
Transformer-based Geolocation of
Indoor Images with Segmentation-
based Visual Explanations

Tesi di Laurea Magistrale in
Mathematical Engineering -
Ingegneria Matematica

Author: Imanuel Rozenberg

Student ID: 942645
Advisor: Prof. Mark James Carman
Academic Year: 2020-21





i

Abstract

As reported by the CDTC (Counter-Trafficking Data Collaborative), data collected since
2002 show that human trafficking crimes are steadily increasing, with up to 15% in-
crease [7]. When computer forensic experts come in possession of encrypted photos of
the victims, which are usually taken inside of hotel rooms, they face various difficulties in
trying to locate the scene of the crime. This thesis aims to develop a tool to facilitate the
localisation of crime scenes. The localisation of hotels is a rather difficult task because of
the similarity that can exist between hotel rooms belonging to the same chain in different
locations around the globe, and at the same time the dissimilarity that can exist between
different rooms in the same hotel. In addition, our work can be useful for detecting fake
advertisements with photos showing the interior of a house located in a different place
than the one mentioned on real estate agency web-pages or Airbnb. In order to be really
useful to the Police, a tool should not simply be capable of identifying the location of
hotels or B&Bs (Bed and Breakfast). It should not only accurately locate the place, or
at least narrow the search, but also provide explanations on which elements were relevant
to arrive at a given prediction.

For these reasons, in this thesis we have decided to focus on both aspects (locating and
providing explanation), using some of the most powerful neural networks and adapting
numerous XAI (Explainable Artificial Intelligence) approaches to obtain meaningful visual
explanations. We addressed the indoor geolocation problem as a hierarchical classifica-
tion task, predicting simultaneously the city, the country and the region in the world of
a desired indoor scene image. To conclude, we show the effectiveness of our model with
a demo and some experiments capable of identifying highly informative elements within
an image in terms of predicting its geographical location.

Keywords: indoor geolocation, hierarchical classification, explainability, artificial in-
telligence, deep learning.





Abstract in lingua italiana

Come riportato dal CDTC (Counter-Trafficking Data Collaborative), i dati raccolti dal
2002 mostrano che i crimini legati al traffico di esseri umani sono in costante aumento, con
un incremento fino al 15% [7]. Quando gli esperti di perizie informatiche forensi entrano
in possesso di foto criptate delle vittime, che di solito sono scattate all’interno di stanze
d’albergo, affrontano varie difficoltà nel cercare di localizzare la scena del crimine. Questa
tesi mira a sviluppare uno strumento per facilitare la localizzazione delle scene del crimine.
La localizzazione degli hotel è un compito piuttosto difficile a causa della somiglianza che
può esistere tra camere d’albergo appartenenti alla stessa catena in diverse località del
mondo, e allo stesso tempo la dissomiglianza che può esistere tra diverse camere dello
stesso hotel. Inoltre, il nostro lavoro può essere utile per individuare annunci falsi con
foto che mostrano l’interno di una casa situata in un luogo diverso da quello menzionato
sulle pagine web delle agenzie immobiliari o su Airbnb. Per essere davvero utile alla
polizia, uno strumento non deve semplicemente essere in grado di identificare la posizione
di hotel o B&Bs (Bed and Breakfast). Dovrebbe non solo localizzare accuratamente il
luogo, o almeno restringere il campo di ricerca, ma anche fornire spiegazioni su quali
elementi sono stati rilevanti per giungere ad una determinata predizione.

Per questi motivi, in questa tesi abbiamo deciso di concentrarci su entrambi gli aspetti
(localizzare e fornire spiegazioni), utilizzando alcune delle reti neurali più potenti e adat-
tando numerosi approcci XAI (Explainable Artificial Intelligence) per ottenere spiegazioni
visive significative. Abbiamo affrontato il problema della geolocalizzazione di foto di in-
terni come un compito di classificazione gerarchica, prevedendo simultaneamente la città,
il paese e la regione del mondo in cui un’immagine di interni è stata scattata. Per conclud-
ere, mostriamo l’efficacia del nostro modello con una demo e alcuni esperimenti in grado
di identificare elementi altamente informativi all’interno di un’immagine per la predizione
della sua posizione geografica.

Parole chiave: geolocalizzazione di interni, classificazione gerarchica, spiegabilità, intel-
ligenza artificiale, deep learning.
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1| Introduction

The introduction presents the problem addressed in this thesis, indoor geolocation, and
illustrates our goal to develop a valid tool to face this problem.

1.1. Goal

Hotel geolocation and recognition means identifying the geographical location and the
name of hotels related to images taken inside hotel rooms. The need to geolocate images
of indoor scenes arises mainly from the need to help police forensic investigations with a
tool capable of identifying, or at least narrowing the research when dealing with human
trafficking material. Victims of human trafficking are often brought and photographed in
hotel rooms, for this reason hotel recognition and geolocation is important to help track
down current, and also prevent future crimes with victims who might be taken to the same
hotels. Internet technologies such as P2P networks or Instant Messaging applications allow
to freely exchange in an encrypted manner harmful and sensitive material. Computer
forensics experts often come in possession of such material by direct retrieval from a
criminal’s device or by reports of the Internet Watch Foundation. Unfortunately, in many
cases it is very hard to identify the location of the committed crimes in order to intervene
and prosecute. One of the main challenges of recognizing hotels from interior images is that
pictures taken inside of the same hotel but in different rooms might present significant
different visual appearances; while at the same time pictures from different hotels, in
different countries, but belonging to the same chain, might be quite similar as in Fig. 1.1.

Another case for which it might be useful to geolocate interior images is related to fake
news, or also fake ads on websites as Airbnb and Booking, using images from another place
than the one being referenced. With the advent of deep learning the ability to solve image
classification problems improved drastically, thus allowing also to explore the capability of
neural networks to perform content-based indoor geolocation. Even though, it has to be
mentioned that there exist only few works dealing with interior scenes geolocation, while
most of the works in literature focus on outdoor geolocation scene. The reason is that
outdoor scene could present iconic monuments like the Colosseum or the Statue of Liberty,
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Figure 1.1: The image on the left and the central image are taken in the same hotel, while
the right one is taken in another hotel in another geographical location, but which belongs
to the same chain. The image is taken from the Kaggle challenge: The 2021 Hotel-ID to
Combat Human Trafficking Competition Dataset.

landscapes like the Himalayas, Niagara Falls or the Caribbean Sea, that might be easy to
locate. While in case of outdoor scenes sometimes the identification of only one monument
or even a few architectural patterns might be enough to point out the exact location, in
case of interior scenes we need to be more cautious, since a living room of a house in
Madrid could have pictures on the wall of the Tour Eiffel and some other decorations,
based on personal decision which could be misleading. Even if in the globalized world
in which we live, "IKEAfication" of furniture has penetrated urban and rural regions all
over the globe, making extremely difficult to understand the correct location of interior
scenes. Xi Liu et al. in [19], show that it is still possible to cluster patterns and regional
cultural decorative behaviour.

We argue that there are many decorative and structural patterns, which when observed
jointly are strictly correlated to the geographical location and that it is possible to learn
these features which are helpful to distinguish one location from another. For example in
Fig. 1.2 we observe a danish lamp (Louis Poulsen), a mouse pad with Hebrew characters
which might be misleading, but if we look at the tablecloth, the floor and some of the
pictures on the wall we might guess that this is a living room of an Italian house since
there are no similar floors, combined with these types of furniture and walls of this size
in Israely or Danish houses. The aim of this work is to develop a tool to facilitate
geolocating indoor pictures, providing a list of predictions at different granularity levels,
such as: Continent, Country and City. In addition, to make more useful and interpretable
the predictions of our model, we also employed some explanatory techniques capable of
highlighting discriminating information in the geolocation process.
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Figure 1.2: The image is taken inside of a house located in Rome. There are many
elements that may suggest that this is an Italian house, but just as many that may lead,
especially for an inexperienced eye, to commit a mistake when trying to locate this image.
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This chapter is meant to give a brief introduction about the Deep Learning concepts,
architectures and previous works on image geolocation that allowed us to develop our
entire framework. We will start by introducing some basic concepts about Convolutional
Neural Networks (CNN) for image classification to then move to the most recent Vision
Transformers for image classification. We will explain also different approaches for visual
explanations and some of the most important works done for image geolocation, even
though most of them were meant to solve the outdoor geolocation problem, they still
serve as inspirations to the development of our model for indoor geolocation.

2.1. Image Classification

In our work we decided to tackle the indoor geolocation task as a classification problem.
For this reason we will present a brief introduction on the ideas behind most of the state-
of-the-art deep learning architectures for image classification. We can recognize two dates
as "revolutionary" for the world of image classification: the first one is 2012, with the
introduction of AlexNet [17] which significantly outperformed all the prior competitors
on the ImageNet [8] Large Scale Visual Recognition Challenge (ILSVRC), where software
programs compete to correctly classify and detect objects and scenes. Even though the
first CNN was introduced in 1998 (LeNet [18]), AlexNet is deeper, with more filters per
layer, and with stacked convolutional layers, more similarly to current CNNs.
The second important date is 2020 with the revolutionary publication of the Vision Trans-
former (ViT) expanding the transformer adoption from Natural Language Processing
(NLP) to the world of computer vision, using self-attention on image patches instead of
textual tokens.

2.1.1. Convolutional Neural Networks for Image Classification

The goal of this chapter is to describe the mathematical tools that Convolutional Neural
Networks exploit and then give a description of the whole architecture and functioning of
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a CNN.
In deep learning, CNN is a special class of multi-layer neural networks designed to rec-
ognize visual patterns directly from pixel images and then use the extracted information
in order to give some final predictions. The general scheme of a CNN is divided into two
main building blocks:

• Feature extractor, characterized by the alternation of convolutional layers alter-
nated by pooling operations to extract relevant information from the image.

• Fully Connected Classifier, the incoming features information from previous
blocks are flattened into a one dimensional vector fed to a fully connected network.
The fully connected network is made of dense layers with non linear activation
functions, ReLU [1] or s-shaped functions, and at the end a final layer which assigns
the respective probabilities to each class.

A general structure of a CNN is presented in Figure 2.1.

Feature extractor (CNN)

A convolutional layer performs convolution between an image and a kernel (filter) whose
weights are learned via back-propagation. Before entering deeper into the explanation
of convolutional layer, we need to understand what is the mathematical idea behind a
convolution operation and how it works. A convolution is an operation, typically denoted
with an asterisk, between two functions f and g as reported in the following equation:

h(t) = (g ∗ f)(t) (2.1)

The output of a convolution, h represents the way the function g influences the function
f . In the deep learning framework the function f is referred to as the input and g as
the kernel, while the output h is usually called feature map. When the functions are
defined over a continuous interval, the convolution operation in one dimension is defined
as follows:

h(t) =

∫
f(a) · g(t− a)da (2.2)

Since in our case the functions are defined over a discrete interval, image pixel grid, the
convolution is a discrete convolution.

h(t) =
∑
a

f(a) · g(t− a) (2.3)
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Since color images (RGB) are 3-dimensional matrices, we can express the input image as:
I(i, j, k) and the kernel as K(i, j, k) thus the convolution of K over I is given by:

S(i, j, k) = (I ∗K)(i, j, k) =
∑
m

∑
n

∑
p

I(m,n, p)K(i−m, j − n, k − p) (2.4)

The output function S(i, j, k) will still be an RGB image, but its pixel will be manipulated
as intended by the kernel K, see Fig.2.2.

Figure 2.1: General structure of a CNN 1.

Figure 2.2: Convolution operation picture taken from [2]. On the right-hand side of the
image it is possible to see how each kernel applied on the input image (left) generates a
new representation of the output independently of the other kernels.

Stacking multiple convolutional layers in CNNs allows to gradually extract useful patterns
to be used later for the desired classification task. The first block of filters that operate
directly on the raw pixel values will learn to extract low-level features, such as edges, lines
and simple patterns that are discriminative to describe data. This process continues until
very deep convolutional layers extract high-level semantic features as faces, animals and
so on.

1Source: https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html

https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
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In CNNs the convolution operation is applied over the input tensor (array) according to
the number of kernels stored inside the convolutional layer.
All the values of the kernels are trainable, that is to say they change through time when
the model is learning via back-propagation, so to maximize the performance for the final
prediction task.
One of the biggest limitations of the feature maps output of convolutional layers is that
they store the precise position of features in the input. Thus if small movements, like
rotation, shifting or cropping, are applied on the input, the result after the same convo-
lutional layer will produce a different feature map. To avoid this problem a rather used
approach from signal theory, called down sampling, is adopted in this framework. The
idea, in signal theory, is to create a lower resolution version of the input signal which
still contains the important structural elements. In order to reduce the spatial size of the
output volume of a convolutional layer, CNN adopts pooling layers. More specifically,
an s-shaped differentiable activation function (e.g. ReLU [1]) is applied to the feature
maps output of the convolutional layer, and just then a pooling layer is adopted to create
a new set of the same number of input feature maps of a reduced size.

Pooling Layers

The Pooling layer operates independently on every depth slice of the input and resizes it
spatially. Some of the most popular pooling operations are: Max-Pooling and Average
Pooling. The Max pooling down-samples the input representation by applying a max
filter to non overlapping regions (patches) of a specified size. Such operation is shown in
Fig.2.3. Average pooling, on the other hand, consists in calculating the average for each
patch of the feature map.

Figure 2.3: Max-Pooling operation with a 2× 2 filter.
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Fully Connected Classifier

The patterns learned by the feature extractor are then flattened into a one dimensional
vector to be fed to a Fully Connected Neural Network (FCNN) also called Multi-layer
Perceptron (MLP), see Fig.2.5, made of dense layers whose units are called Neurons,
endowed with non linear s-shaped differentiable activation functions as ReLU, Leaky
ReLU, Tanh or other functions as the ones presented in Fig.2.4.

The reason why activation fucntions need to be differentiable is that learning is performed
via back-propagation, i.e: propagate back the error so as to pass through all the weights
and correct them in order to predict the correct output. Back-propagation is based on
gradient descent optimisation algorithm which requires differentiable functions.
One of the main advantages of the ReLU function with respect to Sigmoid and Tanh
is that it is easy to optimize, thanks to its similarity to linear units. Moreover, its
derivatives remain large whenever the unit is active (greater than zero) while it is zero
in any other case, speeding up the gradient computation and, subsequently, the neural
network backpropagation.
More recently, researchers have designed new variations of the ReLU functions, such as
the Leaky ReLU that avoids zero values which could affect the gradient computation [11].

Figure 2.4: Cartesian representation of some S-shaped activation functions, taken from 2.

Neurons are grouped together inside dense layers, identified by their parameters: weights
w and biases b, both trainable. Dense means that each neuron in input is connected to
all the neurons in the output layer.

Given an input x, representing all the neurons in the input layer and a bias b, the output
2Source: https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
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of a neuron in the consecutive dense layer can be described as follow:

h(x) = g(W t ∗ x+ b) (2.5)

where g can represent for example the ReLU function, applied to an affine transformation
of the input values.
As previously mentioned, dense layers are fully-connected, thus each unit in the input is
connected to all the units in the consecutive layer, and each neuron in the output receives
a weighted sum of all inputs coming from the previous set of neurons.

Figure 2.5: Fully-connected network structure from [26].

In a multi-class classification problem, the last layer usually adopts a Softmax function
in order to output the respective probabilities for each class. A Softmax function is a
differentiable function whose output could be interpreted as the probability over a discrete
variable with n possible values. If we consider the output of a linear layer z, the Softmax
function can be expressed as:

Softmax(zi) =
ezi∑n
j=1 e

zj
(2.6)
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2.2. Attention Models

In 2017 a great advance in the Neural Machine Translation (NMT) was achieved with the
paper "Attention is all you Need" [37] which presented a new architecture: the Trans-
former, on which most of the modern NLP models, like GPT-2 [27], and BERT [9], are
based. The Transformer is the first transduction model relying solely on self-attention to
compute representations of its input and output without using sequence-aligned Recurrent
neural networks (RNNs) or convolutions. Before entering deeper into the architecture of
the Transformer, we give a brief explanation of the original idea of the attention mech-
anism and some of its most popular variants like self-attention. The original idea of
the attention mechanism was presented by Bahdanau et al. in the paper [3], to address
the performance bottleneck of conventional encoder-decoder architectures, achieving sig-
nificant improvements over the conventional approach used so far for NMT. Bahdanau
attention mechanism can be summarized as follows.
Given an input sequence x of length n and a target sequence y of length m in an NMT
problem:

x = [x1, x2, ..., xn]

y = [y1, y2, ..., yn]
(2.7)

assume our NMT architecture is an encoder-decoder, hi is an annotation (the encoder
hidden states), with i = 1, ..., n, hi contains information from all the words forming the
input sentence with a strong focus on the i−th word among the n words in input, call st−1

the hidden decoder state at previous state. The decoder uses an attention mechanism in
order to produce the target words by focusing on the most relevant information coming
from the source sentence. The decoder thus takes each hidden encoder state (annotation)
and feeds it to an alignment model, a(·), jointly with the previous hidden decoder state
st−1 generating an attention score:

et,i = a(st−1, hi) = vTa tanh(Wa[st;hi]) (2.8)

et,i is an attention score that scores how well hi and st−1 match. st−1 and hi are combined
by means of an additional operation, from here the name "additive attention". This can
be implemented by applying a weight matrix over the concatenated vectors st−1 and hi,
and vT is a weight vector. The alignment model is parametrized as a Feedforward neural
network (FFN) and trained with the remaining system components. In order to normalize
the annotation values to a range between 0 and 1, then a Softmax function is performed
over each attention score to obtain the corresponding weight value.
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αt,i = Softmax(et,i) =
exp(a(st−1, hi))∑n
i′=1 exp(a(st−1, hi))

(2.9)

αt,i is a score which explains how well yt and xi are aligned and et,i is an attention score
that scores how well hi and st−1 match:

"Intuitively, this implements a mechanism of attention in the decoder. The
decoder decides parts of the source sentence to pay attention to. By letting the
decoder have an attention mechanism, we relieve the encoder from the burden
of having to encode all information in the source sentence into a fixed-length
vector [3]."

The final stage is the computation of the context vector as ct where:

ct =
n∑

i=1

αt,ihi (2.10)

Then, the context vector is fed to the decoder together with the previous hidden decoder
state, st−1 and the previous output, yt−1, to compute the final output, st = f(st−1, yt−1, ct).
The whole procedure is repeated until the end of the sequence.

We present below some different types of attention computation originated from the orig-
inal attention mechanism, which are essential to understand our work.

• Self-Attention: relates different positions of the same input sequence in order to
compute a representation of it, differently from the original additional attention
which relates the alignment between input and output positions in a sequence. This
kind of attention is widely used not only in NLP problems, but also in computer
vision and is the basic ingredient for the Transformer architecture.

• Hard vs Soft Attention: are two different types of attention mechanism intro-
duced in [38] for an image captioning problem, in order to understand on which
parts of the image to focus to produce meaningful captions. The distinction be-
tween hard and soft attention consists in whether the attention block has access
to the whole image or only to a patch. In soft attention, the alignment weights
are learned by taking into consideration the whole image, so that the computation
is smooth and differentiable, on the other hand the main limitation is that if the
input is large, it will be computationally intensive to compute the soft attention.
Hard attention, on the other side, processes only one patch of the image at a time,
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allowing faster computations, but requiring a more sophisticated training, due to
its non differentiable nature.

• Global vs Local Attention: In Global attention, analogously to soft attention,
the output of the attention block is computed taking into account every source state
from the encoder and all decoder states prior to the current state. While in Local
attention, more similarly to hard attention, only a window of positions from the
encoder are used to compute the output, but the advantage with respect to hard
attention is that local attention is differentiable. A visual idea of the two different
mechanism is shown in Fig. 2.6 taken from the original paper by Loung et al. in
[23] were these two different kinds of attention mechanism were presented.

Figure 2.6: Image taken from [23]. Local attention model on the left: it first predicts a
single aligned position pt for the current target word, then a new window centered around
the source position pt is used to compute a context vector ct and a weighted average
of the source hidden states inside the fixed window size. The weights at are inferred
from current target state ht and the source states h̄s which are in the window. Global
attention model on the right: at each time-step t, the model infers a variable-length
alignment weight vector at, based con current target state ht and all source states h̄s.
Finally a vector ct is computed as the weighted average, according to at over all the
source states.

2.2.1. Transformer

The Transformer was introduced in order to overcome the structural limitations of prior
architectures like Recurrent Neural Networks (RNNs) when dealing with long sequences
of text. Differently from RNNs, transformers do not necessarily process the data in order.
Rather, the attention mechanism provides context for any position in the input sequence.
Assuming that the input data is a natural language sentence, the transformer does not
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need to process the beginning of the sentence before the end, rather, it identifies the
context that confers meaning to each word in the sentence. This feature allows for more
parallelization, which is precluded by the sequential nature of RNNs, and thus reduces
training time, allowing to process huge corpus of text in a more efficient way. So, instead
of having a recurrent encoder and decoder, the Transformer architecture is mainly built
by a stack of encoders and followed by a stack of decoders. Assume the input sequence is
a sequence of words, first the words are embedded by an embedding algorithm and then
the embedded vectors are passed as input to the first encoder, then encoded information
flows through the stack of encoders until it reaches the encoder on top of the stack, from
which it is shared to all the decoders, see Fig. 2.7.

Figure 2.7: Macro-view of the Transformer architecture, the paper [37] proposed stacks
of 6 encoders and decoders. The image is taken from 3.

All the encoders and decoders present the same identical structure, which is the one
presented in Fig. 2.8.
The encoder’s inputs first flow through a self-attention layer which helps the encoder look
at other words in the input sentence when encoding each specific word. We will give a
more detailed explanation of self-attention afterwards. The outputs of the self-attention
layer are then fed to a feedforward neural network (FFN). The decoder has both those
layers, with in addition between them an extra encoder-decoder attention layer that helps
the decoder to focus on relevant parts of the input sentence (similarly to what attention
does in seq2seq models). We now enter a little bit more into details about the components

3Source: https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
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Figure 2.8: An encoder block and the respective decoder to which encoded information
are passed [37].

of the encoder-decoder structure. As mentioned above, the very first step before passing
the input sequence to the first encoder is to turn each input word into a vector via an
embedding algorithm. In order to take into account the order of a word in a sequence,
the transformer adds a vector to each input embedding, called positional encoding. These
vectors follow a specific pattern that the model learns, which helps it determine the
position of each word, or the distance between different words in the sequence. The idea
is that incorporating this information to the embeddings can provide meaningful distances
between the embedded words. Then, in order to compute self-attention, three vectors of
smaller dimension are generated from each of the encoder’s input vectors (the embedding
of each word): a Query vector, a Key vector, and a Value vector. These vectors
are created by multiplying the embedding by three matrices that we trained during the
training process. The actual implementation is not made of singular input vectors x but
of matrices packing all the input embedded vectors X, which when multiplied by the
respective weight matrices W q, W k, W v give as output respectively: the Query, Key and
Value matrices, see Fig. 2.9. Self attention is then computed as a scaled dot product of
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the matrices, as presented in the equation:

Z = Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2.11)

Where dk is the square root of the key vectors, the division is made in order to have more
stable gradients. The final Softmax is used to normalize the scores.

Figure 2.9: Assume we have two input words embedded into two vectors of same length
and then merged in the two rows of the matrix X, we then multiply it by the weight
matrices W q, W k, W v that we have trained and obtain the Q, K and V vectors 3.

Moreover, the paper proposes to use a mechanism called: "Multi-Head Attention"
which consists in performing multiple times - in parallel - the self-attention block as
presented in Figure 2.10. The result is an improvement in the model ability to focus on
different positions of the input sequence, and have multiple outputs which are different
representation in different representation sub-spaces.
The consecutive block, which is a feed-forward layer, is not expecting different matrices

for each word, it’s expecting only a single matrix for each word. So, we concatenate for
each word the multiple output coming from the multi-head attention into a single matrix,
and then multiply by an additional weight matrix W o in order to obtain a single output
matrix Z for each word, which captures the information coming from all the attention
heads. A visual description of the presented schema is presented in Fig. 2.11.

3Source: https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
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Figure 2.10: Multi-Head Self Attention. Image taken from [37].

Figure 2.11: Processing of the output of the Multi-Head self attention in order to feed
the FFN 3.

As it can be seen in Fig. 2.8, each sub-layer in an encoder block presents a residual
connection, followed by a layer-normalization step. The same is also proposed in the
Decoder blocks.

To conclude, the output of the top encoder is finally transformed into a set of attention
vectors K and V which are shared with the “encoder-decoder attention” layer of the
decoder, in order to focus on appropriate places in the input sequence. Each step in
the decoding phase outputs an element from the output sequence. The following steps
repeat the process until a special symbol is reached, indicating the transformer decoder
has completed its output. Just like in the encoder inputs, also on the embedded decoder
inputs we add a positional encoding to keep track of the position of each word.

3Source: https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
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There is a small difference between the first self-attention layer in the decoder with respect
to the encoder. In the decoder, in fact, future positions of the sequence are masked, before
doing the Softmax calculation, so that self-attention is performed only between the word
in the current position and earlier positions in the sequence.

The “encoder-decoder Attention” layer works just like multi-head self-attention, except
that it creates its Queries matrix from the previous layer, while the Keys and Values
matrix are provided by the output of the encoder stack.
Then, to make the final prediction, the output of the decoder is passed through a final
linear layer which projects the output vector into a larger vector (of size of the vocabulary),
the logit vector. Finally a Softmax computation is performed over the logit vector in order
to have scores which are interpretable in terms of probability, so to pick the cell with the
highest probability.

2.2.2. Vision Transformer

Inspired by the Transformer huge success in NLP, Dosovitskiy and Houlsby together with
Google Research Brain Team recently proposed in "An Image is worth 16X16 words:
Transformers for Image Recognition at Scale" [10] to apply a standard Transformer di-
rectly to images in order to replace CNNs for computer vision tasks. We present a short
overview of the Vision Transformer (ViT) architecture, see Fig. 2.12, which mainly can
be subdivided into the following fundamental parts:

1. Split the input image into fixed-size patches

2. Flatten the patches

3. Create lower -dimensional linear embeddings from these flattened image patches

4. Include positional embeddings

5. Feed the sequence as an input to a Transformer encoder identical to the one pre-
sented in [37] (whose mechanism we explained in the previous subsection).

6. Pre-train the ViT model with image labels, (fully supervised on a big dataset)

7. Finetune on the downstream dataset for image classification.

The idea is to treat the image patches as a sequence of tokens as we do with words in NLP
problems. Differently from the original Transformer where there are 6 stacked encoders ,
in ViT the number of proposed encoder blocks varies from a minimum of 12 in the ViT-
Base model, to 32 in the ViT-Huge model. There is no decoder in the ViT architecture,
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only the encoder part of the Transformer are used, and on top of the stack of all the
encoders an extra linear layer is added, MLP head, for the final classification.

One of the drawbacks of ViT is that in order to achieve state-of-the-art results on image
recognition benchmarks as (ImageNet, CIFAR-100, etc.) it has to be pre-trained on large
amounts of data, and then fine-tuned. When dealing directly with small datasets, in fact,
the results are slightly worst with respect to CNNs like ResNet or EfficientNet. The reason
this happens is that Transformers lack some of the inductive biases inherent to CNNs,
such as translation invariance and locality, and therefore do not generalize well enough
when trained on insufficient amounts of data. While when trained on large datasets ViT
beats most state-of-the-art architecture on multiple image recognition benchmarks. This
is due to the fact that large scale training trumps inductive bias.

Figure 2.12: ViT overview taken from [10]. The input image is split into fixed-size patches
which are linearly embedded with additional position embeddings. Then the resulting
sequence of vectors is fed to a standard Transformer encoder. In order to perform classifi-
cation, an extra learnable “classification token” is added to the sequence. The illustration
of the Transformer encoder on the right is inspired by Vaswani et al. [37].

2.2.3. Swin Transformer Architecture

One of the biggest challenges in adapting Transformers from language to vision is due to
the computational complexity of self-attention which is quadratic to image size. Models
like ViT, for example, compute global self-attention on the processed images, this lead
to quadratic complexity with respect to the number of tokens, making it unsuitable in
case of large images or for dense prediction like segmentation problems, which requires
a huge set of tokens. To overcome this problem Ze Liu et al. presented in [20] a new
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vision Transformer called Swin Transformer. The key feature of the Swin Transformer is
that it computes self-attention within local non overlapping windows which are shifting
between consecutive layers. This results in a more efficient implementation with respect
to previous vision transformers which, instead, conduct global self-attention (computing
the relationship between a token and all the other tokens).

The Swin Transformer has four main components:

• Patch Partition: Th input RGB image is split into non-overlapping patches. Each
patch is considered as a “token”. The patch size is of 4×4 thus the feature dimension
of each patch is 4× 4× 3 = 48.

• Linear Embedding: it is applied on the raw valued feature obtained by the Patch
Partitioning to project it on an arbitrary dimension C which denotes the size or
capacity of our model. (We decided to use the Swin-B version where C is = 128)

• Patch Merging: reduce the number of tokens, as the network gets deeper, in order
to have a hierarchical representation.(The first patch merging layer for example
concatenates the features by groups of 2× 2 neighboring patches, and then applies
a linear layer on the 4C-dimensional concatenated features reducing the output
dimension to 2C).

• Swin Transformer Block: is replacing the standard multi-head self attention
(MSA) module of a Transformer block by a module based on window multi-head
self attention (W-MSA) and a shifted windows multi-head self attention (SW-MSA),
with other layers kept the same. As illustrated in Figure 3(b). The idea is to divide
the image into windows (of M × M patches) and perform self attention between
patches inside of every window. In a second consecutive block the attention windows
are shifted with respect to the previous layer, like in strided convolutions, such that
some patches that landed into separate windows in the previous layer and couldn’t
communicate, fall together in a new window on which self-attention is performed,
allowing them to communicate, as it can be observed in Fig. 2.13. This is the real
novelty introduced by the Swin transformer which tries to mimic the dynamic of
CNNs where there is a kernel sliding along the image, differently from previous
vision transformers which just computes global self-attention.

In Figure 2.14 we present an image taken from the original paper [20] of the Swin
Transformer showing us the whole architecture of the Swin-T model.
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Figure 2.13: On the left the red windows within the first Swin Transformer Block performs
self- attention, on the right the shifted windows in the consecutive layer on which the
shifted self attention will be performed. The image was taken from [20].

Figure 2.14: In the picture, taken from [20], it is possible to observe the whole architecture
of the Swin-T model.

2.3. Semantic Segmentation

In this section we present a brief overview of semantic image segmentation and introduce
some of the most commonly used architectures for this task. Image segmentation is a
computer vision task in which given an image I we want to label each pixel (r, c) to a
corresponding class of what is being represented. The result of segmentation is a map of
labels containing in each pixel the estimated class as in Fig. 2.15. Notice that in semantic
segmentation we don’t separate different instances belonging to the same class, this is
done in another kind of problem known as instance segmentation.

The training set for a semantic image segmentation problem is made of pairs (I,GT )

where GT is a pixel-wise annotated image over the categories in the picture as in Fig. 2.16.
Assume the input image is an RGB image (h × w × 3) the goal of the prediction is to
output a segmentation map where each pixel contains a class label represented as an
integer (h× w × 1).

The target values can be created by one-hot encoding the class labels, creating an output
channel for each of the possible classes. Then the final prediction can be collapsed into a
segmentation map by taking the argmax of each depth-wise pixel vector.
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Figure 2.15: An example of semantic segmentation. The goal is to predict class labels for
each pixel in the image taken from [21].

Figure 2.16: An image taken from the Microsoft COCO dataset and the corresponding
annotated categories for training.

Constructing an architecture for Semantic Image Segmentation

Recall that for Deep CNNs the first convolutional layers are used to learn low-level con-
cepts while the deeper convolutional layers extract more high-level semantic information.
Thus, in order to preserve expressiveness, we need to increase the number of feature maps
as we go deeper in the network, while for image classification this is not a problem since
in deeper layers we augment the number of feature maps but we also downsample them
through pooling operations. This is because we just care about what is in the image but
not where. On the other side, in semantic segmentation we need to care also about where
in order to produce a full-resolution semantic prediction. One of the most general ideas
for image segmentation models is to build an architecture based on an encoder-decoder
structure. In the encoder the spatial resolution of the input is reduced (downsampled)
while extracting relevant high-level information in order to distinguish the different cate-
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gories in the image. Instead, the Decoder part is retrieving the full resolution of the image
through upsampling the feature representations provided by the encoder, see Fig. 2.17.

Figure 2.17: An image taken from [21]. A Fully convolutional network made of an encoder
and decoder.

There are various approaches that could be used to upsample the resolution of the feature
maps in the decoder, as for example: Nearest Neighbor, "Bed of Nails", Max Unpooling,
Transpose convolutions etc. We will describe briefly only transpose convolution, since it
is the most popular approach due the fact that it allows to learn the upsampling filter
weights. In a transpose convolution we take a single value from the input and multiply all
of the weights in out filter by this value, projecting these weighted values into the output
feature map. In another perspective, as in Fig. 2.18, transpose convolution can be seen
as a traditional convolution after having upsampled the input image.

Figure 2.18: The input image (on the bottom)is upsampled in order to explain how
a transpose convolution (filter in gray, output in green) works. The image was taken
from 4.

The approach of using a fully convolutional network trained end-to-end, for the task
of image segmentation was introduced by Long et al. in [21], adapting CNNs used for

4Source: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic
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classification to serve as the encoder module of the network. Then append a decoder
module made of transposed convolutional layers to upsample the coarse feature maps into
a full-resolution segmentation map. However, this initial proposal struggled to produce
fine-grained segmentations.
As explained by Long et al. in their paper [21] : "Semantic segmentation faces an
inherent tension between semantics and location: global information resolves what while
local information resolves where(...). Combining fine layers and coarse layers lets the
model make local predictions that respect global structure." For this reason they decided
to introduce skip connections which connect the output of the upsampling layers in
the decoder with the corresponding pooling output from the encoder and sum these two
feature maps as it is presented in Fig. 2.19. The skip connections should provide a
sufficient quantity of details in order to reconstruct accurate fine-grained segmentations.

Figure 2.19: Skip connections combining coarse high layer information with fine low layer
information. Image taken from [21].

In [29] Ronneberger et al. proposed a new architecture, U-Net expanding the capacity
of the decoder module, see Fig. 2.20. U-Net doesn’t have any fully connected layers, it is
made of:

• A contracting path.

• An expansive path (which is symmetric to the contracting path).

Aggregation is performed through concatenation and then convolution is performed to
mix different feature maps in a learnable manner.

Another important step in an image segmentation problem is to define an appropriate
loss function. One of the most commonly adopted loss function for this task is a pixel-
wise cross entropy loss examining each pixel individually, comparing the class predictions
to the one-hot encoded target vector. This could be problematic in case of unbalanced
classes in the image, since cross entropy loss is essentially asserting equal learning to each
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Figure 2.20: U-Net architecture taken from [29].

pixel in the image, thus training could be dominated by the most frequent class. In [21],
Long et al. propose weighting this loss for each output channel in order to counteract
eventual class imbalance situations.

Another interesting proposal was made by Ronneberger et al. in [29], introducing a higher
weight at the border of segmented objects. This loss weighting scheme allowed U-Net to
segment cells in biomedical images in a discontinuous fashion such that individual cells
may be easily identified within the binary segmentation map.

Spatial pyramid pooling module or encode-decoder structure are used in deep neural
networks for semantic segmentation tasks. The former networks are able to encode multi-
scale contextual information by probing the incoming features with filters or pooling
operations at multiple rates and multiple effective fields-of-view, while the latter networks
can capture sharper object boundaries by gradually recovering the spatial information.
In the next subsection we present an architecture which combines the advantages from
both methods.

2.3.1. DeepLabv3+

DeepLabv3+ [6] is a semantic segmentation architecture based on previous DeepLabv3
and adding a simple yet effective decoder module, Fig. 2.21, to enhance segmentation
results.

We give a short explanation about the main components of DeepLabv3+:

• Atrous Separable Convolution: can be decomposed into two main concepts:
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Figure 2.21: The architectures of DeepLabv3 is presented in picture (a), it employs a
spatial pyramid pooling module, in picture (b) an encoder-decoder structure is presented.
The proposed model, DeepLabv3+, makes use of (a) and (b) containing rich semantic
information from the encoder module, while detailed object boundaries are recovered by
the additional introduced decoder module. The encoder module allows to extract features
at an arbitrary resolution via atrous convolution. The image was taken from [6].

1. Atrous Convolution: introduces another parameter to traditional convolu-
tional layers called the dilation rate, which defines a spacing between the values
in a kernel. E.g: a 3×3 kernel with a dilation rate of 2 will have the same field
of view of a 5× 5 kernel, while only using 9 parameters. The result is a wider
field of view, as it can be seen in Figure 2.22 at the same computational cost.

2. Depth separable convolution: integrates ordinary convolution into two
steps: The first step is to do convolution for each channel separately, which is
the depthwise (a) in Figure 2.23. The second step is to combine the convolu-
tion results of the first step with 1 × 1 convolution and channel, which is the
pointwise in (b) in Figure 2.23. In other words, the first step consists of per-
forming convolution on each channel, so that the number of channels remains
unchanged. The second step uses 1 × 1 convolution to adjust the number of
channels reducing drastically the computation complexity.

To resume, Atrous Separable Convolution mentioned in DeepLab v3+ refers to
changing the first step of deep separable convolution to atrous (dilation) convolution.

• Encoder-Decoder Architecture: can also be decomposed into two main compo-
nents:

1. DeepLabv3 as Encoder. It adopts an output stride = 16 (or 8) for denser
5Source:https://towardsdatascience.com/review-deeplabv3-atrous-convolution-

semantic-segmentation-6d818bfd1d74

Source: https://towardsdatascience.com/review-deeplabv3-atrous-convolution-semantic-segmentation-6d818bfd1d74
Source: https://towardsdatascience.com/review-deeplabv3-atrous-convolution-semantic-segmentation-6d818bfd1d74
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Figure 2.22: Atrous convolutions with different rates 5

Figure 2.23: In this picture, taken from [6], a 3 × 3 Depthwise separable convolution
decomposes a standard convolution into (a) a depthwise convolution (applying a single
filter for each input channel) and (b) a pointwise convolution (combining the outputs from
depthwise convolution across channels). The Atrous separable convolution where atrous
convolution is adopted in the depthwise convolution is shown in (c) with rate = 2.

feature extraction by removing the striding in the last one (or two) block(s)
and applying the atrous convolution correspondingly. Additionally, DeepLabv3
augments the Atrous Spatial Pyramid Pooling module, which probes convolu-
tional features at multiple scales by applying atrous convolution of different
rates, with the image-level features.

2. A Decoder responsible of recovering object boundaries. The encoder features
are first bilinearly upsampled by a factor of 4 and then concatenated with the
corresponding low-level features. A 1× 1 convolution on the low-level features
is performed before concatenation to reduce the number of channels, since the
corresponding low-level features usually contain a large number of channels
(e.g., 256 or 512) which may outweigh the importance of the rich encoder
features. After the concatenation, a few 3 × 3 convolutions are applied to
refine the features followed by another simple bilinear upsampling by a factor
of 4.

• Modified Aligned Xception: pretrained on ImageNet1K is employed to extract
dense feature maps by atorus convolution. The original Xception model was in-
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troduced for Image classification, while at a later time a modified version called
Aligned Xception was adopted in Deformable Convolutional Network (DCN) for
object detection.

Most of the novelties introduced by Aligned Xception, in blue color in Fig. 2.24,
consist of replacing some of the max pooling operations with separable convolutions
in the entry flow. The number of repeating is increased from 8 to 16 in the middle
flow. An additional convolutional layer is added in the exit flow.

Figure 2.24: The blue text represents the modification introduced by Aligned Xception
with respect to the original Xception architecture 6.

Modified Aligned Xception is a deeper version of the previous Aligned Xception
where all the max pooling operations are replaced by depthwise separable atrous
convolutions. Extra batch normalization and ReLU activation layer are added after
each 3× 3 depthwise convolution as it can be seen in Figure 2.25.

2.4. Explainable AI

The ability to correctly interpret a prediction model’s output is extremely important. It
engenders appropriate user trust, provides insight into how a model may be improved,
and supports understanding of the process being modeled.

6Source:https://sh-tsang.medium.com/review-deeplabv3-atrous-separable-convolution-
semantic-segmentation-a625f6e83b90

Source:https://sh-tsang.medium.com/review-deeplabv3-atrous-separable-convolution-semantic-segmentation-a625f6e83b90
Source:https://sh-tsang.medium.com/review-deeplabv3-atrous-separable-convolution-semantic-segmentation-a625f6e83b90
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Figure 2.25: Architecture of the Modified Aligned Xception model. The image was taken
from [6].

2.4.1. SHAP

Before explaining how SHAP works we will first explain the mathematical foundation it
is built on. Shapley value was introduced in 1951 by Lloyd Shapley as a way of providing
a fair solution to the following question: "If we have a coalition C that collaborates to
produce a value V , how much did each individual member contribute to the final value?".
Given a set N of n players and a function v that maps subsets of players to a real value:
v : 2n −→ R, with v(∅) = 0; If S is a coalition of players, v(S) represents the worth of the
coalition, which is the total expected payout that can be obtained by the members of S
in cooperation. Assuming all the players in the coalition collaborate, Shapley value is a
way to distribute the total gains (payout) to the players, yielding a "fair" distribution in
the sense that it is the only distribution with certain desirable properties listed below.

ϕi(v) =
∑

S⊆N\i

|S|!(n− |S| − 1)!

n!
(v(S ∪ i)− v(S)) (2.12)

Where the Shapley value ϕi(v) is the amount that player i gets given a coalition game
(v,N), n is the total number of players and the sum is done over all the subsets S of
N not containing player i. Moving from game theory to a Machine Learning framework,
we can interpret the features of a data instance as players in a coalition, thus, given an
input instance x, the goal of SHAP [22], is to explain the prediction by computing the
contribution of each feature to the prediction. A player can be an individual feature value
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or also a group of feature values; in case of images, for example, pixels can be grouped to
superpixels and the prediction distributed among them.
SHAP represents the Shapley value as an additive feature attribution method (a linear
model). For complex models, such as deep neural networks, we cannot use the original
model as its own best explanation, as we could do in case of a simple linear regression.
Instead, we must use a simpler surrogate explanation model, which could be any inter-
pretable approximation of the original model. Call g the explanation model:

g(z′) = ϕ0 +
M∑
j=1

ϕjz
′
j (2.13)

z′ ∈ {0, 1}M is the coalition vector (also called simplified features e.g. in case of images),
where M is the maximum coalition size and ϕj ∈ R is the Shapley value for a feature j.
In the coalition vector, an entry of 1 means that the corresponding feature value is
“present” while 0 mean that it is “absent”, as when we compute Shapley values, where
we simulate that only some players (feature values) are playing (“present”) and some are
not (“absent”). In the [22], you will find discrepancies between SHAP properties and
Shapley properties (Efficiency, Symmetry, Dummy and Additivity). SHAP describes the
following three desirable properties:

1. Local accuracy: f = g(x′) = ϕ0 +
∑M

j=1 ϕjx
′
j, where f is the original model, thus

the explanation model g(x′) matches the original model f(x) when x = h(x′), where
x is the original input to which the simplified feature x′ is mapped via a function h.

2. Missingness: x′ = 0 ⇒ ϕj = 0, which means that a missing feature gets an
attribution of zero.

3. Consistency: Let fx(z
′) = fx(hx(z

′)) and z′\j indicate that z′j = 0. For any teo
models f and f ′ that satisfy:

f ′
x(z

′)− f ′
x(z

′
\j) ≥ fx(z

′)− fx(z
′
\j) (2.14)

for all inputs x′ ∈ 0, 1M then:

ϕj(f
′, x) ≥ ϕj(f, x). (2.15)

The consistency property states that if a model changes so that the marginal contri-
bution of a feature value increases or stays the same (regardless of other features),
the Shapley value also increases or stays the same.
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Young (1985) demonstrated that Shapley values are the only set of values that satisfy three
axioms similar to Local accuracy, Consistency, and another property that is redundant in
this setting. SHAP also satisfies these, since it computes Shapley values. Missingness is
required to adapt the Shapley proofs to the class of additive feature attribution methods.

Interpreting SHAP feature importance values is quite simple: features with large absolute
Shapley values are important. Since we want the global importance, we average the
absolute Shapley values per feature across the data.

2.4.2. Integrated Gradients

Integrated Gradients, [36], is an axiomatic model interpretability algorithm that is used
for measuring attribution of input features to the output of a neural network. It belongs to
the family of Gradient based methods which are based on the gradients with respect to the
input of each layer, computed during backpropagation. These methods often multiply the
gradient by the input activations, as done by Gradient*Input method [31]. Integrated
Gradients in addition takes the derivatives of the value for the predicted class with respect
to the input features. This is done along a straight line from a certain baseline (which
is a representation of an input that reflects the absence of signal, e.g. a black image or
an zero-embedding) to the actual input. In implementations, the Riemann sum is mainly
used to approximate the integral from the baseline to the actual input. We first formalize
the problem of attributing the prediction of a deep neural network to its input features,
followed by a more detailed explanation of Integrated Gradients.

Definition 1. Formally, suppose we have a function F : Rn → [0, 1] that represents a
deep neural network, and an input x = (x1, . . . , xn) ∈ Rn. An attribution of the prediction
at input x relative to a baseline input x′ is a vector AF (x, x

′) = (a1, . . . , an) ∈ Rn where
ai is the contribution of xi to the prediction F (x).

In case of an image classification network, an attribution method could tell us which pixels
of the image were responsible for a certain label being picked.

Remark 1. A common way for humans to perform attribution relies on counterfactual
intuition. When we assign blame to a certain cause we implicitly consider the absence of
the cause as a baseline for comparing outcomes. In a deep network, we model the absence
using a single baseline input. For most deep networks, a natural baseline exists in the
input space where the prediction is neutral. For instance, in object recognition networks,
it is the black image.
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Integrated Gradients design is guided by two axioms which according to the paper [36],
must be satisfied by attribution methods:

1. Sensitivity: An attribution method satisfies Sensitivity(a) if for every input and
baseline that differ in one feature but have different predictions then the differing
feature should be given a non-zero attribution. Sensitivity(b). If the function imple-
mented by the deep network does not depend (mathematically) on some variable,
then the attribution to that variable is always zero.

2. Implementation Invariance: Two networks are functionally equivalent if their
outputs are equal for all inputs, despite having very different implementations.

Notice that if an attribution method fails to satisfy Implementation Invariance, the attri-
butions could be sensitive to unimportant aspects of the models.

We can now define Integrated Gradients as follows :

IntegratedGradsi(x) := (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′)

∂xi

dα (2.16)

Integrated Gradients satisfies an additional axiom which is Completeness, which states
that the attributions sum up to the difference between the output of F at the input x

and the baseline x′.

This is formalized by the following proposition, which instantiates the fundamental the-
orem of calculus for path integrals.

Proposition 2.1. If F : Rn → R is differentiable a.e. then:
∑n

i=1 IntegratedGradsi(x) =

F (x)− F (x′).

In most of the cases it is possible to choose a baseline such that the prediction at the
baseline is near zero. In case of image classification models, the black image baseline
satisfies this property. Integrated Gradients can be visualized by aggregating them along
the color channel and scaling the pixels in the actual image by them as in Fig. 2.26.

2.4.3. Grad-CAM

Grad-CAM [30] is a very popular method for producing post-hoc visual explanations on
an already-trained neural network. It can be thought as a generalization of: CAM (Class
Activation Maps) [43], which is another explanation method used for explaining Neural
Networks with a particular architecture. CAM, in fact, requires an architecture that
replaces the traditional stack of fully connected layers with a Global Average Pooling
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Figure 2.26: A comparison, taken from [36], of Integrated Gradients with gradients at
the image. On the left the original input image, followed by label and Softmax score for
the highest scoring class. On the third column Integrated Gradients are showed and, on
the right of it, visualization of gradients*image. Visualization of Integrated Gradients are
better at reflecting distinctive features of the image.

(GAP) which averages the activations of each feature map (suppose we have h × w ×
d feature maps) and concatenates these averages and outputs them into a 1 × 1 × d

vector(where d corresponds to the number of feature maps). Then, a weighted sum of
this vector is fed to the final Softmax loss layer. An illustration of this architecture
is presented in Fig. 2.27. This approach allows to highlight the important features of
an image for the corresponding classification task by projecting back the weights of the
output on the convolutional feature maps.

Grad-CAM, diversly from CAM, can be used to produce visual explanations on any arbi-
trary CNN architecture. The output produced by Grad-CAM is a "class-discriminative"
localization map i.e. a heathmap where the hot part corresponds to the specific targeted
class. Also for Grad-CAM, the basic idea is to exploit the spatial information which is
preserved through convolutional layers so to identify the parts of an input image which
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Figure 2.27: CAM architecture, taken from the original paper of Zhou et al [43].

mostly influenced the classification decision. As for CAM, Grad-CAM exploits the feature
maps produced by the last convolutional layers of a CNN, which have the best compromise
between high-level semantics and detailed spatial information.

Call yc the logit for class c, before the Softmax, Grad-CAM method can be divided in
three main steps:

1. Compute gradients of yc with respect to the feature map activations Ak with k =

0, . . . , N and N = number of feature maps in the targeted layer. Assuming that
each feature map has a shape h × w, the gradients: ∂yc

∂Ak , have the same shape as
the feature maps. So in case we have N feature maps in the targeted layer we will
have h× w ×N gradients at the end of this step.

2. Calculate α weights by averaging the gradients. For each feature map we perform
a GAP on the gradients over the width and height dimension, so to obtain the
following neuron importance weights: αc

k = 1
z

∑
i

∑
j

∂yc

∂Ak
i,j

with i = 0, . . . , w and
j = 0, . . . , h. So, at the end of this step we end up with k different α coefficients,
one for each feature map.

3. Calculate The final Grad-CAM heatmap. It is produced via a weighted combination
of the feature map activations Ak where the weights are the αc

k (While in CAM the
weights applied to Ak are wk of the final fully connected layer, here we use the
αk). Then we apply a ReLU function on the linear combination to emphasize only
positive values and turn negatives to 0. Lc

GradCAM = ReLU(
∑

k α
c
kA

k).

In Fig. 2.28 we present some results of Grad-CAM taken from the paper [30] by Selvaraju
et al.
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Figure 2.28: In (a) the Original image with a cat and a dog. In (b) Guided Backpropa-
gation is shown, which highlights all contributing features. (c, f) present Grad-CAM for
the targeted Cat category: localizes class-discriminative regions. In (d) a combination
of both Grad-CAM and Guided Backpropagation. (b) and (c) gives Guided Grad-CAM,
which gives high-resolution class-discriminative visualizations. In (e) occlusion sensitivity
method is shown. (c,i) are Grad-CAM visualizations for VGG16. (f, l) are Grad-CAM
visualizations for ResNet-18 layer. Red regions in (c, f, i, l) correspond to high score
while in (e, k), which uses occlusion sensitivity, blue regions correspond to evidence for
the class.

2.5. Image Geolocation

The image geolocation problem is a very challenging task which began to arouse particular
interest around 2000, mainly focusing on outdoor geolocation. We will present some of
the most important works done in this field as IM2GPS [14] which is one of the first data-
driven models based on Machine learning techniques; PlaNet [40] adopting deep learning
architectures to solve the problem as a classification task, and Müller-Budack et al. [24]
hierarchical model which mostly inspired our work.

2.5.1. IM2GPS and Improved IM2GPS

IM2GPS model is based on the idea of identifying correlations between specific image
features and geographic locations. For this reason the authors created a huge geo-tagged
database of image features extracted from more than six million images taken from signif-
icant places all over the world, to be used for comparison with a query image at inference
time. More specifically, to make a prediction on a test image, features like color, Gist
descriptor, texture histograms and geometric context are extracted automatically with a
data-driven approach . Then the model is supposed to find the best match to the query
image features with the features present in the database adopting a k-Nearest Neigh-



36 2| Related Works

bour (k-NN) algorithm. With the advent of deep learning Hays et al. [39] improved
the previous IM2GPS model exploiting a Convolutional Neural Network for the feature
extraction part. Moreover, in this revisited IM2GPS model predictions at inference time
are computed via a k-NN density estimation based on a Gaussian kernel that takes into
account: the label similarity (GPS distance) and at the same time also the query image
and reference image features, see Fig. 2.29.

Figure 2.29: An overview of revisited IM2GPS architecture [39]. Features are extracted
with a CNN then nearby neighbors are found in the reference features database and finally
GPS coordinate is estimated using either the k-NN or the density.

2.5.2. PlaNet

The "revolution" introduced by CNN architectures led some models such as PlaNet [40]
to approach the geolocation problem as a classification task. The world map is split into a
number of cells which corresponds to the different classes. The cell generation is done with
the S2 Google’s algorithm [12], setting a minimum and maximum thresholds of images
per cell in order to have balanced classes. The adopted backbone for feature extraction is
based on Inception. The loss function used for training is a customized function based on
the euclidean distance between the centroid of the predicted cell and the real coordinates
of the inspected image. Moreover Weyand T. et al. extended, in the same paper, the
geolocation task to albums of photos, so to highlight the location correlation between
images from the same set. The results provided by PlaNet are much better than the ones
of IM2GPS: this is due mainly to the huge amount of images used for training, around
189 million images, but also to the innovative classification approach to the geolocation
problem.

2.5.3. Hierarchical Model and Scene Classification

Müller-Budack et al. in [24] propose a model which also exploit Google S2 algorithm for
the subdivision of the world map into cells, but instead of producing only one subdivision
as PlaNet, they produce in parallel three different subdivisions (coarse, middle, fine) by
varying the thresholds parameters of the algorithm. The model uses also a multi-task
Network (based on ResNet [15]) trained on both geographical information and scene
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Figure 2.30: On the Left: Workflow of the geolocation estimation approach proposed by
Müller-Budack et al [24]. On the Right: a few sample images from different locations for
specific scene concepts.

labels (i.e., indoor, natural, or urban setting etc), see Fig. 2.30. In order to estimate
the GPS coordinates from the classification output,the trained multi-task Network is
applied on three evenly sampled crops of a given query image according to its orientation.
Afterwards, the mean of the resulting class probabilities of each crop is calculated, see
Fig. 2.31. In the paper it is shown that the geolocator benefits from the multi task
approach which incorporates features extracted by the scene classifier. An explanation
for the improvement due to the scene classifier is that exploiting contextual information
of the environmental scenario can help in classification at different level of granularity due
to the huge diversity caused by different environmental settings, which requires specific
features to distinguish different locations. For example while at country level we might
deal with scenery such as mountains, beaches or forests, at city level we mainly deal with
urban scenes including people, buildings, traffic lights and cars.

2.5.4. A Global Hotel Recognition Dataset

Stylianou et al. where among the first to address the indoor geolocation problem. The
need to solve this problem is linked to the fact that in recent years, the number of images
of victims of human trafficking circulating online has drastically grown. For this reason
Stylianou et al. in [35] present a new dataset formed by more than 1 million annotated
hotel room images, of different quality, from 50,000 different hotels. The paper presents
two different approaches to the problem; the first addresses the problem as a classification
task using as backbone a pre-trained ResNet-50 [15] model pre-trained on ImageNet to
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Figure 2.31: Geolocation estimation frameworks proposed by Müller-Budack et al. Image
taken from [24]. In grey: Baseline steps that are part of every network. Additional steps
are visualized in different colors. Dashed elements are applied to all images before the
training process takes place. The blue multi task approach is the best performing one.

output a 256-dimensional features vector to be used by the classifier in order to predict the
hotel instance or the chain label. The authors also performed a set of data augmentation
techniques specifically tailored for this task. The second approach consists in addressing
the problem as an image retrieval task by returning the most similar image in the reference
set. This is done by computing the feature representations for all images in the Hotels-
50K training set using the previous mentioned network. Then feature representations are
also computed for each image in the test set and the database images are ranked by cosine
similarity to each test image. In both approaches the authors compared their model with
two "off-the-shelf" pre-trained networks, improving their performances, trained for scene
and object recognition.
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This section is dedicated to the research question that we address in this thesis work. In
particular:

1. Is it possible to develop a geolocation model, which could be useful in applications
such as law enforcement, capable of geolocating indoor scenes at different levels of
granularity with a meaningful level of accuracy?

2. Is it possible to provide meaningful and useful visual explanations for the predictions
made by our model?

3. What are the most appropriate backbone and dataset to adopt for the feature ex-
tractor of an indoor geolocation model?

Indoor scene geolocation is a very challenging fine-grained visual recognition task which,
in cases like the Hotel50k dataset, presents a huge number of classes (e.g. 10458 different
cities) and potentially high intraclass and low interclass variation. Due to the difficulty
of this task, only few works exist in literature that focuses on this problem. Stylianou et
al. in [35] were the first to introduce a huge dataset for this task, and try different Deep
learning models. Recently a competition called: "Hotel-ID to Combat Human Trafficking
2021", was released in Kaggle. In this contest, competitors are tasked with identifying
the hotel seen in test images from a subset of the Hotel-50k dataset. Also Virginia Negri
in her master thesis [25] built a model for the indoor geolocation task. In our work we
remarkably improve the performances of previous models, obtaining a higher accuracy at
different level of granularity (subregion, country, city and identifying the hotel chain).

Deep Learning models are very powerful tools for classification task of unstructured data,
but unfortunately since they extract the features in a data driven way, we are not able
to understand just by the results which elements of the input mostly influenced the pre-
dicted output. Thus, in order to answer to the second question, we adopted different
XAI (Explainable Artificial Intelligence) techniques with the aim of identifying the most
relevant scenes for the prediction. We applied visual explainability methods at the three
different levels of granularity of our classifier, trying to understand which elements could
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influence the prediction at world sub-region level, then at country level and finally at city
level.

As far as the third question is concerned, we tried different architectures, pretrained on
different datasets rather than only use a pretrained network on ImageNet, which is the
most used dataset for pretrained Networks addressed to solve classification problems. To
conclude and show the generalization capabilities of our model we also provide users with
a demo that produces top ten predictions at country level and also visual explanations
with SHAP [22], in order to highlight the most informative scenes in the uploaded image.
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architecture

In this section we present our multi-task hierarchical approach to the indoor geolocation
problem, allowing us to simultaneously maximise geolocation performance at different
levels of granularity (world sub-region, country and city).
The diagram in Fig. 4.1 represents the overall architecture of our model. The architecture
that we adopted for our multi-task framework can be divided mainly into four components:

1. A Vision Transformer for feature extraction, more specifically the Swin Transformer.

2. A fully-connected network for multiple parallel classifications at different granularity
levels.

3. An additional Network for accurate multi-class semantic segmentation of indoor
objects.

4. A block for visual explanation exploiting the segmentation of the input image in
order to give an explicit visual explanation of the most discriminating parts of the
scene for each granularity level.

4.1. Image encoder

The input to the image encoder are batches of 16 RGB resized images of size: (224, 224, 3).
After an ablation study we choose to use as a feature extractor the Swin Transformer [20]
pre-trained on ImageNet22K [8]. The key feature of the Swin Transformer is that it
computes self-attention within local non overlapping windows which are shifting between
consecutive layers. More specifically, the input image is divided into non-overlapping
windows, so that within the same window the collection of keys used by different queries
is the same. Then, in the next layer, the window shifts half a window downwards and to the
right, so as to construct connections between pixels of different windows from the previous
layer. This results in a more efficient implementation with respect to previous vision
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Figure 4.1: Overall architecture of our Hierarchical Indoor Geolocation model.

transformers which conduct global self-attention, computing the relationship between a
token and all the other tokens. The global computation leads to quadratic complexity
with respect to the number of tokens, making it unsuitable in case of large images or
for dense prediction like segmentation problems, requiring an immense set of tokens.
Another reason why we chose to use a vision transformer as model backbone for this type
of classification problem is because of the general modeling capability of Transformers.
Computer vision tasks involve the interaction of two basic elements which are: pixels
and objects. So when performing computer vision tasks on an image we have to take
into account the relationship between: pixel-to-pixel, object-to-pixel and object-to-object.
While the first relationship is often regarded with convolution in CNNs, and the second is
usually addressed with RoI Align in segmentation problem, the third relationship is often
disregarded. The attention unit in Transformer has the advantage that it can be applied
to the three mentioned relational modeling types at the same time.

4.2. Multi-level classifier

The output feature extracted by the feature encoder are flattened into a single vector
of shape (1, 50176) which is then fed to a feed-forward neural network (FNN) for clas-
sification. We tested different configurations for the FNN part, as it can be seen in the
experiment Chapter 6. For the Hotel50k dataset our ultimate classifier is made up of a
direct connection from the flattened layer to the city classifier, it includes an additional
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head for the chain-hotel classification which, as the country and sub-region classifiers, has
two additional dense layers with 500 units as output and a ReLu layer in between in order
to reduce the number of units in input to the final classification layer. For the Airbnb
dataset, due to the reduced number of labels of each class, we used the same FNN for all
the classification tasks (location, country, sub-region), again made of two dense layers of
500 neurons and a ReLu activation layer in between. The final Result in both cases is
a model which can predict concurrently the city (or location in case of Airbnb), country
and sub-region to which the scene in the image belongs.

4.3. Multi-class Semantic Segmentation Network

Simultaneously we add also an extra block to our framework, which is a Network for seg-
menting the indoor scenes. We introduced this block to provide more explicit visual in-
formation about pieces of furniture and structural elements of interior scenes which might
have a considerable importance in order to connote a specific location. More specifically,
we adopted a DeepLabv3+ [6] framework to perform semantic segmentation, deploying
the Xception model pretrained on ADE20k dataset [44]. The ADE20k includes anno-
tated images covering a wide range of scene categories including some useful objects for
our task as: air conditioning, bed, door, window, lamp, power plug etc. Fig. 4.2 presents
an example of an image taken from the Airbnb dataset segmented by our model where
all the present categories were correctly detected, providing an accurate segmentation.

Figure 4.2: Semantic segmentation of an image taken from an Airbnb located in Rio,
overlaid on the original image. There are six correctly predicted categories which are:
bed, wall, curtain, pillow, windowpane and floor.
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4.4. Segmentation-based visual explainer

Figure 4.3: SHAP Values associated to the segmented objects detected by the segmen-
tation block. The image is the one presented in the previous section, it is taken from
an Airbnb located in Rio. There are six correctly predicted categories which are used to
partition the image, and obtain corresponding SHAP values to explain the prediction.

The segmentation block turns to be very helpful especially when exploited to partition
the image to be analysed with SHAP [22], in order to produce visual explanations of the
predicted outcome. One of the main drawbacks of SHAP is that, when used to produce
explanations at pixel level, it is computationally expensive. For this reason a natural way
to use it is by partitioning the image into a grid of super-pixels and consider coalitions
of super-pixels. This approach is reducing the computational effort but doesn’t produce
easily interpretable results for our task. Or more correctly, interpretable results can be
obtained if the image is partitioned into many super-pixels, e.g. 100, which may include
also meaningful small objects for the predictions. This, however, makes the computation
of SHAP algorithm rather onerous. For this reason we decided to use the semantic
segmentation of the input image as a partitioning scheme on which SHAP assigns Shapley
values directly to furniture and structural elements with semantic value like: window,
floor, ceiling, etc. In Fig. 4.3 elements in yellow represent positive SHAP values that
contributed to classifying that image as that particular class, scaling up to elements in
blue and purple to which are associated negative SHAP values that contributed to not
classifying that image as that particular class. A more detailed description of this method
with various visual experiments is presented in Chapter 6, where we present the results of
the algorithm on the top-3 most probable classes for each category: sub-region, country
and city, showing which elements had the greatest influence on the prediction of each
class. In this way, in case the correct prediction is in the top-3 predicted classes we are
able to see which elements have most contributed to that prediction, and at the same
time also to point out the ones that may have led our model to incorrect predictions.
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5.1. Indoor geolocation datasets

In order to address different problems related to indoor geolocation, such as human traf-
ficking or the presence of fake ads on websites as Airbnb, Booking or Idealista, we used
two different dataset to train our model: the Hotel50k dataset presented by Stylianou et
al. in [35] and the Airbnb dataset. In addition we also created a dataset, by scraping from
different web sites of real estate agencies, to test the inference capabilities of our model.

Hotel50k

The Hotel50k dataset presented in [35], consists of 1.3 million geo-tagged images of interior
scenes of more than 45k hotels. This dataset was collected in order to result potentially
helpful for law enforcement in fighting human trafficking. The images are collected from
two different websites: Expedia and TraffickCam. Expedia is a travel website showing
high quality images of hotels, see Fig. 5.3. While TraffickCam is a website, developed
by Exchange Initiative (an organization fighting against sex trafficking), displaying im-
ages uploaded by users, usually the images are low quality and with occasional clutter
obstructing the scene. Thus the TraffickCam images, see Fig. 5.2, are more similar to
real world pictures of human trafficking with which the police usually has to deal. For
this reason images from TraffickCam make the training process harder but on the other
side they may result very useful for testing our model capabilities. The Hotel50k dataset
contains information about the latitude and longitude of the images and also the chains,
as Hilton, Marriot, Wyndham, etc., to which the hotel belongs (or "no chain" in case the
hotel doesn’t belong to any chain). Since we decided to approach the indoor geolocation
problem as a classification task with a hierarchical model, the latitude and longitude coor-
dinates of each image have been used to extract information about the corresponding city
and country with the python reverse-geocode library. Then the remaining coarser level,
sub-region, was assigned according to the M49 (or Standard Country or Area Codes for
Statistical Use) coding classification 5.4, which is a standard for area codes used by the
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United Nations for statistical purposes. Then a unique numerical identifier was associated
to each label of each category. The Hotel50k dataset contains a total of 1294289 images
covering a number of: 10458 cities, 183 countries, 23 sub-regions and 94 hotel chains. To
have a visual idea of the data distribution on the globe see Fig. 5.1.

Figure 5.1: Plot of latitude and longitude coordinates of all the images present in the
Hotel50k dataset. The plot was done using Tableau.

As it can be observed in tables 5.2 this dataset have imbalanced data, e.g. 42% of the
images belongs to United States while only 2% are of Italian hotels. Since class imbalance
could lead the model to overfit the most popular classes while not learning the features
from the less populated ones (we will further discuss in Chapter 6) we adopted some
oversampling techniques to avoid such a phenomenon.

Airbnb

The original Airbnb dataset is the result of a collection of datasets, made by Negri Virginia
during her Master Thesis, provided by Inside Airbnb web-page, related to 100 different
locations, which vary from big, densely populated cities (e.g. New York, Rome . . . ) to
regions like (e.g. Barossa Valley, Western Australia, Sicily . . . ) see Fig. 5.6. Since the
images from Airbnb web-page present both interior and outdoor images, a scene classifier
was used to filter only interior scenes. The scene classifier is adopting a ResNet backbone
pretrained on Places365 dataset [45] which collects more than 1.8 million images from
365 different scene categories. The information provided by Inside Airbnb relating to
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Figure 5.2: Images taken from TraffickCam.

Figure 5.3: Images taken from Expedia.

the images also include latitude and longitude so, as in the case of the Hotel50k dataset,
the geographical coordinates were translated into country and location labels (where, we
remember that location may refer to a city like Amsterdam or to a region as Barossa
Valley). We used the latitude and longitude coordinates to plot the data on the world
map, see Fig. 5.5. Also in this case the sub-region labels were assigned according to the
M49 coding classification. To conclude, a unique numerical identifier was assigned to
each label of each category. As for the Hotel50k dataset we present the 10 most frequent
sub-regions, country and locations in tables: 5.3 and 5.4.

Moreover we also collected some additional data, which we used only at inference time,
coming from different real estate agency like Zillow, RE/MAX, Cushman and Wakefield
etc and from different web pages like Idealista, Immobiliare, Badi etc. listing houses and
flats for sales or rent.
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Figure 5.4: M49 coding classification taken from Wikipedia.

Table with top-10 frequent Sub-regions Table with the most frequent Countries

Sub-regions Samples Percentage

North America 586217 45.3%

Southern Europe 163074 12.6%

Western Europe 96476 7.5%

South-Eastern Asia 83523 6.5%

Northern Europe 74312 5.7%

Eastern Asia 61311 4.7%

Australia & New Zeland 38321 3%

Eastern Europe 33110 2.6%

South America 29315 2.3%

Central America 29058 2.2%

Other 99.572 7.6%

Country Samples Percentage

United States 545152 42.1%

Italy 64364 5%

France 46426 3.7%

Spain 47501 3.7%

United Kingdom 41408 3.2%

Canada 40873 3.2%

Thailand 38764 3%

Australia 38204 3%

Greece 26422 2%

Germany 26086 2%

Other 377089 29.1%

Table 5.1: Both tables show the presence of imbalanced classes.
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Figure 5.5: Plot of latitude and longitude coordinates of all the images present in the
Airbnb dataset. The plot was made using Tableau.

Table with top-10 frequent cities Table with the most frequent Hotel chains

Cities Samples Percentage

Rome 9769 0.75%

Paris 9721 0.75%

New York 7922 0.61%

Tokyo 6675 0.52%

Florence 6549 0.50%

Vatican City 6374 0.49%

Venice 5756 0.44%

Istanbul 5665 0.43%

Ko Samui 4784 0.37%

Patong 4717 0.36%

Other 1.226.357 94.78%

Hotel chains Samples Percentage

Unknown 709178 54.8%

Holiday Inn 64073 5%

Hampton 33993 2.6%

Best Western 27954 2.2%

Comfort Inn 22501 1.7%

Marriott 19509 1.5%

Hilton 18811 1.5%

Quality Inn 18711 1.4%

Best Western Plus 16736 1.3%

Super 8 16312 1.3%

Other 346.511 26.7%

Table 5.2: It can be observed that the phenomenon of class imbalance affects much more
at country level than at city level where the distribution of the data is more homogeneous.
Regarding Hotel chain class, more than half of the hotels doesn’t belong to chains, for
this reason in this case the Hotel chain class is labeled as Unknown.
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Figure 5.6: Example images from the Airbnb dataset.

Airbnb 10 most frequent Sub-regions Airbnb 10 the most frequent Countries

Sub-regions Samples Percentage

Southern Europe 229414 23.8%

North America 220500 22.8%

Western Europe 146533 15.2%

Northern Europe 132358 13.7%

Eastern Asia 60353 6.3%

Australia & New Zeland 57478 6%

South America 53504 5.5%

Central America 17778 1.8%

Western Asia 17345 1.8%

Eastern Europe 12370 1.3%

Other 17702 1.68%

Country Samples Percentage

United States 16304 42.1%

Italy 109227 5%

United Kingdom 91817 3.2%

France 73157 3.7%

Spain 65959 3.7%

Australia 57478 3%

Canada 47077 3.2%

China 31090 3.2%

Germany 30927 2%

Greece 27340 2%

Other 268221 29.1%

Table 5.3: Also in the Airbnb dataset we observe the presence of imbalanced classes both
at sub-region and country level.
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Cities Samples Percentage

London 73993 7.7%

Paris 55243 5.7%

New York 43108 4.5%

Beijing 31090 3.2%

Sydney 26527 2.7%

Los Angeles 25165 2.6%

Rome 24774 2.6%

Sicily 24519 2.5%

Rio de Janiero 22597 2.3%

Copenhagen 21651 2.2%

Other 616668 64%

Table 5.4: Airbnb 10 most frequent locations. It can be observed that the phenomenon
of class imbalance affects more at country and sub-region level than at city level where
the distribution of the data is more homogeneous.





6| Experimental Results and

Evaluations

This section is dedicated to the different experiments and evaluations that we did during
the development of this Master Thesis. We provide deeper details about the architecture
of our indoor geolocation model and compare performances of different configurations in
different conditions. In addition, we present also different experiments aimed at finding
the most suitable and informative XAI techniques for our problem.

6.1. Experimental Setup

During the whole experimental phase we used the following two Graphic Processing Units:
Nvidia RTX 2080 Ti, and an Nvidia RTX 2070 that was mainly used for the inference
part. The whole framework was developed mainly using Pytorch Lightning making the
code simple to read, clean, and easy to reproduce.

6.1.1. Data

All the experiments were performed both on the Airbnb dataset, and on the Hotel50k
dataset. Both datasets were split randomly into three separated sets: training (90%) and
test (10%), then the training set was further split into 80% training and 20% validation.
The models were trained with two different kind of custom Data Generators, which
automatically generate a batch of 16 images to feed the network before each training
step. In addition we also tested the use of data augmentation techniques.

Data Sampling

1. Random Data Generator: This is the first data generator that we decided to
use on our models. At each training step a batch of 16 images is randomly selected,
we investigated also batches of 32 images, but due to limited memory resources
we weren’t able to do it for all the models, so we decided to opt for batches of
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16 images in order to compare all the models learning capability with same batch
dimension. The random data generator extracts randomly the images from the
training and validation set with re-sampling. This type of batch generation allows,
while learning, to preserve the proportions between classes in the training set, which
is supposed to be equivalent to those in the test set since they all come from the
same data distribution.

2. Country Conditioned Sampling: as previously mentioned, both datasets ex-
hibits a remarkable presence of class imbalance. In case of imbalanced data, a
simple random generator prevents the network from learning features of locations
with few examples. For this reason we decided to create a custom data generator
which generates batches within which the likelihood of samples coming from differ-
ent countries (Hotel50k) or subregions (Airbnb) is the same; so that for example
the probability of sampling an image from United States which has 545152 samples
is equal to the one of sampling from Germany which has only 26086 images. Of
course this conditioned data generator can be implemented conditioning the sam-
pling distribution at subregion level, country or city level. After some experiments
we decided to condition at country level for the Hotel50k dataset and at subregion
level for the Airbnb dataset.

Data Augmentation

In a first stage of our experiments we decided to adopt also Data Augmentation tech-
niques in order to provide more training data to the model by implementing a set of
transformations on our data. With a probability draw of 50%, the DataGenerator decides
whether to apply one of the following transformation to a given selected image in batch:

• Rotation: rotates the image of a multiple of 90 degrees.

• Flip: randomly flips the image over the horizontal and vertical axes.

• ColorAugmentation: changes brightness, contrast and saturation of the image.

While image augmentation is almost necessary for the first generation of Vision Trans-
formers, as for instance the ViT in order to make them competitive with the more tra-
ditional CNN, with more recent architectures like the Swin Transformer we didn’t notice
a remarkable improvement over our task, for this reason, after some initial comparisons,
once chosen the Swin Transformer as our backbone, we have decided to omit the data
augmentation.
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6.1.2. Loss function

Since our problem consists of a parallel multi label classification problem, we decided to
adopt Sparse Categorical Cross Entropy as loss function. This loss function receives
as inputs the target class as an integer value (from 0 to Nclasses − 1), where the integer
values represent each class encoding, and a vector of floating point values, which represent
the model prediction, of size equal to the number of classes.

In mathematical terms, the CategoricalCrossEntropy can be expressed as:

loss(x, y) = −
Nclasses∑

i=1

yi ∗ log(xi) (6.1)

6.1.3. Optimizer

In order to solve the optimization problem with a loss function as the one mentioned
above, we need to choose a stochastic gradient-based optimizer. Pytorch allows us to
easily choose within a large number of pre-implemented optimizers, such as: Stochastic
Gradient Descent (SGD), AdaGrad, RMSprop, and so on. After several experiments,
we decided to pick the Adam optimizer [16]. Adam optimizer is an algorithm for first-
order gradient-based optimization of stochastic objective functions, based on adaptive
estimates of lower order moments. Morover, Adam is computationally efficient and is
very suitable for problems that are large in terms of data and/or parameters. It combines
the advantages of the two following algorithms, while in addition to RMSProp it also uses
the average of second moments of the gradients:

• Adaptive Gradient Algorithm (AdaGrad): very suitable for computer vision
tasks, keeping per-parameter learning rates, thus allowing to improve performances
on problems with sparse gradients.

• Root Mean Square Propagation (RMSPror):More effective for online and non-
stationary problems. As AdaGrad maintains per-parameter learning rates which are
continuously adapted according to the average of recent magnitudes of gradients for
the weight.

6.1.4. Regularization functions

Due to their complexity, often Deep Learning models tend to overfit if not monitored and
controlled by some regularization and stopping conditions. Overfitting is a phenomenon
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that happens when the production of an analysis, in our case a deep learning model,
corresponds too closely or exactly to a particular set of data, the training set, while it
may fail to fit on new additional data. In other words, an overfitted model is a model
which is not capable of generalizing on new data, due to the fact that it learned also
from the noise in the training data. In order to avoid overfitting we decided to use some
classical regularization techniques.

Early Stopping

Early stopping [5] is a regularization technique used to identify how many iterations can
be run, in our case is more appropriate to talk about epochs instead of iterations, before
the learner begins to overfit. The parameter which is responsible of the stopping condition
is the patience which indicate after how many epochs, without an improvement on the
validation loss, is necessary to stop learning. After a few experiments we decided to set
the patience at 3 epochs.

Dropout

Another regularization technique that we adopted to limit the overfitting phenomenon
and make the model more robust is Dropout [34] . Dropout may be implemented on any
or all hidden layers in the network as well as the visible or input layer. The only layer on
which dropout is not usable is the output layer. Adding a dropout layer with a probability
p, means that each neuron of the hidden layer on which we apply the dropout layer, at
training time, will be switched off with the given probability. So the contribution of the
neurons which were switched off to the activation of downstream neurons is temporally
removed on the forward pass and in addition any weight updates are not applied to these
neurons on the backward pass. Dropout in other words is forcing the model to learn the
same task with less parameters, helping to avoid overfitting. We put a dropout layer right
after the first Dense layer of our classifier. We did different experiments with different
probabilities, initially we started with a probability p = 0.5 at the end on our final model
we set the probability p = 0.1.

Learning Rate

Selecting a good learning rate is essential for both achieving better performance and faster
convergence during the training process. Even if we already choose Adam as optimizer
which is self-adjusting, the learning rate can benefit from more optimal choices. In a first
moment we run many training with different learning rates and we found that the best
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Figure 6.1: Learning rate vs loss with the optimal initial learning rate (red point) for the
Swin Transformer on the Hotel50K dataset.

values were ranging between: 1e−4 and 1e−6. In a second moment we decided to exploit
the auto_lr_finder of Pytorch lightning, a learning rate finder which reduces the amount
of guesswork concerning choosing a good initial learning rate. Based on the paper [33], the
idea is that the learning rate finder does a small run where the learning rate is increased
gradually after each processed batch and the corresponding loss is logged. The result of
this is a learning rate vs. loss plot that can be used as guidance for choosing an optimal
initial learning rate. The red point suggests the optimal learning rate to pick; as we can
see in the image below it is recommended not to pick the learning rate that achieves the
lowest loss, but instead something in the middle of the sharpest downward slope.

Checkpoint callback

The purpose of this callback is to save the model checkpoints after each epoch, so to save
the best model weights so far. In our framework, we decided to keep only the best weights
for top two models with respect to the validation loss performance.

6.1.5. Evaluation Metrics

In order to compare and evaluate the performances of different models we took into ac-
count three different metrics: the loss function, prediction accuracy and Improvement
over Majority class (IoMc). During training we can observe the evolution of the Train-
ing loss, SparseCategoricalCrossEntropy computed over each batch of processed images.
After every epoch, we look at the validation loss, which is a computation of the Sparse-
CategoricalCrossEntropy over the validation set, in order to have information about the
learning trend of the model. For every class: city, country and sub-region we showed
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respectively a top-1, top-5 and top-10 prediction accuracy on the test set. Top-N accu-
racy means that the correct class gets to be in the Top-N probabilities for it to count as
“correct”. We decided to use also an additional metric that we call: "Improvement over
Majority class" which measures the improvement of our model with respect to a classifier
that always assigns to any image the most frequent class in the dataset.

IoMc =
Accuracyvalid

ProbMajority_class

. (6.2)

6.2. Experiment A: Backbone architecture

In our first experiment we compared different state-of-the art CNN models like VGG-19
and EfficientNet with some of the most recent vision Transformers as the Swin Transformer
over the same multi-task classification problem. This comparison was made only on the
Hotel50k dataset which is the most challenging one due to the large number of cities.

We want to understand which architecture is more appropriate to be used as backbone
for our classification problem. More specific we first explored the capability of some CNN
architectures, in terms of loss and accuracy, and then compared them with the Swin Trans-
former backbone. All the feature encoders that we used are trained on ImageNet22K [8],
except of the Swin-T which is trained on ImageNet1K. We present here a table (Tab. 6.3)
showing all the different Backbones that we investigated and their respective number of
Parameters:

Backbone Name Output Shape Vector Size (Conv1D) # Total Parameters

VGG19 (7, 7, 512) (1, 25.088) 60.8 M

EfficientNetB0 (7, 7, 1280) (1, 62.720) 41 M

Swin-T (7, 7, 768) (1, 37.632) 76.8 M

Swin-B (7, 7, 1024) (1, 50.176) 137.3M

Table 6.1: Feature extractor layers and number of parameters (The number of parameters
are considering also the additional ones due to the dense layers of our classifier).

In order to make significant comparison, and also for memory reasons, the models were
initially tested with the same basic configuration of the classifier made of two fully con-
nected layers of 1000 neurons as output, a ReLU activation Layer in between, and three
different final layers having as output the size of the corresponding classes. We kept all the
feature extractor completely frozen for all the experiments. All the models were trained
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for 14 epochs on the Hotel50k dataset and then we compared their performances. In a
second moment where it was possible, due to the different magnitude of the number of
parameters of each model, we explored different classifiers and hyperparameters for each
backbone in order to find the corresponding optimal one for each feature extractor. Again
the Swin Transformer turned out to be the best performing in terms of accuracy and loss.

We present below two tables, the first comparing Top-1, Top-5 and Top-10 accuracy,
achieved by the different models, on the test set for each corresponding geographical
level: world sub-region, country and city. The second table shows us a comparison of the
loss and IoMc

Backbone Region Accuracy Country Accuracy City Accuracy
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

VGG19 0.578 0.860 0.957 0.498 0.71 0.808 0.036 0.097 0.138

EfficientNetB0 0.569 0.856 0.955 0.492 0.71 0.804 0.0344 0.093 0.138

Swin-T 0.643 0.901 0.970 0.554 0.767 0.849 0.053 0.135 0.186

Swin-B 0.662 0.910 0.975 0.571 0.79 0.866 0.075 0.165 0.21

Table 6.2: Feature extractor test accuracy after 14 epochs on the Hotel50k dataset.

Backbone Name loss IoMc Region IoMc Country IoMc City

VGG19 10.758 1.28 1.18 0.39

EfficientNetB0 10.869 1.26 1.18 0.48

Swin-T 10.0507 1.41 1.315 0.71

Swin-B 9.850 1.44 1.38 1

Table 6.3: Feature extractor layers and number of parameters.

This experiment shows that the Swin Transformer is the most adapt backbone for our
classification task, demonstrating the potential of Transformer-based models as vision
backbones.

We can assume that the improvement obtained by the Swin Transformer compared to the
others in this case is mainly due to two factors:

• One of the main advantage of such a backbone with respect to the other that we
test is that self-attention eliminates the inductive bias of CNNs. (The inductive bias
of a learning algorithm is the set of assumptions that the learner uses to predict
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outputs of given inputs that it has not encountered). CNNs rely on two inductive
biases built into the architecture itself: close pixels are related (locality), different
portions of an image should be processed identically regardless of their absolute
location (weight sharing). While self-attention-based vision models (like ViT, DeiT
or the Swin Transformer) present minimal inductive biases since each image patch
can relate to all other patches.

• the Hotel50k is a big dataset of more than 1.3 Million of images. (While CNNs’ could
perform very well also in case of small datasets, due to their inductive biases (high
floor), in some cases these assumption could limit the learning capabilities with large
quantity of data (low ceiling). On the other side most of the transformers due to
their minimal inductive biases are under-performing w.r.t the state-of-the-art CNNs
when trained on small dataset (low floor), but due to their flexibility they are able
to outperform CNNs in case of huge datasets (high ceiling)).

Once selected the as backbone the Swin Transformer, we also build a model for the
classification task on the Airbnb dataset, using the same structure of the classifier that
we used for the Hotel50k dataset. The results on the Airbnb dataset are shown in table 6.4.

Region Accuracy Country Accuracy Location Accuracy
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10
0.568 0.938 0.997 0.441 0.798 0.917 0.281 0.579 0.721

Table 6.4: Results on the Airbnb test dataset.

6.3. Experiment B: Pretraining on ImageNet22k vs

ADE20k

Since in our problem we are geolocating indoor scenes from all over the globe, we asked
ourselves if it could make sense or even improve our performances to use a Network pre-
trained on a dataset for scene recognition like the ADE20K [44] instead of ImageNet22K.
Unfortunately, the pretrained backbone on ADE20K has many more parameters than the
one on ImageNet. Due to limited memory resources we were forced to make the com-
parison on the tiny version of the Swin Transformer (Swin-T) and could not do so on
the larger version Swin-B. ADE20K includes 150 different scene categories (divided into
objects and objects parts) from the SUN [41] and Places [45] database. An example of
an interior scene image with all the annotations present in the ADE20k dataset is shown
in Fig. 6.2.
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Figure 6.2: An image taken from the ADE20K paper [44] showing the annotations corre-
sponding to the list of the objects and their associated parts in the image.

As it could be observed from table 6.5 we did not assisted to any improvement using
the Swin Transformer pretrained on ADE20K, indeed the model pretrained only on Ima-
geNet1K performs slightly better. It has to be mentioned that ImageNet1K includes one
thousands classes, among which there are also many typical furniture objects such as:
table, chair, lamp, etc. And in addition also some objects like lighter or laptop which are
not present in the ADE20K dataset, but could be seen in an indoor scene and might help
to give additional information about the location of the image. For this reason we decided
to continue using the Swin-B pretrained on ImageNet22k in the next experiments.

Pretraining dataset Region Accuracy Country Accuracy City Accuracy
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

ADE20k 0.624 0.886 0.966 0.537 0.755 0.839 0.049 0.126 0.175

ImageNet 0.643 0.901 0.970 0.554 0.767 0.849 0.053 0.135 0.186

Table 6.5: : Accuracy on the Hotel50K test set after 14 epochs of training.

6.4. Experiment C: Modifying the number of Fully

Connected Layers

Since the Hotel50k dataset has much more labels for the city class than the Airbnb dataset
(10458 vs 100) we found it necessary to build two different classifiers for the different
datasets in order to improve the performances.
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After choosing the Swin Transformer with the classifier presented in the previous experi-
ment as our baseline model, we tested different configuration which we found more suitable
for each of the two dataset. As it can be imagined, the most difficult task is to give good
enough predictions at the city level (location in case of Airbnb dataset). Especially in the
Hotel50k dataset this is due to the huge number of cities covered by the dataset. While
we assisted to remarkable improvement from epoch to epoch in the learning at country
and sub-region level, at city level the learning was quite stuck, with very small improve-
ments. For this reason we decided to make some changes to the classifier block trained
on the Hotel50k. While we kept the same configuration for the country and sub-region
predictor, for the city predictor we directly connected the output of the Backbone with
50176 (37632 in case of the Swin T) units, to a fully connected layer having as output
the city labels which are 10458. This led to a remarkable improvement on all the top-1,
top-5 and top-10 accuracy values at city level, and to a much faster learning. After only
4 epochs we reached very similar results to the ones presented in the previous section
after 14 epochs. On the other hand, this has led to a considerable increase in the number
of parameters in our model, from the previous 76.8 million to 245 million of parameters,
occupying all available memory on the GPU. Below we report the results obtained after
12 epochs in table 6.6:

Region Accuracy Country Accuracy City Accuracy
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10
0.653 0.904 0.973 0.561 0.779 0.859 0.128 0.251 0.31

Table 6.6: Results on Hotel50k test set after 10 epochs directly flattening the output of
the last Swin block for the city classifier.

In order to obtain similar results with the lighter configuration that we introduced in the
previous experiment we needed to train the model for 39 epochs. In addition we found
that introducing an additional classification task, which is: correctly recognize the hotel
chain, led to further improvements to our model. This is probably due to the fact that
trying to correctly classify the hotel chains forces the model to extract information which
helps also for the other classification tasks. The final result is a hierarchical model which,
given an image is predicting at the same time: sub-region, country, city and chain to
which the hotel belongs (or No chain in case of hotel that don’t belong to any chain). We
report the achieved results in table 6.7.
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Region Accuracy Country Accuracy City Accuracy Chain Accuracy
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10
0.663 0.921 0.975 0.578 0.792 0.866 0.145 0.271 0.344 0.677 0.849 0.903

Table 6.7: Results obtained after 12 epochs on the Hotel50k test set adding also the
Chain classification task.

During this experimental phase we also decided to unfreeze the last two Swin Transformer
Blocks leading to further improvements also on the Airbnb dataset. To conclude, we
present our final results on both datasets in the following tables 6.8, 6.9:

Region Accuracy Country Accuracy City Accuracy Chain Accuracy
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10
0.691 0.922 0.979 0.597 0.814 0.89 0.213 0.364 0.423 0.696 0.864 0.922

Table 6.8: final results obtained after 37 epochs.

Region Accuracy Country Accuracy Location Accuracy
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10
0.705 0.966 0.998 0.583 0.880 0.953 0.389 0.695 0.814

Table 6.9: Results on the Airbnb test dataset.

6.5. Experiment D: Comparing Integrated Gradients

and Grad-CAM based Explanations.

Interpretation algorithms can give us a hint of how and why black-box models like our
neural network make their decision. In our first attempt to capture visual explanations
of the relationship between the model’s predictions in terms of the learned features we
decided to use Integrated Gradients.
Integrated Gradients computes the integral of the gradients of the output of the model
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for the predicted class with respect to the input image pixels. We used Integrated Gradi-
ents since differently from other methods like Grad-CAM, which was originally thought
for CNN, Integrated Gradients could be applied to any type of differentiable model (e.g.
text, structured data, images). Another main reason why we decided to use Integrated
Gradients is because it satisfies Implementation Invariance, i.e., attributions should be
identical for two functionally equivalent networks, where by attribution we mean "assign-
ing the blame (or credit)" for the output to the input features. While other explainability
methods like DeepLift [32] and LRP [4] break the Implementation Invariance assumption.
We used Integrated Gradients separately on each classifier in order to highlight which
are the most relevant features for the sub-region, country and city classification task.
We tested different integral approximation like: left, right and middle Riemann sums,
Trapezoidal rule and Gauss-Legendre quadrature rule. The latter method approximates
the fastest. In addition we tested different number of approximation steps, in order to
find a trade off between approximation speed and the accuracy we decided to use number
of steps = 50. We show now some images on which Integrated Gradients method was
used, all the images present the original image on the left, followed by the image with the
attributions assigned respectively at sub-region level, country level and city level.

The image in Fig. 6.3 is taken from the Expedia pictures belonging to the Hotel50 dataset,
it shows a room of an hotel located in Italy, more specifically in Trapani and which doesn’t
belong to any chain.

Figure 6.3: An image taken from Expedia website presenting a bedroom in a Hotel located
in Trapani on the left, followed by the attributions given at sub-region, country and city
level by Integrated Gradients method.

Fig. 6.4 shows an image taken in a room belonging to a Mercure hotel, located in Proser-
pine (Australia). It seems that while at sub-region and country level information from the
window view and the wall are also exploited, at city level the model only use the sheets
on the bed as main feature to predict the corresponding city. In Fig. 6.5 we present an
image belonging to the Traffickam database included in the Hotel50k dataset, it was shot
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inside of an hotel belonging to the Fairfield Inn in Comstock Northwest (Michigan).

Figure 6.4: The picture on the left is taken in a bedroom of an hotel located in Proserpine
(Australia) belonging to the Mercure chain, on its right the attributions given respectively
at subregion, country and city level by Integrated Gradients method.

Figure 6.5: An image taken from the Traffickam subset of the Hotel50k dataset, it shows
a room of a hotel in Comstock Northwest, the attributions seems to mainly highlight the
moquette and the bed at subregion level, at country level additional positive attributions
are assigned also to the curtains and the wall and the ceiling, while at city level the region
adjacent to the lamp and the lamp itself also receive very high attribution.

To conclude, we also analyse an image taken from the Airbnb dataset, showing a living
room located in Porto, Fig. 6.6. The windows are typical of the northern part of the
country, but also of Galicia neighboring region of Spain.

Even if the attribution can give us a general idea of the most informative features, since
Integrated Gradients assign an attribution to each pixel, as it can be observed from the
reported examples the results are quite noisy and not so easy to interpret. For this
reason we decided to make some additional analysis with different XAI techniques, like
Grad-CAM, trying to give more interpretable explanations.

Grad-CAM is one of the most commonly used methods for visualizing where a convo-
lutional neural network model is looking when making a prediction. While Integrated
Gradients evaluates the contribution of each pixel of the input image to the output of a
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Figure 6.6: An image taken from an Airbnb in Porto on the left, followed by the attri-
butions given at subregion, country and city level by Integrated Gradients method. In
the space between the two windows we can notice the presence of a power socket on the
bottom, which receives a positive attribution, confirming that this feature is one of the
most critical for the model to predict the corresponding sub-region class (we checked that
our model predicts Southern Europe as most probable sub-region).

model, Grad-CAM evaluates the contribution of each neuron in a given selected layer to
the output of the model. Another difference between the two methods is that while with
Integrated Gradients similar outputs are obtained regardless of the class used to com-
pute the gradient that is back-propagated, Grad-CAM is a class-specific method which
computes the gradients of the target output with respect to the given layer thus produc-
ing different heatmaps according to the targeted class. Since Grad-CAM was originally
thought for CNN some adaptations are required in order to use it on a Vision Transformer
and producing meaningful heathmaps. The idea is to treat the output of the last attention
layer (before the classification head) as the designated feature map. More specific, in our
case, the output of the last layer of Swin Transformer in the Swin-b version is of this type:
batch_size× 49× 1024, where the last 49 elements corresponds to the 7× 7 window size.
of the image with 1024 channels. Thus we reshape the activations and gradients to 2D
7× 7 spatial images and bring the 1024 channels to the first dimension, like in CNNs.

In Fig. 6.7 we show the heatmaps produced by Grad-CAM on an image taken from
the Airbnb dataset, belonging to a living room located in Porto, that we previously
analysed in Fig. 6.6 with Integrated Gradients. It can be observed that the areas of
pixels which received a positive attribution by Integrated Gradients are approximately
covered also by the heatmaps produced by Grad-CAM. In Fig. 6.8 we show the results
obtained on an image from the Hotel50k dataset, showing the kitchen of an hotel located in
Laguna Beach (U.S). We also investigated the potential benefits of overlaying the semantic
segmentation of the interior scenes, see Fig. 6.9, in order to have a clearer explanation
of the regions and objects highlighted by the Grad-CAM visualization. As it appears
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Figure 6.7: An image taken from an Airbnb in Porto, previously analysed in Fig. 6.6.
The heatmaps produced by Grad-CAM are highlighting, approximately, the same areas
which receive a high attribution by Integrated gradients. The heatmpas are presented in
order for sub-region, country and city level.

from the reported examples the results provided by Grad-CAM are more interpretable
with respect to Integrated Gradients, even though we would like to be able to blame
multiple features separately, while we have proven that in most of the cases Grad-CAM
visualizations cover a relatively large area including different objects. For this reason we
carried out an ulterior experiment with the aim of obtaining even more interpretable and
useful visual explanations.

Figure 6.8: An image from Expedia web-page of a kitchen of a hotel in Laguna Beach.
The visualization produced by Grad-CAM are corresponding to the prediction at sub-
region level on the left, in the center at country level and on the right at city level.

6.6. Experiment E: Comparing Segmentation Meth-

ods for SHAP-based Explanations.

Methods like Integrated Gradients, which are able to provide visual explanations regarding
the features in the image that are more important than others for the prediction, but
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Figure 6.9: An image taken from the Airbnb dataset showing a bedroom in Rio. On the
right: the Grad-CAM visualization superimposed on the original image, while on the left:
the superimposition of the Grad-CAM visualization map on the corresponding segmented
image.

being class agnostic they are not able to point out which parts of the image are more
or less useful for the prediction of the different classes. Another drawback of Integrated
Gradients is that it is computationally expansive as we already mentioned in the previous
experiment. Grad-CAM on the other side is a class-specific method which can generate
different maps according to the target class. Unfortunately the heatmaps produced, as it
can be seen in the previous experiment, in most of the cases are coarse, including areas
with many objects thus this method is not very convenient for interpretation purposes in
our case. We would like to blame single objects inside of the indoor pictures instead of
coarse areas. For this reason we thought that we could exploit the semantic segmentation
of the indoor images produced by our model and combine it with SHAP, instead of using
a generic partitioning scheme of the image.

SHAP is an algorithm capable of extracting two different types of information:

• Intrinsic content of the image (some parts of the image are more important than
others).

• Discriminative information (some parts of the image are useful for distinguishing
the classes).

SHAP values combine both types of importance, fairly distributing the prediction among
the features. SHAP belongs to the methods based on Shapley-value, which have a solid
theoretical justification although they are computationally expensive and in general their
accuracy is not higher then other methods like Grad-CAM. Usually SHAP is used to
explain predictions of image classification problems by dividing the input image into
super-pixels, see Fig. 6.10 and then run the algorithm on the super-pixels instead of
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single pixels in order to be more efficient. Thus giving explanation according to segments
and not to every pixel. We show that instead of using superpixel we could exploit the
segmentation provided by our network and treat each segmented object as a superpixel.
This approach led to a remarkable improvement in two directions:

1. In terms of explainability, shapley values are assigned to more interpretable features
in the image which are segmented scenes and objects with a semantic meaning
instead of just super-pixels.

2. The algorithm is improving in terms of time efficiency. In general when dividing
the image into superpixel we saw that in order to have explanations capable of
highlighting single objects we need to split the image into at least 50-100 super-
pixels. While in most of the pictures we analysed there are around 10-15 semantic
segmented elements.

To highlight the improvements obtained by our approach we present a comparison, using
Kernel SHAP, a method which computes the importance of each feature combining a
special weighted linear regression with Shapley values, on an image partitioned into 20
super-pixels Fig. 6.11, and the same image segmented into 14 classes Fig. 6.12. The latter
was segmented into the following classes: wall, bed, floor, curtain, painting, windowpane,
table, lamp, pillow, ceiling, chair, cabinet, box, radiator, desk. It has to be noticed that
not only the results are more interpretable, but also in terms of efficiency we gain more
than 9 seconds, (17.05/s vs 26.25/s), with respect to an execution on the image partitioned
into 20 super-pixels.

Figure 6.10: An image taken from an Airbnb partitioned respectively into 20, 50 and 100
super-pixels.

Another advantage of our approach is that it allows us to visualize which decorative and
structural elements influence the predictions at each level of granularity i.e: sub-region,
country and city level. Looking at Fig. 6.13, we see that most of the importance for the
top-1 prediction at sub-region level is assigned to the windows, the chairs and the ceiling.
While in the case of the top second and third sub-region predictions the window had less
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Figure 6.11: An image showing SHAP values on the top-3 predictions at sub-region level
of an Airbnb located in Rome, using an image partitioned into 20 super-pixels.

Figure 6.12: An image showing SHAP values on the top-3 predictions at sub-region level
of an Airbnb located in Rome, using the segmentation provided by our model instead of
super-pixels.

influence on the prediction. At country level, see Fig. 6.14, most of the focus is on the
ceiling for the correctly top-1 predicted country, which is Italy. After a deeper inspection
of the Airbnb dataset, we found that this attribution is coherent to the fact that there
are many Airbnb images from: ancient Roman and Venice houses and some Sicilian rural
houses which present a wooden beam ceiling. This also partially explains the distribution
of the Shapley values in Fig. 6.15 which highlights that the ceiling was one of the most
important feature for the corresponding top three predicted countries.
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Figure 6.13: On the left an image from an Airbnb located in Venice, followed by the Top-
3 predicted sub-regions, with the corresponding SHAP values assigned to the segmented
features in the image.

Figure 6.14: On the left an image from an Airbnb located in Venice, followed by the Top-
3 predicted countries, with the corresponding SHAP values assigned to the segmented
features in the image.

Figure 6.15: On the left an image from an Airbnb located in Venice, followed by the Top-3
predicted cities, with the corresponding SHAP values assigned to the segmented features
in the image.
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6.7. Analysis A: Model Calibration

This analysis was conducted exclusively on the model trained on the Airbnb dataset, to
verify its adequacy before using it, as we will see in Chapter 7, for a web demonstration.

Interpreting the probability scores of a deep learning model for multi-class classification
as the probability that the corresponding class was detected is not correct, unless the
model is calibrated. Confidence calibration is the problem of predicting probability
estimates which are representative of the true correctness likelihood. For this reason in
order to interpret the prediction scores of our model as probabilities of class detection
we need to check that our model is calibrated. The techniques that we investigated for
visualizing the calibration of the model were introduced by Guo Chuan et al. in [13].
We introduce some definitions and formalise the calibration problem in our framework
(supervised multi-class classification with neural networks).

Given two random variables: an input X ∈ X and label Y ∈ Y = 1, . . . , K, with a joint
distribution π(X, Y ) = π(Y |X)π(X). Let h be our neural network with h(X) = (Ŷ , P̂ )

where Ŷ is the predicted label and P̂ is it’s associated confidence i.e. the probability of
correctness. We would like P̂ to represents a true probability, namely that the confidence
estimate P̂ is calibrated. When a model is calibrated, the confidence score should equal
the accuracy. To understand this better, let’s take an example from [13]: "given 100
predictions, each with confidence of 0.8, we expect that 80 should be correctly classified".

Definition 2. We define perfect calibration as: P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1]

Perfect calibration is practically impossible and since P̂ is a continuous random variable
the probability in the above definition cannot be computed using finitely many samples.
For this reason empirical approximations like Reliability Diagrams, see Fig. 6.16, are
used to give a visual description of model’s calibration.

To estimate the expected accuracy from finite samples, the model’s predictions are divided
into M bins based on the confidence score of the winning class. For each bin Bm we
calculate average accuracy acc(Bm) = 1

|Bm|
∑

i∈Bm
χ(ŷi=yi) and the average confidence

within the bin as: conf(Bm) = 1
|Bm|

∑
i∈Bm

p̂i. Hence a perfectly calibrated model will
have acc(Bm) = conf(Bm) for all m ∈ 1, . . . ,M . The reliability diagrams at the top show,
for each classification task, the average confidence for each bin, as well as the accuracy of
the examples within each bin. In general the average confidence for a bin lies on or close
to the diagonal. For each bin the difference between the accuracy and the confidence is
plotted. Ideally, the accuracy and confidence should coincide. In that case, we can affirm
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Figure 6.16: On top reliability diagrams respectively for sub-region, country and location
classifiers, showing the average confidence for each bin, as well as the accuracy of the
examples within each bin. We used 10 bins. At the bottom the confidence histograms,
showing how many test samples are in each bin. The two vertical lines indicate the average
confidence and overall accuracy.

that the model is calibrated and we can interpret the confidence score as a probability.
While, when the model is not calibrated, there is a gap (red bars) between accuracy and
confidence. The diagonal is the ideal accuracy for each confidence level. If the red bar goes
above the diagonal, it means that accuracy is larger than the confidence, so the model is
not confident enough. If the red bar goes below the diagonal, it means the confidence is
larger than the accuracy and the model is overconfident in its predictions. Black lines in
the reliability diagrams indicate the average accuracy for the examples within that bin: If
the black line is on top of a red bar, the model is not confident enough in its predictions,
while if the black line is at the bottom of a red bar, the model is over-confident for the
samples in that bin.Techniques for calibration are aimed at bringing these two elements
more in line with one another by fixing the confidence scores. On the bottom of the
reliability diagrams we also show the Expected Calibration Error (ECE). ECE is a
summary statistic that approximates the difference in expectation between confidence and
accuracy, it is defined as follows: ECE =

∑M
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| where n is the
total number of samples in our test set. The Lower the ECE the better it is.

It has to be noticed that reliability diagrams do not display the proportion of samples in
a given bin, and thus cannot be used to estimate how many samples are calibrated. For
this reason we added the confidence histograms at the bottom that show how many test
examples are in each bin. We used 10 bins. The two vertical lines indicate the average
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confidence and overall accuracy. The closer these two lines are together, the better the
calibration of the model. To conclude, looking at Fig. 6.16, we can affirm that our model
is rather well calibrated.

Before deploying our model in the web demonstration we also computed the confusion
matrix, see Fig. 6.17, for the three classification tasks (sub-region, country and location)
in order to check if the model is biased toward a specific sub-region, country or location.
We can observe that at sub-region level there are some elements on the diagonal on which

Figure 6.17: The lighter colors on the diagonal indicates that the model is predicting well.

the model is not predicting so well. These sub-regions are for example: Southern Africa,
Western Asia, South Eastern Asia and Eastern Europe. One of the reasons of the bad
performances on these regions is due to class unbalance, in fact we have few samples
for these regions. We observed that we have approximately only 24000 observations
for Southern Africa, all belonging to just one country (South Africa), same for Eastern
Europe where we have only images from Prague (around 14000) and South Eastern Asia
(7000 images from Singapore). While for sub-regions like Southern Europe or Northern
America,(which have lighter colors on the diagonal of the confusion matrix) we have many
samples from different countries covered by these areas.



7| Qualitative Analysis with a

Demonstration Application.

In this section we discuss a demo that we developed using the Gradio framework for Image
Classification with Vision Transformers. The framework is very easy to use, on the left
there is a button to clear data in order to upload new pictures and close to it a submit
button in order to run the prediction on the uploaded image. On the right, just below
the predictions there are three buttons:

• Interpret: which provides interpretation, based on SHAP [22], explaining prediction
output.

• Screenshot: which allows to take a screenshot of the predictions and explanations
done by the model.

• Flag: which may be very useful in case of unexpected behaviour, e.g. imagine
that the model is tested on an image of a danish living room, and produce a top-
10 predictions without Denmark, putting on top only African cities. It would be
very helpful to mark this image and send it back to us in order to understand the
anomalous behaviour. FLAG button allows the user or tester to send back to us
the flagged data, in order to analyse it.

This tool could be used to perform a user study to obtain an additional qualitative eval-
uation of our model. Even if it goes beyond the scope of this thesis, we believe that also
a subjective analysis of different interpretability techniques deployed in the experimental
phase, Chapter 6, would be very useful, since people from different part of the world may
have some insight visual information to compare with our XAI explanations. We leave
the incorporation of the different XAI methods into a web demo for future work.

In our demonstration website we decided to deploy our model for indoor geolocation
trained on the Airbnb dataset, displaying the top-10 country predictions. We will com-
ment now on some successful predictions made by our model when tested on our demo.
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Figure 7.1: Top-10 predicted countries on a two photos taken inside of a Roman house.

We first analyse some interior pictures taken by some colleagues in their own house to
collaborate in this project. The photo in Fig. 7.1 was taken by a colleague inside of his
apartment in Rome, both where correctly geolocated at country level. After a deeper
inspection of the Airbnb dataset we noticed that the countries predicted as most probable
after Italy, which are: Spain, Mexico and Portugal, presents many pictures with "azule-
jos" which are painted tin-glazed ceramic tile-work, originally from Portugal and Spain,
and later introduced also in former Portuguese and Spanish colonies. One of the elements
which in this case gives additional information to the ceramics is the type L power socket
which is only present in Italy among these countries.

The tested image in 7.2 was taken by a friend in his room in London, even if there are not
so many patterns which could result useful to understand the location of the picture to
an un-trained italian eye (like ours), the Network is still capable of predicting the current
location. In the lower right part of Fig. 7.2 we present also an image showing the most
important features for the predicted output according to the SHAP algorithm.

We had the opportunity to test our model also on some images taken by a french colleague
living in Paris (a few of them are shown in Fig. 7.3) and by a friend living in Berlin, see
Fig. 7.4. In both cases the results where surprisingly accurate. In the first case, we tested
the model on 10 different pictures from different perspective of the same house in Paris,
in 8 pictures out of 10 French was predicted as top-1, while in the remaining two pictures
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Figure 7.2: Top-10 predicted countries on a photo taken inside of a room in a house in
London.

it was as top-3, right after Denmark and UK. In the second case we tested our model on
6 different pictures taken inside the same flat in Berlin, the model correctly predicted the
country in 5 cases out of 6, only in one case it assigned a higher probability to Denmark
and the Netherlands right before Germany.

Figure 7.3: Top-10 predicted countries on a photo taken inside of a bedroom and a living
room in a house in Paris.

If we consider that our model was trained exclusively on images coming from Airbnb, it
is quite remarkable the capability to generalize on data coming from interior of student,
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Figure 7.4: Top-10 predicted countries on a photo taken inside of a bedroom and a kitchen
in Berlin.

workers and family houses. In fact, usually Airbnb images tend to present different
elements and characteristics than house for long term living.

As previously mentioned in the Chapter 5, we also collected more than 2000 pictures,
from different real estate web pages, which are available to the user to test our model.
The image in Fig. 7.5 is another correctly predicted image taken from this dataset. We
made a couple of experiments on this photo, cropping it many times so to exclude some
informative elements as the power sockets on the right side of the cooker while keeping
the sink still in the image: as a result the model still predicted United Kingdom as first
country option but the probability decreased from 59% to 36%. While after an ulterior
cropping, both on top cutting most of the kitchen hood piping and the sink on the left,
the model predicted United States as most probable country with 38%, moving United
Kingdom to the second most post probable country with a 29% probability.

The image in Fig. 7.6 is taken from the Agoda web-page which is an online travel agency
but also a metasearch engine for hotels and vacation rentals. It shows a house located
on the Bosphorus; also in this case there is a variety of elements which could provide
discriminative information like the carpet, the curtains and of course the view. We also
checked the inference capability of our model on images from an Airbnb in Lisbon, see
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Figure 7.5: On the left the original image of a kitchen in London, with the associated
SHAP interpretation, the more intense the red, the more positive the Shapley values are.
On the right the same image after multiple crops, leading U.S to overtake U.K as the
most probable country.

Figure 7.6: Top-10 predicted countries on a photo taken from Agoda web-page, showing
a living room of a house in Turkey.

Fig. 7.7 where a colleague is currently working, of course before making the prediction we
carefully checked that the mentioned Airbnb is not present in our dataset. Also in this
case the model correctly predicted Portugal as the most probable country.

To conclude, I also took some pictures in my kitchen in Rome which were correctly
classified. I present here one of them as a demonstrative example, Fig. 7.8. Even if there
are many elements which could result easy to locate this kitchen for an Italian trained eye,
probably for a tourist coming from Canada or China it could be harder to understand if
this is an Italian or Spanish kitchen. Also in this case the union of many interior features
as the tiled floor, the gas cooker, the counter on top, the window size and frame, the
disposition of the kitchen and the curtains provide sufficient information to our model to
accurately predict the location of the picture at country level.

Thanks to this demo we can highlight the fact that decorative styles, structural elements,
materials, objects with functional purposes differ across geographic spaces, regions and
countries, and that they can all be used together to predict the location of a given indoor
image, at different level of granularity.
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Figure 7.7: Top-10 predicted countries on a photo taken inside of a living room of an
Airbnb in Lisbon.

Figure 7.8: Top-10 predicted countries on a photo taken inside of kitchen in a Roman
house.
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Research Directions

In this section we analyse the questions we asked ourselves in Chapter 3, comment the
results we have achieved and what conclusions we have reached. Moreover, we discuss
and propose some possible future research directions in this field.

8.1. Answering the Research Questions

The results obtained by our model on both Hotel50k and Airbnb dataset are quite surpris-
ing, reaching a rather high level of accuracy not only at sub-region and country level but
also at the city level. Obviously, as the number of cities increases the task becomes more
complicated and the accuracy of the predictions decreases as can be seen by comparing
the Hotel50k dataset with 10458 cities where the best top-1 accuracy we reached is 20%
while in the case of the Airbnb dataset with only 100 cities, it rises to 40%. Looking at
some of the predictions made in Chapter 7, we are quite happy to note the generalisation
capabilities of our model, which is able to make correct predictions even on photos taken
inside private homes. We can therefore state that our model is in most cases capable of
making more accurate predictions than the ones of an inexperienced, and on some occa-
sions even experienced, human eye. The third question we asked ourselves was concerning
which backbones and datasets are most suitable for a feature extractor to best extract
information from interior scene images. In this respect, we can say that the latest vision
transformers pretrained on Imagenet22k are certainly an effective solution. We argue,
however, that datasets such as the SUN database or the ADE20k for scene categorisa-
tion might be very appropriate to pretrain a network for our task. Unfortunately, these
datasets contain far fewer images than Imagenet22k and also fewer categories, for these
reasons the best performance was obtained with a network pretrained on Imagenet22k, al-
though the improvement is rather slight with respect to the results obtained with ADE20k
(which has only 150 categories).
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Regarding the second question we asked, we believe that it is possible to obtain useful
visual explanations to understand the predictions of our network and to add informative
elements to our knowledge for the indoor geolocation task. We have noticed that an
approach that we consider valid can consist of segmenting all the objects and elements
present in an indoor image and then using methods such as SHAP [22] or LIME [28] to
understand which attributes mainly affect the prediction of our model. When repeating
multiple times these XAI techniques on images from same scene in same location we
could notice how there are some elements which characterize the geographic location of
an image. E.g. we have noticed that ceiling with wooden beams, combined with floors with
hydraulic tiles are very popular in Catalonia but also in ancient Roman houses while in
Venice houses it is quite more common to see “Terrazzo” floors, which are made of chips
of marble, quartz, granite, glass or other suitable materials, poured with cementitious
binder, polymeric binder or a combination of both.

8.2. Future Research Directions

In this section we present ideas for some potential future extensions that we realised,
during the development of our framework, they could improve the performance of the
tool we created. In concrete terms we present four directions toward which our model
could be extended.

1. Dataset extension: Collect data from new countries, for the Airbnb dataset, trying
to extend the prediction capabilities of our model as far as possible. For this purpose,
we argue that it is very important to also collect a large number of quality photos
in which elements that can help to geolocate the images are visibly recognisable.
We have noticed that in some cases the presence of power sockets, or writing in
languages that can be highly informative, did not help our model to arrive at the
predictions made. This is because in these cases there were not enough images with
visibly recognisable power sockets present. We therefore argue that in addition to
automatic scraping, which is helpful to download images in large quantities, in order
to extend the learning capabilities of our model, it is also necessary to provide it with
relevant quantities of images including semantically highly informative elements in
order to extend its information extraction capability. We are currently working on
extending the Airbnb dataset by adding photos of new countries and cities.

2. Text Explanations: In our framework we only dealt with visual explanations,
trying to exploit the 150 categories present in the ADE20K dataset [44]. We argue
that it could be useful to introduce a language Transformer model for image caption-
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ing, not only to describe the objects in a scene, but also their spatial of functional
relationship which may be key for a better understanding of the geolocation task.
Moreover it has to be noticed that the introduction of vision transformer models,
like the one we used, has brought the NLP and computer vision fields closer to each
other. We argue therefore that our framework would benefit from a text explanation
model and that the use of our vision transformer would result helpful to connect
visual and NLP modeling, linking visual tasks to all semantics involved in language.

3. Web Platform and Crowd Sourcing: Create a more sophisticated demo which
will include our visual explainability methods like GradCAM and SHAP on seg-
mented images, allowing users to give us feedback on the usefulness of these meth-
ods and whether they think there are elements, that have not been highlighted, that
could have helped to identify the location. This is of fundamental importance since,
while the predicted location can be validate in a quantitative manner, judging the
usefulness of the visual explanations for better understanding the model or see if
there were discriminating elements which weren’t used can only be carried out on
a qualitative and subjective basis. Especially taking into account that people from
different places have internal information that can enable them to distinguish houses
from their countries more quickly and effectively than a person from another place.
In addition, we believe it can be of great help to open a section within the web-page
dedicated to uploading new geo-labelled images and useful annotations to extend
the capabilities of our model.

4. Segmentation Improvements: The human eye approaches the visual world on
several levels: categorising and contextualising different scenes by recognising ob-
jects made up of different components and at the same time identifying different
types of textures and surfaces. We claim that a multi-task approach as the one
presented by Xiao et al. in [42], which requires the machine vision systems to recog-
nize simultaneously: scenes, objects, parts of objects, materials and textures, could
give us additional meaningful visual information. For example we could use this
approach to gather relevant statistics showing which objects, materials and textures
are the most common within each scene (bedroom, kitchen, bathroom, living room)
for each country.
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