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Abstract

I n the vehicle engineering, the passengers comfort has always represented a critical fea-
ture because of the intrinsic conflicting behaviour of the suspensions: from one side,

it would be preferred a soft suspension in order to isolate the car body from the external
disturbances; on the other side, a stiff suspension is required in order to sustain the vehicle
weight. In the last years, thanks to the growth of the Mechatronic Engineering, the intro-
duction of control devices has been proposed in order to improve the dynamic behaviour
of the mechanical systems and to solve this duality. In particular, several researches have
demonstrated that it’s possible to isolate the vehicle from the external disturbances by con-
trolling the secondary suspension, which is directly connected to the car body itself.

In this work, an advanced semi active primary suspension control strategy for the im-
provement of the passenger comfort in a railway vehicle is investigated, together with the
issues related to the dynamic property of the passive system. In fact as long as the control
force is no longer acting directly on the car body, the dynamics properties of the passive
system play a central role. For the numerical simulations, it has been developed a mathe-
matical model describing the vehicle vertical dynamics, with the advanced introduction of
the car body bending modes and the air spring modelling. For what concerns the controller,
the classical two state SkyHook and ADD - Acceleration Driven Damper logic have been
employed. Furthermore, the critical evaluation of the results allowed to understand how
the coupling of the mechanical and control system may enhance the positive features of the
passive system rather than compensate its gaps.

Very interesting results have been pointed out and they may represent a starting point
for a new challenging development in control engineering, compliant with greater design
flexibility, more demanding requests and ambitious goals.
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Abstract

N ell’ingegneria del veicolo, il comfort del passeggero ha sempre rappresentato un as-
petto critico a causa dell’intrinseco comportamento conflittuale delle sospensioni:

da un lato, è preferibile una sospensione morbida al fine di isolare la carrozzeria dai
disturbi esterni; dall’altro, è richiesta una sospensione rigida per sostenere il peso del vei-
colo. Negli ultimi anni, grazie alla crescita dell’Ingegneria Meccatronica, è stata proposta
l’introduzione di dispositivi di controllo in modo tale da migliorare il comportamento di-
namico dei sistemi meccanici e risolvere questa dualità. In particolare, diverse ricerche
hanno dimostrato la possibilità di isolare il veicolo dai disturbi esterni attraverso il con-
trollo della sospensione secondaria, in quanto direttamente connessa alla carrozzeria.

In questo studio viene investigata un’innovativa strategia di controllo semiattivo della
sospensione primaria, al fine di migliorare il comfort del passeggero nei veicoli ferroviari,
in parallelo ai problemi relati alle proprietà dinamiche del sistema passivo. Infatti, dal
momento in cui la forza di controllo non agisce più direttamente sulla cassa, le proprietà
dinamiche del sistema passivo giocano un ruolo centrale. Per le simulazioni numeriche, è
stato sviluppato un modello matematico che descrive la dinamica verticale del veicolo, con
l’innovativa introduzione dei modi flessionali della cassa e della modellazione della molla
ad aria. Per quanto riguarda il controllore, sono state impiegate le classiche logiche ADD
- Acceleration Driven Damper e SkyHook a due stati. In aggiunta, la valutazione crit-
ica dei risultati ha permesso di valutare come l’accoppiamento del sistema di controllo a
quello meccanico possa valorizzare le caratteristiche positive del sistema passivo piuttosto
che compensare i suoi limiti.

I risultati osservati sono molto interessanti e potrebbero rappresentare la base di partenza
per uno stimolante sviluppo nell’ingegneria del controllo, in linea con l’esigenza di una
maggiore flessibilità di progettazione, le sempre più stringenti richieste e i nuovi ambiziosi
obiettivi.
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Introduction

In recent years, it has been observed a strong and rapid development of ground vehi-
cle engineering, driven by more demanding requirements in terms of stability, comfort
and safety. For what concerns the railway engineering, the global trend has furthermore
enhanced the research toward the development of faster vehicles; but in order to avoid
detrimental effect on the other features, the traditional design approach has to be revo-
lutionized.

In particular, the recent forward-thinking researches have been highlighting the central
role of the suspension design for the achievement of improved performances, compliant
to the new challenging goals. The suspension, which has to bear the vehicle weight, fur-
thermore represents the element establishing the connection with the railway and has the
role to transmit and filter its irregularities.

The classical design approach, based on the employment of traditional passive spring
and damper, is limited by an unsolvable duality: from one side, a soft suspension would
be preferred in order to isolate the car body from the external disturbances; on the other
side, a stiff suspension is required to reduce changes in car body level caused by charge
of the payload.

The introduction of new mechatronic technologies has made possible to solve this
intrinsic suspension duality: the integrated design of mechanical and electronic control
system ensures more flexibility and allows to achieve different goals that have been tradi-
tionally considered contradictory. In fact it has been demonstrated that by replacing or
complementing the passive suspension with an active or semi active element, it is possible
to improve the dynamic response of the system and to reduce the vibrations of the car
body.

The use of active elements, like hydraulic or electromechanic actuators, ensures from
a theoretical point of view the best results since it can be used both for dissipating or
introducing power in the system. Anyway, from a practical point of view, their imple-
mentation results very complex and expensive: additional elements are required, like the
measurement and monitoring equipment, but particularly outstanding is the need of an
external power source. Moreover, the overall complexity affects the system reliability.

An attractive alternative is represented by semi active devices: they combine a good
performances improvement, typical of the full active system, with the simplicity of the
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traditional passive elements. The main feature of the semi active dampers is the charac-
teristic parameter adjustability, which ensures a certain flexibility in the response, while
their main constraint is the possibility to work only by dissipating energy. Anyway, the
latter aspect results in the stability warranty: whatever the value of the damping coeffi-
cient, this element is never able to provide energy to the system and hence to produce an
unstable behaviour .

For this reason, recent researches have been investigating the possibility to introduce
semi active control strategies, generally applied on the secondary suspension: in this way
the semi active element would be acting directly on the car body, ensuring a straight
forward benefit in the vibration reduction and passenger comfort.

In this work, an alternative control system layout for the improvement of the passen-
ger comfort is proposed, consisting in a semi active primary suspension control strategy.
This solution is based on replacing of the primary suspension passive damper by a semi
active element and is aimed to the reduction of car body vibrations transmitted through
the bogie frame by controlling the response of the latter.

The strengths of this alternative layout consist in reaching good improvements with
few changes respect to the passive configuration and in enabling a wider vehicle design
flexibility. Anyway from the other side, the effectiveness of this primary suspension control
strategy is very tricky since it is not dependent on the characteristic of the implemented
semi active element and on the control logic only.

In fact a strong coupling between the car body vibration reduction and the dynamic
properties of the passive vehicle has been detected: as long as the control force is acting on
the bogie frame, the interaction between the bogie frame itself and the car body, in terms
of transmissibility and mode shapes, rules the vibrations experienced by the passenger.

For this reason, in this work, a comparison between two vehicles with different data
set and passive dynamic property has been proposed with the aim to highlight and char-
acterize this aspects, which have never been described in the previous literature.

In order to evaluate this concept, a mathematical model accounting for the vertical
dynamics of the railway vehicle has been developed in MATLAB. The strength of this
model consists in coupling the modelling of the rigid degrees of freedom of the system
with the flexible property of the car body. In fact, for the evaluation of the passenger
comfort, it is very important to account for the coach bending deformation, whose natural
frequencies stand in a frequency range of interest. Furthermore, in order to represent a
study case as close as possible to reality, the dynamics properties of the air spring have
been included by referring to the Nishimura model.

For what concerns the control strategy, two classical algorithms have been tested: the
two state Sky Hook and the ADD - Acceleration Driven Damper logic. This choice reflects
the challenging purpose to look for a control system smart and simple at the same time,
without involving predictive tools or complex measurement and monitoring equipment.

2
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Despite the simple control algorithms, the control system layout modelling has been
developed with high accuracy, introducing both the saturation of the required force, de-
pending on the semi active damper performance curve, and the effect of the signal delay
between the command and the actuation, consistency with the latest literature.

The introduction of the saturation allows to keep a direct control on the generated
force: this on one hand is fundamental to enable consistent comparison between the
different systems and control strategies, leading to the detection of relevant considerations;
on the other side it gives the opportunity to evaluate the effect of the use of devices with
different properties on the system response.

In order to account for the signal delay, an advanced solution has been proposed,
consisting of the introduction of an intermediate variable. As it happens in reality, the
intermediate variable signal carries the information about the value of the semi active
damper characteristic parameter or, in other words, the magnitude of the required force.
By undergoing a first order system, the signal is filtered and the actuation is smoothed,
with positive effects in the overall response.

In this thesis, the stream of contents is organized and discussed according to the work
flow and the steps just presented:

• in chapter 2, the State of Art regarding the development and applications of con-
trol strategies for ground vehicles aimed to the passenger comfort improvement is
outlined;

• in chapter 3, the vehicle mathematical model is described with special attention to
the modelling of the air spring and to the characterization of the coach bending
modes;

• chapter 4 is concerned with the control strategy and of the control system architec-
ture, with the analysis of the advantages carried by the introduction of the inter-
mediate variable and the damper performance curve;

• in chapter 5 the results are shown and, going though their comment, the consider-
ations on the passive system properties effect on the control strategy are discussed;

• finally, some conclusive remarks are provided in chapter 6.

3
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State of the art

In the last years the desire to reach higher velocities, better ride quality, comfort and
safety has been strongly pushing the development in ground vehicle engineering.

Several researches have demonstrated that all of this objectives are strictly correlated
one another and strongly depend on the suspension performances.

In fact the suspension is the single element of a vehicle which mostly affects its entire
dynamic behaviour: it has the role to sustain the charge of the payload and, as long as
it establishes the connection between the track and the vehicle itself, it has furthermore
the role to filter the track irregularities, which cause the car body vibration and affect the
safety and comfort level [1].

In order to achieve those challenging goals, the traditional suspension layout, consist-
ing on simple passive spring and damper elements, has to be reworked. In fact it carries
an intrinsic duality in vertical direction: for sustaining the weight a stiff suspension is
required, while for isolating the external disturbances a soft one would be preferred [2].

From the second half of the 1980s, the advanced purpose to solve this duality found
a solution in the new mechatronic technologies: the integrated design of mechanical and
electronic control system ensures more flexibility and furthermore allows to achieve simul-
taneously different goals that have been traditionally considered contradictory.

For what concerns the railway vehicles, this innovation has lead to a fundamental
change: for 150 years the train design has been a pure mechanical engineering discipline,
but it is becoming a more complex control engineering problem [3].

Nowadays some state of the art reviews are available keeping updated the applications
of the control system in railway vehicles [3] [4] [5] [6] [7]. Going through this documenta-
tion, the main aim of the employment of control systems can be summarized as follow:

• dynamically keep the proper vehicle posture when subjected to various inertial and
external force, caused by braking, turning, wind gust and other events;

• provide a good ride comfort in presence of railway irregularities, which acts as a
major disturbance to the vehicle;

• ensure good handling and an overall vehicle agility, providing a safe dynamical
behaviour in different running conditions;
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• avoid excessive suspension deflection or related hard stop/impacts;

• improve the stability, by controlling the modes of the bogie;

• perform special functions in addition to the passive suspension, for example tilting
the car body.

Figure 2.1: Control system layout [3]

The layout of the control system, described in figure 2.1, generally consists of:

• measurement equipment for the estimation of the mechanical system state;

• control unit, that evaluates the system state and depending on a control algorithm
compute the control force;

• actuation system, which apply the required force;

• eventually, power supply unit.

As shown in figure 2.2, the control systems can be grouped in two families depending
on the degrees of actuation: the semi active and full active control system.

In the first group, semi active elements able to work only dissipating power are used; in
the latter, actuators able to both dissipate and introduce power to the mechanical system
are employed. Thus in the second layout, in order to introduce power to the system, the
additional power supply unit is required.

Figure 2.2: Semi active and full active control system comparison [3]
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The full active suspension golden age is probably located in the second half of the
1980s: analog electronics were already well developed, the era of embedded digital mi-
cro controllers was starting and the magic of full active suspensions attracted the car
manufacturers. During these years, the exceptional potential of replacing a traditional
spring-damper system with a full active suspension was demonstrated; but the high costs,
significant power absorption, system unreliability and safety issues made the attraction
last only few years without leaving a significant impact on the mass market [1].

In fact, the active suspension layout already introduced consists on complex and ex-
pensive devices [2], in particular the actuator itself, usually hydraulic, electromechanic,
pneumatic or magnetic, as force or torque generator, the measurement and sensing de-
vices, like accelerometers, potentiometers or transducers and the external power source.

Depending on the actuation bandwidth [8] [1], the active suspension can be grouped
in three families, as shown in figure 2.4:

• load leveling suspensions, generating a quasi static adjustment of the vertical dis-
placement, whose bandwidth is below the suspension dynamics;

• slow-active suspensions, whose bandwidth is in between body and wheel dynamics;

• fully active suspensions, with full bandwidth active suspension.

For what concerns the active control, both primary and secondary suspension appli-
cation have been explored: the primary suspension approaches are mainly aimed to the
improvement of the guidance, steering capability and stability; the secondary suspension
solutions aim at enhancing the passenger comfort.

Remaining focused on the researches for railway vehicles dealing with the improvement
of passenger comfort, it is possible to cite three important representative studies:

• in Sweden, KTH and Bombadier Transportation have developed an active lateral
and vertical secondary suspension in the program Green Train [9], their tests per-
formed from 2007 to 2013 showed a good comfort improvement and the possibility
to reduce the lateral displacements by the 50 %;

• in Korea, Railroad Research Institute has performed some tests with lateral electro-
magnetic actuators in the secondary suspension controlled with SkyHook strategy
[10], their tests demonstrated a reduction of the later accelerations of 7dB;

• in Japan, the Japanese National Railway tested lateral pneumatic actuators in the
secondary suspension for high speed railway vehicles [11], even at 425 km/h the
vibration can be reduced by the 50 %.

Despite the complexity and the cost of the full active control system, the improvements
are not limited only to the vehicle dynamics itself.

For example, focusing on the primary suspension applications, apart from the guid-
ance, steering capability and stability improvement, additional benefits can be exploited
thanks to the control of the contact force [5]:

7
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• noise abatement, fundamental in urban vehicles;

• reduction of wear and of maintenance costs, which can balance the total life costs;

• to apply on-demand maintenance plan, based on the condition monitoring;

• to provide a positive impact on the infrastructure due to a more friendly track
vehicle interaction.

In the second half of 1990s a new trend emerged: it became clear that the best compro-
mise between costs, weight, power consumption, encumbrance and performances, comfort,
safety may lay in semi active suspension solutions [1].

The semi active elements are able to work only by dissipating energy and can drive
the system response through simple regulations of their characteristic parameter. The
fact that they can not introduce power to the system is surely a limitation; but on the
other hand it ensures appealing features:

• the power demand is negligible and there is a limited power supply requirement;

• as a stability warranty, without the introduction of additional power they can not
determine an unstable behaviour of the mechanical system;

• the fail safe condition is guaranteed;

• lower weight, cost and encumbrance.

In other words, the semi active elements achieve some of the active system perfor-
mances with components close to the passive in terms of cost and complexity [12].

For what concerns the semi active damper, it is possible to distinguish two main
technologies depending on the system used for adjusting the characteristic parameter [8]:
the electro hydraulic and the magneto rheological dampers.

(a) Magneto rheoloical (b) Electro hydraulic

Figure 2.3: Semi active damper [1]
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In the magneto rheological elements, the fluid viscosity varies. The working fluid is a
mineral or silicone oil carrying magnetic particles that, thanks to the addition of proper
additives, remain suspended in the fluid [13]. When an external magnetic or electric field
is imposed, the magnetic align, limiting the fluid movement and giving the same result of
an increased viscosity. They are cheap and ensure good performances.

In the electro hydraulic elements, the geometrical feature of the orifice varies. A valve
regulates the fluid flow, generally air or oil, thus the chamber pressure and the generated
thrust. In particular, it is generally possible to find two kinds of valves [14]:

• the servo valves : ensure quick response, a linear behaviour and a great accuracy in
fluid flow control but are more expensive and complex;

• the solenoid valves : they are the most widely used since they are simple devices,
whose design can be optimized for every specific application.

Depending on the actuation bandwidth, the semi active elements as well can be
grouped into two families [8] [1], as shown in figure 2.4:

• adaptive suspension, with slowly modified damping ratio;

• semi active suspension, whose parameter can be modified over a large bandwidth.

Figure 2.4: Control strategy classification [1]
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For what concerns the practical implementation of the semi active suspension control
strategy aimed to the improvement of the passenger comfort, both primary and secondary
suspension approaches have been investigated.

About the semi active control strategies on the secondary suspension, a wide literature
is available both regarding the road [15] [16] [17] and the railway vehicles. Remaining
focused in the railway engineering field, it is possible to cite three representative researches:

• in Japan, the Railway Technical Research Institute has developed a semi active air
spring control system [18] by placing an orifice control valve in between the rubber
bellow and the auxiliary chamber and has performed a test supposing to simulate a
vehicle running on vertical curves at 300 km/h; the results showed the effectiveness
of the control system about the natural frequency of the air spring system 1.05Hz
with large benefits of the car body rigid modes;

• in China, the Jilin University Changechun has developed a semi active air spring
control system [19] by placing a throttle valve in between the rubber bellow and
the auxiliary chamber, able to work both in low and high frequency range and to
change the opening area from 615 mm2 to 15 mm2; the results demonstrated the
possibility to reduce the noise in the car body acceleration;

• in United Kingdom, the Land Rover has developed a semi active control of the
air spring [20] by placing a butterfly valve in between the rubber bellow and the
auxiliary chamber; the experiments on a quarter vehicle test rig demonstrated the
possibility achieve an acceleration reduction up to 29 % while from the numerical
simulation of the whole vehicle up to 20 %.

For what concerns the semi active control strategies for the primary suspension aimed
to the carbody vibration reduction for the passenger comfort, as long as it is an emerging
technology, the only study case available is a Japanese research, at the Railway technical
research institute, of the senior researcher Sugahara. This control system has been defined
in 2007 [21] and it has been tested in the following years [22] [23] [24] [25].

Noticing the closeness of the natural frequency of the primary suspension system to
that of the first bending mode of the carbody, the possibility to suppress the elastic vibra-
tion of the carbody by controlling and reducing the vibration of the primary suspension
has been theorised [21]. In order to control the vibrations of the primary suspension, the
introduction of a semi active variable axle damper has been proposed.

The first step has been a numerical simulation [21] on a vehicle model with 16 degrees
of freedom, accounting for vertical and longitudinal displacements in addition to the pitch
rotations: the results showed a reduction of the power spectra density of the bending mode
of 60 %, but just in the range [5÷ 15]Hz.

The same observations have been carried out by the running tests with the semi active
control system on the primary suspension, both at high [24] and low running velocities
[25]. Furthermore by coupling the semi active primary and secondary control [22] [23],
the improvement in the vibration reduction can be extended in the low frequency range,
below 2Hz, about the natural frequency of the rigid modes of the carbody.
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The control strategies commonly used in the semi active control strategies, both for
primary and secondary suspension, and found in the discussed literature are:

• two state SkyHook [1] [15] [21] [22] [23] [24] [25] [26], consisting in changing the
characteristic parameter c of the semi active damper according to the chassis velocity
ż and the suspension deflection velocity żdef by using a logical law;

c =

{
cmin if żżdef < 0

cmax if żżdef > 0

• linear SkyHook [1], an improvement of the two state used to handle a continuously
variable characteristic parameter; its value varies in a range c ∈ [cmin; cmax] depend-
ing on a tuning parameter α ∈ [0; 1] that modifies the closed loop performances;

c

{
cmin if żżdef < 0
αcmaxżdef+(1−α)ccaxż

żdef
if żżdef > 0

• ADD - Acceleration Driven Damper control [1] [27] [28], an optimal control law that
minimizes the vertical body accelerations z̈ when no track information is available;

c =

{
cmin if z̈żdef < 0

cmax if żz̈def > 0

• PDD - Power Driven Damper Control [1], obtained from the port Hamiltonian
techniques; the strengths of this control strategy consists in avoiding the chattering
phenomena; given the suspension stiffness k, the logic condition is

c =


cmin if k zdef żdef + cmin żdef > 0

cmax if k zdef żdef + cmin żdef < 0

0.5(cmin + cmax) if zdef 6= 0 and żdef = 0

−k zdef
żdef

otherwise

• adaptive LQG - Linear Quadratic Gaussian [17] [22] [24] [25], which based on the
extracted least squares estimation algorithm or on a Kalman filter, evaluates the
running condition and adapts the gain of the controller in order to selectively achieve
dual objectives, for example the ride quality and handling performances.
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Mathematical model
of the railway vehicle

The implementation of the primary suspension control system is aimed to the reduction of
the vibration of the car body flexible modes, which are strongly coupled to the longitudinal
dynamic of the vehicle.

For this reason, it has been developed a two dimensional model in the vertical plane
accounting for the bounce displacements z and the pitch rotations θ of both the carbody
and the bogie frames.

2b 2b

L

2a

zC11 zC12 zC21 zC22

kI11

cI11

kI12

cI12

kI22

cI22

kI21

cI21

kII1
cII1

kII2
cII2

zB1 θB1 zB2 θB2

zA θA

mB

JB
mB

JB

mA

JA

Figure 3.1: Model of vertical dynamics of the railway vehicle

All of the bodies are homogeneous: the centre of gravity is located in their point of
symmetry. Moreover the independent variables are defined as displacements and rotations
of the centre of mass itself in order to lead to an easier kinetic energy formulation.

The system is characterized by six degrees of freedom associated to the rigid body
motions: the bounce and the pitch of the rear bogie frame (zB1, θB1); the bounce and the
pitch of the front bogie frame (zB2, θB2); the bounce and the pitch of the carbody (zA, θA).
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The resulting free independent variable vector is:

xF = {zB1; θB1; zB2; θB2; zA; θA}

Furthermore there are four additional components of constraint motion zCij, that
account for the track irregularity and are responsible for the system excitement. They
can be collected in the constrained independent variable vector:

xC = {zC11; zC12; zC21; zC22} (3.0.1)

The contact between the wheel and the railway is modeled as completely rigid: the
vertical displacement that characterizes the track irregularity is directly experienced by
the wheelset. This assumption is consistent as long as the contact bodies are made of cast
iron and their deformation is negligible in the frequency range of interest [0÷ 25Hz].

The wheelsets are equally spaced respect to the bogie centre, with a wheelbase 2b.
The connecting element between the bogie frame and the wheelset is the primary suspen-
sion. The suspension is modelled as a linear spring and damper in parallel, with constant
characteristic parameter (kIij, cIij).

The bogie frames as well are equally spaced respect to the carbody centre and their
distance is 2a. The carbody is connected to the bogie frame though the secondary sus-
pension. The suspension is modelled as a linear spring and damper in parallel as well,
with a constant characteristic parameter (kIIi, cIIi).

Since the secondary suspension is connected to the central point of the bogie frame,
its pitch rotation won’t affect the carbody excitement and is decoupled from the other
the degrees of freedom. Thus the (θB1; θB2) independent variables may appear useless
for the bending mode vibration reduction, but on the contrary they are needed for the
computation of the primary suspension elongation and elongation velocity, thus for the
definition of the force generated by the control system.

Moreover it is important to specify that all the primary suspensions share the same
parameter kIij = kI and cIij = cI just like the secondary suspensions, with kIIij = kII
and cIIij = cII . This detail coupled together with the geometrical features of the system
leads to the system symmetry.
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3.1 Characterization of the bending vibrations
of the carbody

In order to evaluate the passenger comfort, it is necessary to account for all of the vi-
brating modes standing in the frequency range of interest, including the carbody bending
mode satisfying this condition.

The challenging aim of this numerical model is to properly represent the deformable
property of the carbody, in particular its transverse bending deformation, and to correctly
describe the interaction between the rigid body discrete degrees of freedom and the inde-
pendent variable characterizing the flexible body vibration.

For the description of the carbody transverse vibration, it is possible to refer to a
uniform beam study case [29].

For the modal mass, stiffness and damping contribution in the equation of motion there
is the need to introduce the modal matrices in addition to the rigid system matrices.

For the definition of the kinematic relationship it is important to notice that the
secondary suspension elongation is affected by the transverse displacement of the carbody
in the connecting point, which has to be consequently defined.

3.1.1 Modal analysis of the carbody

Assuming that the carbody is slender enough to be considered as a uniform beam, its
transverse vibration w(x, t) is ruled by the Euler - Bernoulli partial differential equation:

EJ
∂4w

∂x4
= −λ ∂

2w

∂t2
(3.1.1)

In order to have the derivative of the function w(x, t) respect to the space always equal
to the derivative respect to the time, it is possible to impose that the transverse vibration
function w(x, t) = Φ(x)G(t) is the product of a function depending on the only space
variable Φ(x) and another function depending on the only time variable G(t).

In particular the function space dependent Φ(x) defines the mode shapes, so the beam
intrinsic and fixed way of vibrating: just like it happens in the discrete system, the beam
motion can be described as a linear combination of its natural mode shapes.

On the contrary the function time dependent G(t) has the role to modulate the mode
shape amplitude in time domain and to assign a specific weight to each mode shape, thus
to characterize the response to an excitement.

After mathematical manipulation discussed in the appendix, it is possible to obtain
the general standing wave solution of the partial differential equation 3.1.1:

w(x, t) = [A sin (γx) +B cos (γx) + C sinh (γx) +D cosh (γx)] cos (ωt+ ψ) (3.1.2)

By imposing the proper boundary and initial conditions it is always possible to adapt
the general equation 3.1.2 to every specific study case, defining (A, B, C, D, γ, ω, ψ).
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In case of free response, the set of the time dependent function Gi(t) = cos (ωit+ ψi) of
equation 3.1.2, one for each mode shape, can be computed imposing the initial conditions.

Anyway since the carbody receives a random excitation from the track irregularities,
their value has to be integrated together with the equation of motion by introducing a
new set of independent variables G in addition to the discrete free degrees of freedom
(zB1; θB1; zB2; θB2; zA; θA) of the rigid system.

This leads to a new definition of the free independent variables vector:

xF = {zB1; θB1; zB2; θB2; zA; θA; G1; ...Gn} (3.1.3)

Instead the set of the space dependent functions of equation 3.1.2, one for each bending
mode, ΦI(x) = AI sin (γIx)+BI cos (γIx)+CI sinh (γIx)+DI cosh (γIx) can be computed
by imposing the boundary conditions.

In particular the carbody can be schematized as a beam with free-free boundary
conditions, excited by the forces transmitted through the secondary suspensions in corre-
spondence of the connection points.

Since the ends are free to translate and rotate, there are no information about w(0, t)
or w(L, t) and ∂w

∂x
|x=0 or ∂w

∂x
|x=L; so the proper boundary conditions consist in null shear

force and bending moment at the beam ends: T (0, t) = T (L, t) = M(0, t) = M(L, t) = 0.

FII1 FII2

cII1 kII1 cII2kII2

Figure 3.2: Modelling of the carbody with a free-free beam

After some computations summarized in the appendix, through the boundary condi-
tions application it is possible to obtain the equation defining the carbody mode shapes:

Φi(x) = [cos (γix) + cosh (γix)] +Ki [sin (γix) + sinh (γix)] (3.1.4)

Where the constant γ results from the characteristic equation:

cosh (γiL) cos (γiL) = 1 (3.1.5)

And the variable K is defined as:

Ki =
sin (γiL) + sinh (γiL)

cos (γiL)− cosh (γiL)

Since the characteristic equation 3.1.5 is a non homogeneous second order trigonomet-
rical function, it has infinite number of solution corresponding to infinite number of mode
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shapes, as requested for the continuous systems, and it has to be solved numerically: the
MatLab tool fsolve implementing a minimization algorithm has been used.

Moreover, thanks to the relationship ω2 = EJ
λ
γ4 coming from the Euler - Bernoulli

equation 3.1.1, it is possible to compute the flexible bending natural frequencies ω.

By referring to the data set reported in [29] with carbody length L = 20 m, linear
density λ = m

L
= 600kg/m and bending rigidity EJ = 2e8Nm2, it is possible to compute

the following representative natural frequencies:

Flexible bending mode First Second Third Fourth Fifth Sixth
γiL 4.730 7.853 10.996 14.437 17.279 20.420

ωi [rad/s] 32.293 89.017 174.509 288.472 430.928 601.874
fi [Hz] 5.140 14.168 27.774 45.912 68.584 95.791

Table 3.1: Representative natural frequencies of bending modes of the carbody

And after the substitution of γi in the mode shape equation 3.1.4 it is moreover possible
to represent the intrinsic bending modes of the car body:

0 5 10 15 20
1

2

3
Bounce rigid mode

0 5 10 15 20
-2

0

2
Pitch rigid mode

0 5 10 15 20
-2

0

2
First flexible bending mode

0 5 10 15 20
-2

0

2
Second flexible bending mode

0 5 10 15 20
-2

0

2
Third flexible bending mode

0 5 10 15 20
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0

2
Fourth flexible bending mode

0 5 10 15 20
-2

0

2
Fifth flexible bending mode
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-2

0

2
Sixth flexible bending mode

Figure 3.3: Representative mode shapes of the transverse vibration of the carbody

Where on the abscissa axis there is the coach length [0÷L = 20m] and on the ordinate
axis the transverse displacement. In addition the black dotted vertical lines represent the
secondary suspension position, defining the support position: the left at L1 = 3 m and
the right one at L2 = 17m.
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3.1.2 Definition of the modal matrices of the carbody

Once the mode shapes have been defined, it is possible to compute the modal mass ma-
trix, accounting for the inertia related to the transverse displacement of the carbody, and
the modal damping and stiffness matrices, due to the bending rigidity of the carbody.

The modal mass definition can be obtained from the kinetic energy formulation:

[
M1

m

]
=

∫ L0 λΦ1(x) Φ1(x) dx ...
∫ L

0
λΦ1(x) Φn(x) dx

... ...∫ L
0
λΦn(x) Φ1(x) dx ...

∫ L
0
λΦn(x) Φn(x) dx

 (3.1.6)

It is important to specify that, thanks to the orthogonality property of the shape func-
tion Φi(x), the modal mass matrix will always be diagonal: the integral of the product of
two different mode shape Φi(x)Φj(x) will always be null.

In order to be able to sum up the modal contribution to the mass matrix of the overall
rigid system, there is the need to make the modal matrix consistent respect to the other
matrices, which are referred to both the constrained (zC11; zC12; zC21; zC22) and the free
dof vectors (zB1; θB1; zB2; θB2; zA; θA; G1; ...;Gn). This is possible by hemming the modal
matrix of zeros in correspondence of the discrete system rigid independent variables:[

Mm

]
=

[
[0] [0]
[0] [M1

m]

]
(3.1.7)

The integral λ
∫ L

0
Φi(x)Φj(x) dx has been computed numerically by applying the trape-

zoidal method with a discretization of L/1000, since the analytical solution is not trivial.

The modal stiffness as well can be obtained from the potential energy formulation:

[
K1
m

]
=

EJ ∫ L0 Φ′1(x) Φ′1(x) dx ... EJ
∫ L

0
Φ′1(x) Φ′n(x) dx

... ...

EJ
∫ L

0
Φ′1(x) Φ′n(x) dx ... EJ

∫ L
0

Φ′n(x) Φ′n(x) dx

 (3.1.8)

Just like the modal mass matrix, the modal stiffness matrix will always be diagonal
and the same hamming procedure has to be performed.

An alternative way for computing the main diagonal terms of the modal stiffness
matrix kM ii, is by means of the corresponding modal mass mM ii and natural undamped
frequency ω0 i, avoiding the integral expression:

kM ii = mM ii ω
2
0 i

For what concerns the damping matrix, supposing the availability of experimental
data for the damping ratio ξi estimation, the modal contribution can be computed by
reversing the relationship ξi = cM ii / (2mM ii ω0 i):

[
R1
m

]
=

2ξ1mM11ω01 ... 0
... ...
0 ... 2ξnmMnnω0n

 (3.1.9)

The modal damping matrix [Rm] has to undergo the hamming procedure as well.
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3.1.3 Displacement of the point on the carbody
connected to the secondary suspension

For the computation of the secondary suspension elongation, there is the need to briefly
focus on the displacement of the upper ends, connected to the carbody.

In fact, while for the suspension ends connected to the bogie frame only the rigid de-
grees of freedom are involved, for the point on the carbody the contribution of the flexible
transverse vibration has to be taken into account as well.

The general rule of the superimposition principle still holds in case of a flexible body:
the bounce zA and pitch ± b θA contributions have to be summed up to the transverse
displacement of the rear wR or front wF connecting point, due to the flexible modes.

By definition, the transverse displacement wR(t) of a point belonging to a flexible
body can be approximated by summing all of the contribution of the first N mode shapes
evaluated in its corresponding position along the beam curvilinear abscissa xR:

wR(t) = w(xR, t) ≈
N∑
i=1

wi(xR, t) =
N∑
i=1

Φi(xR)Gi(t) =
N∑
i=1

ΦiR Gi(t)

Thus there is just the need to define respectively (ΦiR; ΦiF ) since the time variable Gi

modulating the vibration amplitudes under the external excitement is integrated with the
other rigid independent variables, as already explained. By referring again to the data
set of [29] already introduced and given the bogie wheelbase b = 14 m, is possible to get
the following transverse displacement contribution of the connection points:

Flexible mode First Second Third Fourth Fifth Sixth

xR = L
2
− b Φ1R = 0.624 Φ2R = −0.235 Φ3R = −0.883 Φ4R = −1.255 Φ5R = −1.300 Φ6R = −1.029

xF = L
2

+ b Φ1F = 0.624 Φ2F = 0.235 Φ3F = −0.883 Φ4F = 1.255 Φ5F = −1.300 Φ6F = 1.029

Table 3.2: Contributions of the bending modes in the secondary suspension elongation

It is worth noticing that in the odd modes the deflection has the same direction
and value, while in the even modes the deflection has still the same value but opposite
sign: this is thanks to the symmetry of both boundary condition and evaluated point.
Furthermore this is consistent with the already discussed mode shapes shown in figure 3.3.

At this point it is moreover possible to introduce the topic of the virtual work genera-
tion. In fact, if the secondary suspension force Fk is applied on a node of the i-th bending
mode so that Φi(xk) = 0, that mode will not be excited as long as there is no virtual
displacement δsk and no resulting virtual work δLk =

−→
F k ×

−→
δsk.

This means that, because of the carbody support position, it will be generally easier
for the forces transmitted by the secondary suspension to excite the fourth and the fifth
bending mode, which undergoes to a large transverse displacement in correspondence of
the connection points, rather than the first and the second, which are closer to the nodes.

Anyway, only by looking at table 3.2, it is impossible to state which will be the more
excited mode: additional information about the magnitude, frequency and phase of the
applied force are fundamental as well in order to exploit the response of a mode.
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3.2 Kinematics

The convention chosen for the spring elongation is positive during tensile deformation.
Thus for the computation of the reaction forces it is possible to refer to the general rule:

∆L = xU − xD

Fk = −k ∆L
xD

xU

FD

FU

Figure 3.4: Kinematic convention

The same consideration can be extended to damper elongation velocity ∆̇L in order
to compute the dissipative damping force Fc = −c ∆̇L generated.

The last thing to refresh before going through this section, is the definition of the
independent variables: the constraint motions are collected in the vector xC defined in
equation 3.0.1; the vehicle degrees of freedom in the vector xF defined in equation 3.1.3:

x = {xC ; xF} where

{
xC = {zC11; zC12; zC21; zC22}
xF = {zB1; θB1; zB2; θB2; zA; θA; G1; ...Gn}

(3.2.1)

3.2.1 Primary suspension

The lower end of the primary suspension is connected to the wheelset, thus is straight
forward to define the displacement as xD = zCij. On the contrary the upper end in
connected to the bogie frame, which undergoes to a bounce zBi and pitch θBi movement.

kIi1
cIi1

kIi2
cIi2

zBi θBi

zCi1 zCi2

2b

Figure 3.5: Primary suspension in passive vehicle

In order to combine the displacement and rotation contribute, the superimposition
principle can be used: the upper end displacement results in xU = zBi ± bθBi. Thus at
the end the overall primary suspension elongation will be:

∆LIij = xU − xD = (zBi ± bθBi)− zCij (3.2.2)

With + for the front suspension, with j = 2, and − for the rear suspension, with j = 1
while i = [1, 2] refers to the front or rear bogie frame
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The general rule of equation 3.2.2, can be used for the computation of all of the elon-
gations ∆LIij of the primary suspension, leading the following jacobian matrix definition:

[Λ∆LI ] zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 Gn

∆LI11 -1 1 -b
∆LI12 -1 1 b
∆LI21 -1 1 -b
∆LI22 -1 1 b

Table 3.3: Jacobian of the elongations of the primary suspension

Where the empty cells means null value.
At this point, the contribution of the primary suspension to the stiffness matrix [KI ]

can be computed: from the potential energy formulation it is possible to state that:

[KI ] = [Λ∆LI ]
T [kI ] [Λ∆LI ] (3.2.3)

Where [kI ] is a matrix collecting on its main diagonal the value of the stiffness of the
springs: diag{kI ; kI ; kI ; kI}. The same computation can be adapted for the contribution of
the primary suspension to the damping matrix [RI ] once is given [cI ] = diag{cI ; cI ; cI ; cI}:

[RI ] = [Λ∆LI ]
T [cI ] [Λ∆LI ] (3.2.4)

3.2.2 Secondary suspension

The lower end of the secondary suspension is connected to the middle of the bogie frame,
thus the pitch rotation θBi does provide no contribution and it is straight forward to define
the displacement as xD = zBi, with only the bogie bounce. The upper end is connected
to the carbody and it is affected by its bounce zA, pitch θA and bending vibration G.

kII1
cII1

kII2
cII2

zB1 θB1 zB2 θB2

zA θA

2a

Figure 3.6: Linear secondary suspension

The superimposition principle allows to state that xU = zA ± aθA + Φ1iG1 + ...ΦniGn

leading to the following definition of the overall elongation:

∆LIIi = xU − xD = (zA ± aθA + Φ1iG1 + ...ΦniGn)− zBi (3.2.5)

Where i = 1 refers to the rear suspension (ΦjR) and requires the sign −, while i = 2
refers to the front suspension (ΦjF ) and requires the sign +.
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In order to compute the contribution of the secondary suspension to the stiffness [KII ]
and damping [RII ] matrices, the jacobian matrix of the elongations of the secondary
suspension [Λ∆LII ] has to be defined by referring to the equation 3.2.5:

[Λ∆LII ] zC1 zC2 zC3 zC4 zB1 θB1 zB2 θB2 zA θA G1 Gn

∆LII1 -1 1 -a Φ1R ΦnR

∆LII2 -1 1 a Φ1F ΦnF

Table 3.4: Jacobian of the elongations of the secondary suspension

Again from the potential energy formulation it is possible to state that:

[KII ] = [Λ∆LII ]
T [kII ] [Λ∆LII ] (3.2.6)

Where [kII ] = diag{kII ; kII} is a matrix collecting on its diagonal the values of
the stiffness of the secondary suspension. The same computation can be extended to
the contribution of the secondary suspension to the damping matrix [RII ] once is given
[cII ] = diag{cII ; cII}:

[RII ] = [Λ∆LII ]
T [cII ] [Λ∆LII ] (3.2.7)
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3.3 Equations of the first configuration

Once all of the contributions of the matrices have been computed, it is possible to assem-
ble and define the terms required for the equations of motion of the passive system.

Knowing that the human perception is sensible up to 25Hz, by looking at the reference
table 3.1 it is possible to state that both the first and the second bending mode belong to
the frequency range of interest for the passengers comfort, thus have been introduced in
the study. By recalling the generic formulation of the vector x collecting the independent
variables in equation 3.2.1, its final expression can be defined as follow:

x = {zC11; zC12; zC21; zC22; zB1; θB1; zB2; θB2; zA; θA; G1; G2} (3.3.1)

3.3.1 Equations of motion for the passive system

For what concern the stiffness matrix [K], there are three contributions.
The contribution of the primary suspension [KI ], defined in equation 3.2.3, shows non

zero values in the columns and rows referred to both constrained xC and free xF variables:
it provides the system excitement and ensures the coupling between the constraint motion
and the response of the free degrees of freedom.

The contribution of the secondary suspension [KII ], defined in equation 3.2.6, has non
zero values only in the south east submatrix, in correspondence of the free variables xF :
it relates the bogie displacement to the response of the carbody and has to role to couple
the rigid and the flexible independent variables.

The contribution of the modal stiffness [Km], defined in equation 3.1.8, has the only
values on the main diagonal, in correspondence of the flexible variables: it accounts for
the bending stiffness of the car body.

[K] = [KI ] + [KII ] + [Km] (3.3.2)

The same considerations hold for the damping matrix: the contributions of the primary
suspension [RI ] is defined in equation 3.2.4; the contribution of the secondary suspension
[RII ] in equation 3.2.7; the modal contribution [Rm] in equation 3.1.9.

[R] = [RI ] + [RII ] + [Rm] (3.3.3)

For what concerns the mass matrix, there are two contribution: one accounting for
the rigid dofs [Md] and the other shown in equation 3.1.6 for the modal mass [Mm].

In order to compute the matrix of the rigid dofs [Md], it is important to highlight that:
the inertia associated to the constrained variables xC is neglected since there is no interest
in the computation of the contact forces; the rigid dofs correspond to the rotations and
displacements of the centre of mass of the bodies, thus to allocate the proper inertia in
the relative position on the main diagonal of [Md] is straight forward.

The resulting matrix will be [Md] = diag{0; 0; 0; 0;mB; JB;mB; JB;mA; JA; 0; 0}.

At the end, the overall mass matrix will result from the following expression:

[M ] = [Md] + [Mm] (3.3.4)
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Once all of matrices have been computed, the equations of motion of the passive
configuration referred to the independent variable x of equation 3.3.1 can be defined:

[M ] ẍ+ [R] ẋ+ [K] x = 0

In order to highlight the excitation term and the free independent variables whose
response has to be evaluated, it is necessary to perform a matrix partitioning.

The approach is based on the distinction of the mutual effect that the constrained
variables have on the free dofs and vice versa and allows to get the expression:[

[MCC ] [MCF ]
[MFC ] [MFF ]

] {
ẍC
ẍF

}
+

[
[RCC ] [RCF ]
[RFC ] [RFF ]

] {
ẋC
ẋF

}
+

[
[KCC ] [KCF ]
[KFC ] [KFF ]

] {
xC
xF

}
= 0

In particular the first row of this expression can be used for the computation of the
reaction forces in correspondence of the constrained variables xC , while the second one
relates the free dofs response to the constraint excitement.

Knowing from equation 3.3.4 that the sub matrix [MFC ] is null, the second row leads
to the final expression:

[MFF ] ẍF + [RFF ] ẋF + [KFF ] xF = −[RFC ] ẋC − [KFC ] xC (3.3.5)

The equation of motion has been numerically integrated by menas of the Matlab tool
ode45. In order to downgrade the system to a first order differential equation, a further
identity has been coupled to the equation 3.3.5:{

[MFF ] ẍF = −[RFF ] ẋF − [KFF ] xF − [RFC ] ẋC − [KFC ] xC
[I] ẋF = [I] ẋF

(3.3.6)

The equation 3.3.6 can be rewritten in matrix notation leading to the expression:

v̇ = [A] v + [BC ] uC (3.3.7)

Where the state vector v = {ẋF ; xF} collects the degrees of freedom and their deriva-
tives; the vector of the external excitement uC = {żC ; zC} contains the constraint motion
and their derivatives; the state matrix of the system [A] and of the external excitement
[BC ] are defined as follow:

[A] =

[
−[MFF ]−1[RFF ] −[MFF ]−1[KFF ]

[I] [0]

]
[BC ] =

[
−[MFF ]−1[RFC ] −[MFF ]−1[KFC ]

[0] [0]

]
(3.3.8)
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This procedure has been applied to the data set of a passenger railway vehicle [30]
that can be collected in the following table:

Car body mA = 34 250 kg Bogie frame mB = 3 000 kg
JA = 2 000 000 kn m2 JB = 2 200 kg m2

Primary suspension kI = 2 400 000N/m Secondary suspension kII = 500 000N/m
cI = 5 000Ns/m cII = 40 000Ns/m

Length
L = 24.5m
2a = 19m
2b = 2.5m

First bending mode
ω1 = 53.2 rad/s

Second bending mode
ω2 = 146.6 rad/s

f1 = 8.5Hz f2 = 23.3Hz
ξ1 = 0.0181 ξ2 = 0.0498

Table 3.5: First configuration data set

3.3.2 Natural frequencies and mode shapes

After the definition of the state matrix [A] in equation 3.3.8, whose dimension is 16× 16
consistently with the state vector v, the natural frequencies and the mode shapes of the
system can be computed.

The eigenvalues associated to the matrix [A] are 16 complex conjugate numbers, whose
imaginary part directly gives the 8 natural frequencies ω0:

ω0 [rad/s] f [Hz] ξ
Carbody bounce 5.0672 0.8065 0.1880
Carbody pitch 6.2821 0.9998 0.2394

Bogie frame bounce 41.0144 6.5277 0.2113
Bogie frame pitch 58.2793 9.2754 0.0609
First bending mode 52.7633 8.3975 0.0360
Second bending mode 146.4580 23.3095 0.0505

Table 3.6: Natural frequencies of first configuration

Moreover the ratio between the real and the imaginary part of the eigenvalues pro-
vides an estimation of the damping ratio associated to the mode, as shown in the table 3.6.

The correspondence between the dofs and the natural frequencies has been figured out
by looking at the eigenvectors of the state matrix [A] associated to each eigenvalue.

The eigenvector matrix has the same dimension 16×16 of the state matrix [A] and its
columns, which are complex conjugate, contain the mode shapes: the first rows refer to
the velocity, while the last to the displacement, according to the state vector v definition.

The absolute value of the eigenvector directly provides the amplitude of the displace-
ments of the independent variables in the specific mode shape, while the ratio of the
imaginary over the real part contain the information about the phase tanφ = =/<.
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The resulting mode shapes are summarized in the following table: the amplitudes are
obtained from to the normalized eigenvector in order to highlight the dominant contribute;
the phases are expressed as difference respect to the dominant dof.

zB1 θB1 zB2 θB2 zA θA G1 G2

In phase bogie bounce 0.7056 0 0.7056 0 0.0405 0 0.0518 0
f = 6.5790Hz − ξ = 0.2103 0◦ 213◦ 0◦ −56◦ 240◦ 253◦ 112◦ 85◦

Counter phase bogie bounce 0.7071 0 0.7071 0 0 0.0066 0 0
f = 6.4763Hz − ξ = 0.2122 0◦ 29◦ 180◦ 123◦ 258◦ 65◦ 254◦ 269◦

Bogie pitch 0 0.9784 0 0.2069 0 0 0 0
f = 9.2754Hz − ξ = 0.0609 144◦ 0◦ 101◦ 234◦ 8◦ 174◦ 256◦ 216◦

Bogie pitch 0 0.2320 0 0.9727 0 0 0 0
f = 9.2754Hz − ξ = 0.0609 −97◦ 30◦ −74◦ 0◦ 78◦ −42◦ −8◦ −74◦

Carbody bounce 0.0956 0 0.0956 0 0.9908 0 0.0090 0
f = 0.8065Hz − ξ = 0.1880 21◦ 177◦ 21◦ −20◦ 0◦ 21◦ 201◦ 201◦

Carbody pitch 0.5650 0 0.5650 0 0 0.6012 0 0.0020
f = 0.9998Hz − ξ = 0.2394 207◦ 267◦ 27◦ 158◦ 206◦ 0◦ 206◦ 207◦

First bending mode 0.4320 0 0.4320 0 0.0322 0 0.7910 0
f = 8.3975Hz − ξ = 0.0360 −66◦ −164◦ −66◦ −144◦ −249◦ −248◦ 0◦ −67◦

Second bending mode 0.0274 0 0.0274 0 0 0.0007 0 0.9992
f = 23.3095Hz − ξ = 0.0505 90◦ 273◦ 270◦ 197◦ 90◦ 89◦ 90◦ 0◦

Table 3.7: Mode shapes of the first configuration

For the sake of simplicity, the displacements lower than 1e− 6 are neglected.

Focusing on the mode shape dominated by the first bending mode, it is possible to
detect the involvement of the in phase bounce of the bogie frames: this is consistent with
the mode shape represented in figure 3.3, where the support points move synchronously
in the odd modes. The synchronous bogie bounce movement also activates the coach
bounce, thus the latter always appears together with the first bending mode.

The same happens for the second bending mode appearing always coupled with the
carbody pitch, since both are activated by the counter phase bounce of the bogie frames.
Again this is consistent with the mode shapes of figure 3.3: in the even modes, the support
points have opposite sign.

For what concern the bogie frame bounce, a small difference in the excitement fre-
quency depending on the phase can be observed: if the bogies undergo a synchronous
motion, the natural frequency is slightly higher and the carbody bounce and first bending
mode are activated; on the contrary when the bogies move in counter phase, the natural
frequency is slightly lower and second bending mode and carbody pitch appear.

For what concern the bogie pitch, its activation is completely decoupled from the other
dofs : as already explained, it may appear useless, but on the contrary it is needed for the
computation of the primary suspension elongation and thus of the controlled force.

The pitch of the bogie frame would be on the contrary involved in the longitudinal
displacement of the carbody, but this mathematical model of the vehicle only accounts
for the vertical dynamics.

26



Mathematical model

3.3.3 Frequency response function

With the definition of the equation of motion, the response in case of a monoharmonic
excitement can be computed, feasible under the assumption of dealing with an harmonic
railway irregularity.

Before computing the transfer function, it is important to briefly focus on the wheelset
displacement zCij: given the defect wavelength λD, the wheelbase pk and the vehicle
velocity v, in case of monoharmonic irregularity it is possible to refer to the wheel position
in terms of delay, represented by a phase, respect to the position of a reference wheel.

zCi1
zCi2

pk

λD

Figure 3.7: Track irregularity with monoharmonic profile

In particular by introducing the notion of the vector rotating in the complex plane,
the displacement along the railway profile can be described as:

z(s) = A ej ΩDs with ΩD =
2π

λD
(3.3.9)

Where s = s0 for the reference wheel, assumed to be the rear one; while for the other
wheels s = s0 + pk. In particular the values of the wheelbase are: for zC12 =⇒ 2b; for
zC21 =⇒ 2a; for zC22 =⇒ 2(a+ b). Thus from equation 3.3.9 it is possible to state:

zk(s) = A ej ΩD(s0+pk) = A ej ΩDs0 ej ΩDpk =⇒ zk(s) = z(s0) ejφk (3.3.10)

Where the phase delay is φk = ΩD pk = 2π
λD

pk. The equation 3.3.10 allows to rewrite
the vector of the constraint motion xC in case of monoharmonic irregularity as follow:

xC =


zC11

zC12

zC21

zC22

 =


zC11

zC11 e
jφ1

zC11 e
jφ2

zC11 e
jφ3

 = φ zC11 (3.3.11)

Moreover the equation 3.3.10 allows to introduce the definition of the real excitement
frequency. In fact by moving the constrain displacement z(s) from the spatial s to the
time t domain with the relationship s = vt, it is possible to observe that:

z(s) = A ejΩDs =⇒ z(t) = AejΩDvt = AejΩt

Thus the real excitement angular frequency is Ω = ΩDv = 2π v
λD

. This mean that
it depends on both the vehicle velocity v and the irregularity characteristic λD; thus in
order to excite the system about its resonances, those two aspects have to be tuned.
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Knowing the vehicle natural frequencies from table 3.6 and defined the relationship
of the excitement frequency f = v

λD
, it is possible to compute the critical velocities map

summarizing the (v, λD) combination able to excite the system in resonance.
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Figure 3.8: Critical velocities map for the first configuration

The vertical dotted lines of figure 3.8 highlight the main wheelbase in between the
two bogie frames: when λD = 2a the bogie frames move in phase, thus there is the max-
imum lagrangian component on the excitement of (zA; G1) independent variables; when
λD = 4a the bogie frames move in counter phase, thus there is the maximum lagrangain
component on the excitement of (θA; G2) independent variables.

Those considerations stress that for generating virtual work δL and exciting the sys-
tem, to have a force is not sufficient: a non zero lagrangian is furthermore necessary.

The synergy between the lagrangain of the mode shapes and the excitation frequency
is even more clear by looking at the spectrum of the frequency response function.

For computing the frequency response function, it is necessary to move the equations
of motion 3.3.5 from the time to the frequency domain. By imposing an harmonic input
zC(t) = zC0 e

jΩt and assuming an harmonic response xF (t) = xF0 e
jΩt it is possible to get:(

−Ω2[MFF ] + jΩ[RFF ] + [KFF ]
)
xF0 = − (jΩ[RFC ] + [KFC ])xC0

Considering the relationship xC = Φ zC from equation 3.3.11, the final expression is:(
−Ω2[MFF ] + jΩ[RFF ] + [KFF ]

)
xF0 = − (jΩ[RFC ] + [KFC ]) Φ zC0 (3.3.12)

Where, considering the relationship Ω = vΩD and the delay defined in equation 3.3.10,
the phase vector Φ(Ω) results a function of the excitement frequency as well:

Φk(Ω) = e
j 2π

pk
λD = ej

pk
v

Ω
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The frequency response has been computed by fixing the vehicle velocity v and by
varying the defect wavelength λD in order to get all the excitation frequencies f = v

λD
.
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Figure 3.9: Frequency response function of the first configuration with v = 100 km/h

The two bending modes (G1; G2) and the bounce and pitch of both carbody (zA; θA)
and bogie frame (zBi; θBi) are reported. In addition there are the responses of the car-
body supporting points, obtained through superimposition of the (zA; θA; G1; G2) dofs.

The first important thing to highlight, is the presence of the lobes: as long as the
defect wavelength λD is varying together with the excitation frequency Ω, its value may
excite the bogie frame in phase, maximizing the lagrangain component of the carbody
bounce and of the first bending mode while minimizing the lagrangian component of the
carbody pitch and of the second bending mode, or in counter phase, with a dual effect.
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This appear more clear noticing that the nodes in the response of the carbody bounce
correspond to middle of the carbody pitch lobes, and vice versa: it is possible to demon-
strate that the frequencies causing a drop in the response of the carbody pitch correspond
to a synchronous excitement of the bounce of the bogie frames by comparing the wave-
length of the irregularity λD and the distance of the bogie frames 2a = 19m:

f [Hz] 7.31 8.77 10.23 11.70 13.16 14.62
λD = v/f [m] 3.80 3.17 2.72 2.37 2.11 1.90

2a/λD 5.0 6.0 7.0 8.0 9.0 10.0

Table 3.8: Defect wavelength leading to a null lagrangian component on the carbody pitch

When the bogie wheelbase 2a is an integer multiple of the wavelength of the irreg-
ularity λD, the bogie frames move in phase leading to a null lagrangian component on
the carbody pitch, whose response drops; at the same time, this condition ensures the
maximum lagrangian for the carbody bounce. The vertical line in figure 3.9 shows that
in correspondence of the bounce node there is a pitch peak, and vice versa.

The lobes of the bogie frame response are wider than the lobes of the carbody response:
this effect is due to a larger fundamental frequency f = v

2b
as long as the wheelbase of the

bogie supports is shorter compared to the wheelbase of the carbody supports 2b < 2a.

In the same way, the fundamental frequency of the lobe f = v
λD

will increase with a
larger vehicle velocity v, leading to wider lobes, and vice versa.
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Even if the figure 3.9 gives an idea of the resonant frequencies of the mode shapes,
the peaks can be easier detected through the frequency response computed with a fixed
irregularity wavelength λD = 2a/1.75 = 10.86m and variable vehicle velocity v = f λD.

The ratio 2a/λD = 1.75 has been chosen considering a value equally spaced from 1.5,
which would excite the bogie frames in counter phase, and 2, which would excite the bogie
frames in phase: in this way, all of the mode shapes are supposed to be excited.
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Figure 3.10: Fist configuration frequency response function with λD = 10.86m

The peaks are consistent with the computed natural frequencies, summarized in table
3.6: the carbody pitch and bounce are about 1 Hz; the bogie pitch about 9 Hz and the
bounce about 7Hz; the first bending mode is at 8Hz while the second at 23Hz.

Moreover the figure 3.10 highlights the mutual interaction of the mode shapes, con-
sistently with the summarizing table 3.7.
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3.3.4 Equations of motion for the controlled system

In the passive configuration shown in figure 3.1, the primary suspension consists in a
spring and a damper with constant characteristic (kI ; cI). In the controlled configuration,
the passive damper is replaced by a semi active element with variable damping coefficient:

kIi1

fIi1

kIi2

fIi2

zBi θBi

zCi1 zCi2

2b

Figure 3.11: Primary suspension with semi active damper in controlled configuration

The semi active element generate a dissipative force fIij function of the suspension
elongation velocity ˙∆LIij and of the variable damping coefficient [cmin ÷ cmax], where
the first index i refers to the front or rear bogie frame while the second index j to the
front or rear wheelset. Without a fixed damping cIij , it is no longer possible to define
the matrix [RI ] of equation 3.2.7 providing the primary suspension contribution to the
system damping. Thus the force fIij has to be treated as an internal force applied to the
suspension ends.

kIi1 kIi2

zBi θBi

zCi1 zCi2

2b

fIi1 L

fIi1 U

fIi2 L

fIi2 U

Figure 3.12: Modelling of the control force generated in the semi active primary suspension

For computing the lagrangian δL = QT

I
δq of the virtual work δL =

−→
F × δ−→s I = uTf δsI

generated by the control force on the primary suspension, it is necessary to introduce the
vector uf , collecting the control forces computed a part by the controller, and the vector
δsI of the virtual displacements.

Considering that fIij L = −fIij U , the following reorganization can be arranged:

uf =



fI11 U
fI11 L
fI12 U
fI12 L
fI21 U
fI21 L
fI22 U
fI22 L


=



1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1




fI11
fI12
fI21
fI22

 = [ΛufF ] uF (3.3.13)
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Focusing on the vector of the virtual displacements δsI , it is possible to notice that the
lower application point directly experiences the wheelset displacement, while the upper
lays on the bogie frame and its motion can be computed by means of the superimposition
principle as follow:

δsIij L = δzCij δsIij U = δzBi ± bδθBi (3.3.14)

Since the virtual displacement δsIij is a function of the system independent variables
δx, it can be expressed in matrix notion as δsI = [ΛδsI ] δx, given the jacobian [ΛδsI ]:

[ΛδsI ] zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 Gn

δsI11 U 1 -b
δsI11 L 1
δsI12 U 1 b
δsI12 L 1
δsI21 U 1 -b
δsI21 L 1
δsI22 U 1 b
δsI22 L 1

Table 3.9: Jacobian of the virtual displacements of the primary suspension

At this point, the lagrangian component of the control force can be computed:

δL = QT

I
δx = uTf δsI =⇒ QT

I
= ([ΛufF ] uF )T [ΛδsI ] = uTF [ΛufF ]T [ΛδsI ]

The resulting Q
I
is a row vector; so by transposing it is possible to get:

Q
I

= [ΛδsI ]
T [ΛufF ] uF = [QI ] uF (3.3.15)

Leading to the final expression of the equations of motion:[
[MCC ] [MCF ]
[MFC ] [MFF ]

] {
ẍC
ẍF

}
+

[
[RCC ] [RCF ]
[RFC ] [RFF ]

] {
ẋC
ẋF

}
+

[
[KCC ] [KCF ]
[KFC ] [KFF ]

] {
xC
xF

}
=

[
[QC

I ]
[QF

I ]

]
uF

It is important to remind that: the damping matrix [R] = [RII ] + [Rm] doesn’t have
the primary suspension contribution [RI ], ensured by the forces vector uF ; the stiffness
and mass matrix are the same of the passive configuration, from equation 3.3.2 and 3.3.4.

Following the same procedure of the passive configuration, is furthermore possible to
define the state matrix notion already shown in equation 3.3.7:

v̇ = [A] v + [BC ] uC + [BF ] uF (3.3.16)

Where the state matrices [A] and [BC ] are the same of equation 3.3.8 while [BF ] is:

[A] =

[
−[MFF ]−1[RFF ] −[MFF ]−1[KFF ]

[I] [0]

]
[BC ] =

[
−[MFF ]−1[RFC ] −[MFF ]−1[KFC ]

[0] [0]

]

[BF ] =

[
−[MFF ]−1[QF

I ]
[0]

]
(3.3.17)
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3.4 Equations of the second configuration

The model of the second configuration has the same layout of the previous, reported in
figure 3.1, with the only difference that it includes a submodel for the description of the
secondary suspension dynamic behaviour.

The secondary suspension of the railway vehicles, whose role is to support the carbody
preventing the transmission of the high frequency excitements, is usually an air spring.

Figure 3.13: Air spring for the secondary suspension of railway vehicles

The basic structure on an air suspension consists in:

• a deformable rubber bellow, collecting the air;

• a laminated rubber as security device for avoiding impacts an the end of the stroke;

• an auxiliary air reservoir where the air flowing from the rubber bellow is directed
during the suspension compression;

• an orifice, which rules the air flow from the rubber bellow to the reservoir, controlling
the pressure losses and thus the dissipation of energy.

The modelling of the suspension is fundamental in order to get accurate results, es-
pecially from a dynamic point of view. In fact the air spring has its own dynamics, with
resonance and inertia effects, a non linear energy dissipation, a thermodynamic state of
the filling air to be characterized [31].

For this study case, the so called Nishimura model [32] has been used.

kII1
kII1U
cII1
kII1L

kII2
kII2U
cII2
kII2L

zB1 zB2

zA θA

Figure 3.14: Secondary suspension with Nishimura air spring model
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3.4.1 Model of the air spring

The model involves ideal linear spring
and damper, connected so that: the damper
cII is in parallel to the lower spring kIIL ,
both in series with the upper spring kIIU ;
this complex element is finally in parallel
with the main secondary spring kII .

In order to describe the transmitted
force, it is necessary to know the elongation
of every element, starting from the position
of the three highlighted points (zL; zM ; zU).

zL

zU

zM
kII

kIIU

kIIL
cII

y = ∆LII L

∆LII U

∆LII

Figure 3.15: Nishimura air spring model

Assuming a convention positive during tensile deformation, the elongations are:
∆LII = zU − zL
∆LII L = zM − zL = y

∆LII U = zU − zM = (zU − zL)− (zM − zL) = ∆LII − y
(3.4.1)

Since ∆LII U is the difference of the other two elongations (∆LII − y), the generated
force and the transfer function can be defined as function of (∆LII ; y) only.

By referring to the system of figure 3.14, it is possible to state that: ∆LII corresponds
to the standard elongation of the secondary suspension introduced in equation 3.2.5,
which is a function of the independent coordinates x of equation 3.3.1; on the contrary,
an additional set of independent variable y, needed for the description of the state of the
Nishimura model of the air spring, has to be integrated in the independent variables set:

x = {zC11; zC11; zC11; zC11; zB1; θB1; zB2; θB2; zA; θA; G1; G2; y1; y2} (3.4.2)

The force transmitted with this modelling, is given by the equation:

F = −kII∆LII − kIIU (∆LII − y)

= −kII∆LII − kIIL y − cII ẏ
(3.4.3)

The substitution of the right hand side is possible thanks to the continuity condition
about the node zM , that lead to the following balance of the vertical forces:

−kIIU (∆LII − y) = −kIIL y − cII ẏ (3.4.4)

Under the assumption of harmonic excitement ∆LII(t) = ∆LII0 e
j Ωt, the frequency

response function of the generated force can be computed by moving the equation 3.4.3
from the time to the frequency domain.

In order to solve the dependency on y, the expression of equation 3.4.4 in the frequency
domain can be substituted as long as it provides the relationship between (∆LII ; y):

y0 =
kIIU

(kIIL + kIIU ) + j Ω cII
∆LII0
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The final expression of the frequency response function of the generated force for a
given suspension elongation ∆LII0 after the substitution is:

F0 = − (kII + kIIL + kIIU ) + j (kII + kIIU ) Ω cII
(kIIL + kIIU ) + j Ω cII

∆LII0 (3.4.5)

In order to verify the system frequency response, the transfer function has been im-
plemented in MatLab with the data set of a high speed Shinkansen train [23].

Main stiffness kII = 67 400 [N/m] Upper stiffness kIIU = 2 740 000 [N/m]
Damping cII = 58 800 [Ns/m] Lower stiffness kIIL = 1 150 800 [N/m]

Table 3.10: Data set of the Nishimura model of the air sping

The figure 3.16 represents the response F0/∆LII 0 in a frequency range of [0÷ 40]Hz
and clearly highlights that the dynamic behaviour of the air spring model is non linear:
there is no correspondence respect to the trend of the traditional suspension consisting of
linear spring and damper in parallel.

Moreover, in order to compute an exhaustive study of the behaviour of the model, the
effect of the variation of the damping coefficient has been investigated.
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Figure 3.16: FRF of the force transmitted by Nishimura model of the air spring

By increasing the damping, the contribution −cII ẏ and consequently the generated
force have a greater magnitude. The difference gets smaller when the frequency effect Ω
becomes dominant and the transfer function of equation 3.4.5 goes to a steady state value
F0 → (kII + kIIU ) ∆LII0 .
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The transfer function of the transmitted force in equation 3.4.5 is furthermore im-
portant as long as it allows to characterize the performances of an equivalent suspension
simply made of a damper ceq and a spring keq in parallel.

In fact as long as there is no inertia contribution, the real content of the force fully
derives from the stiffness while the imaginary content comes from the damper:

keq = <

{
F0

∆LII0

}
Ωceq = =

{
F0

∆LII0

}
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Figure 3.17: Equivalent stiffness and damping of the Nishimura air spring model

The figure 3.17 represents the variation of the damping ceq II and stiffness keq II parame-
ter of the equivalent suspension, highlighting once more the non linear dynamic properties.

The equivalent stiffness increases with the frequency, showing a slope proportional to
the damping of the air spring cII ; on the contrary the equivalent damping has its maximum
value, which is proportional to the damping of the air spring cII , at low frequency and
drops at high frequency, with a slope again proportional to the damping coefficient cII .
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3.4.2 Lagrangian component of the force of the air spring

As long as for the air spring state description two additional independent variables (y1; y2)
are needed, one for the front and one for the rear suspension, the vector collecting the
independent variables has to be redefined according to the equation 3.4.2.

Assuming to consider only the first two bending mode, its final expression is:

x = {xC xF ; y} where


xC = {zC11; zC12; zC21; zC22}
xF = {zB1; θB1; zB2; θB2; zA; θA; G1; G2}
y = {y1; y2}

The layout of the longitudinal vehicle model is the same of figure 3.1: the only differ-
ence appears in the secondary suspension arrangement, including the variables (y1; y2):

2b 2b

L

2a

zC11 zC12 zC21 zC22

kI11

cI11

kI12

cI12

kI22

cI22

kI21

cI21

kII1 kII1U
cII1
kII1L

kII2 kII2U
cII2
kII2L

zB1 θB1 zB2 θB2

zA θA

y1 y2

mB

JB
mB

JB

mA

JA

Figure 3.18: Model of the vertical dynamics of the vehicle with Nishimura air spring

Since there are no differences on the primary suspension, the equations 3.2.3 and 3.2.4
defining the contributions on the stiffness and damping matrix still hold:

[KI ] = [Λ∆LI ]
T [kI ] [Λ∆LI ] [RI ] = [Λ∆LI ]

T [cI ] [Λ∆LI ] (3.4.6)

Where [kI ] = diag{kI ; kI ; kI ; kI} and [cI ] = diag{cI ; cI ; cI ; cI}, while the jacobian of
the elongations [Λ∆LI ] remain the very same as previously defined in table 3.3:

[Λ∆LI ] zC1 zC2 zC3 zC4 zB1 θB1 zB2 θB2 zA θA G1 G2

∆LI11 -1 1 −b
∆LI12 -1 1 b
∆LI21 -1 1 −b
∆LI22 -1 1 b

Table 3.11: Jacobian of he elongations of the primary suspension

38



Mathematical model

A different approach is needed in order to account for the secondary suspension: just
like it has been done in the controlled configuration for the control force, the secondary
suspension effect can be described as an internal force applied on its connection points:

kII1 kII2

zB1 zB2

zA θA

fII1L

fII1U

fII2L

fII2U

Figure 3.19: Modelling of the force generated by the air spring of the secondary suspension

As long as the main spring kII is a linear element directly placed in between the bogie
frame and the car body, its contribute can be included by using the usual equation 3.2.6:

[KII ] = [Λ∆LII ]
T [kII ] [Λ∆LII ] (3.4.7)

Given [kII ] = diag{kII ; kII} and recalling the jacobian matrix [Λ∆LII ] from table 3.4:

[Λ∆LII ] zC1 zC2 zC3 zC4 zB1 θB1 zB2 θB2 zA θA G1 G2

∆LII1 -1 1 -a Φ1R ΦnR

∆LII2 -1 1 a Φ1F ΦnF

Table 3.12: Jacobian of the elongations of the secondary suspension

For what concern the force generated by the remaining part of the suspension, con-
sisting in the arrangement of the elements (kIIL ; cII ; kIIU ), it is necessary to proceed with
the description of the virtual work:

δL =
−→
F II × δ−→s II

Where F II collects the internal forces (fIIiL ; fIIiU ) and δsII the virtual displacements of
their application points. The superimposition principle allows to compute the contribution
of each dofs in the definition of the virtual displacements, leading to the generic expression:

δsIIiL = δzBi δsIIiU = δzA ± aδθA + Φ1iδG1 + Φ2iG2

That can be expressed in matrix notion δsII = [ΛδsII ] δx as result of the product of a
jacobian matrix [ΛδsII ] and the vector of the independent variables δx:

[ΛδsII ] δzC11 δzC12 δzC21 δzC22 δzB1 δθB1 δzB2 δθB2 δzA δθA δG1 δGn

δsII1U 1 -a Φ1R ΦnR

δsII1L 1
δsII2U 1 a Φ1F ΦnF

δsII2L 1

Table 3.13: Jacobian of virtual displacement of the air spring forces
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For what concern the forces, thanks to the equilibrium condition 3.4.4 it is possible to
state that fIIiU = −fIIiL . Thus, for sake of simplicity, F can be rearranged as follow:

F II =


fII1 U
fII1 L
fII2 U
fII2 L

 =


1 0
−1 0
0 1
0 −1

 {fII1 UfII2 U

}
= [ΛFf ] f II

Where f
IIU

= −kII U ∆LIIU . The elongation ∆LIIiU of the upper part of the air spring
model, shown in figure 3.15 and computed in equation 3.4.1, is given by the difference of
the overall elongation ∆LIIi and the independent variable yi:

∆LIIiU = ∆LIIi − yi = [(zA ± bθA + Φ1iG1 + Φ2iG2)− zBi]− yi (3.4.8)

Since the elongation ∆LIIi U is a function of the independent variable vector x and
of the state variables of the air spring model y, by introducing the matrix notion it is
possible to state that ∆LII U = [Λx

∆LII N
]x+ [Λy

∆LII N
]y and so:

f
II

= −kIIU ∆LIIU = −kIIU
(

[Λx
∆LII N

] x+ [Λy
∆LII N

] y
)

Where the jacobian matrices [Λx
∆LII N

] and [Λy
∆LII N

] are defined from equation 3.4.8:

[Λx
∆LII N

] [Λy
∆LII N

]
zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 Gn y1 y2

∆LII1U -1 1 -a Φ1R ΦnR -1
∆LII2U -1 1 a Φ1F Φ1F -1

Table 3.14: Jacobian of the elongation of the Nishimura model of the air spring

At this point is finally possible to compute the lagrangian component of the forces
generated by the air spring, defined as follow:

δL = QT

II
δx = F T

II δsII =⇒ QT

II
= −kIIU

[(
xT [Λx

∆LII N
]T + yT [Λy

∆LII N
]T
)

[ΛFf ]
T
]

[ΛδsII ]

The resulting Q
II

is a row vector; with a transposition, it becomes:

Q
II

= −kIIU
(
[ΛδsII ]

T [ΛFf ] [Λx
∆LII N

] x + [ΛδsII ]
T [ΛFf ] [Λy

∆LII N
] y
)

Q
II

= [Qx
II ] x + [Qy

II ] y (3.4.9)

Once all of the contributes of the primary and secondary suspension has been defined,
it is possible to proceed in the equation of motion assembly.
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3.4.3 Equations of motion for the passive system

Since there is no inertia associated to the Nishimura model of the air spring, the mass
matrix of the new model is the same of the previous model, given in equation 3.3.4 by
the sum of the contribution of the rigid dofs [Md] and of the modal matrix accounting for
the inertia of the transverse bending deformation [Mm] from equation 3.1.6:

[M ] = [Md] + [Mm] (3.4.10)

For what concerns the stiffness matrix, there are three contributions: [KI ] accounting
for the primary suspension, defined in equation 3.4.6; [KII ] accounting for the main spring
of the secondary suspension, defined in equation 3.4.7; [Km] accounting for the carbody
bending rigidity, which is defined in equation 3.1.8 just like in the previous model:

[K1] = [KI ] + [KII ] + [Km]

The damping matrix has just two contributions: [RI ] for the primary suspension, given
in equation 3.4.6; [Rm] for the modal damping, shown in equation 3.1.9.

[R] = [RI ] + [Ry] (3.4.11)

At the end, by recalling the lagrangain component of the air spring model from equation
3.4.9, it is finally possible to define the equation of motion:

[M ] ẍ + [R] ẋ + [K1] x = [Qx
II ] x + [Qy

II ] y

From this expression, the stiffness matrix can be redefined by collecting x:

[K] = [K1]− [Qx
II ] (3.4.12)

In order to evaluate the response of the free independent variables and to highlight
the excitement term, the usual matrix partitioning can be performed:[
[MCC ] [MCF ]
[MFC ] [MFF ]

] {
ẍC
ẍF

}
+

[
[RCC ] [RCF ]
[RFC ] [RFF ]

] {
ẋC
ẋF

}
+

[
[KCC ] [KCF ]
[KFC ] [KFF ]

] {
xC
xF

}
=

[
[Qy

IIC
]

[Qy
IIF

]

]
y

The first row of this expression can be used for the computation of the reaction forces
in correspondence of the constrained variables xC , while the second one relates the free
dofs response to the constraint excitement.

Knowing that [MFC ] is null, the second row leads to the final expression:

[MFF ] ẍF + [RFF ] ẋF + [KFF ] xF = −[RFC ] ẋC − [KFC ] xC + [Qy
IIF

] y (3.4.13)

A brief consideration has to be done about the independent variables y characterizing
the air spring state: with the introduction of this new variables, in the equations of motion
3.4.13 the equations are fewer than the unknowns, leading to an underdetermined system.

For this reason in order to define the value of (y1; y2), the two continuity equation
3.4.4 of the Nishimura model relating y and x, has to be added to the system:{

cII ẏ1 + kIIL y1 = kIIU∆LII1U
cII ẏ2 + kIIL y2 = kIIU∆LII2U
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Knowing the elongation ∆LIIiU = ∆LIIi−yi = [(zA±aθA+Φ1iG1 +Φ2iG2)−zBi]−yi
from equation 3.4.8, the additional equations can be reorganized as follow:{

cII ẏ1 − kIIU (zA − aθA + Φ1RG1 + Φ2RG2 − zB1) + (kIIU + kIIL) y1 = 0

cII ẏ2 − kIIU (zA + aθA + Φ1FG1 + Φ2FG2 − zB2) + (kIIU + kIIL) y2 = 0

Leading to a generic matrix expression:

[N1] ẏ + [N2] xF + [N3] y = 0 (3.4.14)

At this point, by coupling 3.4.13 and 3.4.14, it is possible to get the complete expression
of the final equations of motion:{

[MFF ] ẍF + [RFF ] ẋF + [KFF ] xF = −[RFC ] ẋC − [KFC ] xC + [Qy
IIF

] y

[N1] ẏ + [N2] xF + [N3] y = 0
(3.4.15)

For the numerical integration of the equations of motion, the Matlab tool ode45 has
been used. Thus for downgrading the system to a first order differential equation, a
further identity has been coupled to the equation 3.3.5:

[MFF ] ẍF + [RFF ] ẋF + [KFF ] xF = −[RFC ] ẋC − [KFC ] xC + [Qy
IIF

] y

[I] ẋF = [I] ẋF
[N1] ẏ + [N2] xF + [N3] y = 0

(3.4.16)

The equation 3.4.16 can be rewritten in matrix notation leading to the expression:

v̇ = [A] v + [BC ] uC (3.4.17)

Where: the state vector v = {ẋF ; xF ; y} collects the free degrees of freedom, their
derivatives and the state variables of the air spring; the vector of the external excitement
uC = {żC ; zC} contains the constraint motion and its derivatives; the state matrix of
the system [A] and of the external excitement [BC ] are defined as follow:

[A] =

−[MFF ]−1[RFF ] −[MFF ]−1[KFF ] [MFF ]−1[Qy
IIF

]
[I] [0] [0]
[0] −[N1]−1[N2] −[N1]−1[N3]

 [BC ] =

−[MFF ]−1[RFC ] −[MFF ]−1[KFC ]
[0] [0]
[0] [0]


This procedure has been applied to the same data set used for the characterization of

the Nishimura model for the air spring, referring to an high speed Shinkansen train [23]:

Car body mA = 27 000 kg Bogie frame mB = 2 860 kg
JA = 1 840 000 kn m2 JB = 1 360 kg m2

Primary suspension kI = 17 600 000N/m Secondary suspension kII = 67 400N/m
cI = 123 000Ns/m cII = 58 800Ns/m

Nishimura model
kIIU = 2 740 000N/m

Length
L = 24.5m

N = kIIL/kIIU = 0.42 2a = 17.5m
kIIL = 1 150 800N/m 2b = 2.5m

First bending mode
ω1 = 51.5 rad/s

Second bending mode
ω2 = 142.0 rad/s

f1 = 8.2Hz f2 = 22.6Hz
ξ1 = 0.072 ξ2 = 0.198

Table 3.15: Second configuration data set
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3.4.4 Natural frequencies and mode shapes

With the first two bending modes, the state matrix [A] of equation 3.4.17 has dimension
18 × 18, due to the introduction of the state variables of the air spring (y1; y2). The
18 eigenvalues associated to the matrix [A] are complex conjugate: excluding the two
eigenvalues related to y, the remaining 16 related to xF contain the information of the
natural frequencies ω0 in the imaginary part:

ω0 [rad/s] f [Hz] ξ
Carbody bounce 14.3457 2.2832 0.0139
Carbody pitch 18.3383 2.9186 0.0385

Bogie frame bounce 107.3725 17.0889 0.3804
Bogie frame pitch 143.0784 22.7716 0.9877
First bending mode 61.1638 9.7345 0.0342
Second bending mode 139.6980 22.2336 0.2003

Table 3.16: Natural frequencies of the second configuration

Analogously to the procedure applied for the first configuration, the damping ratio ξ
associated to the mode shape can be estimated with the ratio of the real over the imagi-
nary part of the eigenvalues.

In this configuration, the eigenvector are organized so that: the first rows refer to the
velocity ẋF , the central to the displacements xF while the last to the air spring state y.
The resulting mode shapes are summarized in the following table:

zB1 θB1 zB2 θB2 zA θA G1 G2

In phase bogie bounce 0.7034 0 0.7034 0 0.0135 0 0.1013 0
f = 17.0942Hz − ξ = 0.3780 0◦ 99◦ 0◦ −180◦ −247◦ −136◦ 108◦ −239◦

Counter phase bogie bounce 0.7063 0 0.7063 0 0 0.0017 0 0.0471
f = 17.0835Hz − ξ = 0.3828 −180◦ 99◦ 0◦ −226◦ 39◦ −243◦ 28◦ −2◦

Bogie pitch 0 0.0097 0 1.0000 0 0 0 0
f = 22.7716Hz − ξ = 0.9877 8◦ −30◦ 52◦ 0◦ −183◦ −177◦ 107◦ −174◦

Bogie pitch 0 0.9013 0 0.4333 0 0 0 0
f = 22.7716Hz − ξ = 0.9877 −116◦ 0◦ −206◦ −28◦ −219◦ −70◦ −21◦ −185◦

Carbody bounce 0.0703 0 0.0703 0 0.8815 0 0.4616 0
f = 2.2832Hz − ξ = 0.0139 −7◦ 251◦ −7◦ 123◦ 0◦ 175◦ 176◦ −4◦

Carbody pitch 0.5723 0 0.5723 0 0 0.5611 0 0.1738
f = 2.9186Hz − ξ = 0.0385 168◦ 240◦ −12◦ 91◦ −36◦ 0◦ 142◦ 173◦

First bending mode 0.0856 0 0.0856 0 0.0473 0 0.9915 0
f = 9.7345Hz − ξ = 0.0342 −41◦ 110◦ −41◦ 157◦ −14◦ 180◦ 0◦ −21◦

Second bending mode 0.0302 0 0.0302 0 0 0.0004 0 0.9991
f = 22.2336Hz − ξ = 0.2003 10◦ 233◦ 190◦ 107◦ 155◦ −38◦ 125◦ 0◦

Table 3.17: Mode shapes of the second configuration

For the sake of simplicity, the values lower than 1e− 6 are neglected.
The considerations about the coupling of the independent variable discussed for the

first configuration still hold with the new system.
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3.4.5 Frequency response function

At this point it is possible to investigate the frequency response function: since the equa-
tions of motion 3.4.15 consist in a first and in a second order differential equation, it is
not possible to replicate the procedure of the previous configuration, but on the contrary
it is necessary to work on the state notion of the equations of motion 3.4.17:

v̇ = [A] v + [B] uC

Before moving to the frequency domain, it is important to briefly focus on the con-
strained displacement vector uC = {ẋC ; xC}. In fact by imposing xC to be an harmonic
function zCij = zC0 e

jΩ t, it is possible to rewrite uC with the following matrix expression:

uC =



jΩ zC11

jΩ zC12

jΩ zC21

jΩ zC22

zC11

zC12

zC21

zC22


=



jΩ
jΩ

jΩ
jΩ

1
1

1
1




zC11

zC12

zC21

zC22

 = [BΩ] xC (3.4.18)

Moreover recalling the equation 3.3.11 relating the wheel distance with the excitation
phase xC = ΦzC0, it is finally possible to get the state equation in frequency domain:

(jΩ [I]− [A] ) v0 = [B] [BΩ] Φ zC0 (3.4.19)

By recalling the definition of the real frequency of excitement f = V/λD, the critical
velocities map of the second configuration, given in figure 3.20, can be computed and
compared to the one of the first configuration, represented in figure 3.8: the larger natural
frequencies summarized in table 3.16 leads to a greater slope of the curves.
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Figure 3.20: Critical velocities map for the second configuration
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The considerations done about the frequency response function of the first configura-
tion (figure 3.9) with fixed velocity and variable irregularity wavelength still hold.

For this reason just the dual response highlighting the natural frequencies is reported:
the a irregularity wavelength λD = 10.86m is fixed and equal to the previous FRF while
the vehicle velocity is varied in order to match the excitation frequency f = V/λD.
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Figure 3.21: Second configuration frequency response function with λD = 10.86m

The resonant frequencies are consistent with the mode shapes shown in table 3.16: the
modes dominated by the carbody pitch and bounce are at about 2.5Hz; the mode shapes
associated to the flexible modes at 10Hz and 22Hz; for bogie frame modes there are the
two modes dominated by the in phase and in counter phase bounce at 17 Hz while the
pitch at 23Hz.
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The peaks associated to the motion of the bogie frames are completely damped because
of the large damping coefficient cI = 123 000 Ns/m of the primary suspension: in fact
from table 3.16 it is possible to see that the damping ratio ξ of the mode shapes dominated
by the bogie frame motion is always very large if compared to the other mode shapes.
This aspect creates some doubt about the reliability of the data set taken from [23].

3.4.6 Equations of motion for the controlled system

As already discussed, in the controlled system the passive damper cI of the primary
suspension is replaced with a semi active element generating a force fIij , function to the
elongation velocity ∆LIij and to the variable damping coefficient [cmin ÷ cmax].

Consequently, the matrix [RI ] computed in equation 3.4.6 can no longer be defined and
the control force generated in the primary suspension has to be computed as an internal
force applied in the suspension connection points, as shown in figure 3.12.

In order to compute the lagrangian component Q
I
of the control force, the same

procedure applied for the first configuration con be followed, leading to the final expression
of equation 3.3.15:

Q
I

= [ΛδsI ]
T [ΛufF ] uF = [QI ] uF

By recalling from the passive system the already introduced mass matrix from equation
3.4.10 [M ] = [Mm] + [Md], the damping matrix [R] = [Rm] from equation 3.4.11 without
the primary suspension contribution which is included in [QI ], the stiffness matrix with
the contribution of the air spring model [K] = [KI ] + [KII ] + [Km]− [Qx

II ] from equation
3.4.12, the lagrangian component of the secondary suspension [Qy

II ] y from equation 3.4.9
and the lagrangian component of the control force [QI ] just computed, the final equations
of motion of the controlled system can be finally computed:[
[MCC ] [MCF ]
[MFC ] [MFF ]

] {
ẍC
ẍF

}
+

[
[RCC ] [RCF ]
[RFC ] [RFF ]

] {
ẋC
ẋF

}
+

[
[KCC ] [KCF ]
[KFC ] [KFF ]

] {
xC
xF

}
=

[
[QC

I ]
[QF

I ]

]
uF +

[
[Qy

IIC
]

[Qy
IIF

]

]
y

Thanks to the matrix partitioning and by coupling the equations of motion with the
continuity equation 3.4.14 for the computation of the air spring state, it is possible to get:{

[MFF ] ẍF + [RFF ] ẋF + [KFF ] xF = −[RFC ] ẋC − [KFC ] xC + [Qy
IIF

] y + [QF
I ] uF

[N1] ẏ + [N2] xF + [N3] y = 0

By repeating the same procedure for downgrading the equation to a first order differ-
ential equation explained for the passive configuration and by introducing the state vector
v = {ẋF ; xF ; y}, the constraint motion vector uC = {ẋC ; xC} and the control force vector
uF = {fI11 ; fI12 ; fI21 ; fI22}, it is possible to get the final state formulation:

v̇ = [A] v + [BC ] uC + [BF ] uF (3.4.20)

Where the state matrices are defined as follow:

[BF ] =

[MFF ]−1[QF
I ]

[0]
[0]

 [BC ] =

−[MFF ]−1[RFC ] −[MFF ]−1[KFC ]
[0] [0]
[0] [0]


[A] =

−[MFF ]−1[RFF ] −[MFF ]−1[KFF ] [MFF ]−1[Qy
IIF

]
[I] [0] [0]
[0] −[N1]−1[N2] −[N1]−1[N3]

 (3.4.21)
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3.5 Configuration comparison

From the mathematical point of view, the two configurations differ only for the model
of the secondary suspension: the second configuration requires two additional variables
(y1; y2) for the description of the air spring state and thus two additional equations.

Anyway, from the mechanical point of view the two system are very similar: the air
spring model is just slightly affecting the response of the system.

Despite the similarity of the mode shapes, the corresponding natural frequencies are
very different, as shown in the following comparative table 3.18: this represents the crucial
difference of the two configurations.

Configuration 1 Configuration 2
f [Hz] ξ f [Hz] ξ

In phase bogie bounce 6.6 0.21 17.1 0.38
Counter phase bogie bounce 6.5 0.21 17.1 0.38

Bogie pitch 9.3 0.06 22.8 0.99
Carbody bounce 0.8 0.19 2.3 0.01
Carbody pitch 1.0 0.24 2.9 0.04

First bending mode 8.4 0.04 9.7 0.03
Second bending mode 23.3 0.05 22.2 0.20

Table 3.18: Natural frequencies comparison

This contrast is caused by the differences in the data set: while the inertia of the first
configuration (table 3.5) are similar to the one of the second configuration (table 3.15),
the stiffness of the second data set are one order of magnitude greater (at the primary
suspension kI1 = 2.4e6 against kI2 = 17.6e6).

This pushes the natural frequencies to higher values.

The same happens for the damping, leading to higher damping ratio ξ especially in
the modes dominated by the bogie frame motion and consequently by the first flexible
modes (at the primary suspension cI1 = 5e3 against cI2 = 123e3).

Even in the value of cI2 is off the chart, generating doubts on the reliability of the
data set taken from [23], this configuration has been studied as long as its strong contrast
allows to point out interesting considerations.

The aim of the following chapter is to figure out how this fundamental differences
in the properties of the passive system affect the performances of the controller, thus
understand the design features to consider for obtaining a good control system.
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Control strategies for the primary sus-
pension

The control strategy chosen for reduction of the excitement of the carbody through the
management of the vibration transmitted by the bogie frame, is based on a replication of
the ideal SkyHook, which from a theoretical point of view in suitable only for full active
control system.

In order to show the main features of this solution, let’s consider a simple system made
of a mass supported on an irregular surface, which supposes to simulate the standard
quarter-car model of a vehicle.

xC

x

xC

x

Figure 4.1: SkyHook main concept

In the passive configuration, depicted on the left, the sprung mass experiences a force:

F1 = −c (ẋ− ẋC) − k (x− xC)

In order to sustain the weight and to reduce the relative displacement between the
mass and the road, a stiff suspension is required; on the other hand, in order to isolate
the disturbances, a soft suspension would be preferred [26].

Supposing to connect the damper to an inertial reference, it would be possible to
design a suspension as stiff as desired, but meanwhile to damp the absolute vibration as
long as the sprung mass experiences a force:

F2 = c ẋ − k(x− xC)

The purpose of the control system is to generate a force simulating the effect of F2 by
commanding the semi active damper of the primary suspension.
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4.1 Layout of the control system

The control system designed for this work supposes to model a control unit, which com-
mands an electro hydraulic semi active damper, and to account for the dynamic of the
current ruling the opening of the solenoid valve of the semi active damper itself.

In particular the dynamic of the response of the solenoid valve has been modelled as
a simple first order system, similarly to the approach described in [21].

The architecture of the control system is fixed in all of the evaluated control strategies
and it elaborates step by step several signals.

• The command variable uR: it is the reference value of the control force, that is
computed by the algorithm and that the variable damper should generate.

• The intermediate variable IR: after the comparison and eventually the saturation
of the required force uR with the damper performance curve, a current value IR is
associated to the command variable uR. It accounts for the setting of the charac-
teristic parameter of the semi active damper and it is the signal sent to the semi
active damper itself in real applications.

• The actual command I: in order to account for the dynamic of the current ruling
the opening of the solenoid valve, the current IR representing the required force
is fed to a first order system whose output I represents the actual current in the
solenoid valve and its actual opening, ruling the magnitude of the generated force.

• The generated force uF : with a reverse process, the applied force is computed from
the actual current I.

Control
algorithm

Saturation
curve

uR

First or-
der system

IR Semi active
damper

I

Mechanical
system

uF

Disturbance
uC

v

v

Figure 4.2: Chart of the workflow of the control system

The blue boxes standing for the general control system have been kept fixed in the
several simulation computed; on the contrary the green box representing the control
algorithm has been changed in order to evaluate the differences in the performance. The
computation of the command variable uR is obviously always based on the evaluation of
the actual state v of the system.
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4.2 Relevant features of the control system layout

The control system layout has been defined after studying and evaluating previous pro-
posal [21] [23] [24] in order to point out strengths and weaknesses. In particular the most
important new features consist in accounting for the current I and for the performance
curve of the semi active damper, saturating the required force.

In order to understand the benefits provided by the introduction of the intermediate
variable, the figure 4.3 is proposed: it represents in red color the time story of the required
force uR that the control unit asks to the semi active damper and the associated current
IR; in blue color the filtered current I accounting for the actual state of the solenoid valve
opening affected by the dynamic of the response and the consequently generated force uF .
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Figure 4.3: Comparison between the required and applied force

By looking at figure 4.3, it is worth to stress is that the applied force uF is always
opposite to the elongation velocity, consistently with the application of a semi active
damper and independently from the sign of the command variable.

In fact the required force is not necessary dissipative: there is no evidence that the
force uR needed for the reduction of the absolute velocity of the unsprung mass has a
direction opposite to the elongation velocity ∆̇L of the suspension. For this reason, from
a theoretical point of view, only a full active element would be able to obtain such a result.

This architecture of the control system allows to decouple the required uR and the
applied uF force through the intermediate variable I, which carries only the information
about the solenoid valve opening and indirectly about the amplitude of the force and
removes the constrain of the direction of the required force uR. This approach ensures:

• a proper modelling of the behaviour of a real semi active damper;

• an easy management of the issue related to the sign of the dissipative force uF .
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The figure 4.3 allows furthermore to enhance another strengths of the layout of the
control system, resulting from the implementation of the dynamic behaviour of the cur-
rent ruling the opening of the solenoid valve. In fact by comparing the required uR and
applied uF forces, it is possible to notice that the discontinuity of the required force are
damped in the applied force thanks to the first order filter effect, leading to a continuous
and smooth actuation.

The continuous and smooth actuation is very important in order to avoid the impact
caused by the application of a sudden forces, the related detrimental vibrations and to
manage the non linear behaviour typical of a two state control algorithm.

For what concerns the introduction of the performance curve of the semi active damper,
the important feature consists in the possibility to have a direct control on the applied
force, allowing the challenging investigation of how the performances of the suspension
affect the response. This aspect results very interesting considering that:

• in a passive suspensions, a larger damping coefficient improves the performances
around the resonant frequency, but it is detrimental for the transmissibility at high
frequencies, as shown in the figure 4.4 referred to the simple system of figure 4.1;

• in a semi active suspension, on the contrary, it is generally possible to use semi
active damper able to generate larger forces because, thanks to their adjustability,
the high frequency drawback is contained.

In order to characterize the effect of the performance of the semi active damper in the
transmissibility at high frequencies and thus in the response of the carbody, a variable
KPC acting as a scale factor of the performance curve has been introduced.
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Figure 4.4: Effect of the damping in the response of the supported mass of figure 4.1
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4.2.1 Performance curve of the semi active damper

The figure 4.5 shows the performance curve of the semi active electro hydraulic damper
used as a reference for this work. The curve has been taken from the example reported
in Sugahara’s paper [24].
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Figure 4.5: Semi active damper performance curve [24]

The semi active damper is able to generate a force F = −c ∆̇L proportional to both
its elongation velocity ∆̇L and the variable damping coefficient c ∈ [cmin ÷ cmax]. Thus,
for a given elongation velocity ∆̇L, the force can be adjusted by acting on the damping
coefficient c, driving the system response and defining a two dimension working area.

The figure 4.5 shows that the lower limit of the performance curve follows a linear
trend: at null current the damping coefficient is constant and equal to cmin, indepen-
dently from the elongation velocity. On the contrary the upper limit follows a quadratic
low for small elongation velocities, allowing to generate high forces even with small ∆̇L;
than the trend shows a plateau with a soft linear trend so that the force saturates and
even, reaching higher elongation velocities, it remains almost constant.

Furthermore the figure 4.5 proposes to show an example of how the intermediate
current works: given the elongation velocity ∆̇L of the considered time instant, the control
algorithm compute the required force uR and associate a current IR to its value depending
on the available range of forces [Fmax; Fmin]:

IR =
uR − Fmin
Fmax − Fmin

Because of the dynamics of the current ruling the solenoid valve opening, the semi
active damper does not directly receive the desired current value IR, but the filtered I.
At this point the process is reversed: given I, the amplitude of the force uF that the semi
active damper is able to generate with the actual elongation velocity is computed.
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At the end it is furthermore important to highlight that the semi active damper
behaviour is symmetrical in elongation and compression, thus just the axis with positive
elongation velocity is depicted in figure 4.5.

4.2.2 First order system modelling
the dynamic behaviour of the current

The dynamics between the reference current IR and the one actually received by the semi
active damper I is modelled as a simple first order system:

I =
1

1 + τs
IR (4.2.1)

The time constant τ has been set to 25ms, replicating the choice of [24]. Furthermore
it has been investigated that this value offers a good compromise between the quickness
of the response, thus the amplitude of the generated force respect to the required one,
and the smoothness of the actuation: in fact the sudden variation of current and of the
forces is detrimental because may lead to impacts and additional vibrations.
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Figure 4.6: Effect of the time constant τ on the intermediate variable

As long as the control unit evaluates and actuates each semi active damper indepen-
dently from the others, the current signal is made up four values, one for each suspension:
IR = {IR11 ; IR12 ; IR21 ; IR22}. The same considerations hold for the vector I.

In order to get I from equation 4.2.1 and compute its dynamic behaviour, it is necessary
to move to the time domain and to integrate the signal:

τ İij + Iij = IR ij =⇒ İij = −1

τ
Iij +

1

τ
IR ij (4.2.2)

The system made of the equations 4.2.2 accounting for all of the four signals Iij can
be furthermore expressed in matrix notation as follow:

İ = − 1
τ


1
0 1
0 0 1
0 0 0 1

 I + 1
τ


1
0 1
0 0 1
0 0 0 1

 IR = [D] I + [DR] IR (4.2.3)
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In order to solve the equation 4.2.3, it has to be coupled together with the equations
of motion. By recalling the equation of motions of the first controlled configuration from
equation 3.3.16 it is possible to get:

[MFF ] ẍF + [RFF ] ẋF + [KFF ] xF = −[RFC ] ẋC − [KFC ] xC + [QF
I ] uF

[I] ẋF = [I] ẋF
İ = [D] I + [DR] IR

By introducing the new state vector v = {ẋF ; xF ; I} and recalling the external ex-
citement vector uC = {ẋC ; xC} it is possible to get the final state expression:

v̇ = [A] v + [BC ] uC + [BI ] IR + [BF ] uF (4.2.4)

Where the required current signal IR is computed by the control unit, which evaluates
the system state, while uF is the applied force obtained from the actual current signal I,
that is fed to the semi active actuator. The matrices are defined as follow:

[A] =

−[MFF ]−1[RFF ] −[MFF ]−1[KFF ] [0]
[I] [0] [0]
[0] [0] [D]

 [BI ] =

 [0]
[0]

[DR]



[BC ] =

−[MFF ]−1[RFC ] −[MFF ]−1[KFC ]
[0] [0]
[0] [0]

 [BF ] =

[MFF ]−1[QF
I ]

[0]
[0]


The same procedure can be applied to the second configuration: by recalling the

equations of motion 3.4.20 and coupling them with equations 4.2.3, it is possible to get:
[MFF ] ẍF + [RFF ] ẋF + [KFF ] xF = −[RFC ] ẋC − [KFC ] xC + [Qy

IIF
] y + [QF

I ] uF
[I] ẋF = [I] ẋF
[N1] ẏ + [N2] xF + [N3]y = 0

İ = [D] I + [DR] IR

Defined the state vector v = {ẋF ; xF ; y; I}, containing the state variable of the air
spring as well, and recalled the other vectors (uC ; uF ; IR), the final state expression is:

v̇ = [A] v + [BC ] uC + [BI ] IR + [BF ] uF (4.2.5)

Despite the similar expression, because of the different state vector the matrices are:

[A] =


−[MFF ]−1[RFF ] −[MFF ]−1[KFF ] [MFF ]−1[Qy

IIF
] [0]

[I] [0] [0] [0]
[0] −[N1]−1[N2] −[N1]−1[N3] [0]
[0] [0] [0] [D]

 [BI ] =


[0]
[0]
[0]

[DR]



[BC ] =


−[MFF ]−1[RFC ] −[MFF ]−1[KFC ]

[0] [0]
[0] [0]
[0] [0]

 [BF ] =


[MFF ]−1[QF

I ]
[0]
[0]
[0]
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4.3 SkyHook strategy for the semi active damper

The first control logic investigated is the approximation proposed by Karnopp [26] in or-
der to reproduce the SkyHook control strategy in a semi active control system.

The control strategy concept is based in the comparison of the direction of the sus-
pension damping force, opposite to the elongation velocity, and the direction of the body
velocity: if the force is acting in opposite direction respect to the body velocity, it is able
to slow the mass down, leading to the desired effect; on the contrary if the force acts in
the same direction of the body velocity, it is pushing the mass with a detrimental effect.

xC

x

f

f

Figure 4.7: Karnopp main concept

ẋ > 0 ẋ < 0

f < 0 3 7 ∆̇L > 0

f > 0 7 3 ∆̇L < 0

Table 4.1: Karnopp approximation strategy

Under the assumption to keep the definition of the required force proposed in [23]:

uR ij = −1

2
(Gz żBi ± b Gθ θ̇Bi)

where Gz = 300 000 [Ns/m] and Gθ = 50 000 [Ns/m] are gains needed in order
to divide the damping force in the contribution of the bogie frame bounce and pitch,
allowing to drive the generated thrust toward the reduction of the vertical displacement
of the bogie frame [23], it is possible to reduce the strategy of table 4.1 to the following
simple generic rule:

uR ij =

{
−1

2
(Gz żBi ± b Gθ θ̇Bi) if ẋi∆̇Lij > 0

0 if ẋi∆̇Lij < 0
(4.3.1)

The control law 4.3.1 is a simple two state algorithm. Usually in order to avoid dis-
continuity in the required force and non linear behaviour in the system response, more
sophisticated algorithms are preferred, for example the linear SH [27] ; anyway this prob-
lem is avoided thanks to the control system layout: in fact the introduction of the filtered
intermediate variable accounting for the dynamics of the solenoid valve ensures a contin-
uous and smooth actuation.
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4.4 Acceleration Driven Damper control

The second algorithm investigated is the Acceleration Driven Damper control (ADD) [28].

As suggested by the name, this algorithm is a counterpart of SkyHook control and,
similarly to the Karnopp approximation, generates the control force depending on the di-
rection of the deflection velocity of the suspension and of the acceleration of the suspended
mass through the control law:

uR ij =

{
−1

2
(Gz żBi ± b Gθ θ̇Bi) if ẍi ∆̇Lij > 0

0 if ẍi ∆̇Lij < 0
(4.4.1)

Again, the equation 4.4.1 is a two state control law, but the same considerations re-
ferred to the previous control law 4.3.1 hold: the non linearity issues caused by the sudden
required force switch are managed by the filter on the intermediate variable accounting
for the dynamics of the solenoid valve, ensuring a smooth and continuous actuation.

As it is possible to see from the conditions in equation 4.4.1, for the application of
this algorithm, the information of the bogie frame acceleration is mandatory, whereas the
state matrix formulation of equation 4.2.5 and 4.2.4 provides only (ẋF ; xF ).

Thus, in order to estimate ẍF from ẋF , it has been designed a filter H(s) = s H1(s)
made of a second order Butterworth filterH1(s) with cutoff frequency at 100Hz, providing
vk+1 from (vk; vk−1), and a derivative block in series in order to move from vk+1 to ak+1.

H(s) = s H1(s)

H1(s) =
3.95e5

s2 + 888.6 s+ 3.95e5
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Figure 4.8: Bode diagram of H(s)1

Every 1 ms the integration is interrupted; the whole velocity time story is fed to the
filter in order to remove the problem related to the initial transient and allowing to be
more accurate; the last value of the filter output is used in the logic switch an is held
constant in the following 1ms of integration as it would happen with a real sampled data.

No additional noise is consiedered.

The filter H1(s) is a Butterworth filter since no particular specifications are required
for this application and it ensures a good tradeoff between the decay rate and the ripples
in both the passing and stopping bandwidth.
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From a practical point of view, referring the workflow chart of figure 4.2, the filter is
placed before the control algorithm block processing the mechanical system output:

Control
algorithm

Second or-
der filter

Saturation
curve

uR

First or-
der system

IR Semi active
damper

I

Mechanical
system

uF

Disturbance
uC

v

vv, v̇

Figure 4.9: Chart of the workflow of the control system with ADD controller

In the previous strategy, the actuation was based on simple considerations about the
force direction; in this approach [27], as long as the command variable is driven by the
acceleration, given the discretization interval ∆T for refreshing the acceleration, the aim
of the control algorithm is the minimization of:∫ (k+1)∆T

k∆T

|ẍ(t)| dx

In absence of track preview, this algorithm is expected to perform a larger reduction
of the vertical carbody accelerations if compared to the SkyHook strategy [27]:

• the ADD control should provide highest disturbance attenuation.

• the ADD control should be uniformly better than the passive in a wide frequency
range, while the SkyHook one only about the natural frequency of the mode shape
associated to the actuated degree of freedom.
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Numerical simulation of
semi active control system effects

In this chapter, a comparison is performed to assess the performance of the considered
combinations of passive vehicles and control algorithms.

The main aim is to understand if the primary suspension control approach may have
an engineering interest in order to improve the passenger comfort by reducing the carbody
vibrations. In addition it is important to detect the relationship between the effective-
ness of the control strategy and the dynamic properties of the passive vehicle in order to
understand weaknesses and strengths of this semi active control approach.

In order to estimate the carbody vibration level, the accelerations of the front and
rear points on the carbody connecting the latter to the secondary suspension have been
evaluated. In fact they can be considered representative points of the overall effect as long
as, by means of the superimposition principle, their response is given by the contribution
of all of the independent variables of the carbody:

zF = zA − bθA + Φ1FG1 + Φ2FG2

zR = zA + bθA + Φ1RG1 + Φ2RG2

Furthermore for the evaluation and the comparison of the vibration disturbance, the
root mean square value of both the displacement and the acceleration of the signals has
been computed and taken as reference. In particular as long as the state vector v provides
only the information about the displacements and the velocities (xF ; ẋF ), the acceleration
ẍF has been computed backward from the state variables.

For the evaluation of the improvement, it has been introduced a variation rate between
the root mean square value of the passive rmsP and of the controlled configuration rmsC :

variation% =
rmsP − rmsC

rmsP
To ensure the consistency of the comparison, of course the same track irregularity

profile has been used for exciting the system in all simulations and, in order evaluate a
wider working range, the same vehicle velocities have been tested:

V = [80; 130; 180; 230] km/h

The variable KPC needed to scale linearly both [uR; Fmin; Fmax] has been critically
set in every simulation in order evaluate the dependency on the applied force.

59



Di Stefano

5.1 First configuration with SkyHook strategy

The first test performed consists in the computation of the response of the first vehicle
configuration with the Karnopp strategy approximating the SkyHook logic.

Before going through the results, it is important to recall the natural frequencies of
the mode shapes from table 3.18: as it has been said, since the control force is not acting
directly on the car body, there is a strong dependency between the response and the
dynamic properties of the passive system.

For this reason it is fundamental to keep in mind the following values:

Bogie bounce fzB = 6.6Hz
Bogie pitch fθB = 9.3Hz

Carbody bounce fzA = 0.8Hz
Carbody pitch fθA = 1.0Hz

First bending mode fG1 = 8.4Hz
Second bending mode fG2 = 23.3Hz

Table 5.1: Natural frequencies of the mode shapes of the first configuration

For this simulation, the shape factor of the performance curve KPC has been set to
0.45: this value leads to a control force whose average value of the root mean square for all
of the velocities is 1 309N ; in the same conditions the passive damper generates in average
419N , with a ratio of 3.13. This can be demonstrated by the following figure, representing
the damping force at the primary suspension for a vehicle velocity of V = 80 km/h:
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Figure 5.1: Primary suspension force comparison between controlled and passive system

This magnification of the forces is allowed by the adjustability of the semi active
damper that contains the drawback ofthe transmissibility of the passive system in the
seismographic region when the damping coefficient is increased, as shown in figure 4.4.
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Figure 5.2: Time domain response of the accelerations of the independent variables of the
flexible modes for the first configuration with the SkyHook approximation
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By looking at the time domain response of the two flexible independent variables
acceleration (G̈1; G̈2) in figure 5.2, it is possible to detect a dual trend, independently
from the vehicle velocity:

• from one side the controller is able to reduce the first bending mode response;

• from the other side it is completely ineffective in reducing the second bending mode
amplitudes, whose response shows furthermore high frequency components.

In order to understand the reason for this behaviour, it is helpful to investigate the
power spectra density of the responses. In particular the acceleration of the carbody
supporting points have been evaluated, since they are representative of the carbody overall
behaviour. While going through this analysis, it is important to keep in mind that:

• the control system is acting on the primary suspension, thus it is expected to mostly
affect the bogie frame response about the natural frequency associated to its bounce
fzB = 6.6Hz with consequences on the vibration transmitted to the carbody in that
frequency range;

• from table 5.1, it is possible to highlight that the frequency associated to the first
bending mode fG1 = 8.4 Hz is very close to fzB; the frequencies associated to the
coach rigid modes are lower than fzB, with fzA = 0.8 Hz and fθA = 1.0 Hz; the
frequency associated to the second bending mode is higher than fzB, standing at
fG2 = 22.2Hz.

By moving to the observation of the power spectra density of figure 5.3 it is possible
to distinguish three areas depending on the difference respect to the passive response:

• a wide seismographic region for frequencies larger than 9.2 Hz in which the con-
trolled configuration has a worse transmissibility respect to the passive one; but
since the amplitude of the vibrations in this range is very small (1/20 respect to the
amplitudes at 10Hz), from the global point of view there is almost no difference;

• a quasi static region at very low frequencies, in which the passive and the controlled
configurations have similar behaviour as long as the response is dominated by the
system stiffness, which is not affected by the controller;

• a very narrow effective region for frequencies about fzB = 6.5Hz, as expected: here
the response of the controlled configuration is better than the passive one.

The strong bond coupling the dynamic properties of the passive system and the per-
formances of the controller can be enhanced from the power spectra density evaluation by
knowing the relative position of the natural frequencies of the mode shapes.

In particular the closeness of fG1 and fzB explains the beneficial effect on the reduction
of the first bending mode response, evident in the acceleration time response of figure 5.2.

On the other hand, since fG2 is in a seismographic region respect to fzB, it is definitely
not possible to reduce the excitement of the secondary bending mode through a primary
suspension control strategy on this passive mechanical system. This furthermore explains
the detection of superharmonic components in the acceleration time response of the second
bending mode in figure 5.2.
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Figure 5.3: PSD of the accelerations of the carbody support points for the first configu-
ration with the SkyHook approximation
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The reason for the worse transmissibility in the seismographic region is mostly related
to two factors:

• the use of a suspension with better performances, able to supply larger forces and
thus leading to the same drawback of a suspension with too high damping coefficient
(in this configuration, the control force is generally 3.13 times greater than the force
generated by the passive damper on the same track profile).

• the non linear nature of the two state control system that, because of the sudden
switch, may lead to the presence of superharmonic components in the response.

As already discussed, the filtering on the intermediate variable accounting for the dy-
namics of the current ruling the solenoid valve opening can partially manage the non
linear response of the control system, as shown in figure 4.3.

Furthermore an additional issue that is related to the dynamic property of the passive
vehicle itself and that is limiting the effectiveness of the control system, is represented by
the low value of the natural frequency of the mode shape associated to the bogie frame
bounce fzB = 6.5Hz. In fact it is possible to see that the effective zone is limited about
fzB, thus the higher the frequency fzB the wider the effective region is.

In conclusion, it is possible to state that this control system is poorly effective on the
carbody rigid mode, works properly on the first bending mode and is detrimental on the
second bending mode. In order to figure out if the overall effect is anyway advantageous,
it is possible to evaluate the root mean square values of the responses.

In particular, figure 5.4 proposes a comparison of the rms values of both the displace-
ments and the accelerations of the flexible independent variables and of the representative
carbody supporting points. Apparently, despite the slightly worse response of the second
bending mode, the figure 5.4 shows an overall vibration reduction. In order to quantify
this effect, it is possible to compute the variation rate.

variation [%] =
rmsP − rmsC

rmsP
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Figure 5.4: rms of the two flexible independent variables and of the carbody support
points for the first configuration with the SkyHook approximation
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zA θA G1 G2 R F
Passive 6.494 0.528 0.054 0.8e− 4 6.407 6.626

displacements [mm]SkyHook 6.445 0.523 0.037 7.0e− 4 6.364 6.573

Variation [%] 0.742 1.034 32.332 7.787 0.673 0.793
Passive 0.081 9.4e− 3 0.122 8.2e− 4 0.132 0.137

accelerations [m/s2]SkyHook 0.074 8.6e− 3 0.071 2.1e− 3 0.095 0.101

Variation [%] 8.293 8.003 42.141 −154.5 27.738 26.157

Table 5.2: RMS of the simulation at V = 80km/h of the first configuration with SkyHook
approximation

zA θA G1 G2 R F
Passive 6.352 0.631 0.032 1.5e− 3 6.456 6.349

displacements [mm]SkyHook 6.333 0.622 0.029 1.5e− 3 6.406 6.330

Variation [%] 0.296 1.389 9.931 3.743 0.309 0.308
Passive 0.082 0.019 0.040 1.2e− 3 0.091 0.092

accelerations [m/s2]SkyHook 0.078 0.018 0.031 2.7e− 3 0.086 0.087

Variation [%] 4.650 4.039 22.159 −124.065 5.448 5.339

Table 5.3: RMS of the simulation at V = 130km/h of the first configuration with SkyHook
approximation

zA θA G1 G2 R F
Passive 7.097 0.626 0.059 2.1e− 3 7.291 6.933

displacements [mm]SkyHook 7.073 0.617 0.049 2.0e− 3 7.260 6.916

Variation [%] 0.341 1.491 17.094 4.996 0.429 0.258
Passive 0.127 0.026 0.091 2.8e− 3 0.149 0.134

accelerations [m/s2]SkyHook 0.120 0.025 0.061 5.3e− 3 0.136 0.120

Variation [%] 5.637 5.382 33.258 −87.9 8.537 10.206

Table 5.4: RMS of the simulation at V = 180km/h of the first configuration with SkyHook
approximation

zA θA G1 G2 R F
Passive 8.507 0.594 0.087 2.3e− 3 8.699 8.303

displacements [mm]SkyHook 8.471 0.588 0.070 2.2e− 3 8.657 8.272

Variation [%] 0.430 1.013 18.818 5.098 0.480 0.379
Passive 0.178 0.029 0.131 4.4e− 3 0.198 0.175

accelerations [m/s2]SkyHook 0.168 0.028 0.089 7.8e− 3 0.187 0.163

Variation [%] 5.594 5.646 32.100 −78.6 5.318 6.813

Table 5.5: RMS of the simulation at V = 230km/h og the first configuration with SkyHook
approximation
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The figure 5.4 and the summarizing table evaluating the rms of the response, lead to
some expected conclusion and to some new consideration. In particular:

• as long as the natural frequency associated to the bogie bounce fzB and to the first
bending mode fG1 are very close, the latter independent variable experiences a very
good improvement [22.2 %÷ 42.1 %];

• as long as the natural frequency associated to the bogie bounce fzB and the second
bending mode fG2 are very far, the latter independent variable experiences a detri-
mental effect, even worse than 100 %; this is anyway not detrimental for the overall
response since the absolute magnitude is still very small compared to the others;

• it is a nice surprise to see that, even if the natural frequencies of the mode shapes
associated to the carbody rigid modes are at very low frequency, the controller has
anyway a good effect on them [4.3 %÷ 8.3 %].

• at the end, it is important to consider that the overall carbody response benefits of
a good improvement [5.3 %÷ 27.7 %].

5.1.1 Effect of the performances of the semi active damper

As already discussed, on the contrary with respect to the passive damper, by increasing
the semi active damper performances it is expected to further improve the response about
fzB with few drawbacks on the seismographic region, thanks to its adjustability.

Thanks to the the introduction of scale factor of the performance curve, it is possible
to evaluate the response trend while increasing the generated force, to characterize this
phenomena and to detect strengths and weaknesses with respect to a passive configuration.

Thus a new simulation has been performed by holding all of the parameter except
KPC = 0.8, thus the 78 % more than the previous case: with this scale factor value, the
semi active damper force has an rms value of 1 896N , which is 4.53 times larger than the
average force generated by the passive damper in the non controlled configuration (419N).

By looking at the time responses of the accelerations of the independent variables of
the bending modes in figure 5.5, it is possible to detect the same behaviour:

• the vibration of the first bending mode acceleration is generally reduced, but it is
no longer appreciable in all of the evaluated working conditions;

• consistently with the expectations, the second bending mode acceleration response
shows larger amplitudes.

The presence of the high frequency harmonic component is consistent with the use of
a suspension whose transmitted force has a larger damping contribution: the fact that
semi active damper is generating larger forces has an effect equivalent to the employment
of a passive element with a larger damping coefficient. Thus the filtering properties of the
suspension are negatively affected.
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Figure 5.5: Time domain response of the accelerations of the independent variables of the
flexible modes for the first configuration with SkyHook approximation for the evaluation
of the performance curve effect
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At this point, in order to evaluate the differences in the frequency response relate to
the larger damping force generated, it is possible to move to the analysis of the power
spectra density of the carbody support points, reported in figure 5.6:

• the quasi static region is still unaffected since the response is dominated by the
system stiffness in that frequency range;

• in the effective range about fzB = 6.6 Hz, the response if further damped respect
to the previous simulation;

• in the seismographic region, the usual detrimental drawback appears.

In order to evaluate the magnitude of the high frequency transmissibility issue, it is
necessary to move to the observation of the root mean square values. From the summa-
rizing tables at the end of this section, it is possible to highlight that:

• there is a strong benefit on the rigid modes of the carbody, with a reduction up
to 10.4 %. This represent an important improvement with respect to the previous
simulation as long as the rigid modes have a large weight in the overall vibration;

• the first bending mode has an improvement very similar to the one of the previous
consideration, with a variation in the range [8.5 %÷ 40.5 %];

• a detrimental effect can be detected on the second bending mode, whose response
may achieve amplitudes over 200 % larger, but still remains small in absolute value;

• the overall effect estimate from the evaluation of the coach support point is anyway
positive, ensuring a reduction of [2.5 %÷ 12.1 %].

This comparison highlighted that, as expected, by employing a semi active damper
with larger performances it is possible to achieve better results, thanks to its adjustabil-
ity property: the worsening of the high frequency range is largely compensated by the
improvements in the low frequency range.
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Figure 5.6: PSD of the accelerations of the carbody support points for the first configu-
ration with SkyHook approximation for the evaluation of the performance curve effect
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zA θA G1 G2 R F
Passive 6.494 0.528 0.054 8.0e− 4 6.407 6.626

displacements [mm]SkyHook 6.416 0.516 0.037 7.0e− 4 6.339 6.560

Variation [%] 1.193 2.233 32.103 8.450 1.062 1.303
Passive 0.081 9.4e− 3 0.122 8.2e− 4 0.132 0.137

accelerations [m/s2]SkyHook 0.072 8.4e− 3 0.073 3.4e− 3 0.096 0.102

Variation [%] 0.896 10.389 39.939 −317.7 27.279 26.075

Table 5.6: RMS of first configuration simulation at V = 80 km/h with SkyHook approxi-
mation for the evaluation of the performance curve effect

zA θA G1 G2 R F
Passive 6.352 0.631 0.032 1.5e− 3 6.456 6.349

displacements [mm]SkyHook 6.307 0.611 0.028 1.4e− 3 6.378 6.302

Variation [%] 0.716 3.133 12.187 6.492 0.750 0.739
Passive 0.082 0.019 0.040 1.2e− 3 0.091 0.092

accelerations [m/s2]SkyHook 0.077 0.018 0.037 4.8e− 4 0.089 0.090

Variation [%] 6.953 7.704 8.456 −289.8 2.541 2.718

Table 5.7: RMS of first configuration simulation at V = 130 km/h with SkyHook approx-
imation for the evaluation of the performance curve effect

zA θA G1 G2 R F
Passive 7.097 0.626 0.059 2.1e− 3 7.291 6.933

displacements [mm]SkyHook 7.039 0.605 0.046 2.0e− 3 7.219 6.888

Variation [%] 0.816 3.366 22.218 6.071 0.995 0.655
Passive 0.127 0.026 0.091 2.8e− 3 0.149 0.134

accelerations [m/s2]SkyHook 0.117 0.024 0.054 9.3e− 3 0.133 0.117

Variation [%] 0.8340 8.343 40.481 −225.7 10.793 12.133

Table 5.8: RMS of first configuration simulation at V = 180 km/h with SkyHook approx-
imation for the evaluation of the performance curve effect

zA θA G1 G2 R F
Passive 8.507 0.594 0.087 2.3e− 3 8.699 8.303

displacements [mm]SkyHook 8.423 0.579 0.066 2.2e− 3 8.602 8.232

Variation [%] 0.991 2.535 24.125 5.735 1.115 0.858
Passive 0.178 0.029 0.131 4.4e− 3 0.198 0.175

accelerations [m/s2]SkyHook 0.163 0.027 0.080 0.014 0.184 0.160

Variation [%] 8.438 8.918 38.986 −209.4 7.165 8.627

Table 5.9: RMS of first configuration simulation at V = 230 km/h with SkyHook approx-
imation for the evaluation of the performance curve effect
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By testing a wide range of configurations varying the value KPC , it is possible to
compute the comparative power spectra density of figure 5.7 which allows to characterize
the trend of this phenomena.
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Figure 5.7: PSD of the accelerations of the carbody support points for the first config-
uration with SkyHook approximation for the evaluation of the effect of the performance
curve

Furthermore the figure 5.7 shows that theKPC value ensuring the best tradeoff between
the low frequencies benefits and high frequency drawback is about 0.30. In particular with
this coefficient the average control force applied is 990N , thus 2.36 times larger than the
passive one (419N).

Thus in conclusion, consistently with the summarizing tables evaluating the rms vari-
ation in the simulations with KPC = 0.45 and KPC = 0.8, it is possible to state that
to use a semi active damper generating larger force is functional to the reduction of the
vibration of the carbody, but after a ratio of the control force over the passive one of 2.5
the benefits get slighter.
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5.2 Second configuration with SkyHook strategy

In order to go back in the main topic and find out the effects of the passive system
dynamics on the controller effectiveness, a comparative simulation has been performed
with the second configuration data set, whose natural frequencies are very different respect
to the previous example (aw shown in table 3.18):

Bogie bounce fzB = 17.1Hz
Bogie pitch fθB = 22.8Hz

Carbody bounce fzA = 2.3Hz
Carbody pitch fθA = 2.9Hz

First bending mode fG1 = 9.7Hz
Second bending mode fG2 = 22.2Hz

Table 5.10: Natural frequencies of the mode shapes of the second configuration

For ensuring the consistency of the results, all of the simulation parameters have been
kept constant and the damper performance curve scale factor has been set to KPC = 150.

In fact with this value the rms of the control force results 7 834N , which is again 2.98
times larger than the passive configuration, generating 2 630 N . This magnification has
been needed since the damping of the primary suspension in the second configuration has
a value of cI = 123 000 Ns/m, thus almost 25 times larger than the damper of the first
configuration.

Under the same conditions, the same controller provides completely different effect on
the second system: in fact by looking at the time domain response of the acceleration
of the bending modes in figure 5.8, it is possible to see that both of them reduce their
vibration amplitude with the controller, but the advantage is slighter.

Thus the dual trend with positive effect on the first bending mode and detrimental on
the second is no longer present.

Furthermore respect to the other configuration, there is no additional disturbance
caused by the superharmonic components in the response of the second bending mode.

Once more the key for understanding this behaviour can be found in the power spectra
density of the representative support points of figure 5.9; but before going through their
analysis it is as usual necessary to remind that:

• the controller is acting on the primary suspension; thus, as it has been demonstrated,
an improvement about the natural frequency of the mode associated to the bogie
bounce with fzB = 17.7Hz is expected;

• the natural frequencies of the mode shape associated to the bending modes are
almost equally spaced respect to fzB, with the first mode toward the quasi static
range with fG1 = 9.7 Hz and the second mode toward the seismographic region
with fG2 = 22.2 Hz; the natural frequencies of the mode shapes associated to the
carbody rigid modes are at low frequency, with fzA = 2.3Hz and fθA = 2.9Hz.
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Figure 5.8: Time domain response of the flexible mode independent variables acceleration
for second configuration with SkyHook approximation
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So, by moving to the observation of the PSD in figure 5.9, it is possible to notice some
peculiar difference respect to the corresponding simulation with the first configuration:

• first of all, the effective region is wider than before, going from about 8Hz till over
24.2Hz. Thus both the natural frequencies of the modes associated to the carbody
flexible modes stand in this range and benefit for the controller effect.

• consequently the quasi static region is wider as well, thus it is hardly possible to
affect the carbody rigid modes starting from this passive system property. But
anyway this does not represent a problem as long as in this range the response is
almost equal to the passive, without additional detrimental effect carried by the
control system.

• last but not least, the seismographic region is pushed in very high frequencies, where
for energy reasons the amplitude of the vibrations is intrinsically small. For this
reason in the time response it is no longer possible to detect the disturbance of the
superharmonic components.

Proving that the same controller leads to completely different behaviour makes unde-
niable the bound between the the passive system dynamics and the controller effectiveness.

For example in the previous configuration there was no way to abate the second bend-
ing mode vibration; on the contrary with this configuration it is possible to reduce the
overall response in the whole human perception frequency range, with large benefit for
the passenger comfort.

The main relevant feature of the second configuration passive dynamics consists in the
higher frequency of the mode shape dominated by the bogie bounce fzB = 17.7Hz: this
makes the effective region of the controller definitely wider than for the previous configu-
ration (fzB = 6.6Hz). This is even more relevant considering that the improvement takes
place exactly in correspondence of the frequency range of interest [0÷ 25Hz].

At this point it finally possible to move to the evaluation of the rms shown in figure
5.10. As already discussed, it is possible to detect a clear improvement of the flexible
modes response in the whole velocity range considered; but at the end the overall effect
estimated by the evaluation of the carbody supports point is very slight because of the
large weight of the rigid independent variables of the varbody in the vibration contribu-
tion.
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Figure 5.9: Power spectra density of the accelerations of the carbody support points for
the second configuration with the SkyHook strategy
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Figure 5.10: RMS of the accelerations of the carbody support pointsfor the second con-
figuration with the SkyHook strategy
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zA θA G1 G2 R F
Passive 6.826 0.513 0.051 4.8e− 3 6.749 6.932

displacements [mm]SkyHook 6.748 0.508 0.048 4.5e− 3 6.679 6.849

Variation [%] 1.135 1.041 5.319 4.624 1.039 1.195
Passive 0.182 0.012 0.045 5.2e− 3 0.180 0.186

accelerations [m/s2]SkyHook 0.174 0.012 0.038 3.9e− 3 0.172 0.177

Variation [%] 4.338 0.860 15.401 25.017 4.548 4.837

Table 5.11: RMS of second configuration simulation at V = 80 km/h with SkyHook
strategy

zA θA G1 G2 R F
Passive 5.997 0.656 0.050 5.7e− 3 5.970 6.113

displacements [mm]SkyHook 5.987 0.638 0.045 5.6e− 3 5.966 6.093

Variation [%] 0.164 2.667 −0.530 2.528 0.084 0.326
Passive 0.163 0.028 0.039 0.012 0.163 0.175

accelerations [m/s2]SkyHook 0.164 0.027 0.030 9.2e− 3 0.162 0.172

Variation [%] −0.572 3.485 22.914 23.795 0.837 1.538

Table 5.12: RMS of second configuration simulation at V = 130 km/h with SkyHook
strategy

zA θA G1 G2 R F
Passive 6.217 0.738 0.047 7.2e− 3 6.278 6.265

displacements [mm]SkyHook 6.289 0.719 0.046 7.0e− 3 6.272 6.290

Variation [%] −0.194 2.481 2.843 2.931 0.098 −0.399
Passive 0.161 0.047 0.052 0.026 0.172 0.173

accelerations [m/s2]SkyHook 0.156 0.046 0.043 0.019 0.164 0.166

Variation [%] 2.640 2.119 17.697 25.332 4.668 4.050

Table 5.13: RMS of second configuration simulation at V = 180 km/h with SkyHook
strategy

zA θA G1 G2 R F
Passive 8.334 0.779 0.079 8.1e− 3 8.459 8.266

displacements [mm]SkyHook 8.276 0.756 0.075 7.9e− 3 8.371 8.237

Variation 0.698 2.957 6.101 2.944 1.036 0.360
Passive 0.257 0.053 0.098 0.032 0.280 0.253

accelerations [m/s2]SkyHook 0.245 0.052 0.086 0.027 0.265 0.240

Variation [%] 4.763 1.781 13.102 14.397 5.370 5.283

Table 5.14: RMS of second configuration simulation at V = 230 km/h with SkyHook
strategy
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The summarizing tables lead to the conclusion that the SkyHook approximation control
strategy is always effective on this configuration, ensuring a reduction of the vibration on
all of the carbody mode shapes:

• the control strategy is equally effective on both the flexible modes, overtaking the
performances of the first configuration. In particular the first bending mode ex-
periences an improvement of [13.1 % ÷ 22.9 %], while the second flexible mode of
[14.4 %÷ 25.3 %].

• the response of the rigid dofs of the carbody is almost completely unaffected, stress-
ing the limits of the primary suspension semi active control in the low frequency
range: the variation is always below 4.8 %.

• the overall response follows the trend of the rigid independent variables of the car-
body stressing the dominant contribution of the latter. Despite the large improve-
ment of the flexible modes, the variation is just about [0.8 %÷ 5.4 %].

At this point, by looking the numerical results of the two configuration working with
the same controller, it s possible to point out a first rough comparison:

• from one side, there is a configuration whose natural frequency of mode shape
associated to the controlled dof is at low frequency fzB = 6.6 Hz: the effective
region of the control system is very narrow, but leads to great improvements. As
long as the natural frequencies of the dominant modes are about the effective region,
(zA; θA; G1) experience a good improvement. The overall effect is positive despite
the detrimental effect on the second bending mode, whose natural frequency stands
in the seismographic region.

• on the other side, there is a configuration whose natural frequency of mode shape
associated to the controlled dof is at higher frequency fzB = 17.7 Hz: the effec-
tive region of the control system is consequently wider, but the improvements are
slighter. As long as the natural frequencies of the flexible modes stand about the
effective region, their response is improved; anyway the carbody rigid dof (zA; θA)
are unaffected because of their distance respect to fzB. Thus, the overall effect is
slightly lower.

The natural frequency of the mode shape associated to the controlled independent
variable fzB plays a central role. In conclusion, the passive system dynamics property
may drive the controller effect toward a wider but slight improvement over the spectrum
or on the contrary to a greater improvement but focused in a narrow frequency range.

During the design step, it is possible to take advantage of these considerations.

79



Di Stefano

5.3 First configuration with ADD strategy

In order to prove the consistency of the benefits of the primary suspension semi active
control strategy, a cross comparison between the SkyHook approximation and ADD con-
trol sstrategy has been performed.

The first test, described in section 5.1, has been repeated by applying the ADD control
strategy. Of course the same simulation parameters have been kept constant.

The first important thing to notice is that despite the performance curve of the same
semi active damper has the same scale factor KSC = 0.45, with the ADD controller the
applied force has an average value of 1 006N against the 1 309N of the SkyHook approx-
imation approach. Thus in this configuration the system is dealing with forces generally
2.4 times greater than in the passive configuration (419N).

As usual, it is important to recall the passive system mode shapes natural frequencies:

Bogie bounce fzB = 6.6Hz
Bogie pitch fθB = 9.3Hz

Coach bounce fzA = 0.8Hz
Coach pitch fθA = 1.0Hz

First bending mode fG1 = 8.4Hz
Second bending mode fG2 = 23.3Hz

Table 5.15: Natural frequencies of the mode shapes of the first configuration

By looking at the acceleration response of the independent variables of the bending
modes (G̈1; G̈2) in figure 5.11, it is possible to recognize the same trend already discussed:

• form one side, the response of the first bending mode in the controlled configuration
is much more damped than the passive configuration, in the whole vehicle speed
range.

• form the other side, the second bending mode response in the controlled configu-
ration shows vibrations larger than in the passive configuration. This is consistent
with the already detected detrimental effect that the primary suspension control
approach causes to the high frequency components of the response.

In order to investigate if the dynamic properties of the passive system cause the same
problems despite the different control strategy, it is necessary to move on to the observa-
tion of the power spectra density of the carbody support points in figure 5.12.
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Figure 5.11: Time domain response of the acceleration of the flexible mode independent
variables for the first configuration with ADD strategy
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The first thing that is possible to appreciate is the reduction of the transmissibility in
the high frequency range respect to the response with SkyHook approximation controller
(figure 5.3). This effect may be caused by:

• the generation of a lower control force (an average value of FADD = 1 006N respect
to FSH = 1 309N); from a practical point of view, this effect is similar to the use of
a damper with a smaller damping coefficient in the passive configuration;

• intrinsic property of the control strategy: the ADD law is expected to provide a
better response than the passive in the whole spectrum, while the SkyHook only
about the resonand frequency of the controlled dof [27].

By observing the figure 5.12, it is possible to appreciate that the division in three
region holds and their frequency range is the same respect to the results with the SkyHook
strategy:

• the quasi static region, characterized by negligible difference between controlled and
passive response, limited to frequencies below 3Hz

• the effective region in about fzB = 6.6 Hz. It extends in a very narrow range, till
about 9.2Hz, and ensures and improvement in the vibrations reduction.

• the seismographic region takes place at higher frequencies than the effective region
and it is very wide. In its range, a detrimental effect on the response can be detected.

The distribution of the three different areas with respect to the passive system natural
frequencies, stresses once more the coupling between the control system effectiveness and
the dynamic properties of the passive system, besides the control strategy.

The reason for this behaviour can be found in the control system layout: it is able to
control the primary suspension, ruling the bogie response; thus the way the bogie frame
motion is transmitted to the carbody and the dynamic property of the passive system
play a central role. On the contrary the typical control system for the passenger comfort
works at the secondary suspension level and for this reason it is able to directly affect the
carbody response.

In order to asses a final comparison between the SkyHook logic and ADD control
system, the root mean square values of the responses has been evaluated. From figure
5.13, it is possible to have the confirm that, over all the evaluated service velocity range:

• the first bending mode response is always damped.

• the second bending mode vibrations are always larger than the passive configuration,
but still their absolute value is very small.

• the representative carbody support points always experience a vibration reduction.

But consistently with the previous considerations, the overall improvement is very
slight because of the dominant contribution of the rigid modes.

In order to measure the improvement, the summarizing table showing the percentage
variation have been computed for this study case as well.
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Figure 5.12: Power pectra density of the accelerations of the carbody support points for
the first configuration with the ADD controller
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Figure 5.13: rms of the accelerations of the carbody support points for the first configu-
ration with the ADD controller
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zA θA G1 G2 R F
Passive 6.494 0.528 0.054 0.8e− 4 6.407 6.626

displacements [mm]ADD 6.482 0.527 0.038 6.4e− 4 6.397 6.613

Variation [%] 0.177 0.173 28.910 6.270 0.156 0.192
Passive 0.081 9.4e− 3 0.122 8.2e− 4 0.132 0.137

accelerations [m/s2]ADD 0.078 8.9e− 3 0.074 1.3e− 3 0.099 0.106

Variation [%] 4.308 5.798 39.326 −64.8 24.834 23.131

Table 5.16: RMS of first configuration simulation at V = 80 km/h with ADD control

zA θA G1 G2 R F
Passive 6.352 0.631 0.032 1.5e− 3 6.456 6.349

displacements [mm]ADD 6.347 0.628 0.031 1.5e− 3 6.421 6.344

Variation [%] 0.75 0.392 4.575 1.517 0.068 0.098
Passive 0.082 0.019 0.040 1.2e− 3 0.091 0.092

accelerations [m/s2]ADD 0.081 0.019 0.036 1.7e− 3 0.090 0.091

Variation [%] 1.692 1.579 9.059 −40.206 1.440 1.537

Table 5.17: RMS of first configuration simulation at V = 130 km/h with ADD control

zA θA G1 G2 R F
Passive 7.097 0.626 0.059 2.1e− 3 7.291 6.933

displacements [mm]ADD 7.080 0.622 0.052 2.0e− 3 7.273 6.919

Variation [%] 0.229 0.649 12.557 3.058 0.254 0.204
Passive 0.127 0.026 0.091 2.8e− 3 0.149 0.134

accelerations [m/s2]ADD 0.123 0.026 0.068 4.3e− 3 0.140 0.124

Variation [%] 3.514 3.143 25.010 −50.6 5.986 7.336

Table 5.18: RMS of first configuration simulation at V = 180 km/h with ADD control

zA θA G1 G2 R F
Passive 8.507 0.594 0.087 2.3e− 3 8.699 8.303

displacements [mm]ADD 8.478 0.590 0.073 2.3e− 3 8.665 8.278

Variation [%] 0.349 0.712 16.190 3.788 0.387 0.307
Passive 0.178 0.029 0.131 4.4e− 3 0.198 0.175

accelerations [m/s2]ADD 0.169 0.028 0.095 6.8e− 3 0.188 0.164

Variation [%] 4.738 4.078 27.829 −56.5 4.772 6.146

Table 5.19: RMS of first configuration simulation at V = 230 km/h with ADD control
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The summarizing table allows to perform an important comparison between the Sky-
Hook and ADD control strategy. In fact the results show that:

• the ADD effect on the first bending mode is relevant [9.1 % ÷ 39.3 %], but still
smaller than the one ensured by the SkyHook approximation [22.2 %÷ 42.1 %].

• the ADD controller manages better the high frequency detrimental effect related to
the passive system dynamic characteristic. In fact, the variation is about −50 %,
whereas it is over −100 % with the SkyHook control logic.

• both the ADD and SkyHook control law are not able to widely affect the carbody
rigid independent variables, but the latter is still slightly better ([1.5 %÷ 5.8 %] for
this control strategy against [4.0 %÷ 8.3 %] for the SkyHook one).

Given that none of the two control laws is able to affect the rigid modes, the overall im-
provement is very similar: [1.4%÷24.8%] with ADD control strategy and [5.3%÷27.7%]
with SkyHook approach.

This results confirm that the ADD control strategy ensures a generally slight improve-
ment all over of the spectrum, while on the contrary the SkyHook control strategy provides
larger benefits focused on a narrower frequency range and some detrimental effect in the
other frequencies.

This may suggest that:

• the SkyHook control strategy is more suitable for a mechanical system whose natural
frequencies are very close one another and the natural frequency of mode shape
associated to the actuated dof stands in this range, just like the system of the first
configuration.

• the ADD control strategy is more suitable fora mechanical system whose natural
frequencies are speaded over a relatively wide frequency band and the natural fre-
quency of the mode shape associated to the actuated dof is quite far from the
others.

In order to assess this statement, the last simulation of the second mechanical system
coupled with the ADD control logic has been performed.
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5.4 Second configuration with ADD stategy

As usual, the same simulation parameters have been kept constant between this test and
the corresponding one with the second vehicle model coupled with the SkyHook strategy.

Given the saturation curve scale factor KSC = 150, with the ADD controller an av-
erage control force of 6 524 N has been generated, which is 2.48 times larger than the
passive one 2 630 N . This time, the ADD controller generates larger forces with respect
to the SkyHook one (7 834N), with the resulting effect equivalent to a passive suspension
whose damping coefficient is smaller.

The natural frequencies needed for a correct evaluation of the results, are as usual
taken from table 3.18 and summarized as follow::

Bogie bounce fzB = 17.1Hz
Bogie pitch fθB = 22.8Hz

Coach bounce fzA = 2.3Hz
Coach pitch fθA = 2.9Hz

First bending mode fG1 = 9.7Hz
Second bending mode fG2 = 22.2Hz

Table 5.20: Natural frequencies of the mode shapes of the second configuration

By looking at the time domain response of the bending modes acceleration in figure
5.14, the same trend obtained with the first vehicle configuration is detected:

• both the first and the second bending modes shows a slight improvement in the
whole service speed evaluated;

• the are no the disturbances of the superharmonic components.

Thus, apparently the same consideration should hold: despite the natural frequencies
are spread in a wide frequency range, as long as fzB has a large value all of the modes
benefit of the controller introduction whose effective range extends up to almost 24.2Hz.

Anyway by moving to the evaluation of the power spectra density of the acceleration
of the representative support points of the carbody in figure 5.15, the usual detection of
the three areas is definitely less evident and the difference between the passive and the
controlled configuration is very slight.

Recalling the ADD feature to ensure an improvement wider in the frequency range
but lower in the magnitude [27], this behaviour can be understood and the consistency of
the results appreciated.
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Figure 5.14: Power spectra density of the accelerations of the bending modes for the
second configuration with ADD strategy
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Figure 5.15: Power spectra density of the accelerations of the support points of the car-
body for the second configuration with ADD strategy
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At this point, in order to carry out a final evaluation, it is possible to move to the
observation to the root mean square values. The figure 5.16 allows to consider that:

• both the first and the second bending mode experience a good improvement, con-
sistently to the relative position of the natural frequencies associated to their mode
respect to fzB;

• as it happens for all of the other simulation, the overall effect is slighter as long as
the natural frequencies associated to the carbody rigid modes stand in the quasi
static region and are almost completely unaffected by the controller.

To quantify the effectiveness of this control law, it is possible to refer to the tables at
the end of the section. In conclusion:

• thanks to the positive effect spread over the whole spectrum, the ADD logic ensures
a surely positive reduction of the carbody rigid modes vibrations [0.7 % ÷ 4.0 %]
respect to the SkyHook one whose effect is not always positive [−0.6 %÷ 4.8 %] in
the evaluated range of service velocities;

• for what concerns the bending modes, there is no a large difference between the
ADD [11.7 %÷ 25.6 %] and the SkyHook logic [13.1 %÷ 25.3 %] vibration reduction;

• the overall effect as well shows negligible differences, with the ADD providing a
reduction in between [2.3%÷5.0%] while the SkyHook strategy about [0.8%÷5.4%].

Anyway the results of this last simulation shows that the improvement ensured by the
ADD control logic implementation varies in a narrower range, thus is more uniform over
the evaluated range if service speed and thus may be preferable.
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Figure 5.16: RMS of the accelerations of the coach support points and bending mode for
the second configuration and ADD strategy

91



Di Stefano

zA θA G1 G2 R F
Passive 6.826 0.513 0.051 4.8e− 3 6.749 6.932

displacements [mm]ADD 6.810 0.516 0.049 4.6e− 3 6.728 6.924

Variation [%] 0.230 −0.508 4.522 3.740 0.306 0.117
Passive 0.182 0.012 0.045 5.2e− 3 0.180 0.186

accelerations [m/s2]ADD 0.175 0.012 0.038 3.9e− 3 0.173 0.178

Variation [%] 3.437 0.715 15.680 25.652 3.712 3.956

Table 5.21: RMS of second configuration simulation at V = 80km/h with ADD controller

zA θA G1 G2 R F
Passive 5.997 0.656 0.050 5.7e− 3 5.970 6.113

displacements [mm]ADD 5.978 0.649 0.045 5.6e− 3 5.960 6.083

Variation [%] 0.325 1.010 0.903 1.959 0.181 0.483
Passive 0.163 0.028 0.039 0.012 0.163 0.175

accelerations [m/s2]ADD 0.162 0.028 0.031 9.3e− 3 0.159 0.171

Variation [%] 0.883 1.542 21.525 23.203 2.318 2.380

Table 5.22: RMS of second configuration simulation at V = 130 km/h with ADD con-
troller

zA θA G1 G2 R F
Passive 6.217 0.738 0.047 7.2e− 3 6.278 6.265

displacements [mm]ADD 6.183 0.724 0.046 6.9e− 3 6.248 6.225

Variation [%] 0.537 1.897 2.105 4.231 0.482 0.642
Passive 0.161 0.047 0.052 0.026 0.172 0.173

accelerations [m/s2]ADD 0.158 0.046 0.043 0.019 0.166 0.166

Variation [%] 1.870 3.063 16.380 24.754 3.362 4.060

Table 5.23: RMS of second configuration simulation at V = 180 km/h with ADD con-
troller

zA θA G1 G2 R F
Passive 8.334 0.779 0.079 8.1e− 3 8.459 8.266

displacements [mm]ADD 8.252 0.767 0.075 7.8e− 3 8.373 8.189

Variation 0.983 1.579 5.254 4.062 1.020 0.933
Passive 0.257 0.053 0.098 0.032 0.280 0.253

accelerations [m/s2]ADD 0.247 0.052 0.087 0.027 0.268 0.241

Variation [%] 4.022 2.320 11.705 14.336 4.312 4.994

Table 5.24: RMS of second configuration simulation at V = 230 km/h with ADD con-
troller
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Conclusions

The common strategies employed in railway vehicle for the reduction of the vibrations
of the carbody and the improvement of the passenger comfort are generally based on
secondary suspension control strategies.

The purpose of this work has been the evaluation of an alternative to the more common
layout, which would hopefully be easier to implement and lead to larger design flexibility.

The results obtained have proved that a semi active primary suspension control may
be effective and represents an appealing solution to be investigated in the future.

The main strengths of this layout can be identified in:

• the simplicity of the installation, since it is sufficient to substitute the primary
suspension damper with a semi active element and there is no requirement of special
additional devices, like monitoring equipment or power supply;

• the possibility to use classical and smart control strategies;

• the involvement of semi active elements only, whose power consumption is negligible
and that are light, robust, space-saving and can not cause instability;

• the possibility to leave free space around the secondary suspension for adding further
devices or leaving larger design flexibility.

As described in chapter 3 and 4, this work has left a robust and realistic mathemat-
ical model for the analysis of the vertical dynamics of the vehicle with several advanced
features:

• accurate description of the transverse bending vibration of the carbody;

• consistent and tough coupling of the flexible and rigid modes;

• implementation of an intermediate variable decoupling the required and the applied
force;

• implementation of the first order system accounting for the dynamic behaviour of
the current ruling the solenoid valve opening, which makes the actuation smoother;

• implementation of the performance curve of the semi active damper, which allows
to have a direct control on the force generated by the control system.
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From the numerical simulations, an overall vibration reduction up to 20 % has been
obtained, despite the aim of this work was not focused on tuning the parameter to achieve
the best improvements.

On the other hand, it has been detected a strong dependency between the primary
suspension control effectiveness and the dynamic properties of the passive system. The
reason for this behaviour has been identified in the layout of the control system: as long
as it is controlling the primary suspension, ruling the bogie frame response, the way the
excitement in transmitted from the bogie frame to the carbody plays a central role.

In particular this control layout excels in damping the bogie frame resonant response.
As a consequence, the carbody vibration reduction is enhanced in the frequency range
about the frequency of the mode shape associated to the bogie frame bounce. For this
reason, it is possible to state that the control effectiveness itself can be fully exploited
only provided that:

• it is applied on a passive system whose mode shapes natural frequencies are quite
close one another: under this assumption all the system’s resonances benefit of the
isolating effect provided by the semi active suspension and the overall response is
surely positive.

• the natural frequency of the mode shape associated to the bogie frame is at high
frequencies, leading to a wider effective frequency range of the controller.

Consistently with these observations, the larger amplitude reduction, with values up
to 40 %, has been observed on the first carbody bending mode, whose natural frequency
is about the typical range in which it is possible to find the natural frequency of the mode
shape associated to the bogie bounce.

The drawback of semi active control is related to the reduced effectiveness to control
the modes whose natural frequencies are largely above the natural frequency of the mode
shape associated to the bogie bounce. Anyway, this issue is not detrimental for the over-
all response as long as the contribution of those component is negligible in regard to ride
comfort of passengers.

This work has furthermore lead to a a direct and detailed comparison of the SkyHook
and ADD - Acceleration Driven Damper control strategies. As result, it is possible to
summarize the following features:

• the SkyHook strategy ensures a significant improvement but focused on a narrow
frequency range. For this reason, it is more suitable for those systems whose natural
frequencies are very close one another;

• the ADD strategy ensures a slight improvement over a wide frequency range. For
this reason it is more suitable for those system whose natural frequencies are spread
along the spectrum.
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Appendix

7.1 Slender beam bending vibration

7.1.1 Euler Bernoulli theory: Eq. 3.1.1

The Euler Bernoulli theory is valid under the assumptions of: small displacements; slender
beam, with the length grater than the cross section; homogeneos, isotropic and linear
elastic material; cross section constant in shape and size.

The partial differential equation roling the beam transverse vibration is obtained by
copuling the deflection line equation and the bending vibration equation.

The deflection line equation relates the beam neutral axis transverse displacement w
to the bendind moment M applied at the beam ends:

∂2w

∂x2 =
M

EJ

The bending vibration equation results from a force equilibrium in the vertical direction
that involves the shear forces generated by the bending moment and the inertia forces:

∂T

∂x
= −λ∂

2w

∂t2

Adding the relationship T = ∂M
∂x

, it’s possible to get the final equation 3.1.1:{
∂2w
∂x2

= M
EJ

∂2M
∂x2

= −λ∂2w
∂t2

=⇒ EJ
∂4w

∂x4
= −λ ∂

2w

∂t2

7.1.2 Standing wave solution: Eq. 3.1.2

The only way for the derivative respect to time to be equal to the derivative respect the
the space, is to impose: that the variables are decopuled, so that the function w(x, t)
is the product of a function depending on the only space variable Φ(x) and a function
depending on the only time variable G(t); that the derivatives are equal to a constant γ4.

w(x, t) = Φ(x)G(t) =⇒

{
∂4w
∂x4

= ΦIV (x)G(t)

∂2w
∂t2

= Φ(x)G̈(t)
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So the partial differential equation 3.1.1 can be reorganized as follow:

ΦIV

Φ
= − λ

EJ

G̈

G
= γ4

And decopuled into two homogeneous differential equation:{
G̈+ ω2G = 0

ΦIV − γ2Φ = 0
with ω2 = γ4 λ

EJ

At this point it’s possible to get the solution of the homogeneous differential equations:{
Φ(x) = A1 sin (γx) +B1 cos (γx) + C1 sinh (γx) +D1 cosh (γx)

G(t) = G0 cos (ωt+ ψ)

and to multiply them in order to obtain the standing wave solution 3.1.2:

w(x, t) = [A sin (γx) +B cos (γx) + C sinh (γx) +D cosh (γx)] cos (ωt+ ψ)

7.1.3 Boundary conditions imposition: Eq. 3.1.4 and 3.1.5

As long as the beam has both the ends free, there are no informations about the displace-
ments w(0, t) and w(L, t) or about the rotations ∂w

∂x
|x=0 and ∂w

∂x
|x=L.

Thus the proper boundary conditions are:

T (0, t) = ∂M
∂x
|x=0 = EJ ∂3w

∂x3
|x=0 = 0

T (L, t) = ∂M
∂x
|x=L = EJ ∂3w

∂x3
|x=L = 0

M(0, t) = EJ ∂2w
∂x2
|x=0 = 0

M(L, t) = EJ ∂2w
∂x2
|x=L = 0

That focusing on the space dependent function Φ(x) lead to the expression:

ΦIII(0) = γ3EJ [−A cos (0) +B sin (0) + C cosh (0) +D sinh (0)] = 0

ΦIII(L) = γ3EJ [−A cos (γL) +B sin (γL) + C cosh (γL) +D sinh (γL)] = 0

ΦII(0) = γ2EJ [−A sin (0)−B cos (0) + C sinh (0) +D cosh (0)] = 0

ΦII(L) = γ2EJ [−A sin (γL)−B cos (γL) + C sinh (γL) +D cosh (γL)] = 0

With cosh 0 = cos 0 = 1 and sinh 0 = sin 0 = 0. The resulting matricial expression is:
−1 0 1 0

− cos (γL) sin (γL) cosh (γL) sinh (γL)
0 −1 0 1

− sin (γL) − cos (γL) sinh (γL) cosh (γL)



A
B
C
D

 = 0
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The first row suggests that −A + C = 0 and the third that −B + D = 0. Thus the
system can be reduced as follow:[

cosh (γL)− cos (γL) sinh (γL) + sin (γL)
sinh (γL)− sin (γL) cosh (γL)− cos (γL)

]{
AC
BD

}
= 0 (7.1.1)

In order to avoid the trivial solution {AC; BD} = 0, there’s the need to impose the
determinant det ([H(γ)]) = 0 to be null. This condition lead to the definition of the
charateristic equation and of the parameter γ:

(cosh γL− cos γL)2 − (sinh γL+ sin γL)(sinh γL− sin γL) = 0

cosh 2(γL)− 2 cos (γL) cosh (γL) + cos 2(γL)− sinh 2(γL) + sin 2(γL)

[cosh 2(γL)− sinh 2(γL)]− 2 cosh (γL) cos (γL) + [cos 2(γL) + sin 2(γL)]

Considering that sin 2x+ cos 2x = 1 and that cosh 2x− sinh 2x = 1, it’s finally possible
to get the well known charateristic equation:

cosh (γL) cos (γL) = 1

Once that det ([H(γ)]) = 0 has been imposed, it’s no longer possible to find both of
the constants {AC; BD}. Anyway it’s possible to compute one as function of the other
in order to get the normalized mode shapes.

The amplitude becomes an unknown computed with the time funtion G(t) integration.
At this point is possible to collect the constants BD of the system 7.1.1 and obtain:{

BD{K [cosh γL− cos γL] + 1 [sinh γL+ sin γL]} = 0

BD{K [sinh γL− sin γL] + 1 [cosh γL− cos γL]} = 0[
cosh (γL)− cos (γL) sinh (γL) + sin (γL)
sinh (γL)− sin (γL) cosh (γL)− cos (γL)

]{
K
1

}
= 0

This simplified boudary condition matrix lead to the definition of the constant K:

K = − sinh γL+ sin γL

cosh γL− cos γL

Remembering that B = D = 1 and that A = C = K, it’s possible to compute:

Φ(x) = A sin (γx) +B cos (γx) + C sinh (γx) +D cosh (γx)

= K [sin (γx) + C sinh (γx)] + [cos (γx) +D cosh (γx)]
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7.2 Passive configuration equation of motion 3.3.5

Once the data set has been introduced and knowing that the first two bending mode
are included in the model description, it’s possible to compute the equation of motion
generalized in equation 3.3.5.

7.2.1 Mass matrix: Eq. 3.3.4

The mass matrix results from the sum of two contributes: [Md] accounting for the free
discrete dofs xF ; [Mm] for the inertia provided by the coach transverse deformation.

[Md] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 mB

0 0 0 0 0 JB
0 0 0 0 0 0 mB

0 0 0 0 0 0 0 JB
0 0 0 0 0 0 0 0 mA

0 0 0 0 0 0 0 0 0 JA
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



[Mm] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 mM1

0 0 0 0 0 0 0 0 0 0 0 mM2


With mM1 = λ

∫ L
0

Φ1(x) Φ1(x) dx and mM2 = λ
∫ L

0
Φ2(x) Φ2(x) dx from equation

3.1.6 computed numerically with the trapeziodal method, given Φi(x) in equation 3.1.4.

Here the resulting mass matrix, already partitioned:

[M ] =

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 mB 0 0 0 0 0 0 0
0 0 0 0 0 JB 0 0 0 0 0 0
0 0 0 0 0 0 mB 0 0 0 0 0
0 0 0 0 0 0 0 JB 0 0 0 0
0 0 0 0 0 0 0 0 mA 0 0 0
0 0 0 0 0 0 0 0 0 JA 0 0
0 0 0 0 0 0 0 0 0 0 mM1 0
0 0 0 0 0 0 0 0 0 0 0 mM2

7.2.2 Stiffness matrix: Eq. 3.3.2

The stiffness matrix results from the sum of three contributes: [KI ] accounting for the
primary suspension; [KII ] accounting for the secondary suspension; [Km] accounting for
the coach bending rigidity.

The primary suspension contribute is computed with the relationship of equation 3.2.3:

[KI ] = [Λ∆LI ]
T [kI ] [Λ∆LI ]
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The matrix [kI ] = diag{kI ; kI ; kI ; kI} collects on its main diagonal the stiffness kI .
The jacobian matrix [Λ∆LI ] defines the suspension elongation:

[Λ∆LI ] zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 G2

∆LI11 -1 1 -b
∆LI12 -1 1 b
∆LI21 -1 1 -b
∆LI22 -1 1 b

At the end the resulting matrix will be:

[KI ] =



kI
0 kI
0 0 kI
0 0 0 kI
−kI −kI 0 0 2kI
bkI −bkI 0 0 0 2b2kI
0 0 −kI −kI 0 0 2kI
0 0 bkI −bkI 0 0 0 2b2kI
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


The secondary suspension contribute is given by the relationship of equation 3.2.6:

[KII ] = [Λ∆LII ]
T [kII ] [Λ∆LII ]

The matrix [kII ] = diag{kII ; kII} collects on its main diagonal the stiffness kII .
The jacobian matrix [Λ∆LII ] defines the suspension elongation:

[Λ∆LII ] zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 G2

∆LII1 -1 1 -a Φ1F Φ2F

∆LII2 -1 1 a Φ1R Φ2R

At the end the resulting matrix will be:

[KII ] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 kII
0 0 0 0 0 0
0 0 0 0 0 0 kII
0 0 0 0 0 0 0 0
0 0 0 0 −kII 0 −kII 0 2kII
0 0 0 0 akII 0 −akII 0 0 2a2kII
0 0 0 0 −Φ1FkII 0 −Φ1RkII 0 kII(Φ1F + Φ1R) kIIa(Φ1R − Φ1F ) kII(Φ

2
1F + Φ2

1R)
0 0 0 0 −Φ2FkII 0 −Φ2RkII 0 kII(Φ2F + Φ2R) kIIa(Φ2R − Φ2F ) kII(Φ1FΦ2F + Φ1RΦ2R) kII(Φ

2
2F + Φ2

2R)


From a theoretical point of view, ΦiF = ΦiR = Φi is expected as long as the secondary

suspension connection point and the beam boundary condition are symmetric. Anyway
from a numerical point of view, they’re not exactly the same and they are kept distin-
guished as provided in the data set.
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The matrix [Km] is referred to the only bending mode; thus the only non null elements
kM1 = mM1ω

2
1 and kM2 = mM2ω

2
2 are in the last two positions of the main diagonal:

[Km] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 kM1

0 0 0 0 0 0 0 0 0 0 0 kM2


By combining the three contributes is finally possible to compute the overall system

stiffness matrix, to be partitioned as follow:

[K] =

kI 0 0 0 −kI bkI 0 0 0 0 0 0
0 kI 0 0 −kI −bkI 0 0 0 0 0 0
0 0 kI 0 0 0 −kI bkI 0 0 0 0
0 0 0 kI 0 0 −kI −bkI 0 0 0 0
−kI −kI 0 0 kII + 2kI 0 0 0 −kII akII −Φ1FkII −Φ2FkII
bkI −bkI 0 0 0 2b2kI 0 0 0 0 0 0
0 0 −kI −kI 0 0 kII + 2kI 0 −kII −akII −Φ1RkII −Φ2RkII
0 0 bkI −bkI 0 0 0 2b2kI 0 0 0 0
0 0 0 0 −kII 0 −kII 0 2kII 0 kII(Φ1F + Φ1R) kII(Φ2F + Φ2R)
0 0 0 0 akII 0 −akII 0 0 2a2kII kIIa(Φ1R − Φ1F ) kIIa(Φ2R − Φ2F )
0 0 0 0 −Φ1FkII 0 −Φ1RkII 0 kII(Φ1F + Φ1R) kIIa(Φ1R − Φ1F ) kII(Φ

2
1F + Φ2

1R) + kM1 kII(Φ1FΦ2F + Φ1RΦ2R)
0 0 0 0 −Φ2FkII 0 −Φ2RkII 0 kII(Φ2F + Φ2R) kIIa(Φ2R − Φ2F ) kII(Φ1FΦ2F + Φ1RΦ2R) kII(Φ

2
2F + Φ2

2R) + kM2

7.2.3 Damping matrix: Eq. 3.3.3

In the passive configuration, the dampers are installed in parallel to the spring.
For this reason the jacobian of the elongation velocity [Λ∆LI ] and [Λ∆LII ] are the same

of used for the stiffness matrix computation. Consequently, the three contributes [RI ],
[RII ] and [Rm] have the same structure of the stiffness ones, but (cI cII) replace (kI ; kII).

Given cM1 = ξ1 2mM1 ω
2
1 and cM2 = ξ2 2mM2 ω

2
2, the final expression will be:

[R] =

cI 0 0 0 −cI bcI 0 0 0 0 0 0
0 cI 0 0 −cI −bcI 0 0 0 0 0 0
0 0 cI 0 0 0 −cI bcI 0 0 0 0
0 0 0 cI 0 0 −cI −bcI 0 0 0 0
−cI −cI 0 0 cII + 2cI 0 0 0 −cII acII −Φ1F cII −Φ2F cII
bcI −bcI 0 0 0 2b2cI 0 0 0 0 0 0
0 0 −cI −cI 0 0 cII + 2cI 0 −cII −acII −Φ1RcII −Φ2RcII
0 0 bcI −bcI 0 0 0 2b2cI 0 0 0 0
0 0 0 0 −cII 0 −cII 0 2cII 0 cII(Φ1F + Φ1R) cII(Φ2F + Φ2R)
0 0 0 0 acII 0 −acII 0 0 2a2cII cIIa(Φ1R − Φ1F ) cIIa(Φ2R − Φ2F )
0 0 0 0 −Φ1F cII 0 −Φ1RcII 0 cII(Φ1F + Φ1R) cIIa(Φ1R − Φ1F ) cII(Φ

2
1F + Φ2

1R) + cM1 cII(Φ1FΦ2F + Φ1RΦ2R)
0 0 0 0 −Φ2F cII 0 −Φ2RcII 0 cII(Φ2F + Φ2R) cIIa(Φ2R − Φ2F ) cII(Φ1FΦ2F + Φ1RΦ2R) cII(Φ

2
2F + Φ2

2R) + cM2
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7.3 Controlled configuration equation of motion 3.3.16

By comparing the passive and the controlled system, it’s possible to notice that the mass
[M ] and the stiffness [K] matrices are the very same of the one already discussed; on the
contrary the damping matrix [R] = [RII ] + [Rm] loses the primary suspension contribute
[RI ]. The resulting damping matrix is:

[R] =

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 cII 0 0 0 −cII acII −Φ1F cII −Φ2F cII
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 cII 0 −cII −acII −Φ1RcII −Φ2RcII
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −cII 0 −cII 0 2cII 0 cII(Φ1F + Φ1R) cII(Φ2F + Φ2R)
0 0 0 0 acII 0 −acII 0 0 2a2cII cIIa(Φ1R − Φ1F ) cIIa(Φ2R − Φ2F )
0 0 0 0 −Φ1F cII 0 −Φ1RcII 0 cII(Φ1F + Φ1R) cIIa(Φ1R − Φ1F ) cII(Φ

2
1F + Φ2

1R) + cM1 cII(Φ1FΦ2F + Φ1RΦ2R)
0 0 0 0 −Φ2F cII 0 −Φ2RcII 0 cII(Φ2F + Φ2R) cIIa(Φ2R − Φ2F ) cII(Φ1FΦ2F + Φ1RΦ2R) cII(Φ

2
2F + Φ2

2R) + cM2

7.3.1 Lagrangian of primary suspension: Eq. 3.3.15

The lagrangian Q
I

= δL/δq has the role to spread the virtual work δL =
−→
F ×

−→
δs over

the independent variables. In matrix notion, it can be expressed as:

δL = uTf δsI

The forces (fIij U ; fIij L) are collected in the vector uf ; but since fIij U = −fIij L it’s
possible for sake of simplicity to use the vector uF generated by the controller, defined as:

uf =



fI11 U
fI11 L
fI12 U
fI12 L
fI12 U
fI12 L
fI21 U
fI21 L
fI22 U
fI22 L



=



1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1




fI11
fI12
fI21
fI22

 = [ΛufF ] uF

The virtual displacement δsI defines the forces application point displacement and can
be define by means of the superimposition principle:

δsIij L = δzCij δsIij U = δzBi ± bδθBi
Since δsIij is a function of the independent variables, it can be expressed in matrix

notion δsI = [Λ∆sI ] δx given the jacobian matrix [ΛδsI ]:

[ΛδsI ] δzC11 δzC12 δzC21 δzC22 δzB1 δθB1 δzB2 δθB2 δzA δθA δG1 δG2

δsI11 U 1 -b
δsI11 L 1
δsI12 U 1 b
δsI12 L 1
δsI21 U 1 -b
δsI21 L 1
δsI22 U 1 b
δsI22 L 1
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Thus recalling the virtual work definition, it’s possible to state that:

Q
I

=
δL

δq
=
uTf δsI
δq

=⇒ Q
I

= uTF [ΛufF ]T [ΛδsI ]

The resulting Q
I
is a row vector; by transposing it is possible to get:

Q
I

= [ΛδsI ]
T [ΛufF ] uF = [QI ] uF

[QI ] =

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 1 0 0
−b b 0 0
0 0 1 1
0 0 −b b
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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7.4 TF of Nishimura model: equation 3.4.5

The transfer function of the Nishimura secondary suspension model provide an idea about
how the forces are transmitted depending on the excitation frequency.

In order to describe the state of this system, two independent variable (∆LII ; y) are
needed. The force generated can be computed as follow from the elongations definition:

F = −kII∆LII − kIIU (∆LII − y)

= −kII∆LII − kIIL y − cII ẏ

zL

zU

zM
kII

kIIU

kIIL cII

y

The first step for the transfer function computation is to move the force definition
equation from the time to the frequency domain: this is possible by assuming an harmonic
excitement ∆LII = ∆LI0 e

j Ωt.

F0 = −(kII + kIIU )∆LII0 + kIIUy0

= −kII∆LII0 − (j ΩcII + kIIL)y0

The independent variable y will be an harmonic response y0 e
j Ωt as well since the two

variables are related by the continuity equation about the node zM defined in 3.4.4. By
performing an equilibrium to the vertical forces acting on zM is possible to get:

−kIIU (∆LII − y) = −kIIL y − cII ẏ

That in the frequency domain gives the equation relating (∆LII; y):

y0 =
kIIU

(kIIL + kIIU ) + j Ω cII
∆LII0

By substituting this relationship in the frequency domain generated force equation, it
finally possible to get the transfer function for a given input ∆LII :

F0 = −
[
(kII + kIIU )−

k2
IIU

(kIIL + kIIU ) + j Ω cII

]
∆LII0

= −
[
kII +

kIIU (kIIL + j ΩcII)

(kIIL + kIIU ) + j ΩcII

]
∆LII0

The two expression are equivalent and lead to the generic equation:

F0 = − (kII + kIIL + kIIU ) + j (kII + kIIU ) Ω cII
(kIIL + kIIU ) + j Ω cII

∆LII0
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7.5 Passive configuration with air suspension

7.5.1 Mass matrix: Eq. 3.4.10

As long as there’s no mass associated to the Nishimura air spring model, the mass matrix
is the very same of the other configuration.

There are two contributes: one for the discrete dofs [Md], which is a diagonal matrix
as long as the independent variables correspond to the bodies centre of mass rotations
and displacements; the other for the inertia associated to the transverse vibration [Mm]
which has its only element in correspondence of the flexible independent variable:

[Md] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 mB

0 0 0 0 0 JB
0 0 0 0 0 0 mB

0 0 0 0 0 0 0 JB
0 0 0 0 0 0 0 0 mA

0 0 0 0 0 0 0 0 0 JA
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



[Mm] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 mM1

0 0 0 0 0 0 0 0 0 0 0 mM2


With mM1 = λ

∫ L
0

Φ1(x) Φ1(x) dx and mM2 = λ
∫ L

0
Φ2(x) Φ2(x) dx from equation

3.1.6 computed numerically with the trapeziodal method, given Φi(x) in equation 3.1.4.

Here the resulting mass matrix, already partitioned:

[M ] =

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 mB 0 0 0 0 0 0 0
0 0 0 0 0 JB 0 0 0 0 0 0
0 0 0 0 0 0 mB 0 0 0 0 0
0 0 0 0 0 0 0 JB 0 0 0 0
0 0 0 0 0 0 0 0 mA 0 0 0
0 0 0 0 0 0 0 0 0 JA 0 0
0 0 0 0 0 0 0 0 0 0 mM1 0
0 0 0 0 0 0 0 0 0 0 0 mM2
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7.5.2 Damping matrix: Eq 3.4.11

Because of the Nishimura air spring arrangment, there’s no longer a linear damper con-
nected directly in between the car body and the bogie frame. For this reason during the
computation of the damping matrix it’s necessary to account only for two contributes:
[RI ] for the primary suspension; [Rm] for the damping effect of the car body vibrations.

In particular the primary suspension contribute is given by the relationship:

[RI ] = [Λ∆LI ]
T [c] [Λ∆LI ]

Where [c] = diag{cI ; cI ; cI ; cI} collects the damping values of the primary suspension;
the jacobian [Λ∆LI ] provides the information about the kinematic relationship defining the
suspension elongation and can be computed by means of the superimposition principle:

[Λ∆LI ] zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 G2

∆LI11 -1 1 -b
∆LI12 -1 1 b
∆LI21 -1 1 -b
∆LI22 -1 1 b

On the contrary [Rm] has its only non null value cM1 = ξ1 2mMω1 and cM2 = ξ2 2mMω2

on the main diagonal in correspondence of the bending mode independent variables:

[RI ] =



cI
0 cI
0 0 cI
0 0 0 cI
−cI −cI 0 0 2cI
bcI −bcI 0 0 0 2b2cI
0 0 −cI −cI 0 0 2cI
0 0 bcI −bcI 0 0 0 2b2cI
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



[Rm] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 cM1

0 0 0 0 0 0 0 0 0 0 0 cM2


The resulting damping matrix is:

[R] =

cI 0 0 0 −cI bcI 0 0 0 0 0 0
0 cI 0 0 −cI −bcI 0 0 0 0 0 0
0 0 cI 0 0 0 −cI bcI 0 0 0 0
0 0 0 cI 0 0 −cI −bcI 0 0 0 0
−cI −cI 0 0 2cI 0 0 0 0 0 0 0
bcI −bcI 0 0 0 2b2cI 0 0 0 0 0 0
0 0 −cI −cI 0 0 2cI 0 0 0 0 0
0 0 bcI −bcI 0 0 0 2b2cI 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 cM1 0
0 0 0 0 0 0 0 0 0 0 0 cM2
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7.5.3 Lagrangian of air spring suspension: Eq 3.4.9

The Lagrangian of the air spring QII is obtained from the definition of the virtual work:

Q
II

=
δL

δx
=
F T
IIδsII
δx

As long as the virtual displacements is a function of the independent coordinates, it
can be expressed in matrix notion δsII = [ΛδsII ] δx given the jacobian matrix:

[ΛδsII ] δzC11 δzC12 δzC21 δzC22 δzB1 δθB1 δzB2 δθB2 δzA δθA δG1 δG2

δsII1U 1 -a Φ1R Φ2R

δsII1L 1
δsII2U 1 a Φ1F Φ2F

δsII2L 1

For sake of simplicity, since FIIi U = −FIIi L the vector collecting the secondary sus-
pension forces F II = {FII1 U ; FII1 L ; FII2 U ; FII2 l} can be reorganized as follow:

F II =


fII1 U
fII1 L
fII2 U
fII2 L

 =


1 0
−1 0
0 1
0 −1

 {fII1 UfII2 U

}
= [ΛFf ] f II

Where fIIiU = −kII U ∆LIIi U . Again the elongation is a function of the independent
variables, thus it can be expressed in matrix notion ∆LIIU = [Λx

∆LII N
] x + [Λy

∆LII N
] y by

means of the superimposition principle given the jacobian matrix:

[Λx
∆LII N

] [Λy
∆LII N

]
zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 G2 y1 y2

∆LII1U -1 1 -a Φ1R Φ2R -1
∆LII2U -1 1 a Φ1F Φ2F -1

The resulting lagrangian can be computed from equation 3.4.9:

QT

II
= F T

II [ΛδsII ] = −kII U
(
fT
II

[ΛFf ]
T
)

[ΛδsII ]

= −kII U
(
xT [Λx

∆LII N
] [ΛFf ]

T + yT [Λy
∆LII N

] [ΛFf ]
T
)

[ΛδsII ]

That after the transposition result in the expression:

Q
II

= −kII U
(
[ΛδsII ]

T [ΛFf ] [Λx
∆LII N

] x + [ΛδsII ]
T [ΛFf ] [Λy

∆LII N
] y
)

= [Qx
II ]x + [Qy

II ]y
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With the proper matrix multiplication, it’s possible to define the lagrangia matrices
as follow:

[Qx
II ] = −kIIU

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 -1 a −Φ1R −Φ2R

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 -1 -a −Φ1F −Φ1R

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 -1 0 2 0 Φ1F + Φ1R Φ2F + Φ2R

0 0 0 0 a 0 -a 0 0 2a2 a(Φ1F − Φ1R) a(Φ2F − Φ2R)
0 0 0 0 −Φ1R 0 Phi1F 0 Φ1F + Φ1R a(Φ1F − Φ1R) Φ2

1F + Φ2
1R Φ1RΦ2R + Φ1FΦ2F

0 0 0 0 −Φ2R 0 Phi2F 0 Φ2F + Φ2R a(Φ2F − Φ2R) Φ1RΦ2R + Φ1FΦ2F Φ2
2F + Φ2

2R

[Qy
II ]

T = −kIIU
0 0 0 0 0 0 1 0 -1 -a −Φ1F −Φ2F

0 0 0 0 1 0 0 0 -1 a −Φ1R −Φ2R

7.5.4 Stiffness matrix: Eq 3.4.12

Once the contribute of the secondary suspension lagrangian [Qx
II ] has been computed, it’s

possible to assembly the stiffness matrix [K], made of four contributes: [KI ] accounting
for the primary suspension; [KII ] for the main spring of the secondary suspension; [Km]
accounting for the bending rigidity of the car body; [Qx

II ] as explained in the rearrange-
ment of the equation of motion.

For what concern [KI ] and [KII ], the usual relationships hold:

[KI ] = [Λ∆LI ]
T [kI ] [Λ∆LI ] [KII ] = [Λ∆LII ]

T [kII ] [Λ∆LII ]

Given [kI ] = diag{kI ; kI ; kI ; kI}, [kII ] = diag{kII ; kII} and recalling the jacobian
matrices already introduced:

[Λ∆LI ] zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 G2

∆LI11 -1 1 -b
∆LI12 -1 1 b
∆LI21 -1 1 -b
∆LI22 -1 1 b

[Λ∆LII ] zC11 zC12 zC21 zC22 zB1 θB1 zB2 θB2 zA θA G1 G2

∆LII1 -1 1 -a Φ1F Φ2F

∆LII2 -1 1 a Φ1R Φ2R

While [Km] contains on its main diagonal the modal stiffness kM1 = mMω
2
1 and kM2 =

mMω
2
2, in correspondance of the dofs (G1; G2).
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Their final expression as usual is:

[RI ] =



kI
0 kI
0 0 kI
0 0 0 kI
−kI −kI 0 0 2kI
bkI −bkI 0 0 0 2b2kI
0 0 −kI −kI 0 0 2kI
0 0 bkI −bkI 0 0 0 2b2kI
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



[Rm] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 kM1

0 0 0 0 0 0 0 0 0 0 0 kM2



[KII ] =



0
0 0
0 0 0
0 0 0 0
0 0 0 0 kII
0 0 0 0 0 0
0 0 0 0 0 0 kII
0 0 0 0 0 0 0 0
0 0 0 0 −kII 0 −kII 0 2kII
0 0 0 0 akII 0 −akII 0 0 2a2kII
0 0 0 0 −Φ1FkII 0 −Φ1RkII 0 kII(Φ1F + Φ1R) kIIa(Φ1R − Φ1F ) kII(Φ

2
1F + Φ2

1R)
0 0 0 0 −Φ2FkII 0 −Φ2RkII 0 kII(Φ2F + Φ2R) kIIa(Φ2R − Φ2F ) kII(Φ1FΦ2F + Φ1RΦ2R) kII(Φ

2
2F + Φ2

2R)


According to the equation 3.4.12, is at the end possible to get the combination:

[KI ] + [KII ] + [Km]− [Qx
II ]
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