map T̄ : N → M. It con-
sists in transferring the coordinate functions X,Y ,Z from M to N with T̄ and computing

4| Experimental Evaluation 39

the mean of their Dirichlet energies on N . [26] proposes a metric for smoothness, too: for
each edge on N it evaluates the ratio between the geodesic distance of the mapped end-
points on M and the length of the edge itself. These metrics are usually called distortion
and are inversely related to smoothness: a low distortion means a better smoothness.

Coverage Both of the metrics presented above would assign zero distortion to a trivial
map T̄ : N → M that maps each vertex of N to the same vertex on M. This is, of
course, not a desirable behavior. To fix this behaviour, these smoothness metrics need to
be considered in conjunction with a coverage metric, which is usually assessed [26] as the
ratio between the area on M covered by T̄ and the total surface of M. Where by area
covered by T̄ on M we mean the sum of the area elements associated to vertices on M
which are image, via T̄ , of at least one vertex on N .

Our distortion metric In order to consider a unique metric, we propose to use a
distortion metric that assess smoothness while penalizing for bad coverage. It is a simple
modification of the metric presented in [26] and consists in assessing, for each edge on N ,
the absolute difference between its length and the geodesic distance between the images
of its endpoints. By using the absolute difference, instead of the ratio, we are penalizing
the case in which two vertices x ∈ N and y ∈ N are mapped on the same vertex z ∈ M.
In this case, indeed, the edge (x, y) would get a penalty equal its own length. This metric
can still be defined as a distortion, therefore the lower its value, the smoother the map
and the better.

40 4| Experimental Evaluation

4.4. I setting: C computed from ground-truth

As experimental setting, we start by considering the case in which the functional map C
between M and N is computed from a provided ground-truth correspondence T : N →
M. In the following, we will refer to a C computed in this way as ground-truth C for
brevity. This is, of course, a pure theoretical setting, as we are never provided with a
ground-truth correspondence in real applications. Despite its ideal connotation, we focus
on this setting because it has the great advantage of making the evaluation independent of
the technique chosen to estimate C. This experimental setting is equivalent to assessing
the quality of the point-wise map under the assumption that we are able to estimate the
best possible functional map C between two given basis ΦM and ΦN .
The obtained point-wise map, though, still depends on the algorithm used to convert
C into a point-wise map. We chose to use the original algorithm, proposed in [23] and
explained in Section 2.2.2, both for its simplicity and for its wide use in real applications.

4.4.1. Technicalities

If a dataset provides a complete ground-truth map T between each pair of meshes, the
optimal functional map C can be computed, for both PC-Gau and LB, using Equa-
tion (3.4). If, instead, the ground-truth correspondence is provided as an incomplete
relation T̃ , we cannot transfer function using T̃ and thus (3.4) cannot be applied. In this
case we can still recover a functional map C from T̃ . Given two bases Φ and Ψ, for M
and N respectively, we proceed as following:

1. we assign an index i to each couple (x, y) ∈ T̃ ⊂ (VN × VM). We refer to the i-th
couple in T̃ as T̃i

2. For each i, we insert the x-th row of Φ as the i-th row of Φ̃ and the y-th row of Ψ as
the i-th row of Ψ, where (x, y) = T̃i. The rows of Φ̃ and Ψ̃ are now in correspondence
according to T̃ .

3. we compute C = Ψ̃† · Φ̃, where † denotes the Moore-Penrose pseudoinverse.

4.4.2. Results

Table 4.3 presents the experimental results on the accuracy of the point-wise maps ob-
tained. In this setting PC-Gau outperforms LB, consistently providing lower errors. Note
that, among the 620 pairs considered across 5 datasets, PC-Gau is better in 97% of the
cases.

4| Experimental Evaluation 41

From the curves in Figure 4.2, we observe that PC-Gau and LB perform similarly re-
garding the correspondences with a low geodesic error. For thresholds below 0.015, the
percentage of correspondences is very similar in most of the datasets. LB, instead, presents
more vertices with a larger error. We see this from the fact that PC-Gau approaches
100% much faster than LB after the 0.02 threshold. This means that, while a portion of
the vertices is correctly matched using both bases, there is a set of vertices which is badly
matched using LB.

This analysis is compatible with the spatial distribution of the error shown in Figure 4.1.
From there, we observe that the error of LB is localized in arms, particularly forearms,
and feet. The error of PC-Gau, on the contrary, presents minimal variations across the
mesh surface. The spatial distribution confirms what we observed in Figure 4.2: LB is
not slightly worse than PC-Gau on all the mesh, uniformly. There are areas in which
the erorr of LB is (much) higher than PC-Gau, arms and feet, and areas in which it is
similar or even slightly lower. We will put explicitly in relation the distribution of the
error and the distribution of basis energy, both for LB and PC-Gau, in Section 5.1.

For the distortion of the point-wise maps, we refer to the first two columns of Table 4.7.
We used the metric presented in Section 4.3.2 to simultaneously assess smoothness and
coverage of maps. In this setting, our basis and LB perform similarly in terms of distortion.

dataset ours LB MRE
(×10−3) (×10−3) (×10−2)

FAUST 15,7 19,7 -20,3
MWG 20,8 24,9 -20,2
MWG iso 13,6 17,3 -25,5
TOSCA 7,7 12,3 -39,6
SHREC19 24,5 28,4 -13,9

Table 4.3: Average Geodesic Error and Mean Relative Error of point-wise maps computed
from ground-truth C. In this setting, PC-Gau outperforms LB in all the datasets.

42 4| Experimental Evaluation

(a) FAUST (b) MWG iso

(c) TOSCA (d) SHREC19

Figure 4.1: Spatial distribution of geodesic error of maps obtained from ground-truth C. Average
on multiple pairs from different datasets. The error of LB is localized in forearms and feet. PC-
Gau, instead, presents minimal variations across the mesh surface.

4| Experimental Evaluation 43

(a) FAUST (b) TOSCA

(c) MWG (d) MWG iso

(e) SHREC19

Figure 4.2: Cumulative Geodesic Error of point-wise maps converted from ground-truth C, for
different datasets. Using LB, there is a considerable subset of vertices getting a large geodesic
error.

44 4| Experimental Evaluation

4.5. II setting: C estimated with product preserva-

tion

In real applications we cannot compute C from the ground truth correspondence, as we
did in Section 4.4, but we need to define some constraints on C and solve the resulting
optimization problem, as described in Section 2.2.1. In this section we test PC-Gau and
LB in combination with the method proposed in [21]. This method uses the preservation
of point-wise products of functional constraints to extract more information from the set
of functional constraints available and thus set a better-conditioned optimization problem.
In our implementation we used functional constraints based on 6 landmarks (head, chest,
hands, feet) and WKS [3] as descriptor. For the conversion to point-wise maps we still
use the original method proposed in [23] and presented in Section 2.2.2.

4.5.1. Results

Table 4.4 shows the Average Geodesic Errors of the point-wise maps obtained using PC-

Gau and LB in this setting, and the Mean Relative Error of PC-Gau with respect to LB.
We observe that, even though to a lesser degree, PC-Gau still performs better than LB
in almost all datasets. In MWG they have an equivalent accuracy, on average. Note that
the fact that MRE is anyway negative for MWG, indicates that PC-Gau performs better
on nearly-isometric pairs, for which the error is low, and worse on strongly non-isometric
pairs. This is confirmed by the fact that, by removing gorilla meshes from the dataset
(see MWG iso row in Table 4.4), the advantage of PC-Gau is back.

Figure 4.4 shows the curves of the cumulative geodesic error. In this setting, the margin of
PC-Gau is thinner, in general, with the only exception of TOSCA. Note, however, that
meshes in this dataset present a 1:1 correspondence of vertices and share the connectivity:
this fact is probably implicitly advantaging PC-Gau.

Figure 4.3 shows the spatial distribution of the error, averaged on the considered pairs
from each dataset. In this setting, the estimation of C introduces additional noise to the
final point-wise map. However, we can still observe that LB almost always presents a
high error on forearms, lower legs and feet. In addition, some error is present in other
areas, such as hip and fingers, probably due to errors in the estimation of C. The error
distribution of PC-Gau is affected by the estimation of C as well. However, the error
distribution of PC-Gau is still more uniform and does not show particular areas with
systematic errors across different datasets.

4| Experimental Evaluation 45

(a) FAUST (b) MWG iso

(c) TOSCA (d) SHREC19

Figure 4.3: Spatial distribution of geodesic error of maps obtained estimating C with product
preservation [21]. Average on multiple pairs from different datasets. In this setting LB still
presents areas with systematically high error values, such as forearms, lower legs and feet. The
error of PC-Gau is, globally, more evenly distributed.

46 4| Experimental Evaluation

(a) FAUST (b) TOSCA

(c) MWG (d) MWG iso

(e) SHREC19

Figure 4.4: Cumulative Geodesic Error of point-wise maps converted from C estimated with
product preservation [21], for different datasets. The advantage of PC-Gau is lower in this
setting, but still present.

4| Experimental Evaluation 47

dataset ours LB MRE
(×10−3) (×10−3) (×10−2)

FAUST 28,0 30,6 -4,9
MWG 58,7 58,7 -8,4
MWG iso 25,9 27,6 -10,1
TOSCA 12,7 19,8 -39,3
SHREC19 56,2 78,5 -14,8

Table 4.4: Average Geodesic Error and Mean Relative Error for point-wise maps computed
from a C estimated with product preservation [21].

4.6. III setting: C estimated with ZoomOut

In this section we evaluate our basis when used in the iterative method presented in [16].
This method, as described in Section 2.3, relies heavily on conversion to point-wise maps.
For this reason, we expect that PC-Gau will perform particularly well compared to LB.
For the initial map we used a map Cini estimated with [21] and the same functional
constraints as in Section 4.5. The size of Cini varies in different datasets between 16× 16

and 20× 20. The size of the final C, though, is always 60× 60 as in previous settings.

4.6.1. Results

Table 4.5 shows the Average Geodesic Errors of the point-wise maps obtained using PC-

Gau and LB in this setting, and the Mean Relative Error of PC-Gau with respect to
LB. In this setting PC-Gau performs substantially better than LB in all datasets. More
interestingly, by comparing Table 4.5 and Table 4.4, we observe that the use of ZoomOut
in combination with PC-Gau brings benefit to the point-wise accuracy for all the datasets.
This is not always true for LB, which is more susceptible to instability in the estimation
of the small initial Cini. This observation supports our claim that PC-Gau is not only
compatible with pipelines designed for LB, but it is complementary to other approaches
aimed at improving shape matching. As we can see from the results in this setting, the
benefits from ZoomOut and PC-Gau adds up in the final accuracy.

From Figure 4.5 we observe that the maps obtained with LB presents systematical errors
on forearms and feet. The error of the maps obtained with PC-Gau, instead, is distributed
evenly on the mesh surface, with minimal variations, similarly to the results in Section 4.4.
The high-error region on the chest for MWG iso and TOSCA, for maps obtained with
LB, is due to front/back swaps in the initial map. Our basis is clearly less sensible to
such problems.

48 4| Experimental Evaluation

In the first two columns of Table 4.9 we show the distortion of the obtained maps. Note
that, in this setting, our basis performs similarly or better than LB in terms of smoothness
and coverage.

dataset ours LB MRE
(×10−3) (×10−3) (×10−2)

FAUST 24,0 26,1 -7,5
MWG 51,2 70,6 -26,9
MWG iso 18,6 27,2 -28,3
TOSCA 9,7 20,5 -49,9
SHREC19 34,5 39,4 -10,3

Table 4.5: Average Geodesic Error and Mean Relative Error of point-wise maps computed
with ZoomOut [16]. In this setting, PC-Gau performs better than LB.

4| Experimental Evaluation 49

(a) FAUST (b) MWG iso

(c) TOSCA (d) SHREC19

Figure 4.5: Spatial distribution of geodesic error of maps obtained with ZoomOut [16]. Average
on multiple pairs from different datasets. LB presents presents a systematic error on forearms
and feet. The error of PC-Gau is evenly distributed. The high error on the chest for LB in (b)
and (c) is due to front/back swaps in the initial map

50 4| Experimental Evaluation

(a) FAUST (b) TOSCA

(c) MWG (d) MWG iso

(e) SHREC19

Figure 4.6: Cumulative Geodesic Error of point-wise maps obtained with ZoomOut [16]. PC-
Gau has a sensible margin on LB, especially when considering a high error thresholds. This
means that a considerable amount of vertices is badly matched by LB.

4| Experimental Evaluation 51

4.7. IV setting: Point-wise conversion with general-

ized embeddings

In Section 2.2.2 we presented a simple method, taken from [23], to convert a functional
map C form M to N to a point-wise map T : N → M. We now consider a small
modification of this method, which has already been adopted in previous works like [22],
and we test it applied to our basis and LB. This modification consists in using smooth
functions, instead of delta functions, to compute the embedding of vertices. Let us explain
it in more detail.
In Section 2.2.2 we defined the embedding of the vertex x, given a basis Φ = {ϕi} ∈ Rn×k,
as the vector of values assumed by basis functions in x: Emb(x) = [ϕi(x)] ∈ Rk. Emb(x)

corresponds to the coefficients of a delta function centered in the vertex x [23]. Similarly
to what has been done in [22], we extend the concept of embedding of vertex x to the
coefficients, in the truncated basis Φ, of a generic function γx centered in x. We denote
this embeddings as generalized embeddings.

Embedding functions

The class of the embedding functions γ can be arbitrarily chosen. It is sufficient that γx
is a function localized in the neighborhood of a vertex x and centered in x. For our tests
we considered three classes of embedding functions:

Gaussian: Gaussian functions of the geodesic distance from vertex x. They are built in
the same way as described in Section 3.1.2.

Sparse Frame (SF): approximation of Gaussian functions, computed as shown in [13],
except for the binarization.

Heat Kernels (HK): approximation of heat diffusion from vertex x. They are com-
puted using the eigenfunctions of the Laplace-Beltrami operator, as shown in [31].

All these classes of embedding functions require a parameter that sets the amplitude of
the functions. We chose the values of such parameters in order to produce functions with
similar Dirichlet energies between the different classes. Figure 4.7 shows an example for
each class, centered in a vertex on the chest.

Computation

While for delta-embeddings we can get the embedding of each vertex simply by transposing
the basis matrix Φ, in order to compute generalized embeddings we need an extra step. Let

52 4| Experimental Evaluation

Figure 4.7: Example of different classes of embedding functions. The γx corresponding to vertex
x is centered and localized in x, which is highlighted as a black circle in the example.

us consider a mesh M with n vertices. Let us suppose that ΓM contains the embedding
functions as columns, one centered in each vertex, so ΓM has size n× n. We can project
them on an orthogonal basis ΦM ∈ Rn×k by matrix multiplication (see Section 3.2.1):

ΣM = ΦT
M · AM · ΓM

ΣM contains the coefficient vectors as columns, which are also the embeddings of each
vertex of M. We can do similarly for N and obtain ΣN . Then, the procedure is identical
to delta-embeddings: for each column of ΣN we find the nearest neighbour in CΣM.

Despite the extra computation required, which can be costly for large meshes, generalized
embeddings provide some benefits to the point-wise conversion and allow to obtain better
point-wise maps for the same C. Such maps generally have a lower Average Geodesic
Error and a lower distortion.

4.7.1. Ground-truth C

We applied this modified conversion with generalized embeddings to functional maps
computed with the provided ground-truth correspondence. We start with this setting
because generalized embeddings only affect the conversion to point-wise map, therefore
we want to evaluate the benefit on the best possible C.

Table 4.6 shows the Average Geodesic Error of the obtained point-wise maps. We observe
that Gaussians and Heat Kernels bring a sensible benefit to the conversion. More impor-
tantly, we observe that this benefit is added up to the benefit brought by using our basis.

4| Experimental Evaluation 53

This confirms the claim that our basis is complementary to other approaches, such this
enhanced conversion, in improving the final point-wise maps.

Table 4.7 shows the distortion of the same point-wise maps. Here we can observe that
the benefit of using generalized embeddings and our basis is more than additional, as the
benefit on smoothness is much more evident with PC-Gau than with LB. Let us consider
Gaussian functions, for instance. On average, we have an improvement on distortion of
23% on the different datasets with ours basis. With LB, the average improvement is only
6%.

4.7.2. ZoomOut

We applied generalized embeddings also to ZoomOut [16]. Note that in ZoomOut the
conversion to point-wise map is performed at each iteration (see Section 2.3) and we used
generalized embeddings for all these conversions. We used only Gaussian functions, since
they provided good and stable results with ground-truth C.

Tables 4.8 and 4.9 present the average geodesic error and the distortion in this setting.
They confirm what we observed before:

• The benefit provided by generalized embeddings adds up to the benefit given by
our basis, keeping a substantial advantage of the accuracy of PC-Gau on all the
datasets.

• Generalized embeddings greatly improve the smoothness and coverage of point-wise
maps obtained with our basis, much more than they do with LB.

dataset Delta Gaussian SF HK
ours LB ours LB ours LB ours LB
×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3

FAUST 15,7 19,7 14,1 19,0 14,4 18,6 14,3 19,4
MWG 20,8 24,9 20,1 24,7 19,4 23,8 18,7 23,8
MWG iso 13,6 17,3 12,4 16,4 12,1 16,5 11,9 16,7
TOSCA 7,7 12,3 6,3 8,7 6,6 10,3 6,9 11,0
SHREC19 24,5 28,4 22,1 27,5 38,8 39,6 22,9 28,0

Table 4.6: Average Geodesic Error of point-wise maps obtained using different functions
for the embedding of vertices, converted from ground-truth C. Using smooth functions
provides better results in most of the cases. PC-Gau always performs better than LB for
the same embedding function.

54 4| Experimental Evaluation

dataset Delta Gaussian SF HK
ours LB ours LB ours LB ours LB
×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3

FAUST 7,3 8,4 5,7 8,1 6,3 8,5 6,0 8,4
MWG 9,9 11,1 8,3 10,6 9,1 11,4 7,7 10,6
MWG iso 8,1 9,7 6,4 8,9 7,0 9,7 6,4 9,5
TOSCA 3,3 3,7 2,1 3,3 2,1 3,4 2,1 3,6
SHREC19 7,8 7,5 6,2 7,4 6,3 8,5 5,4 7,2

Table 4.7: Distortion of point-wise maps obtained using different functions for the embed-
ding of vertices, converted from ground-truth C. Using smooth functions in combination
with our basis greatly improves smoothness and coverage, increasing the advantage over
LB.

dataset Delta Gaussian
ours LB ours LB
×10−3 ×10−3 ×10−3 ×10−3

FAUST 24,0 26,1 22,7 24,4
MWG 51,2 70,6 39,2 57,4
MWG iso 18,6 27,2 16,8 24,3
TOSCA 9,7 20,5 11,5 39,4
SHREC19 34,5 39,4 33,7 36,7

Table 4.8: Average Geodesic Error of point-wise maps obtained using ZoomOut [16] and
Gaussian-embeddings. Using a smooth function, such as Gaussians, always improves the
conversion for PC-Gau.

dataset Delta Gaussian
ours LB ours LB
×10−3 ×10−3 ×10−3 ×10−3

FAUST 7,5 8,6 5,8 8,1
MWG 10,4 21,2 7,2 13,8
MWG iso 9,1 9,0 6,2 8,4
TOSCA 3,3 4,0 2,3 3,9
SHREC19 6,8 7,4 5,8 7,2

Table 4.9: Distortion of point-wise maps obtained using Gaussian-embeddings inside
ZoomOut [16]. Our basis particularly benefits from the usage of a smooth function for
embeddings, reaching a considerably lower distortion than LB.

55

5| Analysis

In this chapter, we further analyze the characteristics of PC-Gau. In Section 5.1 we
analyze in greater detail the results obtained in the experimental evaluation, highlighting
their relation with the core characteristic of PC-Gau, namely the even distribution of
its energy on the mesh surface. In Section 5.2 we analyze the choice of parameters for
the construction of PC-Gau, showing their impact on the final results, and we devise a
simple method to select good values of such parameters in real applications. In Section 5.3
we briefly discuss the choice for the size of the basis k adopted throughout all this Thesis.
Finally, in Section 5.4, we consider different applications for our basis, other than shape
matching, shedding light on some limitations of PC-Gau but also on interesting future
directions to explore.

5.1. Spatial distribution of basis energy

In this Section, we consider the spatial distribution of the energy of the bases on the mesh
surface. Intuitively, by energy of a basis in the vertex x, we mean the expressive power
and the quality of the embedding space induced by the basis in a neighborhood of x. More
precisely, as we stated in Section 2.4, we consider two properties to define the quality of
the embedding space: (i) the discrimination power between different vertices and (ii) the
preservation of locality among vertices.

5.1.1. Discrimination power

We start by considering how the discrimination power of LB and PC-Gau is distributed
on the surface of a mesh. We define discrimination power as the capability of a basis
to assign sufficiently different embeddings to different vertices. Quantitatively, we assess
discrimination power with the following metric.

56 5| Analysis

Metric

Let us consider a mesh M with n vertices and the matrix of its embeddings ΣM. We could
use also generalized embeddings (see Section 4.7), but here we consider delta-embeddings
because of their simplicity and because they are the most common choice, therefore ΣM =

ΦT
M. Note that Emb(x) is the x-th column of this matrix, namely Emb(x) = ΣM(:,x).

For each vertex x we find the vertex y which has the most similar embedding, in terms
of Euclidean distance, to the embedding of x. We associate to x the euclidean distance
between Emb(x) and Emb(y). We want such distance to be sufficiently large, in order to
allow a proper discrimination between the vertices, once the embeddings are transferred
with C (see Section 2.2.2). In order to make the metric independent of the vertex density,
we normalize the euclidean distance by the geodesic distance between x and y. Note that
y is not, in general, the closest vertex on the mesh and that this normalization rewards
the choice of a y which is actually close in the geodesical sense. Summarizing, we propose
and use the following metric to assess the discrimination power of a basis in the vertex x:

Dis(x) =
∥Emb(x)− Emb(y)∥2

GeoDistM (x, y)
with y = argmin

z∈VM\{x}
{∥emb(z)− emb(x)∥2} (5.1)

Dis(x) is a function defined on the mesh and we can render it with colors, in order to
visually assess how the discrimination power of a basis is spatially distributed on a mesh.
In order to make the assessment more general, we average the value of Dis on all the meshes
of a dataset. To do this, we transfer the function Dis computed on different meshes of
the dataset to a unique mesh M, using the provided ground-truth correspondence, and
then compute the average on M. This is also possible when the provided ground-truth
correspondence is not complete: in this case we fill in missing values by interpolation, in
order to have a smoother visualization.

Results

In Figures 5.1a and 5.2a, we compare the spatial distribution of discrimination power
between PC-Gau and LB on FAUST and SHREC19. We chose to show FAUST and
SHREC19 as example datasets in this section, but the results are similar all the other
datasets. We observe that for PC-Gau the value of Dis is evenly distributed on the mesh
and there are no areas with particularly low values. LB, on the contrary, presents some
areas (arms and legs) with noticeably lower values. This means that vertices in these
areas are not well discriminated in the embedding space created by LB. We also observe
that the metric value is slightly lower for PC-Gau in some areas of the body. However,
the global value is considerably higher for PC-Gau. This means that our basis is capable

5| Analysis 57

of redistributing evenly the energy on the whole mesh, including extremities, without
leaving the massive areas poorly covered.

5.1.2. Locality Preservation

We now analyze the locality preservation of PC-Gau, compared to LB. In Section 2.2.2
we gave a definition of locality preservation and an intuitive explanation of its role in
the conversion to point-wise maps. In this section we present two metrics to evaluate
quantitatively the locality preservation of PC-Gau and LB, both in terms of overall
value and distribution on the mesh surface. We show that the overall improvement in
locality preservation of PC-Gau with respect to LB comes, again, from a more evenly
distribution on mesh.

Metrics

We start by presenting the two metrics used to assess locality preservation.

Embedding/Geodesic Distance Correlation (EGDC) For each vertex x, we com-
pute the correlation between the euclidean distance of the s embeddings closest to Emb(x)

and the geodesic distances of the corresponding vertices. In formulas, we can write:

EGDC(x) = corr
(
GeoDistM(x, y), ∥Emb(x)− Emb(y)∥2

)
y∈S

(5.2)

where S is the set of s vertices with the closest embedding to Emb(x). The idea, here,
is to use correlation to evaluate how much the ordering between geodesic distances and
embedding distances is preserved. Of course, the higher the correlation, the better. The
choice to limit the computation to the lowest s embedding distances is to restrict the
evaluation in a neighborhood of the embedding. After a certain point, indeed, embedding
distances reach a plateau, which is trivially uncorrelated to the geodesic distances. In the
current evaluation, we used s = 80.

Mean Geodesic Distance (MGD) For each vertex x we find, again, the t closest
embeddings. Then we compute the mean of the geodesic distances, from x, of the corre-
sponding vertices. Finally, we normalize the result by the mean geodesic distance of the
actual t closest vertices to x (in the geodesic sense). In formulas, we can write:

MGD(x) =
Avgy∈R {GeoDistM(x, y)}
Avgz∈R̄ {GeoDistM(x, z)}

(5.3)

58 5| Analysis

where R is the set of t vertices with the lowest embedding distance to Emb(x) and R̄

is the set of t vetices with the lowest geodesic distance from x. Here the idea is that, if
locality is preserved, the closest embeddings should correspond also to the closest vertices
in the geodesical sense. In this case the value of MGD gets lower and approaches to 1.
Therefore, lower is better for MGD. We used a smaller scale for this metric, choosing
t = 10.

Results

Note that both EGDC and MGD are functions defined on the mesh. To asses their overall
value we compute the average on the vertices of a mesh and then average this value across
multiple meshes from a dataset. Alternatively, we can visualize the value of these metrics
as a function on the mesh to assess their spatial distribution. As usual, we can average
the value of EGDC and MGD across multiple meshes, using the provided ground-truth
correspondence, as briefly described in Section 5.1.1.

We present the overall value of EGDC and MGD for different datasets in Table 5.1. Note
that our basis performs better than LB in both metrics and in all datasets. Note also that
the overall values of MGD are more stable across different datasets, compared to LB.

dataset EGDC MGD
ours LB ours LB
×10−2 ×10−2

FAUST 79,7 73,8 1,11 1,34
MWG 83,8 78,1 1,12 1,36
TOSCA 84,1 79,0 1,12 1,40
SHREC19 81,9 68,8 1,14 1,86

Table 5.1: Overall values of EGDC and MGD. Average on the meshes of different datasets.
Our basis performs better than LB in both metrics, in all datasets.

Figures 5.1b, 5.1c, 5.2b and 5.2c show the average distribution of MGD and EGDC on
the meshes of FAUST and SHREC19. The distribution shown gives us an insight on the
higher overall results of EGDC and MGD: LB presents areas with extremely bad values
(whether high or low depends on the metrics). The values for PC-Gau, instead, are
more evenly distributed on the mesh. For PC-Gau, some areas have slightly worse values
compared to LB, similarly to what happened with discrimination power in Section 5.1.1.
However, the overall effect of the even distribution is an increase of the global quality of
the basis. This is an important strength of PC-Gau: to spread the basis energy over
the whole mesh surface, without penalizing (too much) any area and reaching an overall

5| Analysis 59

improvement.

In Section 5.2 we use the metrics defined in the current section to perform parameter
selection at test time. As explained in Section 5.2.3, the predictive power of EGDC and
MGD on the error of the final maps, for different values of the parameters, is a further
confirmation of their capability to capture properties of the embedding space that are
actually relevant to point-wise conversion.

5.1.3. Relation to point-wise error

One of the major claims of this work is that the energy of LB is not (sufficiently) evenly
distributed on the mesh surface and that this causes a lack of accuracy in the conversion
to point-wise maps. We have, thus, proposed a basis that has energy distributed (more)
evenly on the mesh surface, in order to overcome this issue and obtain better point-wise
maps. We showed in the experimental evaluation in Chapter 4 that our basis actually
reaches better accuracy than LB in many different settings. In the current chapter, we
also showed that the energy of our basis is evenly distributed on the mesh, according to
metrics for discrimination power and locality preservation that we defined. At the same
time, we showed that the energy of LB presents areas with a lower quality of embedding
space. In order to bridge the gap between basis energy and point-wise error, and support
their causal relation, we now explicitly compare the spatial distribution of the error in
point-wise maps with the spatial distribution of the basis energy, for PC-Gau and LB.
If our reasoning is correct, the error should be localized where the embedding space of a
given basis is lacking in quality.

Figures 5.1 and 5.2 compare at one glance the spatial distribution of Dis (5.1), MGD (5.3),
EGDC (5.2) and geodesic error for FAUST and SHREC19. The functions depicted are
averaged on multiple meshes or multiple pairs extracted from the dataset. The geodesic
error is computed on point-wise maps converted from grond-truth C, exactly as in Sec-
tion 4.4. Figures 5.1d and 5.2d are indeed taken from Figure 4.1. For this comparison,
we chose the setting with ground-truth C, in order to be as independent as possible from
possible errors in the estimation of C.

We can immediately observe that the error distribution closely resembles the energy dis-
tribution of the correspondent bases. Point-wise maps obtained using LB present a high
error on the arms (particularly around the elbow) and feet. These areas are included,
and almost coincide, in the areas in which the quality of the embedding space, evalu-
ated as discrimination power and locality preservation, is lower. The error distribution
for PC-Gau, instead, is much more even on the mesh, and so is its energy distribution.

60 5| Analysis

PC-Gau gets slightly worse values of error on the massive areas of the body, such as
trunk and thighs, but the overall value is still better than LB. Note, finally, that isolated
spikes, common for ours and LB, are probably due to some error in the ground-truth
correspondence provided.

5| Analysis 61

(a) discrimination power (b) MGD

(c) EGDC (d) geodesic error

Figure 5.1: Average spatial distribution of basis energy (measured through discrimination power,
MGD, EGDC) and geodesic error on meshes from FAUST. Darker is worse in all cases. The
error of LB is localized where the quality of the embedding space is lower. PC-Gau presents a
uniform distribution both of basis energy and geodesic error.

62 5| Analysis

(a) discrimination power (b) MGD

(c) EGDC (d) geodesic error

Figure 5.2: Average spatial distribution of basis energy (measured through discrimination power,
MGD, EGDC) and geodesic error on meshes from SHREC19. Darker is worse in all cases. The
error of LB is localized where the quality of the embedding space is lower. PC-Gau presents a
uniform distribution both of basis energy and geodesic error.

5| Analysis 63

5.2. Parameter Selection

In this Section we analyze more in detail the choice of the parameters used to build our
basis, and their impact on the resulting point-wise maps. Note that, while LB does not
require any parameter for its computation, PC-Gau depends on some parameters:

• the number of vertices q (and Gaussian functions) in the subset Q

• the amplitude σ of the Gaussian functions

However, we show that the value of such parameters can be chosen using the metrics
presented in Section 5.1 and 5.1.2, which do not require any ground truth correspondence
to be computed. This fact makes the accurate choice of the parameters possible also at
test time, in real applications.

Note that in this section we consider only parameters strictly related to the computation
of the basis itself. Instead, we address the choice of the number of basis atoms k in
Section 5.3.

5.2.1. Number of vertices q

As shown in Section 3.1, the Gaussian functions in the dictionary, to which is applied
PCA, are centered in q vertices scattered on the mesh surface. Thus, q determines also
the number of Gaussians in the dictionary. In the experimental section we used q = 1000

in all the settings and for all datasets. Now, we show why this is a reasonable choice.

Figure 5.3 presents the average geodesic error of point-wise maps obtained with our basis,
computed using different values of q. For each value of q the basis is recomputed and
then tested both as shown in Section 4.4 (C computed from ground-truth) and 4.5 (C
estimated using product preservation [21]). These tests have been performed on 30 pairs
from FAUST and MWG.

We observe that the error decreases as q increases, with less noticeable effects after q =

1000. However, the time needed to compute our basis increases with q, more noticeably
when q is high. Consider, for instance, that computing PC-Gau on a mesh of FAUST
takes around 1 second for q = 1000 and more than 35 seconds for q = 4000. Therefore,
q = 1000 is a good trade-off between accuracy and computation time, since it provides
almost optimal results for much less computation time.

The evaluation we presented until now, however, is possible only when a ground-truth
correspondence is provided to assess the average geodesic error on the final point-wise

64 5| Analysis

map. In a real shape-matching scenario, this is not possible, but we can use the average
value of the metrics proposed in Section 5.1.2 to choose a proper value of q. Note that
these metrics asses the quality of the embedding space on a single mesh and, therefore,
do not require any ground-truth correspondence to be computed. In particular, here we
consider the use of the Mean Geodesic Distance (MGD, see Section 5.1.2) for the purpose,
since it is faster to compute than EGDC (see Section 5.1.2). Figure 5.3c shows the average
value of MGD computed on meshes from MWG and FAUST, for instances of PC-Gau

computed with different values of q. We observe that MGD is a good predictor for the
error of the final point-wise map and therefore it can be used to select the value of q. In
the cases of the example, we would have selected q = 1000 as the value with the better
trade-off between quality and computation performance.

We also mention that the distribution of Q is more dependent on the vertex density when
q is close to the total number of vertices n. This can easily be seen by considering the
limit case in which q = n: in this case, Q contains all the vertices and the Gaussians are
concentrated where the vertex density is higher. Therefore, it makes additional sense not
to use too high values of q.

(a) point-wise error (GT C) (b) point-wise error (NO17 C) (c) locality preservation

Figure 5.3: Comparison of point-wise error (a)(b) and locality preservation (c) among different
values of q.

Q sampling method

We saw in previous sections that the most important strength of PC-Gau is the even
distribution of its energy on the mesh surface. We saw in Section 3.1 that we induce this
characteristic by choosing a subset of vertices Q that is evenly distributed on the mesh. In
Section 3.1 we used Farthest Point Sampling (FPS) [19] with Euclidean metric to sample
Q, but in principle we could use any method that provides a even scattering of Q. In
this section, we test the use of random sampling of q vertices among the n vertices of the

5| Analysis 65

mesh for sampling Q.

Figure 5.4 presents a comparison between FPS and random sampling in terms of spatial
distribution of basis energy (through Dis and MGD metrics) and geodesic error of the
obtained point-wise maps. For the geodesic error both its localization and its mean value
(AGE) are shown. We used FAUST and SHREC19 for this experiment: while FAUST
has a regular tessellation on all meshes, SHREC19 presents some meshes with a heavily
irregular one. However, we observe that for q = 1000 the two methods are practically
equivalent, both regarding the energy distribution and the geodesic error.

Note that we still prefer FPS to random sampling as it is, in general, more stable and
safer to use:

1. because it is insensible to a difference of vertex density on the mesh. We see this
in Figure 5.4a, where the distribution is slightly more uneven for random sampling.
Consider, for instance, the higher difference in values between hand and chest.

2. because with low values of q there is a chance that some parts of the mesh are left
uncovered by random sampling.

5.2.2. Amplitude of Gaussian functions σ

Let us recall from Section 3.1 that the Gaussian centered in the j-th vertex of Q is
computed as

G(i) = exp

(
−GeoDist2M(VM(i), Q(j))

σ

)
∀i ∈ VM

We observe that the parameter σ sets the amplitude of the Gaussian. The smaller is σ
and the more the Gaussian is localized around the vertex Q(j), as shown in Figure 5.5.

The choice of σ has a sensible impact on the quality of our basis and of the final point-
wise map. Here, we present a brief analysis that justifies our choice to use σ = 0.05. As
we did for q in Section 5.3, we start by presenting the results on the geodesic error of
the point-wise map T̄ obtained for different values of σ. Then, we show that a similar
choice of σ can be performed also in real scenarios by considering the value of MGD (see
Section 5.1.2).

Figure 5.6 presents the average geodesic error on point-wise maps obtained from our basis
computed using different values of σ. The point-wise maps are extracted using both a
C computed from the ground truth correspondence (a), as done in Section 4.4, and a C
estimated using [21] (b), as done in Section 4.5. The tests have been performed on 30
random pairs from FAUST and MWG. We observe that the error presents a minimum for

66 5| Analysis

(a) discrimination power

(b) MGD

(c) geodesic error

Figure 5.4: Comparison between random sampling and Farthest Point Search in the selection of
Q on FAUST (first column) and SHREC19 (second column). We consider different metrics to
perform the comparison, both as distribution and as average value: discrimination power (a),
MGD (b) and geodesic error (c). The error is computed on point-wise maps obtained from a
ground-truth C. Darker is worse in all cases. The results show that even a random sampling is
a viable option for sampling Q.

5| Analysis 67

Figure 5.5: Example of Gaussian functions obtained for different values of σ. The lower σ, the
more localized the Gaussian around the vertex x (marked here with a black circle).

0.05 > σ > 0.02, meaning that Gaussians that are both too wide and too narrow produce
sub-optimal results. The choice of σ, thus, is slightly more difficult than the choice of q.

In a real scenario, where no ground-truth correspondence is given, we can use the value
of MGD to choose the best value of σ. This is similar to what we did in Section 5.3 for
q. Again, we prefer MGD over EGDC because MGD is faster to compute, but they both
yield to the same choice of σ. Figure 5.6c shows the global value of MGD, computed for
instances of our basis obtained for different values of σ. In the chart is averaged on 30
meshes from FAUST and 24 from MWG.

Notice the good agreement between the values of MGD and geodesic error in the different
settings. In particular, we observe that the value of σ that minimizes the MGD (σ = 0.02)
also leads to optimal or nearly-optimal results on the error in all cases. Remember that
MGD assesses the quality of the embedding space produced by a basis on a mesh, only
with reference to the mesh itself.

Note also that in our experiments we chose to use σ = 0.05, which is close to the optimal
value, according to MGD, but it does not coincide with it. We justify our choice by
observing that MGD increases more rapidly for σ < 0.02 than for σ > 0.05. Our choice
is thus more robust to possible inaccuracies in the estimation provided by MGD.

5.2.3. Predictive power of locality-preservation metrics

As we saw qualitatively in Section 5.2.1 and 5.2.2, there is a strong agreement between
the values of the metrics presented in Section 5.1.2 for an instance of PC-Gau computed
with a certain choice of parameters, and the error of the point-wise map obtained by a
shape-matching pipeline employing the same instance of PC-Gau.

68 5| Analysis

(a) point-wise error (GT C) (b) point-wise error (NO17 C) (c) locality preservation

Figure 5.6: Comparison of point-wise error (a) (b) and locality preservation (c) for different
values of σ. MGD is a good predictor of the error at test time, thus can be used to select the
best value of σ.

We can assess this agreement, or predictive power, through correlation. Note that both
the metrics (EGDC and MGD) and the point-wise map depend on the parameters used
to build the basis. We can write MGD(σ), EGDC(σ) and AGE(T̄ (σ)) to highlight their
dependence on σ. Table 5.2 presents the value of correlation between MGD(σ) (and
EGDC(σ)) and AGE(T̄ (σ)) for σ assuming values in the set [0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 1, 2] ×10−1. The first entry, for instance, is computed as:

corr
(
MGD(σ),AGE(T̄GT C(σ))

)
with σ ∈ [0.005, 0.01, . . . , 0.1, 0.2]

where T̄ is computed by converting a C found using the ground truth correspondence.
Other entries are compute similarly. Numerical values support what we observed quali-
tatively in Sections 5.2.1 and 5.2.2.

dataset GT C NO17 C
MGD(σ) EGDC(σ) MGD(σ) EGDC(σ)

FAUST 0,94 -0,91 0,58 -0,78
MWG 0,99 -0,82 0,84 -0,82

Table 5.2: Correlation between metrics for measuring the locality-preservation (MGD and
EGDC) and the resulting point-wise errors, both computed for different values of σ.

In the previous sections, we used this predictive power to devise a method for selecting
the optimal values for parameters in real application. We now devote this brief Section
to show how this accordance, between metrics and error, is particularly relevant for our
work. For different reasons:

1. It supports our claim that the quality of the final point-wise maps strongly depends

5| Analysis 69

on the quality of the embedding space, which is a property of the single mesh. This
fact, in turn, strengthens our claim that LB is particularly limited by the fact the
the quality of its embedding is not even across the whole mesh.

2. It shows that we devised meaningful metrics to assess the quality the embedding
space produced by a basis on a mesh.

3. it paves the way to a higher level of adaptivity for PC-Gau, in which the basis is
tailored on each mesh by selecting the best parameters for that specific mesh.

5.3. Number of atoms k

The first step of any shape-matching pipeline with functional maps is to choose a moder-
ately sized functional basis. This size of the basis is given by the parameter k, which is
the number of basis atoms considered. As we saw in Section 2.2, this truncation makes
the correspondence compactly represented by a matrix C of size k × k, which is in turn
amenable to optimization. For the sake of simplicity, we made the assumption that both
bases have size k. Note, however, that this assumption is not required neither by the
functional map framework, nor by PC-Gau or LB. In the general case in which the two
bases have different sizes kM and kN , C is a rectangular matrix of size kN × kM. In the
following, though, we still consider the simplified version, for consistency with the rest of
the Thesis.

In all the experiments presented in this work we used a number of atoms k = 60. Typical
values for functional maps vary between 40 and 160, so the value we chose falls perfectly in
it. Here, we evaluate briefly the use of other values of k, between 10 and 90. For each value
of k, we compute C using the ground-truth correspondence, both for LB and PC-Gau.
Then we convert to point-wise map, using the method presented in Section 2.2.2. The
result shown in Figure 5.7 is averaged on 30 random pairs from FAUST and SHREC19.
We observe that the advantage of our basis is significant for k < 70. This allow us to use
a lower value of k for PC-Gau, in comparison to LB, and obtain the same geodesic error
on the final point-wise map. For instance, using 50 atoms of PC-Gau in SHREC19 is
equivalent, on average, to using 80 atoms of LB.

This analysis is consistent with the claims about the distribution of basis energy we made
throughout this work. If a limit of LB is its energy distribution, with a higher number
of atoms k, the energy of LB spreads over the whole mesh and its distribution gets more
evenly. Therefore, the advantage provided by PC-Gau becomes less and less noticeable
with increasing k. However, being able to reach similar results with less atoms is still a

70 5| Analysis

valuable benefit, as the cost of solving the optimization problem to find C increases with
k.

(a) FAUST (b) SHREC19

Figure 5.7: Average Geodesic Error as a function of the number of atoms k considered. Point-
wise maps converted from ground-truth C. Average on 30 pairs from FAUST (a) and SHREC19
(b). The advantage of our basis is sensible for k < 70.

5.4. Function approximation and transfer

In this section, we evaluate the capability of PC-Gau of approximating functions on a
mesh and of transferring them from one mesh to another without recovering a point-wise
map between the two meshes. This is a related, but different application context from
shape matching. As usual we compare the performance of PC-Gau with the standard
basis LB.

5.4.1. Approximation

As we saw in Sections 1.1.2 and 3.2.2, when we truncate LB or PC-Gau to the first k
atoms we obtain the basis of a subspace S of F(M,R), in which functions from F(M,R)

are represented through a low-pass filter approximation. We can evaluate the quality of
the approximation f̃ of a function f ∈ F(M,R) by considering the normalized error with
respect to the original function:

εapprox =

∥∥∥f − f̃
∥∥∥
M

∥f∥M
with f̃ = ΦMΦT

MAMf (5.4)

The norms in Equation (5.4) are computed as shown in Chapter 1:

∥g∥M =
√

⟨g, g⟩M =
√
gTAMg ∀g ∈ F(M,R)

5| Analysis 71

In the first column of Table 5.3 we present the comparison between the approximation
error of LB and PC-Gau for different classes of functions, approximated on the meshes
of FAUST:

• WKS [3] and HKS [31] are two descriptors. We used 100 samples each, computed
for 100 values of their parameters.

• Cosine are 10 sample sinusoidal functions of the coordinates.

• Indicator are the indicator functions corresponding to 10 disjoint segments on the
mesh.

• HK, Gaussian and Delta are, respectively, 100 Heat Kernels, Gaussian functions
and Delta functions scattered on the surface. Gaussians are computed with two
different amplitudes: σ = 0.05 (same amplitude of the Gaussians used to build
PC-Gau) and σ = 0.005.

• Coordinates are the three functions given by the X, Y , Z coordinates of each
vertex.

As in the rest of the Thesis, we used a basis size of k = 60.

From Table 5.3, we observe that LB has, in general, an approximation error lower than
PC-Gau. The only exceptions are

• Gaussian functions computed with the same σ used in the construction of PC-Gau,
as we would expect from the properties of PCA (see Section 3.1.3).

• Sinusoidal functions of the coordinates and Coordinates: even though our basis
provides a low-pass filter approximation, it probably retains more information about
the local geometry of vertices, therefore functions of the Coordinates are better
approximated. This claim is supported by the fact that the Dirichlet energy of the
atoms of PC-Gau is higher than the atoms of LB, as shown in Section 3.2.2.

5.4.2. Transfer

Let us recall from Section 2.2 that in the Functional Map framework we can transfer the
coefficients f̂ of a function f from a mesh M to a mesh N simply by matrix multiplication:
ĝ = Cf̂ . Then, we can reconstruct the function on N from ĝ as g = ΦN ĝ. Summarizing,
given two basis ΦM and ΦN , and their functional correspondence C, a function f ∈
F(M,R) is transferred on N as:

g̃ = ΦNCΦ
T
MAMf (5.5)

72 5| Analysis

Class of functions approximation transfer (GT C) transfer (NO17 C)
ours LB ours LB ours LB

×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2

WKS 27,17 19,6 28,41 21,37 31,06 27,88
HKS 6,28 1,72 6,67 2,33 9,51 9,99

Cosine 24,02 24,54 26,61 26,54 31,85 33,78
Indicator 30,18 26,74 30,91 27,29 32,61 30,64

HK 56,57 49,19 59,4 52,46 62,08 56,94
Gaussian (σ = 0.05) 2,73 5,43 4,57 6,19 10,94 13,8

Gaussian (σ = 0.005) 53,27 46,85 56,05 49,83 58,84 54,3
Delta 99,18 99,16 99,28 99,25 99,36 99,36

Coordinates 5,08 5,85 5,83 6,61 11,35 15,04

Table 5.3: Normalized error for function approximation and transfer on FAUST. Compar-
ison between ours and LB. WKS, HKS, HK, gauss, delta are averaged over 100 sample
functions. LB is generally better in function approximation and transfer.

We applied Equation (5.5) to each of the functions used for approximation in Section 5.4.1,
using both a C computed from the ground truth correspondence (as done in Section 4.4)
and a C estimated using product preservation [21] (as done in Section 4.5). The results
are shown in the second and third columns of Table 5.3. The tests have been performed on
200 random pairs from FAUST. In the case of function transfer, we define the normalized
error, analogously to the approximation case, as:

εtransfer =
∥g − g̃∥N
∥g∥N

with g̃ = ΦNCΦ
T
MAMf

where g ∈ F(N ,R) is the image of f ∈ F(M,R) computed using the ground-truth
correspondence T : VN → VM provided by the dataset:

g(x) = f(T (x)) ∀x ∈ VN

Note that for this evaluation we need a dense ground-truth correspondence, defined for
each vertex of N , therefore we used the original version of FAUST, not re-meshed to 5K
vertices.

From Table 5.3 we observe that the functions transferred using LB have, in general,
lower error compared to PC-Gau, with the exceptions of Gaussians (with σ = 0.05) and
Coordinates. This is due to the good performances of our basis for the approximation of
these specific classes.

73

6| Conclusions

We presented the procedure for constructing a new basis for the space of real-valued
functions defined on a mesh. Compared to the eigenfunctions of the Laplace-Beltrami
operator, which is currently the ubiquitous basis for functional maps, the energy of our
basis is more evenly distributed on the mesh surface. As a consequence, the embedding
space induced by our basis provides a more informative representation for vertices in
all areas of the mesh. We proposed a few metrics to evaluate some key properties of
the embedding space, namely discrimination power and locality preservation, which are
particularly useful for point-wise conversion of functional maps. We also showed that
these metrics can be employed in realistic settings to make an accurate choice of the
parameters required to build our basis.

Our basis shares some of the good qualities of the LB basis, such as orthonormality,
frequency ordering and isometry invariance. Thanks to these common properties, our
basis can replace the standard LB basis in existing functional map pipelines, at no cost.
Through experimental evaluation on pairs of meshes from established datasets, we showed
that replacing LB with our basis actually leads to substantial improvements in the accu-
racy of the point-wise maps obtained, for the same shape matching pipeline. In particular,
under the assumption to be able to estimate the optimal functional map C, our basis con-
stantly outperforms LB. To give a scale, on the 620 pairs tested overall, our basis was
better in 97% of cases, showing an average accuracy gain of 20% with respect to LB.

Interestingly, the benefit brought by the use of our basis adds up to other improvements
tackling different parts of the functional map framework, namely the estimation of C
or the conversion to point-wise map. This makes our proposal complementary to other
approaches in the improvement of shape matching via functional maps.

6.1. Limitations

Our basis still presents some important limitations.

• It is generally worse than LB in signal approximation and transfer, so it may not

74 6| Conclusions

be an option when we want to transfer signals without recovering a point-wise map.
There are, however, exceptions to this observation, which open the way to further
work in this context.

• Our basis may be more difficult to align between shapes related by strong non-
isometries, also depending on the method used for the estimation of C

6.2. Future work

Our work leaves room for interesting directions to explore in the future.

Dictionary composition The initial dictionary, to which PCA is applied, does not
necessarily need to be composed of Gaussian functions. The use of other classes of func-
tions, possibly incorporating information about the local geometry of the mesh, may lead
to interesting properties of the basis.

Adaptability In Section 5.2 we showed that an accurate choice of parameters can
be made by using the proposed metrics for locality preservation. This method could
be employed to tailor the parameters mesh-by-mesh, bringing more adaptability to our
basis. In addition, the parameters of the functions in the dictionary could vary function-
by-function, adapting even to the local geometry of the mesh.

Signal approximation Our basis could find application in the approximation of spe-
cific classes of signals (functions) on meshes, as the results in Section 5.4 seem to suggest.
In particular, the approximation of coordinates and other functions based on the local
structure of the mesh could benefit from our basis.

75

Bibliography

[1] Y. Aflalo and R. Kimmel. Regularized principal component analysis. Chinese Annals
of Mathematics, Series B, 38:1–12, 2017.

[2] Y. Aflalo, H. Brezis, and R. Kimmel. On the optimality of shape and data represen-
tation in the spectral domain. SIAM J. Imaging Sci., 8(2):1141–1160, 2015.

[3] M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel signature: A quan-
tum mechanical approach to shape analysis. In Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, pages 1626–1633. IEEE, 2011.

[4] F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST: Dataset and evaluation
for 3D mesh registration. In Proc. CVPR, pages 3794–3801, Columbus, Ohio, 2014.
IEEE.

[5] A. Bronstein, M. Bronstein, and R. Kimmel. Numerical Geometry of Non-Rigid
Shapes. Springer, New York, NY, 2008.

[6] E. Çela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Aca-
demic Publishers, 1998.

[7] G. Da Poian, R. Bernardini, and R. Rinaldo. Gaussian dictionary for compressive
sensing of the ecg signal. In 2014 IEEE Workshop on Biometric Measurements and
Systems for Security and Medical Applications (BIOMS) Proceedings, pages 80–85,
2014.

[8] D. Ezuz and M. Ben-Chen. Deblurring and denoising of maps between shapes. Com-
puter Graphics Forum, 36(5):165–174, 2017.

[9] D. Giorgi, S. Biasotti, and L. Paraboschi. Shape retrieval contest 2007: Watertight
models track. SHREC competition, 8, 07 2008.

[10] A. Kovnatsky, M. Bronstein, A. Bronstein, K. Glashoff, and R. Kimmel. Coupled
quasi-harmonic bases. Computer Graphics Forum, 32(2pt4):439–448, 2013.

[11] B. Levy. Laplace-beltrami eigenfunctions towards an algorithm that "understands"

76 | Bibliography

geometry. In IEEE International Conference on Shape Modeling and Applications
2006 (SMI’06), pages 13–13, 2006.

[12] F. Maggioli, S. Melzi, M. Ovsjanikov, M. Bronstein, and E. Rodolà. Orthogonal-
ized fourier polynomials for signal approximation and transfer. In Proceedings of
Eurographics 2021, 2021.

[13] S. Melzi. Sparse representation of step functions on manifolds. Computers & Graph-
ics, 82:117–128, 2019. ISSN 0097-8493.

[14] S. Melzi, E. Rodolà, U. Castellani, and M. Bronstein. Localized manifold harmonics
for spectral shape analysis. Computer Graphics Forum, 37(6):20–34, 2018.

[15] S. Melzi, R. Marin, E. Rodolà, U. Castellani, J. Ren, A. Poulenard, P. Wonka, and
M. Ovsjanikov. SHREC 2019: Matching Humans with Different Connectivity. In
Eurographics Workshop on 3D Object Retrieval. The Eurographics Association, 2019.

[16] S. Melzi, J. Ren, E. Rodolà, A. Sharma, P. Wonka, and M. Ovsjanikov. Zoomout:
Spectral upsampling for efficient shape correspondence. ACM Transactions on Graph-
ics (TOG), 38(6):155:1–155:14, Nov. 2019. ISSN 0730-0301.

[17] S. Melzi, R. Marin, P. Musoni, F. Bardon, M. Tarini, and U. Castellani. Intrin-
sic/extrinsic embedding for functional remeshing of 3d shapes. Computers & Graph-
ics, 88:1–12, 2020. ISSN 0097-8493.

[18] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete Differential-Geometry
Operators for Triangulated 2-Manifolds. In Visualization and mathematics III, pages
35–57. Springer, New York, NY, 2003.

[19] C. Moenning and N. A. Dodgson. Fast Marching farthest point sampling. Technical
Report UCAM-CL-TR-562, University of Cambridge, Computer Laboratory, Apr.
2003.

[20] T. Neumann, K. Varanasi, C. Theobalt, M. Magnor, and M. Wacker. Compressed
manifold modes for mesh processing. Computer Graphics Forum, 33(5):35–44, 2014.

[21] D. Nogneng and M. Ovsjanikov. Informative descriptor preservation via commuta-
tivity for shape matching. Computer Graphics Forum, 36(2):259–267, 2017.

[22] D. Nogneng, S. Melzi, E. Rodolà, U. Castellani, M. Bronstein, and M. Ovsjanikov.
Improved functional mappings via product preservation. Computer Graphics Forum,
37(2):179–190, 2018.

[23] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas. Functional

6| BIBLIOGRAPHY 77

maps: a flexible representation of maps between shapes. ACM Transactions on
Graphics (TOG), 31(4):30:1–30:11, 2012.

[24] D. Panozzo, Y. Lipman, E. Puppo, and D. Zorin. Fields on symmetric surfaces. ACM
Trans. Graph., 31(4), jul 2012. ISSN 0730-0301.

[25] U. Pinkall and K. Polthier. Computing Discrete Minimal Surfaces and their Conju-
gates. Experimental mathematics, 2(1):15–36, 1993.

[26] J. Ren, A. Poulenard, P. Wonka, and M. Ovsjanikov. Continuous and orientation-
preserving correspondences via functional maps. ACM Transactions on Graphics
(TOG), 37(6), 2018.

[27] E. Rodolà, M. Moeller, and D. Cremers. Point-wise map recovery and refinement
from functional correspondence. In Proc. Vision, Modeling and Visualization (VMV),
2015.

[28] E. Rodolà, M. Möller, and D. Cremers. Regularized pointwise map recovery from
functional correspondence. In Computer Graphics Forum, volume 36, pages 700–711.
Wiley Online Library, 2017.

[29] R. M. Rustamov. Laplace-beltrami eigenfunctions for deformation invariant shape
representation. In Proc. SGP, pages 225–233. Eurographics Association, 2007.

[30] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes. In ACM
Transactions on Graphics (TOG), volume 23, pages 399–405. ACM, 2004.

[31] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informative multi-
scale signature based on heat diffusion. Computer graphics forum, 28(5):1383–1392,
2009.

[32] B. Vallet and B. Lévy. Spectral geometry processing with manifold harmonics. Com-
puter Graphics Forum, 27(2):251–260, 2008.

[33] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey on shape
correspondence. Computer Graphics Forum, 30(6):1681–1707, 2011.

79

List of Figures

1 Example of shape matching . 1
2 Example of shape matching . 3

1.1 Example of eigenfunctions of Laplace-Beltrami operator 7
1.2 Example of low-pass filter approximation 8

2.1 Example of shape-matching . 14

3.1 Shape matching pipeline with PC-Gau . 24
3.2 Example of scattered Gaussians . 25
3.3 visual comparison of atoms between PC-Gau and LB. 27
3.4 Dirichlet energy of basis atoms, comparison between PC-Gau and LB . . . 29
3.5 Example of nearly-isometric and non-isometric functional maps 31

4.1 Spatial distribution of error for ground-truth C 42
4.2 Cumulative Geodesic Error for ground-truth C 43
4.3 Spatial distribution of error for C estimated with product preservation . . 45
4.4 Cumulative Geodesic Error for C estimated with product preservation [21] 46
4.5 Spatial distribution of error for ZoomOut 49
4.6 Cumulative Geodesic Error of point-wise maps obtained with ZoomOut [16] 50
4.7 Example of embedding functions . 52

5.1 Spatial distribution of basis energy and geodesic error on FAUST 61
5.2 Spatial distribution of basis energy and geodesic error on SHREC19 62
5.3 Comparison of point-wise error and locality preservation among different q 64
5.4 Comparison of random sampling and FPS on FAUST 66
5.5 Example of Gaussians for different values of σ 67
5.6 Comparison of point-wise error and locality preservation among different σ 68
5.7 AGE as a function of the number of atoms k 70

81

List of Tables

4.1 Parameters used in experiments . 35
4.2 Computation times of PC-Gau and LB 36
4.3 Accuracy of point-wise maps computed from ground-truth C 41
4.4 Accuracy of point-wise maps computed from C estimated with product

preservation [21] . 47
4.5 Accuracy of point-wise maps computed with ZoomOut 48
4.6 Error of point-wise maps obtained with generalized embeddings from ground

truth C . 53
4.7 Distortion of point-wise maps computed with generalized embeddings from

ground-truth C . 54
4.8 Error of point-wise maps obtained with generalized embeddings and ZoomOut 54
4.9 Distortion of point-wise maps computed with generalized embeddings and

ZoomOut . 54

5.1 Overall values of EGDC and MGD on different datasets 58
5.2 Correlation between locality-preservation metrics and accuracy on point-

wise maps . 68
5.3 Normalized error for function approximation and transfer on FAUST . . . 72

83

List of Symbols

Symbol Description

X 2D manifold

M, N 3D meshes

VM set of vertices of M
AM diagonal matrix of area elements associated to VM
EM set of edges of M
FM set of faces of M
Q set of vertices scattered on the mesh

q cardinality of Q

σ amplitude of Gaussian functions

k number of basis atoms

Φ,Ψ (truncated) bases for the functional space of a mesh

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	3D shapes
	Continuous case: 2D manifolds
	Laplace Beltrami operator
	Spectral analysis on manifolds

	Discrete case: 3D meshes
	Discrete Laplace-Beltrami operator

	Shape Matching
	Problem formulation
	Functional maps
	Finding C
	Conversion to point-wise map

	Relation to previous work
	Alternative bases

	Limits of LB

	Proposed Solution: PC-Gau
	Building Procedure
	Selection of a subset of vertices
	Dictionary of Gaussian functions
	Dimensionality reduction and orthogonalization

	Properties of PC-Gau
	Orthonormality
	Frequency ordering
	Isometry invariance

	Experimental Evaluation
	Datasets
	Implementation
	Evaluation metrics
	Geodesic Error
	Distortion

	I setting: C computed from ground-truth
	Technicalities
	Results

	II setting: C estimated with product preservation
	Results

	III setting: C estimated with ZoomOut
	Results

	IV setting: Point-wise conversion with generalized embeddings
	Ground-truth C
	ZoomOut

	Analysis
	Spatial distribution of basis energy
	Discrimination power
	Locality Preservation
	Relation to point-wise error

	Parameter Selection
	Number of vertices q
	Amplitude of Gaussian functions
	Predictive power of locality-preservation metrics

	Number of atoms k
	Function approximation and transfer
	Approximation
	Transfer

	Conclusions
	Limitations
	Future work

	Bibliography
	List of Figures
	List of Tables
	List of Symbols

