
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Master of science in Computer Science and Engineering

Enhancing Visual Competencies for
Tool Affordances in a Humanoid

Robot

Supervisor: Prof. Marcello Restelli
Co-supervisor: Dr. Vadim Tikhanoff
Tutor: Dr. Alexandre Gomes Pereira Antunes

Master Thesis dissertation of:
Mattia Sanchioni Matr. 918065

Academic year 2019-2020

Acknowledgements

Al termine di questo percorso, non posso non ringraziare alcune persone che mi

hanno permesso di arrivare qui questo giorno.

In primo luogo, un grazie sincero va al Professor Restelli, per la disponibilità

e la fiducia datami durante questo percorso di tesi.

Un’altra persona senza la quale questo percorso non sarebbe mai iniziato è

Vadim. Sei stato per me una guida sicura con i tuoi consigli e le conoscenze che

mi hai trasmesso durante questi mesi. Inoltre, voglio ringraziare Alex per avermi

supportato ed aiutato nel portare a compimento questa tesi.

Un grazie va anche a tutti i miei amici, quelli di una vita e quelli conosciuti

negli ultimi anni a Milano. Grazie per tutte le risate fatte insieme, per i momenti

di gioia ma anche di difficoltà, la vostra è stata una presenza sempre costante.

Infine, il grazie più importante va alla mia famiglia, Cri, Chiara, Lele, Mamma

e Papà. Voi avete creduto in me si dal giorno zero e ancora oggi continuate ad

essere la certezza indissolubile della mia vita.

iii

Abstract

Robots have become an increasingly common presence in our daily life, due to the

recent leaps in technology. An important goal of robotics is to endow robots with

the ability to operate autonomously and to cooperate with humans. An essential

prerequisite to achieve this target is the ability to interact with objects present

in the environment. In order to do that, a robot has to be able to recognize and

manipulate them.

This work presents a computer vision architecture, which interacts with a pre-

existing tool affordances system, in order to provide the robot with the ability

to observe a scene, recognize and classify tools through a 2D image segmentation

algorithm. Furthermore, by means of an RGB-D camera, the 3D model of the

objects is reconstructed which allows to extract various features such as shape,

pose and dimensions. The algorithm is also able to find the best part to grasp,

select it as the handle, and calculate its position. The extracted features are sent

to the affordances system which returns the most suitable tool for the chosen

action. This object, thanks to the 3D position of its handle, can be grasped

autonomously and the required action can be performed.

The architecture was validated and its effectiveness was confirmed by the

results achieved both in the simulator and on the real robot. The analysis en-

compasses the matches obtained during the computation of the 3D model and

the correct identification of the handle in different positions and orientations of

the tools. The architecture developed and the results reported in this thesis show

v

that enhancing visual competencies endows the robot with the ability to per-

form actions in a more generic and autonomous way and to adapt to increasingly

realistic environments.

Sommario

I robot sono diventati una presenza sempre più comune nella nostra vista quo-

tidiana, grazie ai progressi compiuti dalla tecnologia. Un obiettivo importante

della robotica è dotare i robot della capacità di operare in modo autonomo e di

cooperare con gli esseri umani. Un prerequisito essenziale per raggiungere questo

obiettivo è la capacità di interagire con gli oggetti contenuti nell’ambiente. Per

fare ciò un robot deve essere in grado di riconoscerli e manipolarli.

Questo lavoro presenta un’architettura di computer vision, che interagisce con

un sistema preesistente di affordances, al fine di fornire al robot la capacità di os-

servare una scena, riconoscere e classificare gli strumenti attraverso un algoritmo

di segmentazione di immagini 2D. Inoltre, tramite una telecamera RGB-D, viene

ricostruito il modello 3D degli oggetti che permette di estrarre varie caratteris-

tiche, come forma, posa e dimensioni. L’algoritmo è anche in grado di trovare

la parte migliore da afferrare, selezionarla come manico e calcolarne la posizione.

Le caratteristiche estratte vengono inviate al sistema di affordances che restitu-

isce lo strumento più adatto per l’azione desiderata. Questo oggetto, grazie alla

posizione 3D del suo manico, può essere afferrato in modo autonomo e l’azione

richiesta può essere eseguita.

L’architettura è stata validata e la sua efficacia è stata confermata dai risul-

tati conseguiti sia nel simulatore che sul robot reale. Le analisi riguardano le cor-

rispondenze ottenute durante il calcolo del modello 3D e la corretta identificazione

del manico nelle diverse posizioni e orientamenti degli strumenti. L’architettura

vii

sviluppata e i risultati riportati in questa tesi dimostrano che il potenziamento

delle competenze visive conferisce al robot la capacità di compiere azioni in modo

più generico e autonomo, e di adattarsi ad ambienti sempre più realistici.

Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Motivations and goal . 6

1.2 Contributions . 7

1.3 Thesis structure . 8

2 Historical context 11

2.1 Affordances . 11

2.2 Computer Vision . 13

2.2.1 3D images . 13

2.2.2 Point clouds . 16

2.2.3 Superquadrics . 18

2.3 Algorithms . 20

2.3.1 Surface reconstruction . 20

2.3.2 Part segmentation . 22

2.3.3 Triangulated surface mesh segmentation 23

2.3.4 Point Cloud Upsampling 25

2.3.5 Iterative Closest Point . 26

2.4 iCub . 27

2.4.1 Yet Another Robot Platform 29

3 State of the Art 31

3.1 Robot Affordances . 32

3.2 Tool Affordances . 33

3.3 Computer Vision . 37

4 Proposed Approach 41

4.1 Initial project . 42

4.2 Multi model approach . 43

4.2.1 Tools Dataset . 43

4.2.2 Tools Segmentation . 44

4.2.3 Model name matching . 46

4.3 3D vision analysis . 47

4.3.1 Point Cloud . 47

4.3.2 Model Fitting . 49

4.4 Grasp the tool . 51

4.4.1 Mesh reconstruction . 52

4.4.2 Mesh segmentation . 53

4.4.3 Superquadrics . 54

4.4.4 Graspable Area . 55

4.5 Overall algorithm . 57

5 Experiments 61

5.1 Gazebo . 63

5.2 iCub . 68

5.3 Results . 73

5.4 Experiments on the Real Robot 77

6 Conclusion 85

6.1 Future Works . 86

Bibliography 97

List of Figures

2.1 Stereo vision geometry, from which it is possible to obtain the

disparity equation (2.1). 14

2.2 Speckles pattern in rgb-d infrared camera. In the left image it is

possible to see the speckled grid of the default scenario. Intro-

ducing an object some speckles are shifted, as in the right image,

allowing the measurement of the distance to that object. 15

2.3 Basic concept of a time-of-flight camera. 16

2.4 An example of point cloud of a tea pot. 17

2.5 A point cloud recovered from a toy car and its superquadric. . . . 19

2.6 The image shows how CGAL can perform the surface reconstruc-

tion starting from a point cloud. 21

2.7 The image shows how part segmentation is used in human body

to detect the pose of a person. 23

2.8 The shape diameter function applied to the elephant and the cor-

responding segmentation. 24

2.9 The figure shows the upsampling procedure with several number of

samples applied on the same model. The images show in grey the

3D model and placed above the colored points to make viewing

easier. The figure (a) shows the original model without upsam-

pling, the point clouds is composed by just under a hundred of

samples. The figures (b) to (e) show the upsampling process with

a gradual increase of final samples, respectively 1000, 2000, 4000

and 8000. 26

2.10 The humanoid robot iCub. 28

3.1 OMS-EGI Computation Steps: Starting with a 3D model oriented

according to the way in which it is grasped (a), its axis-aligned

bounding box (AABB) is computed (b), as well as its normals

(c). In the next step (d), the volume enclosed by the AABB is

iteratively divided into voxels of different resolutions and for each

of them the histogram of normal orientations is computed (e). . . 35

4.1 The figure shows some tools from the dataset used into the simu-

lator. 44

4.2 The segmentation process takes the image scene as input (a). The

mask is calculated using the color information (b), the background

color is not very dissimilar to the average color of the scene. The

mask can be affected by noise, so morphological transformations,

opening and closing are applied, and the denoised image is ob-

tained (c). For each region, the polygon that best matches the

region is found (green line in the image). The bounding box (red

line in the image) is generated for each polygon calculated in this

way (d). Finally, the region of interest of that instrument is shown

(e). 46

4.3 The figure shows the extracted point clouds from the depth image

associated to three different models. 48

4.4 The figure shows three different models after the execution of the

Iterative Closest Point algorithm. The object point cloud is rep-

resented in green, instead the red point cloud is the model one. . . 51

4.5 The figure shows the original point clouds (a), (c), (e), (g) and the

upsampled point cloud with 4000 samples (b), (d), (e)(h). 52

4.6 The figure shows the different outputs produced by two different

neural network, the images (a) and (b) from the PointNet instead

(c) and (d) from the DGCNN. 53

4.7 The figure shows two models segmented with the Trinagulated

surface mesh segmentation algorithm. 54

4.8 The figure shows the superquadrics of three different models. Each

superquadric associated to a segment is colored with a different

color. The superquadrics are opaque to make point clouds visible 55

4.9 The figure shows the segment that best fits as a handle in blue,

all other parts are in green. Behind the blue point cloud is also

the cylinder model representing the volume which iCub can easily

grasp, in red. The image (b) shows the detail of the handle of the

same object represented in the figure (a), instead in the image (c)

the cylinder is more visible since the tools has a thinner handle. . 57

5.1 The figures show what iCub sees directly from its eyes. The images

(a) shows the reconstructed images from the Gazebo simulators.

The image (b) streams the outputs of the robot left camera. . . . 62

5.2 VTK viewer. In blue the superquadrics and the color points rep-

resent the objects point clouds . 63

5.3 The image shows the simulator containing several objects including

the iCub robot, the table, the object and the rack with several tools. 64

5.4 The images show the two positions, (a) the initial one with when

iCub is loaded that is the home position with enlarged arms, and

the second one (b) represents the robot after the rotation to reach

the correct position to start the analysis. 65

5.5 The image shows the tools segmentation. From the image (a) it is

possible to see the entire scene from which the analysis starts and

the image (b) shows the scene from the point of view of the robot.

Then the image (c) provides an image of the binary mask that

represents the tools in the scene. Finally, the image (d) shows in

green the contours of the white region of the mask that represent

the tools figured out, and in red the related bounding boxes that

are used in the following phases. 66

5.6 The first column contains the point clouds reconstructed from the

depth maps, the following one shows the model matching, in green

the object point clouds, in red the model ones. The next col-

umn shows in different colors the distinct parts in which they are

segmented. The last column shows the superquadrics computed

from each segment, the relation between the segment and the su-

perquadric is displayed through the color. 67

5.7 The images show the handle selection for the four tools analyzed

in figure 5.6. It is possible to see in blue the segment selected as

the handle, and in green the other segments. In addition inside

the handle it is also present, in red, the model of the cylinder that

the iCub had can easily grasp. 68

5.8 The image shows the setup configured for executing the experiments. 69

5.9 The images show outputs of the segmentation algorithm. The

image (a) contains the bounding boxes of the segmented tools in

red and a green line defines the contour of the objects. The image

(b), instead, shows the tools segmented from the scene image. . . 70

5.10 The images show the disparity images. The (a) is the depth image

reconstructed in gazebo, instead (b) is the depth image computed

by the stereo vision. Finally the image (c) shows the depth image

from the depth camera. 71

5.11 The images show different executions of ICP algorithm for three

models. In green it is represented the object point cloud, recon-

structed from the depth image. In red the model point cloud. . . 72

5.12 The images show on the left the handle matching of the tool and

on the right there is the grasping final action. 74

5.13 The figure (a) shows the original tool, the figure (b) the rotation

around the vertical axis of 90 degrees counterclockwise. The im-

ages (c) and (d) represent the rotations around the normal axis

respectively of 180 and 90 degrees, both counterclockwise. 74

5.14 The image shows the recognition of the objects above the table. . 77

5.15 The image shows iCub that looks the rack in which three different

tools are available. 77

5.16 The images show all the steps performed in the entire pipeline.

First of all in image (a) it is possible to visualize the bounding

boxes with the object. By using the roi of each tool is possible to

retrieve the name of each tool (b). The object on the right is the

first one to be analyzed, and the classifier returns the Hoe1 name

as visible in (c). The images (d, e, f) show the tool analysis, model

matching, superquadrics computation and handle identification. . 78

5.17 The images represent the same analysis computed for the first tool

of figure 5.16 also for the other two tools, the stick in the center

and the second hoe on the left. 79

5.18 The image shows iCub that move the right arm in order to grasp

the tool, figure (a). Once done it leaves it a little bit in order to

move the object figure (b) and then it performs the action, figures

(c) and (d). 80

5.19 In image (a) iCub moves the arm in the home position locating

the hand over the table, and in the image (b) it opens the hand in

order to leave the object. 80

5.20 The images show the sequence of actions performed if the tool is

not reachable. (a) it points the desired tool. (b) it asks and waits

for the tool with the hand opened. (c) grasps the tool. 81

5.21 iCub looks before the table and after the rack. 81

5.22 Image (a) and (b) show the name matching performed by the clas-

sifier, and the selected tool is the new one, the rake. Images (c),

(d) and (e) show the model matching, the segmentation and the

handle fitting of the selected tool. 82

5.23 The image (a) show the frames in which iCub grasp the tool. Later

images (b) and (c) visualize the action performing of pushing the

object closer, in a graspable area. And finally, in images (d) and

(e) the tool is left on the table. 83

List of Algorithms

1 Tools segmentation from 2D image 45

2 3D reconstruction algorithm . 49

3 Point clouds Ransac algorithm . 50

4 Iterative Closest Point parameters 50

5 Handle fitting . 56

6 Overall algorithm . 59

7 Compute point cloud from camera frame to robot frame 73

Chapter 1

Introduction

Robots are programmable machines able to perform tasks autonomously or semi-

autonomously. They have been designed and developed with several goals, en-

tertainment, research, and also helping humans to perform some tasks, usually

the most dangerous and repetitive. Indeed, robots have been placed in settings

where their help would reduce the production time, e.g. the production chains

in automotive industries. Robots also entered in our houses with service robots

that help humans in everyday tasks. In a realistic environment robots should

be able to improvise and adapt as people do. In order to do that, robots can-

not be programmed for each single scenario but they have to be provided with

capabilities to perform in all situations. They have to manage and manipulate

tools available at runtime, and for which they were not developed. This thesis

proposes an approach with which robots would be able to manage a wide variety

of tools and understand how to use them for a task. The goal of this work is to

provide not only the theoretical studies, but also to test them on a real humanoid

robot.

Before going more in-depth, let us take a step back in the world of robotics.

The noun robot was coined in 1920 by the writer Karel Capek in his science

fiction drama R.U.R (Rossumovi Univerzální Roboti, Rossum’s Universal Robots

2 Introduction

in English). The word robot derives from the Czech word "robota" that means

work. In the play, robots have the same shape as humans and they are also

made of organic material, differently from ours that are mechanic. As usually

happens in science fiction literary works or films, the end is tragic, robots take

over the world and try to replace humans. But already in the vision of Capek,

robots are meant to help humanity with physical work. Even nowadays, robots

are designed to help with physically demanding or repetitive and tedious tasks,

both in simple or complex scenarios. With the same philosophy, this thesis has

the aim to equip robots with the ability to perform some human tasks. In order to

complete them, they have to be able to recognize and manipulate objects present

in everyday scenarios as humans do. The knowledge of objects cannot be limited

to restricted sets, but rather based on some properties, intrinsic to the object,

with which the objects can be classified.

The technological progress in the last decade, especially in computer vision,

guides the development of these capabilities. Nowadays it is possible to recon-

struct the 3D model of an object thanks to depth cameras that are able to recon-

struct their volumes. The most recent algorithms in deep learning and artificial

intelligence are able to recognize objects and to identify the parts that compose

them. This is a fundamental step in order to give the robot the ability to distin-

guish between objects and to allow it to grasp the desired item in order to perform

the task. It is easy to imagine that in a real world scenario the input variables are

substantial and the amount of possible combinations of values is immense. Ob-

jects can have very complex shapes which makes it harder for the robot to grasp.

Moreover the object material can increase the complexity of choosing where and

how to grasp it. It can be very different grabbing a solid object, like a stone or

a wooden stick, from a softer one, such as a sponge. Some objects can even be

flexible like a rope or a rubber. All these different aspects are managed daily by

us with extreme simplicity. On the other hand some variables are affected by

the robot itself, for example the dimension of its hand can influence the range of

3

graspable objects. Also the weight of the object can modify the outcome of an

action, since different robots are developed to handle different weights.

This thesis is not limited to a theoretical study but it tries to tackle some real

aspects such as those previously cited. From a practical point of view, we tried

to overcome some limitations, testing the entire project with all the algorithms

beforehand, in a virtual environment and subsequently on a real robot. The

simulator is very innovative and it tries to be as close as possible to reality taking

into consideration all the properties of the objects, such as friction and weight,

and also real capabilities of the robot.

As previously mentioned, robots should to capable of adapting themselves to

each scenario. For that reason researchers, from the beginning, tried to develop

new algorithms able to learn and modify the robot behaviour depending on the

new challenges or tasks. In the beginning, the field of robotic learning was focused

on teaching robots specific tasks and improving their skills based on observations.

Aboaf and his team [1] were able to program in 1988 a ball-throwing robot system.

The ballistic, kinematic and dynamic models of the robot were never improved,

whereas the task performance was. The desired outputs were different from the

actual ones even if the task was completed correctly. But this difference and

the improvement based only on the experience indicated that learning could have

continued at task level. The following year, the same team led by Aboaf continued

the studies about the task-level robot learning implementing new models for a

different scenario [2]. In that case the task had been more difficult than the

previous one, since it was a dynamic task, juggling a tennis ball. The algorithms

were extended so that they could be applied to a multi-dimensional scenario, and

also take into account some of the state variables of system.

Other studies moved beyond the single task model by making robots capable

of adapting to dynamic environments and acquiring new skills according to the

preferences of the users. Non-expert users would still have to be able to program

new robot tasks in as simple a way as possible. For that reason the Programming

4 Introduction

by Demonstration (PbD) [3] approach took hold, where just by showing the robot

the task, it was able to imitate the user’s movements instead of programming it

through machine commands. This approach, called play-back method, consists

in moving the robot through several configurations, relevant for the task comple-

tion, where the robot would move from one to the next in a sequential manner.

The configuration is composed by the position, orientation and if available the

state of the gripper or another end-effector. The PbD approach is often used

in environments where tasks are repetitive, such as industry or assembly lines

where components are always managed in the same way [4]. Still in industry, in

a coworker scenario this approach can be very effective [5]. The PbD approach

can also be used in mobile robot programming, teaching the robot the desired

path by manually guiding it, enabling the robot to navigate autonomously [6].

Another paradigm for enabling robots to autonomously perform new tasks

is learning from demonstration (LfD) [7]. Also in this case the end-user has to

move the robot through different configurations, but should also provide more

demonstrations rather than a single one. Indeed, LfD is not a record and replay

technique, instead, it performs a task by generalizing from observing several

demonstrations. When failures occur the user has only to provide more examples,

so the robot becomes able to overcome the issues and manage the differences

in different scenarios. An example was provided by Ekval et al [8] whose aim

was to use a task planner to reach the goal given different initial states of the

environment. In that specific case it was necessary to pay attention to some

specific tasks that required some constrains that must have been fulfilled. In

order to identify the constraints the work proposed two different approaches. In

the first case, the teacher could directly instruct the robot about the underlying

constraints. In the second case, the constraints were identified by the system

performing multiple observations.

A different method was proposed by Leon and his team [9]. As early as

2011 they had guessed that robots would take hold in human activities, but

5

in order to do that, robots had to be able to adapt themselves to the users’

needs. Particularly, for robots to be so efficient, a non-expert user should have

the possibility and the ability to teach them how to perform new tasks in natural

ways. Robots can be guided in completing a task not only by the imitation of

an operator but also listening to the human’s voice, interpreting the speech as

behaviors that are required to be reproduced. This approach was adopted by

Rybski [10] that highlighted the utility of that model when the context has to be

dealt with depending on the situation, conditioned by contingencies. In addition,

the execution of a task can be influenced by the location where it takes place and

the people present. Other learning techniques have been developed and combined

to increase the ability of the robot to learn new skills. Kormushev [11] combined

learning from demonstration and and reinforcement learning where the robot fine-

tunes the movement learned previously by imitation. Asfour et al. [12], mixed

several techniques, allowing robots to enter human-centred environments and to

perform daily tasks like loading dishes into a dishwasher.

In the previous examples the focus has been on the goal achievement and the

ability to learn new tasks. However, in order to build a robot as able to adapt as

humans, it has to be provided with the ability to grab and manipulate objects.

This capability allows robots to complete assignments in multiple situations, such

as agriculture, industrial and households. Moreover, it improves the interaction

and cooperation with workers or other robots. Grasping an object is not a simple

task, the action is influenced by the object constraints, the shape, the size and

the weight, but also the material of the object can influence the maximum force

that can be applied, for example grasping a glass is not the same as grasping a

hammer. Moreover the position of the object with respect to the environment

and the robot can affect the possibility to be grasped or not.

The idea to build a robot that can operate at the same level of dexterity

as humans in grasping objects remains an unsolved problem. Several proposals

tackle the problem with different approaches, for example model-based or task-

6 Introduction

based approach achieving reasonable results. For instance Cutkosky [13] has

focused on tasks performed in small-batch machining operations and job-shops.

Along the same line Bormann and his team [14] developed a mobile robot able

to pick items in retail store or warehouse. Both works are centered on the action

to perform even if the objects handled can be very different one from the other.

Cini and her team conducted a study [15] analyzing how a robot has to grasp

an object and hand placement during a handover. The final configuration of the

hand and the object is very important since they may influence the possibility of

the second robot or human to pick the object and perform its task. Du et al [16]

provided a survey in which they studied the grasp estimation on a vision based

robot. This task can be executed only after localizing the object and estimating

its pose, relying on a rgb-d camera to complete the task.

1.1 Motivations and goal

All examples provided in this chapter furnish the awareness that a robot, to be

more flexible and be able to enter in human environment, has to be capable of

generalising the learned skills and manipulating objects for which it has not been

programmed. The achievement of this goal has defined the motivations for this

thesis. A more lifelike natural visual system endows a humanoid robot with the

ability to complete the tasks through the recognition and manipulation of the

available tools. The main hypothesis behind this was originated by observing the

shortcomings of the visual analysis of the scene in which the robot acts to discover

objects able to help it for achieving its goals. In the experiments, especially with

humanoid robots, the tool is pre-positioned in the hand of the robot or the robot

knows its position in advance. The goal of this thesis is to build a system,

generic enough, to allow the humanoid robot iCub to extract information from

the scene that helps the recognition and manipulation of the tools present in the

environment.

1.2 Contributions 7

1.2 Contributions

The potential impact of this research concerns humanoid robots that take advan-

tage of affordances to analyze the effects of their actions given a target object

and providing a tool to use during the action. The development of a system

able to improve visual abilities of humanoid robots mixing a 3D perception of

the objects with a 2D image analysis will provide the ability to detect tools from

the environment, retrieve their properties in terms of shape, dimensions, three-

dimensional pose and graspability. Robots and agents equipped with this system

will be able to extract better information from the surroundings and to analyze

the 3D shape of the identified tools. This feature makes the robot capable of

identifying the handle of the tool and grasping it autonomously. Current agent

models and robotic approaches have limitations, they usually use only 2D image

analysis to extract information related to the object. The potential technological

and practical advantages of this research, such as systems that are able to ac-

quire more data autonomously act upon it, are numerous for the fields of robotics,

artificial intelligence, and cognitive systems design.

This research hands over theoretical as well as technological contributions.

Starting with theoretical contributions, the research is the first to use and ex-

pand the current affordance learning pipeline for the iCub robot. The extension

consists of complementing the learning algorithms providing more visual features

used to compute affordances, moreover the extensive analysis of the graspability

allows to predict the final pose of the tool and its end effector. A further im-

portant theoretical contribution is the new proposed architecture for humanoid

robots that integrates 3D vision with model segmentation, point clouds and su-

perquadrics that provide a method to detect the part of the tool that best fits

as handle and its position in the space allowing to autonomously grasp the tool.

From the technological point of view, the research provides the robotic community

with an open source repository and a docker image containing the implementa-

8 Introduction

tion of the above described system able to be executed in the real iCub robot

and its simulator.

In details the system introduces a 2D image segmentation that is able to

recognize the tools present in the environment.

Each tool is analyzed in terms of shape and 3D pose by reconstructing its three-

dimensional model using point clouds.

In addition, by segmenting the reconstructed model it is possible to study the

graspability of each part discovering the one that best fits the robot’s hand.

All data gathered by the analyses so far conducted can be collected in a set

of both 2D and 3D functionalities that helps and improves computation of the

affordances, that are later used to find out which tool is the most suitable for the

selected action.

Thanks to the reconstructed model and the graspability analysis, the 3D position

of the handle is known and the selected tool can be grasped by the robot.

1.3 Thesis structure

The present thesis is structured as follows:

Chapter 2 contains a detailed description of the background concepts and

knowledges that are widely used in this work. It introduces the computer vision

field focusing on the techniques used, such as the pointcloud or the superquadrics.

It covers also the algorithms used in the code and concludes with a description

of the robot used for the experiments.

Chapter 3 collects the description and analysis of the most relevant state-of-

the-art. It focuses on the topics that characterizes this thesis, such as the studies

on affordances, vision-based robots, object manipulation and grasping. These

studies represent the starting point of this work.

Chapter 4 contains a detailed description of the system we developed, follow-

ing the iterative process we adopted. First of all we prepared the dataset of tool

1.3 Thesis structure 9

models, then we find each object segmenting the scene. Every tool is analyzed

and divided in parts, in order to find the best graspable area. Evaluating the

affordances, the best tool is chosen given the desired action.

Chapter 5 presents the experiments performed in the simulator and on the

humanoid robot iCub. Moreover it provides an evaluation of the obtained results.

Chapter 6 draws the conclusion of this thesis work and proposes some possible

future developments on the remaining issues.

Chapter 2

Historical context

The purpose of this section is to provide the reader with some concepts and tools

that will serve as background knowledge for future reasoning in this thesis work.

Firstly we will introduce the concept of affordances, what that term means in

psychology and robotics fields. Afterwards an overview of computer vision is pro-

vided, going into details on some techniques and algorithms used in this project.

Finally a description of the humanoid robot iCub, built by Istituto Italiano di

Tecnologia (IIT) and an overview of the Yet Another Robot Platform (YARP)

framework used for the robot control system is provided.

2.1 Affordances

“The affordances of the environment are what it offers the animal, what it provides

or furnishes, either for good or ill. The verb to afford is found in the dictionary,

the noun affordance is not. I have made it up. I mean by it something that refers

to both the environment and the animal in a way that no existing term does. It

implies the complementarity of the animal and the environment.” [17]

The term affordance was coined by the psychologist James J. Gibson in his

book The Senses Considered as Perceptual Systems [18] and was carried on and

12 Historical context

developed in other books, such as [19] and essays, culminating in his final book

The Ecological Approach to Visual Perception[17], from where the quote comes.

Gibson was one of the most important contributors to the field of visual per-

ception and he promoted ecological psychology, in which the environment and

animals are not separable, one cannot survive without the other. Indeed, with

the noun "affordance", Gibson wanted to pertain to a specific scenario in which

the environment and the animal can work together.

The key point of affordances is that they are relational and characterize the

suitability of the environment to the observer, and so, they depend on their cur-

rent intentions and their capabilities. For this reason the objects in the environ-

ment can afford many different behaviours. The ability to predict the interaction

between a given object and the body, evaluating the possible outcomes of actions

before executing it, is considered the hallmark of cognition. In the brain, this

ability is thought to happen through the activation of appropriate sensorimotor

schemas[20]. The psychological construct that represents a sensorimotor schema

brings together the perceptions and associated actions involved in the habitual

behaviours. All the experiences, inferred from these behaviours, are generalized

and feed the essence of that schema.

The sensorimotor schema is considered the main unit of knowledge in use

during infancy. Since early age, humans start searching and using external objects

in order to achieve their goals, learning from the interaction between an action

and the resulting effect. The sensorimotor stage was outlined by Piaget in his

books on sensorimotor development [21, 22]. It is the earliest of a series of four

different stages of cognitive development. Infants gain a basic understanding of

the world around them through a trial-and-error approach, and the first stage

is called ’sensorimotor’ stage exactly because it is through the senses and motor

abilities that infants make this discovery. Sensorimotor schemas are considered

as a functional explanation of the brain direct perception of object properties and

their role in action execution[23].

2.2 Computer Vision 13

Affordances are sensorimotor schemas associated to entities in a specific en-

vironment, and tool use is a direct consequence of the ability to understand af-

fordances. Neuroscience thus suggests to comprehend the concept of objecthood,

involving sensorimotor schemas and experiences, and associating them with sym-

bolic representations. Robotics have followed a similar approach. Indeed, Kruger

has formalized in his work [24] an entity that is the basis of symbolic representa-

tions of sensory–motor experience. All learnings and refinements are built on the

interaction between an agent and the world. Also in other studies, for instance

the one conducted by Montesano and his team [25] affordances encode relation-

ships between actions, objects and effects. Indeed, affordances are used to predict

the course of a particular action and thus they constitute one of the important

ingredients of artificial cognition.

2.2 Computer Vision

An important aspect in robotics development is robotic vision. This field is

composed by different sub-fields, like computer vision and image processing, but

also incorporates aspects of robots such as their kinematics. An example of

robotic vision is to control the motion of a robot by using the feedback of the

robot’s position as detected by a visions sensor. Indeed the main goal is to

generate physical actions starting from images manipulated by image processing

and analyzed thanks to computer vision.

2.2.1 3D images

The ability for a robot to move freely inside an environment and interact with

objects present in it is essential to place a robot in a real setting. Computer vision

algorithms are able to detect objects contained into an image, useful for a static

environment or in objects detection scenario. Also in the case of mobile robots,

14 Historical context

which need to navigate in the real world, avoiding obstacles and interacting with

objects, it is fundamental to analyze 3D projections of the environment.

There are several techniques to obtain depth data from a scene, one of them

with stereo vision. In a traditional version, two cameras are used and placed near

each other, obtaining two images of the same scene, similar to human binocular

vision [26]. The reconstruction of the world seen through stereo cameras [27]

can be divided into two steps: fusion and reconstruction. The fusion problem

consists in finding for every point in one image the correspondent point in the

other and compute the disparity of these points. This disparity map is used

in the reconstruction with the focal distance of the cameras and the geometry

of the setting, the position and orientation of the cameras, to compute the 3D

coordinates (x, y, z) of all points. Stereo vision is widely used in several projects

and studies, such as in navigation for mobile robot [28], in obstacle avoidance

[29] or for tracking the robot manipulator and its end effector [30].

disparity = x2 − x1 =
bf

Z
(2.1)

Figure 2.1: Stereo vision geometry, from which it is possible to obtain the dis-

parity equation (2.1).

Another technique used to obtain a depth image is to use a sensor called

2.2 Computer Vision 15

RGB-D camera [31]. In order to reconstruct the depth of the scene, the camera

uses an infrared projector that emits a structured light with a known pattern

of speckles. This grid is acquired by the infrared camera and is correlated with

the reference pattern, figure 2.2. The reference pattern is generated during a

calibration phase in which a depth plane at a known distance from the sensor is

acquired. When an object is positioned closer or further away from the sensor,

the projection of its speckle is shifted in a certain direction. Measuring this shift

for all the speckles, it is possible to generate a disparity map. For each pixel it is

possible to compute the distance to the sensor thanks to the disparity map.

(a) (b)

Figure 2.2: Speckles pattern in rgb-d infrared camera. In the left image it is

possible to see the speckled grid of the default scenario. Introducing an object

some speckles are shifted, as in the right image, allowing the measurement of the

distance to that object.

A very famous product that mounts that sensor is the Microsoft Kinect ®

[32] that has been widely used for different purposes, for instance in mapping

problem for mobile robot [33] or in object recognition [34].

The second version of the same product is equipped with a different sensor

for the depth measurement, a time-of-flight camera [35]. This sensor works by

illuminating the environment with a modulated light and observing the reflected

one. The shift between the phase of illumination and the reflection is measured

16 Historical context

and transformed into distance. Figure 2.3 illustrates the basic concept of a time-

of-flight camera.

Figure 2.3: Basic concept of a time-of-flight camera.

The illumination is usually generated by a laser or a LED, operating near-

infrared range (850nm), invisible to human eyes. The light source illuminates

for a short time (∆t), and the reflected beam is sampled with the same ∆t.

Accumulated charges in the pixel during the samples, Q1 and Q2, are measured

and used to compute the distance through the formula 2.2. The depth map is

computed for each pixel in parallel.

d =
1

2
c ∆t

(
Q2

Q1 +Q2

)
(2.2)

2.2.2 Point clouds

A depth image, as seen until now, is a collection of 3D points, one for each pixel.

These points can be called also voxel, the counterpart of the 2D pixel in a 3D

environment, so it represents a parallelepiped with the base as the pixel and the

height as the distance. An alternative way to represent a depth map can be

representing each points in a three-dimensional space, this collection of points is

usually called pointcloud, as we can see in figure 2.4.

2.2 Computer Vision 17

Figure 2.4: An example of point cloud of a tea pot.

Point clouds are used for many purposes, for instance the creation of 3D CAD

models. Moreover point clouds are often converted to triangle mesh models or

CAD models through surface reconstruction algorithms. There are many tech-

niques for converting a point cloud to a 3D model. Some approaches are explained

in paragraph 2.3.1, in general the main goal is to build a series of connected tri-

angles over the vertices that characterize the point cloud. The key limitation

during acquisition of point clouds is that only accessible and visible surfaces can

be scanned. This means that simply to cover all scanning positions takes time.

But at the same time point clouds are a non-intrusive way to measure buildings

or objects because no sensors have to be introduced into the environment. Point

clouds have become abundantly used in 3D environment, for example in making

digital elevation models of the terrain [36]. They are also used to reconstruct

the three-dimensional model of a construction, the technique mostly used for

that purpose is the photogrammetry [37], a drone takes numerous pictures of

the building and a dedicated process overlaps all the images reconstructing the

model.

18 Historical context

2.2.3 Superquadrics

With the point clouds we are able to scan and represent a three-dimensional

model. But in order to manipulate it and study how it interacts with other

objects, a compact volumetric model is necessary for shape representation. These

models are called superquadrics [38], that extend the classical quadric surfaces

and solids and produce a set of useful forms with rounded edges and filleted faces.

With these primitives also related operators have been designed, so parametric

deformations can be applied, bending, tampering or cavity deformation [39]. The

advantage in using superquadrics is to simplify the construction and alteration

of complex solids and surfaces using few interactive parameters.

Superquadric can be expressed by the implicit equation 2.3 where parameters

a1, a2 and a3 define the size of the superquadric in respectively x, y and z coor-

dinates; instead εi parameters control the shape of the superquadric, indeed ε1

and ε2 are the squareness parameter respectively in the latitude plane and in the

longitude plane. ((
x

a1

)2/ε2

+

(
y

a2

)2/ε2
)ε2/ε1

+

(
z

a3

)2/ε1

= 1 (2.3)

From the equation 2.3 we can obtain a parametric function 2.4, called inside-

outside function because it provides a way to tell if a point [x, y, z]T lies relative

to the superquadric surface. If F (x, y, z) < 1 the point is inside the superquadric.

If F (x, y, z) = 1 the point is on the surface of the superquadric. If F (x, y, z) > 1

the corresponding point lies outside the surface.

F (x, y, z) =

((x

a1

)2/ε2

+

(
y

a2

)2/ε2
)ε2/ε1

+

(
z

a3

)2/ε1

ε1

(2.4)

It is possible to expand the inside-outside function 2.4 defining a superquadric

in general position and orientation in space [40]. Three extra parameters px, py

and pz are used to express the position of its central point in world coordinate

2.2 Computer Vision 19

system. Moreover, three additional parameters θ, φ and ψ for the ZYZ Euler an-

gles that define the orientation of the superquadric by three rotations: a rotation

of θ around the z axis, followed by a rotation of φ around the y axis and a final

rotation of ψ around the z axis.

Now the inside-outside function 2.5 has 11 parameters (defined as Λ) and it is

able to define a vast variety of models because the function can describe the size

and the shape of the object and also the orientation and the position in the space.

F (x, y, z) = F (x, y, z,Λ) = F (x, y, z, a1, a2, a3, ε1, ε2, θ, φ, ψ, px, py, pz) (2.5)

Superquadrics can be recovered from a three-dimensional range points, such

as a point cloud, the figure 2.5 shows an example of point cloud retrieved from a

car toy and it superquadric representation.

(a)

Figure 2.5: A point cloud recovered from a toy car and its superquadric.

The reconstruction problem can be formulated as a minimization problem

[41]. Suppose we have a set of N 3D points (xi, yi, zi) and we want to find the

11 parameters Λ that describe the superquadric so that most of the points lie on

the surface. The goal is to find a set of parameters for which the distance from

points to the model is minimal, that is a least-squares minimization problem.

20 Historical context

Casting that as a minimization problem and multiplying (
√
a1 a2 a3) to the

minimization terms to enforce the recovery of the smallest superquadric, arriving

at:

min
N∑
i=1

[
√
a1 a2 a3 F (Λ)− 1]

2 (2.6)

2.3 Algorithms

This paragraph describes the most important algorithms used in this work. They

mainly concern the manipulation of point clouds, first the reconstruction of the

surface to generate the model associated with the point cloud, then the segmen-

tation of the model into the parts that make up the object.

2.3.1 Surface reconstruction

Depth cameras have become more and more accurate and cheaper, these factors

have allowed the increase in the use of 3D points generated from scans of ob-

jects. A traditional problem with these scans is to recover the physical shape of

the objects, generating a digital representation. This problem is called surface

reconstruction and it represents the process by which a 3D object representation

is reconstructed or inferred, usually, from a point cloud, see figure 2.6. Since the

reconstruction problem is ill-posed, given a set of 3D points it is possible to find

an infinite number of surfaces that can pass through them. To deal with it, it

must be regularized through prior knowledge [42]. Choosing one algorithm or

another is dependent on these priors.

The CGAL Library [43], used in that work, offers three different algorithms:

Poisson Surface Reconstruction, Advancing Front Surface Reconstruction and

Scale Space Surface Reconstruction.

Poisson reconstruction considers all the points at once, without partitioning

2.3 Algorithms 21

Figure 2.6: The image shows how CGAL can perform the surface reconstruction

starting from a point cloud.

or clustering, therefore is highly resilient to data noise and it performs well ap-

proximating a point cloud with a smooth surface [44]. The algorithm works by

computing an implicit function which is an approximate indicator function of the

inferred solid.

Scale space algorithm takes as input a point cloud and computes a triangulated

surface interpolating the points. It is also able to handle noise and outliers if in

a limited number. The input points are modeled using a scale-space that can

be considered as an abstraction of the point set. The algorithm works in two

phases, the first one tackles the construction of the scale-space, while the second

one computes the triangulated surface mesh of the point set at scale s is computed

[45].

Advancing front is a Delaunay-based approach in which the output surface

is composed by the union of some triangles. It is the algorithm used in this

thesis. The reconstruction is performed sequentially, at each iteration the most

plausible triangle is selected using the previously selected triangles [46]. This

approach allows to add the most plausible triangles first and to postpone the

difficult decisions, since an error can yield terrible results.

The first step of the algorithms is to find a candidate triangle for a boundary edge,

in order to do that it defines the radius r1 of a triangle t as the radius of the

22 Historical context

smallest sphere passing through the vertices of t and enclosing no sample point.

The triangle with the minimum radius is the starting point of the algorithm. From

it, valid triangles incident to the edges are computed, maintained in a priority

queue. At each iteration the algorithm pops most plausible candidate from the

queue and computes the new candidate triangles and puts them into the queue.

2.3.2 Part segmentation

The image segmentation is a very famous technique used in computer vision that

partitions a digital image into multiple segments. This approach is typically used

to locate objects. The result of image segmentation is a set of segments that share

some characteristic or properties, such as color, texture or shape. Collectively all

segments cover the entire image. This technique is widely used, for instance in

medical images to locate tumors or for surgery planning, or in object detection

like face detection or pedestrian for autonomous cars and many others.

All the algorithms mentioned so far are valid not only for 2D but also for 3D mod-

els. Indeed meshes can be segmented into smaller and meaningful sub-meshes.

The results can be useful for higher level tasks such as object recognition or scene

understanding. Unlike the 2D images, segmentation in a 3D world is more diffi-

cult because the properties of the models are more and more complex, for example

the segmentation can be based on the volumetric information of the model, or

on the surface or on mesh components like vertices, edges and faces. Also the

results are not as good for image segmentation that is able to reach very good

outcomes in a vast variety of fields. One of the most advanced applications is the

human body part segmentation, the figure 2.7 shows results achieved by Chuang

et al [47], that have applications for pose estimation, robot-human interaction

and gaming. But recently it started also to be developed for object segmentation

that allows to distinguish several regions that compose the model, identifying

for example in an airplane its wings, stabilizers and fuselage. Service robotics

2.3 Algorithms 23

also adopt these techniques to analyze objects with which humans interact daily,

which robots might have to use in the future.

The advances in this area are encouraged also by deep learning with the most

advanced and accurate neural networks. Obviously the training of those networks

has become possible thanks to the ease with which today it is possible to obtain

three-dimensional scans of objects.

Figure 2.7: The image shows how part segmentation is used in human body to

detect the pose of a person.

2.3.3 Triangulated surface mesh segmentation

As mentioned previously, mesh segmentation is the process of separating a 3D

model into sub-meshes. The segmentation applied in this work relies on the

algorithm provided by CGAL [43] called triangulated surface mesh segmentation.

This algorithm uses the Shape Diameter Function (SDF) [48]. It is a scalar

function that provides an estimate of the local object diameter for each facet of

the mesh. The SDF is used to distinguish between thin and thick parts, it is

also pose-invariant because the volume of the object remains unaffected by pose

changes.

Given an input mesh, the SDF values are computed for each facet. At each

iterations, several rays are sampled in a cone constructed using the centroid of the

facet as apex and inward-normal of the facet as axis. A segment is calculated from

each radius starting from the apex of the cone and ending in the first intersecting

24 Historical context

Figure 2.8: The shape diameter function applied to the elephant and the corre-

sponding segmentation.

facet of the radius. Using the lengths of these truncated rays, which intuitively

correspond to a local volume sampling, the raw SDF value is calculated by first

applying an outlier removal procedure and then taking the average of the lengths.

The raw SDF values are post-processed applying a smooth operator that removes

the noise but tries to keep unchanged fast changes on values because they can be

the boundaries of the surface. Moreover it normalized linearly the values between

[0, 1]. The algorithm is composed of two steps:

the first one is a soft clustering on the facets using the processed SDF values.

It consists in using a Gaussian mixture model fitting k Gaussians to the histogram

of SDF values of the faces. The result of this clustering process is that each face

has a vector of length k containing the probability to be assigned to one of the

clusters.

The final step consists of a graph-cut algorithm that assigns a single partition

for each face. This algorithm minimizes an energy function that takes in input the

SDF values from soft clustering, geometrical values like concavity and dihedral

angle and finally a smoothness parameter.

2.3 Algorithms 25

2.3.4 Point Cloud Upsampling

Point clouds are very useful instruments for manipulating 3D objects, but they

usually have the drawback of not being homogeneous in term of number of sam-

ples. Indeed, a point cloud generated by scanning an object has a number of

points, but repeating the scan this number can change. Furthermore, when scan-

ning another object the number of samples changes in comparison to other ob-

jects. In addition when the point cloud is read from a file, like stl model, it

usually has the smallest number of points that describe the object, for instance

a very regular and squared object can be described with a couple of tens of

points. Considering all these disparities it is necessary to make the point clouds

homogeneous.

An upsampling algorithm was developed to increment the number of points

for the models loaded from the stl files. A model loaded from such kind of file

is described by two components, the set of points and the set of surfaces. Each

surface is described by the indexes of the points that compose the vertices. In

our case since the models are triangular meshes the vertices are three for each

surface.

The algorithm is composed of three steps. Firstly, for each faces the corre-

sponding area is computed. Since the vertices are described as a tuple (x, y, z), it

is possible to compute the sides of the triangle computing the distance between

the vertices, as the norm of their difference ‖ ~x1 − ~x2‖. Once the area of each

face is computed a vector is created with the size equal to the desired number

of samples. This vector is populated with the faces of the model, picking them

randomly but with a specified weights, the areas of the faces. The weights repre-

sent the probability to pick the relative element in the faces list, this means that

the larger the face area, the higher the probability of selecting it. Therefore, the

largest areas will be those with the most samples.

26 Historical context

(a) (b) (c) (d) (e)

Figure 2.9: The figure shows the upsampling procedure with several number of

samples applied on the same model. The images show in grey the 3D model and

placed above the colored points to make viewing easier. The figure (a) shows the

original model without upsampling, the point clouds is composed by just under

a hundred of samples. The figures (b) to (e) show the upsampling process with

a gradual increase of final samples, respectively 1000, 2000, 4000 and 8000.

2.3.5 Iterative Closest Point

The point clouds generated from a depth image usually have a limitation: only

the visible portion of the surface can be scanned and therefore the reconstructed

model is incomplete. There are several techniques to recreate the missing portion

of the pointcloud.

The easiest way can be to scan the object from several angles acquiring a

point cloud for each iteration. At the end all the partial model has to be joined

following a stitching algorithm thanks to the identification of some main points

that can be matched between two point clouds. For this method it is necessary

that the object is fixed and the largest portion of the surface is visible from

several angulation. Therefore, in a real environment it is not always feasible

because usually the tools are located on a table or on a rack and for this reason

the half in contact with the surface is never visible.

Another way is to infer the missing points from the available pointcloud but,

as said before, usually only half of the tool is visible so it means that the missing

part has to be completely inferred from the available one. If the tool is not so

2.4 iCub 27

regular and homogeneous the final point cloud can be very far from the original

tool. The last method instead compares the scanned point cloud with another

one that is completed and preregistered. The two point clouds, however, can have

different scale and pose, moreover it is not always sure that the model selected is

the correct one. To be able to understand how correct the selected point cloud

is, it is necessary to compute the difference between two point clouds.

The Iterative closest point is an algorithm that is able to minimize the dif-

ference between two point clouds [49]. It is often used to compare 3D surfaces

from different scans, as in our case. The inputs to the algorithms are two point

clouds, one the source and the other the target. The goal is to find the trans-

formation, combination of translation and rotation, that best matches the source

to the target, that instead it is kept fixed. The algorithm iteratively revises the

transformation in order to minimize the error metric, it is often computed as

the sum of squared differences between the coordinates of the matched pairs 2.7.

The algorithm is composed by several steps, where initially for each point of the

source point cloud the closest point of the target is matched; the transformation

is then estimated using a root mean square euclidean distance minimization that

best aligns each source point to its match found in the previous step. Continu-

ing, the source point cloud is rototranslated using the computed transformation.

These phases are iterated over, associating again the source points to the target

ones and computing the new transformation, and so on.

e =
1

Np

Np∑
i=1

‖~yi − ~pi‖2 (2.7)

2.4 iCub

The experiments carried out for this thesis have been performed using the iCub

Humanoid Robot [50, 51, 52]. The iCub is the result of the RobotCub project

started in 2010, a European project to create a common platform for researchers

28 Historical context

interested in embodied artificial cognitive systems. The project aimed to im-

plement a humanoid robot of the size of a little child which would serve as a

workbench for research in embodied cognition. The platform had to be devel-

oped in terms of hardware and software. The former has to be modular in order

to be extended and has the possibility to integrate new components. The lat-

ter has to reflect the modularity of the hardware, so it has to be designed with

reusable and combinable modules.

Figure 2.10: The humanoid robot iCub.

iCub is 104 cm high and is the size of a five-year-old child. The robot has 53

degrees of freedom. They are so allocated, 7 DOF for each arm, 9 for each hand

and 6 for the head. Continuing, each leg has 6 DOF and 3 DOF waist that increase

the range of motion for the body. Most of the joints are tendon-driven, which

reduces the size of the robot and introduces elasticity. For example the hand is

controlled by 7 motors placed remotely in the forearm which control the motion

of the fingers, the flexing is controlled by the tendons while the extension is based

on a spring return mechanism. Thumb, index and middle fingers are independent

controlled while the last two fingers are coupled together. The thumb can also

be controlled for adduction and abduction movements thanks to two additional

motors mounted directly inside the hand. This architecture allows iCub to have

2.4 iCub 29

a very advanced control for grasping and manipulating objects. The robot is

equipped with some sensors, for instance cameras for computer vision analysis,

microphones and speaker for listening and speaking with humans, force-torque

sensors and joint angle sensors for motors and movements control and also full-

body skin sensing capabilities. Cameras endow iCub with a binocular vision and

they have 3 DOF that support both tracking and vergence behaviors. Thanks to

the cameras it is possible to estimate the depth image from the disparity image

[53]. Recently iCub has been equipped with a RGB-D camera (Intel RealSense

Depth Camera) that provides better depth images thanks to the higher accuracy

and precision.

2.4.1 Yet Another Robot Platform

On the software side, the iCub employs Yet Another Robot Platform (YARP) a

thin middleware that enables inter-process communication across a network of

machines [54]. The libraries, indeed, are in charge of real-time communication

and hardware interface that is suited for cluster computation. Projects’ software

is organized in modules that communicate with each other across YARP network,

taking advantage of decoupling of tasks in sub modules, reuse of modules and

parallelization of algorithms also on several different machines. YARP has been

coded to be OS-independent and the communication between modules follows

the producer-consumer pattern. So the producer can send a message across the

network, using different underlying protocols like UDP or TCP and others, thanks

to the concepts of ports. On the other side the consumer can connect or disconnect

at run time to a port and read the content of the messages. Therefore, two distinct

modules can run on two machines with different operative systems and they can

communicate effortless.

Chapter 3

State of the Art

In humanoid robotics one of the most important objectives is to enable robots

to perform a series of tasks for which they had not been originally developed, by

learning new skills and adapting to new environments. A fundamental prereq-

uisite towards that purpose is to be able to recognize and manipulate external

elements, such as tools, to carry out tasks for which their own manipulators are

not sufficient. On one hand, robots have to learn the tool affordances in order

to manipulate the tools, predicting the output of a predetermined action in a

specific environment. On the other hand, they have to be able also to recognize

the tools in the environment usually done by means of computer vision or deep

learning. The ability to autonomously or semi-autonomously learn affordances

and discover objects, gives robots the possibility to become more versatile and

not only for a purpose specific.

In this chapter we will go into detail on how affordances are designed in

humanoid robotics and how computer vision significantly influenced the compu-

tation of affordances but also the object recognition and identification. Firstly

we will describe how robots using their manipulators interact with objects, and

observing the effect of their actions upon them, they learn the related affordance.

Later we will go into detail on tool affordances, namely the functionalities that

32 State of the Art

intermediate objects allow the robot to reach through an action on a specific

target. Finally, we will highlight the most important aspects of the computer

vision and deep learning that have impacted this field improving the outputs of

affordances and the capabilities of robots.

3.1 Robot Affordances

The first approach that endows a robot with affordance learning capacity has

been conducted by Fitzpatrick et al. [55]. They showed that affordances can be

learned by the robot by observing the effects of its actions on the objects. Indeed

they adopted a learn by doing approach, whose aim was teaching to a robot that,

for example, a spherical objects can roll while a box can only slide if pushed or

pulled. In that work, affordances are formalized as the relation among the terms of

that tuple {object, action, effect}, that would become a commonplace in future

works on that field. Given the object and the action, the object affordances are

described as a histogram that represents the probability of displacing the objects

in a particular direction given that action.

Another general way to describe and learn affordances was proposed by Krüger

et al. In their work [56], they formalize Object-Action Complexes (OACs). OACs

are defined as a tuple {E, T,M}, where E represents the robot action, T identifies

the change of state due to the action, and M measures the success rate of the

action. OACs are very versatile because they have the ability to represent a

low-level process as well as high-level information, which allows them to be used

across a wide range of research fields. In addition, OACs can be combined to

produce more complex behaviours. The main drawback of that study is that

objects are identified by labels, which is why they cannot be easily adopted in

learning algorithms that use generic objects.

Subsequent studies tried to overcome this problem substituting the labeled

tool with a set of object features in the affordances analysis. For instance, Mon-

3.2 Tool Affordances 33

tensano et al. [57] proposed a model approach for learning affordances that takes

in as input simple object features like shape, color. A Bayesian network connects

these features to the action and observed effects, as random variables and the

relations are dependency links. Another approach was proposed by Ugur [58] in

which the raw features of the object are represented as a vector. Features that

produce the same effect of others are generalized. This method has been further

improved to discover commonalities in action-effect experiences that allow the

clustering of outputs. [59]. Once the effect categories are discovered the affor-

dances can be predicted by learning the mapping from the object features to the

effect categories.

Another method for learning objects affordances can be mapping object and

effect features into separate Self-Organizing Maps (SOMs), as Ridge proposed

in his works [60, 61]. The main differences of these works are two. Firstly, the

learning algorithm determines for itself the affordance classes given a number of

different outputs. Secondly, the affordance classes are based on a set of input

features, such as shape.

3.2 Tool Affordances

In this section, we will see how tool affordances are designed and developed. The

ability to manipulate an object, as we have already seen, allows robots to perform

many more actions. Pioneer work on tool affordances was led by Stoychev and

his team [62]. The approach chosen is behavior-based and consists in a phase in

which the robot randomly chooses an exploratory behavior, applies it to the tools

and observes its effects. In this way the robot learns incrementally affordances

by representing them as a list of performed actions and the probability of success

with that action. The learned representation allows to infer the similarity between

tools based on the outcomes produced.

In Tikhanoff et al [63] the goal is to create a system able to complete a object

34 State of the Art

retrieval task, which requires choosing a tool among a predefined set. The correct

tool is chosen after having learned the affordances. The recognition of objects is

the first step and the geometric features extracted from 2d images are two of the

basic components of the affordances learning. Then the robot is free to explore

affordances by tapping the object from any directions. This is necessary since an

object can react differently depending on the direction of the action, for example

a cylinder can roll easily if pushed from the correct direction. The geometrical

features, action and effects are used to learn a map that relates these inputs to

effects.

However, these studies have a drawback, the learned affordances are limited

to a set of labeled tools, so the knowledge cannot be extended to tools exter-

nal the initial training set. Subsequent studies tried to overcome this problem

substituting, in the affordances analysis, the labeled tool with a set of features

extracted directly from objects. Jain and Inamura tackled the problem of ap-

plying experience learnt with one tool to another one [64]. The main difference

among tools is based on their functionalities. They depend on geometrical fea-

tures of the tool itself, sharp edge or blade for knife or other cutting tools, bowl

and spoon have to have a convex shape. Tool affordances incorporate these geo-

metrical features, so tools having similar features can be used to generate similar

effects. A probabilistic model is chosen to implement the learning model in order

to deal with uncertainty and redundancy. The discovery of new functionalities is

based on geometrical features that are annotated by hand so the process cannot

be extended to any new tools. However, Gonçalves et al made functional features

automatically detectable [65]. Features are composed of 2D geometrical proper-

ties like contour perimeter, the area, size or the minimum-enclosing circle and

rectangle. Mar and Tikhanoff in their work [66] extended the set of geometrical

features achieving a set of 75 features extracted from the contour of the blob. It

is composed by shape descriptors, such as the area, perimeter, length and width,

the ratio, the rectangularity, but also some features from convex hull, like the

3.2 Tool Affordances 35

larger convexity defects, and some properties that consider the centroid.

In [67] a new way to represent object features is presented, the Oriented Multi-

Scale Extended Gaussian Image (OMS-EGI). It is a set of 3D geometrical features

able to encapsulate in a general and compact way the geometrical properties of

a tool on a particular grasp configuration.The figure 3.1 shows the steps for the

computation of the OMS- EGI features. The starting point is a 3D model, from

which the bounding box is computed and also its normals. Voxels are then created

dividing iteratively the volume of the bounding box. For each voxel the histogram

of normal orientations is computed. Finally all histograms are concatenated.

Figure 3.1: OMS-EGI Computation Steps: Starting with a 3D model oriented

according to the way in which it is grasped (a), its axis-aligned bounding box

(AABB) is computed (b), as well as its normals (c). In the next step (d), the

volume enclosed by the AABB is iteratively divided into voxels of different res-

olutions and for each of them the histogram of normal orientations is computed

(e).

Myers proposed a framework to extract 3D geometrical features from RGB-D

images [68]. The dataset is composed of 105 kitchen, workshop and garden tools

from 17 object categories. For each tool the depth image is extracted. Given an

object in a RGB-D image, a superpixel segmentation algorithm divides it into a

collection of surfaces. The hypothesis is that there is a deep relationship between

effective affordance and geometry of a portion of tool, since the geometric and

physical properties of objects are closely tied to the ways they can interact with

the environment. The geometrical features extracted are for example color, gray

scale, depth, surface normal or curvature. An algorithm aggregates them using

36 State of the Art

max-pooling and the output is a feature vector for each surface.

Deep learning approaches have also been applied for tool affordances training.

Roy in [69] used RGB-D data from an affordance database to train multi-scale

CNNs with different resolution. Three multi-scale CNNs extract mid-level visual

cues, depth map, surface normals and semantic segmentation of surfaces. The

outputs are passed as inputs to another multi-scale CNN for predicting affordance

map. The affordance types considered in that work were, walkable, sittable,

lyable, reachable, movable, and each of them has a particular characteristic such

as walkable if any horizontal surface with a similar height has no obstacles above

it. Another set of studies focus the attention on an aspect. In order to learn

affordances and better generalize to other tools, objects have to be analyzed at

the level of their parts to understand object functionalities. In [70], Schoeler

created a set of primary tool functionalities. The function of a new tool is found

by comparing it to the previously mentioned set. The unknown tool is segmented

in its parts and analyzed. For example a helmet can be used to transport water.

Abelha and Guerin presented a system [71] that takes in input a tool’s point

cloud and produce a score for how effective it is for the task and how to use the

tool. Indeed, authors considered that completing an action requires several steps,

one of them is to know where to grasp the tool, how to orient it and which part

to use as end-effector. For example in a human environment like a kitchen is very

common to use an object in a creative way. For example a bottle can be used as

a rolling pin. In order to use an object differently from the expected one, it has

to be segmented in parts and analyzed individually to compute the affordance

score. The part that maximizes the score is chosen as end-effector and the other

one is selected as graspable part.

The main shortcoming of these works is the absence of tests on a real robot.

As long as the architecture has to extract geometrical or functional features from

images both bi and three dimensional, it is easier to perform tests that emulate

a robot. Nevertheless, the grasp action cannot be tested in a simulator without

3.3 Computer Vision 37

proper configurations of a physical robot. Each robot has a different hand that

allows to grab in a different way, but also the structure and the mobility of

the arm effects the result of the action. A more complex arm can be able to

grasp objects in several configurations, differently from ones with few degrees of

freedom. In this thesis, we tried to overcome some of these limitations thanks to

the tests conducted on a physical robot.

3.3 Computer Vision

In the previous paragraph several different works have been presented that take

advantage of properties of the tools to improve the computation of the affor-

dances. These properties are mostly extracted from visual features that objects

have, and it can be done thanks to computer vision of neural networks. These

fields are not only important for the computation of affordances but also for the

recognition of the tools themselves and their grasping.

Stoytchev in his work [72] highlighted the importance of the grasping be-

haviour for the affordances improvement. Although, in almost all the works cited

in this chapter this aspect has not been taken into consideration. Often due to

lack of a robot that is able to grasp the object without the aid of an operator.

Another important step required to endow robots with the ability to grasp au-

tonomously the tools, is the ability to recognize the tools in an environment, even

if circumscribed such as a shelf, a drawer or a rack. The first step to recognize

objects is to detect them from the environment. This methodology is called im-

age segmentation, in other words, the process that subdivides an image into its

constituent parts or objects. Since there is no general solution to this problem,

the techniques have been often combined with domain knowledge in order to ef-

fectively arrive to results for a specific case. The simplest method to segment

an image is the so called threshold method. The key is to turn an image, usually

gray-scale, into a binary image. The way in which this transformation happens

38 State of the Art

is through a threshold that defines which pixels should become white and which

ones black. The threshold can be computed as global or local. Knowing some

information about the objects in the scene, like the areas and their predominant

colors, it is possible to compute the threshold as a percentage of the number of

pixels that allows to map them into the object [73]. Another approach can be

applied to images composed by regions with different gray ranges, like medical im-

ages. The histogram of the image can be separated into a number of peaks, each

corresponding to one region [74]. The algorithms that elaborate colour images

have to analyze much more information, the approach proposed in [75] analyzes

the values of each pixel in terms of the three components, red, green and blue,

finding the maximum and the minimum values used to computed heuristic values

to compare a threshold for each channel.

The segmentation problem can be formulated also as a deep learning model.

The learning-based methods can be grouped based on several architectural fea-

tures. The most successful and used architecture is the Convolutional Neural

Networks [76]. It is characterized by the shared weights that are computed by

each neurons applying a specific function to the input values received from the

previous layer. The filters, the vector of weights, can be shared among many neu-

rons. Another architecture is the Fully Convolutional Models that is vastly used

in semantic image segmentation problems. These networks use a particular layer

called skip connections, in which feature maps are upsampled and fused with

feature from earlier layers. The main limitations are firstly the computational

cost that is too expensive, not suitable for real-time inference. Moreover it can

not be easily generalized to 3D images. Other examples of neural network to be

mentioned are the PointNet [77] and the updated version PointNet++ [78] that

are designed to manage point clouds. Indeed, these neural networks respect the

permutation invariance of points in the input. The architectures provide a unified

structure for three different applications: object classification, part segmentation

and scene semantic parting.

3.3 Computer Vision 39

The main limitation of a neural network architecture is the dataset. It is

required in order to tune the correct weights training the network on the data

present in the dataset. In order to achieve good results during the training and

later the validation phases, the dataset has to collect a huge amount of data and

the classes are to be homogeneous among them.

Chapter 4

Proposed Approach

The following chapter describes extensively the implementation developed in this

thesis. Firstly, it is introduced the tool affordances project, developed by IIT

contained into the Robotology Github repository 1. It is composed by several

modules the most important are analyzed in term of usefulness features but also

limits that represent the starting point for this work. Indeed, this thesis has

the main goal of improving and adding some features to the previously cited

work. Some improvements are the increment in size of the dataset, usage of a

multi model approach, introduction of point clouds and superquadrics for read-

ing, modeling and analyzing the models. Moreover each tool is segmented into

parts to choose the best graspable area and finally the affordance of the tool is

computed using the tool affordances projects and providing features extracted

during the analysis. All these developments are described in details in the fol-

lowing paragraphs.

As mentioned in the paragraph 2.4.1, the project is developed on top of the

YARP middleware, taking advantages of the features that it provides. Firstly,

the code is structured following the methodology of divide et impera with which

more complex problems are subdivided into several modules of YARP and C++

1https://github.com/robotology/tool-affordances

https://github.com/robotology/tool-affordances

42 Proposed Approach

classes. The modules can be easily connected one to each other using the ports

that constitute the network provided by the middleware.

All the code developed for this thesis has been inserted into a Docker con-

tainer. This decision was taken in order to improve the compatibility among

different machines and also it increases the portability of the code itself. Indeed,

the project takes advantage of some C++ libraries that allows to manipulate

and show the point clouds, moreover it uses YARP middleware. All these de-

pendencies are not difficult to install but they are time consuming tasks. With a

Docker container, the user has only to download the image and automatically he

can work in an environment already set, with all the dependencies and also the

code installed and ready to run the demos. The image of the Docker container is

available with the name sankios/thesis 2.

4.1 Initial project

The tool affordances project consists in three different phases. Firstly, during the

exploration step, a tool must be provided so that iCub can extract a descriptor

vector. After that, a series of actions are performed and the effects obtained

are recorded. These data are used during the second phase which learns the

relationship among the tool, the action and the effects. The last step consists

in providing another tool, similar to those used during the training phase, also

in this case the robot extracts the descriptive features and uses them to predict

the expected effect of an action thanks to the affordances model trained in the

previous step. The goal of the described steps is to achieve the maximum possible

displacement on the target object, given a certain tool-pose. So, each exploration

and prediction trial begins by placing a tool in the robot’s hand. Once detected

the tool in its hand, the robot is able to identify the tool-pose. After the training

phase, therefore, the robot is able to select the action with the best expected
2https://hub.docker.com/r/sankios/thesis

https://hub.docker.com/r/sankios/thesis

4.2 Multi model approach 43

effect for any tool-pose.

The main limitation of this approach is the absence of tool selection, indeed

every trial starts with a tool already in the hand of the robot. In a real scenario,

a robot is expected to be able to analyze the surrounding environment to find

the tool that best fits for its goal. And also it should be able to grasp it without

human interaction in order to be more autonomous. To that end, the goal of this

work is to endow the robot with several capabilities. The first one is the ability

to select a tool from a set present in the environment. In addition, for each tool

a thorough research is conducted, reconstructing the 3D shape of the object that

allows to know the dimension and orientation. With the reconstructed model it

is also possible to find which part is the more graspable thanks to segmentation

algorithm. The identification of the handle is very important to allow the robot to

move the arm and grasp the tool autonomously removing the human assistance.

In addition, all the information retrieved during the model analysis are very useful

for the affordances computation since the orientation of the tool and the position

of the end effector are already known once determined the handle.

4.2 Multi model approach

The first improvement was to equip iCub with the possibility to choose the tool

only from the available set, to do that it must be able to recognize all the instru-

ments present in the scene. Therefore the approach with the models was changed

and the tool was not provide at the beginning as in the previous approach.

4.2.1 Tools Dataset

In order to use a multi model approach, the system has to be based on a dataset

suitable for our actions. The dataset is composed by tools used in the preceding

work [79] and series of tools available on 3dwarehouse. Tool classes present in the

44 Proposed Approach

models are hoes, linear and bent sticks, rakes, shovels, hammers and spatulas.

The dataset from [79] provides tools in a .x extension. It is file format introduced

by Microsoft in 2008 containing geometry meshes and material information. Li-

braries that manage 3D model usually use stl or ply files to represent meshes.

Thus, the first step was to convert the x files into a stl file. It can be done easily

with online tools, in this work we used ofoct.com service that can manage a vast

variety of file extensions. The 3dwarehouse website provides a diversified assort-

ment of tool classes. The downloaded ones are from the previously mentioned. In

that case the downloaded models use a proprietary extension .skp of SketchUp.

The same software house provides an online editor able to convert the files into

stl extension. Files from both dataset, due to the extension conversion or due to

an incorrect modelling, can present holes or not well closed surface in the model.

The netfabb service is able to fix all these problems closing the open surfaces and

generating a stl files well formed. The files at the end of all the manipulations

constitute the dataset used in this work, some examples of tools used inside the

simulator are provided in the figure 4.1.

Figure 4.1: The figure shows some tools from the dataset used into the simulator.

4.2.2 Tools Segmentation

In a multi-model environment, the system must be able to first divide the tools

from the scene, and then to distinguish one tool from another. The former prob-

lem is tackled thanks to an analysis of the scene from a computer vision perspec-

tive. From the RGB image of the scene the average color is computed, a range

around these colors is considered and the background color is contained into that

4.2 Multi model approach 45

delta of values. In order to segment the tools from the scene, it is necessary to cre-

ate a mask to highlight the objects. The mask is created starting from the range

of colours, because all the pixels not contained into that range are considered as

tools, instead if it belongs to the range it is considered as background. The mask

just created can contain noisy pixels or holes inside surface. To remove them the

classical morphological transformations are applied, erosion and dilation. Firstly

an opening transformation is applied, it consists in an erosion followed by a di-

lation that deals with removing white pixels from black surface. Later, to fill

the holes and join detached areas the closing transformation, that instead is a

dilation followed by an erosion. The opening and closing processes are performed

using a 3 × 3 kernel, and the erosion and dilation in the opening are performed

3 times, instead transformations in closing 2 times. For each region remained

after transformations it’s computed the region of interest (ROI), the minimum

rectangle that encloses the region. This is necessary to individuate which tool

it is, and also to extract the pointcloud of that tool. The entire pipeline of 2d

image segmentation is shown in figure 4.2, furthermore the algorithm 1 represents

a pseudo code for the 2d image segmentation.

Algorithm 1: Tools segmentation from 2D image
Input: RGB Image of the scene Iin.

Result: List of bounding boxes list<bb>

1 I1
2←− Iin 	R(3);

2 I2
2←− I1 ⊕R(3) ;

3 I3
6←− I2 ⊕R(3);

4 If
6←− I3 	R(3) ;

5 contours ← findContours(If) ;

6 list<bb> ← boundingBoxes(contours) ;

The input data is a rgb image Iin and return a list of bounding boxes list<bb>.

	 and ⊕ represent respectively the erosion and the deletion with a kernel R(3)

46 Proposed Approach

a 3× 3 rectangular structure. In addition i←− represents the number of iterations

the morphological transformation is performed.

(a) (b) (c) (d) (e)

Figure 4.2: The segmentation process takes the image scene as input (a). The

mask is calculated using the color information (b), the background color is not

very dissimilar to the average color of the scene. The mask can be affected by

noise, so morphological transformations, opening and closing are applied, and the

denoised image is obtained (c). For each region, the polygon that best matches

the region is found (green line in the image). The bounding box (red line in

the image) is generated for each polygon calculated in this way (d). Finally, the

region of interest of that instrument is shown (e).

4.2.3 Model name matching

In order to continue the analysis of tools is necessary to identify each model

correctly. Indeed, in order to use the iterative closest point 2.3.5 it is necessary

to have to point clouds. One of the two is loaded from the stl file associated to

the model and in order to find the correct one is necessary to classify the tool.

The robotology collection provides a module for this situation. The Interactive

Objects Learning repository 3 contains the functions necessary to the learning

phase in which the selected tools are shown one at time and the model name is

provided. Then the module is able to provide a probability distribution of which

tool is presented. This is very useful for this work because once the tools are

3https://github.com/robotology/iol

https://github.com/robotology/iol

4.3 3D vision analysis 47

segmented by 2D analysis, the regions of interest are provided to the module

that recognizes the tool contained inside the roi giving back the model name.

4.3 3D vision analysis

Once the tools are segmented it is possible to continue to the other step. To

interact with each tool it is necessary to reconstruct its 3D shape. In order to

do that the depth map of the scene has to be reconstructed, this can be done by

using the RGB-D RealSense Camera that can be mounted above the iCub head

with a specific helmet.

4.3.1 Point Cloud

The first step to reconstruct the 3D shape of the tool is to extract the point

cloud from the scene. In the section 4.2.2 we extract a ROI for each tool present

in the scene. This is essential to compute the point cloud, because using the

entire depth image the computed point cloud would be composed potentially by

multiple tools. So the ROI is used as filter to extract the point cloud only inside

that rectangle. Some examples of point clouds are presented in the figure 4.3.

Given the depth image, only the pixels contained inside the rectangle are com-

puted. To retrieve the 3D points from the camera coordinate frame, the intrinsic

and extrinsic parameters are required. Following the pinhole camera model 4.1,

it is possible to retrieve world coordinate with an inverse transformation, called

3D reconstruction. The first matrix represents intrinsic parameters in which fx

and fy are the focal length, horizontal and vertical and in case of squared pixel

they are equal. They are retrieved directly from the camera driver at run-time.

Instead cx and cy represent the principal point, in our case the image center.

48 Proposed Approach

(a) (b) (c)

Figure 4.3: The figure shows the extracted point clouds from the depth image

associated to three different models.

u

v

1

 =
1

z

fx 0 cx

0 fy cy

0 0 1

[R|t]

X

Y

Z

1

 (4.1)

Firstly using intrinsic parameters pixel coordinates are mapped into camera

coordinates, and later the extrinsic parameters transform them into world coor-

dinates, the pseudo code 2 shows the algorithm previously described, focalx and

focaly represent the focal length and cx and cy the center of the image, instead

Teye represents the inverse of full-rank extrinsic matrices. In that way the point

cloud of the scene is computed and finally it has to be divided between the object

and the background. Since the scene has a homogeneous background it can be

easily segmented thanks to the Ransac algorithm that fits a module to the surface

and from it extracts the object. The algorithm is presented in 3.

4.3 3D vision analysis 49

Algorithm 2: 3D reconstruction algorithm
Input: Point from RGB-D camera P (u, v, d)

Result: The 3D point B(x, y, z)

1 B.x = P.d * (P.u - cx) focalx

2 B.y = P.d * (P.v - cy) focaly

3 B.z = P.d

4 B = Teye * B

4.3.2 Model Fitting

From the previous algorithm it is possible to obtain the point cloud relating to

the ROI taken into consideration, so later called object point cloud. Moreover

the ROI is used also by 4.2.3 to find the model name contained into the region

considered. This step is mandatory to retrieve the entire point cloud associated

to that model directly from the stl file, the model point cloud. But it has a wrong

scale factor and pose.

The next step is to fit the model point cloud to the object one, using the

Iterative Closest Point well described in the paragraph 2.3.5. Since the depth

image can be affected by random noise the algorithm is run several times, each

time recomputing the object point cloud in order to find the reading that best

approximates the model point cloud. Since the output of the iterative closest

point provided by Point Cloud Library [80] is a score that represents the error,

the iteration with the minimum value is the best fitting. In the algorithm there

are three different parameters that have to be set and they are, maximum it-

eration, transformation epsilon and Euclidean fitness epsilon. They represent

the termination criteria for the algorithm, the first one indicates the maximum

number of iterations of the algorithm, the second one the maximum difference

between the previous and the current estimated transformation and the last one

the maximum of the sum of Euclidean squared errors. The default values are

50 Proposed Approach

Algorithm 3: Point clouds Ransac algorithm
Input: Scene pointcloud scenePointcloud

Result: Isolate the objectPointcloud from the surfacePointcloud

1 sampleConsensus ← ransac(scenePointcloud) ;

2 inliers ← sampleConsensus.getInliers() ;

3 objectPointcloud ← emptyPointcloud ;

4 surfacePointcloud ← emptyPointcloud ;

5 for point in scenePointcloud do

6 if point in inliers then

7 surfacePointcloud.insert(point)

8 else

9 objectPointcloud.insert(point)

10 end

11 end

mentioned in 4 but they can be modified at run time through an RPC port 4 of

YARP. Some results from the Iterative Closest Point algorithm can be seen in

the figure 4.4 that shows three different models, with the object point cloud and

model point cloud.

Algorithm 4: Iterative Closest Point parameters

1 MaximumIterations = 500

2 TransformationEpsilon = 1e-9

3 EuclideanFitnessEpsilon =1e-6

4http://www.yarp.it/git-master/rpc_ports.html

http://www.yarp.it/git-master/rpc_ports.html

4.4 Grasp the tool 51

(a) (b) (c)

Figure 4.4: The figure shows three different models after the execution of the

Iterative Closest Point algorithm. The object point cloud is represented in green,

instead the red point cloud is the model one.

4.4 Grasp the tool

Several works mentioned in the chapter 3 compute affordances starting from the

end effector of robots, others instead consider also a tool in the affordances anal-

ysis. In order to maximize tool affordances, robots have to be able to manipulate

a tool, managing how it is grasped and its final pose. What is said highlights

the need to endow the robots with the ability to grab and manipulate the tools.

iCub has this ability so the model point cloud fitted in the previous paragraph

is used to defined the part of the object that can be used to be grasped. The

superquadrics are the best geometric model that can be computed over the point

cloud. They allow to better analyze if the robot is able to grasp the parts and

provide more geometrical features to the tool affordances system.

52 Proposed Approach

4.4.1 Mesh reconstruction

The algorithm used to reconstruct the mesh from a point cloud is the advancing

front surface reconstruction described in the paragraph 2.3.1. This step is nec-

essary because the stl files have a different number of points that describe the

model. To level out all models, they have been upsampled to 4000 points in order

to have the some numbers of samples, the algorithm used for the upsampling is

explained in 2.3.4 and some outputs are shown in figure 4.5. Once upsampled

the new shape with all the added points has to be reconstructed and a new stl

file is generated. This new model is used to generate the model point cloud.

Once the model point cloud is fitted to the object one, the paragraph Model

Fitting 4.3.2 describes the procedural steps, the reconstructed mesh can be seg-

mented in several parts in order to analyze them in term of graspability.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: The figure shows the original point clouds (a), (c), (e), (g) and the

upsampled point cloud with 4000 samples (b), (d), (e)(h).

4.4 Grasp the tool 53

4.4.2 Mesh segmentation

In order to perform the segmentation of the point cloud we have tried several

possible solutions. Firstly we have approached to the problem with a deep learn-

ing solution. The first neural network tested was the PointNet, the most famous

architecture to analyze point clouds, and also the PointNet++ which contains

some improvements over its predecessor. Finally we have tried to segment point

clouds also with the DGCNN, a much more recent architecture if compared to

the other two mentioned.

The tests with the neural network don’t have provided the expected results

because doesn’t exist a dataset that contains objects similar to the used in this

work already segmented in parts. The most famous dataset is the ModelNet that

provides up to 40 classes of objects very different one to each others. Instead our

dataset contains a large number of tools but all of them can be organized into a

small number of different classes, and also from a class to another the differences

are not so evident.

(a) (b) (c) (d)

Figure 4.6: The figure shows the different outputs produced by two different

neural network, the images (a) and (b) from the PointNet instead (c) and (d)

from the DGCNN.

Since segmenting the point cloud doesn’t provide the desired results, as shown

by the figure 4.6, we have changed our approach and considered the mesh recon-

structed from the point cloud. The approach used to segment the mesh is the

Triangulated surface mesh segmentation that uses a scalar function to estimate

54 Proposed Approach

the diameter for each facet of the mesh. The observation behind the algorithm is

that the volume is unaffected by pose changes, and the steps are widely described

in the paragraph 2.3.3. The model is now subdivided into several point clouds

each one associated to a different segment that can be analyzed in the following

paragraphs. The figure 4.7 shows the same models of figure 4.6 but segmented

with the Triangulated surface mesh segmentation algorithm and the results are

are visibly similar to how humans would do it.

(a) (b)

Figure 4.7: The figure shows two models segmented with the Trinagulated surface

mesh segmentation algorithm.

4.4.3 Superquadrics

Superquadrics are volumetric models for shape representation. They are appro-

priate for point clouds because are able to express them as simple and linear

surfaces and solids. Moreover they can be modelled with the classic deformations

lie bending and tampering. The reconstruction of a superquadrics from a point

cloud is a minimization problem as described in 4.4.3 because it tries to tune the

parameters of the superquadrics that better fit the point cloud. Some examples

of superquadrics associated to each segment can be found in figure 4.8.

The superquadric is expressed in terms of its center (x, y, z), the angle around

the z-axis, the size the three direction (sx, sy, sz) and the squareness parameters

epsilon (ε1, ε2). All these parameters are used to represent the superquadrics,

4.4 Grasp the tool 55

manipulate and also visualize them.

(a) (b) (c)

Figure 4.8: The figure shows the superquadrics of three different models. Each

superquadric associated to a segment is colored with a different color. The su-

perquadrics are opaque to make point clouds visible

4.4.4 Graspable Area

Once the superquadrics are computed, the module can easily identify the gras-

pable part. Of course, the graspability depends on the robot and its hand for

this reason a tool can be grab by a robot and not by another. Our goal is to find

out which tool is graspable by iCub robot and also which segment in the tool is

the most suitable for the handle.

To solve this problem the idea is to compare the object that can easily grasped

by the iCub hand with each segment of the tool. Analysing the grasp area from

the CAD drawing of the hand, we defined the object that best matches the space

contained in the iCub hand, a cylinder of 32 mm of diameter and 80 mm of height.

56 Proposed Approach

So the point cloud of each part segmented is compared with point cloud of the

cylinder. This approach allows to identify the part of the tool that best fits as

handle. The pseudo code 5 provides an idea of how the comparison is performed

and the figure 4.9 shows some outputs from the function.

Algorithm 5: Handle fitting
Input: Parts of the model segmented: segments

Result: The segment that best fits the cylinder

1 minScore ←∞ ;

2 minI ← -1 ;

3 cylinderPointcloud ← getPointcloudCylinder() ;

4 for (i, segment) in segments do

5 score ← computeICP(segment, cylinderPointcloud) ;

6 if score < minScore then

7 minScore ← score ;

8 minI ← i ;

9 end

10 end

In order to grasp the tool the robot has to know the position of the handle

respect its frame. Since all the information about the cameras are provided it

is possible to compute the transformation from the pixel frame to the camera

frame following the pinhole camera model. Once transformed and given the

rototranslation between the center of the camera and the root of the robot it is

possible to compute the point cloud respect to the robot frame. In algorithm 2

it is provided a pseudo code that formalized the above-mentioned steps.

Since the superquadric is computed in the same frame of the related point

cloud it will have the same measurement units and also the position is maintained.

So the superquadric that fits the handle is described by its center, the parameters

of the shape and its size. With this information it becomes easier for the robot

4.5 Overall algorithm 57

(a) (b) (c)

Figure 4.9: The figure shows the segment that best fits as a handle in blue, all

other parts are in green. Behind the blue point cloud is also the cylinder model

representing the volume which iCub can easily grasp, in red. The image (b) shows

the detail of the handle of the same object represented in the figure (a), instead

in the image (c) the cylinder is more visible since the tools has a thinner handle.

to know where and how to grasp since with the center information it knows

approximately the area that is has to reach, and knowing also the size of the

superquadric it is possible to compute the correct position that allows to put the

tool between the hands.

4.5 Overall algorithm

The pseudo code 6 provides an overview of how all the sections previously ex-

plained are implemented and used in order to run the complete analysis. Follow-

ing the pipeline, first of all at line (3) from the scene are extracted the bounding

boxes containing the tools 4.2.2. For each tool so found, the point cloud from

the depth image is computed 4.3.1 and the correct classification is performed in

order to find out its model name 4.2.3, at line respectively (6) and (7). With the

58 Proposed Approach

object point cloud and once loaded the model point cloud, at line (9), it fits the

two point clouds 4.3.2.

Given the model point cloud it is possible to segment it in order to retrieve

the parts that compose the object 4.4.2, line (10), and for each part, line (11), it

computes the related superquadric 4.4.3. In addition the handle part is computed

5.2.

Finally all the features retrieved during the whole analysis is used to compute

the affordances of the tool. Once the iteration on all the tools is completed, it

possible to find the best tool given all the affordances, line (16) and the selected

tool can be grasped.

4.5 Overall algorithm 59

Algorithm 6: Overall algorithm

// Move the robot to the correct position

1 reachPosition()

2 ack ← waitMotionDone()

// Multi model approach

3 boundingBoxes ← exloreScene()

4 toolsAffordances ← emptyList()

5 for boundingBox in boundingBoxes do

// 3D vision analysis

6 objectPointcloud ← readPointcloud()

7 modelName ← getModelName(boundingBox)

8 modelPointcloud ← loadPointcloud(modelName)

9 toolPointcloud ← performIcp(objectPointcloud, modelPointcloud)

// Grasp the tool

10 segments ← segmentModel(toolPointcloud)

11 superquadrics ← computeSuperquadrics(segments)

12 handle ← fitHandle(segments)

// Affordances analysis

13 affordances ← computeAffordances()

14 toolAffordances ← insert(affordances, toolPointcloud)

15 end

16 bestTool ← findBestTool(toolAffordances)

17 graspTool(bestTool)

Chapter 5

Experiments

In this chapter we enter in the detail of the experiments conducted using the code

that implements all the improvements and reasoning expressed in the previous

chapters. Firstly, the tests have been performed with the iCub simulator to verify

the whole pipeline and the correctness of the actions. Later, the experiments have

been moved on the physical iCub robot. Several improvements and parameters

tuning have been made in the code once the tests on the real robot have been

carried out, the changes will be described in detail in the paragraph 5.2.

Before starting the description of the experiments it is necessary to introduce

some tools used in the experiments both in the simulator and on the robot. Since

the projects widely uses images captured at run time and analyzed by computer

vision algorithms, it is needed to show them. This is possible thanks to the

yarpview tool provided by YARP, that creates a window and exposes an input

port that, once connected to an output stream, can show the images that flow in

the connection. For example it is possible to see what the robot visualizes in the

simulator and also the real robot, because both provide two output ports that

stream images of the scene that are shows with two separate viewers, as visible

in the figure 5.1. Also other viewers are used in this project in order to visualize

the output of several algorithm steps such as the morphological transformation

62 Experiments

applied to the scene image, or the tools segmentation from the rack with their

bounding boxes.

(a) (b)

Figure 5.1: The figures show what iCub sees directly from its eyes. The images

(a) shows the reconstructed images from the Gazebo simulators. The image (b)

streams the outputs of the robot left camera.

Moreover the project takes extensively advantages of point clouds for ma-

nipulating tools. For this reason it is also necessary a system able to visualize

them and also superquadrics. This viewer is developed thanks to the open-source

framework, Visualization Toolkit (VTK) [81], with which is possible to create a

window and shows point clouds and superquadrics, as shown in figure 5.2.

The experiments environment consists in the iCub robot, a table on which

an object is positioned, the goal of the action is to grasp that object. The robot

is positioned in front of the table so, if the object is close enough the robot is

able to grab it directly, instead if it is not reachable by the hand it uses a tool

to complete its task. The tools are laid on a rack placed on the right side of the

robot. This must be near since iCub has to be able to grasp the tools when they

are required for task completion. To perform the tests, the described scenario is

5.1 Gazebo 63

(a) (b) (c)

Figure 5.2: VTK viewer. In blue the superquadrics and the color points represent

the objects point clouds

reconstructed in the Gazebo simulator and also in a real environment.

5.1 Gazebo

The first approach to experiments has been done by means of a simulator, Gazebo

[82], that allows to test algorithms on a robot in a realistic scenario. Indeed, iCub

robot model is available and can be used inside Gazebo simulator to emulate the

robot with all its joints, links and degrees of freedom. It is possible to command

the robot’s movements to be performed thanks to several drivers and plugins that

emulate the real experience with the robot. It is also possible to insert several

objects inside the simulator in order to reconstruct a real environment in which

the robot should operate. In our case we have reproduced the scenario previously

described with the table and the rack. The target object on the table and the

tools in front of the rack.

The tests execution follows the implementation of the improvements so first

of all the correct loading of the tools inside the simulator is checked. Also the

position is very important because in order to emulate correctly a real scenario

they must be placed in front of the rack and the rack itself has to be located

64 Experiments

not too far so the robot is able to reach and grasp all the tools. At the same

time, the rack cannot be placed in front of the robot but on the side because on

the table in front of it, where it has to perform the action to displace the target

object. Considering all these constrains the starting scenario is provided by the

figure 5.3.

(a) (b)

Figure 5.3: The image shows the simulator containing several objects including

the iCub robot, the table, the object and the rack with several tools.

It should be highlighted that the tools are randomly loaded into the simulator

at run time and they can be removed to make room for others. So the first check

is to verify the correct loading and positioning of the three tools in front of the

scene. Since the rack is placed to the right of the robot, it has to firstly rotate

the torso and then the head in order to correctly visualize tools putting them

into its visual field. The figure 5.4 shows the movements that the robot has to

perform in order to arrive to the initial position.

Once the correct position is reached, the tools analysis can start. As men-

tioned in the section 4.2.2 tools have to be firstly segmented from the surface

in background and then they have to be isolated in order to find the region of

interest for each tool. The tools segmentation takes in advantage of the dif-

ferences in colors between the homogeneous background and the colors of the

tools. The figure 5.5 shows the binary mask that distinguishes between the tools

5.1 Gazebo 65

(a) (b)

Figure 5.4: The images show the two positions, (a) the initial one with when

iCub is loaded that is the home position with enlarged arms, and the second one

(b) represents the robot after the rotation to reach the correct position to start

the analysis.

and the background. From the regions of interest that contains the tools the

corresponding bounding boxes are computed.

Once the segmentation is completed, the region of interest related to a tool is

used to find the model name associated to that tool. Indeed thanks to the ROI

is possible to retrieve the probability distribution of the possible names learned

by the robot, and that with the highest score is the candidate model name.

For each tool with a model name associated, it is possible to continue the

analysis loading the model point cloud from the correlated stl file. This together

with the object point cloud, reconstructed from the depth image, is given as input

in the iterative closest point algorithm 4.3.2 that computes the best transforma-

tion between the two. The fitted point cloud, then, is segmented into parts 4.4.1

and the superquadric of each segment is computed 4.4.3. The images 5.6 show

several iteration of these three steps for different tools.

For each tool segmented its graspability has to be computed. As described in

the paragraph 5.2 the part that matches better the cylinder that the hand can

contain, is chosen as the handle of the tool. The figure 5.7 shows the selected

handle for several tools.

66 Experiments

(a) (b)

(c) (d)

Figure 5.5: The image shows the tools segmentation. From the image (a) it is

possible to see the entire scene from which the analysis starts and the image (b)

shows the scene from the point of view of the robot. Then the image (c) provides

an image of the binary mask that represents the tools in the scene. Finally,

the image (d) shows in green the contours of the white region of the mask that

represent the tools figured out, and in red the related bounding boxes that are

used in the following phases.

5.1 Gazebo 67

Figure 5.6: The first column contains the point clouds reconstructed from the

depth maps, the following one shows the model matching, in green the object

point clouds, in red the model ones. The next column shows in different colors

the distinct parts in which they are segmented. The last column shows the

superquadrics computed from each segment, the relation between the segment

and the superquadric is displayed through the color.

68 Experiments

(a) (b) (c) (d)

Figure 5.7: The images show the handle selection for the four tools analyzed in

figure 5.6. It is possible to see in blue the segment selected as the handle, and in

green the other segments. In addition inside the handle it is also present, in red,

the model of the cylinder that the iCub had can easily grasp.

Finally affordances of the tools can be calculated, given a desired action. For

each tool analyzed until now the affordance is computed as also the effect of the

action in term of displacement of the object respect the original position. The

tool with the highest value is chosen, it is grasped and the required action can

be performed.

5.2 iCub

The experiments on the humanoid robot iCub have followed the same steps

through the pipeline of the project. The first phase is to prepare the setup

with a table and near the robot. The rack has to be placed to the right of the

robot. And finally the object and tools are put respectively on the table and on

the rack, figure 5.8.

Subsequently, the robot starts the action of removing from the table the target

object. If that is not reachable, it looks at the rack for a tool suitable for the ac-

tion. Successively, the positions of the torso and the head are adjusted in order to

contain in the field of view the rack with the tools, at this point, the tool analysis

5.2 iCub 69

can start. Firstly, the tools are segmented from the background. Initially, the

segmentation was developed considering only the gray scale of the scene image.

(a)

Figure 5.8: The image shows the setup configured for executing the experiments.

The segmentation worked well in the simulator thanks to the homogeneous

colors of the tools and the background. In the real scenario, instead, there are a

lot of colors, in addition the shadows can create some noises for the tools segmen-

tation. All these observations led us to reconsider the segmentation algorithm

and using the rgb image instead of a grey scale. Using the three channels the

precision and the robustness of the algorithm have increased significantly. In the

new version of the algorithm the changes in colors and the shadows have been

tackled adjusting the thresholds that distinguish the background color from all

the other colors. For each tool the related region of interest is computed, figure

5.9.

Afterwards, the tools have to be recognized. The classification is performed

thanks to the just computed bounding boxes of the tools, that circumscribe them.

From each of them, the associated model name is returned by IOL module 4.2.3,

70 Experiments

(a) (b)

Figure 5.9: The images show outputs of the segmentation algorithm. The im-

age (a) contains the bounding boxes of the segmented tools in red and a green

line defines the contour of the objects. The image (b), instead, shows the tools

segmented from the scene image.

that provides the probabilities of matches above all the learnt classes, it is picked

the one with the highest value. This matching is necessary for the continuation

of the analysis.

The next algorithm to perform is the iterative closest point that finds the

transformation that best suits a point cloud to another one thanks to a series

of translation and rotation. The point clouds are two, one is loaded from the

model file thanks to the name previously found. The other point cloud instead

is computed from the depth image, if it is not well formed the algorithm is not

able to adjust the point clouds.

Firstly we have tried to use the stereo vision to compute a depth image but

the results have not been adequate to proceed. For this reason we have decided

to use a rgb-d camera that computes directly the depth image thanks to the tof

sensor. The cameras used in these experiments is the Intel Real Sense D435. The

5.2 iCub 71

results with this camera were very satisfactory, because we have also relied on a

better resolution respect to the one of cameras incorporated into the eyes, the

comparison between the depth images are visible in figure 5.10.

(a) (b) (c)

Figure 5.10: The images show the disparity images. The (a) is the depth image

reconstructed in gazebo, instead (b) is the depth image computed by the stereo

vision. Finally the image (c) shows the depth image from the depth camera.

Another issue that occurred during the test is related to the scaling factor

between the model loaded from the stl file and the point cloud from the depth

image. The two point clouds could have different scales, for this reason they

are compared in terms of dimension. Once the scaling factor is computed, the

model can be scaled in order to have the same dimension of point cloud read.

Several executions of the matching between the model and the point cloud can

be visualized in the picture 5.11.

Once, the point cloud related to each tool is computed, the algorithm can

continue in the same way of the simulator: segmenting each tool and computing

the related superquadrics. The following step is the identification of the segment

in the object that best performs as handle. As explained in the paragraph , the

choice of the handle is taken comparing each segment with the cylinder that can

be easily grasped by iCub hand. Successively, the point cloud of the segment is

used to find the 3D position of the handle. Indeed, the transformations from the

72 Experiments

(a) (b) (c)

Figure 5.11: The images show different executions of ICP algorithm for three

models. In green it is represented the object point cloud, reconstructed from the

depth image. In red the model point cloud.

pixel reference to the camera reference is computed thanks to the pinhole camera

model. This transformation makes use of the field of view of the camera fov to

compute the coordinates of each point of the point cloud.

Finally, to obtain the set of points in the robot coordinates the transformation

from the camera frame to the robot frame has to be applied. It must be taken into

consideration that in the real robot we used the rgb-d camera that is mounted

on top of the head of the robot with a helmet. For this reason the camera frame

in the real robot is translated respect to the camera frame in the simulator that

is attached to the left eye of the robot, the pseudo code 7 shows the steps used to

obtain the point cloud in the robot frame, the values of the translation from the

depth camera to the left eye are retrieved from the model drawing of the helmet.

Taking into account all these differences it is possible to compute the coordinates

of the point cloud in the robot frame. This allows to know where the robot has

to move the right arm in order to grasp the tool, the figure 5.12 shows the handle

of the tool and the movements of the robot done in order to reach the position

5.3 Results 73

of the handle and grasp it.

Algorithm 7: Compute point cloud from camera frame to robot frame
Input: Point cloud in camera frame Pc

Result: Point cloud in robot frame Pr

1 for point in Pc do

// Translation from the depth camera to the left eye

2 point.x ← point.x + 0.034 - 0.0175;

3 point.y ← point.y - 0.11564;

4 point.z ← point.z + 0.02673;

// Transformation from camera frame to robot frame

// Teye represents the inverse of full-rank extrinsic

matrix

5 point ← Teye * point

6 end

5.3 Results

In this paragraph we exhibit the results obtain from the execution of our code

both in the simulated and the real environment. The iterations have the aim to

test the code in terms of robustness and the correctness.

The first test is performed in the simulator and wants to verify the precision

of the algorithm, analyzing all the tools in all the available positions in front of

the rack. Staying in the simulator, we ran another series of tests. Each tool is

loaded in the central position and 3 different rotations are applied, one around the

vertical axis of 90 degrees to change the orientation, the other two are around the

normal axis, one of 180 degrees to flip the tool the other of 90 degrees to change

the main axis. All the transformation are counterclockwise and they are shown

74 Experiments

(a) (b)

Figure 5.12: The images show on the left the handle matching of the tool and on

the right there is the grasping final action.

in the figure 5.13. Some of them are ineffective on some tools, like the rotation

of the stick along the vertical axis.

(a) (b) (c) (d)

Figure 5.13: The figure (a) shows the original tool, the figure (b) the rotation

around the vertical axis of 90 degrees counterclockwise. The images (c) and (d)

represent the rotations around the normal axis respectively of 180 and 90 degrees,

both counterclockwise.

The results take into accounts the final position of the fitted model. If the

model is perfectly matched the score is 1 on the other hand if it is totally incor-

rect the score is 0, but we introduced also the 0.5 value because sometimes the

algorithm puts the model in the correct main direction but oriented in the wrong

5.3 Results 75

direction, this can happen because the algorithm doesn’t converge to the correct

model but can also caused by the point cloud read from the depth image, because

the orientation of the end effector can be not so visible to make the matching

mostly impossible. The table 5.3 shows the scores for each tool and for each ex-

periment. The tools marked with the * symbol have not been used in rotations

tests because the models do not have the same center as the others, so applying

the same rotations the object is moved outside the scene.

76 Experiments

tool name pos1 pos2 pos3 rot0 rot1 rot2 rot3 overall

hoe 0.5 0.5 1.0 1.0 1.0 1.0 0.0 0.71

hoe1 1.0 1.0 0.5 1.0 0.5 1.0 1.0 0.86

hoe2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

hoe3 1.0 1.0 0.0 0.0 0.5 0.5 1.0 0.57

hoe4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

hoe5 1.0 0.0 0.5 1.0 1.0 0.5 1.0 0.71

hoe6* 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.14

hoe7 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.57

hok1 1.0 0.5 0.0 1.0 1.0 1.0 1.0 0.79

hok2 1.0 1.0 1.0 0.5 1.0 0.5 1.0 0.86

hok3 1.0 1.0 0.5 0.5 1.0 0.5 1.0 0.79

hok4 1.0 1.0 0.0 0.5 1.0 0.5 0.5 0.64

hok5 0.5 0.5 1.0 1.0 1.0 0.5 1.0 0.79

hok6* 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.14

hok7 1.0 0.5 0.0 0.0 1.0 0.5 1.0 0.57

lstick* 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.29

lstick1 0.5 1.0 1.0 1.0 1.0 0.5 1.0 0.86

rak 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

rak1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

rak2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

rak3 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.93

rak4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

rak5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.93

stick 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

stick1 1.0 0.0 1.0 1.0 1.0 1.0 0.5 0.79

stick2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

stick3 1.0 1.0 1.0 0.0 1.0 0.0 1.0 0.71

stick4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

stick5 1.0 1.0 0.0 0.5 0 1.0 1.0 0.64

5.4 Experiments on the Real Robot 77

5.4 Experiments on the Real Robot

In this section we reports several execution performed on the iCub robot, showing

pictures taken to the robot or captured from the software, in order to show the

image transformations, point clouds and superquadrics.

The first action performed by the robot is to look the table and recognizes

the toys, figure 5.14, and the ball present in the scene. These two objects are the

targets of its actions and the goal is to reach and grasp them.

(a) (b) (c) (d)

Figure 5.14: The image shows the recognition of the objects above the table.

Once the robot visualizes that the ball is too far, in order to grasp it, iCub

has to use a tool in order to increase the range of its arm. To do that, it rotates

the torso and the head to visualize the tools on the rack, figure 5.15.

(a)

Figure 5.15: The image shows iCub that looks the rack in which three different

tools are available.

78 Experiments

Now the analysis, developed in the code 6, can start. Once the image is

segmented and the bounding boxes are found, it is possible for each tool to

match the correct model retrieving from the classifier the correct model name.

Furthermore, for each fitted tool, the segmentation algorithm divides the point

clouds into parts from which a superquadric is computed. From all the segments,

the most graspable is chosen as handle and the related superquadric is used to

compute the 3D position. Finally also the affordances of that tool are computed.

All these steps are shown in figure 5.16 for the first tool and in figure 5.17 for the

other two tools.

(a) (b) (c)

(d) (e) (f)

Figure 5.16: The images show all the steps performed in the entire pipeline. First

of all in image (a) it is possible to visualize the bounding boxes with the object.

By using the roi of each tool is possible to retrieve the name of each tool (b). The

object on the right is the first one to be analyzed, and the classifier returns the

Hoe1 name as visible in (c). The images (d, e, f) show the tool analysis, model

matching, superquadrics computation and handle identification.

5.4 Experiments on the Real Robot 79

The hoe on the right has the highest affordances value so it is selected as the

tool used for the action. By knowing the position of the handle, the tool can be

grasped and used to push closer the ball, in an area in which the robot is able to

grab the object, as shown in figure 5.18. Once the action is performed the tool

is left on the table, figure 5.19.

(a) (b) (c)

(d) (e) (f)

Figure 5.17: The images represent the same analysis computed for the first tool

of figure 5.16 also for the other two tools, the stick in the center and the second

hoe on the left.

80 Experiments

(a) (b)

(c) (d)

Figure 5.18: The image shows iCub that move the right arm in order to grasp

the tool, figure (a). Once done it leaves it a little bit in order to move the object

figure (b) and then it performs the action, figures (c) and (d).

(a) (b)

Figure 5.19: In image (a) iCub moves the arm in the home position locating the

hand over the table, and in the image (b) it opens the hand in order to leave the

object.

5.4 Experiments on the Real Robot 81

If iCub is not able to reach the tool it asks for an external help, from the

human user which has to take the tool from the rack and puts on the iCub hand

and wait until it doesn’t close completely the hand, figure 5.20.

(a) (b) (c)

Figure 5.20: The images show the sequence of actions performed if the tool is not

reachable. (a) it points the desired tool. (b) it asks and waits for the tool with

the hand opened. (c) grasps the tool.

The same pipeline can be executed putting a tool with an higher affordances

value. Again iCub after looking the table, moves the head in order to see the rack,

figure 5.21. The tools analysis is performed computing, for each tool retrieved by

the 2d image segmentation, the model matching, the point cloud segmentation

and also the handle fitting, figure 5.22.

(a) (b)

Figure 5.21: iCub looks before the table and after the rack.

82 Experiments

(a) (b)

(c) (d) (e)

Figure 5.22: Image (a) and (b) show the name matching performed by the classi-

fier, and the selected tool is the new one, the rake. Images (c), (d) and (e) show

the model matching, the segmentation and the handle fitting of the selected tool.

Once the tool is selected, it is grasped and then the action can be performed.

At the completion, the tool is left on the table, these steps are shown in figure

5.23.

5.4 Experiments on the Real Robot 83

(a) (b) (c)

(d) (e)

Figure 5.23: The image (a) show the frames in which iCub grasp the tool. Later

images (b) and (c) visualize the action performing of pushing the object closer, in

a graspable area. And finally, in images (d) and (e) the tool is left on the table.

Chapter 6

Conclusion

With this thesis it has been shown that it is possible to enhance visual com-

petencies of iCub robot for a better computation of tool affordances. For this

purpose we started from an IIT’s project which dealt with the computation of

tool affordances and we have increased and improved the initial analysis that

were made on the tool, endowing the robot with the ability to manage a multi

model environment, to choose and grasp autonomously the tool that best fits for

its goal.

With this work, the robot instead of asking for a specific tool from a predefined

set, now is able to observe the scene and detect the tools available in that specific

scenario. In addition the analyses conducted on the tool allow to define where

and how to grasp the object, predicting its final pose and also the final pose of the

end effector that will be used in the execution of the action. These capabilities

allow the robot to become more autonomous since it no longer depends on a

human. Furthermore it becomes able to decide the final position of the end

effector instead of observing how the tool is placed on the robot hand by the

user. Indeed, knowing the position of the tool, its shape and the orientation, the

robot can adjust the grasping movements in order to grab the tool with the desired

position. Another useful aspect to be noted is the information produced by the

86 Conclusion

analyses conducted on the tools to distinguish and recognize them. The extracted

data can be provided to the affordances studies to improve the results. Indeed, a

large quantities of descriptors, related for instance to the shape of the tool, but

also the end effector position compared to handle position, can be provided to the

features extractor contained in the affordances algorithms, improving the results

and reducing the amount of data to compute. Finally, the proposed method was

tested in the Gazebo simulator, but also on a real robot, the humanoid robot

iCub. The results confirm that provide the robot with better visual abilities it

becomes able to perform actions in a more generic and autonomous way.

6.1 Future Works

The work presented in this thesis can be further extended in the future following

these two main limitations.

The idea presented and the related code developed use the dataset described

in the section 4.2.1. The execution of the ICP algorithm can be executed only if

the point cloud of the model is present in the database. The module employed

to classify and identify the tool, is able to provide the name of the object that is

more like to the tool segmented from the scene. If the shapes of the two models

are similar the ICP algorithm can be able to converge to a solution otherwise it

fails. In order to overcome this limitation can be possible to design and develop

a module able to learn the point cloud of a model not present in the database.

In addition, it is possible to replace the 2d image segmentation and also the

tool classification with a deep learning algorithm. Indeed, neural network are able

to takes as input an image and perform the segmentation even if the background

is not homogeneous or the tools share the same color with the context. The

proposed approach has as assumptions that these two conditions do not occur

otherwise the segmentation could be wrong.

Bibliography

[1] E. W. Aboaf, C. G. Atkeson, and D. J. Reinkensmeyer, “Task-level robot

learning,” in 1988 IEEE International Conference on Robotics and Automa-

tion Proceedings, pp. 1309–1310 vol.2, Apr. 1988.

[2] E. W. Aboaf, S. M. Drucker, and C. G. Atkeson, “Task-level robot learning:

juggling a tennis ball more accurately,” in 1989 International Conference on

Robotics and Automation Proceedings, pp. 1290–1295 vol.3, May 1989.

[3] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Robot Programming by

Demonstration. Springrer, 2008.

[4] A. Skoglund, B. Iliev, B. Kadmiry, and R. Palm, “Programming by Demon-

stration of Pick-and-Place Tasks for Industrial Manipulators using Task

Primitives,” in 2007 International Symposium on Computational Intelligence

in Robotics and Automation, pp. 368–373, June 2007.

[5] J. Norberto Pires, G. Veiga, and R. Araújo, “Programming-by-demonstration

in the coworker scenario for SMEs,” Industrial Robot: An International Jour-

nal, vol. 36, pp. 73–83, Jan. 2009. Publisher: Emerald Group Publishing

Limited.

[6] A. A. N. Kumaar and S. TSB, “Mobile Robot Programming by Demon-

stration,” in 2011 Fourth International Conference on Emerging Trends in

Engineering Technology, pp. 206–209, Nov. 2011. ISSN: 2157-0485.

88 BIBLIOGRAPHY

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot

learning from demonstration,” Robotics and Autonomous Systems, vol. 57,

pp. 469–483, May 2009.

[8] S. Ekvall and D. Kragic, “Robot Learning from Demonstration: A Task-level

Planning Approach,” International Journal of Advanced Robotic Systems,

vol. 5, p. 33, Sept. 2008. Publisher: SAGE Publications.

[9] A. León, E. F. Morales, L. Altamirano, and J. R. Ruiz, “Teaching a Robot

to Perform Task through Imitation and On-line Feedback,” in Progress in

Pattern Recognition, Image Analysis, Computer Vision, and Applications

(C. San Martin and S.-W. Kim, eds.), Lecture Notes in Computer Science,

(Berlin, Heidelberg), pp. 549–556, Springer, 2011.

[10] P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso, “Interactive robot

task training through dialog and demonstration,” in Proceedings of the

ACM/IEEE international conference on Human-robot interaction, HRI ’07,

(New York, NY, USA), pp. 49–56, Association for Computing Machinery,

Mar. 2007.

[11] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill coordi-

nation with EM-based Reinforcement Learning,” in 2010 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pp. 3232–3237, Oct.

2010. ISSN: 2153-0866.

[12] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke,

J. Schröder, and R. Dillmann, “Toward humanoid manipulation in human-

centred environments,” Robotics and Autonomous Systems, vol. 56, pp. 54–

65, Jan. 2008.

[13] M. Cutkosky, “On grasp choice, grasp models, and the design of hands

BIBLIOGRAPHY 89

for manufacturing tasks,” Robotics and Automation, IEEE Transactions on,

vol. 5, pp. 269–279, July 1989.

[14] R. Bormann, B. F. de Brito, J. Lindermayr, M. Omainska, and M. Patel,

“Towards Automated Order Picking Robots for Warehouses and Retail,”

in Computer Vision Systems (D. Tzovaras, D. Giakoumis, M. Vincze, and

A. Argyros, eds.), Lecture Notes in Computer Science, (Cham), pp. 185–198,

Springer International Publishing, 2019.

[15] F. Cini, V. Ortenzi, P. Corke, and M. Controzzi, “On the choice of grasp

type and location when handing over an object,” Science Robotics, vol. 4,

Feb. 2019. Publisher: Science Robotics Section: Research Article.

[16] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based Robotic Grasping

From Object Localization, Object Pose Estimation to Grasp Estimation for

Parallel Grippers: A Review,” Artificial Intelligence Review, Aug. 2020.

[17] J. J. Gibson, The Ecological Approach to Visual Perception. Psychology

Press, 1° edizione ed., 1979.

[18] J. J. Gibson, The Senses Considered as Perceptual Systems. Houghton Mif-

flin, 1966.

[19] J. J. Gibson, R. Shaw, and J. Bransford, Perceiving, Acting and Knowing:

Toward an Ecological Psychology. Hillsdale, N.J. : New York: Routledge,

1977.

[20] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition in

the premotor cortex,” Brain, vol. 119, no. 2, pp. 593–609, 1996.

[21] J. Piaget, “La naissance de l’intelligence chez l’enfant,” 1936.

[22] J. Piaget, “La construction du réel chez l’enfant.,” 1937.

90 BIBLIOGRAPHY

[23] R. Shaw and J. Bransford, Perceiving, Acting, and Knowing: Toward an

Ecological Psychology. Lawrence Erlbaum Associates, 1977.

[24] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,

A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,

“Object–Action Complexes: Grounded abstractions of sensory–motor pro-

cesses,” Robotics and Autonomous Systems, vol. 59, pp. 740–757, Oct. 2011.

[25] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning

Object Affordances: From Sensory–Motor Coordination to Imitation,” IEEE

Transactions on Robotics, vol. 24, pp. 15–26, Feb. 2008. Conference Name:

IEEE Transactions on Robotics.

[26] J. Turski, “A Geometric Theory Integrating Human Binocular Vision with

Eye movement,” bioRxiv, p. 2020.09.03.280248, Sept. 2020. Publisher: Cold

Spring Harbor Laboratory Section: New Results.

[27] D. Forsyth and J. Ponce, Computer vision: a modern approach. Boston:

Pearson, 2nd ed ed., 2012.

[28] D. Murray and J. J. Little, “Using Real-Time Stereo Vision for Mobile Robot

Navigation,” Autonomous Robots, vol. 8, pp. 161–171, Apr. 2000.

[29] R. Lagisetty, P. N K, R. Padhi, and M. Bhat, “Object detection and obstacle

avoidance for mobile robot using stereo camera,” pp. 605–610, Aug. 2013.

[30] G. D. Hager, Wen-Chung Chang, and A. S. Morse, “Robot hand-eye coor-

dination based on stereo vision,” IEEE Control Systems Magazine, vol. 15,

pp. 30–39, Feb. 1995. Conference Name: IEEE Control Systems Magazine.

[31] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-D Mapping

With an RGB-D Camera,” IEEE Transactions on Robotics, vol. 30, pp. 177–

187, Feb. 2014. Conference Name: IEEE Transactions on Robotics.

BIBLIOGRAPHY 91

[32] Z. Zhang, “Microsoft Kinect Sensor and Its Effect,” IEEE MultiMedia,

vol. 19, pp. 4–10, Feb. 2012. Conference Name: IEEE MultiMedia.

[33] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping:

Using Kinect-style depth cameras for dense 3D modeling of indoor environ-

ments,” The International Journal of Robotics Research, vol. 31, pp. 647–663,

Apr. 2012. Publisher: SAGE Publications Ltd STM.

[34] A. Garcia-Garcia, Towards a real-time 3D object recognition pipeline on mo-

bile GPGPU computing platforms using low-cost RGB-D sensors. PhD the-

sis, Sept. 2015.

[35] L. Li, “Time-of-Flight Camera - An Introduction,” 2014.

[36] “From Point Cloud to Grid DEM: A Scalable Approach | SpringerLink.”

[37] T. Schenk, “Introduction to Photogrammetry,” p. 100.

[38] Barr, “Superquadrics and Angle-Preserving Transformations,” IEEE Com-

puter Graphics and Applications, vol. 1, pp. 11–23, Jan. 1981. Conference

Name: IEEE Computer Graphics and Applications.

[39] P. Ferreira, “Sampling Superquadric Point Clouds with Normals,”

arXiv:1802.05176 [cs], Feb. 2018.

[40] A. Jaklic, A. Leonardis, F. Solina, and F. Solina, Segmentation and Recovery

of Superquadrics. Springer Science & Business Media, Sept. 2000.

[41] F. Solina and R. Bajcsy, “Recovery of parametric models from range images:

the case for superquadrics with global deformations,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 12, pp. 131–147, Feb. 1990.

Conference Name: IEEE Transactions on Pattern Analysis and Machine

Intelligence.

92 BIBLIOGRAPHY

[42] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A.

Levine, A. Sharf, and C. T. Silva, “A Survey of Surface Reconstruction from

Point Clouds,” Computer Graphics Forum, vol. 36, no. 1, pp. 301–329, 2017.

[43] The CGAL Project, CGAL User and Reference Manual. CGAL Editorial

Board, 5.2 ed., 2020.

[44] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,”

p. 10.

[45] J. Digne, J.-M. Morel, C.-M. Souzani, and C. Lartigue, “Scale Space Meshing

of Raw Data Point Sets,” Computer Graphics Forum, vol. 30, no. 6, pp. 1630–

1642, 2011.

[46] D. Cohen-Steiner and F. Da, “A greedy Delaunay-based surface reconstruc-

tion algorithm,” The Visual Computer, vol. 20, pp. 4–16, Apr. 2004.

[47] C.-H. Chuang, J.-W. Hsieh, C.-C. Lee, Y.-N. Chen, and L.-W. Tsai, “Human

Body Part Segmentation of Interacting People by Learning Blob Models,”

2012 Eighth International Conference on Intelligent Information Hiding and

Multimedia Signal Processing, 2012.

[48] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh partitioning and

skeletonisation using the shape diameter function,” The Visual Computer,

vol. 24, p. 249, Jan. 2008.

[49] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,

pp. 239–256, Feb. 1992. Conference Name: IEEE Transactions on Pattern

Analysis and Machine Intelligence.

[50] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The iCub hu-

manoid robot: an open platform for research in embodied cognition,” in

BIBLIOGRAPHY 93

Proceedings of the 8th Workshop on Performance Metrics for Intelligent Sys-

tems - PerMIS ’08, (Gaithersburg, Maryland), p. 50, ACM Press, 2008.

[51] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hof-

sten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and L. Mon-

tesano, “The iCub humanoid robot: An open-systems platform for research

in cognitive development,” Neural Networks, vol. 23, pp. 1125–1134, Oct.

2010.

[52] D. Vernon, C. Hofsten, and L. Fadiga, A Roadmap for Cognitive Development

in Humanoid Robots, vol. 11. Jan. 2011.

[53] S. R. Fanello, U. Pattacini, I. Gori, V. Tikhanoff, M. Randazzo, A. Ron-

cone, F. Odone, and G. Metta, “3D stereo estimation and fully automated

learning of eye-hand coordination in humanoid robots,” in 2014 IEEE-RAS

International Conference on Humanoid Robots, pp. 1028–1035, Nov. 2014.

[54] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet another robot plat-

form,” International Journal of Advanced Robotic Systems, vol. 3, Mar. 2006.

[55] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning

about objects through action - initial steps towards artificial cognition,”

in 2003 IEEE International Conference on Robotics and Automation (Cat.

No.03CH37422), vol. 3, pp. 3140–3145 vol.3, Sept. 2003.

[56] C. Geib, K. Mourao, R. Petrick, N. Pugeault, M. Steedman, N. Krueger,

and F. Worgotter, “Object Action Complexes as an Interface for Planning

and Robot Control,” p. 6.

[57] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Modeling af-

fordances using Bayesian networks,” in 2007 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pp. 4102–4107, Oct. 2007. ISSN:

2153-0866.

94 BIBLIOGRAPHY

[58] E. Ugur, E. Sahin, and E. Oztop, “Predicting future object states using

learned affordances,” pp. 415–419, Sept. 2009.

[59] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in perceptual

space using learned affordances,” Robotics and Autonomous Systems, vol. 59,

pp. 580–595, July 2011.

[60] B. Ridge, D. Skočaj, and A. Leonardis, “Self-supervised cross-modal online

learning of basic object affordances for developmental robotic systems,” in

2010 IEEE International Conference on Robotics and Automation, pp. 5047–

5054, May 2010.

[61] B. Ridge, A. Leonardis, A. Ude, M. Deniša, and D. Skočaj, “Self-Supervised

Online Learning of Basic Object Push Affordances,” International Journal

of Advanced Robotic Systems, vol. 12, p. 24, Mar. 2015. Publisher: SAGE

Publications.

[62] J. Sinapov and A. Stoytchev, “Detecting the functional similarities between

tools using a hierarchical representation of outcomes,” in 2008 7th IEEE

International Conference on Development and Learning, pp. 91–96, Aug.

2008.

[63] V. Tikhanoff, U. Pattacini, L. Natale, and G. Metta, “Exploring affordances

and tool use on the iCub,” in 2013 13th IEEE-RAS International Conference

on Humanoid Robots (Humanoids), pp. 130–137, Oct. 2013.

[64] R. Jain and T. Inamura, “Learning of Tool Affordances for autonomous tool

manipulation,” in 2011 IEEE/SICE International Symposium on System In-

tegration (SII), pp. 814–819, Dec. 2011.

[65] A. Gonçalves, G. Saponaro, L. Jamone, and A. Bernardino, “Learning visual

affordances of objects and tools through autonomous robot exploration,”

BIBLIOGRAPHY 95

in 2014 IEEE International Conference on Autonomous Robot Systems and

Competitions (ICARSC), pp. 128–133, May 2014.

[66] T. Mar, V. Tikhanoff, G. Metta, and L. Natale, “Self-supervised learn-

ing of grasp dependent tool affordances on the iCub Humanoid robot,” in

2015 IEEE International Conference on Robotics and Automation (ICRA),

pp. 3200–3206, May 2015.

[67] T. Mar, V. Tikhanoff, G. Metta, and L. Natale, “Multi-model approach

based on 3D functional features for tool affordance learning in robotics,” in

2015 IEEE-RAS 15th International Conference on Humanoid Robots (Hu-

manoids), pp. 482–489, Nov. 2015.

[68] A. Myers, A. Kanazawa, C. Fermuller, and Y. Aloimonos, “Affordance of

Object Parts from Geometric Features,” p. 3, 2014.

[69] A. Roy and S. Todorovic, “A Multi-scale CNN for Affordance Segmentation

in RGB Images,” in Computer Vision – ECCV 2016 (B. Leibe, J. Matas,

N. Sebe, and M. Welling, eds.), Lecture Notes in Computer Science, (Cham),

pp. 186–201, Springer International Publishing, 2016.

[70] M. Schoeler and F. Wörgötter, “Bootstrapping the Semantics of Tools: Af-

fordance Analysis of Real World Objects on a Per-part Basis,” IEEE Trans-

actions on Cognitive and Developmental Systems, vol. 8, pp. 84–98, June

2016. Conference Name: IEEE Transactions on Cognitive and Developmen-

tal Systems.

[71] P. Abelha and F. Guerin, “Transfer of Tool Affordance and Manipulation

Cues with 3D Vision Data,” arXiv:1710.04970 [cs], Oct. 2017.

[72] A. Stoytchev, “Behavior-Grounded Representation of Tool Affordances,” in

Proceedings of the 2005 IEEE International Conference on Robotics and Au-

tomation, pp. 3060–3065, Apr. 2005.

96 BIBLIOGRAPHY

[73] B. Bhanu and O. D. Faugeras, “Segmentation of Images Having Unimodal

Distributions,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. PAMI-4, pp. 408–419, July 1982.

[74] D. S and G. Shinde, “An Adaptive Color Image Segmentation,” ELCVIA.

Electronic letters on computer vision and image analysis, ISSN 1577-5097,

Vol. 5, Nº. 4, 2005, pags. 12-23, vol. 5, Jan. 2005.

[75] N. Kulkarni, “Color Thresholding Method for Image Segmentation of Natural

Images,” International Journal of Image, Graphics and Signal Processing,

vol. 4, Feb. 2012.

[76] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang, “Phoneme

recognition using time-delay neural networks,” Acoustics, Speech and Signal

Processing, IEEE Transactions on, vol. 37, pp. 328–339, Apr. 1989.

[77] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on

Point Sets for 3D Classification and Segmentation,” arXiv:1612.00593 [cs],

Apr. 2017.

[78] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical

Feature Learning on Point Sets in a Metric Space,” arXiv:1706.02413 [cs],

June 2017.

[79] T. Mar, V. Tikhanoff, and L. Natale, “What Can I Do With This Tool? Self-

Supervised Learning of Tool Affordances From Their 3-D Geometry,” IEEE

Transactions on Cognitive and Developmental Systems, vol. 10, pp. 595–

610, Sept. 2018. Conference Name: IEEE Transactions on Cognitive and

Developmental Systems.

[80] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”

in IEEE International Conference on Robotics and Automation (ICRA),

(Shanghai, China), May 9-13 2011.

BIBLIOGRAPHY 97

[81] W. Schroeder, K. Martin, and B. Lorensen, The visualization toolkit: an

object-oriented approach to 3D graphics ; [visualize data in 3D - medical,

engineering or scientific ; build your own applications with C++, Tcl, Java

or Python ; includes source code for VTK (supports Unix, Windows and

Mac). Clifton Park, NY: Kitware, Inc, 4. ed ed., 2006.

[82] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-

source multi-robot simulator,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, (Sendai, Japan), pp. 2149–2154, Sep 2004.

	Acknowledgements
	Abstract
	Introduction
	Motivations and goal
	Contributions
	Thesis structure

	Historical context
	Affordances
	Computer Vision
	3D images
	Point clouds
	Superquadrics

	Algorithms
	Surface reconstruction
	Part segmentation
	Triangulated surface mesh segmentation
	Point Cloud Upsampling
	Iterative Closest Point

	iCub
	Yet Another Robot Platform

	State of the Art
	Robot Affordances
	Tool Affordances
	Computer Vision

	Proposed Approach
	Initial project
	Multi model approach
	Tools Dataset
	Tools Segmentation
	Model name matching

	3D vision analysis
	Point Cloud
	Model Fitting

	Grasp the tool
	Mesh reconstruction
	Mesh segmentation
	Superquadrics
	Graspable Area

	Overall algorithm

	Experiments
	Gazebo
	iCub
	Results
	Experiments on the Real Robot

	Conclusion
	Future Works

	Bibliography

