
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

Automated Generation of Robot Planning
Tasks Observing Human Actions in Virtual

Reality

Supervisor: Prof. Paolo Rocco

Co-supervisors: Prof. Andrea Maria Zanchettin

Ing. Niccolò Lucci

Master Thesis dissertation of:
Gianluca Clerici

Id: 953103

Academic year 2021-2022

"Dedication makes dreams come true" - Kobe Bryant

Ringraziamenti

Mi è doveroso dedicare questo spazio del mio elaborato alle persone che hanno

contribuito, con il loro instancabile supporto, alla realizzazione dello stesso.

In primis, un ringraziamento speciale al mio co-advisor Niccolò Lucci, per

la sua immensa pazienza, i suoi indispensabili consigli e per l’avermi trasmesso

la sua passione e dedizione a questo lavoro. Un ulteriore ringraziamento ai

professori Paolo Rocco e Andrea Zanchettin che hanno guidato la stesura del

mio elaborato durante tutto il tempo senza mai risparmiare utili consigli. Più in

generale vorrei ringraziare tutta la comunità politecnica che ogni giorno tramite

la sua passione e il suo lavoro rende il Politecnico di Milano un luogo migliore.

Ringrazio infinitamente i miei genitori e fratelli che mi hanno sempre soste-

nuto, appoggiando ogni mia decisione, fin dalla scelta del mio percorso di studi.

Un grazie di cuore ai miei colleghi ed amici Matteo Ubiali, Alberto Frezza,

Matteo Casu, Luca Tornaquindici, Gabriele Gatti, Riccardo Bisogni con cui ho

condiviso l’intero percorso universitario. È grazie a loro che ho superato i mo-

menti più difficili. Senza i loro consigli, non ce l’avrei mai fatta.

VI

Contents

Abstract 1

1 Introduction 5

1.1 Virtual Reality in industrial systems 6

1.2 Automated Planning . 7

1.3 Thesis purpose . 9

1.4 Thesis achievements . 9

1.5 Thesis structure . 9

2 State of the art 11

2.1 Programming by Demonstration . 13

2.2 Virtual Reality . 14

3 Conditions Learning 17

3.1 List Of Predicates . 18

3.1.1 IsGrasped(Object) . 19

3.1.2 IsGripperEmpty(Gripper) 19

3.1.3 IsAbove(Object1,Object2) 20

3.1.4 IsInTouch(Object1,Object2) 21

3.1.5 IsObjectInteractable(Object) 21

3.1.6 IsReachable(Object) . 22

3.2 Postconditions learning Algorithm and Active Objects 24

3.3 Preconditions learning Algorithm and Active Objects 28

VIII CONTENTS

4 Automated Generation of the Planning Task 33

4.1 Virtual Demonstration . 34

4.2 Skills classification . 34

4.3 Domain and Problem Generation 38

4.4 Plan Generation . 40

5 Plan Execution and Recovery 43

5.1 Plan Execution in VR . 43

5.1.1 Pick Execution . 44

5.1.2 Stack Execution . 45

5.1.3 Unstack Execution . 46

5.1.4 Release Execution . 47

5.2 Error handling . 48

6 Experimental Use Case 53

6.1 Experimental Setup . 53

6.2 Use Case explanation . 54

6.3 Results . 56

7 Conclusions 61

Bibliography 63

List of Figures

1.1 The figure shows a comparison between a cobot and an industrial

robot. 5

1.2 The figure shows an example of how the Virtual Reality can be

used in the product design. 7

1.3 The figure shows the robot Shakey. 8

2.1 Graphic User Interface used in [3], [4] and [5]. 12

2.2 Model of a skill . 12

3.1 The world state changes due to the stack action performed by the

operator. 18

3.2 This picture shows the evaluation of IsGrasped during a operator

demonstration. The operator’s left hand is grasping the red cube,

thus IsGrasped evaluated on the red cube returns true. While the

blue cube is not grasped, so IsGrasped evaluation on the blue cube

returns false. 19

3.3 The picture shows the evaluation of IsGripperEmpty during a op-

erator demonstration. The operator’s left hand is grasping the red

cube, thus IsGripperEmpty returns false. 20

3.4 The picture shows the evaluation of IsAbove. The black cube is

above the blue one, thus IsAbove(Cube−Black,Cube−Blue) returns

true. The other evaluations of IsAbove return the false value since

the blue and red cube are not above other cubes. 20

X LIST OF FIGURES

3.5 The picture shows the evaluation of IsInTouch. The black cube

is touching the blue one and vice versa. Therefore, the IsInTouch

predicate, having as input the blue and black cube, returns true,

while the evaluation of IsInTouch for the red cube with the black

and the blue one returns false. 21

3.6 The picture shows the evaluation of IsObjectInteractable. The

black cube is above the blue one, thus the IsAbove(Cube −

Black,Cube − Blue) returns true while IsObjectInteractable evalu-

ated for the blue cube returns false. The black and red cube have

no cubes above them, so IsObjectInteractable evaluation for them

returns true. 22

3.7 The picture shows the evaluation of IsReachable. The black cube is

inside the robot workspace while the blue one is outside it. There-

fore, IsReachable returns true only for the black cube. 23

3.8 The picture shows the evaluation of the state of the world. 23

3.9 In the upper image the operator’s left hand is far away the blue

cube. Then the operator moves it near the blue cube, thus the state

for the blue cube is evaluated and finally it is added to the inter-

acting objects list. 24

3.10 Initial state of a Stack skill. The operator’s left hand is grasping

the blue cube. The initial state of the blue cube, black cube and

operator’s left hand are computed and showed in the coloured boxes. 26

3.11 The intermediate step of a stack skill. The operator is moving the

blue cube towards the black cube. The black cube initial state is

evaluated and shown by the black box once entered in the sphere. 27

3.12 The final step of a stack skill. The operator releases the blue cube

above the black one. The postconditions box shows the relevant

predicates selected for the taught skill. 27

3.13 Initial state of a Stack skill. The operator’s left hand is grasping

the blue cube. The initial state of the blue cube, black cube and

operator’s left hand are computed and showed in the coloured boxes. 31

LIST OF FIGURES XI

3.14 The intermediate step of a stack skill. The operator is moving the

blue cube towards the black cube. The black cube initial state is

evaluated and shown by the black box once entered in the sphere. 31

3.15 The final step of a stack skill. The operator releases the blue cube

above the black one. The preconditions box shows the relevant

predicates selected for the taught skill. 32

4.1 Side view of the virtual scene. 34

4.2 UI visual feedback showed after that the operator grabs the blue

cube, releases it above the black one, pick the blue cube and re-

leases it near the black one. 35

4.3 State Machine . 36

4.4 On the left are represented the action performed by the operator

during the demonstration. On the right the state machine is repre-

sented with the active state that is coloured of green. 37

4.5 The operator releases the blue cube above the black one. Therefore,

the active state is the stack one meaning that the skill has been

taught. 38

4.6 On the left an example of how a demonstrated pick is stored in

DemonstratedActions. Then, on the right the string containing the

pick skill written in the PDDL language is showed. 39

4.7 Example of the problem generation. On the left a screenshot of the

virtual scene is showed, the human cubes define the goal, while the

robot cubes define the initial world state. On the right the initial

world state and the goal represented in the PDDL language are

showed. 40

4.8 Example of the plan generation. The figure shows the virtual

scene before the plan execution, the domain generated by the user

demonstration, the problem generated and the plan generated by

the Fast-Forward planner. 41

XII LIST OF FIGURES

5.1 The left the figure shows the user defined goal, the initial world

state and the demonstrated actions showed by the User Interface.

The user pushes the button to start the execution phase and the

plan actions returned by the planner are displayed. Then, on the

right, the demonstrated actions are replaced by the planned actions. 44

5.2 The figure shows how the communication between Unity and ROS

works. 45

5.3 In the figure, the robot has to pick the black cube. In the first step,

the robot has moved to the pick approach position, which is the

one above the black cube. In the second step, the robot has moved

linearly toward the black cube and grasps it. Finally, the robot

has returned to the approach position with the black cube in the

gripper. 45

5.4 In the figure, the robot has to stack the black cube. In the first

step, the robot has moved to the approach position, which is the

one above the blue cube. In the second step, the robot has moved

linearly toward the blue cube and has stacked the black cube on it.

Finally, the robot has returned to the stack approach position. . . . 46

5.5 In the figure, the robot has to unstack the black cube. In the first

step, the robot has moved to the approach position, which is the

one above the black cube. In the second step, the robot has moved

linearly toward the black cube and has unstacked the black cube

from the blue one. Finally, the robot has returned to the approach

position grasping the black cube. 46

5.6 In the figure, the robot has to release the black cube. In the first

step, the robot has moved to the approach position, which is the

one above the buffer. In the second step, the robot has moved

linearly toward the buffer and has released the black cube in it.

Finally, the robot has returned to the approach position. 47

5.7 The figure shows how the robot executes the pick and stack ac-

tions. 48

LIST OF FIGURES XIII

5.8 The figure shows how the system behaves in case an insufficient

domain is provided to the robot. 49

5.9 The figure shows the workflow of our system. 50

5.10 In the figure the robot has to pick the black cube and stack it above

the blue one, but it fails the stack action. 51

5.11 the figure shows how the plan is recovered after that the stack ex-

ecution failed. 51

6.1 The left picture shows the virtual environment setup. The right

picture shows the real environment setup. 54

6.2 The figure shows the Oculus Quest 2 device. 54

6.3 The figure shows the learnt actions composing the domain file with

their preconditions and postconditions. 55

6.4 The figure shows the goals the robot had to reach and the initial

state. 56

6.5 The figure shows the success rates achieved in the virtual environ-

ment for the three defined goals. 57

6.6 The figure shows the success rates achieved in the real environ-

ment for the three defined goals. 58

6.7 The figure shows the time spent by the planner to generate a suit-

able plan with an increasing number of actions in the domain. . . 59

XIV LIST OF FIGURES

List of Tables

3.1 Table that shows the active objects for each skill. The Pick and

Release skills have only one Active Object therefore their third el-

ement is null. 29

6.1 The table shows the training times required by the classical teach-

ing and our work for programming the goal 1, goal 2 and goal 3. . 56

XVI LIST OF TABLES

Abstract

One among the most significant challenges for industrial robotics is to reduce

the expertise and efforts required to program a robot. Usually, to program a

robot, the operator needs some technical knowledge for example on Euler angles

or Cartesian coordinates. These skills are not common in people who work in

Small Medium Enterprises (SMEs) and this might be a barrier for a wider use

of robotics. Therefore, we developed an approach that aims at programming

the robots intuitively without any prior robotic knowledge. In particular, the

human operator performs a series of actions in a virtual environment, and the

robot understands when such actions can be performed and what are their con-

sequences. The learnt actions are then generalized through a particular language

called PDDL which allows a planner to schedule the learned actions to reach hu-

man specified goals. In fact, after the teaching phase, the user defines a goal and

the symbolic planner returns a series of actions to achieve it. The generated plan

is performed both in the virtual and real environment by the collaborative robot

Doosan A0509s.

2 Abstract

Sommario

Una tra le sfide più importanti per la robotica industriale è la riduzione della

competenza e degli sforzi richiesti per programmare un robot. Solitamente,

per programmare un robot l’operatore deve possedere una conoscenza tecnica

riguardante per esempio gli angoli di Eulero o le Coordinate cartesiane. Tali

conoscenze non si trovano facilmente in persone che lavorano nelle Piccole e

Medie Imprese, il che può costituire una barriera a un uso pervasivo più dei

robot. Motivati da questa considerazione, in questa tesi si sviluppa un approccio

che consente di programmare i robot intuitivamente e senza alcuna conoscenza

tecnica. In particolare, l’operatore umano esegue una serie di azioni nella realtà

virtuale e il robot impara quando tali azioni possono essere eseguite e quali sono

le loro conseguenze. Le azioni imparate sono poi generalizzate utilizzando un

linguaggio chiamato PDDL, il quale permette ad un pianificatore di stabilire

quali azioni eseguire e in che ordine per raggiungere l’obiettivo specificato

dall’umano. Dopo aver eseguito la fase di insegnamento, l’utente definisce

un obiettivo e il pianificatore simbolico restituisce una serie di azioni per rag-

giungerlo. Il piano generato è eseguito sia nell’ambiente virtuale che in quello

reale grazie al robot collaborativo Doosan A0509s.

4 Sommario

Chapter 1

Introduction

In recent years, significant progress has been made in robot technology with the

aim of allowing robots to work alongside humans. These robots are called collab-

orative robots since they are used as a tool for factory workers. In particular, they

are characterized by a lightweight design, low speeds and low payload. Their

advent has revolutionized the old idea of heavy and dangerous robots as the in-

dustrial one. Figure 1.1 shows a comparison between a cobot and an industrial

robot. It can be seen that the collaborative robot on the left side of the figure has

a different shape from the big industrial one on the right side: it has rounded

edges and it is constituted of soft and light material necessary to absorb possible

impacts with the human.

Figure 1.1: The figure shows a comparison between a cobot and an industrial

robot.

The introduction of these robots in the industrial scenario has brought the

6 Introduction

possibility of introducing them into Small and Medium Enterprises alongside

humans. In fact, they can be integrated in small environments since they are

small, they do not need to be surrounded by cages and they are easy to set up

and integrate in a production line. On the other hand, the current market de-

mand requires high product customization. Therefore, the production line has

to be highly flexible. This can be achieved by having skilled personnel capable

of reprogramming the robots in order to adapt them to the new production line.

Unfortunately, finding robotic experts is not that easy, thus, integrating the col-

laborative robot into a new production line can be difficult, time-consuming and

expensive. The solution to the problem can be found using the new technologies

available in the market, such as augmented reality and virtual reality, to develop

new intuitive robot programming methods.

1.1 Virtual Reality in industrial systems

Virtual Reality (VR) is one among the main pillars of industry 4.0. Nowadays,

multiple VR devices are available in the market at affordable prices. They do

not need computers or other external devices to work and are lightweight. After

wearing the headset, the user is introduced in a simulated environment where

he/she can interact with objects using his/her hands thanks to the provided con-

trollers. The first use case for virtual reality was gaming. Currently, Virtual

Reality can be exploited in various industrial fields such as product design, ma-

chine control and training professionals. For example, in Figure 1.2, a virtual

environment is used to see the progress in the design of a car. Virtual Reality,

in this case allows seeing a preview of the car without building a physical pro-

totype. Even if Virtual Reality is still limited, it can be used by enterprises to

remain competitive in Industry 4.0, as stated in [1]. For example, it can be useful

for maintenance during the industrial product lifecycle and for improving the

design processes. One among the major applications of Virtual Reality in Indus-

try 4.0 is training of the operators, in particular related to robot programming.

Thanks to the possibility of customizing the virtual environment it is possible

1.2 Automated Planning 7

to represent different environments depending on the context requirements the

headset is used in. Therefore, the operator can be trained without distracting the

robot from production and then stopping the production line. This minimizes

the production line downtime and avoids injuries that can happen while manip-

ulating the tools. In this thesis work, Virtual Reality is a fundamental concept

since the human operator has to demonstrate actions that the robot will use in

the execution phase.

Figure 1.2: The figure shows an example of how the Virtual Reality can be used

in the product design.

1.2 Automated Planning

Automated planning is a field of Artificial Intelligence which aims to solve plan-

ning problems. The robot Shakey (Figure 1.3) was the first robot to make use

of this branch of Artificial Intelligence to solve tasks that necessitated planning.

In particular, it was capable of autonomously rearranging objects and finding

routes. This robot gave proof of the capabilities of automated planning and it in-

spired many researchers. Nowadays, the planning community is well-established

and organizes competitions to overcome the gap between planning research and

application. In order to define the planning problems, Planning Domain Defini-

tion Language (PDDL) can be used. The planning problem, also known as plan-

8 Introduction

ning task, is composed of the problem and the domain. The problem describes

the initial world state the agent is in and the expected goal we try to reach. The

planning domain is a collection of all possible generalized actions that can be ap-

plied to achieve the desired goal. There are many different PDDL versions, and

each one provides a different level of expressivity. For example, in PDDL 1.2,

the problem is defined as a set of predicates describing the state that the robot

starts from and the state the agent needs to reach. The planning domain is made

of a set of actions, for each of them it is specified when they are applicable (pre-

conditions) and how they modify the environment (postconditions). PDDL 2.1

introduced the possibility of defining a durative action which has similar prop-

erties of a classic action definition, but it introduces a duration parameter which

models the length of time the action takes. In order to solve the planning task, a

planner is required. A planner has the objective of scheduling the required skills

described in the domain file to pass from the initial state to the final one descibed

in the problem. In our thesis work, we chose the Fast Forward planner to devise

the planning task.

Figure 1.3: The figure shows the robot Shakey.

1.3 Thesis purpose 9

1.3 Thesis purpose

This thesis aims at developing a new approach for intuitively programming a

robot. The operator has to demonstrate actions in a virtual environment, and

the system has to classify the actions and characterize them with just relevant

preconditions and postconditions. Then, the learnt actions are written in a plan-

ning domain file using the PDDL language. The advantage of using PDDL is

that many planners are available. A planner has the objective of scheduling the

required skills to pass from the initial state to the final one. In order to define

the initial state and the final one, a planning problem has to be generated. The

user has to place the objects used during the demonstration phase in the desired

positions to define a goal, and the system automatically generates the planning

problem. Moreover, using a planner allows to perform unseen tasks and gives

the robot the ability to reason.

1.4 Thesis achievements

In this thesis, the following objectives have been achieved:

• The system automatically generates the planning domain file from the user

demonstrations. It also automatically generates the problem file requiring

just the goal definition.

• The system automatically recognizes the demonstrated actions and charac-

terizes them with just the relevant preconditions and postconditions.

• The system detects and deals with possible errors.

1.5 Thesis structure

In Chapter 2 it is discussed how the problem of intuitive robot programming is

dealt with in the State-of-the-Art. Chapter 3 explains how the preconditions and

postconditions of skills are set after the user demonstration. Then, how the plan-

ning task is automatically generated after the user demonstration is described

10 Introduction

in Chapter 4. Chapter 5 discusses how the robot executes the actions and how

it spots and deals with eventual errors. In Chapter 6, it is explained how we

conducted the validation part and experiments results are commented. Finally,

Chapter 7 focuses on the conclusions and on the possible improvements.

Chapter 2

State of the art

Nowadays, one among the biggest challenges in small and medium-sized enter-

prises (SMEs) is reducing the robot programming effort for the operator. Some

proposed solutions to overcome this problem are analyzed in [2]. Here the author

focused on CAD-Based programming and Programming by demonstration with

the final objective of reducing the complexity of programming a robot. Other

examples of the first approach are [3], [4] and [5]. These papers show a novel

robot programming paradigm based on Web Ontology Language (OWL), where

the user specifies the robot tasks in terms of the involved objects and the relevant

parameters, as illustrated in Figure 2.1. Then, the extrapolated parameters are

used to characterize the skills necessary to complete the task. These approaches

don’t require a robot expert but just that the worker is aware of how to perform

the task. Furthermore, this method doesn’t require the real robot, consequently

the robot can be programmed without removing it from its current task. This

minimizes the robot production downtime. On the other hand, they don’t allow

process monitoring and error handling during task execution. A more in-depth

understanding of tasks, and the skills that compose it, is necessary to implement

a method that guarantees process monitoring and error handling. A task is a

sequence of skills needed to reach the desired goal. The skills are actions that

modify the state of the world, as explained in [6]. Studies have been developed in

[7] and [8] to highlight the general structure of a robot skill. We can identify three

fundamental parts which are reported in Figure 2.2: the skill preconditions, the

12 State of the art

Figure 2.1: Graphic User Interface used in [3], [4] and [5].

skill execution and the skill postconditions. If the preconditions are met, the skill

is executed, and then the postconditions are checked. The described procedure

guarantees the process monitoring and the eventual error handling of the overall

process.

Figure 2.2: Model of a skill

An in-depth literature review has been performed based on the robot skill

model presented before. In particular, Programming by Demonstration (PbD)

characterizes the robot skill model through user demonstrations. In Chapter 2.1,

we will present different works that use this approach. Finally, in Chapter 2.2

we will present methods that involve Virtual Reality, as a tool to simplify robot

2.1 Programming by Demonstration 13

programming.

2.1 Programming by Demonstration

As stated in [9], Programming by demonstration refers to transferring new skills

to a machine by relying on demonstrations from a user. The main demonstration

modalities are kinesthetic teaching and observation learning. In the first one,

the operator guides the robot manually, allowing the storage of data such as the

trajectory and the force applied to the end-effector. Data collected during the

teaching phase characterize the taught skill. A user-friendly approach for robot

programming is to combine a Graphical user interface (GUI) with kinesthetic

teaching, as shown in [10] and [11]. In [10], two phases are necessary to program

the robot. The first one is the specification phase, where the operator uses the

GUI to define the skill sequence required to complete the task. The second one is

the teaching phase, where using kinesthetic teaching, the previously defined se-

quence is taught. In [11], kinesthetic teaching is used to infer preconditions and

effects of skills which are then transformed into the Planning Domain Definition

Language (PDDL)[12]. PDDL is a language that allows to describe each possible

robotic action with its preconditions and effects. Consequently, after such specifi-

cations, a planner is able to sequence each of these characterized skills depending

on the required task. In [11], the GUI is used to create new actions, modify in-

ferred types or predicates, create and solve new problems with the task planner.

Therefore, only one phase is required to program the robot. However, actions are

taught in a real environment which involve sensor inaccuracy, and they do not

account for the case where an action is performed incorrectly (error handling).

Also in [13], kinesthetic teaching is used to learn the preconditions and effects of

skills based on a small number of user demonstrations. The learned actions are

transformed into the Planning Domain Definition Language, and then a planner

generates a suitable plan to reach the specified goal starting from the initial state

of the world. This procedure allowed the authors to handle skill execution errors

and, if found, replan the task starting from the last state reached. Two central

14 State of the art

problems arise. The first one is that using the real environment means dealing

with continuous variables, which contrasts with PDDL. The second one, instead,

is the correct selection of preconditions since false positives could be included.

In our work we decided to choose observation learning so to avoid the waste of

time the operator produces when moving the real robot during the kinesthetic

teaching phase, reduce the costs related to physical sensors and implement the

demonstrations in a virtual environment, as discussed in the next chapter. In

[14], the human operator provides task demonstrations in a real environment.

This demonstration is processed to learn distinct sub-actions. Afterwards, the

learned sub-actions are matched with predefined actions called Object-Action

Complexes (OACs). The robot performs the task following the sequence of OACs

obtained. The performed actions during robot guidance are difficult to segment

in a real environment due to sensor inaccuracy, as explicitly stated in [15]. Fur-

thermore, predefined actions limit the robot’s performance since preconditions

and effects are not learned during the demonstration. In [16] and [17], observa-

tion learning is used in a virtual environment. They infer the planning domain

from the virtual demonstration. Once the planning domain is created in [16], a

plan that satisfies a user-defined goal is generated using a symbolic planner. This

method allows performing unseen tasks given a demonstration. On the other

hand, error handling is not considered. The approach developed in [17] learns

the skills preconditions and postconditions from the user demonstration and uses

them to reproduce the seen task. Here, performing unseen tasks is not possible.

However, the user manages errors directly when they are detected.

2.2 Virtual Reality

Building physical training environments is very costly, time-consuming and

difficult. Nevertheless, tight constraints must be respected if human-robot in-

teraction is required. Thanks to technological advancements, we can represent

realistic environments using Virtual Reality (VR). A first example that combines

PbD and VR is [16], where a system for automated domain generation is built.

2.2 Virtual Reality 15

Here a virtual robot is added to the environment, as in [17]. Therefore, all the

activities are performed in VR, such as observation learning and skill execution.

This is due to the fact that the real environment presents unpredictable situa-

tions such as sensor inaccuracy and object imperfections. In [18], a decision tree

is used to recognize and extracts assembly activities performed by humans in

VR. We implemented a similar method to classify human actions.

After this literature review, we decided to implement an approach based on

PDDL, which extracts domain and problem automatically from human demon-

strations performed inside Virtual Reality. Once each skill has been character-

ized, we use a symbolic planner to generate a plan necessary to reach the de-

fined goal. In particular, the strengths of this work lies in the ability to learn

relevant preconditions and postconditions from a few demonstrations. With one

single demonstration for each skill, the robot is able to execute the demonstrated

task and perform unseen tasks. Furthermore, during the execution phase error

handling and process monitoring are considered thanks to a closed loop control

performed for each skill checking preconditions and postconditions.

16 State of the art

Chapter 3

Conditions Learning

In this Chapter, we will discuss how skill preconditions and postconditions are

set. A robot can execute a skill if and only if the skill preconditions are met. Then,

to verify its correct execution, postconditions must be checked and satisfied. The

skill execution fails if at least one postcondition is not satisfied. For example, if

the robot has to pick a cube, the robot’s gripper must be free (IsGripperEmpty),

and the cube must be in the robot’s reachable workspace (IsReachable). If even

one of these conditions is not satisfied, the skill cannot be applied. Conversely, if

the robot has picked the cube, the robot’s gripper must be full. If this condition is

not met, the skill execution is considered as failed. When the operator performs

an action the world state changes, passing from the state before the action execu-

tion (inital state) to the state after the action execution (final state), as illustred

in Figure 3.1. Since we aim to use the PDDL, we need to learn preconditions and

postconditions based on the initial and final world state.

We decided to implement a set of binary state variables (also called predicates)

to describe the world state. The major challenge is to extract only the relevant

predicates that characterize the performed actions. Returning to our previous

example, if the user demonstrates a pick skill, there is no reason to consider the

condition where the cube is touching another cube (IsInT ouch) as a precondition

for the pick skill. In fact, if we set IsInT ouch as a precondition for the pick skill,

the pick skill will be more specific, and we will need two different demonstra-

tions for it, one when the cube is not touching another cube and one when the

18 Conditions Learning

Figure 3.1: The world state changes due to the stack action performed by the

operator.

cube is touching another cube.

On the other hand, if we don’t set IsInT ouch as a precondition for the pick skill,

this can be executed both if the cube is touching another cube or if it is not touch-

ing another cube by executing the skill once. It is clear then that it is fundamental

to correctly extract the relevant predicates to have actions that are as general as

possible.

In Chapter 3.1, we will present the list of predicates together with their evalua-

tions that characterize the environment. In Chapters 3.2 and 3.3, the concept of

active objects for skill postconditions and preconditions is introduced, and then

the learning algorithm is presented.

3.1 List Of Predicates

This section shows the list of predicates, their evaluation and some illustrative

examples that clarify their functioning.

3.1 List Of Predicates 19

3.1.1 IsGrasped(Object)

IsGrasped takes as input an object, and returns true when the object is grasped by

the operator’s left hand, otherwise it returns false. A pratical example is shown

in Figure 3.2, where the red cube is grasped by the operator’s left hand and the

blue cube is not grasped.

Figure 3.2: This picture shows the evaluation of IsGrasped during a operator

demonstration. The operator’s left hand is grasping the red cube, thus IsGrasped

evaluated on the red cube returns true. While the blue cube is not grasped, so

IsGrasped evaluation on the blue cube returns false.

3.1.2 IsGripperEmpty(Gripper)

IsGripperEmpty takes as input a gripper object, and returns true when an inter-

action between the gripper and an object is detected, otherwise it returns false.

In this work, we use only one robot; therefore, the same gripper will always be

evaluated during execution. However, we implemented it generically for future

improvements regarding the use of more robots. During the demonstration, the

operator performs actions on objects therefore we set the boolean value of this

predicate, looking at the operator’s left hand as if it is the robot gripper. It re-

turns true when a object is inside the hand, vice versa it returns false. Figure

3.3 shows IsGripperEmpty evaluation during a demonstration, the operator’s left

hand is grasping the red cube therefore the value of the predicate will be true.

20 Conditions Learning

Figure 3.3: The picture shows the evaluation of IsGripperEmpty during a op-

erator demonstration. The operator’s left hand is grasping the red cube, thus

IsGripperEmpty returns false.

3.1.3 IsAbove(Object1,Object2)

IsAbove takes as input two objects, and returns true when the Object1 is above

Object2, otherwise it returns false. To evaluate the value of this predicate, a ray

is projected downwards starting from Object1, and the true value is returned if

the ray intersects with Object2, otherwise false. Figure 3.4 shows a situation in

which the black cube is above the blue cube and the red cube on the ground.

Figure 3.4: The picture shows the evaluation of IsAbove. The black cube is above

the blue one, thus IsAbove(Cube − Black,Cube − Blue) returns true. The other

evaluations of IsAbove return the false value since the blue and red cube are not

above other cubes.

3.1 List Of Predicates 21

3.1.4 IsInTouch(Object1,Object2)

IsInTouch takes as input two objects, and returns true when Object1 is in touch

with Object2, otherwise it returns false. Each object in the scene has a list of

objects that are in contact with it. If Object2 is in the list of objects in contact

with Object1, IsInTouch returns true, otherwise false. When contact between

objects is detected, the respective lists of objects in contact are updated. On the

contrary, when contact is lost the objects are removed from the respective lists.

Figure 3.5 illustrates an example where the black cube is touching the blue cube

and the red cube is not touching other cubes.

Figure 3.5: The picture shows the evaluation of IsInTouch. The black cube is

touching the blue one and vice versa. Therefore, the IsInTouch predicate, having

as input the blue and black cube, returns true, while the evaluation of IsInTouch

for the red cube with the black and the blue one returns false.

3.1.5 IsObjectInteractable(Object)

IsObjectInteractable takes as input an object, and returns true when no objects

are above it, otherwise it returns false. The predicate implementation makes use

of IsAbove seen in sub-chapter 3.1.3 to detect if other cubes are above it. In

Figure 3.6 the red and black cubes are interactable since there are no cubes above

them while the blue cube is not interactable because the black cube is above it.

22 Conditions Learning

Figure 3.6: The picture shows the evaluation of IsObjectInteractable. The black

cube is above the blue one, thus the IsAbove(Cube − Black,Cube − Blue) returns

true while IsObjectInteractable evaluated for the blue cube returns false. The

black and red cube have no cubes above them, so IsObjectInteractable evaluation

for them returns true.

3.1.6 IsReachable(Object)

IsReachable takes as input an object, and it returns true if the object is in the

robot workspace (rw), vice versa it returns false. If the inequality (3.13) holds

the object is in the robot workspace, and the output of the predicate will be true,

otherwise false. The following formula regulates the predicate output

||pobj − probot ||2 < rw (3.1)

where probot is the robot base position and pobj is the object position. In Figure

3.7 the green line delimitates the robot workspace, the black cube is inside it

while the blue cube is outside.

A final example that shows how the world’s state is described by the predi-

cates is illustrated in Figure 3.8

3.1 List Of Predicates 23

Figure 3.7: The picture shows the evaluation of IsReachable. The black cube is

inside the robot workspace while the blue one is outside it. Therefore, IsReach-

able returns true only for the black cube.

Figure 3.8: The picture shows the evaluation of the state of the world.

24 Conditions Learning

3.2 Postconditions learning Algorithm and Active

Objects

The postconditions learning algorithm uses the same strategy as in [17]. In par-

ticular, the effects of the actions performed during the demonstration by the hu-

man are learned by comparing the initial state of the objects involved with their

final state, detecting what has changed. Since the operator demonstrates skills

with his hands, if an object passes close to them for the first time, the object’s

state is evaluated and stored in a list of InteractingObjects as long as the skill is

not over. Such list contains all the objects that the hand has interacted with. To

define when an object is near the operator’s hands, we decided to use a fictitious

sphere placed in the centre of the hands, as Figure 3.9 shows. Once the skill is

terminated, for each interacting object, its initial state is compared with its final

state which is computed once an action has finished. The predicates that change

their values are stored in the postconditions of the recognized skill. Finally, the

object is removed from the interacting object list. The procedure discussed above

is reported in Algorithm 1.

Figure 3.9: In the upper image the operator’s left hand is far away the blue cube.

Then the operator moves it near the blue cube, thus the state for the blue cube is

evaluated and finally it is added to the interacting objects list.

3.2 Postconditions learning Algorithm and Active Objects 25

Algorithm 1 Postconditions learning algorithm
1: InteractingObjects← []

2: P ostconditions← []

3: while Skill not over do

4: if InteractedObjects not in InteractingObjects then

5: Obj InitState = EvalauteState(Obj)

6: InteractingObjects←Obj

7: end if

8: end while

9: for each Obj ∈ InteractingObjects do

10: Obj FinState = EvalauteState(Obj)

11: if Obj InitState ! = Obj FinState then

12: MaintainChangedstates(FinState)

13: P ostconditions.Add(FinState)

14: end if

15: Obj = InteractingObjects.RemoveFirst()

16: end for

17: SetSkillP ostconditions()

26 Conditions Learning

A series of figures that illustrates the postconditions learning algorithm is

presented. The figures show the postconditions setting during a Stack Skill.

In Figure 3.10, there are two cubes in the scene and the operator’s left hand, one

of the two cubes is in the sphere collider of the operator’s left hand. Therefore,

the initial state of the objects and the hand is computed and represented by the

coloured boxes in the figure.

Figure 3.11 shows that the operator’s left hand has moved the blue cube near the

black cube. Consequently, the black cube enters into the sphere and its initial

state is evaluated.

In the end, figure 3.12 shows the final step of a stack skill, namely when the

operator releases the blue cube above the black one. Once the stack operation

has finished, the predicates that have changed their values are extracted and set

as postconditions for the stack skill.

Figure 3.10: Initial state of a Stack skill. The operator’s left hand is grasping the

blue cube. The initial state of the blue cube, black cube and operator’s left hand

are computed and showed in the coloured boxes.

3.2 Postconditions learning Algorithm and Active Objects 27

Figure 3.11: The intermediate step of a stack skill. The operator is moving the

blue cube towards the black cube. The black cube initial state is evaluated and

shown by the black box once entered in the sphere.

Figure 3.12: The final step of a stack skill. The operator releases the blue cube

above the black one. The postconditions box shows the relevant predicates se-

lected for the taught skill.

28 Conditions Learning

3.3 Preconditions learning Algorithm and Active

Objects

In the previous work [17], preconditions were hard-coded for each skill. There-

fore, no matter the world state, each skill will always have the same precondi-

tions. Since we aim to use the PDDL, this is not the best approach. When the

operator demonstrates the skill, we need to learn preconditions based on the cur-

rent world state. In order to learn the preconditions of the performed skill, it

is not sufficient to select only the predicates that change their values as for the

postconditions. We also need to account for predicates that do not change their

value during the skill demonstration but are fundamental for a correct represen-

tation of the action. In particular, the relevant parameters for a skill are those

objects on which the skill is performed. For example, during a pick demonstra-

tion, we must learn that the picked object has to be in the reachable workspace.

Otherwise, the robot will try to pick the object even if it is out of the reachable

workspace. In this example, the relevant parameter is the object picked by the

human during the demonstration and the value of the predicate IsReachable will

not change. Such objects on which the action is performed are called Active Ob-

jects. The Active Objects are predefined and reported in Table 3.1. We used the

same concept of interacting objects discussed in the previous chapter to evaluate

the object state. That is, when the operator’s hand passes close to an object for the

first time, the object state is evaluated and stored in InteractingObjects as long

as the skill is not over (Alg.2, Line from 4 to 9). Then, the postconditions are set

as previously explained, and the Active Objects are evaluated according to the

recognized skill (Alg.2, Line 10,11). For example, if a stack skill is performed,

the operator will have a cube in hand and he will release it above another one.

Therefore, the operator’s hand will be close to the grasped object (ObjectInHand)

and the object above which the grasped object is stacked on (ObjectUnderHand).

They are the Active Objects defined in Table 3.1 for the stack skill, and since the

hand has passed close to them, their state is evaluated and stored in the interact-

ing objects list. Then, for each object in the Active Object list, we extract only

3.3 Preconditions learning Algorithm and Active Objects 29

the predicates whose parameters are all part of such Active Objects. These ex-

tracted predicates are considered relevant and are stored as precondition of the

performed skill (Alg.2, Line from 12 to 22). In addition, if the predicate is in the

postconditions list previously set (Alg.2, Line 10), the value of the predicate is

negated, and the predicate is added to the preconditions. This because a predi-

cate that changes value during the demonstration is considered relevant. If none

of the above conditions is satisfied, the object’s predicate is ignored. In the end,

the preconditions learning algorithm will return a list of predicates which will

constitute the skill preconditions.

Skill ActiveObject1 ActiveObject2

Pick PickedObject null

Release ReleasedObject null

Stack ObjectInHand ObjectUnderHand

Unstack ObjectInHand ObjectUnderHand

Table 3.1: Table that shows the active objects for each skill. The Pick and Release

skills have only one Active Object therefore their third element is null.

A series of figures that illustrate the preconditions learning algorithm is pre-

sented. The figures show the preconditions setting during a Stack Skill. In Figure

3.13, there are three cubes in the scene and the operator’s left hand, two of the

three cubes are in the fictitious sphere of the operator’s left hand. Therefore,

the initial state of the objects and the hand is computed and represented by the

coloured boxes in the figure.

Figure 3.14 shows that the operator’s left hand has moved the blue cube near

the black cube. Consequently, the black cube is entered into the trigger sphere

collider and its initial state is evaluated.

30 Conditions Learning

Algorithm 2 Preconditions learning algorithm
1: InteractingObjects← []

2: P ostconditions← []

3: P reconditions← []

4: while Skill not over do

5: if InteractedObjects not in InteractingObjects then

6: Obj InitState = EvalauteState(Obj)

7: InteractingObjects←Obj

8: end if

9: end while

10: SetP ostconditions()

11: SetActiveObjects()

12: for each Obj ∈ ActiveObjects do

13: for j← 1,Obj.InitState.Count do

14: if predicate.param ∈ ActiveObjects then

15: P reconditions← predicate

16: end if

17: if predicate ∈ P ostconditions then

18: predicate.value = not(predicate.value)

19: P reconditions← predicate

20: end if

21: end for

22: end for

23: SetSkillP reconditions()

3.3 Preconditions learning Algorithm and Active Objects 31

Figure 3.13: Initial state of a Stack skill. The operator’s left hand is grasping the

blue cube. The initial state of the blue cube, black cube and operator’s left hand

are computed and showed in the coloured boxes.

Figure 3.14: The intermediate step of a stack skill. The operator is moving the

blue cube towards the black cube. The black cube initial state is evaluated and

shown by the black box once entered in the sphere.

In the end, figure 3.15 shows the final step of a stack skill, namely when the

operator releases the blue cube above the black one. Once the stack operation

has finished, the relevant predicates are extracted and set as preconditions for

the stack skill.

32 Conditions Learning

Figure 3.15: The final step of a stack skill. The operator releases the blue cube

above the black one. The preconditions box shows the relevant predicates se-

lected for the taught skill.

Chapter 4

Automated Generation of the

Planning Task

In this chapter, we will discuss how the planning task is automatically generated

after the user demonstrations. The planning task is composed of the planning

problem and the planning domain. The planning problem describes the initial

world state and the expected goal we try to reach. The planning domain is a

collection of all possible generalized actions that can be applied to achieve the

desired goal. A planner has the objective of scheduling the required skills to pass

from the initial state to the final one.

Chapter 4.1 describes how the virtual demonstration is carried out. In Chapter

4.2, we will discuss the method used to perform skill recognition and classifi-

cation. Then, in Chapter 4.3 we explain how the domain and problem files are

generated after the user demonstration, and finally, in Chapter 4.4 the planner

choice is discussed.

34 Automated Generation of the Planning Task

4.1 Virtual Demonstration

As already stated in Chapter 2, the operator demonstrates actions in a virtual

environment using the Oculus quest 2 headset and its controllers. When the op-

erator wears the headset, he sees a scene and thanks to the provided controllers,

he can move and close the virtual hands, grasp, drag and drop objects. In Figure

4.1, we can see the virtual scene composed of a set of coloured cubes near the

human position, a set of coloured cubes near the robot base position and a robot.

The set of cubes near the human position are called human cubes since the hu-

man uses them to perform the task demonstration. On the other hand, the set of

cubes near the robot base position are used by the robot to perform the learned

actions. Once the operator finishes the demonstration, the interface shows to him

the name of actions performed with the involved objects. Thanks to this visual

feedback, the operator knows what actions have been recognized by the system.

Figure 4.2 illustrates how the UI shows the action learned.

Figure 4.1: Side view of the virtual scene.

4.2 Skills classification

The previous chapter described the virtual scene in which the operator demon-

strates the actions. Now we discuss the method used to recognize and classify the

4.2 Skills classification 35

Figure 4.2: UI visual feedback showed after that the operator grabs the blue cube,

releases it above the black one, pick the blue cube and releases it near the black

one.

demonstrated actions. In order to assign correctly skill preconditions and post-

conditions, it is fundamental not only to know which skill has been performed

but also when it started and ended, as discussed in Chapter 3. For this purpose,

we decided to implement a State Machine as in the previous work [17] with slight

changes to adapt it to our work. This approach is able to recognize the starting

and the end of four different skills: Pick, Release, Stack, and Unstack. Every

time a skill performed by the user is recognized, we store it in a list containing

all the demonstrated skills together with their preconditions and postconditions.

The deterministic State Machine implemented by us is illustrated in Figure 4.3.

Each circle represents a discrete state of the world. Arrows represent transitions

managing the passage from one node to another when a condition is met. A fun-

damental concept of a deterministic State Machine is that it can only have a single

active state at any given time. Therefore, if two transitions start from the same

state, the conditions associated with them are mutually exclusive. Looking at Fig-

ure 4.3, we can distinguish three different conditions: HandEmpty, ObjectAbove

and ObjectInT ouch. These are first order logic functions that receive as input

some variables obtained by querying the world model and output a logical state.

In particular, HandEmpty queries the hand state; if the hand contains an object,

it returns the true value. ObjectAbove is an Open Predicate; therefore, it checks if

the input object is above another without wondering about which cube is above.

Finally, ObjectInT ouch detects if the input object is in contact with another ob-

ject, if so, it returns true.

36 Automated Generation of the Planning Task

Figure 4.3: State Machine

An example of how the state machine works during a demonstration is re-

ported in Figure 4.4 and Figure 4.5. At the beginning of the demonstration, the

operator’s left hand is grasping the blue cube. As a consequence, the predicate

HandEmpty returns the true value activating the transition represented by the

arrow pointing downwards. Then, the operator moves the blue cube above the

black cube. The ObjectAbove predicate is queried, it returns the true value acti-

vating the transition represented by the left arrow pointing downwards. Finally,

the operator releases the blue cube, and the stack skill performed is recognized.

4.2 Skills classification 37

Figure 4.4: On the left are represented the action performed by the operator

during the demonstration. On the right the state machine is represented with the

active state that is coloured of green.

38 Automated Generation of the Planning Task

Figure 4.5: The operator releases the blue cube above the black one. Therefore,

the active state is the stack one meaning that the skill has been taught.

4.3 Domain and Problem Generation

As we stated at the beginning of this chapter, the planning task comprises a plan-

ning domain and a problem. The planning domain is a collection of all possible

actions that can be applied to achieve the desired goal. Actions are represented

in the PDDL language with a unique name, a set of parameters, a list of pre-

conditions and a list of effects. Once the user demonstration is finished, we will

have a list of all the demonstrated actions together with their preconditions and

postconditions. We have to write them in the PDDL language inside the domain

file. Actions cannot be identical in a domain file. Thus, we need to check if the

learnt actions are already present in the domain file. If not, the actions are writ-

ten in PDDL and added to the domain file. This procedure is necessary because

the user can perform identical actions during the demonstration. For example, if

a user wants to build a pile of three cubes during the demonstration, he has to

pick a cube, stack the cube above another, pick the third cube, and stack it above

the other two. If the two picked cubes have the same initial state, the two pick

4.3 Domain and Problem Generation 39

actions performed will be identical, having the same preconditions and postcon-

ditions. In order to write an action in the PDDL language, we need generalize it

and abstract from the particular objects used during the demonstration. Figure

4.6 shows an example of the content of a generalised action in PDDL form.

Figure 4.6: On the left an example of how a demonstrated pick is stored in

DemonstratedActions. Then, on the right the string containing the pick skill

written in the PDDL language is showed.

In order to complete the task planning, the problem has to be generated. The

problem is composed of the world initial state and the goal to be achieved. In the

virtual scene implemented by us, the robot has its own set of cubes. Therefore,

the initial world state is defined by evaluating the predicates implemented in

Chapter 3 for each robot cube. Regarding the goal definition, once the user has

terminated the demonstration, he has to place his own set of cubes in the desired

positions. Then, the state of each human side cube, and the goal will be written

in the problem file in PDDL form. An example of how the problem is generated

is reported in Figure 4.7

40 Automated Generation of the Planning Task

Figure 4.7: Example of the problem generation. On the left a screenshot of the

virtual scene is showed, the human cubes define the goal, while the robot cubes

define the initial world state. On the right the initial world state and the goal

represented in the PDDL language are showed.

4.4 Plan Generation

Once the planning task is generated, we need to find a sequence of high-level

actions that the robot will execute in order to reach the goal state. For this pur-

pose, a planner is used in the execution step. Since we used the PDDL language

to define the planning problem, a large variety of planners are available. We

used the STRIPS [19] formalism to define the planning task. This is the classi-

cal formalism for the PDDL definition, thus, we had no tight constraints on the

planner choice, and we selected the Fast-Forward planner [20]. A final example

is reported in Figure 4.8, where the virtual scene is shown that defines the initial

world state and the goal, the task planning generated and the plan returned by

the Fast-Forward planner.

4.4 Plan Generation 41

Figure 4.8: Example of the plan generation. The figure shows the virtual scene

before the plan execution, the domain generated by the user demonstration, the

problem generated and the plan generated by the Fast-Forward planner.

42 Automated Generation of the Planning Task

Chapter 5

Plan Execution and Recovery

As discussed in the previous Chapter, the planner returns a sequence of high-

level actions that the robot has to execute to reach the goal state. While executing

an action, there is no guarantee that the robot will accomplish it correctly. This

is even more likely once we switch to the real environment, since measurement

are typically difficult, unavailable or noisy. Let’s make an example of a robot that

has to stack a cube above another one. In such scenario, it could happen that the

vision system returns an inaccurate position of the base cube and the action fails.

Therefore, we implemented an approach that spots and deals with the possible

errors during the execution.

In Chapter 5.1, we discuss how the robot carries out the plan execution. Then,

Chapter 5.2 explains the error management approach and illustrates some exam-

ples.

5.1 Plan Execution in VR

After the demonstration phase, the user defines the goal by sorting his cubes in

the desired position and launches the planner. The planner parses the generated

domain and problem, returns a sequence of actions that modify the environment

from the initial state to the final one. The visual feedback showing the demon-

strated actions is replaced by a visual feedback that shows the robot actions to be

performed and their list of involved objects, as illustrated in Figure 5.1. Finally,

44 Plan Execution and Recovery

the robot has to execute the actions. In order to move the robot in the virtual en-

vironment, we used ROS [21], which provides services such as message-passing,

package management, low-level device control, and hardware abstraction. Fig-

ure 5.2 illustrates how the communication between Unity and ROS works. On

the ROS side, a TCP endpoint running as ROS node handles all message passing.

On the Unity side, a ROS component provides the necessary functions to publish,

subscribe, or call a service using the TCP endpoint ROS node. During the exe-

cution, we just need to send messages from Unity to ROS regarding the position

and the orientation that the robot has to reach in order to move it. Each action

execution is predefined and discussed in detail in the following subchapters.

Figure 5.1: The left the figure shows the user defined goal, the initial world state

and the demonstrated actions showed by the User Interface. The user pushes the

button to start the execution phase and the plan actions returned by the planner

are displayed. Then, on the right, the demonstrated actions are replaced by the

planned actions.

5.1.1 Pick Execution

The pick execution is divided into three steps: first, the robot moves in the ap-

proach position, which is the position above the cube to be picked. Then, it moves

linearly toward the cube and grasps it. The pick action finishes when the robot

5.1 Plan Execution in VR 45

Figure 5.2: The figure shows how the communication between Unity and ROS

works.

returns to the pick approach position grasping the cube. Figure 5.3 shows the

three steps of a pick execution.

Figure 5.3: In the figure, the robot has to pick the black cube. In the first step, the

robot has moved to the pick approach position, which is the one above the black

cube. In the second step, the robot has moved linearly toward the black cube and

grasps it. Finally, the robot has returned to the approach position with the black

cube in the gripper.

5.1.2 Stack Execution

The stack execution is divided into three steps: first, the robot with a cube in

the gripper, moves in the approach position, which is the position above the base

cube. Then, it moves linearly toward it and stacks the desired cube above the

base one. Finally, the robot completes the stack execution by returning to the

stack approach position. Figure 5.4 shows the three steps of a stack execution.

46 Plan Execution and Recovery

Figure 5.4: In the figure, the robot has to stack the black cube. In the first step,

the robot has moved to the approach position, which is the one above the blue

cube. In the second step, the robot has moved linearly toward the blue cube and

has stacked the black cube on it. Finally, the robot has returned to the stack

approach position.

5.1.3 Unstack Execution

The unstack execution is divided into three steps: first, the robot moves in the

approach position, which is the position above the cube to be unstacked. Then,

it moves linearly toward, closes the gripper, and unstacks the desired cube from

the base one. Finally, the robot completes the unstack execution by returning to

the approach position grasping the desired cube. Figure 5.5 shows the three steps

of a unstack execution.

Figure 5.5: In the figure, the robot has to unstack the black cube. In the first step,

the robot has moved to the approach position, which is the one above the black

cube. In the second step, the robot has moved linearly toward the black cube and

has unstacked the black cube from the blue one. Finally, the robot has returned

to the approach position grasping the black cube.

5.1 Plan Execution in VR 47

5.1.4 Release Execution

The release execution is divided into three steps: first, the robot moves in the

approach position, which is the position above the buffer while it has a cube

in the gripper. The buffer is a special area in the table near the robot position

where the robot releases the cubes. In the second step, the robot moves linearly

toward the buffer position and releases the cube. Finally, the robot completes the

execution by returning to the release approach position. Figure 5.6 shows the

three steps of a release execution.

Figure 5.6: In the figure, the robot has to release the black cube. In the first

step, the robot has moved to the approach position, which is the one above the

buffer. In the second step, the robot has moved linearly toward the buffer and

has released the black cube in it. Finally, the robot has returned to the approach

position.

A final example of how the execution phase is carried out in the virtual en-

vironment is illustrated in Figur 5.7. The figure shows the steps of the robot’s

execution phase, where in the inital state the blue and black cubes are on the

ground and the goal is to stack the black cube above the blue one. In particular,

the robot executes the pick and stack actions in three steps: at first, it moves in

the pick approach position (step 1), which is the position above the black cube.

Then, it moves linearly toward the black cube and grasps it (step 2). The pick

action finishes when the robot returns to the pick approach position grasping

the black cube (step 3). Furthermore, the figure shows how the User interface

changes the colour of the box representing the pick action during its execution.

During the action execution, the box colour is orange. When the robot has com-

48 Plan Execution and Recovery

pleted the action, the box is coloured green. This can be useful to the human

operator to understand and constantly track what is happening. As soon as the

robot completes the pick action, the stack action starts and its corresponding

box is coloured orange. The robot moves in the stack approach position (step

4), which is the position above the blue cube. Then, it moves linearly toward it

and stacks the black cube above the blue one (step 5). Finally, the robot com-

pletes the task by returning to the stack approach position (step 6), and the box

corresponding to the stack action is coloured in green.

Figure 5.7: The figure shows how the robot executes the pick and stack actions.

5.2 Error handling

In the previous chapter, we discussed how the robot executes the plan if no er-

rors occur during the execution. This chapter focuses on the approach developed

to spot errors. Figure 5.9 presents the general workflow of our system. Before

calling the planner, we check if the user-defined goal is already achieved. If yes,

the problem is already solved. Otherwise, the planner is called and we check if

5.2 Error handling 49

a plan is found. If the plan is not found, the problem cannot be solved mean-

ing that the actions learnt during the demonstration phase are not sufficient to

reach the desired goal starting from that initial world state. An example of this

is illustrated in Figure 5.8, where the user demonstrated the pick action only

and defined a goal where also the stack skill is required. Since the demonstrated

action is not sufficient to reach the desired goal, when the planner is called, it re-

turns an empty plan which means that a solution to the proposed problem does

not exist.

Figure 5.8: The figure shows how the system behaves in case an insufficient do-

main is provided to the robot.

On the other hand, if a plan is found, the planner has returned a sequence of

actions and the execution phase starts. We take the first action of the sequence

and check if the preconditions are met. If they are not, we recompute the prob-

lem and the steps seen before are repeated. Recomputing the problem allows

us to update the initial world state of the robot side and check if something is

changed in the meanwhile. Otherwise, the robot executes the action and the

postconditions are checked. If they are not satisfied, as for the preconditions, we

recompute the problem and we continue with the same procedure seen before. If

they are satisfied, we check if the sequence of actions is completed. If it is not, we

take the next action and repeat the steps. Vice versa, if the sequence of actions

is completed, the problem is solved and we can stop. Thanks to this procedure,

if an action cannot start or the robot executes it incorrectly, the plan is recom-

puted starting from the new initial world state until the problem is solved or the

planner cannot find a new plan.

Figure 5.10 and 5.11 show an example of the error handling execution. Figure

50 Plan Execution and Recovery

Figure 5.9: The figure shows the workflow of our system.

5.10 shows the steps that the robot executes in the execution phase. The robot

executes the pick action correctly, while the stack action failed causing the fall

of the black cube. Since the postconditions IsAbove(Cube − Black,Cube − Blue),

IsInT ouch(Cube−Black,Cube −Blue) and IsInT ouch(Cube−Blue,Cube −Black)

are not satisfied, the problem is recomputed and the planner re-launched. In Fig-

ure 5.11, the robot executes correctly the actions of the recovered plan achieving

the user-defined goal.

5.2 Error handling 51

Figure 5.10: In the figure the robot has to pick the black cube and stack it above

the blue one, but it fails the stack action.

Figure 5.11: the figure shows how the plan is recovered after that the stack exe-

cution failed.

52 Plan Execution and Recovery

Chapter 6

Experimental Use Case

In this Chapter we will discuss how the experiments have been set up, the objec-

tives of each experiment, how they are structured, and finally, the results.

6.1 Experimental Setup

The same experiments have been carried out both in virtual and real environ-

ments. For this reason, the virtual environment has been designed to represent as

close as possible the real one. Figure 6.1 shows the virtual and real environments

respectively. The left side figure shows how the virtual environment has been

set up. In particular, on the right hand side of the table, the hands represent the

operator’s position. On the opposite side of the table, the Doosan A-series 0509s

can be seen. Furthermore, two sets of cubes are present in the virtual scene, one

near the operator’s position and one near the robot’s position. The human uses

the set of cubes near the operator’s position to perform the task demonstration

and to show the actions to the robot. On the other hand, the set of cubes near the

robot base position is used by the robot to perform the required task.The picture

on the right side of Figure 6.1 shows how the setup of the real environment has

been designed. The robot used is the same as the virtual one, that is the Doosan

A-series 0509s. The robot’s gripper is equipped with a Realsense 435D camera

that is used to monitor the scene. Furthermore, the cubes are tracked thanks to

special markers attached to them, called Aruco. The main difference between the

54 Experimental Use Case

real and the virtual environment is the presence of just the robot’s set of cubes in

the real one. This is due to the fact that to perform the experiments in the real

environment, the demonstration phase is carried out in the virtual environment

and only the execution phase is performed in the real environment.

Figure 6.1: The left picture shows the virtual environment setup. The right pic-

ture shows the real environment setup.

The virtual reality headset used to perform the experiments is the Oculus

Quest 2 (Figure 6.2). It is used as a standalone device, hence it needs no computer

or phone to work.

Figure 6.2: The figure shows the Oculus Quest 2 device.

6.2 Use Case explanation

To properly validate our work, we defined three different goals the robot had to

reach, using the demonstrated actions during the training phase in VR saved in

the domain file shown in Figure 6.3. The domain file is generated from a demon-

stration in which we manipulated the cubes in order to have one demonstration

6.2 Use Case explanation 55

for each action. Figure 6.4 shows the goals. In particular, the first goal consists in

stacking the red cube on the green one starting from the initial state, that is, the

one where all the cubes are on the table and not in contact with each other . Then,

starting from the position of the cubes in goal 1, the robot has to pass to Task 2

which consists in stacking the blue cube on the black one. Finally, to complete

the third goal, the robot has to unstack the red cube from the green one and stack

it on the blue. Each goal has been performed five times in the virtual and real

environments. Furthermore, goal 1 was demonstrated during the demonstration

phase, while the remaining goals were not demonstrated.

Figure 6.3: The figure shows the learnt actions composing the domain file with

their preconditions and postconditions.

56 Experimental Use Case

Figure 6.4: The figure shows the goals the robot had to reach and the initial state.

6.3 Results

During the training phase necessary to extract the domain of actions displayed

in Figure 6.3, we measured the elapsed time from the first interaction with the

objects in the virtual environment to the last action performed. Since we could

achieve the three goals with the same demonstration, the measured time neces-

sary to program the robot is the same for each goal. To make a comparison with

the traditional style of robot programming, we measured the time necessary to

program the robot using the teach pendant. To program the robot, we moved it

from point to point, using the buttons on the pendant to move it around and save

each position individually. Thus, Table 6.1 has been obtained and it illustrates

how the required time for programming the robot with our method is lower than

using the Tech Pendant.

Methods Goal 1 Goal 2 Goal 3

Classical teaching 62s 88s 117s

Our work 32s 32s 32s

Table 6.1: The table shows the training times required by the classical teaching

and our work for programming the goal 1, goal 2 and goal 3.

Then, we observed the success rate in reaching the required goals during the

execution phase in the virtual environment. Figure 6.5 illustrates the success

rates for the three goals in VR. In green the percentage of the success rate com-

puted without considering the error handling procedure described in Chapter 5.2

is represented, while in orange the percentage of the success rate achieved con-

6.3 Results 57

sidering the errors management is represented. In particular, the robot achieved

the first goal without any problem. In two cases, achieving the second goal re-

quired the error handling procedure because the robot failed to stack the cubes

due to a wrong trajectory returned by ROS. In that cases, the cubes fell, but it was

possible to recover the plan and achieve the goal using the learnt actions. Finally,

the robot achieved the third goal in four out of five cases. In the failed attempt

the robot could not achieve the goal since a cube fell from the tower touching the

base cube. Since we did not demonstrate an action in which we grasped a cube

in touch with another one the robot was stuck and did not know how to solve

the situation. The obtained results show how the error handling procedure can

improve the effectiveness of the robot’s performance, especially when perform-

ing difficult tasks and even when unpredictable situations occur. Moreover, the

robot performed the unseen tasks without the help of a human. This highlights

how a demonstration can be sufficient to extract generalized actions that allow a

successful plan generation for unseen tasks.

Figure 6.5: The figure shows the success rates achieved in the virtual environ-

ment for the three defined goals.

Figure 6.6 illustrates how many times the robot achieved the required goals

during the execution phase with the real robot. In green the percentage of the

success rate computed without considering the error handling procedure is rep-

58 Experimental Use Case

resented, while in orange the percentage of the success rate achieved considering

the errors management is represented. We observe that the real robot never failed

to execute actions and achieved the goals without the use of the error handling

procedure. This is because to move the robot in the real environment we did not

use ROS, thus the computed trajectories were not faulty. Moreover, the packages

used for the implementation of the robot in the virtual environment are in an ex-

perimental phase and sometimes cause unpredictable robot movements that do

not happen with the real robot.

Figure 6.6: The figure shows the success rates achieved in the real environment

for the three defined goals.

6.3 Results 59

Finally, we measured the time required by the planner to find a suitable plan

with different PDDL domains. In particular, we generated a problem file in which

the initial state describes the state of four cubes on the table, while the goal is the

same as the third goal displayed in Figure 6.4. Then, we tested the planner on

ten domains with an increasing number of actions. We launched the planner

five times for each domain, storing the time spent to generate a plan. Figure 6.7

displays the results obtained, where the black line is the average time, and the red

area represents the variance. It can be seen that the time required to generate a

plan increases considerably as the number of skills increases. Therefore, we need

to generalize as much as possible the taught actions to keep the overall number

of actions in the domain low.

Figure 6.7: The figure shows the time spent by the planner to generate a suitable

plan with an increasing number of actions in the domain.

60 Experimental Use Case

Chapter 7

Conclusions

Traditional assembly lines are too rigid for today’s market demand. In fact, in

the last years, the market demands moved toward the production of customized

products requiring assembly lines to allow for rapid changeovers and efficient

teaching. In this context, the time required to teach new processes represents a

fundamental aspect to adapt robot to new product variants. Moreover, small and

medium enterprises are increasingly adopting robot-based industrial automation

that is not easy reprogrammable by non-experts . Programming robots in a more

abstract way that does not require robot expert operators is essential today.

This work focuses on developing a new programming method that allows non-

skilled shop floor workers to program the robot intuitively. In particular, the

operator exploits Virtual Reality during the teaching, demonstrating the actions

the robot needs to learn and what is the new task. Then, the system recognizes

and classifies the actions, extracts the relevant preconditions and effects and au-

tomatically generates a planning domain. Characterizing actions with precon-

ditions allows the robot to check if the action can be executed, while the effects

describe what has to change after the action execution. This allows to check if

the action has been performed correctly. In this way, the robot can spot and deal

with possible errors and replan accordingly. We performed a series of experi-

ments to evaluate the effectiveness of our work both in simulation and with the

real robot. In particular, the robot had to reach different predefined goals using

the learnt action during the demonstration phase. The results highlighted how

62 Conclusions

fast and intuitively the operator can program the robot with respect to traditional

programming modes.

As future works, several aspects could be improved.

Firstly, it is possible to replace the cubes with more complicated objects or even

consider more industrial applications. Another possible improvement deals with

the release action. In our work, the robot is able to release the cubes only in the

predefined positions, thus implementing a new method to place the objects in

non-predefined positions could improve the robot performances. Moreover, we

used PDDL to define the actions in the domain file. Using more complicated lan-

guages such as Probabilistic PDDL or PDDL 2.1 could allow the implementation

of more complex skills.

Bibliography

[1] Ziyue Guo et al. “Applications of virtual reality in maintenance during the

industrial product lifecycle: A systematic review”. In: Journal of Manufac-

turing Systems 56 (2020), pp. 525–538. issn: 0278-6125.

[2] Gregory F Rossano et al. “Easy robot programming concepts: An industrial

perspective”. In: 2013 IEEE international conference on automation science

and engineering (CASE). IEEE. 2013, pp. 1119–1126.

[3] Alexander Perzylo et al. “Intuitive instruction of industrial robots: Se-

mantic process descriptions for small lot production”. In: 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). 2016,

pp. 2293–2300.

[4] Alexander Perzylo et al. “Toward efficient robot teach-in and semantic pro-

cess descriptions for small lot sizes”. In: Proceedings of the Workshop on

Combining AI Reasoning and Cognitive Science with Robotics, Robotics: Sci-

ence and Systems (RSS). 2015.

[5] Nikhil Somani et al. “Constraint-based task programming with CAD

semantics: From intuitive specification to real-time control”. In: 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE. 2015, pp. 2854–2859.

[6] Simon Bøgh et al. “Does your Robot have Skills?” English. In: Proceedings

of the 43rd International Symposium on Robotics. null ; Conference date: 29-

08-2012 Through 31-08-2012. VDE Verlag GMBH, Aug. 2012.

64 BIBLIOGRAPHY

[7] Mikkel Rath Pedersen et al. “On the integration of hardware-abstracted

robot skills for use in industrial scenarios”. In: Proceedings of the IEEE/RSJ

International Conference on Robots and Systems, Workshop on Cognitive

Robotics Systems: Replicating Human Actions and Activities. 2013.

[8] Franz Steinmetz and Roman Weitschat. “Skill parametrization approaches

and skill architecture for human-robot interaction”. In: 2016 IEEE Inter-

national Conference on Automation Science and Engineering (CASE). IEEE.

2016, pp. 280–285.

[9] Sylvain Calinon. “Learning from demonstration (programming by demon-

stration)”. In: Encyclopedia of robotics (2018), pp. 1–8.

[10] Casper Schou et al. “Human-robot interface for instructing industrial tasks

using kinesthetic teaching”. In: IEEE ISR 2013. IEEE. 2013, pp. 1–6.

[11] Ying Siu Liang et al. “End-user programming of low-and high-level actions

for robotic task planning”. In: 2019 28th IEEE International Conference on

Robot and Human Interactive Communication (RO-MAN). IEEE. 2019, pp. 1–

8.

[12] Constructions Aeronautiques et al. “PDDL| The Planning Domain Defini-

tion Language”. In: Technical Report, Tech. Rep. (1998).

[13] Nichola Abdo et al. “Learning manipulation actions from a few demonstra-

tions”. In: 2013 IEEE International Conference on Robotics and Automation.

IEEE. 2013, pp. 1268–1275.

[14] Mirko Wächter et al. “Action sequence reproduction based on automatic

segmentation and object-action complexes”. In: 2013 13th IEEE-RAS Inter-

national Conference on Humanoid Robots (Humanoids). IEEE. 2013, pp. 189–

195.

[15] Paul Bakker, Yasuo Kuniyoshi, et al. “Robot see, robot do: An overview of

robot imitation”. In: AISB96 Workshop on Learning in Robots and Animals.

Vol. 5. Citeseer. 1996.

BIBLIOGRAPHY 65

[16] Maximilian Diehl, Chris Paxton, and Karinne Ramirez-Amaro. “Auto-

mated Generation of Robotic Planning Domains from Observations”. In:

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2021, pp. 6732–6738.

[17] Giuseppe Fabio Preziosa. “Learning human actions semantic in virtual re-

ality for a better human-robot collaboration”. In: MSc thesis in Mechanical

Engineering, Politecnico di Milano (2022).

[18] Ning Zhang, Tao Qi, and Yongjia Zhao. “Real-time learning and recogni-

tion of assembly activities based on virtual reality demonstration”. In: Sen-

sors 21.18 (2021), p. 6201.

[19] STRIPS. https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/fox03a-

html/node2.html.

[20] Fast-Forward planner. https://fai.cs.uni-saarland.de/hoffmann/ff.html.

[21] ROS. https://www.ros.org.

	Abstract
	Introduction
	Virtual Reality in industrial systems
	Automated Planning
	Thesis purpose
	Thesis achievements
	Thesis structure

	State of the art
	Programming by Demonstration
	Virtual Reality

	Conditions Learning
	List Of Predicates
	IsGrasped(Object)
	IsGripperEmpty(Gripper)
	IsAbove(Object1, Object2)
	IsInTouch(Object1, Object2)
	IsObjectInteractable(Object)
	IsReachable(Object)

	Postconditions learning Algorithm and Active Objects
	Preconditions learning Algorithm and Active Objects

	Automated Generation of the Planning Task
	Virtual Demonstration
	Skills classification
	Domain and Problem Generation
	Plan Generation

	Plan Execution and Recovery
	Plan Execution in VR
	Pick Execution
	Stack Execution
	Unstack Execution
	Release Execution

	Error handling

	Experimental Use Case
	Experimental Setup
	Use Case explanation
	Results

	Conclusions
	Bibliography

