
Numerically Efficient Methods for
Low-Thrust Collision Avoidance
Maneuver Design in Multiple Or-
bital Regimes

Tesi di Laurea Magistrale in
Ingegneria Spaziale

Author: Gabriele Dani

Student ID: 968112
Advisor:
Prof. Pierluigi Di Lizia
Co-advisors:
Prof. Roberto Armellin
PhD Candidate Andrea De Vittori
Academic Year: 2021-22





i

Abstract

Due to the intensive exploitation of the space environment and the increasing number of
debris present, the problem of collisions between the latter and active satellites is growing
at a relentless pace. Given the new investments in CubeSats and the development of large
constellations, it is difficult to expect a stabilization of this phenomenon. Compared to
lower orbits, the geostationary regime is less crowded. However, the presence of debris
remains considerable and despite the smaller number of active missions, the risk of a
collision is rising concern in this area. For these reasons, the planning and implementation
of Collision Avoidance Maneuvers (CAMs) is becoming a crucial task for the success of
space missions. The above-mentioned problems are compounded by recent technological
innovations in the field of space propulsion. The increase in the number of satellites
equipped with low-thrust propulsion systems, presents a new perspective to the study of
anti-collision maneuvers.

This thesis investigates the design of optimal and computationally efficient low-thrust
CAMs in different orbital regimes. In the first part, a conjunction in Low Earth Orbit
(LEO) is prevented thanks to two different CAM policies. The first one involves the
execution of a maneuver enforcing a certain threshold on the collision probability (PoC)
at the Time of Closest Approach (TCA), then safely letting the spacecraft re-enter in a
point belonging to its nominal orbit. For this purpose, the conjunction dynamics of the
two objects are presented in a Cartesian reference system and then projected onto the
B-plane, centered on the secondary object. The second method simply forces the satellite
to match the original orbit Keplerian parameters, neglecting the true anomaly.

In the second part, the thesis deals more specifically with collisions in the geostationary
region. In this particular orbital regime, objects undergo gravitational perturbations that
can cause a change in the satellite’s motion violating its assigned slot, characterized by
precise latitude and longitude boundaries. To cope with it, ad-hoc strategies keep the
satellite confined within its assigned box through Station-Keeping (SK) maneuvers. The
goal is to formulate a procedure that allows a station-keeping maneuver to be carried
out and at the same time avoid a possible collision. Contrary to the first two envisioned
methods, modeled considering a Keplerian motion, embedding CAMs and SK necessitates
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the addition of geopotential perturbation in the dynamical model.

In each of the analyzed cases, fully analytical methods are based on the approximation
of orbital motion thanks to the State Transition Matrix (STM). The effect of lineariza-
tion in the LEO case is investigated by comparing it with a semi-analytical procedure
capable of calculating the optimal maneuver through several successive linearizations.
In order to fulfill the operational requirements, an iterative method able of finding the
Bang-Bang transformation starting from the analytical solution of the control problem for
continuous-thrust maneuvers is also showcased. Applying the previous iterative method
to approximate an impulsive maneuver is succesively examined. Finally, a purely bang-
bang solution was found, which does not use smoothing techniques starting from the
approximate solution.
The different algorithms are compared in terms of efficiency and computational robust-
ness.

Keywords: GEO, CAM, station-keeping, PoC, TCA, optimization.
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Abstract in lingua italiana

A causa dello sfruttamento intensivo dell’ambiente spaziale e del crescente numero di de-
triti presenti, il problema relativo alle collisioni tra quest’ultimi ed i satelliti attivi è in
forte aumento. Visti i nuovi investimenti in cubesat e nello sviluppo di grandi costel-
lazioni, risulta difficile aspettarsi una stabilizzazione di questo fenomeno. Rispetto ad
orbite più basse, il regime geostazionario risulta meno affollato. Tuttavia, la presenza
di detriti rimane di notevole entità e nonostante il minor numero di missioni attive, il
rischio di una collisione è preoccupante anche in questa zona. Per queste ragioni, la
pianificazione e la realizzazione di manovre anticollisione sta diventando un compito fon-
damentale per il successo delle missioni spaziali. Ai problemi sopraelencati si aggiungono
le recenti innovazioni tecnologiche nell’ambito dei sistemi propulsivi. L’aumento del nu-
mero satelliti equipaggiati con sistemi di propulsione a bassa spinta, pone di fronte ad
una nuova prospettiva nello studio delle manovre.

Questa tesi indaga la progettazione di manovre anticollisione a bassa spinta ottime ed
efficienti dal punto di vista computazionale in regimi orbitali differenti. Nella prima parte,
viene impedita una congiunzione in LEO grazie a due diverse strategie. Il primo metodo
prevede l’esecuzione di una spinta che consenta di rispettare una determinata soglia sulla
PoC al TCA, imponendo poi che il satellite rientri in sicurezza in un punto appartenente
alla sua orbita nominale. A questo scopo, la dinamica di congiunzione dei due oggetti è
presentata in un sistema di riferimento cartesiano e poi proiettata sul B-plane, centrato
sull’oggetto secondario. Il secondo metodo obbliga semplicemente che, al fine manovra, il
satellite abbia gli stessi parametri kepleriani dell’orbita originale, trascurando l’anomalia
vera.

Nella seconda parte, la tesi tratta in modo più specifico collisioni in regime geostazionario.
In questo regime orbitale particolare, gli oggetti subiscono perturbazioni gravitazionali
che possono causare un cambiamento nel moto del satellite, tale da violare lo slot a
lui assegnato caratterizzato da precisi confini di latitudine e longitudine. Per poter far
fronte a questo, è necessario adottare strategie ad-hoc in modo da mantenere il satellite
confinato all’interno del box attraverso manovre di Station-Keeping (SK). L’obiettivo è
formulare una procedura che consenta di realizzare una manovra di SK e allo stesso tempo



evitare una possibile collisione. A differenza dei primi due metodi previsti, modellati
considerando un moto kepleriano, l’incorporazione di CAM e SK richiede l’aggiunta di
una perturbazione geopotenziale nel modello dinamico.

In ognuno dei casi analizzati sono stati sviluppati metodi completalmente analitici, basati
sull’approssimazione del moto orbitale grazie alla STM. L’effetto delle non linearità nel
caso LEO viene indagato confrontando la soluzione ottenuta con una procedura semi-
analitica capace di calcolare la manovra ottima attraverso più linearizzazioni successive.
Al fine di soddisfare i requisiti operativi, viene inoltre presentato un metodo iterativo in
grado di trovare la soluzione Bang-Bang a partire dalla soluzione analitica del problema di
controllo per manovre a spinta continua. Successivamente, viene esaminata l’applicazione
del metodo iterativo precedente per approssimare una manovra impulsiva ed infine, è
stata trovata una soluzione puramente bang-bang che non utilizza tecniche di smoothing.
I diversi algoritmi sono confrontati in termini di efficienza e robustezza computazionale.

Parole chiave: GEO, CAM, station-keeping, PoC, TCA, ottimizzazione
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1| Introduction

This first chapter provides a general introduction to the space debris problem and the
purpose of the thesis. After presenting the framework, a brief review about the state
of the art of collision avoidance maneuvers adopting low-thrust propulsion is reported.
Finally, the last part of the chapter focuses on a dissertation about the thesis work.

1.1. Space Debris

Space debris is human-generated junk left around the Earth. The number of artificial
objects no longer functional for operative applications has gradually increased since the
start of space activity.
In 2013 NASA reported that more than 210 000 pieces at least the size of a softball were
being tracked, ad an estimate of 500 000 pieces at least the size of marble is thought to
exist. More than 100 million even smaller objects, ranging down to the size of a tiny fleck
of paint, are too small to be detected or tracked [13].

Figure 1.1: Space debris distribution around Earth source [7](ESA).
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Fig. 1.1 is a computer-generated picture that represents the space debris population
located in two main regions. The first is the ring of objects in Geostationary Earth Orbit
(GEO), at 36 000 km, and the second cloud is in Low Earth Orbit (LEO), between 400
and 2000 km of altitude.

During the early years of space exploration, scientists and astronomers feared that the
missions might be threatened by the presence of natural debris around our home planet.
However, no mission was hindered by the object of this type. The real problem is repre-
sented by artificial debris generated as time goes by.

Figure 1.2: Space debris object area evolution in all orbits source [7](ESA).

Classification Description

PL Payload

PF Payload Fragmentation Debris

PD Payload Debris

PM Payload Mission related Object

RB Rocket Body

RF Rocket Fragmentation Debris

RD Rocket Debris

RM Rocket Mission Related Object

UI Unidentified

Table 1.1: Object Classification.
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Fig. 1.2 shows the steadily increasing of artificial debris since the beginning of the space
age. This cloud of objects is generated mainly from spacecraft and rocker stages break
ups, and it needs to be constantly monitored to predict and avoid future collisions.
Considering things stand, impacts between debris and working satellites seem to grow
relentlessly.

Starting from 2009 the European Space Agency (ESA) has implemented the Space Sit-
uational Awareness (SSA) Program, which allows Europe to acquire the independent
capability to watch objects and natural phenomena that could harm both on-ground and
on-orbit facilities. In particular, the program focuses on: Space Weather and solar activ-
ity prediction, Near-Earth Object (NEO) monitoring for detecting natural objects such
as asteroids that can impact Earth, and Space Surveillance and Tracking (SST) to watch
active and inactive satellites. Under SSA, SST constantly updates a data catalog for all
orbiting objects to send alerts to the stakeholders and command dedicated maneuvers if
a collision is likely to occur. Further information is reported in [8].

The objective of sustainable use of space environment can be achieved by following the
existing guidelines and standards:

• Design rockets and spacecraft to minimize the amount of shedding, and material
becoming detached during launch and operation, due to the harsh conditions of
space.

• Prevent explosions by releasing stored energy, “passivating” spacecraft once at the
end of their lives.

• Design end-of-life disposal of satellites, moving them out of the way of working
satellites.

• Prevent in-space impacts through careful choice of orbits placement and by per-
forming Collision Avoidance Maneuvers.

This thesis focuses on the last measure, i.e., Collision Avoidance Maneuver (CAM) design
both in LEO and GEO regimes.
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Figure 1.3: Different orbital regimes around Earth source [16].

LEO represents the most adopted region for remote sensing, imaging, and commercial
applications due to its close proximity to the Earth. The intensive usage of this space
sector has transformed it into a bullets depository. Furthermore, the proliferation of space
junk continues essentially unabated owing to rocket bodies, paint flecks, mission-related
payloads, and fragments resulting from previous collisions.

The situation in the GEO ring is widely different because, as far as it is known, the
debris spatial density is lower than in some LEO altitudes. The reason relies on the lower
number of space missions that interest this region and on the higher distance that gives a
higher resident volume. However, the total number of operating objects is overwhelming
[27].

The objects which constitute the GEO region are upper stages, apogee boost motors, and
mission-related tools like deployment hardware and instrument covers. The above list
is enlarged by each non-operational satellite that represents a potential hazard to other
active satellites once it reaches its end of life. Regrettably, only the largest objects are
regularly observed and cataloged. However, there are several potential sources of small-
size debris, such as explosion fragments that cannot be detected, and becomes an even
more alarming threat for other assets [7].

When, at TCA, a threshold on the Miss Distance (MD), or on the PoC, is exceeded, a
collision avoidance maneuver is performed.
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The onboard thrusters are fired to generate the change in trajectory planned and perform
CAMs. The cost of the maneuver can be evaluated by looking at the ∆v given from the
propulsion system.
The time interval between the encounter and the prediction time, the trajectory con-
straints, and the onboard propulsion system affect the fuel consumption. A CAM executes
depending on the available engine technology. An impulsive strategy is preferable with a
high thrust propulsion system. Conversely, low-thrust firings are typically associated to
high specific impulse engines.

Moving on to CAM planning, it is possible to adopt long-term and short-term strategies.
In the former, the maneuver is commanded a certain number of revolutions before the
closest approach. It consists on an along-track separation between the spacecraft and the
debris object. The collision is avoided by reaching the encounter point at a new arrival
time. The second strategy requires a larger ∆v. CAM counts on the radial separation
between the spacecraft and the debris, which is achieved with an altitude increase at the
encounter point [26]. At the end of each maneuver, the spacecraft shall return to its
nominal orbit. There are two different ways to accomplish this objective i.e. including
the position constraint in the optimization problem or combining the station-keeping
maneuver with the CAM execution.

Since 2009, Conjunction Messages have been sent by Joint Space Operations Center
(JSpOC) to all spacecraft owners and operators, concerning approximately 48000 ob-
jects listed in the Two-Line Element set (TLE) provided by US Strategic Command
(USSTRATCOM).
JSpOC provides a Conjunction Assessment Report about a proximity event between a
primary satellite and another satellite or space object; it also includes the TCA, the miss
distance, relative position and velocity, observation statistics, the satellite covariance ma-
trices and the time of last acceptable observation. The standard format Conjunction
Summary Message (CSM)/Conjunction Data Message (CDM) is prepared by the Consul-
tative Committee for Space Data Systems (CCSDS). Detailed information about CDM
can be found in [9].

Every week hundreds of alerts are issued for spacecraft in LEO. In most cases, the collision
risk decreases during the weeks thanks to the new information obtained on the debris orbit.
However, sometimes an operative action is demanded to prevent the impact.
Nowadays, CAMs are planned on-ground, with the support of specific tools. If the pre-
defined threshold on the probability or the miss distance is exceeded, a maneuver is
designed by mission planners. The Space Debris Office (SDO) is the department of the
ESA in charge of all the activities concerning space debris; a complete description of the
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SDO current collision avoidance service can be found in [19].
Due to the increasing number of satellites launched into orbit, current “manual” methods
for avoiding in-space collisions and the creation of new debris will not be enough. For
this reason, it is fundamental an onboard autonomous solution.

1.2. State of the Art

To consider a CAM optimal, the collision probability of a satellite with one, or more,
space objects reduces below a prescribed threshold while minimizing a cost function.
The literature regarding the optimization of impulsive collision avoidance practices is the
most thorough; however, in the last years, researches have deepened the theory behind
low-thrust CAM.
Rasotto et al. in [23] found an impulsive fuel-optimal maneuver through the implemen-
tation of a genetic algorithm. Multi-objective particle swarm optimizers are employed by
Morselli et al. [21] to design optimal CAMs. Both the methods involve an high compu-
tational effort due to the fully numerical procedure. Research on low-thrust optimization
methods includes the semi-analytical method developed by Reiter et al. [24] for rapid
collision avoidance, based on the hypothesis that the optimal thrust is always radial.

In 2021 Palermo [22] developed an analytic solution for the Energy Optimal Problem
(EOP) using PoC at TCA as final constraint, both in cartesian coordinates and B-plane
dynamics formulation. The analytic solution is then used to find, using a smoothing
technique, the bang-bang acceleration profile of the Fuel Optimal Problem (FOP). More
semi-analytical methods were proposed in [12]; this approach harnesses average dynamics
maximizing the miss distance with the assumption of continuous tangential thrust.

Bombardelli and Hernando-Ayuso [14] investigated the problem of optimum low-thrust
collision avoidance between two objects in circular orbits; the thrust vector of the maneu-
vered satellite, applied continuously for a given time span, is held constant in magnitude.
The optimal control is written in B-plane coordinates in order to reduce significantly the
dimension of the resulting Two Point Boundary Value Problem (TwPBVP) to only two
with a constant costate vector.

Martinez Chamarro et al. [18] present two approaches to computing low-thrust CAM;
the first is based on the reconstruction of a bang-bang structure by applying a smoothing
approach to an EOP continuous solution in the second method, the maneuver design is
formulated as a convex optimization problem.

The literature about the combination of low-thrust CAM and GEO Station Keeping (SK)
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is almost nonexistent. In 2017 Gazzino resumes the principal aspect of the linearized
state space representation of the dynamics of a Geostationary orbit [10]. Two years later
he used this dynamical model to define and solve the FOP for geostationary SK using
low-Thrust electric propulsion [11].

In 2012 Lee developed a collision avoidance maneuver for low Earth orbit (LEO) and
geostationary Earth orbit (GEO) satellites maintained in a keeping area [15]. A Genetic
Algorithm (GA) is used to obtain both the maneuver start time and the delta-V to reduce
the probability of collision with uncontrolled space objects or debris. The limitation of
using GA as optimization algorithm is represented by the numerical effort.

Finally, Cantoni in 2021 during her thesis work [4] developed a numerically efficient strat-
egy to solve the EOP for an SK maneuver that includes the possibility to execute a CAM.
The principal limitation is the continuous acceleration profile not capable to reproduce a
bang-bang structure and the choice of the final state selected only by imposing a target
on the Geostationary box.

1.3. Dissertation

This thesis strives to complete the work of Palermo adjoining CAM and the re-entry to
the original orbital regime. It fixes the terminal state or the final desired orbital elements
with a Three Point Boundary Value Problem (ThPBVP).

The second part of the research is a procedure capable to solve the EOP associated
to SK and to an eventual CAM. Differently from the work developed by Cantoni, the
dynamic leverages is modeled using the Equinoctial Orbital Element (EOE) presented in
Gazzino’s works [10]. It is more computationally efficient compared to the Cartesian one
and it makes the bang-bang adaption straightforward.
Another improvement of this research consists in the choice of the target state at the end
of the maneuver; the terminal state is tailored to maximize. This is achieved both with
an analytical approximation and with an optimization procedure.

Summing all, the scope is to provide numerically efficient and robust methods to perform
an optimized CAM for different orbital regimes; the thesis is divided into 5 chapters.

Chapter 2 introduces the baseline to work on conjunction analysis. In particular, the
collision framework, the B-Plane reference, the concepts of Probability of Collision, and
Squared Mahalanobis Distance. Moreover, it presents the derivation of the state transi-
tion matrix and showcases a brief description of the adopted dynamical models and the
fundamentals of the GEO SK routines.
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Chapter 3 presents the CAM optimal control problem. In the first part, the solution of
the EOP and the associated FOP transformation fixing the terminal state is presented.
In the second part, a similar procedure is applied to solve the problem of fixing the final
orbit; this variation leads to a problem farming in keplerian elements. The state variation
allows to express easily the terminal constraints and simply to leave free the final true
anomaly.

Chapter 4 focuses the combination of a CAM and a SK maneuver. The developed algo-
rithm is capable to understand if SK alone is sufficient to respect the PoC constraints,
and it is combined with CAM if not.

Chapter 5 is the final part of this thesis work, it summarizes the conclusions and sugges-
tions for further developments.
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2| Fundamentals

This chapter contains the necessary mathematical background to get the insights on the
work presented in this master thesis. It begins with the fundamentals of conjunction dy-
namics and the formulation in B-plane coordinates. Then, the focus shifts to the collision
probability, with the assumption of short-term encounters. Right after, dynamical models
used in this master thesis are presented, followed by the basic notions on optimal control
theory. The chapter concludes with the introduction of the STM.

2.1. Conjunction Analysis

To analyze a possible collision consider two objects experiencing a conjunction event with
an expected relative position r⃗e. The manoeuvrable spacecraft is called “primary object”,
and is indicated with the symbol Op, while the uncooperative debris is the “secondary
object” , Os.
The state vectors (position and velocity) of the primary and secondary center of mass are
in a generic (inertial or a local) reference frame (r.f.) ℜ̂, as x⃗p = (r⃗p, v⃗p) and x⃗s = (r⃗s, v⃗s).
Each object, at a generic time t, has a dynamics evolution expressed by f⃗p and f⃗s.

d v⃗p(t)

dt
= f⃗p(t, x⃗p),

d v⃗s(t)

dt
= f⃗s(t, x⃗s).

(2.1)
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ℜ̂

r⃗s
r⃗pv⃗p

v⃗s

Rs

Rp

OsOp

Figure 2.1: Encounter between two objects.

The collision domain simplifies with the Spherical geometry hypothesis: Op and Os are
modeled as spheres of radii Rp and Rs respectively.
Figure 2.1 represents the space configuration of an encounter between two objects modeled
in such a way. The approximation allows to neglect the objects geometry and attitude a
priori knowledge.

2.2. B-plane Definition

Let {x, y, z} represent an inertial r.f. centred at Op−Os and with axes directions defined
as:

u⃗x =
v⃗p

||v⃗p||
, u⃗z =

v⃗p × v⃗s
||v⃗p × v⃗s||

, u⃗y = u⃗z × u⃗x. (2.2)

Within a small time interval ∆t≪ 1, the motion of both the objects can be approximated
as uniform and rectilinear.
The collision avoidance dynamics is set in B-plane coordinates (see Fig 2.2. The B-plane
comes handy to describe the position vector b⃗3D = [ξ, η, ζ]⊤ in such reference system is
defined as follows:

• u⃗ξ =
v⃗s × v⃗p

||v⃗s × v⃗p||
direction of the Minimum Orbit Intersection Distance (MOID)
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x

y

Os

Op v⃗p

v⃗p

v⃗s
v⃗p − v⃗s

v⃗p − v⃗s

ζ
η

∆y

∆x

B-plane

β

Figure 2.2: Encounter frame and B-plane: snapshot of Op−Os encounter geometry (x−y
plane) after the manoeuvre.

orthogonal to the geocentric velocity vectors v⃗p and v⃗s;

• u⃗η =
v⃗p − v⃗s

||v⃗p − v⃗s||
direction of the velocity of Op relative to Os;

• u⃗ζ = u⃗ξ × u⃗η direction opposite to B-plane velocity projection of Os.

The unit vectors define the rotation matrix from the inertial reference frame to the B-plane

R⃗b,3D = [u⃗ξ, u⃗η, u⃗ζ ]
⊤, (2.3)

while the projection in the η-axis is achieved by

R⃗b,2D = [u⃗ξ, u⃗ζ ]
⊤. (2.4)

At TCA, the orbital elements of Op are defined as: a0 semi-major axis, e0 eccentricity, Rc

radial orbital distance, θc true anomaly.

Additionally, for the ease of notation, the 2D position vector in the B-plane is defined as
b⃗ = [ξ, ζ]⊤, constructed from the first and third components of the b⃗3D vector.
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2.3. Short-term Encounter Characteristics

The short-term encounter hypothesis lowers the problem complexity. It holds every time
that the encounter is almost instantaneous. As it is stated in [1]:

• The primary and the secondary object nominal trajectories can be approximated to
straight lines, with constant velocities during the encounter since it lasts just few
seconds.

• There is no velocity uncertainty during the encounter. This is valid because typical
velocity errors are of the order of few meters/second, and the encounter does not
last that much to condition PoC.

• The position uncertainty during the encounter is constant and equal to the value at
the estimated conjunction. This comes directly from the previous point.

• The positions uncertainties of the primary and the secondary objects are represented
by Gaussian distributions, exploited for the collision probability estimation.

2.4. Collision Probability and Squared Mahalanobis

Distance

Considering again the hypothesis of spherical geometry, a collision is assumed to occur in
a time interval I if and only if a date t̄ ϵ I exists such that:

||r⃗(t̄)|| = ||r⃗p(t̄)− r⃗s(t̄)|| ≤ Rp +Rs. (2.5)

To simplify the PoC evaluation, the collision assembly at an instant t̄ can be substituted
with the combined sphere of radius sA = Rp + Rs: it is the hard body radius, shown in
Figure 2.3.
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Rp

Rs

sA

Figure 2.3: Combined body representation.

PoC can be written, in general terms, as the triple integral of the probability distribution
function fr(r⃗) of the primary relative position with respect to the second over the volume
V swept by a sphere of radius sA centred at secondary body:

PoC =

∫
V

fr(r⃗)dr⃗. (2.6)

Where the Gaussian Probability density function (PDF) of this relative position fr(r⃗) is
given by:

fr(r⃗) =
1√

2π3det C⃗r

exp

[
−1

2
(r⃗ − r⃗e)

⊤C⃗−1
r (r⃗ − r⃗e)

]
, (2.7)

C⃗r is the combined covariance matrix of r⃗, obtained summing the individual covariance
matrices of the two objects, and expressed in the same orthonormal base, when the two
(Gaussian) quantities are statistically independent.
Considering the short-term encounter hypothesis, as said in paragraph 2.3, one can as-
sume the motion of the two objects as uniform rectilinear with deterministically known
velocities, and compute the collision probability as a two-dimensional integral on the col-
lision B-plane.
Thanks to this approximation, the integration volume is reduced over a disk centred in the
origin (see [20] for a detailed derivation), and Eq. 2.6 can be rewritten as a 2D integral:

PoC =

∫
A

1

2πσξσζ
√

1− ρ2ξζ

exp

{
− 1

2(1− ρ2ξζ)

[(
ξ − ξe
σξ

)2

+

(
ζ − ζe
σζ

)2

+

− 2ρξζ

(
ξ − ξe
σξ

)(
ζ − ζe
σζ

)]}
dξdζ, (2.8)
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where re = [ξe, 0, ζe]
⊤ is the expected closest approach relative position in the B-plane; A

is a circular area of radius sA; σξ, σζ , and ρξζ can be extracted from the relative position
covariance matrix in B-plane axes whose {ξ, ζ} submatrix reads:

C⃗ξζ =

[
σ2
ξ ρξζσξσζ

ρξζσξσζ σ2
ζ

]
. (2.9)

There are several methods for calculating the 2D collision probability, many of which
are collected and compared in [20]. In this thesis, it has been chosen to follow the PoC
definition by Chan in [5] truncated at m = 3. Eq. 2.8 represents the equivalent of
integrating a properly scaled isotropic Gaussian distribution function over an elliptical
cross section. The final collision probability reduces to a Rician integral if the elliptical
area is approximated as a circular cross-section of equal surface. The integral boils down
to the following convergent series:

PoC(u, v) = e−
v
2

∞∑
m=0

vm

2mm!

[
1− e−

u
2

m∑
k=0

uk

2kk!

]
, (2.10)

where u is the ratio of the impact cross-sectional area to the area of the 1σ covariance
ellipse in the B-plane:

u =
s2A

σξσζ
√

1− ρ2ξζ

, (2.11)

and v is the squared Mahalanobis distance (Squared Mahalanobis Distance (SMD)):

v = SMD =

[(
ξe
σξ

)2

+

(
ζe
σζ

)2

− 2ρ2ξζ
ξeζe
σξσζ

]
/(1− ρ2ξζ),

= (r⃗f − r⃗s)
⊤R⃗⊤

b,2DC⃗
−1R⃗b,2D(r⃗f − r⃗s),

= b⃗⊤f C⃗
−1⃗bf .

(2.12)

(2.13)

(2.14)

Two functions for the assessment of PoC and SMD, following Eqs. 2.10 and 2.13 are im-
plemented: poc_chan(∆r⃗,CDM), squared_mahalanobis_distance(∆r⃗,CDM) and the
function poc2smd(PoC,CDM) allows to calculate the SMD corresponding to a given value
of PoC.
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2.5. Dynamical Models

In this section, the three different dynamical models adopted in the thesis work are pre-
sented. In Chapter 3, the keplerian unperturbed motion is modeled in cartesian coordi-
nates and classical orbital elements. In Chapter 4, the orbital motion is simulated using
the EOE linearized state-space model that encompasses the tesseral harmonic perturba-
tion for the Earth’s gravity field.

2.5.1. Cartesian Model: Restricted Two Body Problem

Consider a system of celestial bodies, like the solar system, each of them is characterized by
a motion relative to the others described by the n-body problem. If the number system
narrows to only two bodies, and one has a much larger mass, the relative acceleration
vector can be stated as:

r̈ = − µ

r3
r (2.15)

In particular, the two-body dynamics is:ṙ = v

v̇ = − µ

r3
r+ ac

(2.16)

where ac is the contribution of the control acceleration.

The two-body dynamics is suitable for a preliminary design of any maneuver around the
Earth.

2.5.2. Gauss Planetary Equations

These equations serve for deriving a numerically efficient propagator for a keplerian mo-
tion incorporating a non-conservative perturbing acceleration. In the case analyzed, the
perturbations are composed of the control acceleration only stemming from a CAM:
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x =



a := Semimajor axis

e := Eccentricity

i := Inclination

Ω := RAAN

ω := Argument of perigee

θ := Trueanomaly


ac =


an := Radial component

at := Tangential component

ah := Out of plane component

 (2.17)

f =



ȧ = 2

√
a3

µ

(
1 + e cos θ + e2

1− e2

)
at

ė =

√
a

µ

(
1− e2

1 + e cos θ + e2

)[
2(e+ cos θ)at −

(1− e)2

1 + e cos θ
sin θun

]
di

dt
=

√
a

µ
(1− e2) sin θ + ωah

Ω̇ =

√
a

µ
(1− e2)

sin θ + ω

sin i
ah

ω̇ =

√
a

µ

(
1− e2

1 + e cos θ + e2

)[
2 sin θat −

(
2e+

(1− e)2

1 + e cos θ
cos θ

)
an

]
+

−
√
a

µ
(1− e2)

sin θ + ω cos i

sin i
ah

θ̇ =

√
µ

a3(1− e2)3
(1 + e cos θ2) + ω̇

(2.18)

2.6. Dynamics of Geostationary satellite

The EOE entails a motion linearization about the station keeping position. A detailed
analysis of this model is presented by Gazzino in [10]. The EOE are defined as follows:

xeoe =



a

ex = e cosω + Ω

ey = e sinω + Ω

ix = tan i
2
cosΩ

iy = tan i
2
sinΩ

lMΘ = Ω+ ω +M −Θ


ac =


an

at

ah

 (2.19)
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Where Θ(t) represents Greenwich right ascension.

The correspondent non-linear dynamics is expressed as:

dxeoe

dt
= fl(xeoe, t) + fg(xeoe, t)ac (2.20)

Introducing the nominal keeping position:

xsk =
[
ask, 0, 0, 0, 0, lMΘ,sk

]T
dxsk

dt
=
[
0, 0, 0, 0, 0,

√
µ
a3sk

− ωT

]T
= 0

(2.21)

It is now possible to define a dynamical model based on the relative state:

x = xeoe − xsk

dx

dt
= fl(xeoe, t) + fg(xeoe, t)u− 0

(2.22)

The dynamical system linearizes through a first-order Taylor power series expansion:

x = xeoe − xsk

dx

dt
= fl(xeoe, t) + fg(xeoe, t)ac − 0

(2.23)

The previous therms can be represented by the following state matrices:

A(t) =
∂fl
∂x

∣∣∣∣
xsk

D(t) = fl(xsk, t) B(t) = fg(xsk, t)

The control matrix B can be found in [17]. The equations of motion are then:

ẋ = A(t)x+D(t) +B(t)u (2.24)

Perturbations

Regarding the GEO region, the most relevant perturbation originates from the Non-
spherical Earth Geopotential.
The gravity potential of the Earth, labelled with W , is a function of the geocentric radial
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distance (r), geocentric latitude (ψ), and the geocentric longitude (λ) [6]. In particular:

W (r, ψ, λ) = VW (r, ψ, λ) +R(r, ψ) (2.25)

where VW is the gravitational potential and R is the rotational potential of the Earth that
have the following shapes:

VW (r, ψ, λ) =
GM

r

[
1 +

N∑
n=2

(a
r

)n n∑
m=0

(Cm
n cos(mλ) + Sm

n sin(mλ))P
m
n (t)

]
(2.26)

W (r, ψ) =
ω2

2
(rcosψ)2 (2.27)

where: r, ψ, λ are polar coordinates, t = sinψ, GM is the product between the Earth’s
gravitational constants and the Earth’s mass, a is the semi-major axis of the reference
orbit, n and m are positive integeres or zero, Cm

n and Sm
n are geopotential coefficients

of nth degree and mth order, Pm
n (t) are the associated Legendre functions and N is the

maximum degree and order of the available coefficients.

In the analysis performed in Chapter 4 the geopotential contribution is extended up to
the second-order (N = 2), because responsible for the violation of the allocated geosta-
tionary longitude slot. The effect of the perturbation in the dynamics is translated in a
modification of the state matrix A and the vector D. Therefore, in the case analyzed the
linear elements can be decomposed into two parts:

A(t) = Akep(t) +AJ2(t)

D(t) = Dkep(t) +DJ2(t)
(2.28)

An accurate description of how these matrices are computed can be found in [10].

2.7. Optimal Control Theory

The principal aspect of this thesis work is the analytical resolution of various optimal
control problems. In this sense, a brief description of the optimal control theory explained
in [3] is mandatory. Let’s suppose to define the general EOP.

J :=

∫ tf

ti

1

2
ac

Tacdt (2.29)
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Introducing the Hamiltonian expression:

H :=
1

2
ac

Tac + λT f(x, ac) (2.30)

It is possible to modify the functional as follow:

J :=

∫ tf

ti

1

2
ac

Tac + λT [f(x, ac)− ẋ] dt (2.31)

Where: λT ẋ = −λ̇Tx+ d(λTx)
dt

The necessary conditions to reach the minimization of the previous functional consist in
setting to 0 its first variation:

δJ = λT δx
∣∣tf
t0
+

∫ tf

ti

∂H

∂ac

δac +
∂H

∂x
δx+ λ̇T δxdt = 0 (2.32)

2.7.1. Interior Point Constraints

The threshold on PoC at TCA determines an interior point constraints. The boundary
condition can be represented as:

N (x(t1)) = 0 [ti < t1, tf ] (2.33)

As explained in [3] the Interior-point constraint has to be adjoined to the performance
index introducing a multiplier ν.

J := νN(x(t1)) +

∫ tf

ti

1

2
ac

Tacdt (2.34)

The necessary condition can be obtained splitting the integral at t1 and imposing null the
first variation:

δJ = λT δx
∣∣t1−
t0

+ λT δx
∣∣t0
t1+

+ ν
∂N

∂x(t1)
dx(t1) +

∫ tf

ti

∂H

∂ac

δac +
∂H

∂x
δx+ λ̇T δxdt = 0

(2.35)

Summarizing the procedure, the interior boundary condition generate a discontinuity in
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the co-state variables that can be expressed as follow:

ν
∂N

∂x(t1)
− λT (t−1 ) + λT (t+1 ) = 0 (2.36)

2.8. State Transition Matrix

Analogously to what is reported in [25], the state transition matrix (STM), labeled as
Φ(t, t0), maps the variation of the state of a non-linear system at an arbitrary initial time
t0 into the variation of the state at an arbitrary final time tf . For time-varying systems,
the STM is found by integrating:

Φ̇(t, t0) = A(t)Φ(t, t0) (2.37)

with initial condition Φ(t0, t0) = I, and A(t) is the state matrix of the linear system:

ẋ(t) = A(t)x (2.38)

To obtain an analytical solution for an EOP CAM, the general procedure requires to
linearize the motion around the nominal trajectory represented by the state xn, with no
control term.

Therefore, the resulting state matrix normalized with respect to the nominal states has
the following expression:

A =
∂f(x, t)

∂x

∣∣∣∣
xn

(2.39)

Consequently, the resulting STM is:

δxf = Φ(xn, t0, tf )δx0 (2.40)
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3| Low-Thrust CAM EOP and

FOP Design

This chapter covers the approach to address the collision avoidance problem. The dis-
sertation is subdivided into two main segments, one for the Point To Point Maneuver
(PTPM) and one for the Point To Orbit Maneuver (PTOM). Each part reports the an-
alytical resolution of the EOP and the correspondent transformation to obtain the FOP
solution. Then, for the first transfer, the semi-analytic solution adopting successive lin-
earization is presented. Moreover, the bang-bang transformation is computed with an
increasing level of thrust to attribute the maneuver to an impulsive one. At the end of
the sections, more relevant results are reported.

3.1. Low-Thrust Point to Point EOP CAM Formula-

tion

The objective is to reduce the PoC below a threshold value. In doing this it is necessary to
minimize the fuel consumption considering the additional constraint to return to the un-
maneuvered point of the initial orbit. The full mathematical description of the resolution
procedure can be found in Appendix A, while in this section, only the most important
passages, necessary to understand the applied methodology, are presented.

3.1.1. Problem Formulation

Assuming a Keplerian orbit, known: x(t0) = x0 initial state, t0 initial time, tca time of
closest approach, tf final time, and x(tf ) = xf the final state obtained by a Keplerian
motion between t0 and tf .

The problem is envisioned as an EOP CAM with an interior point constraint on the SMD.
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This leads to the definition of the following functional:

J := νΨ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (3.1)

Where:
Ψ(tca,x(tca)) = SMD(r(tca))− SMD ≥ 0 (3.2)

The objective function can be rewritten by introducing the Hamiltonian, substituted
inside the cost function:

H :=
1

2
ac

Tac + λT f(x, ac) (3.3)

J := νΨ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tac + λT [f(x, ac)− ẋ] dt (3.4)

In which: λT ẋ = −λ̇Tx+ d(λTx)
dt

The optimal control solves by imposing the first variation of the functional. This leads to
a system of differential and algebraic equations:

ν
∂Ψ

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

∂x

∂η

∣∣∣∣
ti

= 0

∂x

∂η

∣∣∣∣
tf

= 0

∂H

∂ac

= ac + λv = 0 =⇒ ac = −λv

∂H

∂x
+ λ̇T = 0 =⇒ λ̇ = −

[
∂H

∂x

]T
= −

[
∂f

∂x

]T
λ

∂H

∂λ
= ẋ = f(x, ac)

ν ≥ 0

νΨ = 0

(3.5)

Where: [
∂f

∂x̃

]
=

[
03×3 I3×3

3µ
r5
rrT − µ

r3
I3×3 03×3

]
(3.6)

Solving the algebraic equation of the control acceleration as a function of the co-state the
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following ThPBVP it is obtained:



ṙ = v

v̇ = −mu
r3

r− λv

λ̇r =
µ

r3
λv −

3µrTλv

r5
r

λ̇v = −λr

BCs :



x(t0) = x0

x(tca−) = x(tca+)

ν
∂Ψ

∂x̃(tca)
− λT (t−ca) + λT (t+ca) = 0

x(tf ) = xf

Ψ(tca) = 0

(3.7)

3.1.2. EOP Solution: Single Linearization

In Sec. 3.1.1, the Optimal Control Problem (OCP) turns into finding the initial costate
and the adjoined multiplicator. The resolution procedure requires to subdivide the tra-
jectory in two segments in the intervals [t1; tca] and [tca; tf ]. This step applies the interior
point constraint. To obtain an analytical solution the two trajectories have to be linearized
with respect to the Keplerian unperturbed motion by virtue of the STM.

{
Φ̇(t) = A(t)Φ(x(t0), t)

Φ(x(t0), t0) = I
(3.8)

Where:

A =


03×3 I3×3 03×3 03×3

3µ
r5
rrT − µ

r3
I3×3 03×3 03×3 −I3×3

03×3 03×3 03×3
µ
r3
I3×3 − 3µ

r5
rrT

03×3 03×3 −I3×3 03×3



First Trajectory Arc

The linearization of the first arc brings to the following system of equations:
δrca

δvca

δλ−
rca

δλ−
vca

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44




δr0

δv0

δλr0

δλv0

 (3.9)

Working on the first two vectorial equations; starting from the initial conditions δr0 =

δv0 = 0, it is possible to express the initial co-state as a function of the perturbation of
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the state at TCA. {
δλr0 = Dδrca + Eδvca

δλv0 = Mδrca +Bδvca

(3.10a)

D = [Φ−1
13 −Φ−1

13Φ14M] E = −Φ−1
13Φ14B (3.10b)

D = [Φ−1
13 −Φ−1

13Φ14M] E = −Φ−1
13Φ14B (3.10c)

The symbol δ for the co-state variables is redundant because the variation is null along
the un-maneuvered trajectory they assume the null value. Consequently, this symbol is
now on omitted for these variables.

The two Eqs. 3.10a come handy to make the costates at TCA- dependent on the state at
conjunction:{

λ−
rca

= [Φ33D+Φ34M]δrca + [Φ34B+Φ33E]δvca

λ−
vca

= [Φ43D+Φ44M]δrca + [Φ44B+Φ43E]δvca

=⇒

{
λ−

rca
= Fδrca +Gδvca

λ−
vca

= Hδrca + Lδvca

(3.11a)

F = [Φ33D+Φ34M] G = [Φ34B+Φ33E] (3.11b)

H = [Φ43D+Φ44M] L = [Φ44B+Φ43E] (3.11c)

Second Trajectory Arc

For the secondary arc, the state variables and the velocity co-state are continuous at
TCA; while the interior point constraint imposes a discontinuity on the position co-state.
The final target point lies on the unmaneuvered Keplerin orbit. For this reason, the
perturbation of the final state needs to be assumed as: δrf = δvf = 0


δrf

δvf

λrf

λvf

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44




δrca

δvca

λ+
rca

λvca

 (3.12)

Recalling the co-state discontinuity expressed in the boundary conditions of Eq. 3.7, and
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substituting the expression of the SMD constraint derivative:

λ+
rca

= λ−
rca

− 2νR2b
TC−1R2bδr

m
imp (3.13)

Where δrmimp = rmca − rs is the position vector from the secondary object at TCA to the
primary in cartesian coordinates.

Working on the first two vectorial equations of system 3.12 and substituting Eq. 3.11a
and Eq. 3.13 it is possible to obtain:

Nδrca +Pδvca − νQR2bδr
m
imp = 0 (3.14a)

N = [Φ21 +Φ24H+Φ23F];

P = [Φ22 +Φ24L+Φ23G];

Q = 2Φ23R2b
TC−1

(3.14b)

And:
Ñδrca + P̃δvca − νQ̃R2bδr

m
imp = 0 (3.15a)

Ñ = [Φ11 +Φ14H+Φ13F]

P̃ = [Φ12 +Φ14L+Φ13G]

Q̃ = 2Φ13R2b
TC−1

(3.15b)

Eq. 3.14a can be solved for δvca and substituted in Eq. 3.15 in order to find the expression
of δrca as a function of the position vector δrmimp and the multiplier ν:

δrca = νS−1TR2bδr
m
imp (3.16a)

S = [Ñ− P̃P−1N] T = [Q̃− P̃P−1Q] (3.16b)

SMD Constraint

To find an analytic solution to the problem, it demands combining the preceding relations
with the SMD constraint at TCA. This can be done by adding and subtracting rs on the
left term and then premultipling Eq. 3.16a by R2b. This operation transfers the problem
in B-plane reducing the dimension of the equation.

R2b[r
m
ca − rs − rca + rs] = νR2bS

−1TR2bδr
m
imp (3.17a)
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R2b[δr
m
imp − δrimp] = νR2bS

−1TR2bδr
m
imp (3.17b)

bm
imp − bimp = νR2bS

−1Tbm
imp (3.17c)

The previous equation can be inverted to obtain the expression of the maneuvered position
vector in B-plane.

bm
imp = [I− νU]−1bimp (3.18a)

U = R2bS
−1T (3.18b)

Finally, by using the following relation of linear algebra:

[I− νU]−1 =
1

det(I− νU)
[I− νdet(U)U−1] (3.19)

And applying the constraint on the SMD; it is possible to obtain a fourth-degree-equation
that can be solved analytically as a function of ν:

ν2bimp
TZTC−1Zbimp − νbimp

T [ZTC−1 +C−1Z]bimp =

α2SMD − bimp
TC−1bimp

(3.20a)

α = det(I− νU) Z = det(U)U−1 (3.20b)

Once the value of ν is known, the initial costates come strightfoward by following back-
wards the algorithm. The overall procedure can be resumed in the following pseudo-
algorithm.

Algorithm 3.1 EOP Point to Point. Part 1

1: Input: rpTCA
, vpTCA

, rsTCA
, SMD, ∆θ1,∆θ2, tca

2: Output: SMD, ac, ∆v

3: for i = length(∆θ1) do
4: T1 time interval corresponding to the selected ∆θ1

5: Keplerian backward propagation
6: tspan_backward = [0, −T1]
7: xpTCA = [rpTCA, vpTCA]

8: [r0, v0] = keplerian_backpropagation(xpTCA, tspan_backward)
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Algorithm 3.1 EOP Point to Point. Part 2
9: for j = length(∆θ2) do

10: T2 time interval corresponding to the selected ∆θ2

11: Keplerian forward propagation
12: tspan_forward = [0, T2]
13: [rf , vf ] = keplerian_forward_propagation(xpTCA, tspan_forward)

14: STM1 computation
15: tspan1 =[0, T1]
16: x0 = [r0, v0]
17: [STM1] = stateTrans(tspan1, x0)
18: STM2 computation
19: tspan2 =[0, T2]
20: [STM2] = stateTrans(tspan2, xpTCA)
21: Solve the non-linear system
22: find ν from eq. (3.20a)
23: compute δrca from Eq. 3.18a
24: compute δvca from Eq. 3.14a
25: compute [λr0 , λv0 ] from Eq. 3.10a
26: Controlled forward propagation
27: tspan=[0, T1 + T2]
28: y0 = [r0, v0, λr0 , λv0 ]

29: [rman, vman, λrman , λvman , rca] = control_propagator(y0, tspan_forward)
30: ∆r = rca − rs

31: [SMD] = squared_mahalanobis_distance(∆r)
32: ac = -λvman

33: ∆v = trapz (ac, ∆t)
34: end for
35: end for

3.1.3. EOP Solution: Iterative Linearizations

To reduce the error due to non-linear effects, a semi-analytic solution based on iterative
linearizations is developed. The first iteration follows the one presented in Sect. 3.1.2,
while from the second linearization on, it requires a different procedure. In fact, they are
performed with respect to maneuvered trajectories; this implies including some additional
food for thoughts detailed in this section.



28 3| Low-Thrust CAM EOP and FOP Design

First Trajectory Arc

The analysis of the first trajectory arc is the same of the first linearization and brings to
an analogous system of equations:

δrca

δvca

δλrca−

δλvca−

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44




δr0

δv0

δλr0

δλv0

 (3.21)

{
δλr0 = Dδrca + Eδvca

δλv0 = Mδrca +Bδvca

(3.22)

{
δλrca−

= Fδrca +Gδvca

δλvca−
= Hδrca + Lδvca

(3.23)

It is relevant to notice that the symbol δ for the co-state variables must not be omitted. In
fact, the successive linearizations are performed with regard to the maneuvered trajectory
which has a non-null co-state.

Second Trajectory Arc

The linearization produces rather different results. The principal modification is due to
two reasons. To start off, the perturbation on the final state is here comprised to correct
the state error obtained at the end of the previous iteration. Following, the costates
discontinuity relation tweaks due to interior point constraint.
If we consider the discontinuity expression in the general iteration:

δλr
ca+

= λk+1
r
ca+

− λk
r
ca+

(3.24)

Where k indicates the number of iterations already executed. Recalling Eq. 3.13:

λk+1
r
ca+

− λk
r
ca+

= λk+1
rca−

− λk
rca−

− 2νR2b
TC,−1R2b(r

m
ca

k+1 − rs − rmca
k + rs) (3.25)

That can be expressed as:

δλ+
rca

= δλ−
rca

− 2νR2b
TC−1R2bδr

m
ca (3.26)
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The constraint deviation is no longer expressed as a function of the position of the sec-
ondary object at TCA. Then, the resolution proceeds as in the previous case with the
only difference of the non-null final state perturbation. From STM it is possible to obtain
the expression of the perturbation on the state at TCA:

δvca = −P−1Nδrca + νP−1QR2bδrca +P−1δvf (3.27a)

δrca = νS−1TR2bδrca + S−1(δrf − P̃P−1δvf ) (3.27b)

For the complete explanation of the mathematical resolutions see Appendix A.

SMD Constraint

Transforming the problem in B-plane by a pre-multiplication of R2b the equation obtained
is similar to Eq. 3.18a:

bimp
k+1 = [I− νU]−1k+ bimp

k (3.28)

Where k is a known vector containing the state offset at the final time.

Finally, to update the multiplier requires to plug the SMD relation in the resolution
scheme. Again, the result obtained is a fourth-degree equation that can be solved as a
function of ν:

‘
ν2kTZTC−1Zk− νkT [ZTC−1 +C−1Z]k =

α2SMD − (bk
imp + k)TC−1(bk

imp + k)
(3.29a)

α = det(I− νU) Z = det(U)U−1 (3.29b)

As before value of ν can be used to retrieve all the previous quantity needed, including
the initial co-state. The resulting procedure is an expansion of algorithm 3.1 that can be
presented as follow.
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Algorithm 3.2 EOP Point to Point with successive linearization. Part 1

1: Input: rpTCA
, vpTCA

, rsTCA
, SMD, ∆θ1,∆θ2, tca,nlin

2: Output: SMD, ac, ∆v

3: for i = length(∆θ1) do
4: T1 time interval corresponding to the selected ∆θ1

5: Keplerian backward propagation
6: tspan_backward = [0, −T1]
7: xpTCA = [rpTCA, vpTCA]

8: [r0, v0] = keplerian_backpropagation(xpTCA, tspan_backward)

9: x0 = [r0, v0]
10: for j = length(∆θ2) do
11: T2 time interval corresponding to the selected ∆θ2

12: Keplerian forward propagation
13: tspan_forward = [0, T2]
14: [rf2b, vf2b] = keplerian_forward_propagation(xpTCA, tspan_forward)

15: for k=nlin do
16: if k=1 then
17: STM1 computation
18: tspan1 =[0, T1]
19: [STM1] = stateTrans(tspan1, x0)
20: STM2 computation
21: tspan2 =[0, T2]
22: [STM2] = stateTrans(tspan2, xpTCA)
23: Solve the non-linear system
24: find ν from Eq.3.20a
25: compute δrca from Eq. 3.27b
26: compute δvca from Eq. 3.27a
27: update λ0=λ0 +δλ0 from Eq. 3.22
28: compute λ+

ca=[λr+ca
, λv+ca

] from Eq. 3.13
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Algorithm 3.2 EOP Point to Point with successive linearization. Part 2
29: else
30: STM1 computation
31: tspan1 =[0, T1]
32: [STM1] = stateTransMod(tspan1, [x0; λ0])
33: STM2 computation
34: tspan2 =[0, T2]
35: xpTCA = [rpTCA, vpTCA]

36: [STM2] = stateTransMod(tspan2, [xpTCA; λ+
ca])

37: find ν from Eq.3.29a
38: end if
39: Controlled forward propagation
40: tspan=[0, T1 + T2]
41: y0 = [r0, v0, λr0 , λv0 ]

42: [rman, vman, λman, rca] = control_propagator(y0, tspan_forward)
43: ∆r = rca − rs

44: ∆rf = rf − rf2b

45: ∆vf = vf − vf2b

46: end for
47: [SMD] = squared_mahalanobis_distance(∆r)
48: ac = -λman

49: ∆v = trapz (ac, ∆t)
50: end for
51: end for

3.2. Low-Thrust Point to Point FOCP CAM Trans-

formation

Despite being analytical, the solution of the EOP proposed in the previous section pro-
vides a continuous unbounded control acceleration profile that can exceed the thrusters’
capabilities. In addition, the EOP does not provide the solution with minimum propellant
consumption. All limitations are overcome by facing the FOP with bounds on the thrust
magnitude. The resulting bang-bang control profile is easier to implement in an operative
mission scenario limiting the propellant consumption. Consequently, this section intro-
duces a numerical procedure to establish a fuel-optimal solution from an energy-optimal
one.
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3.2.1. Problem Definition

The resolution procedure starts by defining the FOP cost function :

J := νΨ(tca,x(tca)) + λv,th

∫ tf

ti

amaxϵdt (3.30)

Where λv,th is a positive scaling factor whose purpose will be clarified afterwards. Thanks
to Pontryagin’s maximum principle, the optimal control law (ϵ∗, α∗), providing ac =

amaxϵ
∗α∗, is 

α∗ = −λv

λv

ϵ∗ = 1 if λv > λv,th =⇒ ϵ =
1

2

[
1− tanh

(
λv − λv,th

ρ

)]
ϵ∗ = 0 if λv < λv,th

(3.31)

This formulation captures the discontinuous bang-bang profile with a hyperbolic tangent
function. This Smooth Finite Difference (SFD) method is based on [29], and it is adopted
to ease the numerical solver convergence. ρ is a scaling parameter that governs the
transition from continuous to step functions.

The problem is traduced in the following ThPBVP

ṙ = v

v̇ = −mu
r3

r− 1

2
amax

[
1− tanh

(
λv − λv,th

ρ

)]
λv

λv

λ̇r =
µ

r3
λv −

3µrTλv

r5
r

λ̇v = −λr

(3.32a)

BCs :



x(t0) = x0

x(tca−) = x(tca+)

ν
∂Ψ

∂x̃(tca)
− λT (t−ca) + λT (t+ca) = 0

x(tf ) = xf

Ψ(tca) = 0

(3.32b)

The control acceleration term is, undoubtedly, an approximation of a bang-bang policy.
However, this continuous formulation gives comparable results with respect to the optimal
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bang-bang one when ρ takes sufficiently small values. There is no closed-form solution for
this Multi-Point Boundary Value Problem (MPBVP). Yet, the EOP solution is a suited
first guess, and a threshold value for λv,th is crucial to start the procedure. To this aim,
∆v =

∫ tf
t0
amaxλvdt of the energy-optimal solution is computed, as well as the equivalent

burning time tb, i.e., the time needed to obtain the same ∆v by the thrusting with the
maximum affordable acceleration:

tb =
∆v

amax

=

∫ tf

t0

λvdt (3.33)

The main idea is to define λv,th so that the thruster fires up for λv > λv,th (λv still
belonging to the EOP) and switched off otherwise. The equivalent bang-bang burning
time should be equal to tb. The procedure to get λv,th is based on the bisection method:

1. Set two initial boundary values for λv,th for the first bisection iteration, namely
λv,th1 = max(λv) and λv,th2 = min(λv).

2. Evaluate the burning time tcb for λv > λv,th1 and for λv > λv,th2.

3. Iteratively update λv,th1 or λv,th2 with the bisection method taking as cost function
J = tcb − tb

4. Do step 3 until |tcb − tb| < ∆ttol with ∆ttol prescribed tolerance.

Using the resulting λv,th, and the EOP sates and co-states profiles from t0 to tf , the
ThPBVP is solved numerically with the four-stage Lobatto IIIa formula embedded in the
bvp5c MATLAB function with dynamics of Eq. 3.32a.

3.2.2. Numerical Algorithm

The value of ρ has a twofold role: it is responsible for shaping a quasi discontinuous
accelleration profile to the detriment of finding a solution with bvp5c in one single step.
In addition, the numerical complexity of the problem is enhanced by the presence of the
interior point constraint.
To overcome this limitation, an iterative procedure changes the value of ρ at each step.
Starting from a predefined value, until the solver does not find a solution, ρ is incremented.
Once the convergence is reached, the solution is used as the initial guess for the successive
iteration with a lower value of ρ. The algorithm of this procedure is represented in Fig.
3.1.
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Input:𝜌, 𝜌𝑟𝑒𝑓, 𝑠𝑜𝑙𝑎𝑛 , 𝜈

𝑔𝑢𝑒𝑠𝑠 = 𝑠𝑜𝑙𝑎𝑛
𝑛 = 0;

If 
𝑠𝑜𝑙 = 𝑁𝑎𝑁

If 
𝜌 < 𝜌𝑟𝑒𝑓

𝜌 = 𝜌𝑟𝑒𝑓
𝑛 = 𝑛 + 1
𝜌 = 1.5𝜌

If
𝑛 < 5

𝑛 = 0;
𝜌 = 0.1𝜌;

𝑔𝑢𝑒𝑠𝑠 = 𝑠𝑜𝑙

If 
𝜌 = 𝜌𝑟𝑒𝑓

Output: 
𝑠𝑜𝑙

start

end

T

T

T

T
F

F

F

F

𝑠𝑜𝑙 = 𝑏𝑣𝑝5𝑐(𝜌, 𝑔𝑢𝑒𝑠𝑠,𝑀𝑃𝐵𝑉𝑃)

Figure 3.1: Point to Point FOP algorithm.
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3.3. Results

3.3.1. Test Case

Figure 3.2: Test case collision representation.

The methods presented so far are applied to a test case extracted from [2], a database
of 2,170 conjunction cases taken from the ESA Collision Avoidance Challenge [30]. A
representation of the collision can be found in Figure 3.2. Table 3.1 reports the position
and velocity vectors of the primary and secondary spacecraft at the conjunction in Earth
Centered Inertial (ECI) frame, the PoC, the SMD and the miss distance d. The combined
cross-sectional radius of the spacecraft is sA = 29.7 m. The Keplerian elements of the two
orbits are computed and displayed in Table 3.2.
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Table 3.1: Test case conjunction data.

r⃗p[km] [2.3305, -1103.7, 7105.9]⊤

r⃗s[km] [2.3335, -1103.7, 7105.9]⊤

v⃗p [km/s] [-7.4429, -6.1373e-04, 3.9514e-03]⊤

v⃗s [km/s] [7.3537, -1.1428, -0.19825]⊤

PoC 1.3604e-01
SMD 0.87166
d [km] 0.0432

Table 3.2: Test case orbital elements, in order: semi-major axis, eccentricity, inclination,
Right Ascension of the Ascending Node (RAAN), argument of the periapsis, true anomaly.

a e i Ω ω θ

Op 7186.7 km 0.00064 98.83 ◦ 0 ◦ 289.38 ◦ 160.60 ◦

Os 7190.2 km 0.0024 81.28 ◦ 170.93 ◦ 184.41 ◦ 266.99 ◦

The position covariance matrices of the two satellites, expressed in their respective ECI
reference frame, are:

C⃗p =


0.9317 −2.6234 0.2360

−2.6234 1778.0 −0.9331

0.2360 −0.9331 0.1917

 · 10−4 km2 (3.34)

C⃗s =


6.3466 −19.6229 0.7077

−19.6229 0.0820 11.3982

0.7077 11.3982 2.5103

 · 10−4 km2 (3.35)

The corresponding combined covariance matrix in B-plane coordinates is:

C⃗ =

7.21756 −0.7580

−0.7580 51.9201

 · 10−4 km2 (3.36)

In the following section, the methods are compared using a dynamical model which only
considers Keplerian motion, as expressed in Eq. 3.7.
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All the simulations presented in this dissertation are run with a processor "AMD RYZEN9
3900x" and 32 GB Ram Memory.

The results reported in this section are obtained from the application of the algorithms
presented in 3.1, 3.2, and Fig. 3.7. The collision probability is imposed as PoC = 10−6

that leads to a threshold of SMD = 26.9016. The FOP is solved considering a level of
acceleration of amax = 1.5 · 10−5 m

s2

3.3.2. Linearized Solution

The results are obtained by applying algorithms 3.1, 3.2. To verify the validity of the
solutions; the position of the primary object at TCA can be represented in B-plane.
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Figure 3.3: Position of the primary object, achieved with the optimal maneuver, and
represented in b-plane for one linearizations.

In Fig. 3.3, the object position at TCA always belongs to the ellipse that represents the
PoC threshold. The same results are obtained with an higher number of linearizations.
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Looking at Fig. 3.4 the ∆v values of the maneuvers obtained are reported in a surf plot.
For various linearizations, there is no significant change in the cost of the operation.
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Figure 3.4: Maneuver cost computed with analytic procedure with one linearization, and
analyzing multiple propagation time span for each trajectory arc.

The most important parameter for comparing the solution with different levels of lin-
earizations is represented by the position error at the reentry point. Fig. 3.5 depicts
the error due to the non-linear effects is low in all the cases analyzed. The solution ac-
curacy slightly decreases passing from the first to the second iteration, while it strongly
diminishes at the third consecutive linearization.
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(a) 1 Linearization.
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(b) 2 Linearizations.
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(c) 3 Linearizations.

Figure 3.5: Position error at the end of the maneuver computed with analytic procedure
with different numbers of linearizations, and analyzing multiple propagation time span
for each trajectory arc.

From high accuracy, it comes a greater computational burden with successive lineariza-
tions as shown in Fig. 3.6. In addition, increasing the maneuvering time, even the
computational time becomes higher.
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Figure 3.6: Computational time spent to find the maneuver solution for each number of
linearization. The time is computed for each CAM analyzed.

3.3.3. FOP Transformation

The results obtained applying the algorithm shown in Fig. 3.1 to transform the EOP
solution in the FOP one are reported in this section. The outcome compares with the one
achieved with one linearization.

To begin with, Fig. 3.7 pictures the final position of the primary landing on the iso-
probability curve at TCA.

The effectiveness of the FOP procedure can be verified by comparing the ∆v obtained
from the two optimal control problems. Notably, in Fig. 3.9 each grid point of the FOP
scheme claims a less expensive maneuver in fuel consumption perspective when likened
to the EOP counterpart.
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Figure 3.7: Position at TCA obtained from the FOP solution of the primary object in
b-plane for the various value of the second trajectory arc.

Moreover, Fig. 3.8bis subject to a ∆v flattening because of the constant acceleration level
adopted across the simulation. In the EOP solution, each transfer has a periodic-like
shape in which each peak has its own magnitude.
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(a) Analytic ∆v magnitude.
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(b) Bang-bang ∆v magnitude.

Figure 3.8: ∆v results from FOP and EOP solutions.
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Figure 3.9: ∆v difference.

The computational effort in Fig. 3.10 is at least one or two orders of magnitude greater
than the analytical to resolve the EOP CAM planning. The discrepancy arises from the
devised iterative procedure for ρ to comply with the stringent boundary conditions and
solver convergence.
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Figure 3.10: Computational time for the bang-bang transformation.

3.3.4. Minimum ∆v

Analyzing the case of minimum ∆v obtained from the analytic solution, it is possible
to show the comparison between the continuous and the bang-bang acceleration profiles.
Figure 3.11 reports the EOP solution and the acceleration obtained in each iteration of
algorithm 3.1.
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Figure 3.11: Comparison of analytic acceleration profile and FOP solution obtained with
different values of ρ for the optimal EOP problem.
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Figure 3.12 report the result of the minimum ∆v FOP. Note that for the two maneuver the
minimum ∆v condition achieved in the two CAM policies does not match in magnitude
and overall maneuvering time.
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Figure 3.12: Comparison of analytic acceleration profile and FOP solution obtained with
different values of ρ for the optimal FOP problem.

The explanation behind this phenomenon lies in the shape of the analytic control action.
As can be seen in the optimal bang-bang maneuver the EOP acceleration demands a
low-level continuous thrust. For this reason, Algorithm 3.1 results particularly effectively
in maneuver cost reduction. For what concerns the optimal EOP solution, the obtained
shape is already near to the bang-bang one dealing with a lower cost reduction.

Non-approximated Discontinue Dynamics

In the previous paragraph, the solution of the FOP results from the approximated dy-
namics of Sect. 3.2.1. The resolution of the ThPBVP is here proposed by adopting the
MATLAB function fsolve modeling a non-continue dynamics without using approxima-
tion techniques. For convergence purposes the initial guess must lie nearby the exact
solution; thus, the reference trajectory originates from the SFD FOP solution.
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Figure 3.13: Comparison of analytic acceleration profile and FOP solution obtained with
and without smoothing approximation.

In Fig. 3.13 the two acceleration profiles are shown, while Tab. 3.3 displays the final posi-
tion error obtained by propagating the SFD solution with the non-continue dynamics and
the computational time to compute the Discontinue Finite Difference (DFD) maneuver.

Table 3.3: Smothing error and fsolve computational time.

Smoothing error [km] 1.94
fsolve time [s] 15.17

Approximated impulsive maneuver

Algorithm 3.1 is suited to estimate an impulsive maneuver. By increasing the level of
the maximum acceleration available onboard, the firing time lessens. This effect can be
appreciated in Fig. 3.14.
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Figure 3.14: FOP acceleration profile for different values of maximum acceleration ob-
tained with ρ = 10−4 as smoothing parameter.

As indicated in Fig. 3.14 the smoothing parameter lowers as the acceleration grows
implying a higher computational time as can be seen in Fig. 3.15.
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Figure 3.15: FOP computational for different values of maximum acceleration obtained
with ρ = 10−4 as smoothing parameter.
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3.4. Low-Thrust Point to Orbit EOP CAM Formu-

lation

In the previous problem, the final state is constrained. For some applications it is maybe
beneficial returning to the initial orbit only. This would lead to a more efficient trans-
fer with slightly different results in terms of final state. The solution presented can be
particularly useful when there are no restrictive time limitations in station keeping.

3.4.1. Problem Formulation

The dynamics still feature a purely Keplerian motion but with a slight difference: the
final target is a set of five orbital elements leaving out the true anomaly. The principal
drawback of this approach belongs to the SMD boundary condition identified in ECI/B-
plane frames.

The functional defined has the same structure as the previous one. The only difference is
the expression of the constraint on the SMD at TCA:

J := νΠ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (3.37a)

Π(tca,x(tca)) = SMD(r(tca))− SMD ≥ 0 (3.37b)

The functional morphs into:

H :=
1

2
ac

Tac + λT f(x, ac) (3.38a)

J := νΠ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tac + λT [f(x, ac)− ẋ] dt (3.38b)

Then imposing again the necessary condition by assuming null the first variation of the
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objective function. The following system of algebraic and differential equations reads:

ν
∂Π

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

∂x

∂η

∣∣∣∣
ti

= 0

∂x′

∂η

∣∣∣∣
tf

= 0

λθ(tf ) = 0

∂H

∂ac

= 0 =⇒ ac = ac(λ)

∂H

∂x
+ λ̇T = 0 =⇒ λ̇ = −

[
∂H

∂x

]T
= −

[
∂f

∂x

]T
λ

∂H

∂λ
= ẋ = f(x, ac(λ)

ν ≥ 0

νΠ = 0

(3.39)

Where:

x′ =



a

e

i

Ω

ω


(3.40)

Once the algebraic control solution is obtained, the problem is again translated in a
ThPBVP:


ẋ = f(x, ac)

λ̇ = −
[
∂f

∂x

]T
λ

BCs :



x(t0) = x0

x(tca−) = x(tca+)

ν
∂Π

∂x̃(tca)
− λT (t−ca) + λT (t+ca) = 0

x′(tf ) = x′
f

λθ(tf ) = 0

Π(tca) = 0

(3.41)

The complete mathematical development of Sect. 3.4 is reported in Appendix B.



50 3| Low-Thrust CAM EOP and FOP Design

3.4.2. EOP Solution

Once the ThPBVP is obtained, the resolution procedure follows the one described in Sec
3.1.2. It passes through the linearizations of the two trajectory arcs and the application
of the SMD constraint to find the multiplier.

First Trajectory Arc

The objective is to find the expression of the co-state at TCA as function of the state
perturbation at the same instant:[

δxca−

λca−

]
=

[
Φxx Φxλ

Φλx Φλλ

][
δx0

λ0

]
(3.42a)

λca− = ΦλλΦ
−1
xλδxca− (3.42b)

In view of the second part, it will be useful decompose Eq. 3.42b as done with the state
vector in Eq. 3.41:

λ′
ca− = Eδx′

ca− +wθca− (3.43a)

λθca− = gδx′
ca− + Pθca− (3.43b)

Where:

λ′ =



λa

λe

λi

λΩ

λω


ΦλλΦ

−1
xλ =

[
E w

g P

]
(3.44)

Co-state Discontinuity

For this particular problem, the analytic solution needs to introduce a zero-order Taylor
expansion linked to the co-state discontinuity equation.

∂Π

∂x(tca)
= φ(xca) ≈ φ(xref (tca)) = φ (3.45)
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The discontinuity equation can be split as:

λ′
ca+ = λ′

ca− − νφ′

λθca+ = λθca− − νφθ

(3.46)

Second Trajectory Arc

The previous decomposition on the first five orbital elements and the last co-state variable
is crucial for the terminal boundary conditions.

δx′
f

δθf

λ′
f

λθf

 =


Φx′x′ Φx′θ Φx′λ′ Φx′λθ

Φθx′ Φθθ Φθλ′ Φθλθ

Φλ′x′ Φλ′θ Φλ′λ′ Φλ′λθ

Φλθx
′ Φλθθ Φλθλ

′ Φλθλθ




δx′

ca

δθca

λ′
ca+

λθca+

 (3.47)

The STM and the co-state discontinuity is to reframe the state perturbation at TCA.

δθca = ν
M

L
(3.48a)

δx′
ca = νB−1n (3.48b)

The two equations can be coupled to obtain:

δxca = νh h =

[
B−1n

M
L

]
(3.49)

3.4.3. SMD Constraint Application

Solving for ν is all about imposing the SMD condition and reformulating the state at the
closest approach:

x(tca) = xref (tca) + νh (3.50)

Defining ρ(x) as the function to pass from keplerian elements to position vector in ECI
coordinates; the constraint expression results:

[ρ(xca)− rs(tca)]
T Q [ρ(xca)− rs(tca)] = SMD (3.51)
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Where:

Q = R2b
TC−1R2b (3.52)

This equation has no closed-form solution. For this reason a first-order Taylor expansion
of ρ(x) is used:

ρ(xca) ≈ rp(tca) + νJh (3.53)

The polynomial in ν is then:

[rp(tca) + νJh− rs(tca)]
T Q [rp(tca) + νJh− rs(tca)] = SMD (3.54)

As usual from the value of the multiplier, it is possible to obtain the initial co-state. The
numerical algorithm that corresponds to this procedure is represented in 3.3

Algorithm 3.3 EOP Point to orbit. Part 1

1: Input: xpTCA
, rsTCA

, SMD, ∆θ1,∆θ2, tca
2: Output: SMD, ac, ∆v

3: for i = length(∆θ1) do
4: T1 time interval corresponding to the selected ∆θ1

5: Gauss Keplerian backward propagation
6: tspan_backward = [0 −T1]
7: x0 = keplerian_gauss_back_propagation(xpTCA

, tspan_backward)

8: for j = length(∆θ2) do
9: T2 time interval corresponding to the selected ∆θ2

10: Keplerian forward propagation
11: tspan_forward = [0 T2]
12: xf = keplerian_gauss_forward_propagation(xpTCA

, tspan_forward)

13: STM1 computation
14: tspan1 =[0 T1]
15: [STM1] = stateTrans_gauss(tspan1, x0)
16: STM2 computation
17: tspan2 =[0 T2]
18: [STM2] = stateTrans_gauss(tspan2, xpTCA)
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Algorithm 3.3 EOP Point to orbit. Part 2
19: Solve the non-linear system
20: find ν from eq. (3.54)
21: compute δxca from Eq. 3.49
22: compute λ0

23: Controlled forward propagation
24: tspan=[0 T1 + T2]
25: y0 = [x0, λ0]

26: [xman, λman, xca] = control_propagator_gauss(y0, tspan_forward)
27: rca=par2rv(xca)
28: ∆r = rca − rs

29: [SMD] = squared_mahalanobis_distance(∆r)
30: ac = f(λman)

31: ∆v = trapz (ac, ∆t)
32: end for
33: end for

3.5. Low-Thrust Point to Orbit FOP Transformation

The limitations described in Sec. 3.2 are present even in the analytical solution of the
point-to-orbit maneuver. A similar procedure of the point-to-point algorithm is adopted
to transform the EOP in a FOP considering a bang-bang profile with bound on the thrust
magnitude.

3.5.1. Problem Definition

With orbital elements, the relation between control acceleration and co-state variables is
more complex than the one computed in Eq. 3.7. However, this leads only to a trickly
algebraic derivation, which does not affect the procedure presented in Sect. 3.2.1. The
cost function reads:

J := νΠ(tca,x(tca)) + uth

∫ tf

ti

amaxϵdt (3.55)
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Again it is possible to apply the Pontryagin’s maximum principle in order to find the
optimal control law (ϵ∗, α∗), providing ac = amaxϵ

∗α∗.
α∗ =

u(λ)

u(λ)

ϵ∗ = 1 if u(λ) > uth =⇒ ϵ =
1

2

[
1− tanh

(
u(λ)− uth

ρ

)]
ϵ∗ = 0 if u(λ) < uth

(3.56)

Putting side by side Eq. 3.31 and Eq. 3.56, it is easy to notice that u(λ) is an involved
expression in λv variable.
The parameter uth assumes the same role as λv,th. It represents the threshold acceleration
on the continuous profile over which the thrusters switch on. It comes with the same
iterative procedure described in Sec. 3.2.1, giving rise to ThPBVP:


ẋ = f(x, amax,u(λ), uth)

λ̇ = −
[
∂f

∂x

]T
λ

BCs :



x(t0) = x0

x(tca−) = x(tca+)

ν
∂Π

∂x̃(tca)
− λT (t−ca) + λT (t+ca) = 0

x′(tf ) = x′
f

λθ(tf ) = 0

Π(tca) = 0

(3.57)

The correspondent numerical algorithm is analogous to the one reported in Fig. 3.1,
However, it consider the MPBVP presented in Eq. 3.57

3.6. Results

In this section, the results of the PTOM are analyzed. The second and test bench are the
same of Sect. 3.3.1.

3.6.1. EOP and FOP Solutions

As reported in Sect. 3.3.3 the EOP and FOP routines are likened. In Fig. 3.15 the
position in B-plane at TCA of the primary object is presented. The spacecraft correctly
matches the PoC ellipse for all targeted points. This result is achieved both for the
analytic solution and for the FOP transformation.
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Figure 3.15: Position of the primary object in b-plane at TCA obtained from the EOP
and FOP solutions. All the maneuvers are represented and the color of the object change
varying the length of the second arc.
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Then, in Fig. 3.16 the comparison goes on for what concerns the total ∆v. Predictably,
FOP is less expensive than the EOP transfer.
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(c) Analytic ∆v magnitude.
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(d) Bang-bang ∆v magnitude.

Figure 3.16: ∆v obtained from analytic and FOP solution.

The difference in the maneuvers cost can be appreciated in detail in Fig. 3.17.
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Figure 3.17: ∆v difference between EOP and FOP solutions.

The computational time spent to find the EOP and FOP solution with algorithms 3.3 and
3.1 is presented in Fig. 3.18. Once again, the numerical effort of the analytic solution is
strongly affected by the propagation time span, while the FOP computational time does
not have an evident dependency on the latter.

(a) EOP computational time.

Figure 3.18: Computational time for EOP and FOP solution.
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(b) FOP computational time.

Figure 3.18: Computational time for EOP and FOP solution.

Minimum ∆v Maneuver

The acceleration profile achieved for the analytic minimum cost maneuver is presented in
Fig. 3.19.
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Figure 3.19: Comparison of PTO analytic acceleration profile and FOP solution
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Point to Orbit vs Point to point

In this paragraph the benefits achieved without fixing the terminal point are presented in
terms of ∆v reduction (see Fig. 3.20).
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(a) PTO EOP cost.
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(b) PTP EOP cost.

Figure 3.20: PTO and PTP cost comparison for EOP solutions.

The PTOM case consumes less for the same PTPM time span at the expense of a delayed
reentry in true anomaly terms. As can be seen in Fig. 3.21 the gap is almost negligible
unless having constraints on the spacecraft station keeping.
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Figure 3.21: θdelay difference.
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and FOP Design in GEO Orbit

In this chapter, the procedure to combine station-keeping with a collision avoidance ma-
neuver is presented. The algorithm has to perform the SK maneuver. Moreover, it
intervenes by modifying the trajectory if at TCA a threshold on the PoC is not respected.
In the first part of the chapter, the analytical resolution of the EOP is obtained consid-
ering two polishes to find the optimal final target state. The second part provides the
numerical transformation in FOP. Lastly, the more relevant results are reported.

4.1. Low-Thrust EOCP CAM and SK Formulation

Due to legal and practical reasons, the spacecraft position is constrained in the GEO
orbital regime to lie in a given window of longitude and latitude. The evolution of the
spacecraft’s location inside the box is governed by the orbital perturbations. In particular,
the non-spherical Earth perturbation affects mainly the longitude evolution, while the
Solar and Moon perturbations modify the latitude behavior. In this thesis, the problem
formulation is limited to considering the Earth’s geopotential. To develop a more direct
approach to the problem the dynamical model selected is different from the two used in
Chapter 3. The EOE presented in Sec. 2.6 allow modeling the orbital dynamics directly
with the reference parameters interested by the box limitation.

4.1.1. Problem Definition

In order to solve the problem the dynamical model is limited to include the non-spherical
Earth geo-potential with harmonics up to J22. Therefore the dynamics involves the EOE,
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resumed in Eq. 4.1, and it is the one defined in Sect. 2.6.

xeoe =



a

ex = e cosω + Ω

ey = e sinω + Ω

ix = tan i
2
cosΩ

iy = tan i
2
sinΩ

lMΘ = Ω+ ω +M −Θ


ac =


an

at

ah

 (4.1)

where Θ(t) represents Greenwich right ascension.

The EOP problem is defined as usual starting from the introduction of a cost function:

J := νξ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (4.2a)

ξ(tca,x(tca)) = SMD(r(tca))− SMD ≥ 0 (4.2b)

The functional can be written introducing the Hamiltonian:

H :=
1

2
ac

Tac + λT f(x, ac) (4.3a)

J := νξ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tac + λT [f(x, ac)− ẋ] dt (4.3b)

As usual by imposing the first variation of the functional it is possible to reduce the
problem to a set of differential-algebraic equations:

∂x

∂η

∣∣∣∣
ti

= 0

∂x

∂η

∣∣∣∣
tf

= 0

∂H

∂ac

= ac
T + λTB(t) = 0 =⇒ ac = −B(t)Tλ

∂H

∂x
+ λ̇T = 0 =⇒ λ̇ = −

[
∂H

∂x

]T
= −

[
∂f

∂x

]T
λ = −A(t)Tλ

∂H

∂λ
= ẋ = f(x, ac)

νξ ≥ 0

(4.4)
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Solving again the control equation it is possible to define an MPBVP:

{
ẋ = A(t)x−B(t)B(t)Tλ+D(t)

λ̇ = −A(t)tλ
BCs :



x(t0) = x0

x(tf ) = xf

ν
∂ξ

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

ξ(tca) ≥ 0

(4.5)

It is important to underline that, differently from chapter 3, it is impossible here to
determine a-priori if the problem represents a ThPBVP or TwPBVP. The reason resides
in the combination of the maneuver; in fact, if the perturbation due only to the SK
reassessment is sufficient to respect the PoC constraint, the problem results in a simple
TwPBVP in which the interior point conastraint is neglected.

4.1.2. Target Definition

The target parameters need to be defined in such a way as they maximize the resident
time in the station-keeping box. In this thesis work, two different methodologies are
implemented.

Numerical Definition

The first method proposed consists of a pure numerical optimization. The cost function
is defined as the inverse of the resident time. The latter is computed by propagating the
orbit with a numerical integrator until the spacecraft position, mediated along one orbital
period results outside of the station keeping box.

The reliability of this method depends on the complexity of the dynamics used to model
the spacecraft’s motion. The main drawback of this strategy is the computational burden.
In fact, the optimization requires a large number of numerical integrations; in addition, the
numerical effort of the propagation increases with the model complexity; for this reason,
obtaining a high-fidelity target state with this method is a cumbersome operation.
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Analytic Definition

The second strategy adopted is an analytical method to determine the ideal target lon-
gitude to exploit the geopotential perturbation. This method does not provide the ideal
target for all the six equinoctial elements; however, it can be implemented to identify the
semi-major axis and the longitude. The other four parameters representative respectively
of eccentricity and inclination are set to zero. The methodology used to determine the
optimal longitude is taken from [28]. The longitudinal acceleration due to J22 is tabulated
for different values of longitude. Therefore the evolution of the longitude in the station
keeping box is represented as a ballistic motion.

l̈m(t) = A = const (4.6a)

l̇m(t) = At+ l̇m(0) (4.6b)

lm(t) =
1

2
At2 + l̇m(0)t+ lm(0) (4.6c)

Acting on the semi-major axis it is possible to control the drift rate of the longitude. The
complete mathematical formulation can be found in [28]:

l̇m = −3

2

ωE

aGEO

∆a (4.7)

These two informations are sufficient to determine analytically the ideal target longitude.
The procedure can be resumed as follow:

1. For the assigned lm compute the tabulated value of longitudinal acceleration.

2. Compute the initial longitude as:
lm(0) = lm +

δ

2
if A > 0

lm(0) = lm − δ

2
if A < 0

(4.8)

Where δ is the admissible longitude window.

3. Use 4.6c to find l̇m(0) and T by setting:

At t = T ∆lm(T ) = ∆lm(0)

At t =
T

2
∆lm

(
T

2

)
= −∆lm(0)

(4.9)
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Leading to: 
∆lm(0) =

1

2
AT 2 + ˙lm(0)T +∆lm(0)

−∆lm(0) =
1

8
AT 2 + ˙lm(0)

T

2
+ ∆lm(0)

(4.10)

Solving the system the following results are obtained:

T = 4

√
∆lm(0)

A
= 4

√
δ

2A
(4.11a)

˙lm(0) = −2sign(A)
√
2Aδ (4.11b)

4. From the value of the initial drift compute the semi-major axis target using Eq. 4.7:

∆a = −3

2

aGEO

ωE

l̇m(0) (4.12)

State Transition Matrix

Even in this case, the linearization of the trajectory with respect to the unmaneuvered
motion is achieved trough the STM. That is obtained with the following integration:{

Φ̇(t) = ASTM(t)Φ(x(t0), t)

Φ(x(t0), t0) = I
(4.13)

Where:

ASTM(t) =

[
A(t) −B(t)B(t)T

03×3 −ASTM(t)T

]
(4.14)

First Trajectory Arc

Considering the linearization along the nominal trajectory in the interval [t0, t−ca]:[
δxca

λca−

]
=

[
Φxx Φxλ

Φλx Φλλ

][
δx0

λ0

]
(4.15)

Imposing δx0 = 0 after some algebraic manipulation the following expression is obtained:

λca− = ΦλλΦ
−1
xλδxca = Eδxca (4.16)
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Costate Discontinuity

The co-state discontinuity equation imposed by the SMD constraints is represented by
the following equations:

∂ξ

∂x(tca)
= φ(xca) (4.17a)

λca+ = λca− − νφ(xca) (4.17b)

Following the procedure executed in Sect. 3.4. To obtain the analytic solution of the
problem, it is necessary to approximate the discontinuity by adopting a zero-order Taylor
expansion:

φ(xca) ≈ φ(xref (tca)) = φ (4.18)

Second Trajectory Arc

Reasoning in a similar way as for the first arc, using the STM and the results obtained
in the previous passages, it is possible to find the expression of the state perturbation at
TCA:

δxca = δxsk,ca + νhCAM (4.19)

It is possible to notice that Eq. 4.19 is composed of two terms. The first one represents
the perturbation of the state due to the station-keeping maneuver; the second one instead
is the eventual additional contribution due to the collision avoidance maneuver.

SMD Constraints

Differently from the previous maneuver the PoC threshold represents an inequality con-
straint. In fact, during this operation, it is possible that the modification in the trajectory,
induced by station-keeping maneuver, is sufficient to overcome SMD threshold. In this
case, the constraint is totally neglected by setting ν = 0 and the problem is transformed
into the following TwPBVP.{

ẋ = A(t)x−B(t)B(t)Tλ+D(t)

λ̇ = −A(t)tλ
BCs :

{
x(t0) = x0

x(tf ) = xf

(4.20)

In case the SK perturbation is not enough, the problem proceeds in a similar way to Sec.
3.4. Defining as ϱ(x) the transformation from equinoctial state elements to cartesian
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position it is possible to define the SMD constraint equation:

[ϱ(xca)− rs(tca)]
T Q [ϱ(xca)− rs(tca)] = SMD (4.21)

Once again without linearizing the transformation function ϱ(x) it is impossible to find
an analytic solution. However in this case the first order expansion is performed around
the SK perturbed state rather than about the nominal one. In this way, the error induced
is lower.

ϱ(xca) ≈ rsk,ca(tca) + νJh (4.22)

This approximation brings the constraint equation to a second-degree expression that can
be solved as a function of ν. Then this value is used to determine the initial co-state. The
procedure is summarized in Alg. 4.1 and the full matematical procedure can be found in
Appendix C.

Algorithm 4.1 EOP Point to orbit. Part 1

1: Input: xpTCA
, rsTCA

, SMD, ∆θ1,∆θ2, tca
2: Output: SMD, ac, ∆v

3: for i = length(∆θ1) do
4: T1 time interval corresponding to the selected ∆θ1

5: Backward propagation
6: tspan_backward = [0, −T1]
7: y0 = xpTCA

8: x0 = eoe_back_propagation
9: for j = length(∆θ2) do

10: T2 time interval corresponding to the selected ∆θ2

11: Forward propagation
12: tspan_forward = [0, T2]
13: xf = eoe_forward_propagation(y0, tspan_forward)

14: STM1 computation
15: tspan1 =[0, T1]
16: [STM1] = stateTrans_eoe(tspan1, x0)
17: STM2 computation
18: tspan2 =[0, T2]
19: [STM2] = stateTrans_eoe(tspan2, xpTCA)
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Algorithm 4.2 EOP Point to orbit. Part 2
20: Solve the non-linear system
21: compute δxsk,ca

22: rsk,ca=eoe2rv(xsk,ca)
23: ∆rsk,ca = rsk,ca − rs

24: [SMDsk] = squared_mahalanobis_distance(∆rsk,ca)
25: if SMDsk>SMD then
26: ν = 0

27: else
28: find ν from Eq. 4.21
29: end if
30: compute δxca from Eq. 4.19
31: compute λ0

32: Controlled forward propagation
33: tspan=[0, T1 + T2]
34: y0 = [x0, λ0]

35: [xf , λf , xca] = control_propagator_eoe(y0, tspan_forward)
36: rca=eoe2rv(xca)
37: ∆r = rca − rs

38: [SMD] = squared_mahalanobis_distance(∆r)
39: ac = f(λ)

40: ∆v = trapz (ac, ∆t)
41: end for
42: end for

4.2. Low-Thrust CAM and SK FOP Transformation.

The solution procedure is strictly related to the ones presented in chapter 3. The main
difference is the same which characterize all the solution obtained in this chapter. The final
results represent a MPBVP, that would be represented with the interior point constraint
active or inactive depending on the maneuver condition. This leads to a more complex
algorithm. However, it does not influence the definition of the problem.

4.2.1. Problem Definition

The problem has an analogous solution technique of the FOP presented in Sec. 3.5.
Obviously, the function explained below has a different expression compared to the ones
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reported in the previous FOP problem, however, the mathematical structure and the
physical concepts are the same. Starting from the cost function:

J := νξ(tca,x(tca)) + uth

∫ tf

ti

amaxϵdt (4.23)

Thanks to Pontryagin’s maximum principle, the optimal control law (ϵ∗, α∗), providing
ac = amaxϵ

∗α∗ is:

α∗ =
B(t)Tλ

||B(t)Tλ||

ϵ∗ = 1 if ||B(t)Tλ|| > uth =⇒ ϵ =
1

2

[
1− tanh

(
||B(t)Tλ|| − uth

ρ

)]
ϵ∗ = 0 if ||B(t)Tλ|| < uth

(4.24)

The parameter uth represents the threshold acceleration value on the continuous profile. It
is obtained with the usual iterative procedure based on the bisection method and described
in Sec. 3.5. The resolution of the optimal control problem leads to the following ThPBVP.

ẋ = A(t)x−B(t)

{
1

2

[
1− tanh

(
||B(t)Tλ|| − uth

ρ

)]
B(t)Tλ

||B(t)Tλ||

}
+D(t)

λ̇ = −A(t)tλ

(4.25a)

BCs :



x(t0) = x0

x(tf ) = xf

ν
∂ξ

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

ξ(tca) ≥ 0

(4.25b)

Or, if the station keeping contribution is sufficient to satisfy the SMD constraint, by the
following TwPBVP.ẋ = A(t)x−B(t)

{
1

2

[
1− tanh

(
||B(t)Tλ|| − uth

ρ

)]
B(t)Tλ

||B(t)Tλ||

}
+D(t)

λ̇ = −A(t)tλ

(4.26a)

BCs :

{
x(t0) = x0

x(tf ) = xf

(4.26b)
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The algorithm corresponding to the FOP transformation is resumed in Fig. 4.1.

Input:𝜌, 𝜌𝑟𝑒𝑓, 𝑠𝑜𝑙𝑎𝑛 , 𝜈

𝑔𝑢𝑒𝑠𝑠 = 𝑠𝑜𝑙𝑎𝑛
𝑛 = 0;

𝑠𝑜𝑙 = 𝑏𝑣𝑝5𝑐(𝜌, 𝑔𝑢𝑒𝑠𝑠, 𝐵𝑉𝑃4.25)

If 
𝑠𝑜𝑙 = 𝑁𝑎𝑁

If 
𝜌 < 𝜌𝑟𝑒𝑓

𝜌 = 𝜌𝑟𝑒𝑓
𝑛 = 𝑛 + 1
𝜌 = 1.5𝜌

If
𝑛 < 5

𝑛 = 0;
𝜌 = 0.1𝜌;

𝑔𝑢𝑒𝑠𝑠 = 𝑠𝑜𝑙

If 
𝜌 = 𝜌𝑟𝑒𝑓

Output: 
𝑠𝑜𝑙

start

end

T

T

T

T
F

F

F

F

If  
𝜈=0

𝑠𝑜𝑙 = 𝑏𝑣𝑝5𝑐(𝜌, 𝑔𝑢𝑒𝑠𝑠, 𝐵𝑉𝑃4.26)

T F

Figure 4.1: CAM and SK FOP algorithm.

4.3. Results

This section reports the results of the combination of the CAM with the station-keeping
maneuver. In order to verify the reliability of the algorithm, the procedure is run both
using a target state defined with the analytical method and with a target defined with
the optimization procedure.
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4.3.1. Test Case

Figure 4.2: Test case GEO collision representation.

The method presented in chapter 4 is applied to a test case provided by GMV. A repre-
sentation of the collision can be found in Figure 4.2. Table 4.1 reports the position and
velocity vectors of the primary and secondary spacecraft at the conjunction in ECI frame,
the PoC, the SMD and the miss distance d. The Keplerian elements of the two orbits are
computed and displayed in Table 4.2.
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Table 4.1: Test case conjunction data.

r⃗p[km] [2 8525, 3 1054, -42.4360]⊤

r⃗s[km] [2 8525, 3 1054, -42.4360]⊤

v⃗p [km/s] [-2.2644, -2.0978, 0.0032]⊤

v⃗s [km/s] [-2.3001, 2.2941, 0.4560]⊤

PoC 4.628e-02
SMD 0.2020
d [km] 0.0350

Table 4.2: Test case orbital elements, in order: semi-major axis, eccentricity, inclination,
Right Ascension of the Ascending Node (RAAN), argument of the periapsis, true anomaly.

a e i Ω ω θ

Op 42 165 km 4.4556e-05 0.8594 ◦ 0 ◦ 91.30 ◦ 263.09 ◦

Os 48 939 km 0.1441 8.00 ◦ 340.92 ◦ 184.41 ◦ 18.67 ◦

The position covariance matrices of the two satellites, expressed in their respective ECI
reference frame, are:

C⃗p =


0.8085e− 05 −2.0477 6.55174

−2.0477 137.6 −1.8341e

6.5517 −1.8341 59.78

 · 10−4 km2 (4.27)

C⃗s =


2.4481 7.2988 18.10

7.2988 0.1113 −114.9

18.10 −114.9 186.6

 · 10−4 km2 (4.28)

The corresponding combined covariance matrix in B-plane coordinates is:

C⃗ =

 687.7 564.7

0.0565 477.5

 · 10−4 km2 (4.29)

All the simulations presented in this dissertation are run with a processor "AMD RYZEN9
3900x" and 32 GB Ram Memory.

The results reported in this section are obtained from the application of the algorithms
presented in 4.1, and Fig. 4.1. The collision probability is imposed as PoC = 10−6
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that leads to a threshold of SMD = 17.1251. The FOP is solved considering a level of
acceleration of amax = 6.7 · 10−5 m

s2
.

4.3.2. Analytical Target

The analytical target is computed as described in Sect. 4.1.2. The value of the EOE
achieved is shown in Tab. 4.3 and the prescribed longitude evolution, subjected to the
geopotential perturbation, is represented in Fig. 4.3.
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Figure 4.3: Target longitude evolution, and longitude box.

Table 4.3: Analytical target.

a [km] ex ey ix iy lm [deg]

42 166.34 0 0 0 0 358.86

Even in this case, the first verification is done by showing that none of the maneuvers
computed allows the primary object to pass inside the PoC ellipse threshold. The position
at TCA of the primary object, computed solving the EOP, is represented in Fig. 4.4.
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(a) First trajectory arc.
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(b) Second trajectory arc.

Figure 4.4: Position of the primary object, achieved with the analytic solution, and
represented in b-plane for the various values of the first and the second trajectory arc.
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Then it is possible to compare the maneuver cost of the EOP and the FOP solutions. As it
is shown in Fig 4.5, the maneuver corresponding to the FOP solution is generally cheaper
than the analytic solution. However, in some specific cases, the previous property is not
respected. The motivation behind this particular phenomenon is the same that generates
the saturation effect explained in Sect. 3.3.3. The fixed level of acceleration available
for the FOP can be very different from the magnitude of the acceleration required by
the EOP solution. In the case of geostationary orbit, this takes more relevance due to
the high difference in maneuvering time that leads to a strongly variation in maximum
acceleration needed.
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(b) Bang-bang ∆v magnitude.

Figure 4.5: ∆v results from FOP and EOP solutions.
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Figure 4.6: ∆v difference between EOP and FOP solutions.

For what concerns the computational time, Fig 4.7 shows how the situation is similar to
the previous chapter. It reveals a strong dependency on the propagation time for the EOP
numerical effort, while the FOP computational time does not show any relevant trend.
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Figure 4.7: Computational time for EOP and FOP solution.
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(b) FOP computational time.

Figure 4.7: Computational time for EOP and FOP solution.

Minimum ∆v Maneuver

Once again the minimum ∆v case can be analyzed to show some features of the EOP and
FOP solutions. Figure 4.8 shows the acceleration profiles of the analytic result and the
correspondent bang-bang transformation.
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Figure 4.8: Comparison of analytic acceleration profile and FOP solution.
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In addition, it is possible to represent the evolution of the longitude and the latitude
during the maneuver. As can be seen in Fig.4.9, as far as the latitude is concerned, it
remains inside the station keeping box during the entire maneuver. The longitude instead
appears to exceed the longitude limits in order to match the target at the final time. The
reason behind this behaviour lies in the perturbations. The optimal maneuver tends to
use the geopotential effect to match the final target reducing the propulsion effort.

0 0.5 1 1.5 2
Time [Days]

358.75

358.8

358.85

358.9

L
on

gi
tu

d
e

[d
eg

]

Longitude

Longitude box

(a) Longitude.

-0.3 -0.2 -0.1 0 0.1 0.2
ix [deg]

-0.15

-0.1

-0.05

0

0.05

0.1

i y
[d

eg
]

0

0.5

1

1.5

T
im

e
[P

er
io

d
s]

Latitude box

(b) Latitude.

Figure 4.9: Spacecraft latitude and longitude evolution during the maneuver.
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Imposed CAM

As can be seen in Fig. 4.4, in all the cases analyzed the contribution due to the SK
maneuver is always sufficient to respect the PoC constraint. To verify the ability of the
algorithm in a situation in which the station-keeping contribution is not sufficient, or
brings the spacecraft even nearer the secondary object. The position of the latter is
changed in order to match the position reached by the primary object in the minimum
cost maneuver at TCA. During this procedure all the other data presented in Sect. 4.3.1
remains the same.

Let’s start by looking at the position of the primary object after the new maneuver at
TCA. Figure 4.10 shows that, although the position of the bang-bang solution is slightly
different from the one provided by the EOP maneuver, they both lie on the ellipse of PoC
limit.
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Figure 4.10: B-plane position for the CAM maneuver.

Then, even in this case, it can be seen the difference between the analytical acceleration
profile and the correspondent bang-bang transformation (Fig. 4.11).
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Figure 4.11: Comparison of analytic acceleration profile and FOP solution.
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4.3.3. Numerical Target

The previous procedures is adopted even for the case of the numerical optimized targets.
As before it is possible to represent the analytic position in B-plane for the various cases
analyzed and the resulting transfer cost.
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Figure 4.11: ∆v results from FOP and EOP solutions.
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Figure 4.12: Position of the primary object, achieved with the analytic solution, and
represented in b-plane for the various values of the first and the second trajectory arc.
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4.3.4. Minimum ∆v Maneuver

The transfer with minimum cost is obtained with the following target:

Table 4.4: Numerical target.

a [km] ex ey ix iy lm [deg]

42 167.18 -1·10−4 -1.1346·10−7 -4.4491·10−6 -6.3195·10−4 358.87

The comparison between the two acceleration profiles is represented in Fig. 4.13
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Figure 4.13: Comparison of analytic acceleration profile and FOP solution.

It is possible to notice that the results obtained from the numerical targeting are very
similar to the one of Sec. 4.3.2. This confirms the validity of the elements computed with
an analytical framework.
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5| Conclusions and Future

Developments

This chapter deals with the conclusion and further developments. In particular, in Sect.
5.1 the achieved objectives of this work are presented, whereas in Sect. 5.2 some sugges-
tions for future works are proposed.

5.1. Conclusions

The maneuver proposed in Sec. 3.1 of this thesis work started from an already existing
control strategy, which has been extended including the spacecraft injection back into the
nominal orbit.
In this case, the dynamical model used does not include the effect of any perturbations.
The optimization of the maneuver is done by extending the optimal control problem to
the reentry phase and by settling as PoC constraint an interior point one. In this way,
the two trajectory segments can be seen as a unique path from the initial maneuvering
point to the imposed final point. As evident from the graphs, the control action required
by the analytic solution does not have a uniform shape. However, it does not affect the
possibility to realize the transformation to a FOP with a bang-bang structure.

The CAM proposed in Sect. 3.4 has the objective of improving the performance in terms
of computational effort and maneuver cost compared to the previous control problem.
This is done by reducing the number of constraints, leaving free the final true anomaly
and fixing only the return on the nominal orbit. The procedure is realized again by
adopting Keplerian dynamics; however, in this case, the state variables used are the orbital
elements instead of cartesian position and velocity. This allows for an easier mathematical
formulation of the constraints, at the cost of more complex dynamical equations. The
results shows a saving in the ∆v compared to the previous maneuver for all the transfers
analyzed with a very small variation on the final true anomaly. Moreover, the shape of
the acceleration profiles obtained is more regular than before. Consequently, the FOP
transformation turns out to be less cumbersome reducing the computational time.
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Finally, in Chapter 4, a combined strategy of SK and CAM for a spacecraft in geosta-
tionary orbit is investigated. Basically, the maneuver is represented by an adaptation of
the first one presented in this thesis work, in which the final state is computed in order to
maximize the resident time inside the SK box. The optimal control problem is computed
by adopting as state variables the equinoctial orbital elements that allow to menage easily
the latitude and the longitude. Particular attention is devoted to the longitudinal behav-
ior; consequently, the dynamical model adopted includes the geopotential perturbation
until the j22 term. The target elements are computed both with an analytical strategy,
that takes into consideration only the ballistic motion of the longitude due to the geopo-
tential effect, and with an optimization procedure that has the objective to maximize the
resident time. In both cases, for all the transfers analyzed the EOP and FOP problems
are solved. However, due to the high variation of the maximum thrust needed for differ-
ent values of the transfer time, the bang-bang transformation can be ineffective for what
concerns fuel consumption savings.

In all the maneuvers analyzed, the computational times required are compatible with an
onboard implementation. In particular, if the procedure adopted considers analyzing all
the cases with the analytical procedure and realizes the FOP transformation only for the
minimum ∆v maneuver, the total computational time is restricted to a few minutes.

5.2. Further Developments

In this subsection, some suggestions for future developments are proposed. In particular:

• The bang-bang transformation leads to a reduction in the resolution of the maneuver
cost due to the fixed level of acceleration available. In order to perform a more
effective algorithm, the possibility to restrict the time window of the maneuvers in
a particular range based on the level of the onboard thrust should be investigated.

• The possibility to realize the FOP with an analytic procedure should be taken into
consideration.

• For all the analyzed cases, the satellite trajectory violates the station-keeping box
during the execution of the maneuvers. One possible solution could be the imple-
mentation of the proposed methods by adding path constraints.

• The method developed here could be extended to other orbital regimes, e.g. the
cislunar environment.

• In the last chapter, the dynamical model considered in this thesis work embeds a
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second-order geopotential contribution (J22). However, there is the possibility to
increase the approximation order. Moreover, other perturbation contributions can
be added: Solar Radiation Pressure and Soli-Lunar gravitational perturbations.

• The linear approximation of the dynamics can be overcome by employing differential
algebra, increasing the accuracy of the method in describing the reality and the
capacity to plan the maneuver sooner.

• One research topic could be the implementation of analytical multi-impulsive strate-
gies.
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A.0.1. Problem Formulation

This appendix reports the detailed demonstration of the EOP reported in Sect. 3.1.2.

J := νΨ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (A.1)

Where:
Ψ(tca,x(tca)) = SMD(r(tca))− SMD ≥ 0 (A.2)

The objective function can be rewritten by introducing the Hamiltonian:

H :=
1

2
ac

Tac + λT f(x, ac) (A.3)

J := νΨ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tac + λT [f(x, ac)− ẋ] dt (A.4)

In which: λT ẋ = −λ̇Tx+ d(λTx)
dt

Splitting the integral it is possible to apply the necessary condition as described in 2.7.1:

J :=νΦ(tca,x(tca))− λTx|t
−
ca
ti − λTx|tf

t+ca
+

∫ t−ca

ti

H(x, ac,λ, t) + λ̇Txdt

+

∫ tf

t+ca

H(x, ac,λ, t) + λ̇Txdt

(A.5)

∂J

∂η
= ν

∂Ψ

∂x̃(tca)

∂x̃(tca)

∂η
− λT ∂x̃

∂η

∣∣∣∣t−ca
ti

− λT ∂x̃

∂η

∣∣∣∣tf
t+ca

+

∫ tf

ti

∂H

∂ãc

∂ãc

∂η
+
∂H

∂x̃

∂x̃

∂η
+ λ̇T ∂x̃

∂η
dt = 0

(A.6)
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The application of the necessary condition brings to a system of differential and algebraic
equations: 

ν
∂Ψ

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

∂x

∂η

∣∣∣∣
ti

= 0

∂x

∂η

∣∣∣∣
tf

= 0

∂H

∂ac

= ac + λv = 0 =⇒ ac = −λv

∂H

∂x
+ λ̇T = 0 =⇒ λ̇ = −

[
∂H

∂x

]T
= −

[
∂f

∂x

]T
λ

∂H

∂λ
= ẋ = f(x, ac)

ν ≥ 0

νΨ = 0

(A.7)

Where: [
∂f

∂x̃

]
=

[
03×3 I3×3

3µ
r5
rrT − µ

r3
I3×3 03×3

]
(A.8)

Solving the algebraic equation of the control acceleration as function of the co-state it is
possible to obtain the following ThPBVP:



ṙ = v

v̇ = −mu
r3

r− λv

λ̇r =
µ

r3
λv −

3µrTλv

r5
r

λ̇v = −λr

BCs :



x(t0) = x0

x(tca−) = x(tca+)

ν
∂Ψ

∂x̃(tca)
− λT (t−ca) + λT (t+ca) = 0

x(tf ) = xf

Ψ(tca) = 0

(A.9)

A.0.2. EOP Solution: Single Linearization

In the previous section, the OCP is transformed into the problem of finding the initial co-
state and the adjoined multiplicator. The resolution procedure requires to subdivide the
trajectory in two segments in the intervals [t1; tca] and [tca; tf ]. This step is necessary to
apply the interior point constraint. To obtain an analytical solution the two trajectories
have to be linearized with respect to the Keplerian unperturbed motion by virtue of the
STM.
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{
Φ̇(t) = A(t)Φ(x(t0), t)

Φ(x(t0), t0) = I
(A.10)

Where:

A =


03×3 I3×3 03×3 03×3

3µ
r5
rrT − µ

r3
I3×3 03×3 03×3 −I3×3

03×3 03×3 03×3
µ
r3
I3×3 − 3µ

r5
rrT

03×3 03×3 −I3×3 03×3



First Trajectory Arc

The linearization of the first arc brings to the following system of vectorial equations:
δrca

δvca

δλ−
rca

δλ−
vca

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44




δr0

δv0

δλr0

δλv0

 (A.11)

The symbol δ for the co-state variables is not necessary because along the unmaneuvered
trajectory they assume a null value. For this reason, the symbol is now on omitted for
these variables. The first vectorial equation can be expressed considering that the initial
state is fixed δr0 = δv0 = 0.

δrca = Φ13λr0 +Φ14λv0 (A.12a)

λr0 = Φ−1
13δrca −Φ−1

13Φ14λv0 (A.12b)

Substituting the expression in the Eq. A.12b it is possible to express the initial velocity
co-state as a function of the perturbation on the state at TCA:

δvca = Φ23λr0 +Φ24λv0 (A.13a)

δvca = Φ23Φ
−1
13δrca + [Φ24 −Φ23Φ

−1
13Φ14]λv0 (A.13b)

λv0 = [Φ24 −Φ23Φ
−1
13Φ14]

−1δvca − [Φ24 −Φ23Φ
−1
13Φ14]

−1Φ23Φ
−1
13δrca (A.13c)
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The previous expression can be simplified by collecting the matrices:

λv0 = Mδrca +Bδvca (A.14a)

M = −[Φ24 −Φ23Φ
−1
13Φ14]

−1Φ23Φ
−1
13 B = [Φ24 −Φ23Φ

−1
13Φ14]

−1 (A.14b)

Expression A.14a can be substituted in Eq. A.12b to express the initial position constraint
as function of the position and velocity perturbation of the nominal trajectory at TCA:

λr0 = [Φ−1
13 −Φ−1

13Φ14M]δrca −Φ−1
13Φ14Bδvca (A.15a)

D = [Φ−1
13 −Φ−1

13Φ14M] E = −Φ−1
13Φ14B (A.15b)

Now the two Eqs. A.14a and A.15a can be replaced in the initial system to find the
expression of the co-state at tCA− respect to the state perturbations at TCA:{

λ−
rca

= [Φ33D+Φ34M]δrca + [Φ34B+Φ33E]δvca

λ−
vca

= [Φ43D+Φ44M]δrca + [Φ44B+Φ43E]δvca

=⇒

{
λ−

rca
= Fδrca +Gδvca

λ−
vca

= Hδrca + Lδvca

(A.16a)

F = [Φ33D+Φ34M] G = [Φ34B+Φ33E] (A.16b)

H = [Φ43D+Φ44M] L = [Φ44B+Φ43E] (A.16c)

Second Trajectory Arc

The resolution procedure continues by considering the second trajectory arc. The state
variables and the velocity co-state are continuous at TCA; while the interior point con-
straints generate a discontinuity in the position co-state. The final target point is consid-
ered the one obtained with a Keplerian propagation. For this reason the perturbation on
the final state needs to be assumed as: δrf = δrf = 0


δrf

δvf

λrf

λvf

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44




δrca

δvca

λ+
rca

λvca

 (A.17)
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It is possible to proceed as done in the previous section by writing down the first two
vectorial equations:

δrf = Φ11δrca +Φ12δvca +Φ13λ
+
rca

+Φ14λvca = 0 (A.18a)

[Φ11 +Φ14H]δrca + [Φ12 +Φ14L]δvca +Φ13λ
+
rca

= 0 (A.18b)

δvf = Φ21δrca +Φ22δvca +Φ23λ
+
rca

+Φ24λvca = 0 (A.19a)

[Φ21 +Φ24H]δrca + [Φ22 +Φ24L]δvca +Φ23λ
+
rca

= 0 (A.19b)

Then it is necessary to recall the co-state discontinuity expressed in A.9 by substituting
the expression of the SMD constraint derivative:

λ+
rca

= λ−
rca

− 2νR2b
TC−1R2bδr

m
imp (A.20)

Where δrmimp = rmca − rs is the position vector from the secondary object at TCA to the
primary in cartesian coordinates.

Eq. A.20 and A.16a can be substituted in Eq. A.19b obtaining:

Nδrca +Pδvca − νQR2bδr
m
imp = 0 (A.21a)

N = [Φ21 +Φ24H+Φ23F] P = [Φ22 +Φ24L+Φ23G] Q = 2Φ23R2b
TC−1

(A.21b)

The same procedure can be used for Eq. A.18b:

Ñδrca + P̃δvca − νQ̃R2bδr
m
imp = 0 (A.22a)

Ñ = [Φ11 +Φ14H+Φ13F] P̃ = [Φ12 +Φ14L+Φ13G] Q̃ = 2Φ13R2b
TC−1

(A.22b)

Eq. A.21 can be solved for δvca and substituted in Eq. A.22 in order to find the expression
of δrca as function of the position vector δrmimp and the multiplier ν:

δrca = νS−1TR2bδr
m
imp (A.23a)



98 A| Appendix A

S = [Ñ− P̃P−1N] T = [Q̃− P̃P−1Q] (A.23b)

SMD Constraint

To find an analytic solution of the problem, it is necessary to apply the SMD constraint at
TCA. This can be done by adding and subtracting rs on the left term and premultipling
Eq. A.23a by R2b. This allows to transfer the problem in B-plane reducing the dimension
of the equation.

R2b[r
m
ca − rs − rca + rs] = νR2bS

−1TR2bδr
m
imp (A.24a)

R2b[δr
m
imp − δrimp] = νR2bS

−1TR2bδr
m
imp (A.24b)

bm
imp − bimp = νR2bS

−1Tbm
imp (A.24c)

The previous equation can be inverted to obtain the expression of the maneuvered position
vector in B-plane.

bm
imp = [I− νU]−1bimp (A.25a)

U = R2bS
−1T (A.25b)

Finally by using the following relation:

[I− νU]−1 =
1

det(I− νU)
[I− νdet(U)U−1] (A.26)

And applying the constraint on the SMD; it is possible to obtain a fourth-degree-equation
that can be solved analytically as function of ν:

ν2bimp
TZTC−1Zbimp − νbimp

T [ZTC−1 +C−1Z]bimp = α2SMD − bimp
TC−1bimp

(A.27a)

α = det(I− νU) Z = det(U)U−1 (A.27b)
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A.0.3. EOP Solution: Iterative Linearizations

The analysis of the first trajectory arc is the same as the first linearization and brings to
an analogous system of equations:

δrca

δvca

δλrca−

δλvca−

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44




δr0

δv0

δλr0

δλv0

 (A.28)

It is important to notice that in this case the Symbol δ for the co-state variables can’t be
omitted. In fact, the successive linearizations are performed respect to the maneuvered
trajectory which has a non-null co-state.

Second Trajectory Arc

In this case, the linearization produces rather different results compared to the previous
case. The principal modifications are due to two reasons. The first one is the consideration
of a perturbation on the final state that is not present in the first linearization. This
perturbation needs to be included in order to correct the state error obtained at the end
of the previous iteration. The second reason that brings to different equations lies in the
definition of co-state discontinuity due to interior point constraint. If we consider the
discontinuity expression in the general iteration:

δλr
ca+

= λk+1
r
ca+

− λk
r
ca+

(A.29)

Where k indicates the number of iterations already executed. Recalling Eq. 3.13:

λk+1
r
ca+

− λk
r
ca+

= λk+1
rca−

− λk
rca−

− 2νR2b
TC−1R2b(r

m
ca

k+1 − rs − rmca
k + rs) (A.30)

That can be expressed as:

δλ+
rca

= δλ−
rca

− 2νR2b
TC−1R2bδr

m
ca (A.31)

The difference respect to the previous case is that the constraint perturbation is no longer
expressed as a function of the position of the secondary object at TCA. Then the resolu-
tion proceeds as in the previous case with the only difference of the non-null final state
perturbation. From the STM it is possible to obtain the expression of the perturbation
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on the state at TCA following a procedure similar to the one reported before.
δrf

δvf

δλrf

δλvf

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44




δrca

δvca

δλr
ca+

δλvca

 (A.32)

Analyzing first two vectorial equations in which δrf and δvf are known:

δrf = Φ11δrca +Φ12δvca +Φ13δλr
ca+

+Φ14δλvca (A.33a)

δrf = [Φ11 +Φ14H]δrca + [Φ12 +Φ14L]δvca +Φ13δλr
ca+

(A.33b)

δvf = Φ21δrca +Φ22δvca +Φ23δλr
ca+

+Φ24δλvca (A.34a)

δvf = [Φ21 +Φ24H]δrca + [Φ22 +Φ24L]δvca +Φ23δλr
ca+

(A.34b)

Applying the co-state discontinuity relation A.31:

[Φ21 +Φ24H]δrca + [Φ22 +Φ24L]δvca +Φ23δλrca−
− 2νΦ23R2b

TC−1R2bδrca = δvf

(A.35)

Substituting now the first equation of system A.16a:

Nδrca +Pδvca − νQR2bδrca = δvf (A.36)

Now it is possible to express δvca:

δvca = −P−1Nδrca + νP−1QR2bδrca +P−1δvf (A.37)

The same process is repeated for Eq A.33b:

Ñδrca + P̃δvca − νQ̃R2bδrca = δrf (A.38)
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Substituting in the latter Eq. A.37

Sδrca − νTR2bδrca = δrf − P̃P−1δvf (A.39)

Then by expressing δrca:

δrca = νS−1TR2bδrca + S−1(δrf − P̃P−1δvf ) (A.40)

SMD Constraint

Premultiplying the members for R2b:

R2bδrca = νR2bS
−1TR2bδrca +R2bS

−1(δrf − P̃P−1δvf ) (A.41)

Then defining:

k = R2bS
−1(δrf − P̃P−1δvf ) U = R2bS

−1T (A.42)

It is possible to obtain:

[I− νU]δbca = k (A.43)

Now expressing δbca:

δbca = [I− νU]−1k (A.44)

Now consider the following trick:

δbca = bca
k+1 − bca

k = bca
k+1 − bs + bs − bca

k = bimp
k+1 − bimp

k (A.45)

Eq. A.45 can be substituted in Eq. A.44, considering that bimp
k is known from the

previous iteration:

bimp
k+1 = [I− νU]−1k+ bimp

k (A.46)

Now applying SMD constraint:

bimp
k+1TC−1bimp

k+1 = SMD (A.47)
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It is possible to obtain the following equation in ν:

ν2kTZTC−1Zk− νkT [ZTC−1 +C−1Z]k = α2SMD − (bk
imp + k)TC−1(bk

imp + k)

(A.48)
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This appendix reports the detailed demonstration of the sub-optimal Three Point Bound-
ary Value Problem reported in Sect. 3.4.

B.0.1. Problem Formulation

First of all let’s start by describing the dynamical model used for the orbital propagation:

x =



a

e

i

Ω

ω

θ


ac =


an

at

ah

 (B.1)

f =



ȧ = 2

√
a3

µ

(
1 + e cos θ + e2

1− e2

)
at

ė =

√
a

µ

(
1− e2

1 + e cos θ + e2

)[
2(e+ cos θ)at −

(1− e)2

1 + e cos θ
sin θun

]
di

dt
=

√
a

µ
(1− e2) sin θ + ωah

Ω̇ =

√
a

µ
(1− e2)

sin θ + ω

sin i
ah

ω̇ =

√
a

µ

(
1− e2

1 + e cos θ + e2

)[
2 sin θat −

(
2e+

(1− e)2

1 + e cos θ
cos θ

)
an

]
+

−
√
a

µ
(1− e2)

sin θ + ω cos i

sin i
ah

θ̇ =

√
µ

a3(1− e2)3
(1 + e cos θ2) + ω̇

(B.2)
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Then assuming Keplerian orbit, knowing x(t0) = x0 initial state, t0 starting time, tca
time of closest approach, tf final time. The problem is defined as the minimization of the
following cost function:

J := νΠ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (B.3a)

Π(tca,x(tca)) = SMD(r(tca))− SMD ≥ 0 (B.3b)

The functional can be expressed using the Hamiltonian:

H :=
1

2
ac

Tac + λT f(x, ac) (B.4a)

J := νΠ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tac + λT [f(x, ac)− ẋ] dt (B.4b)

Where: λT ẋ = −λ̇Tx+ d(λTx)
dt

Splitting the integral:

J :=νΠ(tca,x(tca))− λTx|t
−
ca
ti − λTx|tf

t+ca
+

∫ t−ca

ti

H(x, ac,λ, t) + λ̇Txdt

+

∫ tf

t+ca

H(x, ac,λ, t) + λ̇Txdt

(B.5)

Computing the first variation:

∂J

∂η
= ν

∂Π

∂x̃(tca)

∂x̃(tca)

∂η
− λT ∂x̃

∂η

∣∣∣∣t−ca
ti

− λT ∂x̃

∂η

∣∣∣∣tf
t+ca

+

∫ tf

ti

∂H

∂ãc

∂ãc

∂η
+
∂H

∂x̃

∂x̃

∂η
+ λ̇T ∂x̃

∂η
dt

(B.6)
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Then it is possible to impose the necessary condition by forcing as null the first variation:

ν
∂Π

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

∂x

∂η

∣∣∣∣
ti

= 0

∂x′

∂η

∣∣∣∣
tf

= 0

λθ(tf ) = 0

∂H

∂ac

= 0

∂H

∂x
+ λ̇T = 0 =⇒ λ̇ = −

[
∂H

∂x

]T
= −

[
∂f

∂x

]T
λ

∂H

∂λ
= ẋ = f(x, ac)

ν ≥ 0

νΠ = 0

(B.7)

where:

x′ =



a

e

i

Ω

ω


(B.8)

Once the algebraic control solution is obtained the problem is again translated in a Th-
PBVP:


ẋ = f(x, ac)

λ̇ = −
[
∂f

∂x

]T
λ

BCs :



x(t0) = x0

x(tca−) = x(tca+)

ν
∂Π

∂x̃(tca)
− λT (t−ca) + λT (t+ca) = 0

x′(tf ) = x′
f

λθ(tf ) = 0

Π(tca) = 0

(B.9)
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B.0.2. EOP Solution

Once the ThPBVP is obtained the resolution procedure follows the one described in
Appendix A.

First Trajectory Arc

As usual, the first arc is the easier to deal with. The objective is to find the expression of
the co-state at TCA as a function of the state perturbation at the same time:[

δxca−

λca−

]
=

[
Φxx Φxλ

Φλx Φλλ

][
δx0

λ0

]
(B.10)

By imposing δx0 = 0:

λca− = Φλλλ0 (B.11a)

δxca− = Φxλλ0 (B.11b)

Substituting Eq. B.11b in Eq. B.11a:

λca− = ΦλλΦ
−1
xλδxca− (B.12)

Even the co-state can be split with the same philosophy of the state:

λ′
ca− = Eδx′

ca− +wθca− (B.13a)

λθca− = gδx′
ca− + Pθca− (B.13b)

Where:

λ′ =



λa

λe

λi

λΩ

λω


ΦλλΦ

−1
xλ =

[
E w

g P

]
(B.14)
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Co-state Discontinuty

In this problem, the application of the interior point constraints leads to a more complex
discontinuity equation. Analyzing C.4:

∂Π

∂x(tca)
= φ(xca) (B.15)

The discontinuity can be expressed as:

λca+ = λca− − νφ(xca) (B.16)

As before the vectorial equation can be decomposed:

λ′
ca+ = λ′

ca− − νφ′(xca) (B.17a)

λθca+ = λθca− − νφθ(xca) (B.17b)

In order to find an analytic solution, the discontinuity expression has to be approximated
by adopting zero order Taylor’s expansion.

φ′(xca) ≈ φ′(xref (tca)) = φ′ (B.18a)

φθ(xca) ≈ φθ(xref (tca)) = φθ (B.18b)

Second Trajectory Arc

The previous decomposition of state and co-state is fundamental and reveals its impor-
tance in this phase. As can be seen in the boundary condition of Eq. B.9 the boundary
condition at the final time includes the first five orbital elements and the last co-state
variable. 

δx′
f

δθf

λ′
f

λθf

 =


Φx′x′ Φx′θ Φx′λ′ Φx′λθ

Φθx′ Φθθ Φθλ′ Φθλθ

Φλ′x′ Φλ′θ Φλ′λ′ Φλ′λθ

Φλθx
′ Φλθθ Φλθλ

′ Φλθλθ




δx′

ca

δθca

λ′
ca+

λθca+

 (B.19)

To impose the orbit reentry δx′
f = 0 e λθf = 0.
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So let’s continue analyzing the first vectorial equation:

Φx′x′δx′
ca +Φx′θδθca +Φx′λ′λ′

ca+ +Φx′λθ
λθca+ = 0 (B.20)

By applying the co-state discontinuity described in Eqs. B.17 and B.18:

Φx′x′δx′
ca +Φx′θδθca +Φx′λ′

[
λ′

ca− − νφ′]+Φx′λθ

[
λθca− − νφθ

]
= 0 (B.21)

Then substituting Eq. B.13 e reassemble the terms:

Bδx′
ca + dδθca − ν (Φx′λ′φ′ +Φx′λθ

φθ) = 0 (B.22)

Where:

B = Φx′x′ +Φx′λ′E+Φx′λθ
g d = Φx′θ +Φx′λ′w + PΦx′λθ

(B.23)

The previous relation can be inverted to express δx′
ca

δx′
ca = −B−1dδθca + νB−1 (Φx′λ′φ′ +Φx′λθ

φθ) (B.24)

It is now the moment to work on the last equation of the system B.19:

b̃δx′
ca + D̃δθca − ν (Φλθλ

′φ′ +Φλθλθ
φθ) = 0 (B.25)

Where:

b̃ = Φλθx
′ +Φλθλ

′E+Φλθλθ
g D̃ = Φλθθ +Φλθλ

′w + PΦλθλθ
(B.26)

Substituting B.24 and reassamble the terms:

Lδθca − νM = 0 (B.27)

In which:

l = D̃ − b̃(B−1d) M = Φλθλ
′φ′ +Φλθλθ

φθ − b̃
[
B−1 (Φx′λ′φ′ +Φx′λθ

φθ)
]

(B.28)
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Expressing δθca:

δθca = ν
M

L
(B.29)

And so:
δx′

ca = νB−1n (B.30)

Where:

n = Φx′λ′φ′ +Φx′λθ
φθ −

M

L
d (B.31)

Assemble the Eqs. B.30 e B.29:

δxca = νh h =

[
B−1n

M
L

]
(B.32)

SMD Constraint

The state obtained at TCA is the following:

x(tca) = xref (tca) + νh (B.33)

Defining ρ(x) as the transformation function from orbital parameters to cartesian position,
it is possible to apply the SMD constraints.

[ρ(xca)− rs(tca)]
T Q [ρ(xca)− rs(tca)] = SMD (B.34)

Where:

Q = R2b
TC−1R2b (B.35)

However, it is not possible to solve analytically this equation. Therefore equation is
linearized using the first order Taylor expansion ρ(x):

ρ(xca) ≈ rref (tca) + νJ(xref (tca))h (B.36)

Abbreviating the notation:

ρ(xca) ≈ rp(tca) + νJh (B.37)
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Substituting in the constraint equation:

[rp(tca) + νJh− rs(tca)]
T Q [rp(tca) + νJh− rs(tca)] = SMD (B.38)
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C.0.1. Problem Formulation

The last appendix reports the accurate mathematical computation of the energy optimal
problem proposed in Sect. 4.1

The dynamical model used for the orbital propagation is the one presented in Sect. 2.6.
It includes the Non-spherical Earth perturbation until the J22 harmonical effect.

The optimal control problem starts like the other ones:

J := νΠ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tac + λT [f(x, ac)− ẋ] dt (C.1)

Where: λT ẋ = −λ̇Tx+ d(λTx)
dt

Splitting the integral:

J :=νΠ(tca,x(tca))− λTx|t
−
ca
ti − λTx|tf

t+ca
+

∫ t−ca

ti

H(x, ac,λ, t) + λ̇Txdt

+

∫ tf

t+ca

H(x, ac,λ, t) + λ̇Txdt

(C.2)

Now it is possible to compute the first variation of J .

∂J

∂η
= ν

∂Π

∂x̃(tca)

∂x̃(tca)

∂η
− λT ∂x̃

∂η

∣∣∣∣t−ca
ti

− λT ∂x̃

∂η

∣∣∣∣tf
t+ca

+

∫ tf

ti

∂H

∂ãc

∂ãc

∂η
+
∂H

∂x̃

∂x̃

∂η
+ λ̇T ∂x̃

∂η
dt

(C.3)

Then by imposing ∂J
∂η

= 0 the following system of algebraic and differential equations is
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obtained: 

∂x

∂η

∣∣∣∣
ti

= 0

∂x

∂η

∣∣∣∣
tf

= 0

∂H

∂ac

= ac
T + λTB(t) = 0 =⇒ ac = −B(t)Tλ

∂H

∂x
+ λ̇T = 0 =⇒ λ̇ = −

[
∂H

∂x

]T
= −

[
∂f

∂x

]T
λ = −A(t)Tλ

∂H

∂λ
= ẋ = f(x, ac)

νΠ ≥ 0

(C.4)

From which is possible to determine the following MPBVP:

{
ẋ = A(t)x−B(t)B(t)Tλ+D(t)

λ̇ = −A(t)tλ
BCs :



x(t0) = x0

x(tf ) = xf

ν
∂Π

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

ξ(tca) ≥ 0

(C.5)

C.0.2. EOP Solution

In the previous section, the OCP is transformed in the problem of finding the initial
costate and the adjointed multiplicator. The resolution procedure requires to subdivide
the trajectory in two segments in the intervals [t1; tca] and [tca; tf ]. This step is necessary
to apply the interior point constraint. To obtain an analytical solution the two trajectories
have to be linearized respect to Keplerian unperturbed motion by virtue of the STM.

{
Φ̇(t) = ASTM(t)Φ(x(t0), t)

Φ(x(t0), t0) = I
(C.6)
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Dove:

ASTM(t) =

[
A(t) −B(t)B(t)T

03×3 −ASTM(t)T

]
(C.7)

First Arc

Considering the linearization respect to the un-maneuvered trajectory in the interval
[t0, t

−
ca]. [

δxca

λca−

]
=

[
Φxx Φxλ

Φλx Φλλ

][
δx0

λ0

]
(C.8)

Imposing δx0 = 0:

λca− = Φλλλ0 (C.9a)

δxca− = Φxλλ0 (C.9b)

Substituting the second equation inside the first one:

λca− = ΦλλΦ
−1
xλδxca = Eδxca (C.10)

Co-state discontinuity

∂Π

∂x(tca)
= φ(xca) (C.11)

The co-state discontinuity can be expressed as:

λca+ = λca− − νφ(xca) (C.12)

In order to find an analytic solution, the co-state discontinuity has to be approximated.
In this case a zero order Taylor series expansion is adopted:

φ(xca) ≈ φ(xref (tca)) = φ (C.13)
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Second Arc

In a similar way to what is done in the first arc. The resolution proceeds by linearizing
the second arc using the STM.[

δxf

λf

]
=

[
Φxx Φxλ

Φλx Φλλ

][
δxca

λca+

]
(C.14)

Analyzing the first vectorial equation:

δxf = Φxxδxca +Φxλλca+ (C.15)

Substituting EQ. C.13, C.10 and working on the equation:

δxf = Fδxca − νΦxλφ (C.16)

Where:
F = Φxx +ΦxλE

The expression of the state at TCA as a function of ν can be obtained from the previous
relationship:

δxca = δxsk,ca + νhCAM (C.17)

The two terms represent respectively the contribution due to station keeping maneuver
and to the CAM and are expressed as:

δxsk,ca = F−1δxf hCAM = F−1Φxλφ (C.18)

SMD Constraint

Once the expression of the perturbation at TCA is computed, it is necessary to consider
the SMD constraint. The first step is to verify if the contribution of the SK maneuver is
sufficient to respect the PoC constraint. In this case:

Π(xsk,ca) ≥ 0 (C.19)

It is sufficient to impose ν = 0, and compute the initial co-state.

If the previous inequality is not respected, the procedure follows an approach similar to
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the one reported in Appendix A and Appendix B.

Defining ϱ(x) as the function that allows to convert the equinoctial orbital elements in
the cartesian position it is possible to impose the SMD constraint.

[ϱ(xca)− rs(tca)]
T Q [ϱ(xca)− rs(tca)] = SMD (C.20)

Where:

Q = R2b
TC−1R2b (C.21)

However, it is not possible to solve analytically the equation. Therefore it is necessary to
linearize using the first order Taylor expansion respect to xsk,ca, the function ϱ(x):

ϱ(xca) ≈ rsk,ca(tca) + νJ(xsk,ca(tca))hCAM (C.22)

By abbreviating the notation:

ϱ(xca) ≈ rsk,ca(tca) + νJh (C.23)

Substituting inside the constraint equation:

[rsk,ca(tca) + νJh− rs(tca)]
T Q [rsk,ca(tca) + νJh− rs(tca)] = SMD (C.24)

It represents a second-degree equation as function of ν that can be resolved in closed
form.
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