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Abstract
Satellite constellations are a set of satellites working together as a coordinated system

to achieve a unique objective, in general used to fulfill spatial and temporal coverage and
observation requirements which can not be met with a single satellite.
The aim of this thesis is to perform an analysis of the geometries and the design methods for
satellite constellations, to make a simple and clear comparison among the existing design
approaches and to determine the most efficient and optimal ones. Either minimisation of
the computational effort or development of graphical representations aimed at clarifying
the underlying physics are considered as targets of the optimisation process, and field of
applicability as well as accuracy of the results are judged of primary importance.
Among all figures of merit that characterise a constellation, visibility conditions and
coverage requirements have been the common thread throughout all the work presented
as the methods studied are focused on assessing the coverage performance of satellite
constellations.
The novelty proposed in the presented work is directed towards the development of a
standardised nomenclature and treatment in order to make a direct, intuitive and simple
comparison. The proposed algorithms have been created for the purpose of testing the
efficiency and the accuracy of the results, but also to graphically visualise numerical results.
In addition, an innovative approach for the determination of the coverage area is introduced,
that relies on an analytical method based on the knowledge of the satellite’s position vectors,
the relative geographical coordinates of the sub-satellite points and the half-aperture angle
of the navigation antenna. The analytical formulations reduce the computational cost and
increase the accuracy of the results.
A feasibility analysis of the proposed approaches is also performed, by applying the methods
to two missions in which the author was able to contribute during the Internship at the
European Space Agency, one dealing with a mega-constellation around the Earth and the
other with a small constellation around the Moon.
However, the development of the different design methods and the relative results showed
some particular peculiarities and sometimes limit in the methodology treated, hinting
some possible fields for future investigations.
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Sommario
Le costellazioni sono un gruppo di satelliti che lavorano assieme come un sistema coor-

dinato al fine di raggiungere un unico obiettivo. In generale vengono usate per rispondere
a requisiti di copertura spaziale e temporale che non possono essere soddisfatti da un
singolo satellite.
Il lavoro svolto in questa tesi è un’analisi delle geometrie di costellazioni esistenti e dei
relativi metodi di progettazione, con lo scopo di realizzare un confronto facilmente com-
prensibile tra i vari approcci e di determinare i più efficienti. Gli obiettivi del processo
di ottimizzazione di un metodo sono la minimizzazione del costo computazionale e la
presenza di simulazioni grafiche esplicative e rappresentative. In più, sono considerati di
primaria importanza anche il numero di casi in cui questi metodi possono essere applicati
e l’esattezza dei risultati.
Tra tutte le figure di merito che caratterizzano una costellazione di satelliti, le condizioni e
i requisiti di visibilità sono stati il filo conduttore dello studio svolto e quindi i metodi
analizzati sono basati sulla valutazione delle prestazioni di copertura delle costellazioni.
L’innovazione del presente lavoro di tesi è rappresentata dal fatto che tutti i metodi
sono descritti e trattati attraverso una nomenclatura standardizzata in modo da poter
effettuare un confronto diretto, intuitivo e semplice. I corrispondenti algoritmi sono stati
realizzati allo scopo di testare l’efficienza e la precisione dei risultati ottenuti, ma anche
per visualizzare tali risultati graficamente.
Lo scopo di questa tesi è anche l’introduzione di un approccio innovativo per le determi-
nazione dell’area di copertura, basato su calcoli analitici che partono dalla conoscenza
del vettore di posizione dei satelliti, dalle relative coordinate geografiche e dall’angolo di
semiapertura dell’antenna di navigazione. I calcoli analitici permettono di ridurre il costo
computazionale e di aumentare la precisione dei risultati.
Come casi studio, i metodi presentati sono stati applicati a due missioni cui l’autore ha
avuto possibilità di contribuire durante l’Internship presso l’Agenzia Spaziale Europea, la
prima relativa a una mega-costellazione attorno alla Terra e l’altra a una piccola costel-
lazione attorno alla Luna.
L’implementazione dei diversi metodi di progettazione ha evidenziato alcuni limiti nei vari
approcci e possibili campi di sviluppo per investigazioni future.
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v̂, ŵ km Unit vectors
T - Total number of satellites
P - Number of orbital planes
S - Number of satellites per plane
F 2π

T
, 360

T
Relative phase parameter

W - Scaling parameter
m [0,(T−1)]

S
Geometric harmonic factor

Ω deg, rad Right ascension angle
a km Semi-major axis
e - Eccentricity
i deg, rad Inclination
v km/s Satellite’s velocity vector
ω deg, rad Argument of pericenter
M deg, rad Mean anomaly
TA deg, rad True anomaly
hp km Perigee altitude
Tperiod s Orbital Period
X deg, rad Time-varying phasing angle
n rad/s Satellite’s mean motion
d km Distance
Φ deg, rad Angular half-width of the ground swath
α deg, rad Inter-plane angular separation between adjacent planes
∆M deg, rad Variation in mean anomaly
∆Ω deg, rad Variation in right ascension, longitude range
J2 - Harmonic coefficient of Earth oblateness
Np - Number of orbit revolutions to complete one period of repetition

xv



Marta Padoan Master Thesis

Symbol Units Description

Nd - Number of sidereal days te repeat the relative trajectory
Fn - Relative phasing parameter
Fd - Relative phasing parameter
ωEarth rad/s Earth’s rotation rate
λ deg, rad Latitude
ϕ deg, rad Longitude
TBeste−nfold,λ - Total N o of satellites for n-fold coverage beyond λ, Beste
j, k, n - Multiple level of coverage
TA&R - Total N o of satellites for global n-fold coverage, Adams and Rider
θMAX deg, rad Largest value of circumcircle radii over the entire propagation
θmax deg, rad Largest value of circumcircle radii at an instant of time
rij deg, rad Intersatellite great circle range between a pair of satellites i, j
θijk deg, rad Equidistance range arc of any three sub-satellite points
u deg, rad Argument of latitude
∆φ1 deg, rad Groundtrack shift between two consecutive ascending nodes
∆ϕ deg, rad Longitude range for non-rotating Earth
β deg, rad Inclination angle of the coverage belt
∆tREV hr Revisit Time
∆tB hr Revisit Time between straight-line envelopes of coverage belts
δt hr Relative shift of each teeth of the coverage belt

N , S deg, rad Boundary points of the longitude range

A, D deg, rad Ascending and descending passes
∆ΩREV deg, rad Longitude gap range, for non-visibility
δΩ∗ deg, rad Longitude shift between boundary points in the coverage belt
∆λ deg, rad In-plane phase shift of satellites in a constellation with F 6= 0
(xo, yo) deg, rad Corner point coordinates of the parallelogram
Γ deg, rad Solid angle corresponding to the circle θ

xvi



Acronyms

Acronym Description

3G Third Generation
ART Average Revisit Time
CDF Concurrent Design Facility
CPU Central Processing Unit
DOP Dilution Of Precision
ECEF Earth Centered Earth Fixed
ECI Earth Centered Inertial
ELCANO European LEO Constellation for Augmentation of Navigation and

Other services
ELO Elliptical Lunar Orbit
EL3 European Large Logistic Lander
EME2000 Earth’s Mean Equator and Equinox
ESA European Space Agency
FOW Field Of View
GEO Geosynchronous/Geostationary Earth Orbit
GLONASS Global Navigation Satellite System
GNSS Global Navigation Satellite System
GPS Global Positioning System
HDOP Horizontal Dilution Of Precision
HEO Highly Elliptical Orbit
ICO Intermediate Circular Orbit
IGSO Inclined Geosynchronous Orbit
JD Julian Days
J2000 January 2000
LCNS Lunar Communications and Navigation Services
LEO Low Earth Orbit
LLO Low Lunar Orbit
LOI Lunar Orbit Insertion
LTI Trans-Lunar Injection
LTO Lunar Transfer Orbit
LUNATIC Lunar Sample Return with LCNS
MEO Medium Earth Orbit
MJD Modified Julian Days

xvii



Marta Padoan Master Thesis

Acronym Description

MJD2000 Modified Julian Days 2000
MRT Maximum Revisit Time
NRHO Near Rectilinear HALO Orbit
OB Orbit Determination
O3b Other 3 Billion
PDOP Position Dilution Of Precision
PNT Position, Navigation and Timing
RAAN Right Ascension Of the Ascending Node
SOC Street Of Coverage
TCM Trajectory Correction Manoeuvre
ToF Time of Flight
VDOP Vertical Dilution Of Precision
WSBT Weak Stability Boundary Transfer

xviii



1. Introduction
A satellite constellation is a set of satellites working together as a coordinated system to

achieve a unique mission objective, in general used to fulfill spatial and temporal coverage
and observation requirements which can not be met with a single satellite.
The common mission objectives that lead to select a constellation are: to have global
or nearly global coverage of the Earth surface, to improve system performance and
data collection capacity, to provide new services (e.g. global positioning and navigation,
worldwide telecommunications, new applications in the Earth observation and scientific
mission domain) and to take advantage of scale economy for the satellite manufacture
(reduction of cost and production times). The concept of satellite constellations can be
exploited not only around Earth, but even for missions whose center body is another
planet: the aim is to provide navigation services and a planetary communication network
to surface and orbiting asset (landers, robots) and to perform observation tasks advantage
of a multi-spacecraft system orbiting around the planet.

1.1 Scope of the thesis
The aim of the thesis is to present and analyse the concept of satellite constellations

and the relative design methods, throughout a study that allows a clear and simple
comparison. An attempt to determine the most efficient and optimal geometries and
methods in terms of accuracy of the results and minimisation of computational time is then
carried out. Indeed, either minimisation of computational effort and graphical/geometrical
representation supporting the understanding of the underlying physics are considered as
targets of the optimisation process, as well as the applicability domain and the accuracy
of the results.
The design process is based on the user requirements, since they define the figures of merit
for mission objectives. For instance, a constellation could be desired for Earth observation,
telecommunications rather than navigation and positioning.
Some figures that are considered in this work for the design process and for the selection
of the optimal constellation geometry are reported in Table 1.1.
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Table 1.1: Constellation’s figures of merit.

Earth Observation Telecommunications Navigation and
Positioning

- Visibility - Visibility - Visibility
- Instrument duty cycle - Signal propagation delay - Dilution of precision
- Data timeliness/latency - Doppler effect - Link availability/integrity
- Response time - Satellite/user antenna - Positioning accuracy
- Illumination conditions - Inter-satellite link

- Link availability/reliability
- Link Budget
- Signal Interference
- Space network
- Fade analysis

For Earth observation constellations, the instrument duty cycle, or power cycle, is
defined as the fraction of one period in which a signal or a system is active, while the
response time is the time span between the delivery of the data requested by the users
and the availability of the ordered data, strictly related to the concept of data latency,
that is the time it takes for data packets to be stored or retrieved.
Satellite constellations for telecommunications shall consider the signal propagation delay,
the signal fading but also the link established between the satellite and the ground or
between satellites; the latter concept deals with inter-satellite link and space network
requirements.
Dilution Of Precision (DOP) is a term used in satellite navigation and positioning to
specify the error propagation as a mathematical effect of navigation satellites geometry on
positional measurement precision. However, for this class of constellations, also the link
availability between the satellite and the ground shall be taken into account.
By looking at Table 1.1, among all figures of merit that characterise a constellation,
visibility conditions must always be considered and so they have been the common thread
throughout all the work presented, as the methods studied are focused on assessing the
coverage performance of satellite constellations.
The methods are numerical or analytical and can be applied for different constellation
geometries; this thesis aims at developing the mathematical formulations and algorithms
behind each method, with an attempt to find out similarities and peculiarities among
them, as well as to determine the most performant and cost saving solution.
An innovative methodology to determine the coverage area is also developed and applied to
the methods: it relies on analytical formulations based on the knowledge of the satellite’s
position vectors, the geographical coordinates and the characteristics of the satellite’s
antenna in terms of aperture angle. The analytical approach reduces the computational
cost and increases the accuracy of the results.
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1.2 Background
The design of satellite constellations began with the work of Luders in the early 1960s

[1]. At that time, all satellites were in Low Earth Orbit (LEO) while there were not
satellites in higher orbits, including the special case of Geosynchronous (GEO) 24-hours
orbits. In particular, the Geostationary satellite is a special case of the GEO type with
zero degree inclination, thus in an orbit where it remains directly over a fixed point on the
equator. It has the advantage of remaining stationary in the sky relative to a fixed ground
antenna, so that the ground-based user antenna may be fixed relative to the mounting base.
The main disadvantage is that the satellite becomes unusable in the higher latitudes and
at the poles. Hence, in the Soviet Union, many communications satellites were placed in
Molniya orbit, highly elliptic and with a 12-hour period, favoring the Northern Hemisphere,
that contains the apogee point of the orbit itself. This orbit overcame the high latitude
reception problem, but required movable antennas (i.e. to follow the motion of the satellite
in its elliptic orbit). Later, the advent of the Navstar Global Positioning System (GPS)
constellation introduced the use of circular inclined 12-hour orbits. Systems for continuous
coverage of the globe, zonal regions or discrete geographic areas have also been addressed
in numerous studies by government agencies and industry.
A major trend in the evolution of satellite systems is an increase in the number of smaller
and lower-cost satellites [2]. This led to a dramatic increase in the number of Earth-
orbiting constellations for observations, communications, navigation and science and with
the consequent birth of the concept of large and mega-constellations.
The most important result of decades of constellation studies has been that no absolute
rules exist for constellation design.

The most relevant constellation designs are hereafter presented [3], [4], [5] while a more
detailed list is reported in Table 1.2, Table 1.3 and Table 1.4, where the references and a
brief description of the correspondent method are listed.

1. Luders (1961): Satellites are equally divided among, and uniformly distributed
around, circular orbits of common altitude; the orbit planes are equally inclined with
respect to the equator and symmetrically arranged about the polar axis.

2. Walker (1977): Systems of satellites in multiple equal-radius circular orbits, with an
equal number of satellites in each orbit, capable of providing continuous coverage of
the whole Earth’s surface in orbits from synchronous altitude down to relative low
altitude. Three satellites of the constellation (satellite triad) are used to assess the
coverage performance.
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3. Beste (1977): Analysis for simple and triple coverage of the whole Earth and of
the polar regions extending to arbitrary latitude, by placing the satellites in orbital
planes which have a common intersection (i.e. polar orbits) and to adjust the plane
separation and satellite spacing so as to minimise the total number required. The
satellite constellations with these characteristics belong to the Street Of Coverage
(SOC) class.

4. Ballard (1980): Rosette (flowerlike) constellations of Earth satellites, characterised
by circular, common-period orbits all having the same inclination with respect to an
arbitrary plane. The orbits are uniformly distributed in a right ascension angle as
they pass through the reference plane and the initial phase position of satellites in
each orbit plane is proportional to the right ascension angle for the plane.

5. Broglio (1981): "Sistema Quadrifoglio" (Four-Leaf clover system) [6], an equatorial
constellation of four satellites proposed to observe and to guarantee continuous
measurement of the upper part of the atmosphere in the equatorial region. The
satellites each spend about six hours near apogee and two hours in transition between
successive apogees.

6. Draim (1986): Elliptical orbits considered; analysis and study of a common-period
four-satellite continuous global coverage constellation organised in a tetrahedron
form.

7. Adams and Rider (1987): Optimally phased polar orbit constellations using minimum
total number of satellites to achieve continuous single or multiple coverage above a
specified latitude assuming that all orbital planes have the same number of satellites
with the satellites symmetrically distributed in each orbital plane (SOC class).

8. Lang (1987): Symmetric circular orbit satellite constellations for continuous global
coverage by means of a method which involves the computation of revisit times to
points on the ground.

9. Draim (1987): Six satellite common period elliptic orbit constellation giving continu-
ous global double coverage of a spherical Earth.

10. Bottkol and Di Domenico (1991): Numerical phase-based approach to the calculation
of revisit interval [7]; the satellite groundtrack is mapped to the surface of a torus
which is then unwrapped to indicate the intersection with a defined visibility region.

11. Lang (1993): Study of symmetric satellite constellations as large as 100 satellites,
for which continuous global coverage for single through four-fold coverage are sought
and compared with that of non-symmetric, polar constellations.
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12. Lang (2002): Genetic algorithm optimisation process enabling a parametric explo-
ration of the design space.

13. Abdelkhalik and Mortari (2006): Propagated satellite orbits over a short time
period and use of a penalty function method to design satellite orbits for maximum
resolution or maximum observation time.

14. Ruggieri et al. (2006): Flower constellation Set and possible applications to other
existing geometries.

15. Ulybyshev (2014): Geometric analysis method for the calculation of revisit time for
symmetric constellations.

Table 1.2: Summary of constellation designs.

Author Year Orbit Type Design Method Remarks

Luders 1961 Circular, inclined, sym-
metrical

Street Of Coverage
(see Section 2.2.3) Full single coverage

Ullock,
Schoen 1963 Circular, polar, non-

symmetrical Street Of Coverage Phasing of co-rotational
planes

Walker 1970,
1977

Star, Delta patterns
(see section 2.2.1)

Satellite triad (see
Section 3.3)

Naming (T/P/F ) and in-
clination; 5 satellites for
global coverage

Mozahev 1972 Circular Symmetrical group Difficult to find transla-
tions

Emara, Leon-
des 1976 Circular, inclined Point coverage sim-

ulation
Optimum 4x2 and 3x4 con-
stellation

Beste 1977 Circular, polar, non-
symmetric Street Of Coverage Systematic, multiple cover-

age

Ballard 1980 Rosette (Delta pattern) Satellite triad Systematic multiple cover-
age

Broglio 1981 Elliptic, equatorial
One-third of the
Earth rotation rate
period

Continuous coverage, or-
bits compatible with re-
spect to a rotating refer-
ence frame

Lang, Han-
son 1983 Delta pattern Point coverage sim-

ulation Minimum revisit time

Rider 1986 Delta pattern Street Of Coverage Analytical closed-form,
multiple coverage

Draim 1986 Elliptic, high altitude Tetrahedron (see
Section 2.3.1)

4 satellites constellation,
continuous coverage

Adams,
Rider 1987 Polar, circular, non-

symmetric Street Of Coverage Systematic computational
approach

Lang 1987 Circular, inclined
Point coverage +
satellite constella-
tion triad

2-step approach for CPU
time
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Table 1.3: Summary of constellation designs.

Author Year Orbit Type Design Method Remarks

Hanson, Lin-
den 1988 Circular, inclined Street Of Coverage

Below-The-Horizon dou-
ble, Above-The-Horizon
single

Mainguy 1989 Geosynchronous, ellip-
tic, inclined Zonal coverage Orbit control analysis

Rondinelli 1989 3 GEO + 2 Tundra Zonal coverage Orbit control analysis
Hanson, Hig-
gins 1990 Geosynchronous Point coverage sim-

ulation
Geostationary, Walker, el-
liptic, composite

Maral 1990 LEO circular Zonal coverage Network topology concept

Baranger 1991 GPS-like Point coverage sim-
ulation

Adaptive random search
Position DOP (PDOP)

Bottkol,
DiDomenico 1991 Circular, symmetric Numerical, Phase-

based approach

Satellite groundtrack
mapped to the surface
of a torus (for visibility
regions)

Hanson 1992 Circular, inclined Coverage timeline
meshing

Time gap, partial coverage,
repeating groundtrack

Lang 1993 Circular, polar, non-
symmetric

Point coverage sim-
ulation

Up to 100 satellite constel-
lation, Fortran PC (486)

Werner 1995 LEO - Intermediate
Circular Orbit (ICO) Analytical approach Network topology simula-

tion
Radzik,
Maral 1995 Walker and Beste types Street Of Coverage Minimum revisit time, net-

work
Sabol 1996 Ellipso Refinement Orbital perturbations

Ma, Hsu 1997 Repeating groundtrack Coverage timeline
meshing

Partial coverage, oblate
Earth, Pentium C++

Kelley, Fis-
cher 1997 GPS orbit type Simulated anneal-

ing VDOP optimisation

Pablos, Mar-
tin 1997

GEO + Inclined
Geosynchronous Orbit
(IGSO)

Zonal coverage Availability, integrity

Lansard, Pal-
made 1997 LEO circular Design to cost Cost efficiency, spares,

availability

Palmade 1997 LEO circular Double Walker GEO interference con-
straint

Boudier 1997 GEO + MEO Hybrid constella-
tion

Communication, Station
Keeping

Renault 1997 GEO + IGSO Hybrid constella-
tion

Navigation constraint,
Horizontal DOP (HDOP),
Vertical DOP (VDOP)

Micheau,
Thiebolt 1997 GEO + LEO Walker constella-

tion
Accuracy, integrity, conti-
nuity

Perrota 1997 LEO circular Walker constella-
tion

Navigation, 75 satellite
constellation

Palmerini 1997 Elliptical Hybrid configura-
tion

Additional coverage on
given areas

Draim 1997 Elliptical + circular Hybrid systems Station Keeping, collision
avoidance

Cornara 1997 GEO, LEO Selected constella-
tions

Geometry and dynamics
satellite constellation inter-
action

Ulivieri 1997 LEO sunsynchronous
circular

Revisit time optimi-
sation

Earth observation constel-
lations
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Table 1.4: Summary of constellation designs.

Author Year Orbit Type Design Method Remarks

Lang, Adams 1997 LEO circular Point coverage sim-
ulation

Comparative table of opti-
mal constellations

Wertz 1999 All geometries Numerical approach Coverage evaluation utiliz-
ing groundtrack plots

Crossley,
Williams 2000 All geometries Genetic algorithm

Annealing approach to
minimisation of Maximum
Revisit Time (MRT)

Lang 2002 All geometries Genetic algorithm Parametric exploration

Ferringer,
Spencer 2006 All geometries Numerical point-

coverage simulation

Generated ephemeris
through COVERIT and
ASTROLIB/Revisit-C
tools

Abdelkhalik,
Mortari 2006 All geometries Penalty function

method

Propagation of satellite or-
bits for maximum resolu-
tion or observation time

Ruggieri et
al. 2006 All geometries Flower constellation

Set
Generalisation of the
Flower concept

Wertz 2011 All geometries Point coverage sim-
ulation

Grid of points to evaluate
visibility

Abdelkhalik,
Gad 2011 Sunsynchronous orbits Optimal repeated

groundtrack Multiple site surveillance

Ulybyshev 2014 Circular, symmetric Geometric analysis Coverage evaluation

Razoumny 2016 All geometries Analytical method Route theory for discontin-
uous coverage evaluation

The study of satellite constellations is still ongoing, mainly taking as reference all the
aforementioned methods and trying to optimise and improve them. Some examples are
related to the Walker method or the socalled Flower constellations that take origin from
Broglio’s "Four-Leaf clover system" concept and that have seen a growing interest in the
last years.

As regards the computation of the coverage area associated to a satellite, Escobal [8]
derived a closed-form solution to the satellite visibility problem. The closed form solution
is a single trascendental equation in the eccentric anomalies corresponding to the rise and
set times for a given orbital pass of a satellite under the assumptions of Keplerian motion
and knowledge of satellite orbital elements, station coordinates and minimum elevation
angle. The elevation angle ε is the angle between a satellite and the observer’s horizon
plane [9]. Escobal solved also the trascendental equation by using numerical methods once
per satellite period, which is faster than determining the value of the elevation angle of
the satellite with respect to a ground station for each time instant.
Lawton [10] developed a method to solve for satellite-satellite and satellite-ground station
visibility periods considering an oblate Earth defining a new visibility function based on
the vertical distance above the plane tangent to a ground station by using a Fourier series.
This method works well for low eccentricity orbits, but fails for more elliptical orbits
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because the visibility waveform becomes aperiodic.
Wilkinson [11] used spherical trigonometry equations for the determination of coverage
regions, in order to assess the total amount of time one or more satellites spend inside it.
Walker [12] derived circular orbital patterns providing continuous whole Earth coverage
modeling the Earth as a perfect sphere. This assumption can be considered reasonable if
the satellites’ altitude is low since the spherical geometry and the ellipsoidal one are not
so different.
Ma and Hsu [13] proposed a solution for the exact design of a partial coverage satellite
constellation over an oblate Earth, that is, the coverage of certain regions of the Earth
with gap times in coverage no longer than some specified maximum time, which is based
on a visibility function analogous to the one introduced by Escobal [8]. This method can
not be efficient for a Global Navogation Satellite System (GNSS) where the coverage is
supposed to be global and there is a significant number of satellites. The problem in using
the visibility function is the resolution of the trascendental equation to determine the
region visible from each satellite.
The analytical method presented by Nugnes et al. [14] determines the coverage area
considering the Earth as an oblate ellipsoid of rotation, starting from the position of a
spacecraft on its orbit and derives all the locations on the Earth’s surface within its field
of view.

1.3 State of the art
LEO satellites are often deployed in satellite constellations, because the coverage area

provided by a single LEO satellite only covers a small section that moves as the satellite
travels. Hence, many LEO satellites are needed to maintain continuous coverage over a
region. Instead, by placing a satellite in a Geostationary orbit, permanent coverage is
guaranteed over a large area. However, LEO satellites have the advantage of low cost, low
latency and low path losses. Constellations of LEO satellites will be an important part of
the next generation of global mobile communication networks [15].
For example, the Walker class of constellations developed by Walker was initially used
for Medium Earth Orbit (MEO) constellations but was subsequently applied to LEO
satellites. Many LEO Walker satellite constellations were created in the 1980s, such as
Iridium [16] and Globalstar [17], while Teledesic [18] is another example that is used for
multimedia services and integrated broadband applications. In the 2000s, because of the
high costs resulting from sub-optimal configurations and the competition from terrestrial
mobile communication networks, several of these well-known satellite constellations were
abandoned. To satisfy the coverage demands (coverage performance is an important factor
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Chapter 1. Introduction

in determining the competitiveness of a new constellation), there are several types of
satellite constellation configurations.
Over the last decade, satellite constellation concepts have been envisioned for a broad
range of uses. Initially starting with navigation and positioning constellations such as
NAVSTAR/GPS [19], Glonass [20] and GNSS/Galileo [21], satellite constellation concepts
have branched out into telecommunications for direct telephony, mobile message system
and broadcasting and even into Earth observation. In addition, with increasing on-orbit
capability and reduced system cost, development of constellations of a large number of
small satellites has recently grown significantly.

Several examples of operational and planned satellite systems [22] are reported in Table
1.5, with their service, main characteristics and starting year of service. Some of them are
going to be further analysed in Section 2.4

Table 1.5: Satellite Systems.

System Service Coverage Satellites Start of
service

Immarsat-A Speech and data
transmission Global 4 GEO 1982

Immarsat-B Speech and data
transmission Global 4 GEO 1993

GPS Positioning, Naviga-
tion and Timing World-wide 24 MEO at 20200 km in-

clined orbits 1994

Orbcomm Low-rate data com-
munication World-wide 28 LEO at 825 km inclined

orbits
1996 USA,
1998 Global

Iridium Mobile telephony World-wide 66 LEO at 780 km polar
orbits 1998

Globalstar Mobile telephony World-wide 48 LEO at 1414 km in-
clined orbits 1999/2000

Ellipso Mobile telephony World-wide
10 Highly Elliptical Orbit
(HEO), inclined + 6 equa-
torial MEO

-

ICO Mobile telephony World-wide 10 MEO at 10390 km in-
clined orbits -

SkyBridge Broadband network Global 80 LEO at 1457 km -

Boeing 3G Mobile telecom-
munications Global 16 MEO at 20180 km -

Teledesic Broadband network Global 288 LEO -

Glonass Positioning, Naviga-
tion and Timing World-wide 24 MEO at 19130 km in-

clined orbits 2010

Galileo Positioning, Naviga-
tion and Timing World-wide 24 MEO at 23222 km in-

clined orbits 2012

O3b Internet Broadband
services

Between 62 deg
North and South
latitude

20 MEO 2014

OneWeb Internet Broadband
services World-wide 648 LEO or more 2022

Starlink Internet Broadband
services World-wide 12000 LEO or more 2022

9
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1.4 Original contribution
The work contributes to the area of satellite constellations design and development;

it proposes standardised nomenclature and references, making a direct, intuitive and
simple comparison of the presented methods. Hence, starting from the theory hereafter
described, the author has developed algorithms for the application of the design methods
that accept as inputs the parameters expressed always in the same form. Such algorithms
have been written, refined and organised so that the computational time is reduced as
much as possible and graphical representations have been created, aimed at clarifying the
underlying physics. In this way, it is easier to directly understand the more performant
method as well as the more accurate and precise in terms of the produced results.

This thesis also introduces an innovative approach for the determination of the cover-
age area that is purely analytical and the mathematical formulations have been adapted
accordingly to the different geometries in order to enlarge the field of applicability (e.g.
satellites can be in circular rather than elliptical orbits, constellations can have a sym-
metric or non-symmetric arrangement). Hence, this novel method is directed toward the
determination of the coverage area that can be applied to different satellites in different
orbits and scenarios.
Indeed, a fully-analytical technique can considerably reduce the computational time and
at the same time increase the accuracy of the results, both key points in the study of the
methods for the design of satellite constellations.
Starting from the knowledge of the satellite’s position vectors of the constellation and the
direction of the antenna line of sight, the relative sub-satellite points in terms of longitude
and latitude angles are determined. The boundaries of the coverage area are computed
using spherical trigonometry equations, since it often affords better geometric insight than
the vector approach.
The determination of the satellite’s coverage area in the previous work of Nugnes et al.
[14] was done for an oblate Earth and a single satellite, having as input the line of sight of
the satellite itself, the half-cone aperture angle of the conical field of view and the satellite
position vector, but then the boundary points were determined with vector approach.
In this thesis, the analytical formulations rely on spherical trigonometry, they relate the
elevation angle or the half-aperture angle and model the visibility conditions as a conical
field of view; they are used for satellite constellations, where the Earth is considered as a
perfect sphere since the satellite’s altitude is relatively low and so spherical and ellipsoidal
geometry are not so different.
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In addition, the novelty of this work is the application of these analytical and numerical
approaches to two missions currently under development at the European Space Agency
(ESA), in which the author contributed. One mission deals with a mega-constellation
around the Earth, while the other with a small constellation around the Moon and the work
consisted in determining the optimal coverage performance with the lowest computational
time.

1.5 Structure of the thesis
Chapter 1 gives an overview of the existing design methods and their evolution

throughout the years, with particular attention to the state of the art and the future
trend for satellite constellations concept. This is followed in Chapter 2 by a description of
the existing satellite constellation geometries and design methods with their theoretical
description and the procedure to compute the coverage area of the satellites is presented;
the chapter ends with a presentation of existing satellite constellations as proof of the
proposed concepts.
Chapter 3 presents the problem of continuous coverage and the different approaches used
to determine the optimal satellite constellation to fulfill such requirements, together with
the application of the analytical approach to compute the coverage area when needed,
while Chapter 4 computes the revisit time for discontinuous coverage.
The presented methods are then validated in Chapter 5.
Lastly, Chapter 6 is an application to two actual missions currently under study and
development at ESA, in which the proposed methods have been applied.
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2. Satellite constellation
geometries and design

In choosing constellation pattern characteristics for global coverage, the primary
objective is to minimise the total number of satellites needed to ensure that not less than
a certain number of satellites are everywhere visible at all times above some minimum
elevation angle; as a secondary objective, it is assumed that a minimum distance between
adjacent satellites should be as large as possible; in fact, if two satellites have only a small
separation, one of them is effectively useless.
These are just two of the possible considerations that guide the choice toward a certain
constellation geometry and many elements and needs must be borne in mind. In addition,
not only the geometry should be considered for the optimisation process and coverage
requirements, transmission losses, cost and launcher capabilities are only a few of the
constraints that must be taken into account.

2.1 Constellation design
When dealing with constellation design the objectives of the constellation itself and

the user requirements are of primary importance. Hence, at the very beginning of the
design process, it should be distinguished between continuous and discontinuous coverage.
Coverage is said to be continuous when the targeted area is always in view of the satellites,
while not continuous if a visibility gap in the coverage is allowed. In this latter case the
concept of revisit time is introduced [23]. In addition, it is possible to target a global
coverage of the planet, a zonal coverage or a local coverage for well identified users. Zonal
coverage objectives can be shaped according to complex and tortuous boundaries (e.g. for
a country or a region) but they are more often defined as simple latitude ranges.

In modern satellite communications and navigation systems, as well as for some Earth
observation systems, one single satellite and geostationary orbits can not be used due to
bad coverage of certain latitudes or link budget constraints for small user terminals. By
considering then satellite constellations, the design methods rely on geometrical coverage
considerations: for example, any ground point must see at least one satellite at each
instant above a specified minimum elevation threshold. However, very important in the
formulation and choice of a method is also the optimisation of the method itself (i.e. speed
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up the computational time and accuracy).

The methods developed and presented in the following are generally valid only for a
certain constellation geometry: the major distinctions are made upon symmetric rather
than non-symmetric patterns or between circular and elliptical orbits. In addition, the
approaches could be distinguished even based on the way they proceed for the computations:
they could be purely analytical or numerical methods.

2.1.1 Coverage area
When the elevation angle ε is equal to 0 deg, the instantaneous coverage area of a

satellite is at its maximum. Any point located within this coverage area will be within the
geometric visibility to the satellite. However, close to zero elevation angle is not operable
due to the high blocking and shadowing effects. This leads to the concept of minimum
elevation angle. The minimum elevation angle is defined as the elevation angle required
for the instantaneous coverage area to be within the radio-frequency visibility [24]. For a
given minimum elevation angle, the only factor affecting the coverage area is the satellite
altitude. All the relevant variables are reported and shown in Figure 2.1.

Figure 2.1: Coverage geometry [25].
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The coverage equation for circular orbits is:

cos(θ + ε) =
cos(ε)

1 + h
REarth

(2.1)

where h is the satellite’s altitude, REarth the Earth radius and θ the central angle
radius of Earth coverage.
The value of θ which is required for the constellation to achieve the desired level of coverage
is used as a measure of the efficiency of the constellation configuration; this means it
is the performance index that characterises the global system quality and generally the
optimisation methods consist of minimising it: the lower the value for fixed number of
satellites T , the more efficient the constellation. With minimum elevation angle ε, from
the coverage equation, if the altitude h is fixed, ε decreases if θ increases, while if ε is
fixed, h increases if θ increases. Thus, an increase in θ always brings about a negative
effect, either in terms of altitude or minimum elevation angle. The constellation with the
lowest required value of coverage θ will allow the lowest operating altitude for a fixed value
of minimum elevation ε. Conversely, if satellite altitude is fixed, the lower operating limits
on elevation angle ε will be maximised [24].

While a single geostationary satellite can provide continuous coverage, a constellation
of satellites is required for non-geostationary orbits. The choice depends on a number of
factors:

• The elevation angle ε used should be as high as possible. This is particularly
important for mobile-satellite services. With a high elevation angle, the multipath
and shadowing problem can be reduced resulting in better link quality. However,
there is a trade-off between the elevation angle used and the dimension of the service
area.

• The propagation delay should be as low as possible. This is especially the case for
real-time services. This poses a constraint on the satellite altitude h.

• Inter- and intra-orbital interference should be kept within an acceptable limit for
the correct propagation and reception of the signal. This poses a requirement on the
orbital separation.

• The regulatory issues governing the allocation of orbital slots for different services
and different frequency bands.

For an optimal constellation of satellites, the most efficient plan is to have the satellites
equally spaced within a given orbital plane and the planes equally spaced around the
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equator. The coverage obtained by successive satellites in a given orbital plane is described
by ground swath or street of coverage, as shown in Figure 2.2.

Figure 2.2: Ground swath coverage [24].

Total Earth coverage is achieved by overlapping ground swaths of different orbital
planes. The total number of satellites in a constellation is given by T = P · S, where
P is the number of orbital planes and S is the number of satellites per plane. Another
consideration in the design of a satellite constellation is the number of satellites being
visible at any one time within a coverage area in order to support certain applications or
to provide a guaranteed service. This is referred to as n-fold coverage where n states the
number of visible satellites [24].

The provision of continuous whole Earth coverage consists in identifying those orbital
patterns which will most economically provide a certain coverage. This standard is consid-
ered to be defined in terms of the level of coverage required (i.e. single, double or in general
n-fold coverage) and of the minimum acceptable elevation angle to the nearest satellite
from any point on the Earth’s surface to the nearest sub-satellite point; the problem
is to find the pattern, containing the smallest possible number of satellites, which best
ensures that this maximum acceptable distance is never exceeded. Moreover, the minimum
separation between any two satellites in the pattern should be as large as possible.
The importance of this objective may vary according to the system application. For exam-
ple, in satellite navigation system accuracy may well increase as the minimum distance
between the satellites providing the fix increases, while in a satellite communication system
it may only be necessary that the minimum distance should exceed some fixed value to
ensure that interference between transmissions in the same frequency band is acceptably
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small. However, the larger the minimum distance between satellites, the more uniform
the distribution of the satellites over the Earth’s surface is and hence more likely the
pattern will provide relatively favourable values of the maximum distance to the nearest
sub-satellite point for all relevant levels of coverage.

An innovative method for the determination of the coverage area is here reported: it
is fully-analytical and it takes as inputs the satellite’s position vectors, the direction of
the navigation line of sight and the half-aperture angle of the conical field of view for the
propagation of the signal γ. The approach takes as reference the previous work of Nugnes
et al. [14], but then it introduces some novel considerations that allow the determination
of the boundary points of the area.
Unlike the other previous papers where the rise and set times of a satellite are evaluated
from a generic ground station, this method starts from the position of a generic spacecraft
on its orbit and derives all the locations on the Earth’s surface within its field of view.
The Earth is modeled as a perfect sphere, a reasonable assumption since the approach is
then applied to satellite constellations and usually the high number of satellites allow for
a level of accuracy and precision in the order of kilometers. The geometry of the conical
Field of View (FOV) is illustrated in Figure 2.3.

Figure 2.3: Conical Field of View [14].

As previously mentioned, the navigation signal is assumed to be extending as a cone
from the center of mass of the satellite with a given half-aperture angle γ; the intersection
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of the Earth and the assumed conical field of view is a circle and the points of intersection
of the cone with the circle itself, representing the boundaries of the coverage area, can be
derived by assuming a proper value of the half-aperture angle γ or the minimum elevation
angle ε from which the satellite can be considered visible from the Earth’s surface. The
first step is to state that the trace of the Earth on a generic plane is a sphere, because in
this way it is possible to move from a three dimensional problem to a planar one. The
general equation of a plane is:

p1x+ p2y + p3z = d (2.2)

where p̂ = [p1, p2, p3] is a unit vector normal to the plane and d is the distance of the
plane from the origin of the coordinate frame. The cutting plane is depicted in Figure 2.4.

Figure 2.4: Intersection circle with the Earth [14].

In this case p̂ is assumed to be coincident with the line of sight of the navigation signal,
while he origin of the coordinate frame is the Earth’s center. The equation of the spheroid
can be written as:

x2 + y2 + z2

r2
= 1 (2.3)

where r is the Earth radius REarth. The trace of the Earth in the generic plane is
computed deriving the expression of z in Equation (2.2):

z =
d− p1x− p2y

p3

(2.4)
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By substituting Equation (2.4) into Equation (2.3):

(p2
1 + p2

3)x2 + (p2
2 + p2

3)y2 + 2(p1p2)xy − 2(dp2)x− 2(dp2)y − r2p2
3 + d2 = 0 (2.5)

which is the equation of a conic; in particular, this equation represents a circle if its
discriminant ∆ is less than 0. After some manipulations,

∆ = −r2p2
3(p2

1 + p2
2 + p2

3) < 0 (2.6)

which is always less than zero. The center of the local circle with respect to the origin
of the reference frame is:

c = [p1d, p2d, p3d] (2.7)

If the generic plane passes through the center of the Earth, then d = 0 and so c = [0,
0, 0].
Now, if the conic field of view of the navigation signal is divided into different planes
having in common the satellite’s line of sight, each plane will generate a circle hosting two
limiting points for the coverage area. However, a different approach can be used: after
the determination of two points of intersection with the aforementioned procedure and
consequently of the central angle radius of Earth coverage θ, the other boundary points
can be found by means of spherical geometry without the need of changing the orientation
of the intersecting plane and to repeat the computations several times. By using longitude
and latitude coordinates, the result is the same but the problem is simplified and requires
less computations with a consequent reduction of the computational time.

The radius of the local circle is defined by:

r̃ =
√
r2 − d2 (2.8)

which is equal to r if the origin coincides with the center of the Earth. The direction
of the generic unit vector v̂ of the two-dimensional space containing the intersection circle
is given by:

v̂ =
1√

p2
1 + p2

2

[p2,−p1, 0] (2.9)

and the direction of the generic unit vector ŵ to be perpendicular to v̂ is:
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ŵ =
1√

p2
1 + p2

2

[p1p3, p2p3,−(p2
1 + p2

2)] (2.10)

Therefore, it is now possible to define a local reference frame in the plane of the circle
obtained by the intersection of the Earth and a generic plane, where v̂ and ŵ are the
generic unit vectors. The equation of the circle in this planar reference is:

v2 + w2

r̃2
= 1 (2.11)

where v and w are coordinates of a generic point in this local frame. The two
dimensional geometry is shown in Figure 2.5.

Figure 2.5: 2D Circular geometry.

In order to derive the ground range angle and so the coverage angle θ that is associated
to the aperture angle to the instrument on board of the satellite, the equations of the two
secants in P1 and P2 intersecting the local circle shall be determined. Let m and q be the
generic angular coefficient and the vertical intercept of a line in the local reference frame.
the equation of a line is:

w = mv + q (2.12)

During the preliminary mission design according to the mission requirements, the line
of sight of the navigation antenna is directed toward the Earth center (i.e. geocentric
pointing) and since the Earth is modeled as a sphere, the direction of the vector v̂ can
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be assumed coincident with the direction of the line of sight. The simplified geometry is
shown in Figure 2.6.

Figure 2.6: 2D Circular geometry used.

Hence, the satellite’s coordinates are known if the satellite’s position vector in the
inertial frame is known and are:

rs/c = [rs/c, 0, 0] (2.13)

The angular coefficients of the two secants are:

mP1 = tan(π − γ) = − tan(γ) (2.14)

mP2 = tan(γ) (2.15)

The following step is to write the generic equation for a line having as angular coefficients
mP1 and mP2 and to solve a system with the equation of the local circle. If the discriminant
is ∆ > 0, there exist two distinct solutions for each angular coefficient and so for each secant.

vP1 =
m2
P1
rs/c ± r

√
m2
P1

+ 1

(1 +m2
P1

)
(2.16)

vP2 =
m2
P2
rs/c ± r

√
m2
P2

+ 1

(1 +m2
P2

)
(2.17)

Just two of these solutions are correct and these are the ones on the same side and
closer to the center of mass of the satellite. Once the values of vP1 and vP2 are obtained, it
is possible to compute:
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wP1 = mP1vP1 −mP1rs/c (2.18)

wP2 = mP2vP2 −mP2rs/c (2.19)

The position vectors of the two points P1 and P2 are defined.

rP1 = [vP1 , wP1 , 0] (2.20)

rP2 = [vP2 , wP2 , 0] (2.21)

Then, the ground range angle is:

cos (2θ) =
rP1 · rP2

rP1rP2

(2.22)

and the elevation angle is:

ε =
π

2
− θ − γ (2.23)

Subsequently, the coverage angle θ is used to determine the other boundary points of
the coverage area, but first it is necessary to compute the longitude and latitude of the
line of sight, that coincides with the sub-satellite point because of the assumptions made.
Since the direction cosines are known from the satellite’s position vector and are defined
as r̂, the operation can be done considering the same direction but applying the opposite
pointing. Indeed, the line of sight is directed from the satellite toward the Earth and it is
necessary to introduce the opposite direction ô.

ô = −r̂ (2.24)

By applying then the conversion from Cartesian to spherical coordinates:

φsub = tan

(
o2

o1

)−1

(2.25)

λsub = sin (o3)−1 (2.26)

with φsub and λsub the longitude and latitude angles associated to the line of sight. Once
defined the center point (φsub, λsub) and the angular radius θ, the geographic coordinates of
the boundary of the area are computed from standard equations of spherical trigonometry.
The procedure consists in the parameterisation on azimuth Az, by varying it in the range
[0, 2π], about the center point. The equations for the geographic latitudes and longitudes
are then:
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λi = sin (cos θ sinλsub + sin θ cosλsub cosAz)−1 (2.27)

φi = φsub + tan

(
sin θ sinAz,

cos θ − sinλsub sinλsub
cosλsub

)−1

(2.28)

In the work of Nugnes et al. [14], in order to find the intersection points between
the cone of view and the Earth, the cutting plane is rotated several times around the
line-of-sight direction ô and at each time two different points P1 and P2 are computed.
Instead, the formulations here presented, thanks to the spherical Earth assumption, allow
for a faster computation of the boundary points of the coverage area.

2.1.2 Revisit time
The revisit time (also known as coverage gap) is often used as a key performance

metric for LEO and MEO systems which do not have continuous coverage of an area of
interest and is defined as the duration in time between consecutive viewings of a given
location on Earth. For constellations, the revisit time is defined as the interval of time
during which no satellite in the constellation can observe a particular ground site. Such
intervals are irregular and the longest of these, for a given constellation and ground site,
is the maximum revisit time. Usually, based on mission objectives, an upper bound on
maximum revisit time for points within region of the Earth’s surface is required. Indeed,
the Maximum Revisit Time (MRT) and Average Revisit Time (ART) over a given target
area and period of analysis are considered during mission design process. For an Earth
observation satellite or constellation the evaluation of revisit time therefore forms a critical
component of the design and optimisation process. Usually, the analysis of coverage or
revisit metrics for satellites and constellations is performed using commercially available
orbital propagation and simulation software; however, due to the numerical nature of
these programs and potential for long analysis period or large number of satellites, the
computational time can become considerable. Furthermore, when many cases are to
be considered, for example within a wider framework for system optimisation, a faster,
open and stand-alone method would be preferred. Several methods have been developed
throughout the years, geometrical or numerical, that allow to speed up the computational
time and increase the accuracy of the results; some of them are hereafter going to be
presented and developed.

2.1.3 Symmetric and non-symmetric constellations
As stated in Section 1.1, the different design methods are suitable for certain satellite

constellation geometries rather than others. Symmetry considerations are of primary im-
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portance: indeed, several methods are based on the assumption of symmetric constellation
and can be applied in such cases only. Some examples are the Walker’s circumcircle method
(Section 3.3) and the Lang’s method (Section 3.4), but also the Ulybyshev’s geometrical
methods (Sections 4.2 and 4.3) involving revisit time are based on symmetric patterns.
Instead, Beste (Section 3.1) and Adams and Rider (Section 3.2) approaches are valid for
non-symmetric constellations. In addition, all the aforementioned methods are applied to
circular orbits only.
On the contrary, the classical "brute force" method (Section 4.1) is the only one that
can be applied to all kinds of constellation patterns, both elliptical or circular orbits,
symmetric or non-symmetric and for continuous or discontinuous coverage.

2.1.4 Analytical and numerical methods
In general, problems can be solved analytically and/or numerically. An analytical

solution involves framing the problem in a well-understood form and calculating the exact
solution and it does not follow any algorithm to solve the problem; on the other hand, a
numerical solution means making guesses at the solution and testing whether the problem
is solved well enough to stop, it is concerned with the construction, analysis and use of
algorithms to solve the problem and it is sometimes prone to errors.
As examples, the Beste’s (Section 3.1) and Adams and Rider’s (Section 3.2) methods
are analytical, since they make use of mathematical formulations in order to determine
the optimal satellite configuration, while the Lang’s (Section 3.4) method is numerical,
because it is based on an iterative approach.
Also, the methods hereafter described distinguish between analytical and numerical
solutions; the classical brute force method is numerical (Section 4.1) and it consists of
propagating in time position vectors of satellite(s) and Earth location(s) of interest and
determine their relative positions to find out visibility conditions, while the other developed
by Ulybyshev (Section 4.2) is analytical and based on geometric considerations about the
sub-satellite points on the Earth’s surface.

2.2 Constellation geometries for

circular orbits
All the existing satellite constellations, both the operational and the proposed ones,

rely on a geometrical and mathematical study background, that gives some guidelines for
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the design process and the accomplishment of the fixed objectives.

To describe the position of satellites of a constellation, three constant orientation angles
plus a time-varying phase angle are needed:

• Right Ascension of the Ascending Node (RAAN) angle or Ω for the ith orbit plane;

• Inclination angle i for the ith orbit plane;

• Initial phase angle of the ith satellite in its orbit plane at t = 0, measured from the
point of right ascension; (1)

• 2πt
T

= time-varying phase angle for all satellites of the constellation or mean anomaly
M.

Both circular and elliptic orbits have been studied and the more relevant geometries
are hereafter reported and described.

2.2.1 Walker constellations
At MEO and LEO, two types of regular constellation for satellites at the same altitude

are generally divided into categories of Walker-Delta and Walker-Star constellations [12],
[5].
The main feature of all the Walker patterns (both Delta and Star) consist in circular orbits
of equal period and same inclinations for all planes of the constellation; elliptical orbits are
advantageous for coverage limited areas, but the more uniform patterns provided by circular
orbits appear preferable for whole-Earth coverage [26]. In general, continuous whole-Earth
coverage would be provided most effectively by systems in which the distribution of
satellites over the Earth’s surface was maintained as uniform as possible, subject to the
practical limitations imposed on a system necessarily involving multiple interesting orbits.
Walker patterns are identified by (T/P/F):

• T = total number of satellites;

• P = total number of planes;

• F = relative phasing parameter, in units of 2π
T

or 360
T

F may have any value less than P , but for Delta patterns it can take only integer
values from zero to (P −1). The relative angular shift between satellites in adjacent orbital
planes is equal to F (2π

T
) (or equivalently F (360

T
)).

(1)The phase angle in orbital mechanics is the sum of argument of pericenter ω and true anomaly
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The satellite phasing within each plane is determined by the number of satellites in the
plane while the relative phasing between orbit planes is determined by F . This phasing
between satellites in different orbits has important effects on the coverage properties of the
constellation. The phase angle is identified as the geocentric angle traversed by a satellite
since passing its ascending node in the reference plane.
Any individual pattern may be identified by the reference (T/P/F ) and this is sufficient to
determine the general shape. To fix the precise position of the orbital planes it is necessary
to specify the common inclination i ; hence, inclination may be treated as a parameter to
optimise the pattern in accordance with requirements.

Walker-Delta patterns

In the Walker-Delta patterns, T satellites are in equal-period, evenly-spaced circular
orbits and all at the same inclination to a reference plane, with a uniform distribution of
the satellites among and within the orbital planes [12]. The peculiar characteristic of such
geometry is its symmetry.
The pattern contains T satellites: S satellites are evenly spaced in each of the P orbital
planes; thus P and S may each equal any factor of T , including 1 and T , provided their
relative values are such that T = P · S. All orbital planes have the same inclination; the
reference plane usually coincides with the equator but this need not necessarily be the
case. The ascending nodes of the P distinct orbits are evenly spaced at intervals of 2π

P

(or 360
P
) units. The relative positions of satellites in different orbital planes are such that

there are equal intervals between passages of satellites in adjacent orbital planes through
their respective ascending nodes [12].

For example, (T/P/F ) = (12/3/1) means that there are 12 satellites in 3 orbital planes
with 4 satellites in each plane separated symmetrically by 90 deg in mean anomaly and
the 3 orbit planes separated symmetrically by 120 deg in longitude of ascending node.
The "1" notation indicates that when a satellite in the first orbital plane is at 0 deg mean
anomaly (say, over the equator), a satellite in the next orbital plane is at 1 · 360

12
= 30 deg

mean anomaly. Similarly, a satellite in the third orbital plane is at 60 deg mean anomaly
at the same instant.

For each individual satellite in an inclined circular orbit, the Earth-track consists of a
series of identical excursions alternatively into the northern and southern hemispheres,
each reaching a maximum latitude equal to the orbital inclination to the equator.
It must be noted that when calculating coverage for all Delta patterns having a particular
pair of T and P over a range of inclinations, it is only necessary to perform the calculations
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for orbital inclinations up to 90 deg; the corresponding values in retrograde orbits are
identical to those of the complementary pattern at the inclination which is the supplement
of the retrograde inclination under consideration [27].
In general, for most purposes it would be unsatisfactory to choose a satellite pattern in
which pairs of satellites passed very close to one another. A number of Delta patterns are
such that, independent of the value of the inclination, the ascending node of one satellite
coincides with the descending node of another as they pass simultaneously through the
reference plane [27].

Walker-Star patterns
In Walker-Star patterns [12] there are two significant differences from the Delta pat-

terns: first, F needs not to have an integer value and the ascending nodes are not evenly
distributed over the full 360 deg of the equator but all occur within one 180 deg arc. The
latter point is dealt with by introducing an input parameter W , which modifies the spacing
of nodes; thus the ascending nodes are separated by W · 360

P
where W assumes a value

equal to 1 for Delta patterns and has a value a little greater than 0.5 (usually in the range
0.525 to 0.625) for a Star pattern. Indeed, the value W=0.5 would perfectly distribute
the ascending nodes among 180 deg and in practice this need not necessarily cause any
problem, the risk of a physical collision would be extremely small; however, this could in
any case be obviated by a small displacement from the optimum phasing which could have
an insignificant effect on the coverage, so the [0.525-0.625] range [12].
Generally, Delta patterns are most appropriate for use when medium inclination orbits
are required, while Star patterns when near-polar orbits are required.

In the case of Walker patterns, the orbit orientation angles have the symmetrical form:

• RAAN for the jth orbit plane = W 2πj
P

with W=1 for Delta patterns and j = 1 to P ;

• Inclination i for the jth orbit plane equal for all P ;

• Initial phase angle of the kth satellite in its orbit plane F 2πj
T

with j = 1 to P ;

• 2πk
S

+ initial phase = time-varying phase angle M for all satellites of the constellation
with k = 1 to S.

The algorithm-like logic for the Walker pattern is presented in Appendix B.1.

An example of the Walker geometry for a (12/3/1) constellation with i = 50 deg and h
= 25500 km is reported in Figure 2.7, which represents the satellites’ groundtrack, that is
the path on the Earth’s surface directly below the satellite’s trajectory. The yellow stars
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are the initial positions of the satellites on their orbits. Figure 2.8 is the constellation in
Earth Centered Earth Fixed (ECEF) reference frame (see Appendix A.2), while Figure
2.9 shows the plane containing the initial phase angle and the RAAN.

Figure 2.7: Walker (12/3/1) groundtrack.

Figure 2.8: Walker (12/3/1) 3D orbits. Figure 2.9: Walker (12/3/1) Ω versus Initial
phase.
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2.2.2 Rosette - Ballard constellations
The Rosette pattern generalises and extends the Walker pattern: methods employed

are basically the same but presented in a more unified mathematical framework.
The satellite’s orbits are uniformly distributed in a right ascension angle as they pass
through the reference plane and the initial phase position of satellites in each orbit plane
is proportional to the right ascension angle of that plane.
The name "Rosette" was chosen to designate this class of constellations because the pattern
of orbital traces, when drawn on a fixed celestial sphere, resembles a many-petaled flower
[26]. Figure 2.10 shows the Rosette-like constellation in the [x,y] ECEF plane.

Figure 2.10: Ballard (12/3/2.25) Rosette.

Rosette patterns are identified by (T/P/m):

• T = total number of satellites;

• P = total number of planes;

• m = geometric harmonic factor that plays a role for the initial phase angle determi-
nation: initial phase angle = mS 2πj

T
, with j = 1 to P.

If m is a simple integer, a constellation having one satellite in each of the P planes
is being referred to T = P ; if m is an unreduced ratio of integers equal to [0,(T−1)]

S
, a

constellation having S satellites in each of the P planes is being referred to, where S is the
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denominator of m [26]. In addition, it must be noted that as the inclination increases, the
flower closes around the pole while as it decreases, the flower opens toward the reference
circle.

In the case of Rosette pattern, the orbit orientation angles have the symmetrical form:

• RAAN for the jth orbit plane = 2πj
P

with j = 1 to P ;

• Inclination angle i for the jth orbit plane equal for all P ;

• Initial phase angle of the kth satellite in its orbit plane mS 2πj
T

with j = 1 to P and
m = [0,(T−1)]

S
;

• 2πk
S

+ initial phase = time-varying phase angle M for all satellites of the constellation
with k = 1 to S.

The algorithm-like logic for the Ballard pattern is presented in Appendix B.2.

An example of the Ballard geometry is reported in Figure 2.11 for the groundtrack,
Figure 2.12 in ECEF reference frame and Figure 2.13 as right ascension versus initial
phase angle for a (12/3/2.25) constellation with m= 9

S
, i = 50 deg and h = 25500 km.

Figure 2.11: Ballard (12/3/2.25) groundtrack.
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Figure 2.12: Ballard (12/3/2.25) 3D orbits. Figure 2.13: Ballard (12/3/2.25) Ω versus ini-
tial phase.

2.2.3 Street Of Coverage constellations

The Street Of Coverage (SOC) concept relies on multiple circular orbit satellites at
the same altitude placed in a single plane so as to create a Street Of Coverage which is
continuously viewed [5]. The objective is then to determine analytically how many such
streets (i.e. planes of satellites at the same inclination) are required to cover the zone of
interest or the globe. The SOC technique is generally applied to polar constellations and
so the resultant optimal configuration is a polar satellite network in which the motion of a
spacecraft in one orbital plane is synchronized with that of the spacecraft in the adjacent
planes (phased polar constellation) [28].

The relative design methods involving such geometry are analytical (Beste presented in
Section 3.1, Adams and Rider described in Section 3.2): they identify families of circular
polar orbit constellations using minimal total number of satellites which can provide a
desired n-fold of coverage at or above a user-defined latitude.
The basic assumption is that the constellation can be arranged so there are 2(P − 1)

co-rotating interfaces and 2 counter-rotating interfaces. The resultant configuration is
defined as non-symmetric because the orbit separation, given in ∆Ω, between co-rotating
planes is different from the orbit separation between the 2 counter-rotating interfaces.

The involved parameters for SOC geometry are:

• Central angle of coverage θ
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• Angular half-width of the ground swath Φ (2);

• Inter-plane angular separation between adjacent planes α = Φ + θ

• Inter-plane angular separation between first and last planes 2θ

• Inclination angle of 90 deg equal for all P ;

• Initial phase angle of the kth satellite in its orbit plane 2πj
T

with j = 1 to P ;

• 2πk
S

+ initial phase = time-varying phase angle M for all satellites of the constellation
with k = 1 to S.

The most important Street Of Coverage parameters involved in the geometry are shown
in Figure 2.14 and the algorithm-like logic for the SOC pattern is presented in Appendix B.3.

Figure 2.14: Street of Coverage geometry. [24]

An example of the Street Of Coverage geometry is reported in Figure 2.15 for satellite’s
groundtrack, Figure 2.16 in ECEF reference frame and Figure 2.17 with initial phase angle
as a function of the RAAN for a constellation with 28 satellites divided in 4 planes, at an
altitude h = 25500 km and with inclination i = 90 deg.

(2)Swath width: the length along the equator covered by the swath crossing it at a given i
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Figure 2.15: Street Of Coverage T=28, P=4 groundtrack.

Figure 2.16: Street Of Coverage T=28, P=4
3D orbits.

Figure 2.17: Street Of Coverage T=28, P=4
Ω versus initial phase.

2.2.4 Comparison
The two families of methods described, i.e. Walker-type in which also the Rosette

geometry is included and SOC-type, are used to generate optimal constellations of large
number of satellites in circular orbits for continuous global or zonal coverage. Some general
considerations and a comparison about them are here reported.
In general, if the zone (a region between two latitude values on the Earth’s surface) is in
the low to mid latitudes, then the optimal constellation will consist of inclined orbital
planes with nodes spaced evenly through 360 deg. For zonal coverage at high latitudes or
any zone including the pole, SOC method using polar orbits with nodes spread over 180
deg were preferable. These polar orbits would require fewer satellites at the same altitude
than the inclined orbits.
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However, Walker constellations are more efficient than SOC constellations for continuous
coverage with inclined orbits or for n-fold coverage. The number of satellites required for
continuous global coverage as a function of satellite altitude for both the Walker and SOC
methods increases steadily (although not always monotonically) as the satellite altitude
decreases (numerical examples are shown in Section 5.1.3).
For single continuous global coverage with 20 or fewer satellites, the symmetric inclined
Walker-type constellations are more efficient. For the same number of satellites, Walker
constellations offer continuous global coverage at a lower altitude; conversely, at the same
altitude, Walker constellations can perform the same job with fewer satellites. The latter
case can be well understood in the case presented on numerical examples of Sections 2.2.1
and 2.2.3: at the same altitude h=25500 km, the Walker-type constellation requires 12
satellites, while the SOC needs 28 satellites.
For single continuous global coverage with more than 20 satellites, the optimally phased,
non-symmetric polar SOC constellations are more efficient. However, in the region of 30
satellites, the inclined Walker constellations achieve 4-fold coverage at altitudes for which
the polar SOC constellations can not even achieve full 3-fold coverage [3].

By summarising:

• Walker

– Inclined;

– Symmetrical;

– Usually few satellites per plane;

– Best coverage at mid-latitudes;

– Optimality for 1-fold coverage with < 20 satellites;

– Optimality even for 2-fold coverage and up.

• Street Of Coverage

– Polar;

– Non-symmetrical;

– Usually many satellites per plane;

– Best coverage at poles;

– Optimality for 1-fold coverage with > 20 satellites;

– No Optimality for 2-fold coverage and up.
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2.3 Constellation geometries for

elliptical orbits
The studies and researches of satellite constellations do not involve circular orbits only,

but several authors (e.g. Draim [1], [29]) investigated the case of elliptical orbits. Anyway,
these geometries involve a small number of satellites and they are applied to coverage of
specific locations on the planet’s surface rather than on the whole Earth. For this reason,
it is difficult to determine a general method, but the geometry should be everytime and
newly determined depending on the user needs.

2.3.1 Draim method
The Draim method is just an attempt to find out a general method for elliptical orbits

that satisfy the request of global coverage, but a lot of different cases exist.
The method involves symmetric, elliptical orbits with a common period and inclination
to achieve a single or multiple continuous global coverage using fewer satellites than
required with circular orbits. The basic geometry is made of 4 hypersynchronous satellites
for world-wide coverage: each satellite is in approximately the same orbit and relative
phasing and orientation of the constellation are similar, thereby simplifying some of the
maneuvering costs [29].
Draim’s analysis of the optimal four-satellite continuous coverage constellation is based on
a tetrahedron formed by four planes, each plane contains three of the four satellites in the
constellation. The basic requirement is for planes of the tetrahedron to always encompass
the Earth, without ever intersecting it, as the tetrahedron changes shape or wraps during
the constellation repeat groundtrack period. A repeat groundtrack design is chosen for
operational simplicity [30].

The basics geometry for the four satellites is reported in Table 2.1, with values for
right ascension, argument of perigee and mean anomaly for each of the four satellites:

Table 2.1: Draim four-satellite constellation characteristics

Satellite RAAN Ω
Argument of
perigee ω

Mean anomaly
M

1 0 deg 270 deg 0 deg
2 90 deg 90 deg 270 deg
3 180 deg 270 deg 180 deg
4 270 deg 90 deg 90 deg
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All the four satellites share the same set of values for the semi-major axis a, eccentricity
e and inclination i. So, for a 27-hour period orbit, Draim used e = 0.263 and i = 31.3 deg.
These numbers make the original Draim configuration. The tetrahedron idea presented
by Draim is presented in Figure 2.18 and the correspondent constellation is depicted in
Figure 2.19.

Figure 2.18: Isometric drawing of Draim constellation [29].

Figure 2.19: 3D Draim tetrahedron [29].

2.3.2 Flower constellations
The Flower constellation pattern comes from the "Sistema Quadrifoglio" conceptu-

alised by Broglio in 1981 as an equatorial constellation of four satellites, whose orbital
period is Tperiod = Ts

3
(Ts = Sidereal period), i = 0 deg, ∆M = π

2
(variation in mean

anomaly) and (Ω + ω) displaced of π
2
[6], [31]. The general theory of flower constellations

has been introduced around 2002 and poses no constraint in the kind of orbits to be
used and it can be made using circular or elliptical orbits and equatorial or inclined
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orbits. The Flower constellation is a novel methodology to design satellite constellations
characterized by compatible orbits with respect to an assigned given rotating reference
frame. In this rotating reference frame all the satellites follow the same close-loop relative
trajectory (repeated space tracks). A Flower constellation is obtained by means of a
suitable phasing mechanism that initially distributes the satellites in a subset of admissible
positions. The interplay of the design parameters generates beautiful and intriguing axial-
symmetric period dynamics. These dynamics allow to explore a wide range of potential
applications which include telecommunications, deep space observations, global positioning
system and allow to quickly come up with highly complex satellite formations that no
one even knew existed and, consequently, to propose new kind of space missions. Flower
constellations open a new frontier in complex satellite constellations, they provide build-
ing blocks to enable the creation of arbitrarily complicated ensembles of satellite orbits [31].

Up to now, no general theory of constellations exists that helps the engineers in
achieving the desired coverage or to satisfy a different specific mission target. Due to the
inherent complexity of the general constellation design, the Walker constellations, which
use circular orbits, became so popular and are the most common type encountered in
practice, while Highly Elliptical Orbits (HEO) based constellations are rarely used.
It has been proved that many of the existing constellations, including but not limited to
the GPS and Galileo (both made of satellites in a Walker constellation), can be easily
reproduced as Flower constellations [31].

The theory of Flower constellations is a natural consequence of the theory of compatible
(or resonant) orbits. The satellite distribution identifies the edges of rotating figures whose
shapes are time invariant. The complex synchronized dynamics of satellites preserve
the shape of a space object. The whole Flower constellation is an axial-symmetric rigid
object in space that is spinning with prescribed angular velocity. Flower constellations
are generally characterized by repeatable groundtracks and a suitable phasing mechanism.
The geometries constitute an infinite set of satellite constellations characterized by periodic
dynamics. The dynamics of a Flower constellation identify a set of implicit rotating
reference frames on which the satellites follow the same closed-loop relative trajectory. In
particular, when one of these rotating reference frames is "Planet Centered Planet Fixed",
then all the orbits become compatible (resonant) with the planet and consequently the
projection of the relative trajectory on the planet becomes a repeating groundtrack.
As a particular case, the Flower constellations can be designed as J2 compliant, that is
with orbit compatibility that takes into account the linear effects of the J2 perturbation.
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In the rotating reference frames the relative trajectories, which depend on five indepen-
dent integer parameters, constitute a continuous, closed-loop, symmetric pattern of flower
petals. Two integer parameters establish the orbit period and the other three distribute
the satellites into an upper bounded number of admissible positions. Moreover, all orbits
in the constellation have an equal argument of perigee ω, inclination i and perigee altitude
hp. Hence, Flower constellations are identified by eight parameters:

• Np positive integer = number of petals (number of orbit revolutions required to
complete one period of repetition);

• Nd positive integer = number of sidereal days to repeat the relative trajectory
(groundtrack);

• T positive integer = number of satellites;

• Fn and Fd integers to rule the phasing;

• ω = argument of perigee;

• i = orbit inclination;

• hp = perigee altitude.

An orbit is said to be compatible with respect to a reference frame rotating with a
certain angular velocity ωrot (e.g. ωEarth if the reference is the Earth) if the orbit period
T_period satisfies the relationship:

Np · Tperiod = Nd ·
2π

ωrot
(2.29)

Therefore, after Np orbital periods the rotating reference frame has performed Nd

complete rotations and consequently the satellite and the rotating reference frame come
back to their initial positions. In the design procedure, once the anomalistic period has
been established, the semi-major axis a can be determined. The eccentricity e of the
orbit can be calculated from a and a specific perigee altitude hp. Once a and e have been
defined, the shape of the orbit is completely determined and all that remains is to specify
its orientation in space. It must be mentioned that the orbit period (equal for all the
satellites of the constellation) depends on the ratio Nd

Np
. Flower constellations are built

with the constraint that all satellites belong to the same relative trajectory:

−Np ·∆Ω = Nd ·∆M (2.30)

This is the fundamental equation of the Flower constellation phasing and allows to
evaluate the admissible locations where to place the satellites in order they all belong
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to the same relative trajectory. The number of admissible locations per orbit in flower
constellations is Nd. Figure 2.20 shows a Flower constellation with 5 petals (say Np).

Figure 2.20: 5-2 Flower constellation [31].

The orbiting satellites must belong of the intersection of the two curves representing
the relative orbit, as seen from an ECEF frame, and the inertial orbit as observed in the
ECI frame. Note that, in the ECI frame the green orbit will appear fixed while the blue
orbit will rotate in a counter-clockwise fashion at the Earth’s angular spin rate. Looking
at this motion in an ECEF frame, then the dynamics will be reversed, with the blue
orbit that appears fixed while the green is rotating, at the Earth’s angular spin rate, in a
clockwise fashion [31]. Two orbits are said to be admissible when the orbital parameters
(ω, i, a, e) are identical for both the relative and inertial orbits and only Ω can differ.
Hence, the initial position of a satellite in the constellation must be searched among all
intersections of the orbits, since it shall belong to both inertial and relative ones. It is
possible to demonstrate [31] that, for a one day repeated groundtrack, only one among all
the intersecting points has the correct dynamics, that is the angular momentum (r× v) is
preserved as required by the two-body problem. However, when examining multiple day
repeated groundtracks, additional valid intersection points are found. In point of fact, for
each day it takes to repeat a groundtrack there is one valid intersection where a satellite
could be located. Figure 2.20 shows a constellation where two satellites have been placed
in a single orbit; yet, both satellites also belong to the same relative orbit. By extension,
if one places a number of satellites that is an integer multiple of the number of days to
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repeat, then there will be one orbit for every Nd satellites.
In general, evenly orbits distribution are preferred whenever the symmetry is desired.
For the orbit node lines step ∆Ω is computed, while two satellites on the same orbit
are displaced in function of ∆M ; both are function of the eight parameters previously
described. The number of satellites per orbit for a chosen distribution sequence is S and
the total number of satellites is T = S ·Fd: S tells how many of the Nd admissible locations
are filled in a given satellite distribution.

Summarising, all the orbits in a given Flower constellation:

• Have identical orbit shape: anomalistic period, argument of perigee, height of perigee
and inclination;

• Have the orbital period that is evaluated in such a way to yield a perfectly repeated
groundtrack (they are said to be compatible);

• Have equally displaced node lines along the equatorial plane for each satellite in a
complete flower constellation. Restricted or incomplete flower constellations have
orbits whose RAAN are equally displaced within a limited right ascension range ∆Ω.
Therefore, instead of having orbits evenly distributed on the 360 deg around Earth,
it is possible to concentrate on a particular region.

As stated before, the orbits in a Flower constellation can be elliptical or circular and,
although for a given constellation all the orbits must be identical, multiple flower constel-
lations can be designed to meet particular mission requirements. In Flower constellations
there could be more than one satellite that share the same inertial orbit. The only orbital
elements that vary from one satellite to another are, in general, the RAAN/Ω and the
mean anomaly M. The constraint that is always enforced is that all the satellites share
the same relative path, calculated with respect to some relative frame (i.e. ECEF). The
relations used to distribute the RAAN and M are:

Ω(k + 1) = Ω(k)− 2π · f(Fn, Fd) (2.31)

M(k + 1) = M(k) + 2π · f(Fn, Fd) · (
n+ Ṁ

ωEarth + Ω̇
) (2.32)

Where ωEarth is the Earth rotation rate, n represents the satellite mean motion, k
= 1, ..., (Ns-1), Ω(k) is the RAAN of the k-th satellite, M(k) is the mean anomaly of
the k-th satellite and f(Fn, Fd) is a term that depends on the phasing parameters. The
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algorithm-like logic for the Flower Constellations pattern is presented in Appendix B.4.

An example of the Flower constellation geometry applied to circular orbits is given by
the Galileo constellation, reported in Figure 2.21 for the satellite’s groundtrack, Figure
2.22 in ECEF regerence frame and Figure 2.23 in right ascension versus initial phase space,
with Np = 17, Nd = 10, Fn = 1, Fd = 3, T = 30 (both operational and spares considered),
hp = 23222 km, i = 56 deg and ω = 270 deg.
The Galileo system is a Walker (24/3/1), with satellites lying on three orthogonal orbit
planes and 6 in-orbit spares.

Figure 2.21: Galileo groundtrack with Flower constellation concept.

Figure 2.22: Galileo 3D orbits with Flower
constellation concept.

Figure 2.23: Galileo Ω versus M with Flower
constellation concept
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2.4 Existing and proposed

constellations
All the existing constellations, meaning the operative, non operative or just designed

but never realised, are based on the presented geometries; some variations could have been
done in order to better satisfy the requirements and objectives, but the theory behind is
unchanged. This section aims to present some existing constellations as practical example
of what stated before at a theoretical level.

2.4.1 Global Positioning System
The Global Positioning System (GPS) is a U.S. owned satellite system that provides

users with Positioning, Navigation and Timing (PNT) services. This system consists of
three segments: the space segment, the control segment and the user segment. The GPS
space segment is a constellation of satellites transmitting radio signals to users and flown
by the U.S. Air Force [19]. The GPS is a satellite-based radionavigation system and it
is one of the Global Navigation Satellite Systems (GNSS) that provides geolocation and
time information to a GPS receiver anywhere on or near the Earth where there is an
unobstructed line of sight to 4 or more satellites.
The first constellation of the Global Positioning System (GPS) was designed with a Walker
pattern (24/3/2) inclined at 63 deg with 20000 km altitude (12 h orbital period). It
successively evolved into an 18 satellite, 6 plane (18/6/2) Walker constellation at 55
deg, then a 21 satellite, 6 plane and finally evolved to the current 24 satellite, 6 plane
constellation at an altitude of approximately 20200 km with each satellite that circles
the Earth twice per day [32]. In fact, initial Walker patterns guaranteed a world-wide
continuous coverage by at least four or five satellites, but proved to be too much sensitive
to satellite failures. Extensive computations with one, two or three satellite failures led
mission analysts to the current constellation definition where a pair of satellites appears in
each of the six orbital planes. Figure 2.24 shows a representation of the GPS constellation.
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Figure 2.24: GPS: (T/P/F ) = (24/6/2), MEO i=55 deg [19].

2.4.2 Galileo
Galileo is Europe’s own global navigation satellite system, created by ESA, providing a

highly accurate and guaranteed global positioning service under civilian control. Currently
providing initial services, Galileo is interoperable with GPS and Glonass; it takes a
minimum of 4 satellites to be visible in the local sky to fix a receiver’s position. By offering
dual frequencies as standard, Galileo is set to deliver real-time positioning accuracy down
to the metre range [21]. The fully deployed Galileo system is a Walker constellation that
consists of 24 operational satellites plus 6 in-orbit spares, positioned in 3 circular MEO
planes at 23222 km altitude above Earth and at an inclination of the orbital planes of
56 deg to the equator. The fully-operational Galileo constellation is capable to provide
good coverage even at latitudes up to 75 deg north, which corresponds to the Norway’s
North Cape (the most northerly tip of Europe) and beyond. The large number of satellites
together with the carefully-optimised constellation design, plus the availability of the
active spare satellites per orbital plane, ensure that the loss of one satellite should have
no discernible effect on the user. Figure 2.25 shows a representation of the Galileo
constellation.
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Figure 2.25: Galileo: (T/P/F ) = (24/3/1), MEO i=56 deg [33].

2.4.3 Glonass
The GLObal NAvigation Satellite System (GLONASS) is a space-based satellite

navigation system operating as part of a radionavigation satellite service and developed
by Roscosmos. It provides an alternative to GPS and it is the second navigational system
in operation with full global coverage and of comparable precision [20]. The GLONASS
supplementum of GPS system improves positioning in high latitudes (both north and
south). In 2010, GLONASS had achieved full coverage of Russia’s territory and in 2011
the full orbital Walker constellation of 24 satellites was operational enabling full global
coverage. Today the constellation counts 24 operational satellites, with 8 of them evenly
spaced on each of the 3 orbital planes at an altitude of 19130 km with a 64.8 deg inclination.
Figure 2.26 shows a representation of the Glonass constellation.

Figure 2.26: Glonass: (T/P/F ) = (24/3/1), MEO i=64.8 deg [34].
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2.4.4 Globalstar
Globalstar is an American satellite communications company that operates a LEO

satellite constellation for satellite phone and low-speed data communications, somewhat
similar to the Iridium satellite constellation and Orbcomm satellite systems. The Globalstar
second generation constellation consists now of 24 LEO satellites [17].
The first satellites of the original Globalstar mobile telecommunication system were
launched in 1998 in a 1410 km altitude and 52 deg inclination orbit. The constellation
design relied on a Walker pattern (48/8/1) and was intended to provide continuous coverage
between -70 deg and +70 deg latitude [32]. In 2007, Globalstar launched 8 additional
first-generation spare satellites into space and between 2010 and 2013 it launched 24 second-
generation satellites in an effort to restore their system to full service. The Globalstar
constellation of LEO satellites is capable of picking up signals from over 80% of the Earth’s
surface, everywhere outside the extreme polar regions and some mid-ocean regions. With
the fully deployed an operational second-generation constellation, several satellites can
pick up a call and this helps assure that the call is not dropped even if a phone moves out
of sight of one of the satellites. Globalstar guarantees a coverage over the entire North
and South America, Europe, Russia, Australia and part of the Asia (i.e. Africa and some
parts of Asia, such India, are excluded) [35]. Figure 2.27 shows a representation of the
Globalstar constellation.

Figure 2.27: Globalstar: (T/P/F ) = (48/8/1), LEO i=52 deg [36].

2.4.5 Iridium
The Iridium satellite constellation provides coverage to satellite phones, that means it

connects mobile phones by radio through orbiting satellites rather than terrestrial cells.
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The major advantage is that such a phone can be used in most or all geographic locations
on the Earth’s surface since it is not limited to areas covered by cell towers.
The Iridium network is the largest commercial satellite network in the world and the
only network that offers true global communications coverage over 100% of the planet.
Uniquely, Iridium satellite coverage map spans Earth’s polar regions and every land, sea
or sky between [37]. The constellation consists of 66 active satellites in LEO at a height of
781 km and an inclination of 86.4 deg divided in 6 planes [16]. The equatorial separation
between co-rotating orbits is 31.6 deg, the equatorial separation between counter-rotating
orbits is 22.0 deg. In addition, 6 spare satellites are placed in a parking orbit below the
operational orbits [22]. All these features mean that Iridium could be considered as a
Street Of Coverage constellation. The Iridium satellite constellation initially should have
been made of 77 satellites (hence the name, because of the metal with atomic number
77). Anyway, it turned out that just 66 were required to complete the coverage of the
planet with communication services [30]. Figure 2.28 shows a representation of the Iridium
constellation.

Figure 2.28: Iridium: T=66, P=6, LEO i=86.4 deg [38].

2.4.6 O3b
The O3b satellite constellation (named "the Other 3 Billion" referring to the population

of the world that has no access to broadband data services without help), provides
telecommunications and data backhaul from remote locations, offering low-latency internet
backhaul to emerging markets and developing countries through a series of satellites in
equatorial orbits at 8000 km altitude [39].
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Since 2016, O3b is wholly-owned by SES S.A., but the first four satellites were launched
in 2013, when they were property of O3b Networks Ltd. The second set of four satellites
were launched in 2014 and O3b started delivering operational services once their checkout
phase was complete. A third set of first-generation satellites lifted off on 2014 too, to add
further capacity to the constellation which, by that time, had begun providing services
to a number of African countries and remote sensing island states as well as the U.S.
Government and cruise ships. With 12 satellites in orbit, O3b switched three from the first
batch into stand-by mode due to their degraded signal characteristic to serve as viable
backups in case any other satellite suffer technical difficulties. However, nowadays there are
20 O3b satellites in orbit. With the constellation orbiting in MEO, data transfer latency
is considerably lower when comparing O3b to Geostationary Communication Satellites
that feature latencies of ∼ 500 milliseconds. Optimal coverage is provided between 45
deg North and South latitude, through services can be extended to latitude of up to 62
deg [39]. The O3b constellation could be considered as a (20/1/0) Walker constellation,
but the orbital inclination is equal to 0 deg because the coverage is desired only at low
latitudes. Figure 2.29 shows a representation of the O3b constellation.

Figure 2.29: O3b: (T/P/F ) = (20/1/0) equatorial, MEO i=0 deg [39].

2.4.7 ELLIPSO concept
The ELLIPSO concept was for the first time presented at the beginning of 1990, with

the aim to construct and operate satellite mobile cellular telephone systems. The system
has been developed to provide affordable personal telephonic and data communications
using hand-held (cellular-type) terminals through a unique constellation that includes
both elliptical and circular communication satellites [40].
ELLIPSO system employs 18 satellites: 8 circular equatorial satellites are at 8050 km
altitude,but in addition there are 2 inclined elliptical, sun-synchronous rings with 5 satellites
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each; these rings can provide biased, or tailored coverage over particular latitudes and
times of day in which the communications traffic is found to peak. In summary, the
different systems engineers have selected widely varying altitudes (and thus periods) for
their orbits, all the way from 780 km (Iridium) up to geostationary (35800 km) [30].
The ELLIPSO system, with its patented array of two subconstellations, makes use of
elliptical orbits. The BOREALIS subconstellation uses two inclined planes with elliptic
orbit satellites, while the CONCORDIA subconstellation has circular orbit satellites.
BOREALIS satellites are in two inclined, sun-synchronous, elliptic orbits and are targeted
to provide service to customers from 25 deg north latitude up to the North Pole. In and
near the equatorial plane, an elliptical and a circular ring are visible, constituting the Gear
Array combination. CONCORDIA provides coverage for customers between 55 deg south
latitude and 25 deg north latitude (i.e. the tropics and the southern hemisphere) [40].
The design of the ELLIPSO system’s constellation was viewed as a major technological
advance in the field of non-GEO communications satellite systems and clearly superior to
other large-LEO circular orbit systems. Anyway, such a concept has never been realized
and the ELLIPSO system merged in the Intermediate Circular Orbit (ICO) constellation
concept [41]. Figure 2.30 shows a representation of the ELLIPSO constellation.

Figure 2.30: ELLIPSO: T=8 MEO equatorial CONCORDIA, T=10, P=2 HEO BOREALIS
[40].

2.4.8 Intermediate Circular Orbit concept
The Intermediate Circular Orbit Global Communications is a concept thought by the

Boeing Satellite Systems, Inc. and made of satellites that were intended to be used in a
global satellite-based mobile communications system capable of offering digital data and
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voice services as well as the satellite equivalent third-generation (3G) wireless services,
including wireless Internet and other packet-data services [42].
ICO ordered its first 12 satellites in 1995 and 3 more in 2000. However, the first ICO
satellite was destroyed in an unsuccessful launch in 2000; the second satellite was launched
successfully on 2001. While the original 12 satellites were designed primarily for global
mobile voice telephony services, plans were announced in 2000 to modify the 11 remaining
original spacecrafts currently in production for the revamped New ICO system. The
spacecraft modifications were intended to enhance the new constellation in order to provide
high-quality voice and packet-data services.
The New ICO satellite design is one of the most complex ever undertaken and incorporates
a number of unique design features. The constellation consists of 10 active satellites
operating for 12 years in two orthogonal planes of medium-Earth orbit at an altitude of
10390 km. The orbits are inclined at 45 deg to the equator with each plane having five
operational satellites plus one spare. All these features mean that ICO could be considered
as a Walker constellation. The orbital pattern is designed for significant coverage overlap,
ensuring that usually two (but sometimes three or four) satellites are in view of an user
and a Satellite Access Node at any time. Each satellite covers approximately 25% of the
Earth’s surface at a given time.
However, after a long hiatus, the work on 10 ICO satellites was resumed in 2003. Never-
theless, in 2004 the ICO concept has been abandoned. The only ICO satellite launched
was kept operational, albeit without usage, until March 2012, with commercial services
purpose [42]. Figure 2.31 shows a representation of the ICO constellation.

Figure 2.31: ICO: (T/P/F ) = (10/2/0), MEO i=45 deg [36].
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2.4.9 Teledesic concept
Teledesic is a concept for a global broadband LEO satellite network and the following

applications and services are foreseen: computer networking, intranets, virtual private
networks, Local Area Network interconnection, high-speed internet access, intranet access,
interactive multimedia, video conferencing, high-quality voice, wireless backhaul [22]. The
system is capable to provide fiber-optic like links to customers around the world.
The original 1994 proposal was extremely ambitious, planning 840 active satellites with
in-orbit spares at an altitude of 700 km. In 1997, the plan was scaled back to 288 active
satellites at 1400 km: 24 active satellites are placed in each of 12 polar orbital planes with
an inclination of 98.1 deg. Teledesic makes use of an asynchronous polar constellation,
which means that the phase shifts between different orbital planes are not controlled. The
high number of satellites provides a high system capacity and a high satellite elevation
enhancing the link availability and reducing rain fading.
In the light of reducing the number of satellites from initially 840 to 288, the number of
satellites may have been further reduced to around 100; in addition, satellite’s technical
parameters could accordingly have changed during the further development of the system
[18]. Teledesic intended to provide global coverage with Earth-fixed cells, served by
scanning satellite beams. The minimum satellite elevation of 40 deg mitigates the influence
of signal blockage and rain fading. Thus, Teledesic can provide 99.9% availability. Despite
the proposal, in 2002 the Teledesic satellite construction work was suspended because
the first satellite bubble had burst during the first launch in 1998, but also thanks to
the commercial failure of the similar Iridium venture and other systems [18]. Figure 2.32
shows a representation of the Teledesic constellation.

Figure 2.32: Teledesic: T=288, P=12, LEO i=98.1 deg [36].

49



Marta Padoan Master Thesis

2.4.10 OneWeb

OneWeb is currently a satellite constellation developed by Airbus and OneWeb made
of small satellites in a circular polar LEO (87.9 deg inclination) at approximately 1200 km
altitude and is a planned initial 650-satellite constellation [43]. Coverage characteristics
include an elevation angle never lower than 50 deg, in order to enhance quality of the signal.
The first generation satellites were initially in process of being completed in 2019/2020
with a goal to provide global satellite internet broadband services to people everywhere
and initially it was aiming to start global services in 2021. The first 6 test satellites
were launched in 2019 and the first, second and third batches of 34, 34 and 36 satellites
respectively were launched in 2020. Anyway, at the beginning of 2021, it was announced
that this first-generation constellation, of a total of 648 satellites, is going to be fully
operational by the end of 2022 and that these satellites will be placed 36 in each of the 18
orbital planes [44]. The second generation of OneWeb satellites is planned to be made
of a system with 32 planes of 72 satellites each at an inclination of 40 deg, 32 planes
with 72 satellites each at an inclination of 55 deg and 36 planes with 49 satellites each
at an inclination of 87.9 deg, for a total of 6372 satellites that would be in addition to
the initial first-generation constellation that the company is currently deploying [43]. The
whole OneWeb constellation really consists of three different Walker sub-constellations (i.e.
three different inclinations are used). Figure 2.33 shows a representation of the Oneweb
constellation.

Figure 2.33: Oneweb [45].
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2.4.11 Starlink
Starlink is a satellite internet constellation currently under construction by SpaceX

providing satellite internet access. The constellation will consist of thousands of small
satellites in LEO working in combination with ground transceivers. The aim is to provide
satellite internet connectivity to underserved areas of the planet, as well as to provide
competitively priced service to urban areas.
Product development began in 2015 and two prototype test-flight satellites were launched
in 2018. Additional test satellites and 60 operational satellites were deployed on 2019.
The aim is to deploy 1440 spacecrafts to provide near-global service by late 2021 or 2022.
At the end of January 2021, Starlink counts 1015 satellites launched (including demo
satellites) and other launches are planned to occur as often as every two weeks with 60
satellites each. In total, nearly 12000 satellites are planned to be deployed, with a possible
later extension to 42000. The initial 12000 satellites are planned to orbit in 3 orbital
shells: first 1440 satellites in a 550 km altitude divided in 72 planes inclined 53 deg with
20 satellites each, second 2825 satellites at 1110 km altitude and third 7500 satellites at
340 km altitude. As for the case of OneWeb, also the Starlink constellation consists of
three different Walker sub-constellations.
The lower minimum elevation angle of beams for the first shell is requested to be of 25
deg, while it would be equal to 40 deg for the second and third shells.
The existing plan for a second-generation Starlink constellation expected to include
up to 30000 satellites and provide complete global coverage [46]. Figure 2.34 shows a
representation of the Starlink constellation.

Figure 2.34: Starlink [47].
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3.Methods for continuous
coverage

Over the years, many methods have been developed to efficiently evaluate the coverage
of a constellation pattern. First of all, it is said that a user is seen by a satellite when
both are in direct visibility of each other, without any obstruction: this is called geometric
visibility (or line of sight visibility) [24]. But in some cases, geometric visibility is not
enough, and also the antenna pointing and pattern must be taken into account. This is
called radioelectric visibility, but it is a complex problem and the correspondent analysis
goes beyond the scope of this thesis [24].
As previously said in Section 2.1, the desired coverage can be continuous or discontinuous
and even global, zonal or local. In addition, coverage can also be defined by the minimum
number of satellites in user’s view at the same time, hence dealing with one-fold, two-fold
or n-fold coverage.

Many methods have been developed to evaluate coverage efficiency of a constellation
pattern, in terms of continuous and non continuous global or local coverage. The methods
are usually suitable for circular orbits, since a general method formulation is much easier
than for constellations with elliptical orbits.
This chapter deals with methods applicable for continuous global or zonal coverage, while
methods capable of dealing with revisit time are going to be discussed in Chapter 4.

In general, the methods can be grouped in two categories: analytical, usually good
at assessing continuous and global coverage properties of a constellation pattern, and
numerical, normally more flexible and that can usually deal with more complex objectives.
The use of LEO for continuous global coverage requires satellite constellations of from
30 to 100 satellites [48]. Polar orbits have typically been proposed for this application
because large polar constellations can be analytically optimised: for example, Adams
and Rider (Section 3.2), as well as Beste (Section 3.1), have examined non-symmetric
constellations of circular, polar orbit satellites using the Street Of Coverage (Section 2.2.3)
approach. Solutions for up to 1000 satellites have been obtained to achieve single through
four-fold continuous global coverage. On the other hand, Walker (Section 3.3) and Lang
(Section 3.4) developed a method to optimise symmetric, non-polar constellations as large
as 100 satellites [48]. Again, results were obtained for single through four-fold continuous
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global coverage. In many cases, non-polar constellations outperformed similarly sized polar
constellations.

It must be highlighted that these methods do not discuss the problem of orbital
perturbations neither their presence. This approach can be accepted because orbital
perturbations such the J2 harmonic effect due to Earth gravity and Earth not perfect
spherical shape cause all satellites to face the same drift effects, since they have the same
inclination i. In the same way, orbital decay due to drag effects is not considered, because
all satellites are assumed to be equal and to have the same area, so the same behaviour [5].
Indeed, orbital perturbations (i.e. non zero eccentricity or long-term drift in orbital
constants) can be minimised by deploying the constellation in such a way that all satellites
orbits are affected more or less equally.

3.1 Beste coverage method
The method derived by Beste aims at designing optimum satellite configurations for

continuous coverage of the entire Earth or of polar regions extending to arbitrary latitude
[28]. The method is analytical: it identifies families of circular polar orbit constellations
using minimal total number of satellites which can provide a desired n-fold of coverage at
or above a user-defined latitude.
Beste considered two approaches to the problem of satellite constellation design. The first
approach was to place the satellites in orbital planes which have a common intersection
(e.g. polar orbits) and to adjust the plane separation and satellite spacing so as to minimise
the total number required. Polar orbits result in higher satellite densities at the poles
than at the equator; it seems intuitive that orbital configurations which result in a more
uniform distribution of satellites over the Earth would lead to more efficient covering.
Therefore, the second approach was to select orbital planes which result in as uniform
a distribution of satellites as possible [28]. Hence, Beste found an analytical expression
relating latitude λ and Earth-centered half-cone angle of coverage θ with the number T of
satellites required for continuous coverage, both for single and triple coverage.

The geometry is shown in Figure 3.1. The angle θ is the Earth-centered half-cone angle
corresponding to the coverage of one satellite, or equivalently, the radius of the coverage
circle (measured in angular units) on the surface of the Earth. This region will be referred
to as the coverage circle of radius θ.
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Figure 3.1: Coverage geometry for the Beste method [24].

When optimal phasing of orbital planes is considered for global coverage, the point
of intersection of overlapping circles of coverage coincides with the boundary of a circle
coverage in the adjacent plane. Since the satellites are uniformly distributed in a given
orbital plane, the phase separation between two consecutive satellites within an orbital
plane is given by 2π

S
[24].

By applying spherical trigonometry, the angular half-width Φ of the ground swath with
single satellite coverage is given by the relation:

cos θ =
cos Φ

cos (π
S

)
(3.1)

Satellites in adjacent orbital planes move in the same direction and the satellites of one
plane are shifted relative to those of the adjacent plane by one-half of the intraorbit satellite
spacing (i.e. π

S
, where S is the number of satellites per orbit). This configuration clusters

the satellites in an optimal manner at the equator. The inter-plane angular separation
between adjacent planes α is equal to

α = Φ + θ (3.2)

However, satellites in the first and last planes rotate in opposite directions. Because
of this counter-rotation effect, the angular separation between the first and last planes is
smaller than that between adjacent planes; hence, at the two boundaries where adjacent
orbital chains move in opposite directions, the relative geometry is not constant. At the
equator, Φ has to satisfy the condition:

(P − 1)(Φ + θ) + 2θ = π (3.3)
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where P is the number of orbital planes. It follows that

α = Φ + θ ≥ π

P
(3.4)

and that the angular separation between the first and the last planes is equal to 2θ.
From the last two Equations (3.3) and (3.4), Beste computed the values of P and S for
single coverage of the entire Earth. Therefore, the proposed formulation to determine the
number of satellites required for single-satellite global coverage can be approximated by:

TBeste−1fold = P · S ≈ 4

1− cos θ
(3.5)

and 1.3P < S < 2.2P , since the approximated result holds for ratios of S to P in the
approximated range of 1.3 to 2.2 [28].

This analysis of entire Earth coverage has been extended to partial coverage for latitudes
beyond a specified value λ (i.e. between latitude +λ and the north pole and between -λ
and the south pole), as shown in Figure 3.2. The coverage now is zonal, but the method
deals with latitude bands, since all longitudes must be considered and not only a portion
of the Earth surface (say a delimited area both in latitude and longitude).

Figure 3.2: Coverage area beyond a specified latitude [24].

Beste has shown that in order to provide coverage beyond a specified value λ the
constraint at the equator becomes:

(P − 1)(Φ + θ) + 2θ = π cos (λ) (3.6)

The total number of satellites can be generalised as follow:
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TBeste−1fold,λ = P · S ≈ 4 cosλ

1− cos θ
(3.7)

and 1.3P < S cos (λ) < 2.2P

Beste [28] continued to extend his analysis for triple coverage by using an iterative
method. His approximation for triple coverage is as follows:

TBeste−3fold,λ = P · S ≈ 11 cosλ

1− cos θ
(3.8)

and 1.3P < S cos (λ) < 2.2P

3.2 Adams and Rider coverage method
Using a similar geometry to that shown in Figure 3.1 for the Beste method, Adams

and Rider arrived at a different expression for the total number of satellites T required for
providing multiple satellite coverage by proceeding by optimisation techniques using the
method of Lagrange multipliers. The method is analytical as the one developed by Beste
[28]. In general, to maximise the number of co-rotating interfaces in a polar network, their
ascending nodes should be distributed over kπ radians (k could be any positive integer
value) with an approximate value for the angular spacing between co-rotating orbits of kπ

P
.

The exact geometry for the derivation of Adams and Rider approximation [24] is shown
in Figure 3.3.

Figure 3.3: Coverage geometry for the Adams and Rider method [24].
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In Adams and Rider’s approach, polar constellation design for multiple coverage beyond
a specified latitude λ is analysed (see Figure 3.2). From Figure 3.3:

ς = λ+
π

S
(3.9)

By applying spherical geometry in spherical triangle NĜO of Figure 3.3:

cosλ = cos
(π

2
− ς
)
cos
(π

2
− λ
)

+ sin
(π

2
− ς
)

sin
(π

2
− λ
)

cos Φ (3.10)

After manipulation, Φ can be obtained as follow:

cos Φ =
cosλ− sin ς sinλ

cos ς cosλ
(3.11)

In the same figure, for a given ψ:

(π
2
− ς
)

+
2π

S
=
(π

2
− ξ
)

+ ψ (3.12)

This implies:

ξ = ς + ψ − 2π

S
(3.13)

For optimum phasing, ψ = ς
2
. By applying spherical trigonometry to the spherical

triangle NĜH of Figure 3.3:

cosλ = cos
(π

2
− ξ
)
cos
(π

2
− λ
)

+ sin
(π

2
− ξ
)

sin
(π

2
− λ
)

cos θ (3.14)

or

cos θ =
cosλ− sin ξ sinλ

cos ξ cosλ
(3.15)

where α has to satisfy the condition:

α = Φ + θ ≥ π

P
(3.16)

Computation can be carried out to obtain the total number of satellites required for
single coverage above a latitude λ, for given Φ, θ and S.

The above equations can be generalised for multiple coverage over a given point. Let j
be the multiple level of coverage provided by satellites in a single plane and let k be the
multiple level of coverage provided by satellites in neighbouring planes. The total multiple
level of coverage n can be factorised as n = jk. By making use of Lagrange multipliers
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technique, it can be shown that:

S =
2√
3
j
π

θ
(3.17)

P =
2

3
k
π

θ
(3.18)

TA&R = P · S =
4
√

3

9
n
(π
θ

)2

(3.19)

where j denotes the multiple coverage factor in the same orbital plane; k denotes the
multiple coverage factor in different orbital planes; n = jk denotes the multiple coverage
factor of the constellation. Hence, an expression for optimum triple coverage using Adams
and Rider’s formula can be made by setting n=3 and k=1.

3.3 Walker coverage method
The Walker’s satellite triplets or Walker circumcircle approach is a numerical method

developed to evaluate the coverage efficiency of constellation patterns made of circular,
common period orbits all having the same inclination with respect to an arbitrary refer-
ence plane. The orbits are uniformly distributed in a right ascension angle as they pass
through the reference plane and the initial phase position of satellites in each orbit plane
is proportional to the right ascension angle for that plane [26].
This method, improved by Ballard [26], is restricted to continuous global coverage analyses:
it is a very elegant method, very good at optimising small constellations, but unfortunately
it is very slow at evaluating big constellations because of the rapidly exploding number of
triplets to check.
Aim of the Walker method is to find a systematic approach to the analysis of coverage
by means of circular orbit systems and to show that better coverage is possible with a
small number of satellites [12]. Only circular orbits have been considered since, while
elliptical orbits have some advantages in the provision of coverage to limited areas mainly
confined to either the northern or the southern hemisphere, circular orbits appear to have
the advantage for zones extending equally into both hemispheres and even more as regards
whole-Earth coverage. In fact, Walker thought that continuous whole-Earth coverage
would be provided most effectively by a system in which the distribution of satellites
over the Earth’s surface was maintained as uniform as possible, subject to the practical
limitations imposed on a system necessarily involving multiple intersecting orbits; thus
circular orbits of equal period have been chosen as an essential feature of all the patterns
considered [27].
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For convenience of use, circular orbit patterns having a uniform distribution of satellites
within and between orbit planes have been identified by the reference (T/P/F ); in general,
F may have any value less than P , but for Delta patterns F can take only integer values
from 0 to (P − 1).
The circumcircle method is based on spherical triangles drawn on the Earth surface by
satellites: consider a number of satellites following equal radius circular orbits around
the Earth, if a line is drawn connecting each sub-satellite point to adjacent sub-satellite
points, such that the Earth’s surface is divided into a number of spherical triangles with
a sub-satellite point at each vertex, then the point on the Earth’s surface most remote
from any of the sub-satellite points is the centre of the largest of the circumcircles of these
triangles which does not enclose any other sub-satellite point. The point on the Earth’s
surface at which the minimum satellite elevation angle occurs is the circumcentre of the
sub-satellite points of the nearest three satellites, under those conditions which result in
the circumcircle being at its largest from any such group of three adjacent satellites. This
configuration could be called the critical one, giving critical conditions at the circumcentre,
the critical point. So, the radius of the circumcircle in the critical configuration is the
maximum sub-satellite distance allowed in order to still achieve continuous global coverage.
It often happens that critical conditions occur when one satellite passes through the plane
of another three satellites, i.e. its sub-satellite point lies on the circumcircle of their
sub-satellite points.
In choosing pattern characteristics, the primary objective should be to minimise the total
number of satellites needed to ensure that not less than a certain number of satellites
are everywhere visible at all times above some minimum elevation angle; as a secondary
objective, it is assumed that the minimum distance between adjacent satellites should be as
large as possible. Hence, coverage has been assessed by finding those points on the Earth’s
surface (namely the centres of the circumcircles of the relevant spherical triangles) which
are furthest from appropriate sub-satellite points; each pattern has then been optimised
by varying the common inclination of the orbital planes, to reduce the worst-case value of
the radius of the largest circumcircle until no further improvement is possible.

The problem consists in providing, in the most efficient manner, an array of satellites
which can between them to provide continuous multiple n-fold coverage of the entire
surface of the Earth. Since, to provide whole-Earth coverage, the satellites must necessarily
be in multiple intersecting orbits, the pattern which the satellites form relative to the
Earth is constantly changing, and the coverage requirements must be met by all the
configurations which the satellite constellation takes up (basically, it must be ensured that
the requirements are still met under worst-case conditions) [49].
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Coverage studies have been conducted in terms of the radius from the sub-satellite
point to the effective horizon, this radius being measured by the angle it subtends at the
centre of the Earth θ. The effective horizon reflects the particular requirements, depending
on satellite altitude and on the minimum acceptable elevation angle from a point on the
Earth’s surface [49]. Coverage properties are thus analysed in terms of the largest possible
great circle (namely circumcircle) between an observer anywhere on the Earth’s surface
and the nearest sub-satellite point. When evaluated in this manner, coverage properties
are invariant with deployment altitude. As deployment altitude is reduced, however, higher
order constellations must be used to maintain a fixed minimum viewing angle. Coverage
properties are also invariant with deployment orientation relative to Earth coordinates,
although specific orientations can cause the satellite patterns to appear quasi-stationary
[26].

Figure 3.4 represents the instantaneous position of the sub-satellite points of three
out of a constellation of satellites in circular orbits. A circle whose radius represents the
effective horizon distance has been drawn around each sub-satellite point. These circles
divide the area covered by this figure into three types of element: within those marked 1,
one satellite is visible; within those marked 2, two satellites are visible, while within the
marked 0, no satellite is visible. If the radius of the circles were increased to allow for an
increased horizon range (e.g. satellites in higher orbits or lower minimum elevation angle),
the area marked 0 would shrink, as shown in Figure 3.5, and full single coverage of this
area would eventually be achieved when the three circles all passed through the point +
at its centre; this is the centre of the circumcircle of the three sub-satellite points and the
radii of the three circles would then be equal to this circumcircle radius. Thus the centre
of the circumcircle of three adjacent sub-satellite points represents, for that part of the
overall pattern, the worst case for meeting the single coverage requirements and the centre
of the largest of such circumcircles is the worst case for the whole pattern. Considering
the variation of the pattern during an orbital period, the largest value of the largest such
circumcircle radius θMAX defines the pattern’s single coverage capabilities; it is desirable
that this value should be as small as possible.
Figure 3.6 illustrates the situation when the circumcircle of any three sub-satellite points
passes simultaneously through one or more (in this case two) additional sub-satellite
points. In Figure 3.7, as in Figure 3.6, one other sub-satellite point is enclosed within the
circumcircle, so that the centre of the circumcircle is again the locally critical point for
double coverage. However, under these circumstances it should also be considered a locally
critical point for triple and quadruple coverage, since minimal changes in the positions of
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one or two of the sub-satellite points lying on the circumcircle could leave two or three
sub-satellite points, instead of only one, enclosed within the circumcircle.

Figure 3.4: Circumcircle centre 1 [49]. Figure 3.5: Circumcircle centre 2 [49].

Figure 3.6: Circumcircle centre 3 [49]. Figure 3.7: Circumcircle centre 4 [49].

Hence, if the circumcircle passes through X sub-satellite points (where X is not less
than 3) and encloses Y other sub-satellite points, its centre is locally critical point for
degrees of coverage (n) from (Y+1) to (X+Y-2), though since X will often be equal to 3,
these values will often be equal.

The smaller the circumcircle radius θ, the higher is the minimum elevation angle ε at
which the required number of satellites (at a given orbital altitude) can be seen from any
point within the circumcircle. Likewise, the smaller the circumcircle radius the lower is
the orbital altitude necessary for the required number of satellites to be visible (above a
given minimum elevation angle) from any point within the circumcircle. Thus in general
terms it is desirable that the largest value of circumcircle radius θMAX should be as small
as possible.
However, once the requirements for a particular system have been chosen and the satellite
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altitude and minimum elevation angle (determining the maximum circumcircle radius),
the required degree of coverage (n) and the number of satellites in the system have all
been specified, it might be argued that it is only necessary to confirm that all satellite
patterns placed on the short-list for selection meet the stated requirements for maxi-
mum circumcircle radius and that the choice between them should depend not on which
of them has the smallest radius but on some other criterion (e.g. launcher capabilities, cost).

Summing up, the analysis of coverage has been based on the identification of those
points at which the elevation angle ε to the nearest satellite (or the nth nearest for n-fold
coverage) is locally a minimum. These points are the centres of the circumcircles of
the spherical triangles formed by the instantaneous sub-satellite points of neighbouring
satellites in the pattern.

In Figure 3.8 , which represents an undefined portion of the Earth’s surface, the A to
G letters represent the instantaneous positions of 7 out of a total 10 sub-satellite points
of some hypothetical 10-satellite pattern. O1, which is the instantaneous position of the
centre of the circumcircle of the spherical triangle AB̂C, whose geocentric angular radius
is θ1, is locally the point on Earth’s surface furthest from any sub-satellite point; at O1, an
observer’s distance d from each of A, B and C is equal to θ1, but another observer located
a short distance from O1, in any direction, would be at a distance less than θ1 from at
least one of those three sub-satellite points. Considering all the other spherical triangles,
such as BĈF and CD̂F , whose circumcircles do not enclose any other sub-satellite point,
then the centre of the largest of those circumcircles is the point on the whole Earth’s
surface which is instantaneously furthest from any sub-satellite point. The radius of that
circumcircle is θmax. If the requirement should be for double coverage (i.e. for not less
than two satellites to be everywhere visible above the minimum elevation angle) then the
problem may be tackled in similar manner, but considering circumcircles which enclose
one other sub-satellite point (e.g. AB̂D which encircles C). O2 is at a distance θ2 from A,
B and D, and at a lesser distance from C; an observer at a little distance from O2 would
be at a lesser distance than θ2 from at least one of A, B and D, as well as from C. This
value of θ2 would have to be compared with the values of θ2 for those other circumcircles
which each encloses one other sub-satellite point, in order to find the instantaneous value
of θmax. Similar considerations apply if the requirement is for simultaneous visibility of
any larger number of satellites.

To ensure that every locally least-favoured point has been examined as a possible source
of the value of θmax, it is necessary to consider both larger and smaller circumcircle radii of
all possible combinations of three sub-satellite points at any instant of time. However, so
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Figure 3.8: Example of determination of θn [27].

far only instantaneous configurations of a satellite pattern have been considered, whereas,
as stated before, the actual interest is in the maximum value taken over the whole of a
pattern repetition interval θMAX . The list of spherical triangles whose radii are potential
candidates for the value of θMAX , may well change during the course of the propagation of
the orbit pattern, as other sub-satellite points move into or out of the circumcircle of any
one group of three and all of them must be examined. Values of θMAX , which represent
maximum values of the sub-satellite distance d for a particular pattern with a certain
inclination, may be converted to values of the minimum elevation angle ε for any satellite
altitude. The value of θMAX determined for a particular pattern is thus a very suitable
criterion for assessing the merits of that pattern; the smaller the value of θMAX , the larger
will be the minimum elevation angle provided by a satellite system using that pattern at a
given altitude, or the lower will be the altitude at which it can ensure that a requirement
for a given minimum elevation angle is met.

Mathematics formulations to assess coverage make use of the great circle range (or
coverage angle as in Section 2.1.1) from an observer anywhere on the Earth’s surface to
the nearest sub-satellite point. This parameter is a more fundamental measure of good
coverage geometry than the direct use of elevation angle ε because it is independent of the
altitude at which the satellites are deployed, whereas elevation angle is not and so this
would mean less computations to be performed during the analysis and less parameters
needed.
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Figure 2.1 of coverage geometry in Section 2.1.1 illustrates how elevation angle is related to
great circle range and deployment altitude (or period). Notice that for any finite altitude,
the great circle range θ must be less than 90 deg for the satellite to be visible at or above
the observer’s horizon.

In designing a constellation for optimised world-wide coverage, the first step is to choose
a set of common-altitude orbits which minimise the maximum value of θ, considering all
possible observation points on Earth at all instants of time. The constellation altitude is
then chosen to obtain a guaranteed minimum elevation angle sufficiently high (say 10 deg)
that atmospheric propagation anomalies or local terrain obstructions are not a significant
problem.

As stated before, the optimisation parameter is the coverage angle (the central angle)
from an observer anywhere on the Earth’s surface to the nearest sub-satellite point and in
order to determine it, the worst condition (i.e. correspondent to the greatest circumcircle)
shall be determined.
The intersatellite great circle range rij (angular range) between any arbitrary pair of
satellites in a constellation in the i and j planes is illustrated in Figure 3.9. The set of
formulas describing rij for all satellite pairs consists on the use of the law of cosines for
sides to the small triangle formed by the two satellites and the intersection point. These
formulas completely and uniquely defines the geometry of the constellation as far as its
coverage properties are concerned.

Figure 3.9: Geometry of satellite pair [26].
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Using the half-angle formulas for spherical trigonometry and applying the conditions
of the orientation angles listed in Section 2.2 describing the position of satellites of a
constellation (e.g. Walker and Ballard), the inter-satellite ranges in such a constellation
can be expressed in the form:
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where i and j are the index representing two generic satellites of the constellation, m
is the harmonic factor and X is the time-varying phase angle.

Figure 3.10 illustrates that the worst possible observation point in a spherical triangle
formed by joining three sub-satellite points (i,j,k) is at the midpoint of the triangle. The
range arc from the midpoint of the triangle to any of this three vertices is the equidistance
θijk. A constellation providing usable coverage only to a range θ∗ < θijk leaves the midpoint
of the triangle uncovered and therefore fails the test of worldwide visibility. If θ∗ is increased
to equal or exceed θijk, the number of satellites visible at the midpoint changes from zero
to three and at least single visibility coverage is assured everywhere within the triangle.

Knowing the three sides of spherical triangle, its equidistance parameter can be
computed directly from the formula:
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The coverage properties of a constellation can therefore be analysed by examinimg the
equidistances θijk(X ) of its spherical triangles at all instants of time to find the worst case.
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Figure 3.10: Equidistance of satellite triad [26].

With T satellites, a total of (2T − 4) non-overlapping triangles are required to cover the
sphere and all must be examined for worst-case equidistance. The worst-case observer on
the Earth’s surface will be one whose position coincides with the midpoint of the spherical
triangle having the largest equidistance.

In dividing the sphere into triangles, care must be taken to choose only those triangles
whose circumcircles enclose no other satellites. Once another satellite moves inside the
circumcircle of a triangle, that triangle is no longer of interest in a single-visibility analysis
because a set of smaller triangles can then be chosen whose circumcircles are all empty.
In order to verify that the examined satellite triplets and relative triangles do not include
other satellites, the so-called "enclosure test" shall be performed: consider Figure 3.11, let
r be the range arc from the midpoint of a given triangle (i,j,k) with equidistance R<90
deg to a test satellite l and define a test variable to be

y
∆
= 1− cos r

cosR
(3.25)

It can be stated that satellite l is

- inside the circumcircle if y < 0

- on the circumcircle if y = 0

- outside the circumcircle if y > 0
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Figure 3.11: Geometry for enclosure test [26].

An analysis of the spherical triangles in Figure 3.11 will show that the test variable y
must simultaneously satisfy three equations of the form

y2 + 2Ky +M tan(R)2 = 0 (3.26)
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and the other two equations are obtained by cyclic rotation of (ABC) and (DEF).
Simultaneous solution of any independent pair of the equations of the second order with
the variable y will yield the correct value for y itself. In the degenerate case where all
three equations are identical, the sign of y will be opposite to the sign of K.

The algorithm applies the analytical formulas given for the determination of the
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worst-case circumcircle radius, but the propagation in time of the constellation is done
numerically by selecting a suitable time-step. The diagram here reported summarises the
most important steps performed by the algorithm.

Selection of the geometry of the constellation in terms of

(T/P/F ) i and h plus the propagation time and the time-step

Determination of all the θijk(X ) for satellite’ triplets

Check which θijk(X ) do not enclose an-

other satellite (if single coverage is required)

Determination of the worst-case con-

dition (maximum among the θijk(X ))

Computation of the correspondent altitude that

satisfies at minimum elevation angle requirements

Comparison between the initial and the computed

altitude to see if visibility conditions are satisfied

The entire algorithm-like logic for the Walker circumcircle approach is presented in
Appendix C.1.

3.4 Lang coverage method
The Lang algorithm allows the optimisation of non-polar, symmetric constellations as

large as 100 satellites in circular orbits for continuous global coverage [48].
This method can be uncoupled from altitude and elevation angle considerations, by using
the central angle radius of Earth coverage θ as the primary independent variable. For con-
stellations of T circular orbit satellites, the goal is to find the arrangement which requires
the smallest value of θ and still achieves continuous global coverage. The constellation
with the lowest required θ will allow the lowest operating altitude for a fixed value of
elevation angle ε. Conversely, if the satellite altitude is fixed, the lower operating limits
on elevation angle ε will be maximised. The value of the central angle radius of Earth
coverage θ which is required for the constellation to achieve continuous global coverage is
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used as a measure of efficiency of a constellation. The lower the value of θ for a fixed T ,
the more efficient the constellation.

Lang [48] used the Walker’s notation (T/P/F ) and inclination i for constellations; in
order to have a symmetric arrangement, the T

P
= S satellites in a given orbital plane are

equally spaced in central angle and the P orbital planes are evenly spaced through 360
deg of right ascension of ascending node. The phasing parameter F relates the satellite
positions in one orbital plane to those in another. The parameters (T/P/F ) and the
orbital inclination i are sufficient definition of a constellation to allow the determination of
the central angle of coverage θ which is required for any specified multiplicity of continuous
global coverage.

The Lang method takes significant advantage of the properties of symmetry of the
constellation. In this approach, T satellites are propagated in time over an Earth containing
a set of test points. The smallest value of θ is then determined which ensures that all test
points are visible to at least n satellites, where n is the desired multiplicity of coverage,
for all times. While this appears to be a straightforward brute force approach, there are
several simplifications which have been introduced to make it attractive [48].

If the entire globe or some zone of the globe (between two latitude values) is continuously
covered by a constellation of satellites, then it will be continuously covered independent of
the rotation rate of the Earth. By choosing to rotate the Earth at the same rate as the
motion of the satellites in their orbits, effectively, all satellites are now in Geosynchronous
inclined orbits. This assumption leads to two important simplifying features:

• Since orbits repeat each revolution relative to the test points, so does the coverage
geometry. Consequently, there is no need to simulate more than one orbital revolution.
Additionally, the location of any of the T satellites at any time point can be
easily referenced to the time history of the first satellite. Only a single reference
satellite needs to be propagated and saved. Consider the groundtracks of the
satellites in the geosynchronous (12/3/2) constellation, as shown in Figure 3.12; note
that there are only four independent groundtracks, each containing three satellites.
Each groundtrack contains a satellite from each of the three orbital planes. If the
latitude/longitude history of satellite number 1 is known at appropriate time intervals
then the latitude/longitude locations of the other satellites at any time point can be
easily found. For instance, the latitude/longitude of satellite 7 at any time point
is the same of satellite 1 one-third of a revolution (8 hours) earlier. Satellite 2
occupies the same latitude/longitude location that satellite 1 would in one-fourth
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of a revolution (6 hours), except that 90 deg must be added to the longitude. This
time and longitude shifts are easily computed for all of the T satellites. The first
satellite is then propagated at a time interval which includes all of necessary time
shifts so that any satellite position at any time can be found in the precomputed
latitude/longitude vectors for satellite 1. By this method the burden of computing
satellite locations for T satellites is significantly reduced.

Figure 3.12: Symmetric (12/3/2) constellation.

• Since, over one revolution, the pattern of coverage will be the same between any two
of the groundtracks in the constellation, only locate the test points on the ground
between any two of the groundtracks is needed. That is, due to the symmetry of
the constellation, any coverage gaps are symmetrically located with respect to the
groundtracks. Figure 3.13 shows the coverage gaps which occur over one revolution
for the (12/3/2) constellation for a central angle radius of Earth coverage θ = 46 deg
(ε = 37 deg). Note that the coverage gaps are symmetric about each groundtrack.
Test points in the region latitude = 0 deg to 90 deg and longitude = 0 deg to 45
deg (green coloured area in Figure 3.13) would sample all the coverage gaps for
continuous global coverage. If this constellation had 12 independent groundtracks
instead of just four, then only the longitude range = 0 deg to 15 deg would need to
be sampled with test points. In general, as the number of groundtracks increases,
the region over which the test points must be placed decreases. This consideration
can be used to help decrease computer program run time for large constellations.

70



Chapter 3. Continuous coverage

Figure 3.13: Coverage gaps for the (12/3/2) constellation.

The method can be used to optimise symmetric constellations for continuous global or
zonal coverage (between two specified latitude bands); coverage multiplicities between any
single and quadruple can currently be handled.
In addition, by varying the value of the phasing parameter F , the output of the algorithm
would be the value of orbital inclination which requires the smallest θ to achieve the
desired fold of continuous global coverage.
Therefore, it is possible to determine the most efficient arrangements for P , F and i and the
T correspondent to the lowest θ. These results can be then translated into the minimum
altitude at which continuous coverage is achieved for a specified minimum elevation angle
(say ε=0 deg).

The novelty proposed in this work for the Lang method consists in the determination
of the coverage circles of the satellites of the constellation throughout an analytical formu-
lation, that allows to compute the central angle of Earth coverage θ. Instead of using some
visibility function based on Fourier series [10] or by evaluating the rise and set times of
each satellite from a generic position on the Earth’s surface (e.g. [8], [13]), this approach
starts from the position of the reference spacecraft on its orbit projected onto the surface
and the position of a point belonging to the grid of tests points. The distance is then di-
rectly related to the central angle of coverage and to the conical field of view of the satellite.

By considering the longitude and latitude positions of the sub-satellite point of the
reference satellite and of a point on the grid (φsub, λsub) and (φG, λG) respectively, the
central angle of coverage is given by:
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∆φ = |φsub − φG| (3.32)

∆λ = |λsub − λG| (3.33)
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It is also possible to convert the coverage angle to a length by multiplying by the Earth
radius:

θkm = θREarth (3.36)

The diagram here reported summarises the most important steps performed by the
Lang algorithm.

Selection of the geometry of the constella-

tion in terms of (T/P/F ) and i and determi-

nation of the number of distinct ground traces

Determination of the longitude and latitude bands

for the grid of test points and creation of the grid

Determination of the "8-shaped" groundtracks and so

of the longitude and latitude of the sub-satellite points

Determination of the central angle of Earth coverage θ be-

tween each couple of sub-satellite point and point of the grid

Determination of the maximum θ to assess visibility conditions

Computation of the correspondent altitude to the maximum

θ that satisfies at minimum elevation angle requirements

The entire algorithm-like logic for the Lang approach that contains this computation is
presented in Appendix C.2 and it follows the theoretical description here above presented.
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discontinuous coverage

When performing a constellation selection process, there are certain requirements and
constraints that dominate while others have more of a fine tuning effect [3]. The more
important requirements are:

1. Service area coverage;

2. Spectrum sharing: as spectrum becomes scarce, multiple systems find that they must
develop means to co-exist in the same frequency band;

3. Capacity augmentation: to use the satellite diversity (multi-coverage) characteristics
of a constellation to keep the size and cost of each satellite reasonable;

4. Satellite failure mitigation: the constellation itself must provide some measure of
immunity to single satellite failures (e.g. double coverage would be one way to
mitigate it);

5. Service link maintenance: the system must dynamically maintain service links to
Earth-based customers;

6. Altitude considerations: generally altitude is determined from the coverage footprint
radius, the service area coverage requirements and coverage levels needed.

However, the most important is the service area coverage. If the requirements demands
full Earth coverage, the best suited constellation can be quite different from the solution
to regional coverage or coverage within a latitude band.

As far as the orbit design is concerned, researches have focused on the determination
of the most suitable configurations to guarantee appropriate performances of coverage
by a minimum number of satellites, as in the case of Walker constellations (see Section
2.2.1), which are based on the consideration of regular distribution of satellites and orbital
planes, or of Street Of Coverage constellation (see Section 2.2.3), involving polar, optimally
phased orbits.

While in Chapter 3 methods valid for continuous coverage only are described, this
chapter deals with methods suitable for discontinuous coverage computations.
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Indeed, many studies have been conducted about coverage and different methodologies have
been developed depending on the requirements and on the geometry of the constellation
considered.

4.1 Numerical brute force method
The brute force method is a straightforward purely numerical approach of solving a

problem that rely on sheer computer power; in the computation process, the algorithm
tries every possibility and does not involve some techniques to improve efficiency and to
reduce the computational time. For these reasons, the algorithm is reliable, it gives quite
accurate results and it could be used to compare and check the solutions obtained with
other, perhaps more complex, methods (e.g. analytical).

The brute force method developed by the author can deal with all kind of geometries
and satellite constellations, with non-symmetric or symmetric conditions, with circular
or elliptical orbits and even for the case of one single satellite. The central body could
be the Earth as well as another planet or Moon; in addition, effects caused by orbital
perturbations can be taken into account.

The approach relies on relative vector positions between satellite and location of interest
on the planet’s surface: the satellite’s orbit is propagated for a period of time and its
position is investigated at each time-step with respect to the correspondent site. Given
all the necessary parameters to describe a satellite constellation, its performance indexes
such the area covered on the planet’s surface, the level of coverage and the revisit time are
determined.
Therefore, the "brute force" is not an optimisation method, but it simply provides the
needed information for a given geometry.

The principle of work of the method is to take as inputs the position vectors of each
satellite of the constellation at any instant of time of the propagation period. Hence, it must
be first selected the time step and the total amount of time the algorithm shall investigate.
The time could be given in an absolute way, starting from t = 0 and propagating until
a selected t = tfinal or by using existing counts of time (some examples are listed in
Appendix A.1).
Moreover, as initial condition for the propagation, a random position on the orbit could
be considered. There exist different reference frames that could be used and each of them
could be chosen; anyway, it must be paid attention to be consistent throughout all the
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propagation and computations performed. Some examples are listed in Appendix A.2.
The diagram here reported summarises the most important steps performed by the
algorithm.

Selection of the propagation time and the time-step

Determination of the instantaneous position vectors

of the satellites and of the surface location of interest

Determination of the coverage area in order to check if the

current satellite is above the surface location of interest

and there is a visibility window or if there is a visibility gap

Determination of the total amount of time the

satellite is visible or not above the location

Determination of the total amount of time there are 2/3/4 etc.

satellites together visible above the location to assess the degree

of -fold coverage and of the total amount of time there are 0

satellites visible to assess the revisit time of the constellation

The central angle of Earth coverage, for the more general case, is determined by the
equation:

cos (2θ) =
rs/c · rsurf
rs/crsurf

(4.1)

where rs/c is the vector position of the satellite and rsurf is the vector position of the
location on the surface. Then the elevation angle ε is determined and compared with the
minimum acceptable angle εmin to achieve visibility conditions: if the resulting number
is higher or equal to the minimum threshold, then there are visibility conditions. This
approach can return the desired results quite fast and the computational time depends on
the propagation time and time-step chosen only.
The whole algorithm-like logic for the brute force method is presented in Appendix C.3.
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4.2 Geometrical approach for long

revisit times
Most traditional satellite constellation design methods are associated with a simple

zonal or global, continuous or discontinuous coverage. The geometric approach here pre-
sented is valid for discontinuous coverage of satellites in circular orbits; the key assumption
and the constraint imposed in order to apply this method is that the revisit time for
zonal coverage shall be more than one orbital period. The method is analytical, it is
valid for discontinuous coverage satellite constellations and it does not require a numerical
simulation for the constellation itself [50]. In addition, the following assumptions are
made: Earth is considered a round body, all satellites in a constellation will be at the
same altitude with the same number of satellites in each orbital plane and all orbit planes
in a constellation will have the same orbit inclination [50].

The method is based on two-dimensional maps of visibility properties for the satellite
constellation and coverage requirements, with space dimensions:

• Right ascension of the ascending node Ω (in the ECI frame) on the x axis;

• Time t or argument of latitude u on the y axis.

The boundary points of the region that is presented in such space are the correspondent
of the coverage circle of visibility conditions in longitude and latitude dimensions and have
been computed throughout the analytical formulation for coverage area determination
(see Section 2.1.1). The simplest case is the coverage of a point on the Earth’s surface
by a satellite. Figure 4.1 shows three examples of such maps for points with different
geographical latitudes λc of the site of interest on the Earth’s surface (65 deg, 0 deg and
30 deg). The longitude and latitude angles of the boundaries of the coverage region that
result for a value of the central angle of Earth coverage θ and inclination i of the satellite’s
orbit are here converted into Ω and u values. From a geometric point of view, they can
be convex or non-convex, simple or multiply connected. For computational purposes, the
coverage function is presented as a region of boundary points. It should be noted that in
contrast to the coverage circle size on Earth’s surface that can be appreciated in Figures
4.2, 4.3 and 4.4 for the three cases, the size and shape of the region also depend on the
point latitude and orbit inclination.
In particular, the circle on Figure 4.2 is associated to the simple connected convex region
of Figure 4.1, the circle on Figure 4.3 with the double connected region and the circle on
Figure 4.4 with the simple connected non-convex region.
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Figure 4.1: Region examples (h=1400 km, i=52 deg, ε=10 deg).

Figure 4.2: Coverage circle (170 deg, 65 deg),
simple convex.

Figure 4.3: Coverage circle (130 deg, 0 deg),
double connected.

Figure 4.4: Coverage circle (50 deg, 30 deg), simple non-convex.

Let f (Ω,u) be a coverage function which describes the requirements of the satellite
constellation; without loss of of generality, let suppose that all points f (Ω,u) ≥ 0 are
required values and their map in the space is an area. In the general case, it can be a
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multiply connected area. Because, for the following analysis, only shape and size of the
maps are important, the choice of Ω is arbitrary and so is the choice of the longitude; in fact,
usually the dependence on longitude for the determination of constellation performance is
small.

As previously stated, the geometry considered is the one described in Section 2.1.1
and the typical satellite coverage for an observer on the Earth is the one depicted in
Figure 2.1: the satellite is located at orbital altitude h and the projection of the footprint
onto the Earth’s surface defines a circle of coverage of an angle θ; the relation between
the coverage angle θ, the orbit altitude h and the elevation angle ε is given by Equa-
tion (5.5). Note that the coverage circle size is dependent only on the satellite orbit altitude.

Assuming that the orbit inclination i, altitude h and elevation angle ε are specified, the
visibility conditions for the satellite in the (Ω, time) space can be presented by a region of
boundary points and the satellite trajectory map in the space is near to a straight line
along the y axis. The trajectory is represented by the orange dashed line in Figure 4.5.

Figure 4.5: Satellite visibility maps (h=800 km, i=55 deg, ε=5 deg).

If the line is intersected by the region, then there is a visibility interval.
It must be highlighted that all the maps presented on Figures 4.1 and 4.5 are shown for
one satellite revolution; on the next revolution, the maps would have shifted to the right
by ∆φ1 = ωEarthTperiod (where ωEarth is the rotation rate of the Earth and Tperiod is the
orbital period) and so on for the next revolutions.
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For specified values of latitude of the coverage points λc, inclination i and coverage angle
θ there are two categories of regions. The first correspond to the visibility at ascending
and descending passes, for λc < i− θ (double region in figure 4.5); the second is a single
connected region, for i− θ ≤ λc ≤ i+ θ (single region in Figure 4.5).
For time intervals of the order of several orbital periods, a satellite trajectory in the
introduced two-dimensional space is near to a straight line parallel to the y axis. For
longer time intervals, a similar map can also be produced, but perhaps the regression of
the ascending node due to J2 effect should be considered. In this case, the straight line is
slightly inclined to the y axis, but the current analysis does not consider this latter option.
∆Ω presented in Figure 4.5 is the the visibility longitude range and it can be computed ana-
lytically using spherical trigonometry equations; the range is function of the point latitude
λc, orbit inclination angle i and the geocentric coverage angle θ. The boundary ascend-
ing nodes of the satellite passes are tangential to the coverage circle θ as shown in Figure 4.6.

Figure 4.6: Ascending node boundaries.

Moreover, ∆Ω is a function of the quantity related to shift due to Earth’s rotation
and boundary longitudes relative to a non rotating Earth ∆ϕ. The detailed computations
involved for the determination of ∆Ω are here reported. The formulations that bring to
the final ∆Ω range value have been developed by Ulybyshev [50], while the calculation of
the boundary points of the entire coverage region has been added by the author in order
to go deeper in the physical insight of the method and achieve more accurate results.
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The boundaries of coverage regions can be computed analytically using spherical trigonom-
etry equations, since it often affords better geometric insight than the more traditional
vector approach [11]. This approach allows fast and precise computations, avoiding the
rounding errors deriving from the numerical approaches and saving computational cost.
The longitude range is function of the point latitude λc, orbit inclination angle i and the
geocentric coverage angle θ and the boundary ascending nodes of the satellite passes are
tangential to the latter.

Geographic coordinates of the coverage region are often needed to graphically display
the region on maps. For a given center point (latitude λc and longitude φc) and angular
radius θ, the geographic coordinates of the boundary of the region can be computed
either from standard equations of spherical trigonometry or by vector equations. A simple
spherical trigonometry procedure, illustrated in Figure 4.6, is to parameterise on azimuth
Az by varying it in the range [0, 2π], about the center point, being careful to select a
triangle that has its apex at the nearest of the North or South Poles. The equations for
the geographic latitudes and longitudes, computed from spherical triangle with vertices
the Pole, C and S of Figure 4.6, are:

λi = sin (cos θ sinλc + sin θ cosλc cosAz)−1 (4.2)

φi = φc + tan

(
sin θ sinAz,

cos θ − sinλi sinλc
cosλc

)−1

(4.3)

The longitudes computed correspond to the satellite traces, which are tangential to
the coverage circle at points with a latitude of λc (see Figure 4.6).

The equations for 0 deg ≤ λc < 90 deg and i ≤ 90 deg are here reported, while for
other values of λc ≤ 0 deg and i > 90 deg, it is necessary to replace the signs accordingly.
For the latitudes λc < i− θ, there are two longitude ranges corresponding to the ascending
and descending passes (see Figure 4.6):

sinλN =
(|sinλc|+ sin θ)

cos θ
(4.4)

cosλN =

√
1− sin (λN)2 (4.5)

sinλS =
(|sinλc| − sin θ)

cos θ
(4.6)

cosλS =

√
1− sin (λS)2 (4.7)
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∆ϕN = cos

(
cos θ − sinλc sinλN

cosλc sinλN

)−1

(4.8)

∆ϕS = cos

(
cos θ − sinλc sinλS

cosλc sinλS

)−1

(4.9)

ϕN = sin

(
cosλc sinλN
sinλc cosλN

)−1

(4.10)

ϕS = sin

(
cosλc sinλS
sinλc cosλS

)−1

(4.11)

∆ϕ = ϕN + ∆ϕN − ϕS + ∆ϕS (4.12)

The boundary longitudes for the ascending pass are:

∆ϕAN = −(ϕN + ∆ϕN) (4.13)

∆ϕAS = −(ϕS + ∆ϕS) (4.14)

and for the descending pass:

∆ϕDN = −(π − ϕN −∆ϕN) (4.15)

∆ϕDS = −(π − ϕS + ∆ϕS) (4.16)

Arguments of latitude for the boundary points can be determined from the equations:

uAN = sin

(
sinλN
sin i

)−1

(4.17)

uAS = sin

(
sinλS
sin i

)−1

(4.18)

uDN = π − uAN (4.19)

uDS = π − uAS (4.20)

For the latitudes i− θ ≤ λc ≤ i+ θ, both longitude ranges are joined to a longitude
range:

∆ϕ = 2(∆ϕS − ϕS) + π (4.21)

The bounding longitudes are ∆ϕAS and ∆ϕDS from Equations (4.14) and (4.16) re-
spectively, and corresponding arguments of latitude uAS and uDS from Equations (4.18)
and (4.20).
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The procedure to determine other points belonging to the coverage circle and to draw
the coverage region in the (Ω,u) space is then nearly the same: once computed the central
angle of Earth coverage θ and known the central point (φC , λC) and the inclination angle
i, the angles (φi, λi) on the circle can be found through Equations (4.2) and (4.3) and the
correspondent Ω and u are:

ui = sin

(
sinλi
sin i

)−1

(4.22)

Ωi = φi − tan (cos i sinu, cosu)−1 (4.23)

for the ascending pass and

u∗i = π − u (4.24)

with the correspondent Ω for the descending pass.

After the computation of the boundary longitudes ∆ϕ relative to a non-rotating Earth
throughout the presented equations, additional shifts shall be considered due to Earth’s
rotation in order to determine the longitude range ∆Ω:

∆Ω = ∆ϕ− ωEarthTperiod
[uN(λc, i, θ)− uS(λc, i, θ)]

2π
(4.25)

where uN and uS are the argument of latitudes of the boundary points of Figure 4.6.

If the groundtrack shift of a single satellite ∆φ1 = ωEarthTperiod is less than the visibility
longitude range ∆Ω, then there are longitude ranges with visibility intervals at consecutive
revolutions.
For the satellite, the multirevolution map of the point visibility can be presented as a set
of thin regions (near to straight-line segments along the x axis) as presented in Figure 4.7.
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Figure 4.7: Sawtooth coverage belt (h=800 km, i=55 deg, ε=5 deg, λc=50 deg).

The regions are bounded by straight lines or envelopes with the same inclination angle
β that depends only on Earth’s rotation rate.
Suppose that ∆φ1 = ωEarthTperiod < ∆Ω; then, from a geometrical point of view, in the
two-dimensional space, the visibility properties can be presented as a coverage belt (see
Figure 4.7) with sawtooth boundaries and straight-line envelopes aligned at angle β to the
x axis. The angle is defined only by ωEarth as:

tan(β) =
1

ωEarth
(4.26)

The major property is that for all the points inside the coverage belt the revisit times
are near to the orbital period.
The representation of the coverage regions in Figure 4.7, as well as all of the following
maps in the (Ω, u) and (Ω, t) space, have been created by the author throughout the
determination of the boundary points of the region itself and by repetition of the procedure
for several orbital periods and a certain period of time (say: one day).

4.2.1 Revisit times for visibility of single satellite
In order to better explain the procedure for revisit time computation, the case of one

single satellite is first examined. The coverage belt with sawtooth boundaries is formed
by visibility intervals for a satellite at consecutive revolutions and the two-dimensional
space is divided into two parts, with the revisit time near to and more than one period,
respectively. Figure 4.8 shows the geometric parameters.
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Figure 4.8: Multirevolution map for visibility of single satellite (h=800 km, i=55 deg, ε=5 deg,
λc=50 deg).

The revisit times ∆tREV for the satellite are analytically computed as the sum of two
terms [50]:

1. The revisit time between straight-line envelopes of adjacent sawtooth coverage belts
∆tB;

2. The relative shift of the teeth in the belts δt.

As stated before, the coverage belts are very descriptive geometric images for the
analysis and computations. Their major property is that, for all of the points inside the
coverage belts, the revisit times are near to the period Tperiod [50]. In the following, only
the revisit times ∆tREV > Tperiod will be considered. For latitudes λc < i− θ, there are
double coverage belts, while for i− θ ≤ λc ≤ i+ θ there are single coverage belts.

For the following analysis, only ranges of visibility ∆Ω and gap ∆ΩREV are important
(see Figure 4.8) and a choice of the right ascension of the ascending node is arbitrary.

Single coverage belt
The simplest case of the visibility analysis corresponds to the latitude band of i− θ ≤

λc ≤ i+ θ for which there are single coverage belts, as the case of Figure 4.8. The revisit
time can be expressed as the sum of two terms:

∆tREV ≈ ∆tB + δt (4.27)
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The first term is defined by a longitude shift of the coverage belt:

∆tB = ∆ΩREV tan(β) = [2π −∆Ω(λc, i, θ)] tan(β) (4.28)

where ∆ΩREV is a longitude gap. The second term depends on a relative phase shift
between satellite positions in adjacent coverage belts:

Tperiod ≤ δt ≤ 2Tperiod (4.29)

Three typical cases for the phase shift are schematically depicted in Figures 4.9, 4.10
and 4.11.

Figure 4.9: δt ≈ T [50]. Figure 4.10: δt ≈ 2T [50]. Figure 4.11: T < δt < 2T [50].

The boundary arguments of latitude in both coverage belts are the same [50]. Then,
the longitude shift between boundary points in the coverage belts is (see Figure 4.8):

δΩ∗ = ωEarthTperiod
[uAN(λc, i, θ)− uAS(λc, i, θ)]

2π
(4.30)

where uAN and uAS are arguments of latitude of the boundary points from Equations
(4.17) and (4.18). If (∆ΩREV − δΩ∗) is a multiple of ∆φ1, then δt = Tperiod (see Figure
4.9). In the opposite case, there is a residue of division:

δΩ = (∆ΩREV − δΩ∗)−∆φ1

[
∆ΩREV − δΩ∗

∆φ1

]
(4.31)

where [o] is the integer part function. Then,

δt ≈ 2Tperiod −
(
δΩ

∆φ1

)
Tperiod (4.32)

In this approximate equation [50], the duration of the visibility intervals are neglected
because they are usually small values in comparison with ∆tREV .

85



Marta Padoan Master Thesis

Double coverage belt
A more complex case is double coverage belts for the latitude band of λc < i− θ. The

computation is similar to the preceding case using Equation (4.27) [50], but there are two
types of alternate gaps (see Figure 4.12).

Figure 4.12: Multirevolution map for visibility of single satellite (h=600 km, i=50 deg, ε=20
deg, λc=30 deg).

The first is the gap between adjacent coverage belts and the second gap is inside the
double coverage belt. The corresponding longitude ranges will be named the external
∆ΩREV and the inner ∆Ω1REV longitude gaps. For both cases, the first term ∆tB in
Equation (4.27) is computed using Equation (4.28) for ∆ΩREV or ∆Ω1REV , respectively.
The second term δt is also calculated based on Equations (4.30), (4.31) and (4.32) but, for
the inner gap, it is necessary to use the arguments of latitude of uDS and uAN [50].

An example of visibility longitude ranges and inner longitude gap versus latitudes
for coverage points along a meridian is presented in Figure 4.13. The picture has been
created by the author throughout the determination of the boundary points in order to
better understand the behaviour of the longitude range at varying latitudes. The filled
area corresponds to the points between straight-line envelopes of the coverage belts.
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Figure 4.13: Longitude ranges of coverage belts.

4.2.2 Revisit times for visibility of satellite constella-

tions
The analysis is limited to symmetric Walker-type constellations, with symmetric ar-

rangements of similarly inclined circular orbits at a common altitude. The standard
notation (T/P/F ) is used, with S = T

P
satellites evenly distributed in each plane [50].

The proposed coverage belts divide the two-dimensional space (Ω, u) (or equivalently
(Ω, t) into two parts with ∆tREV ≈ Tperiod and ∆tREV > Tperiod. For each specified satellite
constellation configuration (T/P/F ), there is a set of coverage belts. Then, for a satellite
constellation, the revisit time computation is a geometric problem for determination of
the relative shifts along the y axis for the nearest adjacent coverage belts [50].

Single coverage belts
The simplest case is a satellite constellation with one satellite at each plane for

discontinuous coverage for latitudes i − θ < λc < i + θ. Suppose that the phase shift
between satellites at adjacent planes is zero, that is, (T/P/F ) = (T/T/0). An example of
two-dimensional space for such constellation is presented in Figure 4.14.
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Figure 4.14: Map for visibility of (3/3/0) satellite constellation (h=500 km, i=50 deg, ε=45 deg,
λc=50 deg).

The maximum revisit time for such constellations can be computed, as for a single
satellite, based on Equation (4.27) [50]. The first term is the time between straight-line
envelopes of the nearest coverage belts, which are formed by adjacent satellites and it can
also be computed using the corresponding longitude gap:

∆tB = ∆ΩREV tan(β) =

(
2π

T
−∆Ω(λc, i, θ)

)
tan(β) (4.33)

It should be noted that the term ∆tB is independent form the phase shift between the
satellite positions in the orbital planes and defined only by the total number of satellites
T and

∆ΩREV =
2π

T
−∆Ω (4.34)

If ∆ΩREV is a multiple of ∆φ1, then the second term in Equation (4.27) is δt = Tperiod

(see Figure 4.9), in the opposite case, there is a residue of division:

δΩ = ∆ΩREV −∆φ1

[
∆ΩREV

∆φ1

]
(4.35)

where [o] is the integer part function [50]. Then,

δt = 2Tperiod −
(
δΩ

∆φ1

)
Tperiod (4.36)

For the satellite constellation with a non-zero phase shift F 6= 0, the in-plane phase
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shift of satellites is defined as:

∆λ =

(
2π

T

)
F (4.37)

and the value

∆Ω∗
REV = ∆ΩREV +

(
∆λ

2π

)
∆φ1 (4.38)

must be used in Equation (4.35) instead of ∆ΩREV .

Double non overlapping coverage belts
A more complex case is for the points with the latitudes λc < i− θ. The maps include

double coverage belts for each satellite [50] and an example is presented in Figure 4.15 for
double non-overlapping coverage belts.

Figure 4.15: Map for visibility of (3/3/0) satellite constellation (h=500 km, i=50 deg, ε=45 deg,
λc=45 deg).

For the case of:

∆Ω∗ = 2∆Ω∗
1 + ∆Ω1REV <

2π

T
(4.39)

there are two gap types [50]:

1. Between double coverage belts with an external longitude gap of ∆ΩREV ,

2. Inside each double coverage belt with an inner longitude gap of ∆Ω1REV
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The revisit times can be computed from Equations (4.27), (4.28), (4.32), (4.37) and
(4.38). The inner gap type corresponds to the zero phase shift and the revisit time for the
constellation is the maximum from the times [50].

Double overlapping coverage belts
Another case is the constellations with overlapping coverage belts, that is, one coverage

belt of a satellite is placed inside the inner longitude range ∆Ω∗ for another satellite [50];
an example is presented in Figures 4.16 and its zoomed view 4.17.

Figure 4.16: Map for visibility of (3/3/0) satel-
lite constellation (h=1100 km,
i=86 deg, ε=10 deg, λc=10 deg).

Figure 4.17: Map for visibility of (3/3/0) satel-
lite constellation (h=1100 km,
i=86 deg, ε=10 deg, λc=10 deg)
zoomed.

Here, as shown in the created coverage belts, there are also two gap types between
corresponding parts of the double coverage belts; as in the case of non-overlapping double
coverage belts, the revisit times can be computed from Equations (4.27), (4.28), (4.32),
(4.37) and (4.38); exceptions are related with δt from Equation (4.33). The phase shifts
∆λ depends on the combination of the adjacent coverage belts: for similar passes (i.e.
ascending passes Aj - Ak or descending passes Dj - Dk) Equation (4.34) must be used,
while for different passes (i.e. ascending and descending passes Aj - Dk or Dj - Ak) it is
[50]:

∆λ =

(
2π

T

)
F + |uDN(λc, i, θ)− uAN(λc, i, θ)| (4.40)

where uDN and uAN are the arguments of latitude of the boundary points from Equa-
tions (4.19) and (4.17) respectively.
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In the general case of more than one satellite per orbital plane, it must be used:

∆φ1 =
ωEarthTperiod

S
(4.41)

Where S ≥ 2 is the number of satellites per plane.
The boundaries of the second term of Equation (4.27) are:

Tperiod
S

≤ δt ≤ 2Tperiod
S

(4.42)

with Tperiod being the orbital period.

As presented in Figure 4.13 for the case of one single satellite, in Figure 4.18 the
diagram created for longitude ranges of the coverage belt envelopes for a constellation
made of 3 satellites is shown.

Figure 4.18: Longitude ranges of 3-satellite constellation.
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4.3 Geometrical approach for short

revisit times
The geometric approach here described considers both full and partial coverage of

specific regions of the Earth’s surface and is suitable for satellite constellations that allows
short revisit times (less than one orbital period). However, this method can also be applied
if continuous coverage is desired [51].

The key idea of the method is a two-dimensional space application for maps of the
satellite constellation and coverage requirements. As presented in Section 4.2, the space
dimensions are Ω and the argument of latitude u. The visibility requirements can be
presented as a region (coverage region or coverage area), while any satellite constellation
with a number of orbital planes and an equal number of satellites in each plane can be
presented as a uniform moving grid, where the satellites are the vertices of the grid. A
satellite trajectory in the introduced two-dimensional space for time intervals on the order
of several orbital periods is a straight line parallel to the y axis. An example of such
grids for Walker-type constellations is shown in Figure 4.19, that represents the Globalstar
constellation described in Section 2.4. For time intervals more than several orbital periods,
a similar map can also be produced, but the regression of the ascending node due to J2

effect should perhaps be considered. In this latter case, the lines are slightly inclined to
the y axis but as stated before, the current analysis does not take into account such effect.

Figure 4.19: Map of the Globalstar (48/8/1) constellation.
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As example of local coverage, consider full coverage of a geographical region by a
satellite. It implies that the region is completely within the instantaneous access area of
the satellite; this area represents the entire surface of the Earth that can be viewed for a
minimum elevation angle, at this time. Such cases can be called full region coverage (see
Figure 4.20). The next case is the partial region coverage, i.e. only a part of the region is
within the access area (see Figure 4.21) [51].

Figure 4.20: Geometry of full coverage [51]. Figure 4.21: Geometry of partial coverage [51].

Each region can be presented as a discrete set of inner and boundary points. For the
full region coverage, the coverage function f (Ω,u) is the intersection of the regions, as in
Figure 4.22, and for the partial region coverage, it is the union of the regions, as in Figure
4.23.

Figure 4.22: Intersection of the regions [51]. Figure 4.23: Union of the regions [51].

As for the method presented in the previous Section 4.2, the further optimisation
process is limited to symmetric Walker-type constellations, with the standard notation
(T/P/F ). In addition, this approach is based on the assumptions that the Earth is a
perfect round body, all satellites in a constellation are at the same altitude, with the same
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number of satellites in each orbit plane and all orbit planes in a constellation have the
same inclination. Furthermore, it is assumed that the orbit inclination i, altitude h and
minimum elevation angle ε are specified [51].

In order to better understand the geometry behind this method, the first case analysed
involves continuous coverage of a specific location, then this explanation is going to be
extended also to the case of discontinuous coverage.
Since the satellite constellation motion can be presented as a uniform moving grid, in
order to achieve continuous coverage, at any time at least one grid vertex must belong to
the region in the (Ω, u) space. The grid should also satisfy integer-value constraints for
the number of orbit planes and satellites per plane and the optimal configuration of the
satellite corresponds to the maximum sparse grid (i.e. minimum number of satellites). In
the case of discontinuous coverage, the region should be examined with a revisit time [51].
The values of Ω and u necessary to determine the boundaries of the coverage region are
given by the analytical Equations (4.23) and (4.22).

The dimensions that must be respected by the grid of the satellite constellation are
reported in Figure 4.24.

Figure 4.24: (12/3/2) Dimensions of the grid.
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It is assumed that f (Ω,u) map is a convex region; all of the grid cells are the same
parallelograms (see Figure 4.24) with the sides equal to:

• 2π
P

along the x axis;

• 2π T
P

= 2π
S

along the y axis.

The slope angle is ∆u in units of 2π
T
.

It follows that one grid cell only can be considered. The optimal constellation with the
minimum number of satellites corresponds to the maximum area parallelogram that can
be placed (or inscribed for the limit case) into the region, as shown in Figure 4.25.

Figure 4.25: Geometry of optimal grid.

For the slope angle, the following inequality must be satisfied [51]:

(k − 1)

(
2π

S

)
≤ ∆u = m

(
2π

T

)
≤ k

(
2π

S

)
(4.43)

where k and m are integer values. The phasing parameter is:

F =
k(2π

S
)−m(2π

T
)

2π
T

= kP −m (4.44)

An enumerative approach then follows: specify the maximum number of orbital
planes Pmax and satellites per plane Smax and a current optimal number of satellites
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T = Pmax ·Smax. For each boundary point of the region [xo, yo] construct all of the possible
parallelograms. Determine the minimum value of P as [51]:

P =

[
2π

(xmax − xmin)

]
+ 1 (4.45)

where [o] rounds toward minus infinity and xmax, xmin are extreme values of the region
in Figure 4.25. The potential values of Pmax ≥ P ≥ Pmin are examined in increasing order.
For a selected value of P , all of the possible numbers of satellites per orbital plane Smax ≥
S ≥ Smin and ∆u are considered. A corner point of the parallelogram coincides with a
boundary point of the region. If all other corner points with coordinates

- [xo + 2π
P

, yo - ∆u]

- [xo + 2π
P

, yo - ∆u + 2π
S
]

- [xo , yo + 2π
S
]

are inside of the region, then there exists an acceptable constellation because the region
is a convex hull. The Inpolygon function [52], used by the author, is available on the
Mathworks website. If the value of T is determined to be larger than a previous value of
Tmin computed for a previous boundary point, then the constellation can not be optimal
and is discarded. On the other hand, if the value of T is smaller than the current value of
Tmin, then the previous optimal constellation can not be minimal and is discarded.
For this solution type, the maximal multiplicity of coverage is quadruple. Allowable solu-
tion type is also an inscribed parallelogram with an angle of ∆u that is not divisible evenly
by 2π

T
. In this case, there is a set of constellations with an arbitrary phase parameter F ;

but for the last solution type, the maximum multiplicity of coverage can be less. As a solu-
tion rule, a distinction in the total number of satellites between these solution types is small.

In the case of discontinuous coverage, the polygon should be expanded along the y axis
at an angle of ωtREV , as shown in Figure 4.26, where tREV is the maximum revisit time
and ω the satellite’s mean motion [51].
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Figure 4.26: Parallelogram for discontinuous coverage.

As stated before, the algorithm is based on the determination of the boundary points
of the region, equivalent to the boundary of the coverage circle of visibility, and their
investigation in order to determine the optimal satellite configuration (i.e. maximum
sparse grid). The detailed algorithm-like logic for the method is presented in Appendix
C.4.
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5. Numerical results:
validation of the
proposed methods

Once any method of analysis has been developed, it is necessary to establish how well
that method actually performs in practice, which results it is capable to provide and how
accurate they are. This process, whereby the performance characteristics of the method
are established, is known as method validation.

5.1 Application and comparison of

methods for continuous coverage
This section presents an analysis onto all the presented methods in the previous chapters

that are suitable for continuous global or zonal coverage.

5.1.1 Beste and Adams and Rider analytical methods
The Beste [28] and Adams and Rider [24] methods, presented in Section 3.1 and 3.2

respectively, are purely analytical: they take as inputs some variables or constraints and
give as outputs the optimal constellation configuration. The parameters required are
reported in Table 5.1; both approaches are suitable for Street Of Coverage geometries,
with a non-symmetric distribution of planes and satellites in polar orbits.

Table 5.1: Beste versus Adams and Rider comparison.

Inputs Outputs

Beste h or θ, ε, desired level
of coverage, S T , P

Adams and
Rider

h or θ, ε, desired level
of coverage S, T , P

It must be highlighted that, to achieve the desired configuration, the methods must be
applied by varying the input values each time, until they are properly tuned and the final
result has been reached.
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If the requirement is to achieve single coverage of the entire Earth, Street Of Coverage
satellite constellations have been determined with different combinations of parameters.
By means of the Beste method, some of the results obtained by considering a wide range
of combinations of S and h/θ are reported in Table 5.2, with S varying from 3 to 10.

Table 5.2: Beste: requirements for single coverage of the entire Earth (ε=10 deg).

θ [deg] h [km] S P T PSΓ
4π

66.7 20925 3 2 6 1.81
57.6 10105 4 2 8 1.86
42.3 3893 5 3 15 1.95
38.7 3139 6 3 18 1.97
30.8 1919 7 4 28 1.97
28.9 1693 8 4 32 1.99
24.2 1216 9 5 45 1.98
23.0 1111 10 5 50 1.99

By defining Γ as the solid angle corresponding to the circle θ given by Γ = 2π(1−cos (θ)),
the last column of Table 5.2 gives the ratio of the total solid angle covered by all satellites
to 4π steradians. Note that in all cases this ratio is nearly equal to 2; the implication
is that the coverage averaged over the entire sphere is double. The result, which holds
for ratios S

P
in the approximate range of 1.3 to 2.2, leads to the formulation presented

in Section 3.1 for specifying the relationship between the number of satellites and their
orbital configurations and coverage requirements TBeste−1fold of Equation (3.5). The same
results have been obtained also with the Adams and Rider method (see Table 5.3), but
this time the number of satellites per plane S has become an output.

Table 5.3: Adams and Rider: requirements for single coverage of the entire Earth (ε=10 deg).

θ [deg] h [km] S P T PSΓ
4π

66.7 20925 3 2 6 1.81
57.6 10105 4 2 8 1.86
42.3 3893 5 3 15 1.95
38.7 3139 6 3 18 1.97
30.8 1919 7 4 28 1.97
28.9 1693 8 4 32 1.99
24.2 1216 9 5 45 1.98
23.0 1111 10 5 50 1.99

The same approach could be used even for multiple coverage of the whole Earth as
well as for coverage beyond a specified latitude.
Several results for coverage of polar regions extending to latitude λ = 30 deg are here
reported by means of the Beste (see Table 5.4) and Adams and Rider (see Table 5.5)
methods.
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Table 5.4: Beste: requirements for single coverage of polar regions extending to λ=30 deg (ε=10
deg).

θ [deg] h [km] S P T PSΓ
4π

64.1 16549 3 2 6 1.69
53.4 7650 4 2 8 1.62
48.1 5508 5 2 10 1.66
35.8 2632 6 3 18 1.70
33.3 2253 7 3 21 1.72
26.8 1466 8 4 32 1.72
25.3 1318 9 4 36 1.73

Table 5.5: Adams and Rider: requirements for single coverage of polar regions extending to λ=30
deg (ε=10 deg).

θ [deg] h [km] S P T PSΓ
4π

64.1 16549 3 2 6 1.69
53.4 7650 4 2 8 1.62
48.1 5508 5 2 10 1.66
35.8 2632 6 3 18 1.70
33.3 2253 6 4 24 1.97
26.8 1466 8 4 32 1.72
25.5 1318 8 5 40 1.92

As it can be noted, the results are nearly the same; some small discrepancies are caused
by the choice of approximation to an integer value for the S, P and T in the computations.
In fact, the parameter S is given at the beginning as an integer in the Beste approach,
then T is determined through the aforementioned Equation (3.5) and P = TBeste

S
. Once

the two values have been found, the second is rounded toward the nearest integer and the
final T is determined with the approximated P .
On the other hand, the Adams and Rider method provides as outputs all S, P and T ,
so common sense and reasoning led to the decision to round both S and P toward the
nearest integer and to determine T = P · S consequently. This decision appeared to be
the most suitable in order to do not prefer always a higher number of satellites per plane
and lower number of planes or vice-versa. However, by looking at the fractional part of
the resulting values, a different choice could be made.

Lastly, the case of polar satellite constellations for triple coverage is analysed. A direct
comparison can be performed only for this requirement, since Beste studied exclusively
such condition for multiple coverage, while the procedure of Adams and Rider is capable
to provide results for generic n-fold coverage.
Results achieved by means of the Beste method are reported in Table 5.6.
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Table 5.6: Beste: requirements for triple coverage of the entire Earth (ε=10 deg).

θ [deg] h [km] S P T PSΓ
4π

70.3 30901 5 3 15 4.97
63.9 16272 6 3 18 5.04
61.1 13013 7 3 21 5.43
48.3 5575 8 4 32 5.36
41.1 3624 9 5 45 5.54
35.8 2632 10 6 60 5.67

With the requirement of triple coverage, the ratio of the total solid angle of coverage
of all satellites to 4π steradians remains close to 5.5; in other words, a point is in view of
5.5 satellites on the average when this average is taken over the entire Earth.

The application of Adams and Rider method, with j=3, k=1 and so n=3 gives the
configurations listed in Table 5.7.

Table 5.7: Adams and Rider: requirements for triple coverage of the entire Earth (ε= 10 deg).

θ [deg] h [km] S P T PSΓ
4π

70.3 30901 8 2 16 5.97
63.9 16272 9 2 18 5.60
61.1 13013 10 2 20 5.17
48.3 5575 13 2 26 4.35
41.1 3624 15 3 45 5.54
35.8 2632 17 4 68 4.82

Again, there exist discrepancies in the results, this time more evident mainly because
of the triple coverage requirement: indeed, the choice to have j multiple coverage factor in
the same orbital plane equal to 1 and k multiple coverage factor in different orbital planes
equal to 3 is the major cause, since it changes the obtained S and P accordingly to the
equations:

S =
2√
3
j
π

θ
(5.1)

P =
2

3
k
π

θ
(5.2)

Anyway, this decision has revealed to be the more suitable, since j=3 and k=1 would
have required to place satellites in a lot of different orbital planes, less convenient considered
that launching into polar orbits is quite cost demanding: in fact, since launch vehicle
performance is usually dependent upon both orbital altitude and inclination, it may be
usually desirable to reduce orbital inclination so as to achieve a higher altitude orbit with
a specified launched vehicle and fixed satellite weight [48]. Instead, if only the results for
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the total number of satellites T given by equations (5.3) and (5.4) would have been taken
into account (by selecting directly n=3 ), the numbers would have been nearly the same,
as reported in Table 5.8.

TBeste−3fold,λ ≈
11 cosλ

1− cos θ
(5.3)

TA&R ≈
4
√

3

9
n
(π
θ

)2

(5.4)

Table 5.8: Beste versus Adams and Rider triple coverage comparison.

θ [deg] TBeste−3fold,λ TA&R

70.3 16.59 15.14
63.9 19.64 18.32
61.1 21.29 20.04
48.3 32.86 32.07
41.1 44.64 44.30
35.8 58.22 58.38

Two interesting applications examples of these two analytical methods are represented
by the existing near-polar constellations:

• Iridium (described in Section 2.4): the Adams and Rider method for single world-
wide visibility with altitude h=780 km and ε=10 deg gives an optimal configuration
made of 66 satellites, 11 in each of the 6 orbital planes, that are exactly the Iridium
characteristics;

• Teledesic concept (presented in Section 2.4): the Beste approach applied for single
visibility at altitude h=700 km and ε=28 deg gives a total number of satellites
T=288, divided in the P=12 orbital planes.

To better understand the general features and the major differences between the two
analysed approaches, the total number of satellites T required has been plotted in function
of a varying altitude, both for single and triple whole Earth coverage (the trend would
have been the same even for coverage beyond a specified latitude).
For h spacing from 500 km until 50000 km and single coverage requirement, Figure 5.1
and its zoomed view on Figure 5.2 show the trend.
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Figure 5.1: T versus h single coverage.
Figure 5.2: T versus h single coverage zoomed.

As it can be noted, the obtained numbers are nearly identical; however, the Adams
and Rider method gives a slightly lower number of T satellites required to achieve single
coverage of the entire Earth and this difference increases as far as altitude values increase,
becoming quite evident starting at h=1000 km yet.
By looking now at triple coverage requirement, Figures 5.3 and 5.4 (zoomed view) show
the results.

Figure 5.3: T versus h triple coverage.
Figure 5.4: T versus h triple coverage zoomed.

Here, on the contrary, Adams and Rider provides a higher number of T for low altitudes,
while starting from h ≈3000 km, the trend reverses and Adams and Rider requires less
satellites than Beste.

Summarising, both the methods can be used for the design of SOC satellite constella-
tions, but it must be kept in mind that the Beste method [28] requires an additional input
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parameter (the number of satellites per plane S), that shall be guessed at the beginning of
the procedure. In addition, the charts guide toward the decision of adopting the Adams
and Rider method if single whole Earth coverage is required (see Figures 5.1 and 5.2) or
for triple whole Earth coverage at altitudes higher than 3000 km (see Figures 5.3 and 5.4),
and the Beste method if the objective is to achieve triple whole Earth coverage at lower
altitudes (see Figures 5.3 and 5.4).

5.1.2 Walker and Lang numerical methods
The Walker circumcircle method, presented in Section 3.3, is validated first, by apply-

ing the algorithm to constellations characterised by circular, common-period orbits all
having the same inclination and uniformly distributed in a right ascension angle, so with
symmetric pattern.

To determine an optimised constellation for world-wide coverage, this approach is
based on a trial-and-error process: the algorithm takes as inputs the analysed constellation
in terms of (T/P/F ) and i, the altitude h and the minimum acceptable elevation angle ε.
The value of the largest possible great circle range θ is used as performance index, so, for
a selected constellation, once chosen a set of common-altitude orbits that guarantee a
minimum elevation angle sufficiently high, the goal is to minimise the maximum value of
θ; the best result obtained represents the optimal satellite constellation configuration.

An exhaustive search has been conducted to find the best single-visibility constellation
for T from 5 to 15 satellites with the correspondent number of planes P and phasing
parameter F . The chosen total period of propagation corresponds to one orbital period,
with a time step of 10 seconds. Table 5.9 shows the different combinations of (T/P/F )

with orbit inclinations i and altitudes h which produce the smallest θMAX , compared with
the computed θ through Equation (5.5) for a minimum elevation angle ε=10 deg. The
CPU time is also reported in the last column (1).

(1)Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz

104



Chapter 5. Numerical results

Table 5.9: Best single visibility constellations with ε=10 deg.

T P F h [km] i [deg] θ [deg] θMAX [deg] CPU time [s]
5 5 1 26992 43.66 69.15 62.22 46.44
6 6 4 20371 53.13 66.42 55.77 100.06
7 7 5 12220 55.69 60.26 49.27 126.17
8 8 6 9388 61.86 56.52 43.85 206.35
9 9 7 8381 70.54 54.81 36.92 321.01
10 10 7 6799 47.93 51.53 43.42 462.53
11 11 4 5345 53.79 47.61 37.23 613.46
12 3 1 5440 50.73 47.90 39.70 687.90
13 13 5 4248 58.44 43.76 33.58 1153.57
14 7 11 3814 53.98 41.96 31.85 1224.60
15 3 1 3852 53.51 42.13 36.00 1830.12

To find the θMAX , the satellite positions are computed at small time intervals; at
each time interval, all combinations of three satellites are examined and the radius of
the spherical circle which contains them is determined. The largest circumcircle over all
time intervals which does not include another satellite is equal to the size of the central
angle of coverage that is necessary to achieve continuous global coverage. To optimise the
constellation, satellite parameters such as inclination are varied in order to minimise the
required central angle of coverage; once selected altitude and minimum elevation angle,
the value of θ is determined and in order to have acceptable conditions must be θMAX < θ.
The accuracy of this method depends on the size of the time steps; additionally, as the
number of satellites T increases, the number of combinations of three satellites at each time
step T×(T−1)×(T−2)

3!
increases dramatically. For example, a (5/5/1) constellation involves

a search among 358’092 cases to be investigated and a (15/3/1) constellation requires
2’576’256 cases over the entire period of propagation.
For these reasons, the circumcircle method is computationally demanding in terms of CPU
time for constellations containing large numbers of satellites and this must be added to
the need of a trial-and-error process in which both altitude h and inclination i must be
guessed and varied in order to minimise θMAX .

For two-fold coverage, the largest circumcircle which includes one satellite is sought,
and so on for multiple folds of coverage. What stated for long CPU times is always valid.

By moving now to the Lang method, the algorithm allows the optimisation of non-polar,
symmetric constellations of circular orbit satellites for continuous global coverage. Such
approach can deal with constellations of as many as 100 or more satellites providing single
through four-fold coverage. The Lang method came historically later than the Walker
method and, mainly because it relies in some simplifying assumptions described in Section
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3.4, it is much faster in terms of computational time.

The constellation optimisation problem is uncoupled from altitude and elevation angle
considerations, by using the coverage circle θ as the primary independent variable. For
constellations of T circular orbit satellites, the goal is to find the arrangement which
requires the smallest value of θ and still achieves continuous global coverage.
T satellites are propagated in time over an Earth containing a set of test points; the
smallest value of θ is then determined which ensures that all test points are visible to at
least n satellites (where n is the desired multiplicity of coverage) for all times.

In order to determine an optimised constellation for world-wide coverage, this approach
is based on a trial-and-error process: the algorithm takes as inputs the analysed constella-
tion in terms of (T/P/F ) and i and the minimum acceptable elevation angle ε.
The value of the great circle range θ is used as performance index, so, for a selected
constellation and once chosen a certain inclination, the goal is to find the lowest required
value of θ that allows the lowest operating altitude (conversely, it would also have been
possible to fix a certain altitude and to consequently find the maximum operating limits
in terms of ε).

With respect to the Walker method, that requires a search both in terms of optimal
inclination i and altitude h, Lang involves a trial-and-error phase in terms of inclination
only: the optimised altitude becomes an output of the algorithm.

For a number of cases between 30 and 100 satellites, the computer program was run to
find the most efficient arrangements in terms of (T/P/F ) and i ; for each value of T the
best constellations (i.e. lowest θ) are summarized for single coverage in Table 5.10 .
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Table 5.10: Best single visibility constellations with ε=0 deg.

T P F i [deg] θ [deg] h [km] CPU time [s]
21 7 3 61.3 36.29 1535 9.22
22 22 6 58.4 35.18 1426 9.58
23 23 14 58.8 34.58 1369 8.77
24 6 1 58.4 35.44 1451 9.05
25 25 7 61.2 34.15 1329 9.44
26 26 16 59.7 33.03 1230 8.52
27 9 5 60.0 32.56 1190 9.26
28 7 2 59.1 32.89 1217 9.27
29 29 25 75.1 32.12 1153 9.41
30 10 6 60.7 31.45 1099 8.46
40 20 15 73.4 27.65 822 9.43
50 25 20 72.9 24.63 638 9.52
60 20 14 68.5 22.28 515 8.46
70 70 64 80.3 20.96 452 43.10
80 40 33 72.5 18.60 352 45.91
90 45 38 74.1 18.14 334 43.44
100 50 43 74.6 16.82 285 43.28

As it can be noted from Table 5.10, in general the larger is the value of θ, the lower is
the optimal inclination.
In addition, the computational time does not increase as the number of satellites T
increases: this is due to the fact that CPU time directly depends on the dimension of the
grid of points built on the planet surface (and so on the number of test points contained),
that is strictly related to the number of repeated groundtracks of a particular constellation
and on its symmetry properties; two examples can be observed in Figures 5.5 and 5.6.

• Figure 5.5 represents the (60/20/14) constellation with i=68.5 deg; the number of
independent Groundtracks is 60 and so the grid scans 3 deg in longitude and 90 deg
in latitude for global coverage. As consequence, the number of test points, with a
spacing of 1 deg, is equal to 270.

• Figure 5.6 represents the (90/45/38) constellation with i=74.1 deg; this time, the
number of independent groundtracks is 18 and so the grid scans 10 deg in longitude
and 90 deg in latitude for global coverage. As consequence, the number of test points
is equal to 900.
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Figure 5.5: "8-shaped" groundtrack for (60/20/14).

Figure 5.6: "8-shaped" groundtrack for (90/45/38).

Indeed, by looking at the last column of Table 5.10, the computational time increases
considerably from the case (60/20/14) to (90/45/38) because of the increasing number of
satellites to be investigated, but mainly because of the dimensions of the grid of test points.

Two interesting examples are given by the existing Galileo and Globalstar constellations
described in Section 2.4:

• Galileo is a (24/3/1), i=56 deg constellation deployed to achieve continuous global
coverage of the Earth; indeed, the application of the Lang method proved that such
configuration is optimal at an altitude of 23222 km, where the satellites are really
placed; moreover, the number of independent "8-shaped" groundtracks is 8, with 90
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deg in latitude and 22.5 deg in longitude as dimensions of the grid of test points.
The "8-shaped" groundtrack and the respective grid are shown in Figure 5.7.

Figure 5.7: Galileo "8-shaped" groundtrack.

• Globalstar is a (48/8/1), i=52 deg constellation intended to provide continuous
coverage between -70 deg and +70 deg latitude and not all around the globe: the
resulting optimal altitude with Lang approach is 1414 km (as its actual value), but
this time the dimensions of the grid of test points are 70 deg in latitude and 3.75
deg in longitude, with 48 independent groundtracks. The "8-shaped" groundtrack
and the respective grid are shown in Figure 5.8.

Figure 5.8: Globalstar "8-shaped" groundtrack.
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From all the previous considerations, it could be said that the Lang method [48] is
more performant and precise than the Walker circulcircle approach [27]: first of all, the
computational time is substantially reduced, second, the Lang’s method requires as inputs
the (T/P/F ), i and ε, while Walker circumcircle method needs also the value of altitude
h, hence an additional parameter that must be varied and tuned in order to find the
optimal configuration. In fact, in Lang theory the altitude is determined as output and it
automatically fits the other parameters.

A significant example for direct comparison of the two approaches could be provided
by the GPS constellation presented in Section 2.4, with (24/6/2), i=55 deg, h=20200 km.
Table 5.11 shows the more relevant results:

Table 5.11: Walker versus Lang comparison for GPS (ε=42 deg).

θ [deg]
obtained h [km] CPU time [s]

Lang 37.68 20196 53.40
Walker 35.67 20200 50’163.87

It is evident the large difference in computational time between the two methods: the
Lang approach spent less than a minute to find the result, while Walker needed more
than 13 hours to give the outputs. Indeed, the relatively high number of satellites T is
responsible of such CPU time, however an important role is played also by the orbital
period: since the altitude h is quite high, the period is long (equal to 11.98 hours) and
so the number of instants of time to be investigated during the propagation increases
considerably.
It must be highlighted that the value of altitude obtained with the Lang method is an
output, that demonstrates how the selected altitude for the GPS constellation is the
optimal one; on the other hand, this number is given as input to the Walker algorithm,
assuming the optimality of the geometry is known yet.

A three dimensional representation of the GPS constellation is given in Figure 5.9 and
the initial values of right ascension and mean anomaly for all satellites are shown in Figure
5.10. Instead, a direct comparison between the actual groundtrack and the "8-shaped"
groundtrack used in the Lang method is possible by looking at Figures 5.11 and 5.12.
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Figure 5.9: GPS 3 dimensional representation. Figure 5.10: GPS Ω versus M .

Figure 5.11: GPS groundtrack.

Figure 5.12: GPS "8-shaped" groundtrack.
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In both cases, the yellow stars representing the initial positions of the sub-satellite
points occupy the same positions: in Figure 5.11 they are the initial positions of all
satellites of the constellation, while in Figure 5.12 they represent all the reference positions
occupied from the first satellite propagated over one revolution. This is the proof of the
consistency on the assumptions made by Lang, described in detail in Section 3.4.

5.1.3 Polar non-symmetric versus inclined symmetric

constellations
The Beste [28] and Adams and Rider [24] methods and the Walker [27] and Lang

[48] methods are suitable for determining continuous global or zonal coverage of different
constellation geometries: polar non-symmetric and inclined symmetric respectively. A
direct comparison between these two classes is hereafter reported for continuous global
coverage, by analysing the number of satellites T required with varying altitude. The
Adams and Rider method and the Lang approach have been used for this analysis, since
they have turned out to be more performant and accurate.

Figures 5.13 and 5.14 show the results obtained with h varying in the range between
300 km and 1100 km.

Figure 5.13: Polar non-symmetric versus in-
clined symmetric constellations.

Figure 5.14: Polar non-symmetric versus in-
clined symmetric constellations
zoomed.
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The global trend is very similar and in many cases non-polar constellations outper-
formed similarly sized polar constellations. However, from Figure 5.14 it can be observed
that for single continuous global coverage with more than 20 satellites the polar constel-
lations and the Adams and Rider method are likewise more efficient; instead, with 20
or fewer satellites, the non-polar constellations determined throughout the Lang method
are equal and sometimes more efficient than an equal number of polar satellites. The
list containing the major distinctions that bring to the choice of one between the two
configurations is written in Section 2.2.4.

Nevertheless, there are differences between the coverage of the polar and non-polar
constellations which are not evident in Figure 5.13: polar constellations always provide
the higher coverage in concentric rings about the poles, while non-polar constellations
usually offer the higher coverage in the mid to upper latitudes near the inclination of the
orbits and often, it is in these highly populated mid latitude regions of the Earth which
the greater coverage is desired and so this could be a factor in favor of the non-polar
constellations. A second factor, that shall always be kept in mind, is the difficulty to direct
launch into polar orbits, that means a higher amount of propellant needed with respect to
the quantity needed to populate lower inclination orbits.

5.2 Application and comparison of

methods for discontinuous

coverage
This section presents the results obtained through application of all the methods

suitable for discontinuous local coverage, hence capable of determining revisit time metrics
for different satellite orbits and constellations.

5.2.1 Single satellite
As first step in this analysis, the case of one satellite only is considered: the goal is

to determine the amount of time this satellite is visible above a specified location and
consequently what is the gap time.
In order to perform this study, the geometrical approach developed by Ulybyshev [50] and
described in Section 4.2 is used and then compared with the application of the brute force
method presented in Section 4.1.
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The geometrical approach, which is purely analytical, is valid for satellites in circular
orbits and it is assumed that the altitude h, inclination i and minimum elevation angle
ε are known. The approach has the attraction of a uniform analytical computation of
the revisit times for a single satellite and constellations as the sum of two terms; another
attractive property is that the method is very suitable for mass computations, including
direct optimisation or parametric study of discontinuous coverage satellite constellations.

A relevant study case is given by the design of satellites in LEO orbits, suitable for
communications rather than remote sensing services. The orbit altitude has a great
influence on the mission requirements and the satellite performance. Due to this fact,
selecting a practical range of altitudes at preliminary stages of the design is important in
order to obtain meaningful trade-off studies [53]. The orbits with altitudes below 1000
km are considered as LEO; this upper limit is selected based on the great amount of
the Van Allen radiation exposing on the satellite in higher altitudes. On the other hand,
at the lower end of the altitude range atmospheric drag is the parameter which plays
an important role: for orbital altitudes lower than 500 km the satellite can be affected
seriously by atmospheric drag. This drag force results to slow decrement of the satellite
altitude and has a negative effect on mission performance. Due to these facts, the range of
altitude between 500-1000 km is selected for LEO orbit design. In addition, this range of
altitudes is inside the performance margin of the majority of commercial launch vehicles.
After selecting an appropriate range of altitudes, the value of inclination i=98 deg is
chosen, since it resembles the value of inclination for the Sun-synchronous orbit (SSO),
that could be a good practical example (many satellites, especially the ones for Earth
observation, are placed in SSO); in addition, the value ε=10 deg is used, as acceptable
value for minimum elevation angle.
The reference location on the Earth surface is assumed to be one of the four ground
stations of the Estrack core network for tracking satellites or launchers near Earth (Korou
in French Guiana, Redu in Belgium, Santa Maria in Portugal and Kiruna in Sweden) [54].
The Redu Ground Station, in Belgium, located at 50 deg North latitude and 5 deg East
longitude, is chosen for the present analysis.

The coverage circle of visibility above the ground station for h=1000 km is presented
in Figure 5.15 (the central point which is used for λc is the station itself); for decreasing
altitude, the size of the circle decreases as well but the shape remains the same.
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Figure 5.15: Redu coverage circle (ε=10 deg).

For altitude values that vary from h=1000 km to h=500 km, the correspondent revisit
times are reported in Table 5.12.

Table 5.12: Revisit times for one satellite in circular orbit with i=98 deg and ε=10 deg (geomet-
rical method).

h [km] Revisit time [hr]
1000 12.30
900 12.05
800 11.80
700 11.55
600 12.91
500 12.63

The correspondent regions in the two-dimensional space (Ω,t) are double connected,
since the latitude of Redu λc is less than (i -θ).
The coverage belt for the case at h=1000 km is shown in Figure 5.16, but the plot would
have be the same shape even for the other altitude values.
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Figure 5.16: Coverage belt for one satellite at h=1000 km.

The same orbital parameters and ground site of interest have been used as inputs for
the brute force algorithm, in order to compare the results and check the accuracy. The
total propagation time is one day (24 hours), with a 1 second time-step. Table 5.13 shows
the results.

Table 5.13: Revisit times for one satellite in circular orbit with i=98 deg and ε=10 deg (brute
force).

h [km] Revisit time [hr] Visibility interval [hr]
1000 11.54 0.17
900 11.80 0.16
800 12.06 0.15
700 10.67 0.13
600 10.95 0.11
500 11.24 0.09

The brute force method provides also the time spent by the satellite above the minimum
elevation angle threshold; the visibility time decreases as altitude decreases, since also the
size of the coverage circle diminishes with constant ε.
Instead, the maximum revisit times obtained in both cases are quite similar and they are
in agreement with each other; moreover, for the case of one only satellite, the CPU time
spent by the Brute Force method is always really low (of the order of 1-2 seconds) and so
the time-saving of the analytical method is not relevant for this context.
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5.2.2 Satellite constellations for long revisit times
Both the methods developed by Ulybyshev [50], [51] are applicable to satellite constel-

lations; however, the approaches are quite different: the geometrical and purely analytical
method presented in section 4.2 is suitable only for constellations with revisit times of
more than one orbital period (hence for constellations with a small number of satellites
T ), while the approach described in section 4.3 is valid for all constellations that have
satellites in circular orbits and symmetric arrangement and is capable to analyse both
continuous and discontinuous coverage cases.
In addition, this last method takes as inputs the desired performance and gives as outputs
the optimal satellite constellation configuration in terms of (T/P/F ), exactly the opposite
approach faced in the method for long revisit times and in the brute force algorithm.

As first validation example, a three-satellite constellation for discontinuous coverage is
used: it is a (3/3/0) constellation with h=1100 km, i=86 deg and ε=10 deg ; the approach
for long revisit times can therefore be used. The results for the maximum revisit time are
presented in Table 5.14 for different latitudes investigated for both the geometrical and
brute force methods.

Table 5.14: Revisit times for (3/3/0) with i=86 deg and ε=10 deg.

Latitude [deg] Rev time [hr] - geometrical Rev time [hr] - brute force
0 4.48 3.90
10 4.37 3.90
20 4.26 4.68
30 4.16 3.89
40 4.05 3.32
50 3.93 3.29
60 5.41 5.71

Since the latitudes λc are always less than (i -θ), the polygons are double. The case
(3/3/0), h=1100 km, i=86 deg, λc=0 deg is represented in Figure 5.17, where it is possible
to see the maximum revisit time occurs between the descending pass of one satellite and
the ascending pass of another above the latitude of interest.

The obtained results with the two different methods are quite in agreement, with
discrepancies of the order of some minutes probably because of approximations and
rounding errors.
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Figure 5.17: Coverage belt for (3/3/0), λc=0 deg.

The second example consists in a three satellite constellation for a zonal coverage
(3/3/0), h=600 km, i=50 deg and ε=20 deg, with varying latitude λc; again, geometrical
and brute force approaches are compared and the results are listed in Table 5.15.

Table 5.15: Revisit times for (3/3/0) with i=50 deg and ε=20 deg.

Latitude [deg] Rev time [hr] - geometrical Rev time [hr] - brute force
0 5.71 4.77
10 7.20 7.78
20 7.09 7.70
30 8.16 7.51
40 3.63 2.36
50 3.49 2.96
60 8.12 7.99

There are some differences in the revisit times; a possible explanation could be the
dependency of the brute force method from the longitude of the site (the reference point
on the planet’s surface needs to be specified both in latitude and longitude): this implies
slightly different results when varying the longitude and leaving the latitude unchanged.
On the other hand, the geometrical method is unrelated from longitude and gives the
same result independently from the value assumed.

This second study-case deals with double as well as single coverage belts, since both the
situations of i -θ<λc<i+θ and λc<i -θ occur; the transition from double to single coverage
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belt for increasing λc is shown in Figures 5.18 for λc=10 deg, 5.19 for λc=20 deg and 5.20
for λc=50 deg.

Figure 5.18: Coverage belts for λc=10 deg. Figure 5.19: Coverage belts for λc=20 deg.

Figure 5.20: Coverage belt for λc=50 deg.

Because this method is suitable for revisit times of more than one orbital period only
(otherwise the geometrical statements are not valid anymore), the constellations that could
be studied involve a small number of satellites T , with maximum 1 or 2 satellites per plane
S.
Results for CPU time comparison between the method and the Brute Force approach
are presented in Table 5.16 for a (4/4/3), i=73.3 deg constellation at h=500 km. The
minimum elevation angle is ε=20 deg and λc is set to be 50 deg. Note that the value of
inclination is optimised for the minimum revisit time.
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Table 5.16: Revisit times for (4/4/3) with i=73.3 deg and ε=20 deg (λc=50 deg).

Rev time [hr] CPU time [s]
Geometrical 5.08 0.045
Brute force 5.63 2.729

The resulting CPU time is, in both cases, extremely low: this is due to the small
number of satellites that must be investigated. However, it can as well be noted how the
brute force method is sensible to the increasing number of satellites T : even with only 4
satellites, the computational time is about 60 times higher with respect to the geometrical
approach.

To understand why this method is not valid for short revisit times neither continuous
view, a (12/3/2) constellation at 1400 km altitude, with 52 deg inclination and a minimum
elevation angle of 10 deg is considered, for a latitude λc=50 deg. This constellation allows
for a revisit time that is quite shorter than its orbital period, which is about 1.9 hours.
Figure 5.21 shows the two-dimensional map of visibility.

Figure 5.21: Coverage belt for (12/3/2) constellation.

As it can be observed, when the number of satellites increases (or when the altitude
increases as well) with respect to the previous cases analysed, the coverage belts are no
more distinguishable: they mix each other and a clear geometry does not exist anymore.
Moreover, the major property and condition of the coverage belts presented before, namely
that for all the points inside the coverage belt the revisit times are near to the orbital
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period, is not satisfied anymore. In this case, it is not possible to compute the longitude
range ∆Ω neither ∆ΩREV and so the values for ∆tB or ∆t for the revisit time ∆tREV

computation.

5.2.3 Satellite constellations for short revisit times
The logic of the geometric approach valid for short revisit times is the opposite of

both the aforementioned geometrical method and brute force algorithm: it determines the
optimal configuration of satellite constellations starting from visibility requirements, both
for continuous and discontinuous coverage. Therefore, a direct comparison between the
methods is not possible; instead, correspondences in terms of results and requirements are
analysed.
The algorithm is well suited for a simple connected convex region; in addition, there are
difficulties related with the application of the method for multiple connected regions and
it could not be applied to a non-symmetric constellation, as an example, to a near-polar
constellation.

In order to explain the principle of work of this method, continuous coverage of a
region at a latitude of 50 deg is presented as first application example; the constellation
shall be at an altitude of 1400 km, with 52 deg inclination and a minimum elevation angle
of 10 deg. The optimal configuration is a (27/3/1) constellation, that lets at any time that
at least one grid vertex belongs to the region.
In Figure 5.22, the constellation grid is represented with red stars together with the
coverage region: such regions are shown for a few consecutive revolutions, each time shifted
to the right by (ωEarth × Period). As it can be observed, every time at least one satellite
is inside the region and so continuous view is guaranteed.
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Figure 5.22: Optimum grid for continuous coverage, (27/3/1).

The meaning of this representation would be to show that every time the condition
that at least one satellite is inside the region is satisfied: by considering the vertical motion,
with satellites on the same plane (represented by stars aligned vertically) that move toward
the top, whenever one is leaving the region the following is arriving and enters it while, by
considering horizontal motion through the shift of the region to the right, when a satellite
moves out the other plane is reached and so another satellite enters the region. In this
way, continuous visibility is achieved.

The second example applies the same constraints in terms of altitude, inclination,
elevation angle and latitude site investigated, but this time 40 minutes for maximum of
revisit time are allowed: this means that for such period there could be zero satellites
in view of the location of interest. The optimal resulting configuration has a (12/3/2)
configuration. The geometry is represented in Figure 5.23.
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Figure 5.23: Optimum grid for discontinuous coverage, (12/3/2).

Another interesting example considers a communication network using the satellites as
relays between two ground stations or users. At any time, the link between these stations
is possible if they belong to the access area of a satellite from the constellation; suppose
that the stations are located in Belgium and Portugal and are Redu (longitude +5 deg,
latitude +50 deg) and Santa Maria (longitude -25 deg, latitude +36 deg) respectively.
With a fixed altitude of h=1400 km and elevation angle ε=10 deg, the inclination has
been varied in the range [40 deg, 65 deg] in order to find the optimal condition.

The coverage circles for the stations with these numbers are overlapping and their
geographical representation is shown in Figure 5.24.
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Figure 5.24: Redu and Santa Maria coverage circles.

The trend for varying inclination is shown in Figure 5.25, where it can be noted that
the optimal inclination i range is around 60 deg and, in addition, most of the solutions
correspond to constellations with 3 orbital planes. With an upper limit for the algorithm
of 20 satellites per plane and 10 planes, the optimal configuration is (42/3/1), i=62 deg,
found in 30.82 s.

Figure 5.25: Number of satellites versus inclination, at h=1400 km.

As inclination increases, the coverage regions grow in size and the total number of
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satellites is decreased; further, there is an optimal inclination and after that the total
number of satellites is increased. This is a superposition of two effects: first, it is an
extension of the regions (mainly along the x axis) and second, it is the influence of non-
convexity: as inclination increases, the regions shrink until the ascending and descending
passes separate and eventually the regions are no more single but become double. The
correspondent intersection of regions in the two dimensional space (Ω, u) is illustrated in
Figures 5.26 and 5.27 for i=52 deg and i=62 deg cases respectively.

Figure 5.26: Redu and Santa Maria regions,
(51/3/1), i=52 deg.

Figure 5.27: Redu and Santa Maria regions,
(42/3/1), i=62 deg.

Another case for full region coverage consists in a constellation for continuous coverage
of the United States; this implies that, at any time, there is at least one satellite from
the constellation with the instantaneous access area involving the full region, or in other
words, at any time at least one satellite is visible from all of the points in the United States.
A suitable constellation that satisfies such requirements could be the ICO constellation
presented in Section 2.4: (12/2/0), h=10390 km, i=45 deg.
Indeed, the coverage function can be computed based on a convex hull for a set of boundary
points; the convex hull is the smallest convex set that contains all the points. In order
to determine the intersection of the regions that satisfies at continuous coverage and so
contains all the United States, three central points in terms of latitude and longitude
(i.e. (λc, φc)) have been selected and the correspondent solution, for a minimum elevation
angle ε=15 deg, is shown in Figure 5.28, where the darkest section represents the selected
boundaries for the determination of the optimal configuration.
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Figure 5.28: Solution region for the United States.

As expected, the optimal solution is (12/2/0), found in 3.73 s since this time the field
of investigation have been restricted to SMAX = 10 and PMAX = 5.

By applying now the brute force method with inputs (12/2/0), h=10390 km, i=45 deg,
ε=15 deg, a propagation period of 10 days with 1 s time-step and looking for coverage
of the entire United States, the resulting revisit time is always equal to zero, while there
are alternations of visibility windows where there are 2 and 4 satellites in view of the
region above the horizon. The results are reported in Table 5.17, with a CPU time of 66.74 s.

Table 5.17: Results for ICO constellation.

Multiplicity of coverage Average access time [min] Maximum access time [min]
2 45.82 66.60
4 7.93 28.18

Indeed, the geometrical approach is fast at determining the optimal configuration, but
the two methods can not be directly compared, since the numerical brute force requires as
inputs the outputs of the Ulybyshev approach [51]. However, by means of the first it is
possible to obtain the multiplicity of coverage and the time the satellites spend above the
region, while the second is not capable to determine such parameters; hence, a possible
way of proceeding in constellation design could be to apply the geometrical method and
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then, with the optimal configuration (or a few cases close to the optimal) to apply the
brute force method in order to perform a more detailed analysis and obtain all the desired
performance parameters.

To illustrate another discontinuous coverage case, a satellite constellation for observation
of a region with boundary coordinates in geographic latitudes [+25 deg, +35 deg] and
longitudes [0 deg, +20 deg] is considered. Coverage requirements are discontinuous
coverage of an arbitrary part for the region with a revisit time no more than 1 hour. Such
constellations can be used for remote sensing or weather observations. The satellites are
assumed in a circular orbit with i=28 deg, h=1000 km and the minimum elevation angle
is equal to 10 deg, with an orbital period equal to about 1.75 hours; the union of visibility
circle maps for points of the region is presented in Figure 5.29. This region corresponds to
the continuous partial coverage of the region.

Figure 5.29: Region for partial region coverage.

The extension of the region for discontinuous coverage and a geometrical representation
is shown in Figure 5.30. It shall be remarked that these results can be applied to all of
the similar regions (i.e. with the same latitude bands in both hemispheres of the Earth
and the same range in relative longitude).
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Figure 5.30: Region for discontinuous coverage with maximum tREV = 60min.

The optimal solution that satisfies at these requirements is a (9/3/0) constellation,
found among a maximum number of planes equal to 5 and of satellites per plane equal to
10. The CPU time is 45.38 s.
However, it must be noted that the computational time increases as the number of bound-
ary points increases, i.e. the maximum acceptable revisit time increases.

In order to check the consistency of the results, this configuration is applied to the
brute force method, that in about 4.6 minutes returns what listed in Table 5.18.

Table 5.18: Performance (9/3/0).

Revisit time [min] Access time [min]
37.47 5.92

The maximum revisit time that occurs in 10 days of propagation with a 1 s time-step
is approximately 40 minutes, never higher than the requirement of 1 hour.
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5.3 Application to generic

constellations
This section presents an example of a generic satellite constellation, that is not sym-

metric and involves elliptical orbits. A suitable case consists in the ELLIPSO concept
presented in Section 2.4; the method applied in order to study its performance is the
classic numerical brute force algorithm, since the other methods are not directly applicable
for such constellations.

The ELLIPSO constellation is a unique constellation that employs both elliptical
and circular orbit communications satellites; the use of inclined elliptical orbits permits
the biasing of Earth coverage by latitude, longitude and time of day so that satellite
coverage can be matched to the market needs for particular geographical regions and their
populations daily work schedules. Circular equatorial orbits are used for continuous day
and night coverage in the tropics and the Southern Hemisphere down to 55 deg South
latitude [3].
The ELLIPSO system is atypical from the classic constellation design methods (Walker,
Beste or Ballard), in that it employs sub-constellations of different periods and orbital
characteristics (i.e. "hybrid" systems).
The baseline ELLIPSO constellation consists of the BOREALIS and the CONCORDIA
sub-constellations (represented in Figures 5.31 and 5.32); the former is made up of two
planes of inclined sun-synchronous, fixed line of apsides, repeating groundtrack satellites
(five per plane), with ascending nodes at noon and at midnight respectively so that the
planes are always nearly edge-on the Sun. The latter is a single plane of eight equally
spaced equatorial circular satellites with 4.8 hour periods (5 revolutions per day). The
orbital parameters of the constellation are listed in Table 5.19.

Table 5.19: ELLIPSO constellation parameters [3].

Sub-
constellation a [km] e i [deg] ω [deg] Ω [deg] TA

[deg]
CONCORDIA:
8-sats 14446 0 0 0 0 0

BOREALIS:
5-sats plane 1 10559.271 0.3457 116.565 270 280 72

BOREALIS:
5-sats plane 2 10559.271 0.3457 116.565 270 100 72
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Figure 5.31: ELLIPSO: CONCORDIA + BO-
REALIS.

Figure 5.32: ELLIPSO: CONCORDIA + BO-
REALIS.

Since there are both circular and elliptical orbits, the correspondent central angle
radius of Earth coverage is given by the formula:

θ = cos

(
REarth

r
cos ε

)−1

− ε (5.5)

where r is the instantaneous value of the radius of the satellite in its orbit.
By taking the position of all satellites of the constellation at a certain time and determining
the correspondent sub-satellite points, Figure 5.33 shows the coverage circles with a
minimum elevation angle ε=10 deg, where CONCORDIA circles are red and BOREALIS
green.

Figure 5.33: Coverage circles ELLIPSO.

The coverage areas have been determined analytically by means of the method described
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in section 2.1.1: first, the coverage angle θ is determined by knowing the satellite’s position
vectors, then the conversion to longitude and latitude angles of the sub-satellite points is
performed.
Recalling Equations (2.27) and (2.28), the boundaries of the coverage area are:

λi = sin (cos θ sinλsub + sin θ cosλsub cosAz)−1 (5.6)

φi = φsub + tan

(
sin θ sinAz,

cos θ − sinλi sinλsub
cosλ

)−1

(5.7)

An analysis of the visibility and gap windows over the entire Earth’s surface proved a
continuous coverage of the central latitudes in the bands [-40 deg, +40 deg], where at least
two-fold coverage is always guaranteed and sometimes four-fold coverage occurs, with an
average visibility window of 6 minutes. Thanks to the BOREALIS sub-constellation, also
the Northern latitudes are covered, with an average revisit time in the [+40 deg, +60 deg]
latitude band of about 9 minutes and for higher latitudes of some 15 minutes.
On the other hand, Southern latitudes are less covered: the average revisit time in the
band [-40 deg, -60 deg] is about 10 minutes, while it increases at [-60 deg, -80 deg] to
approximately 1 hour and 50 minutes until, at -80 deg latitude and on, visibility conditions
are never achieved and satellites are never above the horizon. A direct proof of what has
just been described is also visible in Figure 5.33.

5.4 Conclusions
The presented analysis was aimed at showing the efficiency and the computational time

of each method that assesses coverage performance of satellite constellations. Moreover,
every approach has been applied for specific cases depending on the visibility requirements
and on the constellation’s geometry.

Summarising, the most important distinctions must be made upon polar and non-polar
(i.e. inclined) constellations and between constellations for continuous and discontinuous
coverage.
To achieve continuous global or zonal coverage with polar non-symmetric constellations,
both the Beste’s [28] and Adams and Rider’s [24] methods can be used. The former could
be preferred when the number of satellites per plane S is a constraint or a requirement
and single or triple coverage are desired, while the latter should be used for a generic
n-fold coverage and if the total number of satellites per plane is not fixed. If continuous
global or zonal coverage shall be reached with inclined symmetric constellations, the
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Walker circumcircle [27] and Lang [48] methods have been studied. As demonstrated,
the Lang approach must be preferred to the Walker method, since it is more performant
and less computationally demanding. In addition, Lang can be applied to the design of a
constellation for zonal coverage, while Walker developed the method for global coverage
only.
It must be highlighted that Beste’s and Adams and Rider’s methods give as outputs the
optimal constellation configuration in terms of T , P and S with selected values for altitude,
inclination and minimum elevation angle, while the Lang method needs as inputs the
configuration (T/P/F ) and i and returns the performance index θ; this is a trial-and-error
process, since the value must be compared with the desired visibility requirements and if
it is not compliant the process must be repeated with a different configuration.
The same approach of the Beste’s and Adams and Rider’s analytical methods is followed by
the Ulybyshev method [51] for short revisit times: it is suitable for inclined constellations
and both if continuous local coverage is desired or discontinuous coverage is allowed. As
for the two analytical methods, the inputs for Ulybyshev’s are the orbital inclination, the
altitude, the minimum elevation angle and visibility properties required, while the output
is the optimal satellite configuration (T/P/F ) that satisfies such constraints.
On the other hand, the Ulybyshev method [50] for long revisit times can be applied to
determine the maximum revisit time above a specific location of small symmetric satellite
constellations or even for a single satellite. The method is fast but it should perhaps be
used in the first phase of constellation design in order to have rough values for coverage
performance.
Lastly, the brute force method is suitable for every constellation geometry and every
visibility requirement, but it might be involved to test the coverage performance of a
constellation that has been designed yet, since it does not optimise the configuration but
it only returns the operating capabilities of the constellation itself.
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6. Case studies:
applications to real
missions

This chapter deals with the application of some of the previously presented methods
to missions that are currently under development at the European Space Agency.
The two studies hereafter described are the subjects of two different Concurrent Design
Facilities (CDF) in which the author was able to participate; they have been used as
test-cases, as real application examples, in order to perform a feasibility study on the
developed algorithms and to check the effectiveness of the approach used to determine the
coverage performance.

Concurrent design facility
The Concurrent design facility is a state of the art facility equipped with a network of

computers, multimedia devices and software tools, which allows a team of experts from
several disciplines to apply the concurrent engineering method to the design of future
space missions. It facilitates a fast and effective interaction of all disciplines involved,
ensuring consistent and high-quality results in a much shorter time [55]. Ideas for new
space missions, systems or structures are given a definite blueprint in ESA’s state of the
art Concurrent Design Facility.
The CDF infrastructure, methodology and processes allow teams of experts from different
engineering disciplines to work in close coordination in the same place at the same time to
complete the most complex designs imaginable in a matter of a few weeks rather than
several months.
The CDF enables concurrent engineering based on teamwork and focused on a common
design model that evolves iteratively in real time as the different subsystem experts provide
their contributions. Designers and customers agree on requirements and take decisions
in real time to allow the best design for the right cost and within the programmatic
constraints. The process has been developed and honed so it is now common to produce
a costed, risk-assessed conceptual space mission or system design complete with various
options and including scheduling, testing and operations in a matter of a weeks [56].
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6.1 ELCANO mission
ELCANO, that stands for "European LEO Constellation for Augmentation of Naviga-

tion and Other services" is a CDF study on a LEO constellation to provide Positioning,
Navigation and Timing (PNT) augmentation services; LEO PNT concepts deal with the
possibilities for designing large space infrastructure. ELCANO is a constellation of small
satellites to augment resilience, robustness and performances of the Galileo constellation,
for rural and urban areas. Figure 6.1 shows the ELCANO constellation compared with
the existing Galileo, while Table 6.1 summarises the differences.

Figure 6.1: ELCANO versus Galileo.

Table 6.1: ELCANO versus Galileo.

Configuration Inclination i [deg] Altitude h [deg]
Galileo Walker (24/3/1) 56 23222

ELCANO Option 1 Walker (48/4/1) 25 600
Walker (192/12/1) 55 600

Option 2 Walker (28/4/1) 30 1200
Walker (72/8/1) 60 1200
SOC T=35, P=5 90 1200

It must be specified that there may be three main categories to classify the system
concepts involving constellations (typically populated with a few tens to a few hundred
nodes in LEO):

• Constellations of small satellites dedicated to PNT; typically New Space nanosatel-
lites/microsatellites;

• Hosted payload on Satcom systems;

• Use of Satcom signals for Signals Of Opportunity (SOOP), e.g. with OneWeb.
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The ELCANO study could be identified in the first category.

The constellation design has been performed in order to meet the PNT requirements
with minimum number of satellites; the design requirements are:

• Circular orbits with height defined at 600 km and 1200 km;

• Half-cone coverage angle of ≈ 65 deg in order to have, as worst scenario, satellites’
Field Of View (FOW) of ≈ 130 deg at 600 km altitude;

• LEO PNT satellites must be able to acquire signals from a multiplicity of GNSS
satellites in MEO, with maximum level of aggregate interference as not to degrade
effective C/No (1) receiver below 27 dbHz;

• With kick off in 2022, Pathfinder A shall be fully operational by 2024 and Pathfinder
B by 2025;

• The constellation shall be fully operational by 2028;

• The multi-satellite launch strategy shall be compatible with the required operational
availability of the ELCANO constellation.

As stated before, the primary objective of the design process is to find the best con-
figuration with the minimum number of satellites; hence, the two classes considered are:
smaller/cheaper satellites in 600 km circular orbits (16U Cubesat class), with passive
de-orbiting and larger/more expensive satellites in 1200 km circular orbits (32U Microsat
class) with active de-orbiting.
In addition, the constellation might be deployed into three different inclinations, with
near-polar planes, mid-inclination planes (≈ 55-60 deg) and tropical planes (≈ 20-25 deg).

After a trade-off among all requirements and subsystems, the ELCANO constella-
tion faces two possible alternative scenario, with two or three separate constellations
respectively:

1. Constellation with 240 inclined satellites at 600 km;

- Walker Delta (48/4/1) with i=25 deg and h=600 km;

- Walker Delta (192/12/1) with i=55 deg and h=600 km;

2. Constellation with 100 inclined satellites at 1200 km and 35 polar satellites at 1200
km, for a total of 135 satellites;

(1)C/No is the ratio of carrier power to the noise power mixed with the signal, in a 1 HZ bandwidth
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- Walker Delta (28/4/1) with i=30 deg and h=1200 km;

- Walker Delta (72/8/1) with i=60 deg and h=1200 km;

- Street Of Coverage T=35 in P=5 with i=90 deg and h=1200 km;

These options have been investigated by the author in order to assess performance
parameters, coverage properties and to verify the optimal conditions.
Since ELCANO really consists of two (or three) different sub-constellations, each of them
has been analysed separately for all the three cases and then the results have been put
together in order to determine the global performance.

Option 1
The Lang method [48] was used to analyse separately the two sub-constellations; for

the (48/4/1), i=25 deg sub-constellation, the optimal altitude condition of h=600 km,
with ε=5 deg, is achieved with continuous coverage in the latitude band [+34.5 deg, -34.5
deg] and the correspondent half-cone coverage angle is θ=19.4 deg.
Instead, the (192/12/1), i=55 deg sub-constellation, results in an optimal altitude h=600
km with minimum elevation angle ε=5 deg if continuous coverage between [+72.4 deg,
-72.4 deg] latitudes is desired, with a half-cone angle equal to θ=19.4 deg.

The constellation is represented in Figure 6.2 in ECEF reference frame, while the
instantaneous coverage circles of all the 240 satellites are shown in Figure 6.3 and have
been determined as described in Section 2.1.1.

Figure 6.2: ELCANO Option 1.
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Figure 6.3: ELCANO Option 1 coverage circles.

For the (48/4/1), i=25 deg sub-constellation, the optimal location for a Ground Station
is around 10 deg North or South latitude: three satellites are in view at all the times.
Instead, for the (192/12/1), i=55 deg sub-constellation, the optimal latitude is around
40 deg North or South, with nine satellites visible while, at 10 deg latitude, a Ground
Station would still see four satellites simultaneously. Therefore, a Ground Station located
around 10 deg latitude, should see at least seven satellites for Option 1 of the ELCANO
constellation.

The choice of altitude equal to 600 km, as well as the value of the inclination, is
not only guided by coverage requirements, but many other constraints are involved; for
example, the launcher requirements must be taken into account, together with lifetime
and station-keeping costs and ∆v budgets. Moreover, the importance of respecting space
debris mitigation rules must be highlighted. Everything considered, Option 1 configuration
is therefore the final result of this trade-off. Indeed, if the altitude would have not be a
fixed parameter and if visibility conditions are considered only, in order to achieve full
global coverage with both the two sub-constellations separately, keeping the same number
of satellites T , inclination i and minimum elevation angle ε, the (48/4/1) sub-constellation
should have been deployed at h=12250 km with half cone coverage angle θ=65 deg, while
the (192/12/1) sub-constellation at h=1918 km with θ=35 deg.

Option 2

By moving now to the Option 2, with two Walker-type sub-constellations and one
Street-Of-Coverage-type sub-constellation, the deployment altitude is h=1200 km. The
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Lang method [48] was used to analyse separately the two Walker Delta sub-constellations;
for the (28/4/1), i=30 deg sub-constellation, the optimal altitude condition of h=1200
km, with ε=5 deg, is never achieved for continuous coverage in some latitude band, since
the number of repeated groundtracks is 7 and so the longitude range to investigate with
test points corresponds to ≈ 25.7 deg; therefore, even by reducing the value of latitude
band for continuous global coverage, the leading parameter that determines the largest θ
for coverage performance of the constellation is the longitude range and so the minimum
value of altitude that can be reached for continuous global coverage even between [+20
deg, -20 deg] latitude is equal to h=1371 km; the correspondent half-cone coverage angle
is θ=29.9 deg.
Instead, the (72/8/1), i=60 deg sub-constellation, results in an optimal altitude h=1200
km with minimum elevation angle ε=5 deg if continuous coverage between [+83.8 deg,
-83.8 deg] latitudes is desired, with a half-cone angle equal to θ=28.0 deg.
Lastly, the Beste method [28] was applied for the SOC sub-constellation, with T=35
satellites in P=5 orbital planes and h=1200 km. This configuration, with S=7 satellites
per plane and minimum elevation angle ε=5 deg, is capable to achieve 3-fold coverage
beyond 66 deg North and South latitude, while single coverage at the same altitude is
reached with only T=28 satellites in P=4 orbital planes. Instead, single coverage with 35
satellites divided into 5 planes could be achieved at h=975 km yet.
As for Option 1, even the configuration presented in Option 2 is the result of a trade-off
among launcher requirements, mission lifetime, station-keeping costs, ∆v budgets and
space debris mitigation rules. Indeed, by considering coverage performance only, the
application of the methods would have guided toward a different final choice, but this is
not the case, since in a real mission there exist many different constraints that must be
considered and consequently tuned.

The overall constellation of Option 2 is represented in Figure 6.4 in ECEF reference
frame, while the instantaneous coverage circles of all the 135 satellites are shown in Figure
6.5.
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Figure 6.4: ELCANO Option 2.

Figure 6.5: ELCANO Option 2 coverage circles.

For Option 2, the optimal locations for the (28/4/1), i=30 deg and (72/8/1), i=60 deg
inclined sub-constellations are around 10 deg and 40 deg for North and South latitude as
in Option 1, with three or six satellites respectively seen. For the polar sub-constellation,
a Ground Station placement as far North or South as possible would be optimal with five
simultaneously visible satellites.
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6.2 Lunar Communications and

Navigation Services mission
The Lunar Communications and Navigation Services (LCNS) is the objective of a CDF,

whose aim is to assess three alternative communication and navigation scenarios and then
to determine the benefits on the user if these alternatives were in place; in particular, the
Lunar Sample Return with LCNS (LUNATIC) mission is studied.
The European Large Logistic Lander (EL3) mission is taken as main user scenario as it
contains all the key phases and it’s likely to be a good sizing case.

The background for this study is a CDF named Lunar Comms, carried out by an
interdisciplinary team from various ESA sites starting with a kick-off on the 20th March
2018 and ending on the 19th April. The goal of the CDF was to perform a preliminary
mission design for a constellation of spacecrafts in lunar orbit aiming to provide a data
relay and navigation service for lunar missions, including space and ground segment and
mission operations.
The Lunar Comms mission was intended to be launched in 2022, with a period of operations
of 10 years.
A relay satellites constellation around the Moon provides additional services and redun-
dancy that would be not possible for a direct Earth-Moon link or a single relay satellite.
The constellation is able to service the South Pole, the lunar far side and multiple users
at the same time; due to the number of satellites in view, long contact times and almost
around the clock coverage is possible. Additionally, the communication system require-
ments can be relaxed for many users. The overall performance increases, since the users
are able to communicate at higher data rates more data via the relay constellation. Finally,
a constellation around the Moon could as well provide navigation services to asset on
cis-lunar space, hence reducing the need for navigation campaigns from Earth. This
service will profit for the almost constant view of the relay satellites from the user and
the observability in all axis if the constellation is properly designed. Furthermore, the
navigation service can be built directly on top of the communications relay service, with
very limited impact on the system design both on the relay satellite and on the user.

It must be highlighted that the main landing site considered for the EL3 mission is
the Schrödinger Crater, near the South Pole, at the two possible landing sites: [longitude
141.33 deg East, latitude 75.47 deg South] and [longitude 141.89 deg East, latitude 75.30
deg South].
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The Lunar South Pole is particularly important from a scientific point of view because
of water ice and as potential location of a permanent lunar outpost. The major tech-
nical challenge for operating at the South Pole is that the Earth is not usually visible
for direct radio communications; therefore, it is necessary to implement early communi-
cations capabilities, including telemetry, tracking and control TT&C and mission data
transmission to meet early lunar robotic needs. In addition, human missions require
almost 24/7 communication coverage which implies more than one relay satellite. An-
other scientific crucial spot is the far side of the Moon: the lunar far side is inaccessible
without a relay satellite, for it is the ultimate radio dead spot, since it never faces the Earth.

Taking all this into account, LCNS represents the implementation of the moonlight
initiative, i.e. an European-led delivery of communications and navigation services that
will support the next generation of institutional and commercial lunar exploration missions,
including enhancing the performance of those missions currently under definition.
The EL3 sample return mission is considered as a good scenario for LCNS and so a
reference scenario for EL3, whose launch date is supposed to occur in 2026, has been
provided by the customer.

The reference mission phases considered, after launch, are schematically presented in
Figure 6.6 and hereafter described.

Figure 6.6: EL3 sample return mission profile [57].

1. Transfer Trans-Lunar Injection (TLI) to Low Lunar Orbit (LLO): EL3 is injected
into a Moon-bound trajectory

- by direct injection into a Lunar Transfer Orbit (LTO), with 4-6 days Time of
Flight (ToF) and bi-week launch window (Note: this is the current baseline);
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- by using a Weak-Stability Boundary Transfer (WSBT), with 3-4 months ToF
and daily launch windows (Note: this would imply a ∆v ≈ 150m

s
saving).

2. Low Lunar Orbit (LLO), Lunar Orbit Insertion (LOI) and post-LOI loitering: LOI
≈ 700− 800m

s
manoeuvre and possible LCNS benefits

- for pre-LOI precise Orbit Determination (OD) and earlier LOI correction;

- post-LOI, for precise OD and earlier LOI correction;

- to fill visibility gaps of ground-based measurements (far side).

3. Descent-Ascent: → LLO loitering → Periselene lowering burn → Coasting Elliptical
Lunar Orbit (ELO) arc → Main braking burn → ... → Touchdown / - / Landing
site → Main burn ascent → ... → Coasting ELO arc → Circularisation burn →
LLO loitering

- before descent: LCNS could improve OD prior to the periselene lowering burn;

- after ascent: possible benefit to assist ground-based measurements.

4. Rendezvous: from LLO to NRHO (Near Rectilinear HALO orbit, Gateway orbit) in
1-3 days transfer time

- possible use of LCNS to assist ground-based measurements;

- possible improvement of relative Gateway state knowledge;

- manoeuvre execution errors lead to expensive Trajectory Correction manoeuvres
(TCM); it can be mitigated with faster LCNS-aided OD.

5. Surface Operations

It must be noted that realistic schedule and mission costs will impose to have a small
constellation; global Moon coverage with multiple satellites is not realistic and not needed
due to the limited number of users. Hence, LCNS will provide navigation services in specific
time windows and in specific areas of the Moon. As consequence, the user missions will
have to adapt the mission planning to ensure that critical operations requiring navigation
are performed during the coverage window.

After a trade-off process, the three alternative scenarios for the optimal configuration
are:

1. - 1 LCNS satellite for communication,

142



Chapter 6. Case studies

- Earth GNSS when visibility allows and 1 LCNS satellite with one-way and
two-way navigation services for navigation.

2. - 3 LCNS satellites for communication,

- Earth GNSS when visibility allows and 3 LCNS satellites with one-way and
two-way navigation services for navigation.

3. - 3 LCNS satellites + Lunar Pathfinder + Gateway for communication,

- Earth GNSS when visibility allows + 3 LCNS satellites with one-way and two-
way navigation services and 2 LCNS satellites with only one-way navigation +
Lunar Beacon in the landing/ascent lovation (Schrödinger basin) for navigation.

The optimised satellites constellation configuration both for navigation and communi-
cation performances is made by 5 satellites in highly elliptical orbits around the Moon, all
with the same semi-major axis a, eccentricity e, inclination i and argument of perigee ω;
the right ascension of the ascending node Ω and true anomalies TA, instead, are different.
Table 6.2 summarise all the values for orbital parameters.

Table 6.2: LCNS five-satellite constellation optimised characteristics.

Satellite a [km] e i [deg] ω [deg] Ω [deg] TA
[deg]

1 9750.5 0.7 63.5 90 0 0
2 9750.5 0.7 63.5 90 120 164
3 9750.5 0.7 63.5 90 240 196
4 9750.5 0.7 63.5 90 120 245
5 9750.5 0.7 63.5 90 240 184

The analysis of lunar surface coverage is based on the optimised LCNS constellation;
hence, as stated before, the goal of such optimisation phasing presented in Table 6.2 is aimed
at improving the surface coverage performance and so the navigation and communication
performances of the constellation itself. the optimisation has been performed by changing
the satellite’s true anomalies TA only, whose values are presented on the last column of
the table, while all other orbital parameters have always remain unchanged.
Frozen orbit conditions are used and there are not changes in orbital periods (the semi-
major axis is fixed), that remains equal to 24 hours, neither in orbital planes (the right
ascension does not change); Figure 6.7 shows the baseline configuration in terms of plane
separation, where the three planes are uniformly separated.
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Figure 6.7: LCNS optimal configuration.

Three different cases have been analysed to perform visibility studies: first, 1 satellite
only is propagated, then the first 3 on Table 6.2 are considered and lastly all the 5 satellites
are involved. In every case study, all the satellites have been considered identical both for
navigation and communication interests. The propagation time is always equal to one year,
form June 2026 until June 2027 given in MJD2000 reference frame and the position vectors
of the satellites as well as the Schrödinger Crater location are determined accordingly to
the EME2000 reference frame.
Since the orbits are elliptical and the configuration is not symmetric, the Brute Force
method is used to find constellation performances, with a minimum acceptable elevation
angle equal to 10o.
After the propagation, the maximum, minimum and average visibility windows and revisit
times have been determined; it must be mentioned that these statistics are based on daily
windows.

Table 6.3 shows the numeric results obtained, with consecutive hours of visibility and
non visibility windows above the Schrödinger Crater.
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Table 6.3: LCNS visibility windows.

Window duration [hr] Gap between windows [hr] Cumulative per day
Option 1 1 sat 19.24 4.67 19.24 hr / 80%

1 sat Inf - 24 hr / 100%
Option 2 2+ sats 20.48 0.48 24 hr(2) / 100%

3 sats 3.07 5.02 9.65 hr / 40%
3+ sats Inf - 24 hr / 100%

Option 3 4+ sats 6.40 2.25 19.10 hr / 80%
5 sats 2.02 8.80 4.79 hr / 20%

In the first option, with only 1 satellite, the average duration of visibility window is
about 19 hours while the gap is less than 5 hours; the last column shows the average
percentage of total time of visibility per day and the respective hours: for the first option
the value is trivial (that corresponds to an 80% of visibility per day), but this is not the
case for the other two. Considering the case of 3 satellites propagated, at least 1 satellite
is always visible from the portion of lunar surface of interest; even in the case of at least 2
satellites visible, the total visibility window per day is still of 24 hours, since the frames of
one satellite only are very short and so it could be assumed that small station keeping
should be capable to remove them. On the other hand, 3 satellites are visible for an average
continuous window per day of about 3 hours, while the total time per day corresponds to
9.65 hours. The last case, involving 5 satellites, sees at least 3 of them always visible from
the Schrödinger Crater, while the windows start diminishing if the options of 4 or more
satellites visible at the same time are considered. Anyway, the average duration of visi-
bility window for 5 satellites is about 2 hours, while the total time per day is about 4.8 hours.

Some examples to clarify the results presented in Table 6.3 are shown in Figures from
6.8 to 6.13 , where the number of satellites visible above the crater is shown in function of
time.

Figure 6.8: Option 1. Figure 6.9: Option 1 zoomed.
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Figure 6.10: Option 2. Figure 6.11: Option 2 zoomed.

Figure 6.12: Option 3. Figure 6.13: Option 3 zoomed.

While for option 1 and 3 the charts are always repeating, Option 2 in Figures 6.10 and
6.11 shows the small windows of 1-fold coverage that occurs and that may be compensated
through Station keeping manoeuvres. In option 1 of Figures 6.8 and 6.9, the alternation
between visibility and gap windows is clearly distinguishable whereas option 3 on Figures
6.12 and 6.13 reports an alternation of 3, 4 and 5 satellites visible, since at least 3-fold
coverage is always guaranteed. This alternation occurs even more times per day and that
is why, together with the average visibility windows value, also the cumulative window per
day in Table 6.3 has been reported. The same phenomena is visible also in option 2 where,
apart from the small frames of 1-fold coverage, 2- or 3-fold coverage alternate.

Summarising, option 1 considers an uniform pattern with a 19 hours visibility window
per day and the behaviour is roughly the same in the whole region at latitudes less than
65 deg; in the second option, at least 1 satellite is always visible but with small Station
keeping even 2 satellites could be always in view. The small frames in which only one
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satellite is visible are due to the equal time-based phasing for uniform distribution along
the orbits and it appears after many days of propagation because of the long period
adopted. Finally, option 3 brings to at least 3 satellites always visible and used both for
communications and navigation purposes.
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7. Conclusions
The aim of this thesis was to present and analyse the concept of satellite constellations

and the relative design methods, throughout an investigation that allowed an easy and un-
derstandable comparison. A study to determine the most efficient and optimal geometries
and methods has been carried out, where by optimal what is meant is either minimisation
of computational effort or graphical and geometrical representation helping the most to
the understanding of the underlying physics, as well as the applicability domain and the
accuracy of the results.

The novelty brought by the presented work contributes to the area of satellite constel-
lation design and development: it proposes standardised nomenclature and references and
it makes a direct, intuitive and simple comparison of the existing methods. Moreover, the
author has developed algorithms that accept as inputs the parameters expressed always
in the same form, in such a way it is easier to directly understand the more performant
method as well as the more accurate and precise; these algorithms have also been written
and organised in order to reduce the computational time as much as possible and to
provide results in a clear and well understandable way.
An innovative approach for the determination of the coverage area is also presented; since
it is analytical, the computational time is reduced and the accuracy of the results is
increased.
Moreover, two real missions have been used as test-cases in order to apply and validate
some of the design methods and the approach to determine the coverage area.

The design process for satellite constellations is based on user requirements, which de-
fine the figures of merit for certain objectives (e.g. Earth observation, Telecommunications,
Navigation and Positioning). Among all figures of merit that characterise a constellation
geometry, visibility conditions must always be considered and so the focus of this work
has been on coverage requirements [5].
First of all, a distinction between satellites in circular rather than elliptical orbits has been
presented: usually, large constellations are deployed in circular orbits, however, several
authors investigated even the case of elliptical orbits. Anyway, these geometries involve a
small number of satellites and they are applied to coverage of specific locations on the
planet’s surface rather than on the whole Earth. For this reason, it is difficult to determine
a general method, but the geometry should be every time and newly determined depending

148



CHAPTER 7. CONCLUSIONS

on the user needs.

The difference between symmetric and non-symmetric constellations has been con-
sidered too: depending on satellite’s distribution, the properties of a constellations and
the derived design methods are different. A constellation is said to be symmetric when
orbital planes are equally spaced, while non-symmetric if they have different spacing; some
examples of the first class are given by the Walker [12] and Ballard [26] patterns, while
the Street Of Coverage geometry is not symmetric.
Design methods for symmetric constellations are the Walker circumcircle [27] and Lang
[48] numerical approaches, as well as the Ulybyshev geometrical methods [50], [51] for long
and short revisit times, while for non symmetric constellations the Beste [28] and Adams
and Rider [24] analytical methods have been examined.
Another distinction has been made considering the possible requirements for a constellation
that could be designed for continuous rather than discontinuous coverage, as well as for
global, zonal or local coverage. In addition, if continuous coverage shall be achieved, the
condition could be for single, double or in general n-fold coverage.
If continuous global or zonal coverage is desired, the Walker circumcircle, Lang, Beste
and Adams and Rider methods can be used, while if discontinuous coverage is allowed the
methods for long and short revisit times could be suitable, the first if the revisit time is
more that one orbital period, while the second if it is less than one orbital period. Anyway,
this last method can also be applied for continuous coverage of a specific location.

Some possible enhancements with respect to what done until now and some future work
that could be performed on this topic could be to try to extend the domain of application
of the geometrical methods for discontinuous coverage to non-symmetric constellations.
Perhaps, a useful way and mathematical expressions to determine the optimal constellation
configuration could be found.
Another important step forward could be represented by extending the use of these
geometrical methods also for elliptical orbits and to a non spherical Earth, so by taking
into account the Earth oblateness. These aspects should only change the expression used
to determine the coverage circle (or equivalently the coverage regions in the (Ω, u) space
but then the procedure to compute the revisit time should remain the same.
Moreover, a further optimisation of the algorithm implemented for the determination of
the optimal configuration of the short revisit times geometrical method could perhaps be
useful, for instance by determining the minimum number of boundary points needed to
obtain a solution and so by reducing the search field, or even by finding a different way to
check if the corner points of the parallelogram are inside the region of visibility.
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A. Appendix A
A.1 Counts of time

• JD - Julian Date: number of days since January 1st 4713 BC;

• MJD - Modified Julian Days: number of days since November 16th 1858;

• MJD2000 - Modified Julian Days 2000: number of days since January 1st 2000;

A.2 Reference frames
• ECI - Earth Centered Intertial: intertial, non accelerated, fixed with respect to stars

reference frame;

- J2000 or EME2000: Earth’s Mean Equator and Equinox at 12:00 terrestrial
time on January 1st 2000; the x axis is aligned with the mean equinox, the z
axis is aligned with the Earth’s rotation axis or celestial North Pole and the y
axis is rotated 90o East about the celestial equator;

- TEME: True Equator, Mean Equinox, is the frame used for the NORAD two-line
elements.

• ECEF - Earth Centered Earth Fixed: not inertial, accelerated, rotating with respect
to stars;

- Positive x axis aligns with the International Earth Rotation and Reference
System (IERS) Prime Meridian, positive z axis aligns with the IERS Reference
Pole (IRP) that points toward the North Pole and y axis completes the right-
handed system.

• Heliocentric Reference Frame: inertial, non accelerated, fixed with the Sun at the
origin;

- HEEQ - Heliocentric Earth Equatorial: the x axis towards the intersection of
the solar equator and the solar central meridian as seen from Earth and the z
axis is parallel to the Sun’s rotation axis;
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- HEE - Heliocentric Earth Ecliptic: the x axis towards the Earth and the z axis
perpendicular to the plane of Earth’s orbit around the Sun (the system is fixed
with respect to the Earth-Sun line);

- HAE - Heliocentric Aries Ecliptic: the x axis is towards the First Point of
Aries (the direction in space defined by the intersection between the Earth’s
equatorial plane of its orbit around the Sun, the plane of the ecliptic) and the z
axis perpendicular to the plane of Earth’s orbit around the Sun. This system is
fixed with respect to the distant stars; it is subjected to slow change owing to
the various slow motions of the Earth’s rotation axis with respect to the fixed
stars.
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B. Appendix B
B.1 Walker geometry logic code flow

FOR The total number of planes
- Ω = W 2π

P

- Initial phase = F 2π
T

- FOR The total number of satellites per plane
- Ω = Ω

- Phase angle M = 2π
S

+ initial phase
- END
- END

B.2 Ballard geometry logic code flow
FOR The total number of planes

- Ω = W 2π
P

- Initial phase = mS 2π
T

- FOR The total number of satellites per plane
- Ω = Ω

- Phase angle M = 2π
S

+ initial phase
- END
- END

B.3 Street Of Coverage geometry logic

code flow
FOR The total number of planes -1

- Ω = α

- Initial phase = 2π
T

- FOR The total number of satellites per plane
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- Ω = Ω

- Phase angle M = 2π
S

+ initial phase
- END
- END

While

FOR The last (counter-rotating) plane
- Ωlast = 2Ψ

- Initial phase last = 2π
T

- FOR The total number of satellites per plane
- Ωlast = Ωlast

- Phase angle Mlast = 2π
S

+ initial phase last

- END
- END

B.4 Flower constellations geometry logic

code flow
Select Np, Nd, S, Fn, Fd, hp, i, ω

- Period T = Nd

Np

2π
ωEarth

- Semi-major axis a = 3

√
( T

2π
)2µ

- Eccentricity e = 1− RErath+hp
a

- Semi-latus rectum p = a(1− e2)

- Const = 3R2
Erath

J2
4p2

- Mean motion n =
√

µ
a3

ω̇ = Const ∗ n(4− 5 sin (i)2)

- Ω̇ = −2 ∗ Const ∗ n cos (i)

- Ṁ = −Const ∗ n
√

1− e2(3 sin (i)2 − 2)

∆Ω = −2π Fn

Fd

- ∆M = 2π Fn

Fd
∗ ( n+Ṁ

ωEarth+Ω̇
)
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FOR The total number of satellites per plane -1
- Ω(k + 1) = Ω(k) + ∆Ω

- M(k + 1) = M(k) + ∆M

- END
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C. Appendix C
C.1 Walker circumcircle approach logic

code flow
Select: (T/P/F ) or equivalently (T/P/m), i and h

- Find Period = orbital period
- Select: total propagation time
- Time-step for the propagation

FOR The whole propagation time
- t = each time step
- FOR i that varies among all T satellites
- FOR j that varies among all T satellites
- FOR k that varies among all T satellites
- X = 2πt

Period

- sin (
rij
2

)
2

- sin (
rjk
2

)
2

- sin ( rki
2

)2

- θijk

- FOR l that varies among all T excluded the current (i,j,k)
- X = 2πt

Period

- sin ( ril
2

)2

- sin (
rjl
2

)
2

- sin ( rkl
2

)2

- y1

- y2

- y3

- IF y1,2,3 > 0

- θijk saved
- END
- END
- END
- END
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- END
- END

Among all saved θijk, find the maximum value, which represents the worst-case condition,
and determine the correspondent altitude h required to satisfy the minimum elevation
angle condition (say ε=10 deg). This result must be compared with the actual value of the
satellite altitude and see if visibility conditions are satisfied; it is a trial-and-error process,
in which initial values shall be varied and tuned until an acceptable solution is found.

C.2 Lang approach logic code flow

Select: (T/P/F ) and i
- Find Ω, M through the algorithm of Section 2.2.1
- Find the number of distinct ground traces
- Take the first satellite Ω1, M1 as reference for the propagation
- TGT = number of satellites per independent groundtrack
- Longitude band = π

TGT

- Latitude band = [0 deg - 90 deg] (less for zonal coverage)
- Select the grid step
- Create the grid of test points [longitude,latitude]
- to investigate for visibility conditions (i.e. green area in Figure 3.13)

FOR Each position occupied by the reference satellite
- Build the "8-shaped" groundtrack (Geosynchronous-like)
- Find the correspondent points on the ground [longitude,latitude]
- Find the central angle of coverage θ between each couple
- of test points and satellite points
- END

Among all the θ, find the maximum value, which represents the worst-case condition,
and determine the correspondent altitude h required to satisfy the minimum elevation
angle condition (say ε=10 deg). This result represents the minimum value of altitude that
the constellation must have in order to achieve visibility requirements.
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C.3 Brute force approach logic code

flow
Select: Total propagation time

- Time-step for the propagation
- Select: εmin = minimum elevation angle acceptable (treshold)

FOR The whole time of propagation
- At each time-step:
- Find position vectors of all satellites
- Find position vectors of all locations of interest on the planet’s surface
- Find relative position vectors
- ε = elevation angle reached
- IF ε ≥ εmin

- The satellite is IN VIEW of the current location
- END
- END

To find the n-fold visibility and/or gap time:

FOR The whole time of propagation
- At each time-step:
- IF Satellite IN VIEW = n
- Count time-step IN VIEW
- END
- IF Satellite IN VIEW = 0
- Count time-step GAP
- END
- END

The total time counted is the actual time there are n satellites IN VIEW of the site
investigated, while if no satellites are visible, the total time counted is the revisit time.
Then, starting from all these values, it is possible to determine the Maximum, Minimum
and Average Revisit Time as well as the time n satellites are visible above a surface
location.
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C.4 Geometrical approach for short

revisit times logic code flow
Select: i and h

- Select: central longitude and latitude (φc,λc) of the site of ineterst
- Select: ε elevation angle
- Determine θ coverage angle

Select: spacing between boundary points

In case of revisit time:
- Select: maximum allowed tREV

FOR The whole coverage circle: the central angle varies from 0 to 2π

- γ = each angle
- Find longitudes φ
- Find latitudes λ
- END

FOR All the boundary points
- IF sin (λ) < sin (i)

- Find u
- Find Ω

- END
- END

IF Revisit Time
- Expand the region in the y direction
- Find correspondent u, Ω

- END

Select: Smax and Pmax

FOR The total number of planes Pmax
- FOR The total number of satellites per plane Smax
- FOR m that varies from 0 to the current P · S
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- FOR Each boundary point
- Take x0,y0

- T = P · S
- ∆u = m2π

T

- Find the other three boundaries of the parallelogram
- IF all the vertices of the parallelogram are INSIDE the polygon
(Inpolygon function of Matlab)
- T, P,m saved
- END
- END
- END
- END
- END

Among all saved acceptable values, find the minimum T and the correspondent P ,
then determine the phase parameter F as:

FOR All the possible values of the parameter k from 0 to T
- F = kP −m
- IF F > 0
- F determined
- END
- END
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