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Abstract

Epithelial tissues are widely present across all organs and organisms, serving as barriers
and boundaries between biological means. Yet, their 3D organization differs widely. Ep-
ithelia can organize in single or multiple layers, and cell shapes range from cuboidal to
highly elongated shapes, whose long axis runs either along the apico-basal axis (colum-
nar) or parallel to the epithelial surface (squamous). Those different organizations must
reflect differences in the biophysical cell parameters, but their type and magnitude have
remained elusive. In this study, we leverage deep learning methods for the segmentation of
3D images of epithelial samples acquired at the light sheet microscope. Then, we present
EpiStats, a library for the analysis of morphological tissue features. By applying EpiStats
to the segmented epithelial samples, we provide a complete experimental characterization
of the tissues, highlighting common traits as well as discrepancies between them. Finally,
we employ SimuCell3D, a 3D cell-based simulation framework, to perform an exploratory
investigation of the mechanical and biophysical cell parameters. This preliminary research
highlights aspects of the current state of SimuCell3D that need to be improved in future it-
erations to provide more conclusive results about epithelial tissues’ mechanical properties.

Keywords: Epithelial tissues, Deep learning, Image analysis, Numerical simulations





Abstract in lingua italiana

I tessuti epiteliali sono ampiamente diffusi in ogni organo e organismo. Nonostante in
ogni parte compiano la stessa funzione di barriera tra mezzi, la loro organizzazione tridi-
mensionale è estremamente varia. In particular, gli epiteli possono organizzarsi in uno
o più strati, e le forme delle cellule vanno da cuboidali a forme maggiormente allun-
gate, come quelle colonnari, il cui asse lungo si estende lungo l’asse apico-basale e quelle
squamose, disposte parallelamente alla superficie epiteliale. Le diverse conformazioni di
tali tessuti epiteliali si riflettono in differenze nei parametri biofisici delle cellule. Tuttavia,
la specificità e l’entità di tali discrepanze rimangono sfuggenti. In questo studio, utilizzi-
amo metodi di apprendimento profondo per la segmentazione di immagini 3D di campioni
epiteliali acquisite al microscopio light sheet. Successivamente, presentiamo EpiStats, una
libreria per l’analisi delle caratteristiche morfologiche dei tessuti. Applicando EpiStats ai
campioni epiteliali raccolti, produciamo una caratterizzazione sperimentale dei vari tes-
suti, evidenziando tratti comuni e difference salienti. Infine, utilizziamo SimuCell3D, un
software per la simulazione di modelli basati su singola cellular in 3D. Lo scopo è quello di
condurre un’indagine esplorativa dei parametri meccanici e biofisici delle cellule. Questa
ricerca preliminare mette in risalto alcuni aspetti dello stato attuale di SimuCell3D che
richiedono miglioramenti per le future versioni dello studio, al fine di ottenere risultati
più conclusivi sulle proprietà meccaniche dei tessuti epiteliali.

Parole chiave: Tessuti epiteliali, Apprendimento profondo, Analisi di immagini, Simu-
lazioni numeriche
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Introduction

An introduction on epithelial tissues

Covering epithelial tissues are sheets of tightly packed, closely connected cells that cover
the external surfaces (e.g., epidermis) and line the internal cavities of the body (e.g.,
membranes of tubular organs) (Fig. 1a). Their main functions are to provide a barrier
between the interior and exterior of the body and to separate internal environments
(Pacheco et al., 2008).

Epithelial tissues are distributed across the majority of the body’s organs, and as a result,
they exhibit diverse arrangements depending on each organ’s specific function. Struc-
turally (Fig. 1b), epithelia can be composed of a single layer of cells (simple epithelium)
or multiple layers of cells (stratified epithelium). For what concerns their shape, single ep-
ithelial cells are classified depending on their elongation. On the one hand, squamous cells
present a major axis parallel to the epithelial surface and have flattened nuclei. On the
other hand, in columnar cells, the major axis runs along the apical-basal axis and nuclei
are usually cylindrical. Finally, cuboidal cells are not elongated and are characterized by
round-shaped centrally located nuclei. In most cases, simple epithelia are made by cells of
the same shape. Therefore, we can have simple squamous, simple columnar, and simple
cuboidal epithelial tissues. On the contrary stratified epithelia are classified according to
the shape of cells in the upper layer, while the underlying layers are usually composed of
cuboidal (polygonal) cells. Thus, we define stratified squamous, stratified cuboidal, and
stratified columnar epithelia. Among stratified epithelia, a peculiar structure is the one
shown in the transitional epithelium. In this case, the shape of cells can change due to
stretching of the tissue. An example of transitional epithelial tissue is the Urothelium,
located in the urinary system. The shape of its cells depends on the filling of the uri-
nary tract. A specialized form of simple epithelia is the pseudostratified epithelium. Its
peculiarity is given by the fact that its columnar cells are all in contact with the basal
membrane, but only some of them have a free apical surface. This specific organization
is caused by the nuclei arrangement, which are not aligned at the same level (Dudas, 2023).
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Simple cuboidal
Simple squamous

Simple columnar Pseudostrati�ed

Strati�ed cuboidal Strati�ed squamous Strati�ed columnar Transitional

Figure 1: Epithelial tissues structure and classification. a, A microscope image
of a squamous stratified epithelium (Berkshire Community College Bioscience Image Li-
brary, CC0, via Wikimedia Commons). b, Classification of epithelial tissues is based on
the number of layers (simple vs. stratified epithelia) and the shape of the cells in the
most superficial layer (cuboidal, squamous, columnar). Pseudostratified and Transitional
epithelia are particular structures of, respectively, simple and stratified tissues.

A review on methods and discoveries in epithelial bi-

ology

The driving factors that lead to such a variety of epithelia organizations and structures
are still elusive and subject to research. Since the beginning of the 20th century, scientists
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have developed mathematical models to describe the organization of epithelia.

Most of the early models were based on the reductionist assumption of prismatic-shaped
epithelial cells (Fig. 2a). According to this assumption, cells keep the same neighbor rela-
tionships along the entire apical-basal axis. At the same time, prism-like cells are allowed
to reduce one of the polygonal surfaces (apical or basal) to accommodate the curvature
of the tissue, assuming a shape defined as frustum (Fig. 2b, 2d). Another consequence
of the model is that 2D slices of epithelial cells are modeled as convex tessellations of the
plane (Fig. 2c). An important advantage of the prismatic approximation is the possibility
of investigating tissue packing by resorting to common tools of mathematical topology,
as well as borrowing results from other physical processes, for example, the growth and
organization of crystals and foams, as the founding geometrical model is essentially the
same.

In this setting, Reinhart formally deduced that, according to Euler’s principle for convex
polyhedrons, the average number of sides of the cells in a plane should be six (Reinhardt,
1918).
Later, Lewis established the existence of a linear relationship between the average cell
areas and the number of neighbors (Lewis, 1928):

An

A
=

n− 4

2
(1)

In the expression above n is the number of neighbors, An is the average area of cells having
n neighbors, and A is the average area among all the cells. Lewis’ Law was subsequently
demonstrated as a direct consequence of the maximum entropy principle (Rivier and
Lissowski, 1982) and at the same time of the minimization of the lateral cell-cell contact
surface energy (Kokic et al., 2019), which drives cells to regular polygonal shapes.

Another mathematical principle observed in convex tessellations of the plane is Aboav-
Weaire’s law (Aboav, 1970; Chiu, 1995), which states that the average number of sides of
the neighbors of a cell is inversely related to its number of neighbors:

mn = 5 +
8

n
(2)

where mn is the average number of neighbors computed over the adjacent cells to a given
cell having n neighbors. Originally deduced for growing polycrystals, this law was after-
ward confirmed for apical planes of growing epithelia (Bi et al., 2014; Sánchez-Gutiérrez
et al., 2016). Similar to Lewis’ law, it has been proven that Aboav-Weaire’s law results
from the minimization of lateral contact surface energy (Vetter et al., 2019). However,
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whereas the former regulates the cells’ side lengths, the latter controls the cells’ contact
angles.

The mathematical principles and properties described above were assumed to be valid in
a 3D context in epithelial monolayers given the prismatic simplification. However, this
approximation started to be challenged after discovering that cells did not preserve the
same number of neighbors on the apical and basal surfaces (Fig. 2e) (Condic et al., 1991).
Apical-basal intercalations (i.e., cell-neighboring changes between apical and basal sur-
faces) (Fig. 2f) were also reported in mouse epithelia (Xu et al., 2016). These discoveries
led to the formulation of a new 3D geometrical representation of cells defined as scutoid
(Fig. 2c) (Gómez-Gálvez et al., 2018). This model allows cells to have apical-basal inter-
calations and provides a way to achieve epithelial bending by minimizing tissue energy
and stabilizing 3D cell packing.

These new discoveries, together with massive advances in microscopy and machine learn-
ing methods for automated cell segmentation, spurred the development of further studies
about 3D epithelial organization. In Escudero et al. (2011) the author produces a charac-
terization of the epithelial structure considering building a cellular network in which cells
are nodes and contacts are edges. Improvements of this approach are presented in Kursawe
et al. (2016) and in Vicente-Munuera et al. (2020). An alternative method involves the
application of modern image analysis techniques to extract morphological statistics from
epithelial cells and the subsequent analysis of such statistics over the tissues. An example
is Gómez et al. (2021), in which the author shows that epithelial organization emerges
from simple physical principles, such as the minimization of cell-cell surface energy. Using
similar techniques, in Rupprecht et al. (2017) it is shown that geometric constraints can
influence three-dimensional cell morphology and packing within epithelial tissues.

In parallel with the development of mathematical models and computational analysis
tools, researchers started to implement in-silico models for the simulation of the epithelial
tissues’ dynamics. Cell-based models simulate virtual tissue by modeling cells as individ-
ual agents, each possessing unique mechanical characteristics and behaviors. These mod-
els provide an in-silico environment in which stress patterns and mechanical attributes of
cells can be manipulated to investigate their influence on tissue structure and functionality
(Runser et al., 2023).
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5
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6

Apical Basal

Figure 2: Schematical representations of epithelial tissues and cells. a, Illustra-
tion of a planar simple epithelium under prismatic approximation. b, Cells can adapt
their conformation to the tissue curvature by adopting the shape of a truncated pyramid
(i.e. frustum). c, When cells are modeled as prisms, 2D slices of epithelial tissues become
convex tessellations of the plane. d, Depending on the chosen approximation, an epithelial
cell can be represented as a prism, a frustum, or a scutoid. e, Prismatic approximation
started to be challenged after the discovery of changes in cells’ neighbors between apical
and basal planes (Condic et al., 1991; Xu et al., 2016). f, Schematic 2D depiction of an
apical-basal intercalation.

All numerical models are the result of a trade-off between the level of resolution and
computational cost. This choice usually depends on the specific research problem the
investigator wants to address. For instance, when the quantity of cells to simulate is more



6 | Introduction

important than their individual characteristics, center-based models (i.e., a model in which
cells are represented as simple spheres) are the most efficient solution. Vertex models,
instead, allow increasing the simulations’ likelihood by approximating cell shapes with
polygons in 2D and polyhedrons in 3D, where forces are applied at their vertices (Nagai
and Honda, 2001; Farhadifar et al., 2007; Canela-Xandri et al., 2011; Osterfield et al., 2013;
Monier et al., 2015; Hirashima and Adachi, 2019). Finally, when cells have complex shapes
and providing a geometrically realistic representation of tissues is important Deformable
Cell Models (DCMs) are a suitable choice. In these models, cells are regarded as closed
loops of connected points in 2D (Rejniak, 2005; Merks et al., 2011; Tanaka et al., 2015;
Ataei et al., 2021; Kim et al., 2021; Brown et al., 2021), or a closed triangulated surface
in 3D (Brakke, 1992; Madhikar et al., 2018; Liedekerke et al., 2020; Wang et al., 2021;
Torres-Sánchez et al., 2022; Okuda and Hiraiwa, 2023; Runser et al., 2023). DCMs are
well-suited to realistically represent a huge number of biological processes, clearly at the
expense of a remarkable computational cost and more frequent numerical stability. For
these reasons, such models are frequently used for highly detailed simulations of a limited
number of cells.

Objectives and aims

As stated in the initial paragraph, epithelial tissues are undeniably intriguing in nature.
Despite their main functions remaining somewhat consistent across the body, they ex-
hibit diverse structural arrangements and cell configurations. Therefore, delving into the
exploration of the mechanisms and influences that drive the development of a variety of
structures within epithelial tissues unquestionably attracts one’s curiosity.

In the second paragraph, we aimed to present a summary of the current research sta-
tus in the field of epithelial biology. We highlighted the development and application of
numerous methods over the past decades for analyzing the recurring morphological struc-
tures of epithelia. Despite these advancements, a persistent challenge exists in achieving a
comprehensive understanding of the properties that characterize various tissues. Specifi-
cally, gaining insight into the unique features that differentiate epithelia from a structural
and organizational standpoint is crucial. This understanding can illuminate the under-
lying reasons guiding tissues to adopt specific configurations to fulfill distinct biological
requirements. Unraveling these principles may serve as a crucial element in uncovering
the holy grail of developmental biology, namely the comprehension of the biophysical and
physiological mechanisms governing the morphogenesis of epithelial and other biological
tissues.
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Clearly, the possibility of providing sufficient experimental evidence to unveil the biolog-
ical principles goes hand in hand with the development of powerful, yet efficient tech-
nological solutions. Within the context of analyzing the morphology and mechanics of
epithelial tissues, it becomes evident that several critical technological tools are indis-
pensable. Firstly, the availability of high-resolution 3D microscope images is crucial for
capturing the intricate relationships among epithelial cells. Consequently, the implemen-
tation of a precise 3D cell segmentation algorithm becomes essential to identify individual
cell entities within the imaged tissue, facilitating the study of both their individual and
collective features. Subsequently, sophisticated methods are fundamental for conducting
a comprehensive analysis of the properties of the segmented cells. In this respect, opting
for 3D image analysis software becomes an apparent choice for accurately describing tis-
sue morphological characteristics, encompassing both cell shape and tissue organization.
Conversely, frameworks based on cell simulations emerge as the ideal option for exploring
the mechanical interactions and stress distribution within biological tissues. Despite the
considerable effort and remarkable advancements showcased in numerous works among
the biology research community, our review underscores a prevalent deficiency in robust,
cohesive approaches from a technological standpoint. These approaches are necessary to
enable a high-quality, end-to-end analysis of epithelial tissue properties.

In this context, our project aims to conduct a comprehensive characterization study of 3D
epithelial tissues, providing a detailed comparison of various organizations and structures.
To achieve this objective, our focus is twofold: on the one hand, we develop potent and
efficient technological tools tailored to address the current gaps in epithelial biology. On
the other hand, we exploit their capabilities to extract meaningful insights that can offer an
answer to our research question. Starting with 3D light sheet microscope images of diverse
mouse epithelia, we perform high-quality 3D cell segmentation to identify individual cells.
Subsequently, we pursue a dual approach. Firstly, we implement an optimized 3D image
analysis pipeline to extract information regarding epithelial organization and single-cell
morphology. This allows us to discern differences among tissues and empirically evaluate
the consistency of mathematical and geometrical results, both on 2D slices and in the
overall 3D tissues. Secondly, we delve into the mechanical structure of epithelial tissues
using a 3D cell-based simulation framework.

The technological stack involved in this project massively relies on Python programming
language and its libraries. In particular, for what concerns image preprocessing and analy-
sis we relied on Numpy (Harris et al., 2020), Scikit-image (van der Walt et al., 2014), SciPy
(Virtanen et al., 2020), and napari (Chiu and Clack, 2022). In the framework of cell-based
simulations, we employed the Trimesh (Dawson-Haggerty, 2019), VTK (Schroeder et al.,
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2006), PyMeshLab (Muntoni and Cignoni, 2021), PyMeshFix (Attene, 2010), and Open3D
(Zhou et al., 2018) Python libraries for the generation, refinement and handling of trian-
gular cell meshes. We gathered the algorithms for the computation of morphological fea-
tures from segmented epithelial tissues in an open-source Python library called EpiStats.
The codebase contains also a pipeline that performs the refinement of triangular meshes
and it is available on GitHub at https://github.com/AntanasMurelis/EpiStats. For
the sake of 3D cell segmentation, we resorted to existing software tools implemented in
Python, namely micro-SAM (Archit et al., 2023) and Plantseg (Wolny et al., 2020). Ad-
ditionally, we employed Fiji (Schindelin et al., 2012) and Ilastik (Sommer et al., 2011;
Berg et al., 2019) programs for image preprocessing, Paraview (Ahrens et al., 2005) for
the visualization of triangular meshes and SimuCell3D (Runser et al., 2023) software for
the simulation of tissue mechanics.

In the following, we outline the thesis’s structure, where we will delve into greater detail on
how our research objective was actively pursued. In Chapter 1 we present the microscope
images employed for the study and we explain how they were collected and selected.
In Chapter 2 we describe the 3D cell segmentation pipeline we chose to utilize, and we
illustrate enhancements we implemented to improve its overall performance. In Chapter
3 we first present EpiStats, an efficient Python library to collect morphological statistics
from 3D cells, and afterward, we compare the extracted features among different epithelia
and discuss the consistency with theoretical laws. Finally, in Chapter 4 we describe
the application of the SimuCell3D software for the inference of mechanical properties in
epithelial tissues via numerical simulations. In particular, we detail its underlying model
and the technical setup necessary for the framework to deal with the dynamical simulation
of epithelial tissues.

https://github.com/AntanasMurelis/EpiStats
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1.1. Introduction

The ability to create more comprehensive models for epithelial tissues, leading to more
precise outcomes and descriptions, is strictly linked to the availability of high-resolution
microscope images, in which salient cell features (membrane, nuclei, boundaries) are well-
defined. Specifically, if the research goal is to understand the overall arrangement of these
tissues and cell interactions, 3D imaging proves to be a significantly more potent tool,
offering extensive insights into both epithelial structure and individual cell shapes.

Light sheet fluorescence microscopy (LSFM) provides an intermediate-to-high spatial res-
olution, but remarkable sectioning capabilities and high speed. For this reason, it is a
suitable technique for in-depth analyses of rather thick, optically cleared samples (Stelzer
et al., 2021). Thanks to the use of a thin sheet of light (Fig. 3b), LSFM can be employed
for long-term 3D observations of biological specimens at high temporal resolution.

a b

detector

illumination

detector

illumination

ba

Figure 3: Light sheet fluorescence microscopy offers high-quality 3D imaging
for biological samples. a, A picture of a modern Light sheet microscope. b, LSFM
uses a thin sheet of light to excite fluorophores within the focal volume.

Light sheet microscopes use a thin sheet of light to excite fluorophores within the focal
volume (Stelzer et al., 2021). Fluorophores are particular proteins that, when exposed to
light in the blue to ultraviolet range, exhibit fluorescence at different wavelengths, thus
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resulting in different colors in the microscope images. In order to amplify the fluorescence
signals, fluorophore proteins are stained by using specific antibodies, by a procedure that
takes the name of immunostaining (Liu et al., 2011).

In the following paragraphs, we describe the protocol employed to collect 3D images from
samples of embryonic (stage E17.5) mouse epithelial tissues. Then, we present the images
selected for the study, motivating our choices.

1.2. Methods

In this section, we report a summary of the procedure followed to obtain high-resolution
3D light sheet microscope images from a variety of epithelial tissues. As we mentioned
earlier, epithelial samples were collected from dissected organs of mice at the embryonic
stage E17.5. In particular, the specimens were stained for GFP, DAPI, tdTomato, and
laminB1 proteins. Specifically, for the sake of our analysis, we are mainly interested in the
GFP and DAPI signals. The former highlights cell membranes in bright green, whereas
the latter marks the cell nuclei with a blue/cyan color. The choice of primarily focusing on
those signals attains to the fact that to obtain high-quality cell segmentation the presence
of sharp, well-defined cell boundaries is key. Moreover, knowing the nuclei’s position is
extremely helpful within the segmentation process. Indeed, it eases the identification of
single cells, since in healthy conditions they possess only one nucleus.

The microscope images were acquired with a Zeiss Z.1 light sheet microscope. The whole
procedure of specimen preparation and image collection was carried out by Dr. Laura
Schaumann. An extensive and detailed description of the employed protocol is reported
in Appendix A.

1.3. Results

As discussed in the introductory chapter the ultimate goal of this study is to provide
a complete characterization of epithelial tissues. We also mentioned that, even though
they approximately serve the same functions, epithelia show diverse configurations and
geometries. Therefore, to provide a thorough and detailed analysis, one needs to take
into consideration a variety of epithelial tissues, each one possibly showing a different
global organization and peculiar shape of its cells. Nevertheless, the choice of 3D images
to include in the dataset must also take into consideration their quality and accessibility.
Indeed, higher sharpness and definition of images naturally lead to greater accuracy in
the following cell segmentation.
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a

c d

b

Figure 4: Schematic illustration, 3D microscope image, and 2D projection of the
epithelial tissue samples employed in our study. a, Section of the small intestinal
tube highlighting villi, finger-like projections that extrude from the intestine walls inside
its lumen. b, Illustration of lung bronchioles. They extend from the lung tube constituting
its terminal part. From a 2D slice, it is possible to observe that cells are organized in
a single layer. c, The sample relative to the esophageal epithelium is constituted by a
section of the tube. The inner layer of cells clearly shows a squamous morphology. d, The
bladder epithelium outlines a stratified structure. The external surface is entirely covered
by large umbrella cells. Note: For what concerns the lung tube epithelial sample please
refer to Gómez et al. (2021).

For these reasons, given a set of imaged mouse epithelia at embryonic stage E17.5 acquired
with the aforementioned protocol, we selected the following:

1. A sample of Intestinal villus epithelium,

2. A sample of Lung bronchiole epithelium,

3. A sample of Esophagus epithelium.

The intestinal villi are small, finger-like projections that extend into the lumen of the
small intestine (Dudas, 2023). The covering epithelial tissue exhibits a simple columnar
organization, i.e., epithelial cells are organized on a single layer and are rather elongated
along the direction perpendicular to the villus surface (Fig. 4a). The bronchioles are the
smaller terminal branches of the bronchial airways in the lower respiratory tract. Their
walls are enveloped by a monolayer cuboidal epithelium (Tortora and Derrickson, 2017)
(Fig. 4b). The esophagus is a fibro-muscular tube in the upper digestive system. The
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internal surface of the esophagus is covered by mucosa, which is a stratified epithelial tissue
of around three layers of cells (Patti et al., 1997) (Fig. 4c). The esophageal epithelium
is classified as squamous, as the most internal layer of cells in contact with the lumen
presents squamous cells.

To increase the variety of mouse epithelia in the study, we decided to include two more
samples collected and processed for previous studies and publications. In particular, we
utilized:

4. A sample of Bladder epithelium (urothelium) from an adult mouse,

5. A sample of Lung tube from embryonic (E12.5) mouse.

The bladder epithelial tissue is composed of three layers of cells (Fig. 4d), namely basal,
intermediate, and umbrella cells. While basal and intermediate cells have a size in the
range of 5-20 µm and exhibit a rather regular (cuboidal) shape, the superficial umbrella
cells are circa 10 times larger and their shape depends on the degree of tissue stretch
(Lewis, 2000). This leads to the classification of the urothelium as a transitional epithelial
tissue. The lung tube is a tubular structure located in the bronchial airways (Fig. 4e). It is
covered by pseudostratified cells that extrude towards the lumen of the tube. Specifically,
we re-used the sample analyzed in our publication (Gómez et al., 2021).

High-quality renderings of the 3D light sheet microscope images and the associated 2D
slices for all the tissues involved in the study are reported in Appendix B.
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2| 3D Cell Segmentation

As we discussed within the objective and aims, a key step to provide an accurate char-
acterization of epithelia is to produce high-quality 3D cell segmentation. The ability to
accurately identify the locations and shapes of individual cells provides us with valuable
insights into the morphological and mechanical characteristics at both cell and tissue
levels.

In this chapter, we first discuss existing methods to produce accurate 3D cell segmentation
of biological tissues, highlighting the pros and cons. Following that, we present the pipeline
we decided to employ for the segmentation of our light sheet microscope images of mouse
epithelial tissues, explaining its main features and motivating our choice. Later on, we
outline the improvements we made on the original version of the segmentation workflow
that allowed us to get higher-quality results in a shorter time. Finally, we discuss the
resulting segmented images, which will serve as inputs for the following steps of our
analysis.

2.1. Related Works

Recently, biological microscopy experienced a period of remarkable advancements, due to
the emergence of new technologies that enable the acquisition of high-resolution and high-
depth fluorescence images. These improvements resulted in both the expansion of image
size and scale and the growth in data quality. Certainly, the availability of larger datasets
allows researchers to perform more thorough and precise studies of biological phenomena,
capturing more detailed patterns and delving into more detailed analyses. At the same
time, the extent and detail of these images made the employment of automated image-
processing techniques essential to efficiently perform quantitative cell-based analysis on
them. In fact, segmentation of large 3D images performed manually by common image
analysis tools (Schindelin et al., 2012; Hanslovsky et al., 2018) requires many weeks of
work and is no longer feasible at this scale.

Segmentation of an image volume into cell bodies can be rather straightforward when cells
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are sufficiently separated from one other. In such cases, classical segmentation approaches
based on edge detection algorithms (Canny, 1986) or the direct application of the water-
shed algorithm (Li et al., 2008; Dougherty, 1992) have proved to be a valid tool. However,
in the majority of animal and plant tissues, cells are tightly packed together, with cell
membranes in close contact with each other. Hence, in such cases standard methods fail
to isolate single entities, providing unsatisfactory outcomes.

Over the last decade, Deep Learning (DL) models have established themselves as the
state-of-the-art for computer vision tasks, such as image recognition and instance seg-
mentation. Thanks to the availability of larger amounts of data and following the success
of the U-Net model (Ronneberger et al., 2015) for the 2D cell segmentation task, artificial
neural networks started to be heavily employed for image analysis tasks in bioscience.
In particular, many researchers developed deep learning-driven methods to tackle the
instance segmentation problem in biology and biomedicine (Moen et al., 2019). For in-
stance, the algorithms illustrated in Dunn et al. (2019) and in Wu et al. (2023) focus on
providing accurate 3D nuclei segmentation as an initial step for a subsequent cell segmen-
tation task. Using similar methods, in the article from Isensee et al. (2021) the author
proposes a self-configuring DL model for the segmentation of 2D and 3D biomedical im-
ages. Another example can be found in Wang et al. (2022), where the authors introduce
an innovative U-Net-inspired architecture designed for the precise segmentation of densely
packed tissues, demonstrating encouraging outcomes. However, the absence of a complete
end-to-end segmentation pipeline (as the model is composed of separated blocks) and the
absence of publicly available code hinder both the reproducibility of the findings and
accessibility for external users.

In general, a common challenge with the majority of these studies is that they tend to
be tailored for specific tasks and are trained using specific datasets. Hence, they some-
times struggle to generalize on unseen data or on slightly different image analysis tasks.
Furthermore, a significant number of these models are highly complex, and the lack of
open-source code or user-friendly interfaces reduces their reproducibility and adaptability
for other researchers and users.

To overcome the problem of accessibility, in the past few years, some DL-driven software
platforms for end-to-end 3D cell segmentation provided with user interfaces have been
released (Carpenter et al., 2006; Sommer et al., 2011; Schindelin et al., 2012; de Reuille
et al., 2015; McQuin et al., 2018; Berg et al., 2019; Stringer et al., 2021; Eschweiler et al.,
2021). These tools offer various levels of customization and different kinds of interaction
with the user. For instance, some of them provide dropdown menus from which the
user can choose the algorithms to apply, while some others are capable of interpreting
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user-drawn strokes on images as segmentation instructions. Anyway, all of these software
tools offer a robust and easy-to-use 3D segmentation solution that performs effectively
across a wide range of data and tasks. However, there are also some drawbacks associated
with these platforms. On one hand, having a user interface is advantageous, especially
for beginners, but it can restrict the extent to which segmentation algorithms can be
customized. Furthermore, a common issue of low-code programs is an increased image
processing time and limitations in scaling to handle larger inputs.

Given the necessity for a flexible tool, that offers improved accuracy and customization
with respect to generalist platforms, while guaranteeing a fair degree of usability and re-
producibility, for our study we decided to employ Plantseg (Wolny et al., 2020). Plantseg
is a software for DL-driven cell instance segmentation in densely packed 3D volumetric
images. It provides a wide array of publicly accessible, pre-trained convolutional neural
networks (CNN) for the cell boundaries detection task. Each model has been trained on
different plant tissue images (e.g., confocal vs. light sheet microscopes, different voxel
sizes, cell shapes, and kinds of tissues). Moreover, the possibility of fine-tuning these neu-
ral networks on external datasets from a command line interface (CLI) brings additional
versatility to the Plantseg software. Furthermore, the package also includes a user-friendly
interactive interface in napari (Chiu and Clack, 2022) that allows instantaneous visual-
ization of segmentation outcomes. In the next section, we will describe the architecture
behind Plantseg and its capabilities.

2.2. Methods

2.2.1. Image Preprocessing

Deep learning models are potent feature extractors, that are able to recover patterns
and provide excellent performance also from raw, noisy, unstructured data (Goodfellow
et al., 2016). Nevertheless, image preprocessing techniques are an essential stage for most
DL pipelines as they have been proven to sharpen model efficiency. As an example,
standardization of inputs can enhance the numerical stability of the networks leading
to faster model training. Similarly, image enhancement by means of noise removal and
masking of superfluous information allows the model to focus on more meaningful content
and obtain better accuracy overall. In particular, noise removal is a crucial step for
fluorescence microscopy images. In fact, background fluorescence is very frequent in these
images, since staining often targets unwanted structures and features of the samples under
analysis.
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Figure 5: Visualization of the Image Preprocessing steps on the Esophagus
sample. a, b, A 2D slice of the cell membrane (GFP) and nuclei (DAPI) from the
esophagus epithelium as taken at the light sheet microscope. c, The esophagus 2D slice
after voxel rescaling and intensity equalization. d, The esophagus 2D slice after applying
noise filters on Fiji. e, The thresholded binary background mask obtained using micro-
SAM. f, g, The final esophagus 2D slices of both cell membrane and nuclei after masking
and channel alignment. h, A schema of the image preprocessing workflow.
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For these reasons, in our project, we decided to complement the Plantseg model with
a tailored image preprocessing pipeline. It is worth mentioning that some steps of this
pipeline were inherited from previous studies conducted internally in the lab. However,
to address the absence of a unified and well-structured workflow and the overall need
for optimization both in terms of time and performance, we were prompted to develop
an improved end-to-end image preprocessing pipeline. This pipeline leverages Python
scripting and libraries (such as Numpy (Harris et al., 2020), Scikit-image (van der Walt
et al., 2014), SciPy (Virtanen et al., 2020), and napari (Chiu and Clack, 2022)), as well as
specialized image analysis programs (such as Fiji (Schindelin et al., 2012) and (Berg et al.,
2019)). The same procedures are applied both to the cell boundaries (GFP channel) and
the nuclei (DAPI channel) files. The workflow is visually described in Figure 5 and it is
composed of the following ordered steps:

• First we rescale the raw microscope images in order to get the same voxel size across
all the items in the input dataset. Namely, we selected a voxel size of [0.1625, 0.1625,
0.25]µm. Indeed, the performance of CNNs is sensitive to changes in voxel size (and
hence object size) due to the fact that convolutional filters learn to detect features at
a specific resolution. Afterward, we perform histogram equalization of the intensity
to enhance the sharpness of the fluorescence signal.

• Then we resort to Fiji software tool (Schindelin et al., 2012) to perform image crop-
ping, filtering, and, if necessary, downsizing. Cropping plays a crucial role in the
preprocessing pipeline by enabling the removal of uninteresting or noisy areas from
images. This not only helps preserve higher quality and more meaningful features
but also reduces significantly the file size. The latter aspect is particularly impor-
tant as we deal with high-resolution and large-scale 3D images.
Image filtering consists of an ensemble of techniques to effectively remove a sub-
stantial amount of noise from the original image. Its primary purpose is to enhance
the contrast between cell signals and the background, resulting in crisper and more
distinct boundaries. Specifically, in our case, we employed the following processes:
background subtraction via rolling ball algorithm (Sternberg, 1983), gaussian blur-
ring to filter out high-frequency noise components, morphological closing to remove
small noisy structures, and white top-hat transform to homogenize the background
and highlight bright features (Serra, 1983; Serra and Vincent, 1992).
Finally, the size of a 3D light sheet microscope image can easily exceed ten giga-
bytes. Handling these large images can impact the performance of image analysis
software, leading to unsustainable computation time. As a result, there were in-
stances where we had to reduce the size of the image files by doubling the voxel
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size in the X-Y dimensions. While downsizing the voxels does diminish the level of
detail in the images, the original resolution of the images was sufficiently high to
prevent a significant deterioration in segmentation outcomes. Anyway, as we pro-
gressed in our work, we iteratively refined the preprocessing pipeline by replacing
less computationally efficient tools. Consequently, the need for downsizing became
obsolete.

• In addition, we decided to include in the pipeline a background masking step, in
order to completely erase uninteresting and noisy features from the image. The goal
is to produce a probability mask that marks all the non-informative structures as
background. Then, the mask is thresholded (at a background probability of 0.9) and
it is superimposed on the filtered image from the previous step. In the original image
preprocessing pipeline, the probability mask was computed using the interactive 3D
segmentation tool provided by Ilastik (Berg et al., 2019). Even though the mask
produced by this software was of good quality, we faced some computational issues
while working with images at full resolution. In general, the masking process with
Ilastik could take up to a few hours even on a machine endowed with a good GPU,
and require extensive prompting from the user. As a consequence, in a later iteration
of the image preprocessing pipeline, we decided to replace Ilastik with more efficient
masking performed by the Segment Anything Model for Microscopy (micro-SAM)
software (Archit et al., 2023). micro-SAM is built on top of the Segment Anything
Model (SAM) (Kirillov et al., 2023), the state-of-the-art tool for user-prompted 2D
instance segmentation. Specifically, micro-SAM is fine-tuned on microscopy data
and extends SAM functionalities by enabling interactive 3D segmentation. Overall,
micro-SAM provides extremely accurate background predictions and it only requires
a few minutes to run on large, high-resolution 3D images. It is worth mentioning
that we also tried to employ micro-SAM to perform 3D cell segmentation. However,
the tool still struggles to identify large amounts of instances, such as the tightly
packed cells in an epithelial tissue.

• As we pointed out in chapter 1, our light sheet microscope images include two
channels, respectively obtained from GFP staining (highlighting cell membranes),
and DAPI staining (highlighting the nuclei). Since the two fluorescence signals
present different wavelengths, they are subject to the dispersion phenomenon. As
a consequence, when the different channels are combined in a single image, it may
happen that the same features do not properly overlap (e.g., nuclei are shifted
with respect to the relative cell boundaries) (Scalettar et al., 1996). Therefore, a
necessary step in the image preprocessing pipeline is the alignment of fluorescence
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signals. We implemented this procedure in a Jupyter Notebook, in which the user
can interactively shift the channels using the napari viewer to monitor the outcome.

2.2.2. The Plantseg pipeline

The preprocessed 3D microscope images of epithelial tissues are then fed to the Plantseg
pipeline for automated cell segmentation. The Plantseg workflow comprises the following
blocks:

1. A U-Net-like convolutional neural network (CNN) to predict cell boundaries;

2. Graph Partitioning (GP) to perform segmentation based on the cell boundary pre-
dictions.

The combination of CNN boundary prediction with GP postprocessing is quite common
for the 3D cell segmentation task of tightly packed tissues (Eschweiler et al., 2018; Funke
et al., 2019a; Greenwald et al., 2022). In fact, CNN models operate on a per-pixel basis and
can easily introduce biologically implausible segmentation, such as unconnected regions
or far-fetched cell shapes. Conversely, GP algorithms are inspired by physical principles
(e.g., the watershed phenomenon), and hence guarantee consistent and reliable results
even from a biological perspective.

Convolutional Neural Network for boundary prediction

For what concerns the CNN for cell boundary predictions, Plantseg implements two dif-
ferent kinds of architectures: a standard 3D U-Net (3D-Unet) (Özgün Ciçek et al., 2016)
and a Residual 3D U-Net (3D-ResUnet) (Lee et al., 2017). For both architectures, pre-
trained weights are provided for different voxel sizes, types of microscope (light sheet vs.
confocal), and loss functions. Since the use of the residual version did not bring any rele-
vant advantage in terms of segmentation performance, we decided to employ the standard
3D-Unet for our analyses.

A schematic illustration of the 3D-Unet model is reported in Fig.6b. The network consists
of a contracting encoder that extracts deep features from the input images (analysis path)
and an expanding decoder that produces a full-resolution segmentation (synthesis path).
In the Plantseg implementation, both the encoder and the decoder include four resolution
levels. In the encoder, each level comprises two blocks composed of a Group Normaliza-
tion (GN) layer followed by a 3D convolution layer and a ReLU activation. Downsizing to
lower resolution is performed via a Max-Pooling layer, placed at the end of each level. On
the contrary, the decoder levels are made by an Upconvolution layer, followed by Group
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Normalization, a stack of two 3D convolution layers, and a ReLU activation on top. In
the last upsampling layer, a 1x1x1 convolution reduces the number of output channels
to 2 for the binary segmentation task. Contrary to the original U-Net implementation,
the proposed architecture employs same convolutions, and the upscaling (resp. down-
scaling) only happens in the max-pooling (resp. upconvolution) layers. Finally, shortcut
connections are placed between downscaling and upscaling paths at the same resolution,
to provide useful high-resolution features in the output.
For memory-related reasons, the available pre-trained models were trained on a single
patch of size [170× 170× 80] (in voxels). Therefore, Group Normalization is chosen over
Batch Normalization, as the latter would essentially function like Instance Normalization,
leading to less reliable batch statistics.
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Figure 6: The 3D cell segmentation workflow. a, An example of a 3D cell segmenta-
tion workflow using Plantseg. Given the preprocessed input image, first, a CNN predicts
the cell boundaries, and then GP algorithms like DT Watershed and Multicut are applied
to produce the segmentation. Finally, manual curation is performed to correct segmenta-
tion errors. b, The architecture of the 3D-Unet implemented in Plantseg.
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The loss function selected for training the released networks is given by the sum of binary
cross-entropy and Dice loss:

L = LBCE + LDice

Lastly, at inference time mirror padding is applied on the input image to improve the
prediction accuracy on the edges. Moreover, in order to reduce the checkerboard effect,
the volume is parsed with patches overlapping for 50% of their volume. The overlapping
probability maps are then averaged out to produce the final prediction.

Graph Partitioning for voxel clustering

Given the predicted cell boundaries, a region adjacency graph G(V,E) can be constructed
from the image voxels and cell segmentation can be reduced to a graph partitioning
problem. Specifically, each voxel is a vertex V of the graph and edges E connect adjacent
voxels. Edges are weighted by scalars w ∈ R+ derived from the boundary probability
map.

Since solving the partitioning problem at voxel-level would be computationally prohibitive
for volumes of biologically relevant size, in the first place single voxels are clustered
into so-called supervoxels by running the Distance-Transform (DT) Watershed algorithm
(Roerdink and Meijster, 2000). This algorithm consists of the following steps:

1. Thresholding of the boundary probability map is performed at probability level d
in order to obtain a binary image.

2. The distance transform is computed on the binary boundary image and Gaussian
smoothing is applied to the result.

3. A source is assigned to every local minimum in the resulting distance transform
map.

4. From each source a given label is propagated in every direction until it encounters a
different one. The formed contact surface is the so-called watershed and represents
the boundary between different segmented instances.

At this point, a new region adjacency graph is then built on the supervoxels obtained
from the first DT Watershed iteration. The latter graph is then partitioned into sections
to deliver the actual cell segmentation. For this task, in addition to the already men-
tioned DT Watershed approach, Plantseg provides three alternative, more sophisticated
partitioning strategies. Namely:

• The Multicut algorithm (Kappes et al., 2011),
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• The Mutex Watershed algorithm (Wolf et al., 2018),

• The GASP algorithm (Bailoni et al., 2022),

Among the four aforementioned methods, we empirically assessed that Multicut provides
the best outcomes on the samples involved in our study.

Nuclei Segmentation

In addition to the functionalities mentioned above, Plantseg also offers tools for volumet-
ric segmentation of cell nuclei. In this case, a pre-trained 3D U-Net enables the prediction
of the binary nuclei mask. The final segmentation is subsequently obtained by threshold-
ing the probability maps and applying a post-processing algorithm to merge connected
components.

Although segmented nuclei are not directly employed in our analysis of epithelial tissues,
the information about nuclei position, combined with the knowledge that, in healthy
tissues, each cell has a single nucleus, can be used to perform more informed cell seg-
mentation. For instance, Lifted Multicut (Horňáková et al., 2017; Pape et al., 2019) is
an enhanced version of the Multicut algorithm that leverages additional domain-specific
information, like the nuclei location in the case of cell segmentation, to provide a more
efficient solution for the graph partitioning problem. Plantseg provides an optimized im-
plementation of the Lifted Multicut algorithm, that exploits nuclei position to separate
incorrectly merged cells. Moreover, in the paper the author shows that Lifted Multicut
outperforms all the other graph partitioning algorithms when applied to their data.

Given the availability of a nuclei channel (DAPI) in our image dataset and the advantage
of using the Lifted Multicut approach, for all the epithelial tissues in our analysis, we
tried to segment the nuclei employing the Plantseg tools. However, this procedure failed
for some of the samples. Indeed, in both the bronchiole and the esophagus samples, nuclei
are so close to one another that their signal overlaps and they are hardly distinguishable
even to the human eye (Fig.7a). Therefore, for this purpose, a more efficient algorithm
should be designed.

2.2.3. Manual Curation

As we discussed, our segmentation pipeline is capable of automatic, high-quality 3D cell
segmentation. Nevertheless, in order to run detailed morphological and mechanical anal-
ysis on both the cell shape and the overall tissue organization, we need to make sure that
in the automatic segmentation mask, there are no major segmentation errors. The most
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common mistakes are over-segmentation (i.e., two or more cells are wrongly merged in
a single one) and under-segmentation (i.e., two or more "pieces" belonging to the same
cell are associated with different labels). Additionally, the pipeline can also introduce
segmentation artifacts, for example, misinterpreting noise in the input image as an actual
feature in the sample.

For the reasons above, a post-processing step on the initial segmentation mask is essential
to enhance the quality of our analysis. We call this post-processing of the segmented
image curation. The curation of the segmented image is performed manually cell-by-cell,
through a napari plug-in called Morphometrics 1. Morphometrics curation plug-in offers a
variety of tools to correct segmentation errors and remove artifacts, such as merging labels,
deleting labels, and painting and erasing labels both on 2D slices and on 3D volumes.

With the current state of the 3D cell segmentation software, manual curation is an indis-
pensable process to get high-quality outcomes for subsequent analyses. That said, this
image post-processing step presents two main drawbacks, that both limit the segmenta-
tion quality and the time required to obtain results.
On the one hand, correcting segmentation errors by hand using Morphometrics tools is
often a complex task and can potentially introduce noise and inaccuracies into the fi-
nal results. Painting 3D boundaries between cells with voxel-level precision is a highly
challenging endeavor. Consequently, the resulting segmentation may exhibit irregular cell
borders whenever manual painting is required.
On the other hand, manual curation is an extremely time-consuming operation, as it re-
quires the user to manually check and, if necessary, clean one cell at a time. To provide
the reader with an example, the post-processing of a volume of roughly 200 cells could
take up to 4 days of full-time work for a user who is already experienced in using the
curation tools.

Therefore, for the moment, the manual curation process is by far the biggest bottleneck in
our workflow. Clearly, the better the segmentation provided automatically by the pipeline,
the lesser the time required to manually correct it. We leave the discussion about possible
improvements in the segmentation pipeline in the final section of this chapter.

2.2.4. 3D U-Net Fine-tuning

When we introduced Plantseg we mentioned that all the available models were trained
on microscope images of plant tissues. Although the author claims that the Plantseg
pipeline is capable of generalizing to epithelial animal samples (e.g., the Drosophila wing

1Available at https://github.com/morphometrics/morphometrics

https://github.com/morphometrics/morphometrics
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disc dataset (Funke et al., 2019b)), we decided to fine-tune a pre-trained CNN on an
internal dataset of segmented animal epithelia to enhance the model performance.
Specifically, this dataset includes:

• Four segmented volumes cropped from a healthy mouse bladder sample, that was
employed in a previous bladder cancer study.

• The intestine villus sample mentioned in section 1.3, which we segmented before
fine-tuning the model.

One of the bladder volumes was held out for validation, while all the other segmented
images were used for training.
The use of a such limited dataset should not surprise the reader. In fact, since biological
images usually comprise repetitive structures and close slices of the volumes frequently
bring redundant information, just a few annotated samples are enough to obtain reason-
ably accurate outcomes (Özgün Ciçek et al., 2016).

We performed fine-tuning on the 3D-UNet trained on light-sheet images of Arabidopsis
lateral root at half-resolution2 (voxel size of [0.325× 0.325× 0.25]µm). The choice of this
resolution is linked to the fact that, due to the aforementioned memory and computation
constraints in the segmentation pipeline, we downscaled the intestine villus image to half-
resolution.
We ran multiple trainings with different combinations of learning rate (LR) (namely, 4e-6,
2e-5, 1e-4) and batch size (BS) (namely, 1, 3). We evaluated the different configurations
by computing both the Precision-Recall curve (and the associated Area Under the Curve
(AUC)) and the Dice Coefficient, which is computed as:

Dice =
2
∑N

n=1 pigi∑N
n=1 pi +

∑N
n=1 gi

where pi and gi are, respectively, the predicted and ground-truth binary voxel values and
N is the total number of voxels in the image.

A comparison of the Precision-Recall curves for the different fine-tuning routines is re-
ported in Fig.7b and the results are presented in 1. Despite the metrics for [LR=2e-5;
BS=3], [LR=1e-4; BS=1], and [LR=1e-4; BS=3] are very similar, with AUC ≈ 0.71 and
Dice ≈ 0.67, the configuration with [LR=1e-4; BS=1] attains the highest AUC score and
the second highest Dice score. Therefore, we selected the fine-tuned weights obtained
with those parameters as the coefficients for subsequent 3D-Unet predictions.

2Pre-trained weights available at this https://zenodo.org/record/7774122/files/unet3d-lateral-root-
lightsheet-ds2x.pytorch

https://zenodo.org/record/7774122/files/unet3d-lateral-root-lightsheet-ds2x.pytorch
https://zenodo.org/record/7774122/files/unet3d-lateral-root-lightsheet-ds2x.pytorch
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Figure 7: The 3D cell segmentation workflow. a, Bronchiole (left) and esophagus
(right) epithelia show tightly packed nuclei. The presence of overlapping signals makes
nuclei segmentation rather challenging. b, The Precision-Recall curves for different learn-
ing rate and batch size configurations used for 3D-Unet fine-tuning. c, Binary background
masks for intestine villus (left), bronchiole (center), and esophagus (right) epithelia. The
mask made with micro-SAM for the esophagus presents sharper and clearer boundaries
with respect to the others made with Ilastik.

To assess the goodness of the fine-tuning, we compared the predictions of the original CNN
versus the fine-tuned CNN on the boundary prediction task. Specifically, we used as test
data the segmented bladder image that was kept out for validation and the bronchiole
image that was segmented in our study. Once again, we resorted to the Dice score as
our evaluation metric. In particular, we computed both the per-image Dice coefficient
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and the global Dice coefficient. The reason for this choice is that the network was fine-
tuned on other bladder samples, and hence global metric could have been biased by the
score obtained for the bladder. Results reported in Table 1, show that, after fine-tuning,
for the bronchiole epithelium the Dice score increases by almost 20%. As expected, for
the bladder epithelium the score increases dramatically, almost doubling. Overall, the
aggregated metric grows by more than 50%.

Table 1: Fine-tuning results. Evaluation of fine-tuning routines for different parameter
configurations.

Learning Rate Batch Size AUC Dice score

4× 10−6 1 0.470 0.513
4× 10−6 3 0.661 0.641
2× 10−5 1 0.702 0.666
2× 10−5 3 0.708 0.670
1× 10−4 1 0.711 0.672
1× 10−4 3 0.706 0.676

Table 2: Dice Score results. Comparison of Dice score for the cell boundaries prediction
task before and after CNN fine-tuning.

Sample Dice original Dice fine-tuned

Bladder 0.487 0.585
Bronchiole 0.347 0.676

Global 0.413 0.631

2.3. Results

Following the 3D cell segmentation workflow above, we segmented the cells of three sam-
ples of mouse epithelial tissues, namely:

• The intestine villus epithelium,

• The lung bronchiole epithelium,

• The esophagus epithelium.

It is important to remark that, since the segmentation of these three tissues happened at
different times, we employed slightly different versions of the pipeline for each of them.
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Namely, for the intestine tissue we used the original pre-trained 3D-UNet provided in
Plantseg to perform boundary prediction, while for the bronchiole and esophagus ep-
ithelia, we employed a model fine-tuned on some mouse epithelia. As we discussed in
section 2.2.4, the use of a fine-tuned CNN allows us to obtain way more accurate bound-
ary predictions, leading to higher quality in the final automatic 3D cell segmentation.
This fact consistently reduces the manual curation required.
An additional difference resides in the fact that, for the intestine villus and the lung bron-
chiole samples background masking was performed with Ilastik, whereas for the esophagus
we exploited micro-SAM. The use of micro-SAM offers three main advantages:

1. It reduces the computation time to produce a background mask from a few hours
to a few minutes.

2. It increases the sharpness of the contours of the mask itself (see Fig.7c).

3. It requires fewer inputs by the user, as it handles prompts more efficiently.

We would like to note that, before curation, we extracted smaller sections of the auto-
matically segmented tissues to expedite the manual review process of individual cells.

Furthermore, to enrich the variety of cell shapes and tissue organizations in our study, we
also considered previously segmented samples of mouse epithelial tissues, specifically:

• The bladder epithelium,

• The lung bronchiole epithelium,

The urothelium sample was segmented through more or less the same pipeline as us.
On the contrary, the whole segmentation of the lung tube epithelium was carried out by
manually labeling the image slice by slice using a computer-aided annotator.

Table 3: Segmentation outcomes. Summary of the segmented 3D microscope images
of the epithelial tissues included in the study.

Tissue Voxel size (µm) Nr. cells Pipeline Time req.

Intestine [0.325× 0.325× 0.25] 322 Plantseg (original) ∼2 weeks
Bronchiole [0.1625× 0.1625× 0.25] 180 Plantseg (fine-tuned) ∼1 week
Esophagus [0.1625× 0.1625× 0.25] 129 Plantseg (fine-tuned) <1 week
Bladder* [0.21× 0.21× 0.39] 638 Plantseg (original) ∼3 weeks
Lung Tube* [0.1× 0.1× 0.1] 147 Manual annotation >1 month

* Already segmented for other studies and publications.
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Table 3 reports, for each tissue involved in the study, the voxel size, the number of seg-
mented cells, the employed segmentation pipeline, and the time required to segment (an
estimate, in the case it was not directly done by us).
For what concerns the intestine, bronchiole, and esophagus samples, the iterative refine-
ment of the cell segmentation pipeline provided a twofold enhancement. In fact, on the
one hand, it enabled us to progressively reduce the time spent to obtain the outcomes.
For instance, the approximate time required for the segmentation of each epithelial cell,
went from about 15 minutes in the case of the intestine, to less than 10 minutes in the
case of the esophagus. On the other hand, the enhanced workflow version enabled us to
handle larger images, eliminating the need for voxel downscaling.

a

d e

b c

Figure 8: A rendering of the final segmented samples of epithelial tissues. a,
Intestine villus epithelium. b, Bronchiole epithelium. c, Esophagus epithelium. d, Blad-
der epithelium. e, Lung tube epithelium.

2.4. Discussion

In this chapter, we illustrated a pipeline for 3D cell segmentation of light sheet microscope
images. Specifically, we described the components and their functions, from image prepro-
cessing, through automatic segmentation, and, eventually, to manual curation. Moreover,
we presented the results of our epithelial tissue sample and highlighted the strengths and
drawbacks of the current workflow.
It turned out that the most evident bottleneck of the actual implementation was the
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extensive requirement of manual curation to overcome the limits and errors of the auto-
mated processes. Curation is not only an extremely time-consuming operation, but it is
also a source of segmentation artifacts, due to the difficulty of painting cell labels in 3D
by hand.

Future Developments

Intuitively, a way to reduce the manual work in the segmentation process is to improve the
performance of the automated part of the existing pipeline. Out of the various potential
areas for improvement, we are convinced that enhancing the deep learning model employed
for boundary prediction holds the most promise. Indeed, as noted in the preceding section,
more accurate predicted boundaries overall lead to a more precise segmentation by the
graph partitioning algorithms.

In particular, for future works, we propose the following modifications:

• Following the success in Nautural Language Processing, transformer -based architec-
tures like the Vision Transformer (ViT) (Dosovitskiy et al., 2020) have become the
state-of-the-art also for computer vision tasks. Specifically, U-Net-inspired models
like the U-Net Transformer (UNETR) (Hatamizadeh et al., 2021) have established
themselves as the current cutting-edge solutions for the instance segmentation task
in biomedical and biological settings. Therefore, we propose to replace the current
3D-Unet with the UNETR to obtain an improved 3D cell segmentation pipeline.

• With the recent advancements in microscopy, the availability of 3D biological images
increased dramatically. However, the scarcity of annotated datasets still limits the
possibility of training deep learning models to analyze those images. Self-supervised
learning enables the superation of these limitations by learning meaningful repre-
sentations of the input data even in the case the latter is not labeled (Pathak et al.,
2016; Jaiswal et al., 2020). Because of the aforementioned annotations scarcity,
self-supervised learning found several applications in the field of biomedical and bi-
ological imaging (Chen et al., 2019; Krishnan et al., 2022; Tang et al., 2022).
Given the abundance of light sheet microscope images of epithelia in our databases,
for the future improvement of the segmentation model, we propose Contrastive learn-
ing as a method to exploit the informative content from unlabeled images (Chen
et al., 2020). Given an input image, the rationale behind this approach is to create
an array of perturbed images (e.g., by applying blurring, elastic deformations, patch
removal, . . . ) and train an encoder-decoder architecture by evaluating its ability to
reconstruct the input image from the perturbed ones.
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Lastly, we plan to implement a better algorithm for the volumetric segmentation of cell
nuclei. In fact, the availability of precise information about nuclei position would enable
us to perform the graph partitioning step using the Lifted Multicut algorithm, which has
been shown to outperform the other methods when fed with properly segmented nuclei.
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epithelial tissues

In the Introduction we presented epithelial tissues with their functions and classification.
We mentioned that the driving factors that give rise to such a wide array of diverse tissue
configurations and cell shapes are still unclear, and, hence, a potentially fruitful research
subject. In this context, we formulated the main objective for this study, namely the
in-depth characterization of 3D epithelia, by analyzing and comparing different tissue or-
ganizations and structures using advanced morphometrics methods.
In this chapter, we first present EpiStats, an image analysis pipeline that we implemented
with the goal of gathering morphological statistics from epithelial tissues. Specifically,
EpiStats is an efficient, user-friendly Python library that enables the extraction of mean-
ingful features concerning cell morphology and tissue organization from segmented ep-
ithelia. Then, we delve into the analysis of the morphological statistics with a twofold
approach. On the one hand, we showcase a detailed comparison of epithelial features
across the different samples involved in the study aimed at providing a detailed descrip-
tion of key similarities and differences among epithelia. On the other hand, we use the
collected morphological statistics to assess whether the theoretical laws outlined in the
introductory sections hold in the case of our samples.

3.1. Related Works

The scientific literature in biology comprises a plethora of studies concerning the mor-
phology of epithelial tissues. As a matter of fact, there are several articles that leverage
the investigation of epithelial properties in order to unveil the mechanism that regulates
the morphogenesis of biological tissues (Odell et al., 1981; Gumbiner, 1992; Gibson and
Gibson, 2009; Miklius and Hilgenfeldt, 2011; Wang et al., 2012; Guirao et al., 2015; Miao
and Blankenship, 2020). However, as far as we are concerned, there is a general lack of
studies in which the morphology of epithelial samples from different organs are compared
in order to draw insights about their different organizations and development.
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Furthermore, we also noticed the scarcity of accessible, open-source software that di-
rectly aims at the morphological analysis of biological images. With a few exceptions
(Heller et al., 2016), most of the available image analysis libraries (van der Walt et al.,
2014; Virtanen et al., 2020; Haase and Rigaud, 2020), offer yet extremely powerful, but
general-purpose tools, that are not explicitly designed for the study of biological patterns.
Additionally, all of these software do not provide an easy-to-use, end-to-end pipeline.
As a consequence, the user would need to manually select and combine some of their
functionalities to obtain the desired results.

With the goal of trying to overcome these difficulties and offering a complete and efficient
tool for morphological image analysis, in our study, we developed EpiStats, a Python
library for the comprehensive analysis of epithelial tissues. Thanks to this software we
were able to perform refined morphological analyses of different epithelia with the aim of
comparing their cell organization and tissue structure

3.2. Methods

As already mentioned above, in order to compute morphological statistics from segmented
3D images of epithelial tissues we developed a Python library called EpiStats.
EpiStats is composed of three main blocks:

1. A set of image processing tools, in order to improve the quality of segmented cell
volumes by reducing the extent of segmentation errors and artifacts.

2. A list of efficient image analysis algorithms to compute and analyze cell statistics
from labeled images and triangular meshes of segmented cells.

3. A mesh refinement pipeline to produce regular cell meshes for numerical simulation.

In this chapter, we will focus on the first two functionalities, since they are directly utilized
for the computation of morphological cell statistics from segmented tissues (Fig. 9a). On
the contrary, we leave the discussion of the mesh refinement workflow in the following
chapter which focuses on numerical simulations.

With the aim of creating a user-friendly tool, we developed EpiStats as a comprehensive
pipeline for gathering cell statistics. With this approach, users only need to provide 3D
segmented images and define a small set of customization parameters, such as the voxel
size of the input sample and the name of the statistics they want to compute. By doing
so, they can effortlessly obtain a dataset containing morphological features for each cell
of the analyzed tissues. Specifically, EpiStats supports the computation of the following
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statistics: surface area, volume, elongation, neighbors indices and counts, contact area,
and cell area and neighbors on 2D slices of the segmented volume. Lastly, the library
offers a range of functions for generating analytical insights and visualizations regarding
cell shape and tissue organization.
EpiStats is an open-source project developed in Python and the code is available on
GitHub at https://github.com/AntanasMurelis/EpiStats.
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Figure 9: The EpiStats pipeline for morphological cell statistics computation
and analysis. a, EpiStats software is composed by three main parts: Segmentation
Postprocessing, Morphological Feature Extraction, and Data Analysis and Plotting. b, A
cell (in blue) is said to have a complete neighborhood if it is entirely surrounded by other
cells (in red), i.e., any of its lateral surfaces are in contact with the external side of the
tissue. c, Schematic representation of morphological erosion and dilation. d, A cell (in
blue) is said to have an incomplete neighborhood if at least one of its lateral surfaces is
in direct contact with the exterior. e, Sampling 2D slices from a segmented cell volume
along one of the cartesian axes may lead to distorted planar projections, and, hence, to
unreliable resulting data. A more accurate approach is to slice the volume along the
directions determined by each cell’s apico-basal axis.

https://github.com/AntanasMurelis/EpiStats


34 3| Morphological analysis of epithelial tissues

Regarding the computation of cells’ morphological statistics, we implemented part of our
algorithms by leveraging existing tools from Scikit-Image (van der Walt et al., 2014),
SciPy ndimage package (Virtanen et al., 2020), Numpy (Harris et al., 2020), and Mor-
phosamplers1 Python packages. For the generation, manipulation, and refinement of 3D
triangular meshes, we mostly relied on the following libraries: Trimesh (Dawson-Haggerty,
2019), VTK (Schroeder et al., 2006), and Open3D (Zhou et al., 2018).

In the following paragraphs, we provide a more comprehensive description of EpiStats’
wide array of capabilities, offering a detailed explanation of the implementation and the
intended use of the diverse algorithms, both regarding segmentation post-processing and
morphological statistics computation.

3.2.1. Post-processing of 3D Segmented Images

The availability of a reliable method for the volumetric segmentation of cell tissues is
an essential starting point for accurate and meaningful morphological and organizational
analyses of biological tissues. Although the pipeline we described in the previous chap-
ter enables us to obtain high-quality 3D cell segmentation, the outcomes are far from
being error-free. Indeed, as previously mentioned, images obtained using a light sheet
microscope often exhibit noisy features, which can easily result in segmentation errors.
The manual curation process is employed to identify and rectify some of these errors, yet
it may also introduce minor imprecisions and artifacts (e.g., bumpy boundaries between
neighboring cells). Therefore, we implemented a range of post-processing operations on
the segmented images in order to reduce the extent of segmentation imperfections in the
analyzed samples. In the following, we will refer to the single instances in the segmented
masks as labels.

The post-processing stack of EpiStats comprises the following sub-modules:

• A function to remove unconnected regions for a given label.

• A set of functions to detect and filter out cells that are either truncated or have an
incomplete neighborhood.

• A set of functions to smooth cell boundaries and fill holes between labels by using
morphological erosion followed by dilation.

Removal of unconnected regions is needed when the segmentation mask presents two or
more areas marked with the same label that are not physically attached. Manual curation
is often the cause of such errors. For instance, it may happen that a newly painted cell

1GitHub repository available https://github.com/kevinyamauchi/morphosamplers.

https://github.com/kevinyamauchi/morphosamplers
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is mistakenly annotated with an already existing label, or that the user unintentionally
draws an unconnected stroke without noticing it.
The algorithm for removing unconnected regions works as follows: for each label in the
segmented image, the algorithm creates a binary mask. Then, a function computes the
number of separated positive regions and the relative size. If the number of such regions
exceeds one, only the largest is retained, while the rest are designated as background
(i.e., labeled as 0). Finally, in case the algorithm detects a positive region whose size is
comparable to the largest one, it triggers a warning message, as this scenario potentially
indicates that the same label has been assigned to two or more distinct cells. The average
time complexity for this algorithm is O(N ×M), where N and M are respectively the
number of labels and the total number of voxels in the segmented image.

In our research, it’s frequent to encounter images featuring cells that are partially cut off.
This is frequently a result of how the sample was positioned within the image during the
microscopy acquisition process, or due to some cropping operations that were performed
to reduce the amount of cells to focus on. Clearly, since our goal is to obtain reliable
morphological statistics from the segmented tissues, we want these truncated cells to be
filtered out from our computation. In order to retrieve and exclude these cells we can
simply build bounding boxes around each single cell and check which of these bounding
boxes are in direct contact with the image edges. This algorithm has an approximate
time complexity of O(M).

For the sake of producing accurate cell statistics, we also implemented an algorithm
that retrieves cells that have an incomplete neighborhood. We say that a cell has an
incomplete neighborhood if at least one of its lateral surfaces is a free surface, namely
it is not in contact with other cells (see Fig. 9b, d). The exclusion of cells with an
incomplete neighborhood is essential for our analysis, as otherwise, it would heavily bias
the distribution of the number of neighbors among cells. For this particular task, we
developed the following algorithm: focusing on one segmented cell at a time, we crop
its upper and lower portions along its longest axis, effectively eliminating the apical and
basal surfaces from our calculations. Subsequently, we tally the number of background
voxels that come into contact with the specific cell. If this count surpasses a predefined
threshold, which is determined in relation to the cell’s size, we classify the cell as having
an incomplete neighborhood, resulting in its exclusion from further computations. This
implementation has an approximate time complexity of O(M).
In the context of the algorithms above, it is important to remark that, while morphological
statistics are not computed on truncated cells or cells with incomplete neighborhoods,
these cells are still considered in the counts of neighbors for cells close by.
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The last set of operations carried out on the segmented samples is intended to obtain
smoother cell boundaries and fill any gaps between them. Both of these processes con-
tribute to achieving more reliable results when computing the cell contact area. For what
concerns the refinement of cell borders, we resort to morphological erosion and dilation,
which are the fundamental operations in morphological image processing (Serra, 1983;
Dougherty, 1992). From the mathematical perspective, let us consider the integer grid
Z3 and A ∈ Z3 3D binary image. We define the structuring element B ∈ Z3 as a binary
probe that is applied to the binary image. Erosion and dilation are performed by checking
how this probe, respectively, fits or hits the shapes in the image. Namely, we can define
erosion (⊖) and dilation (⊕) operations respectively as:

A⊖B =
⋂
b∈B

A−b

A⊕B =
⋃
b∈B

Ab

where Ab and A−b correspond, respectively, to a translation of A by an amount b or −b,
with b ∈ B.
An illustration of the impact of morphological erosion and dilation on image boundaries
can be found in Figure 9c. When utilizing a regular structuring element (such as a sphere
in the 3D context), it becomes possible, for instance, to smooth the uneven cell boundaries
often visible in the initial segmented image. In the post-processing pipeline of EpiStats,
we execute a specific quantity of erosion iterations, which are then followed by a set
number of dilation iterations. When erosion and dilation are applied in this sequence, it
is referred to as morphological opening. Performing more dilation iterations than erosion
iterations helps to bridge gaps between cells. Lastly, if any gaps persist between adjacent
labels, we assign the corresponding voxels to the nearest label.

At the end of this image post-processing step, EpiStats automatically generates triangular
meshes from the 3D segmented cells using the marching cubes algorithm (Lorensen and
Cline, 1987). At this stage, only Laplacian smoothing is applied to the constructed
meshes, as we do not require extremely regular meshes to run morphological analyses.

3.2.2. Computation of Morphological Cell Statistics

As discussed above, EpiStats enables the extraction of several morphological statistics
from segmented volumes of biological tissues. In particular, it incorporates algorithms for
the computation of 3D cells’ features, including surface area, volume, elongation, neigh-
bors, and contact area. Additionally, it calculates area and neighbors on 2D slices of the
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three-dimensional image. Depending on what is more convenient, these algorithms oper-
ate either directly on the labeled voxel image or on the 3D triangular mesh of individual
cells, which are generated in the previous step of the pipeline.
In the following, for the computation of each morphological feature, we explain the relative
algorithmic implementation, discussing its approximate computational complexity.

Algorithms for 3D morphological statistics

The surface area of segmented cells is trivially computed by summing the area of the
triangular faces that define the 3D mesh. Therefore, the time complexity is O(N × V ),
where V is the (average) number of vertices in each mesh.

On the contrary, the cells’ volume is computed by counting the number of voxels associated
with each label and multiplying this number by the voxel size of the image. In this case,
the complexity is O(M).

Cell elongation describes the ratio of the cell’s length to its width. Practically, it is ob-
tained as the ratio of the principal components of inertia from the inertia tensor computed
for cell meshes. In this case, we rely on functions provided in the trimesh Python library,
whose time complexity is not directly accessible.

For what concerns the computation of the cell neighbors within the tissues, we imple-
mented an algorithm that operates on the segmented image. Specifically, given a certain
cell label, we expand the associated binary image by two voxels in all directions employing
binary dilation. Then, we subtract this expanded image from the original binary image
to identify the positions of neighboring voxels that are in close contact with the bound-
ary of that label. By examining the labels of these neighboring voxels, we obtain a list
of neighbors for the given cell. The approximate time complexity for this algorithm is
O(M).

The algorithm to compute the contact area between adjacent cells is slightly more involved
and requires the use of triangular meshes. For each given cell, it iterates over the list of its
neighbors to find which triangular facets are in close contact with any of the facets of the
neighbors’ meshes. This last operation is performed by checking whether the minimum
distance between the face centroid of the considered cell and any of the vertices of the
neighboring cells falls below a predefined contact cutoff. This threshold is determined
as twice the maximum dimension of a voxel. To speed up this calculation, a KDTree
(Friedman et al., 1977) is initially constructed from each cell mesh vertices, enabling
efficient retrieval of the minimum distance vertex as described above. The overall time
complexity of this algorithm is O(N2× V × log V ). However, since for each cell, we limit
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the algorithm to the analysis of the neighboring cells, the actual complexity is less than
quadratic with N .

Algorithms for morphological statistics on 2D slices

The rationale behind the computation of cell statistics on 2D slices of the segmented
volume is to assess the theoretical laws concerning tightly packed cell tissues that we
described in the introduction. In particular, our goal is to use the data coming from
our epithelial samples to empirically evaluate Lewis’ law and Aboav-Weaire’s law. The
former states that the average cell area of cells having n neighbors is linearly related
the the number of neighbors n itself through the relationship in (1). The latter, instead,
claims that the average amount of cells adjacent to the neighbors of a given cell is inversely
related to the number of neighbors of the cell itself (2). For clarity, when we talk about
Aboav-Weaire’s law we refer to the cell for which neighbors of neighbors are computed
as the central cell. Therefore, to experimentally assess these laws we need to extract the
following statistics from the 2D slices of the segmented tissue image:

• The cross-sectional area of cells.

• The number of first-order neighbors of cells.

• The number of second-order neighbors of cells (i.e., the number of neighbors relative
to each neighbor of a given central cell).

The reader should notice that in our study we decided to assess the laws globally on
the entire tissues, whereas in literature they are usually computed solely for the apical
and basal surfaces. Our choice resides in the fact that we believe that the epithelial
organization remains coherent on all the slices of a given tissue. As a consequence, we
expect that the theoretical laws that were proven for some of the surfaces, actually hold
for all of them at once.

The main challenge related to the computation of these 2D statistics is given by the fact
that due to the curvature of the epithelial tissues’ surface, the cells are commonly oriented
in different directions. As a result, slicing the segmented volume along any of the axes of
the canonical cartesian reference system would lead to crooked 2D projections and, hence,
to inaccurate results (see Figure 9e). To address this challenge, within EpiStats, we’ve
introduced an efficient algorithm for calculating both 2D area and neighbor statistics
along the apico-basal axis of each cell. This axis defines the cell’s orientation and it is
computed as the principal axis in the inertia tensor. For the sake of clarity, we’ve broken
down the algorithm explanation into distinct sections:
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• First, we iterate across all the cells in the labeled image, computing and storing for
each one its centroid, apico-basal axis, and length in the axis direction.

• Then, for each cell, we sample a certain number of 2D slices along its principal
direction. To perform this task, for each given cell:

I. We take a 2D evenly-spaced grid, whose size is able to accommodate a cell’s
neighbors and adjacent cells.

II. We compute the rotation matrix that aligns the initial grid orthogonally to the
cell’s principal axis.

III. We place the rotated grid at different locations along the cell’s axis, each time
sampling label values from the segmented volume at grid coordinates.

• Now, given each 2D slice, we compute the cells’ area and number of first and second-
order neighbors. The area is trivially computed by multiplying the number of pixels
belonging to each label by the effective pixel size on the 2D slice. The number of
neighbors for each given cell is obtained by adapting the algorithm for the 3D case
to the 2D case. On the contrary, the calculation of the number of second-order
neighbors is more involved. Namely, the algorithm reads as follows:
For each 2D slice along the central cell’s apico-basal axis and for each one of the
cell’s neighbors:

I. We find the intersection between the grid itself and the principal axis of the
neighboring cell.

II. We sample a new 2D slice by placing a new grid orthogonally to the neighbor’s
apico-basal axis and centered at the intersection point above following the
procedure described above.

Clearly, the leading terms in the algorithm’s overall time complexity analysis are the
extraction of the 2D slices along each cell’s principal axis and the computation of the
number of second-order neighbors for a given central cell. Let S be the number of 2D
slices taken for each cell. Then, the approximate time complexity of sampling S slices is
O(N×S×M). In turn, the calculation of the second-order neighbors requires O(N×M),
since the neighbors of a given cell can be as many as N and the complexity of finding
the intersection and placing a new grid is proportional to the number of voxels in the
image. Therefore, the total complexity is O(N2 × S ×M2). Nevertheless, just like in
previous algorithms, the actual number of neighbors of a given cell is way less than N .
Moreover, the computation of second-order neighbors is skipped whenever at least one
of the first-order neighbors has an incomplete neighborhood. In practice, this additional
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check enables us to bypass calculations for many slices and cells, resulting in a substantial
acceleration of the algorithm. To provide an example, the computation of 2D statistics for
a sample of one hundred cells takes approximately 10 minutes on an Intel Core i7-9750H
CPU.

3.3. Results

In this section, we report the outcomes of our comparative analysis of the morphological
cell statistics computed from the segmented images of epithelial tissues using EpiStats.
To ensure the consistency of the extracted features, in the segmentation post-processing
pipeline, we applied six erosion iterations and eight dilation iterations for morphological
smoothing. At the same time, we polished the triangular meshes built upon the cell
volumes, by subjecting them to ten passes of the Laplacian filter. For all the samples
in our study, we detected all the cells that were either truncated or had an incomplete
neighborhood. In this way, we excluded from the subsequent computations 237 bladder
cells, 41 bronchiole cells, 77 esophagus cells, 83 intestine cells, and 74 lung tube cells.
Furthermore, in the context of morphological statistics collection, we decided that a good
trade-off between obtaining detailed results and computational efficiency was to limit the
number of slices used for computing 2D cell features to 50.

An important step before the statistical analysis of morphological cell features is the
removal of cells that present outlying values in any of the features. Such outliers are
most often related to segmentation errors and artifacts that were not detected during
the previous steps. For instance, in some cases, the segmented image presents a large
labeled region, presumably corresponding to two or more actual cells, that was, however,
impossible to split due to a noisy boundary signal. In some other cases, it is possible that
during curation the user unintentionally drew a tiny stroke, which is interpreted as a small
cell. Overall, in the majority of the situations, the outlying cells are characterized by an
anomalous size or peculiar neighboring relationships. Following these ideas, we perform
outlier detection in a twofold approach:

• We mark as an outlier any cell that had less than three neighbors within the tissue
volume since this case is not physically possible for cells with a complete neighbor-
hood.

• We check for anomalous values of cell volume and of number of neighbors. In this
context, we label cells as outliers if the robust Z-Score for their volume or number
of neighbors is greater than 3 in absolute value. The robust Z-Score is computed
by subtracting to a given feature the median and then normalizing by the median
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absolute deviation. As a result, the outcomes are less influenced by the presence of
extreme values within the observations.

Overall, this procedure led us to the detection of 80 outliers, among which 51 from the
bladder, 4 from the bronchiole, 1 from the esophagus, 20 from the intestine, and 4 from
the lung tube.

In the following, we report a two-sided analysis of the epithelial tissues’ morphology and
organization. First, we illustrate a comparison of the different features among the variety
of our epithelial samples, to highlight the traits that allow us to characterize them the
most. Afterward, considering the cell statistics collected from 2D slices of the segmented
volumes, we check whether our data fits with Lewis’ and Aboav-Weaire’s laws.

Table 4: Amounts of cell labels per tissue. Number of initially available, excluded
(since truncated or with incomplete neighborhood), and outlying cell labels for each tissue.

Tissue Initial Excluded Outlying For analysis

Intestine 322 83 20 219
Bronchiole 180 41 4 135
Esophagus 129 77 1 51
Bladder 638 237 51 350

Lung Tube 147 91 4 52

3.3.1. Comparative analysis of morphological cell statistics among

epithelial tissues

In order to compare the cell shape and tissue organization across the range of epithelial
samples involved in our study, we selected a subset of features that we deemed relevant.
In particular, we included the following:

• Surface area,

• Volume,

• Isoperimetric ratio,

• Number of neighbors,

• Elongation,

• Contact area fraction.
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Figure 10: Comparative analysis of morphological cell statistics a, Principal Com-
ponents scatter plot for the epithelial tissues involved in the study (left) and barplots
reporting the weights of principal components. b, Kernel density estimate plots for all
the epithelial tissues and the numerical features selected for the analysis. Each row out-
lines the estimated distributions for each tissue, while each column is associated with a
different morphological cell feature.
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The isoperimetric ratio is a measure of sphericity and it is computed as S3 / V 2, where S

and V are, respectively, the cell’s surface area and volume. In 3D, the lower bound for the
isoperimetric ratio is given by the sphere, namely equal to (9/4)π (≈ 7.065). In general,
the larger the isoperimetric ratio, the less spherical the shape. On the contrary, the contact
area fraction is computed as the portion of each cell’s surface area that is in contact with
other neighboring cells. Hence, it takes values in [0, 1] and provides a quantification of
how tight is the epithelial packing. Additionally, the contact area fraction is equal to 1 in
stratified tissues, as the cells do not have free apical and basal surfaces.

As a first mean of comparison of the epithelial tissues, we resorted to the analysis of the
two Principal Components (PCs) computed over the set of standardized cell statistics.
The scatter plot of the PCs together with the relative weights is shown in Fig.10a. Be-
fore delving into the discussion, we provide an interpretation of the PCs by looking at
their coefficients. In this case, the first two PCs account for roughly 72.5% of the total
variability of the data. Specifically, the first PC (PC1) explains 43.4% of variance and
it presents marked positive weights for surface area, volume, and, especially, elongation.
As a result, a positive PC1 score is associated with cells that are larger in size or partic-
ularly elongated. Vice versa, the number of neighbors and the contact area fraction are
provided with negative weights, and, thus, a PC1 score below zero is likely related to a
tightly packed or stratified epithelium. The second PC (PC2) accounts for 29.1% of the
variability and it is defined as the (negative) weighted sum of all the considered features,
where the bigger contribution is associated with the contact area fraction. Therefore, we
can conclude that a positive PC2 score corresponds to smaller, more spherical cells in a
more loosely arranged tissue, and vice versa for a negative value.
As we examine the scatter plot along the x-axis, we immediately notice that the intestine
villus and the lung tube epithelia are associated with higher scores of PC1. This observa-
tion confirms the fact that the columnar and pseudostratified cells in these tissues exhibit
significantly greater elongation compared to others. Additionally, the elevated PC1 scores
may also suggest that these epithelial cells are generally larger in size, although we plan
to validate this hypothesis through further analyses.
Conversely, drawing meaningful insights from the distribution of data points along the
PC2 axis proves to be more challenging. The only discernible observation is that the point
clouds related to the esophagus and bronchiole epithelial cells tend to skew toward higher
PC2 values. Given our previous interpretation of PC2, this shift along the y-axis might
imply that these epithelia typically comprise smaller cells that are less densely packed and
tend to have a more spherical shape. This interpretation aligns well with the classification
of esophagus and bronchiole epithelia as simple cuboidal and squamous tissues.
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To support the observations drawn from the analysis of the PCs scatter plot we directly
compared the distributions of each feature among different tissues. Figure 10b reports a
matrix of kernel density estimate plots where rows are associated with epithelial tissues
and columns with the morphological statistics. A first observation is that the distribution
differs across the different samples for each one of the selected features. This claim is
statistically confirmed by the fact that by running an ANOVA test separately on each
variable, we obtain a p-value of 0 in all the cases.
Moreover, to refine our analysis, we took into consideration one feature at a time and we
compared its distribution among different tissues. In this context, we made further obser-
vations and verified them by hypothesis testing at 95% confidence level with Bonferroni
correction (see Fig. 11 for the results). Specifically, we deduced the following:

• The size of intestine cells is larger than all the other tissues’ cells. This is proven
by the fact that both the mean volume and surface area of intestinal cells are
statistically larger than the ones of every other epithelium.

• The epithelial cells in the lung tube and in the intestine villi are, on average, more
elongated than in the rest of the tissues. This result complies with the fact that
both pseudostratified and columnar cells show a rather elongated shape.

• The exceptional elongation together with the peculiar shape of the pseudostratified
lung cells establish their dominance also in the context of isoperimetric ratio.

• Regarding the number of neighbors, it is observable that in the bladder and esopha-
gus epithelial tissues, the distribution tends toward larger values. This observation
is expected since these epithelia are the only ones displaying a stratified organiza-
tion. Consequently, the majority of their cells are entirely enclosed by neighboring
cells, lacking free apical and basal surfaces.

• Similar reasoning applies to the values of the contact area fraction. Notably, we
observe that, on average, the bladder epithelium maintains larger values in this
aspect. Simultaneously, we observe that the contact area fraction for esophageal
cells doesn’t rank among the highest, despite the tissue’s stratified structure.

3.3.2. Assessment of theoretical laws for 2D slices of epithelial
tissues

As previously mentioned, one of the goals of our analysis was to assess the validity of
Lewis’ and Aboav-Weaire’s laws on 2D slices of our segmented epithelial samples. To this
end, we computed each cell’s cross-sectional area and number of first and second-order
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neighbors for each slice within the segmented volume. Specifically, we extracted such 2D
slices by sampling the segmented volumes along the apico-basal axis of each cell. This
choice of slicing method, as opposed to a more direct approach along one of the Cartesian
axes, aims to reduce the chance of getting distorted 2D volume sections, which would lead
to poor estimation of cross-sectional area and neighboring relationships.
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Figure 11: Experimental assessment of Lewis’ and Aboav-Weaire’s laws on 2D
slices of segmented epithelial tissues Empirical values regarding the Lewis’ law (a)
and the Aboav-Weaire’s law (b) were collected on 2D slices sampled from the segmented
epithelial volumes along each cell’s apico-basal axis. Aboav-Weaire’s law data are not
available for the lung tube sample, since the sample does not contain any complete second-
order neighborhood.
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It is important to remark that, within each tissue, we rejected the 2D statistics associated
with infrequent numbers of first-order neighbors. Specifically, we marked as infrequent any
value with relative frequency in 2D slices below a 1% threshold. The rationale behind this
decision is that both Lewis’ and Aboav-Weaire’s laws are based on statistical moments,
namely the average cross-sectional area and the average number of second-order neighbors.
Therefore, it is essential that the sample size on which these averages are computed is
sufficiently large to guarantee a certain degree of robustness.
Additionally, we removed from Lewis’ law outcomes all the cells that lacked a complete
first-order neighborhood, and from Aboav-Weaire’s law outcomes also the cells without
a complete second-order neighborhood. As a consequence, we couldn’t assess Aboav-
Weaire’s law for the lung tube epithelial sample, as the limited extent of the segmented
volume does not allow us to get complete second-order neighborhoods.

The Lewis’ law experimental results are reported in Figure 11a. We can immediately
observe that in the case of the esophagus, bronchiole, and lung tube samples, the obtained
empirical points are consistent with the theory. On the contrary, in the other instances, we
have discrepancies with the theoretical expectations. In particular, in the bladder sample,
the values of Ān/Ā follow a linear relationship, albeit with a smaller slope than the one
described by Lewis. This slope approaches null within the intestine sample, suggesting
that the cell cross-sectional area shows almost no correlation with the number of direct
neighbors. However, it is crucial to note that drawing definitive conclusions warrants
careful observation. As a matter of fact, while our algorithm for obtaining 2D slices is
accurate enough in the case of elongated cells where the apico-basal axis is well-defined
(e.g., the columnar epithelial cells of the intestine), it can struggle when dealing with
samples with a wide range of cells’ shapes and orientations. This observation holds true in
the case of the bladder epithelium, where cells adapt their shape to the tissue movement,
resulting in a variety of tissue geometries. Consequently, the observed behavior in the
bladder epithelium could, in part, be attributed to the algorithm being not specifically
designed to handle such kind of epithelium.

In Figure 11b we outline the results of Aboav-Weaire’s law assessment. For each tissue,
we plot the empirical values accompanied by the theoretical line and an empirical fit.
The latter enables us to properly check how the experiment compares with the theory.
Furthermore, it is important to note that in order to visualize a linear rather than an
inverse relationship, we plot Aboav-Weaire’s law in the following alternative form:

mnn = 5n+ 8
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On the contrary, the line fitted on the experimental outcomes has equation y = a + bx,
with the values of coefficients a and b reported in the plots’ legends. Thus, we expect
a ≈ 8 and b ≈ 5 for the empirical results to be coherent with the theoretical ones. In
this context, we see that for all the epithelial tissues, the experimental slope b is actually
rather close to the expected value of 5, as the coefficients are in the range [3.88, 5.96]. In
contrast, except for the epithelial cells in the intestine villus, we observe that the value
of the fitted intercept a is significantly shifted from the supposed value. Once again we
can attribute this discrepancy to the fact that the algorithm used to sample the 2D slices
from the segmented volume may struggle to deal with non-elongated cells.

Table 5: Epithelial tissues summary statistics. Mean, Standard Deviation, and
Coefficient of Variation computer for each feature and each tissue involved in the study.

Tissue Surf. Area Volume Isop. Ratio Nr. Neigh. Elong. C.A.F*

Mean
Intestine 1891.27 4510.80 342.71 7.05 2.27 0.87

Bronchiole 691.62 1189.72 251.52 9.21 1.43 0.81

Esophagus 793.86 1532.98 265.31 10.51 1.39 0.87

Bladder 932.30 1744.95 289.43 11.45 1.51 0.95

Lung Tube 792.89 999.74 565.03 8.35 2.81 0.79

Standard Deviation
Intestine 328.39 1033.77 66.81 1.48 0.39 0.04

Bronchiole 226.73 531.64 54.54 3.06 0.20 0.10

Esophagus 333.82 871.17 148.7 3.76 0.17 0.09

Bladder 313.00 866.55 59.22 2.79 0.25 0.08

Lung Tube 238.84 378.49 244.99 2.55 0.92 0.16

Coefficient of Variation
Intestine 0.17 0.23 0.19 0.21 0.17 0.05

Bronchiole 0.33 0.45 0.22 0.33 0.14 0.12

Esophagus 0.42 0.57 0.56 0.36 0.12 0.10

Bladder 0.34 0.50 0.20 0.24 0.17 0.08

Lung Tube 0.30 0.38 0.43 0.31 0.33 0.20
* Contact Area Fraction
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Figure 12: Results of Bonferroni-corrected statistical tests on the mean differ-
ence of each feature among every pair of tissues. Each matrix reported in the plot
corresponds to a different morphological feature. Each matrix entry reports the outcome
of the test performed between the tissues associated with the rows and columns of the
matrix. A blue square signifies that there is statistical evidence to state that the partic-
ular feature is on average higher for the tissue listed in the row. Conversely, a red cell
indicates that the tissue listed in the column has been proven to surpass the one in the
row for that specific characteristic. Finally, a grey entry means that the test does not
allow us to provide any specific claim.

3.4. Discussion

In this chapter, we presented the method we used to compute morphological cell statistics
from the segmented volumes of epithelial tissues. With the aim of comparing such fea-
tures among different tissues to get insights about cells’ shape and tissues’ organization,
we developed EpiStats. This Python library performs efficient morphological statistics
extraction from segmented samples of cellular tissues. Moreover, EpiStats not only pro-
vides fast algorithms for the computation of cell statistics both in the segmented volume
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and on 2D slices sampled from it, but it also carries out the postprocessing of the seg-
mented labels to increase the accuracy in the outcomes, and the generation of triangular
meshes for each cell. Overall, one of the main strengths of this software is that it offers
an accessible end-to-end pipeline, that, given a segmented tissue as input, enables the
user to automatically obtain as output a polished dataset containing the desired morpho-
logical cell features. Additionally, EpiStats includes a wide array of functionalities for
the analysis of the resulting statistics, such as functions to detect outliers, or to produce
informative plots from the data. Finally, as the name suggests, EpiStats was originally
designed for the morphological analysis of epithelial tissues. However, all of its capabilities
have been purposely implemented to generalize well to other kinds of cellular patterns.
For instance, the software has been employed by other researchers of our laboratory in
the morphological analysis of early-stage embryos, producing robust and accurate results
even in that case.

Thanks to the EpiStats library, we have been able to compute several morphological
features from the different segmented epithelial tissues involved in our study. We then
utilized such information to perform a comprehensive comparative analysis of the different
cells’ shapes and tissues’ organization, with the aim of characterizing the diverse epithe-
lia. In particular, for this task, we considered some salient cell statistics, such as their
volume, surface area, isoperimetric ratio, number of neighbors, elongation, and contact
area fraction. The choice of the aforementioned features is based on the fact that they
provide a thorough description of a variety of epithelial characteristics, such as the cells’
size (volume and surface area), their shape (isoperimetric ratio and elongation), and the
coordination among contiguous cells (number of neighbors and contact area fraction).
Using the morphological statistics introduced above, we derived meaningful insights about
our epithelial samples by firstly evaluating the outcomes of the Principal Components com-
puted on the cell features and secondly comparing their distribution among the different
tissues (see Table 5 for the mean values of the morphological features across tissues). This
analysis led us to the following characterization of the analyzed tissues:

• The cells in the intestine villus epithelium are remarkably bigger, with their vol-
ume and surface area being between 2 and 3 times larger than the ones of the
other tissues included in our study. Moreover, as expected, the columnar intestinal
cells present an elongation that is only matched by the pseudostratified cells of the
lung tube epithelium. Despite the exceptional elongation, their isoperimetric ratio
is not statistically larger than the one in the other samples, probably due to the
degree of regularity that is observable in these cells’ shape. Regarding the num-
ber of neighbors, we observe that the intestinal epithelium stands at the bottom of
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the ranking. However, from the statistical point of view, only the bladder and the
bronchial epithelia can claim to have a larger number of neighbors. An interesting
point concerning the cells’ contact area fraction is that it is generally larger than
in the other mono-layer tissues (namely bronchiole and lung tube), but statistically
smaller than in the stratified tissue present in the bladder. This fact probably hints
that the epithelial cells of the intestine villi are quite tightly packed. Additionally, it
is meaningful to observe that the coefficient of variation of most features computed
on the intestinal cells is lower compared to the other tissues. This detail might sug-
gest that the villus epithelial tissue outlines a striking regularity, with the columnar
cells packed in a well-organized structure. A further result supporting this specu-
lation can be found in the fact that in the assessment of Lewis’ law for 2D slices,
we saw that the value of An/A is almost independent of the number of neighbors n.
Once again, this insight suggests that the epithelial cells of the intestinal villi are
organized following a more regular pattern than the other epithelia.

a

b c
EsophagusIntestine Villus Lung TubeBladderBronchiole

External sideLuminal side

Figure 13: Characteristics of the epithelial tissues. a, Typical shape of cells from
the different epithelia involved in our study. It is interesting to notice that the cells
within mono-layer epithelia tend to have, more or less, the same shape throughout the
sample. In contrast, cells from stratified epithelia show diverse morphology depending on
their location in the tissue. b, The esophageal epithelium presents elongated squamous
cells on the luminal surface of the tissue (left). In contrast, the rest of the cells are
characterized by a cuboidal-like morphology (right). c, Apico-basal axis definition as each
cell’s principal axis may be misleading in the case of complex tissues like the urothelium,
where neighboring cells are oriented along a wide range of different directions.
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• The bladder epithelial tissue presents, on average, a consistently larger cell contact
area fraction and a number of neighbors that is comparable only to the one of the
esophageal epithelial cells. As we mentioned in the Results section above, the nat-
ural explanation of these results is given by the fact that the bladder possesses a
stratified epithelium. As a result, all of the internal epithelial cells are surrounded
by neighbors in all directions. The size of epithelial cells in our bladder sample is
considerably smaller than in the intestinal villus, but slightly larger than the rest
of the tissues. However, this difference is not wide enough to derive any statisti-
cally relevant conclusion. Finally, regarding elongation and isoperimetric ratio, we
observe that the urothelial cells are quite similar to the esophageal and bronchial
epithelial cells. This fact suggests that even though the cells in the bladder epithe-
lium can be stretched according to the tissue movements, they are generally close
to spherical or cuboidal shapes.

• We already mentioned that the cells within the esophageal epithelial tissue are char-
acterized by a generally large number of neighbors. Similar to what was discussed
for the bladder epithelium, in this case, these features can be imputed to the esoph-
agus being a stratified epithelium. However, the average value of cells’ contact area
fraction is not comparable to the bladder, and it is, instead, in the same range of
single-layer tissues like the one surrounding the intestinal villi. As we previously
discussed, we can attempt to justify this fact by observing that the squamous cells in
the luminal side of the esophagus have a rather extended free surface (Fig. 13b). As
a result, the global contact area fraction for the cells in this tissue is heavily reduced
due to this fact. We can further notice that the epithelial cells in the esophagus
tend to show a smaller elongation with respect to the other tissues. While this is
not surprising if we consider the columnar and pseudostratified cells of the intes-
tine and the lung tube, we would expect the squamous cells in the esophagus to be
more lengthened in comparison with the rather cuboidal cells of the bronchiole and
the bladder. Nevertheless, we should note that the esophageal epithelium outlines
squamous cells only on the luminal surface of the tissue, whereas the majority of
the cells in the bulk of the sample show a more spherical shape. As a result, these
epithelial cells are, on average, not particularly elongated. Lastly, we can state that
the size of the cells in the esophagus sample is rather similar to the other tissues in
terms of size.

• Epithelial cells in the lung tube are characterized by extraordinary values of elon-
gation and isoperimetric ratio. This result is not surprising as the pseudostratified
cells are particularly stretched along their apico-basal axis. Moreover, the greater
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isoperimetric ratio with respect to the columnar cells of the intestine can be at-
tributed to the fact that pseudostratified cells present a less regular organization
within the tissue, with the cell membrane peculiarly modeled to accommodate the
nucleus. For what concerns all the other features, we can conclude that the lung
tube does not show peculiar values, meaning that lung tube epithelial cells are not
exceptional in terms of size and overall tissue organization.

• The bronchiole epithelial tissue does not show particularly exceptional values in
any of the analyzed features. Overall, we can observe that cells’ size stands similar
to the one of all tissues but the intestine. Additionally, despite being statistically
equivalent to the one of the esophagus and the bladder, the isoperimetric ratio of
bronchial cells is the lowest. This detail highlights the fact that the cells exhibit a
particularly spherical shape, which agrees with the classification of the bronchiole
epithelial cells as cuboidal. Finally, the values attained by the remaining features
are aligned with the ones found in tissues with similar characteristics.

Future Developments

In this chapter, we extensively discussed the contributions that the Python library EpiS-
tats can bring to the characterization of epithelial tissues. Nonetheless, the current version
of the pipeline still presents some criticalities that could be improved in future works.
First of all, we already discussed that although the algorithm employed to sample 2D
slices from segmented volumes certainly constitutes a huge improvement from the trivial
sampling along the cartesian axes, it is far from being ideal for every kind of tissue and
cell. Indeed, the fact that the planar slices are collected along the cells’ apico-basal axis
poses some limitations in cases where the latter is not clearly defined, which can some-
times be the case for non-elongated cells or tissues with a complex organization (Fig. 13c).
A potential solution to this problem for future versions of the library could be to define
the slicing direction depending on the estimate of the local curvature of the tissue.
An additional improvement would be the implementation of an efficient and accurate al-
gorithm for the identification of apical, basal, and lateral surfaces of the cells. This would
allow us, for instance, to draw more refined conclusions about the contact area distribu-
tion among the different surfaces of a given cell, and, in general, about the orientation of
cells within the tissues.
Lastly, our observations revealed that, especially within stratified epithelia, the tissues ex-
hibit diverse cell shapes and characteristics across different layers. Therefore, developing
an algorithm to recognize cell types within a tissue would enable us to separately analyze
distinct features for subgroups of cells within the same sample.
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properties of epithelial tissues

In the previous chapter, we extensively discussed the morphological features that influence
the characterization and diversification of epithelia. In this regard, we observed that
different tissues outline diverse cell shapes and organization among the cells. At this
point, we aim to move forward and focus on the underlying mechanisms that generate
such an extraordinary variety of structures. Indeed, as epithelial morphology is tightly
linked to the physiological functioning of the tissue, we believe that the comprehension
of the principles that regulate the packing of tissues would allow researchers to provide a
more accurate interpretation of the causes that lead to pathological conditions, such as
cancer.

From a mechanical perspective, the structure of tissues is determined by the dynamical
interaction of their constituting units, the cells. Specifically, the distribution of stresses
within the tissue dictates both the configuration adopted by groups of cells and the shape
of individual cells. Furthermore, in order to thoroughly comprehend how tissues acquire
and maintain their structure it is necessary to study the interplay of forces between the
tissue and the extracellular matrix (ECM).

In the Introduction we discussed that cell-based in-silico models are currently recognized
by the research community as the preferred tool for the mechanical analysis of biological
tissues. By simulating the evolution of the virtual environments reproduced by these
models, researchers can investigate the influence of inter-cell stress patterns (adhesion,
repulsion) and intra-cell mechanical properties (stiffness, surface tension) on the overall
characterization and arrangement of tissues. In this context, 3D Deformable Cell Models
(3D-DCM) emerged as the state-of-the-art technology, primarily due to their capability
to illustrate not just the interactions among various cells but also their internal dynamics.
This possibility is allowed by the representation of cells as 3D triangular meshes, with
forces acting upon their vertices. Among the wide array of simulation frameworks based on
3D-DCMs (Brakke, 1992; Madhikar et al., 2018; Liedekerke et al., 2020; Wang et al., 2021;
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Torres-Sánchez et al., 2022; Okuda and Hiraiwa, 2023; Runser et al., 2023), SimuCell3D
(Runser et al., 2023) stands out for its versatility and efficiency. Due to its optimized
design, SimuCell3D successfully addresses the traditional trade-off between the number
of simulated cells and the spatio-temporal resolution, a limitation commonly found in
many existing cell-based models. For instance, this software enables the simulation of
hundreds of cells within hours or, at most, a few days of computation. Moreover, it is
specifically implemented with the aim of handling the simulation of cells characterized
by a wide variety of morphologies, as well as other entities such as nuclei, lumens, and
ECM. For these reasons, SimuCell3D constitutes an optimal software for the inference of
the mechanical properties of the epithelial tissue involved in our study.

Within this context, we pursue our objective of inferring epithelial tissues’ mechanical
properties as follows: starting from the initial tissue geometry experimentally computed
from the segmented microscope images, we use SimuCell3D to simulate the dynamical
process that brings such initial geometry to an equilibrium state. In this framework,
in order to find the model configuration that best characterizes the experimental tissue
organization, we need to find a parameter set such that the morphological discrepancy
between the initial and the steady-state geometries is the minimum possible or, ideally,
none. Consequently, the problem can be interpreted as parameter estimation.

In the following, we will start by illustrating a robust triangular mesh refinement pipeline
to improve the numerical stability of SimuCell3D when used on our epithelial samples.
Then we will discuss the functionalities and the biophysical model defined within Simu-
Cell3D. Afterward, we will showcase a Python module to compute significant metrics for
monitoring simulation progress and results. After that, we will outline the parameter es-
timation process that we performed in order to retrieve the mechanical configuration that
characterizes tissues at the equilibrium. Finally, we will discuss the current limitations of
our approach and the possible solutions to obtain more accurate results.

4.1. Related Works

In the introductory paragraph, we mentioned that DCMs are currently the state-of-the-art
technology for the computational analysis of biological tissues’ mechanics. With regard
to epithelial tissues, several simulation studies were conducted to uncover the principles
underlying the dynamics and the organization of such tissues (Nagai and Honda, 2001;
Smallwood, 2009; González-Valverde and García-Aznar, 2017; Barton et al., 2017; Mazarei
et al., 2022; Runser et al., 2023). However, from our perspective, there’s a noticeable
scarcity of studies that engage in comparing cellular mechanical properties across various
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epithelial structures. This subject holds particular relevance for us as the dynamic inter-
action among cells is the pivotal factor directing tissues to adopt a particular structure.
Within the context of epithelial tissues, despite their shared fundamental function, cells
attain different configurations to suit the specific demands of the hosting organ. Thus,
comprehending the mechanical aspects that either unify or differentiate epithelia would
significantly enhance our understanding of the mechanisms that let tissues acquire and
maintain their structure during growth and morphogenetic deformation.

4.2. Methods

4.2.1. Mesh Refinement Pipeline

Earlier, we mentioned that SimuCell3D operates as a 3D Deformable Cell Model using 3D
triangular meshes to represent cells. Therefore, the spatial resolution of the model relies
on the length of edges between successive vertices. To ensure that the input meshes reach
a specific resolution and lack irregularities that might compromise numerical stability, the
SimuCell3D includes a predefined mesh refinement step before the beginning of simula-
tion runs. In the case of our segmented epithelial samples, some cells exhibited notable
imperfections, such as sharp angles and irregular boundaries, largely due to segmentation
artifacts. Consequently, the SimuCell3D’s mesh refinement tool alone was insufficient to
create sufficiently regular meshes. To address this issue, we introduced a customized mesh
refinement pipeline, allowing us to generate smoother meshes and, thus, ensure improved
numerical stability during simulations.

The aforementioned mesh refinement pipeline is implemented in Python and it is part of
the EpiStats we introduced a customized mesh refinement pipeline library. Most of the
functions rely on existing tools from PyMeshFix (Attene, 2010) and PyMeshLab (Muntoni
and Cignoni, 2021). Specifically, the pipeline is composed of the following steps:

1. A first cleaning iteration aimed at removing non-manifold faces and closing major
holes in the input mesh.

2. A subsequent re-meshing step that relies on the Ball Pivoting algorithm (Bernardini
et al., 1999) followed by Taubin smoothing (Taubin, 1995).

3. The application of predefined filters to find and delete duplicate faces, edges, and
vertices.

4. A second cleaning iteration to remove further non-manifold faces and close any
remaining hole in the re-meshed geometry.
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5. A procedure to consistently orient the normal vectors to the mesh faces.

4.2.2. SimuCell3D Model

Biophysical Model

In the SimuCell3D biophysical model, the mechanical state of each cell is determined,
other than the viscous damping, by two main components. These components are the
forces that act on each cell’s membrane and the cell-cell interactions. Specifically, the
contribution related to the cell membrane can be summarized by the following energy
potential:

U = KV

(
ln

V

V0

− 1

)
+

ka
2

(
A

A0

− 1

)2

+

∫
∂Ω

(
γ +

kb
2
(2H)2

)
dS (3)

The first term reported in the expression represents the energy associated with the cell’s
internal pressure, p = dW/dV = −K ln(V/V0). This contribution is generated by the
volumetric strain of the cell cytoplasm. In the formulas above V and V0 stand for the
current and target cell volumes, while K corresponds to the cytoplasmic bulk modulus.
The second term in the energy potential defines the process that each cell undertakes to
regulate its membrane area A. Deviations from the target value A0 are penalized according
to the parameter ka, which is defined as the effective isotropic membrane elasticity. The
integrand of the surface integral over the cell surface ∂Ω is composed of two additive
factors. On the one hand, the isotropic cortical tension γ models the surface tension
generated by the cell cortex. On the other hand, the second factor models the resistance of
the cell cortex to bending, with H denoting the local mean curvature of the cell membrane,
and kb its bending rigidity.

Within SimuCell3D the intercellular interactions are modeled as local elastic contact forces
that act at the level of their triangular faces. In this context, the contributions to the
interaction model are described by a pair of parameters, which are the adhesion strength
ω and the repulsion strength ξ.

Table 6 reports a list of the salient mechanical parameters that specify the SimuCell3D
biophysical model. Each parameter is presented with the associated unit of measure, the
default values in SimuCell3D, and a plausible range for parameter screening. In general,
the values are obtained as the combination of experimental measures reported in the
literature and computational assessments made by the developers of SimuCell3D.
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Table 6: Mechanical Parameters. List of mechanical parameters that characterize the
properties of biological tissue as described by the SimuCell3D biophysical model. Plausible
ranges are computed combining experimental measures and numerical outcomes.

Symbol Description Unit Default Plausible Range

K Bulk Modulus Pa 2500 [2× 103 − 1× 105]

V0 Target Volume m3 − −*
A0 Target Surface Area m2 − −*
Q0 Target Isoperimetric Ratio − 250 −**
ka Area Elasticity Modulus J 1× 10−15 −**
γ Surface Tension N/m 0.007 [1× 10−5 − 1× 10−2]
kb Bending Stiffness J 2× 10−18 [1× 10−16-1× 10−19]

ω Adhesion Strength Pa/m 1× 109 [1× 108-1× 1011]

ξ Repulsion Strength Pa/m 1× 109 [1× 108-1× 1010]

ρ Mass Density kg/m3 1000 [1000 − 1100]**
* Value determined depending on the input sample.
** Kept to default value during our analysis

Numerical Methods

We already mentioned that SimuCell3D is an example of 3D-DCM. This entails that the
forces involved in the model act directly on the vertices of the triangular meshes. As a
consequence of the biophysical model described by the energy potential in (3), we can
describe the overall force vector that acts on each mesh node as follows:

f⃗i = f⃗s,i + ⃗fm,i + f⃗p,i + f⃗b,i + f⃗c,i (4)

The components of the expression above read, respectively, as the surface tension forces
(f⃗s,i), the membrane area elasticity forces ( ⃗fm,i), the pressure forces exerted by the cyto-
plasm (f⃗p,i), the bending forces (f⃗b,i), and contact forces due to adhesion and repulsion
(f⃗c,i). Figure 14a schematically illustrates how forces act on the faces of the triangular
meshes associated with the cells.

Given the schema of forces as mentioned above, SimuCell3D implements time propagation
by solving the dynamic equation of motion:

m ¨⃗ri + ζ ˙⃗ri = f⃗i

In the expression above f⃗i is the nodal force vector in (4) and ζ the viscous damping
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coefficient. The nodal mass m is computed as m = ρV/Nn, where V is the cell volume,
ρ is the cell’s mass density, and Nn is the number of vertices in the cell’s triangular
mesh. Within the aforementioned simulation framework, the nodal positions r⃗i and linear
momenta p⃗i = m ˙⃗ri are integrated according to the semi-implicit Euler scheme in the
following way:

p⃗i ← p⃗i +∆tf⃗i − ζp⃗i/m

r⃗i ← r⃗i +∆tp⃗i/m

where ∆t is the time step employed for the increment. The tuning of this time step
parameter plays a crucial role. In fact, the value of the time increment determines a
trade-off between the numerical stability of the simulation, and the computational time
required to reach a steady state. For instance, opting for a smaller time step enhances the
robustness of the simulation, given that cell deformation between successive time points
tends to be more limited. Conversely, models employing a shorter time step necessitate
more time to simulate the entire evolution of the biological tissue structure. Consequently,
the computational time needed for the analyzed tissue to attain equilibrium may render
the selection of such a time step impractical.

Additional Technical Aspects

Earlier, we discussed the importance of providing high-quality 3D triangular meshes as
input to the SimuCell3D model in order to guarantee a certain degree of numerical stabil-
ity during simulations. In the case of our study, the consistency of the input cell meshes is
ensured by the application of our custom refinement pipeline. Furthermore, with the aim
of preserving the regularity of triangular meshes throughout the subsequent simulation
iterations, SimuCell3D implements a local mesh adaptation algorithm. Namely, this algo-
rithm checks that edge lengths are maintained within the range [lmin, lmax]. Specifically,
the minimum edge length lmin is a user-defined model parameter, whereas is empirically
set to lmax = 3lmin. The local mesh adaptation method works as follows:

• When the length of an edge exceeds lmax, the local mesh adaptation method splits it
in two, adding one node and two faces to the mesh. Then, the original momentum
is distributed on the new vertices to ensure continuity.

• In the case an edge shrinks to a length below lmin, it is collapsed into a node. Now,
the new momentum is computed as the sum of the ones corresponding to the merged
nodes.
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Another relevant model parameter is the contact cutoff distance, which arises from the
definition of the intercellular interaction model. In this context, the contact forces are
supposed to act between pairs of faces a and b. In particular, an actual force is exchanged
if and only if the shortest signed distance dab within the facets is in the range [−c, c],
where c is the contact cutoff distance mentioned earlier.

a

b

d

c

Surface 
Tension (γ)

Membrane 
Elasticity (ka)

A
A0

Pressure 
Di�erence (K)

n

Bending 
Elasticity (kb)

na
nb
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ll 

2Cell 1

ECM

2

1

Figure 14: SimuCell3D schema of forces and generation of the triangular mesh
for representing the ECM shell. a, Summary of different forces acting on the trian-
gulated cell membranes. b, Generating the ECM shell triangular mesh from the binary
mask computed by simply merging the cell labels leaves a non-negligible gap between the
ECM and the cell meshes, as depicted in the clipped volume (ECM shell in orange, cells
in blue) and the 2D slice (gap highlighted in red). c, The algorithm presented for the
generation of a tighter ECM shell mesh performs a smoothing of the mesh surface in cor-
respondence with cell junctions (1). This approach is designed to avoid the possibility of
having sharp junctions (2), a feature that would cause major numerical problems during
the simulations. d, During the simulation run, cells tend to adhere to the ECM leaving
a wide gap in the middle of the sample, which has no biological explanation.
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A complete list of all the parameters associated with numerical and technical aspects
of the SimuCell3D model is reported in Table 7, together with the associated unit of
measure, default values, and a plausible working range for generic cases.

Table 7: Numerical Parameters. List of numerical and technical parameters that com-
plement the SimuCell3D model. Plausible ranges are provided by empirical assessments
carried out by the software developers.

Symbol Description Unit Default Plausible Range

ζ Viscous Damping Coefficient kg/s 1× 10−9 [1× 10−10 − 1× 10−7]
∆t Time Step s 1× 10−7 [1× 10−8 − 1× 10−6]
lmin Minimum Edge Length m 2× 10−7 −*
c Contact Cutoff Distance m 5× 10−7 −*
T Simulation Duration s 0.001 −

* Kept to default value during our analysis

Finally, it is important to mention that for the sake of our simulations, we decided to
encapsulate the epithelial cells composing our samples within an outer triangular mesh
representing the ECM. This outer mesh, also termed the ECM shell, serves the purpose
of applying an external constraint to the cells, hence preventing excessive extrusion of the
meshes from the original tissue geometry. This choice is taken to both reproduce the bio-
physical presence of the ECM and avert unrealistic deformations and volume alterations
during simulations.
From the technical perspective, the straightforward approach to obtain the ECM shell for
a given clump of segmented cells is to first merge all the segmented cell labels in a single
binary mask and, then, generate a triangular mesh from the merged image using one of
the standard meshing algorithms and applying some smoothing to remove irregularities.
Although this method is relatively robust and easy to implement, it presents one remark-
able issue. Namely, the application of a global smoothing filter on the ECM shell mesh
leads to the formation of a relevant gap between the cell and ECM meshes(Fig. 14b).
During simulations, the cells usually rearrange their configuration by adhering to the
outer ECM surfaces and filling these initial gaps. However, since the total volume of the
cells is approximately constant throughout simulations, it happens that the empty spaces
that were originally located at the junctions of cells are redistributed in the middle of the
tissue, resulting in a lumen-like geometry that has no biophysical explanation (Fig. 14d).
An intuitive way to reduce the extent of this would be to exclude any smoothing from the
mesh generation process. However, this solution is not viable, as the triangular meshes
obtained without any sort of smoothing may present irregular boundaries and sharp angles
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at the cells’ junctions, undermining the numerical stability of simulations.

Therefore, in order to overcome this issue, we decided to implement an alternative, more
efficient method for the generation of a triangular mesh representing the ECM shell which
is tighter on the internal cells. The idea is to first generate separate meshes for each cell
and then construct the ECM shell mesh by merging the vertices of the cell meshes. The
algorithm reads as follows:

1. Generate triangular meshes separately for each segmented cell label in the analyzed
tissue sample.

2. For each mesh, compute the minimum distance between each one of its nodes and
any neighboring mesh. Discard nodes whose distance exceeds a predefined threshold.

3. Estimate the normals to the vertices according to the local curvature of the point
clouds.

4. Displace nodes by an amount equal to the average edge length along the directions of
the normal vectors to make sure that the outer mesh encapsulates all the epithelial
cells in the sample.

5. Given the resulting point cloud with the associated normals, generate a tight ECM
shell triangular mesh by applying the Screened Poisson Surface Reconstruction al-
gorithm (Kazhdan and Hoppe, 2013).

The procedure at point 2 offers a way to smooth the resulting ECM shell at the cell
junctions to avoid major numerical issues while maintaining a tight enough envelope
(Fig. 14c). In our study, we experimentally set the threshold to five times the average
edge length across all the cells in the sample. The algorithm above is implemented in
the EpiStats library and the triangular mesh representing the ECM shell is automatically
generated within the mesh refinement pipeline illustrated above.

4.3. Results

In this section, we will report the outcomes of the application of SimuCell3D on the
segmented epithelial tissue samples involved in our study. First of all, we will observe more
in detail how the problem of inferring the mechanical properties characterizing epithelial
tissues can be interpreted as a parameter estimation problem and will present our current
approach to tackle it. Then, we will outline the status reached by our study, highlighting
the outcomes related to some of our epithelial structures and the current challenges. In
this regard, it is crucial to remark that our research constitutes one of the first instances
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of the application of this simulation software on a wide variety of real biological samples.
As a consequence, our project served to provide a first, realistic exploratory analysis of the
mechanical properties of epithelial tissues, and a general assessment of the SimuCell3D
pipeline, in order to find aspects that can be improved in future versions of the software.
For this reason, all the results discussed below are referred to a pair of cell clumps extracted
from the intestinal and bronchial epithelia that have been used as test cases. The samples
are composed, respectively, of 16 and 19 cells to reduce the computational burden of
simulations during these exploratory steps and are shown in Figure 15.

a b c d

Bronchiole, 19 cells

Intestine, 16 cells

Figure 15: Epithelial tissue cell samples used for the exploratory analysis on me-
chanical properties with SimuCell3D. a, A cell clump from the segmented bronchiole
epithelium, containing 16 cells. b, A cell clump from the segmented intestine epithelium,
containing 19 cells. c, The geometry shown by the bronchiole sample after a simulation
run using SimuCell3D. d, The geometry shown by the intestine sample after a simulation
run using SimuCell3D.

4.3.1. Parameter Estimation

In the introductory section of this chapter, we proposed a numerical simulation frame-
work based on cell-based models as a way to infer information about the mechanical
configuration within epithelial tissues. Specifically, SimuCell3D simulates the evolving
arrangement of epithelial cells, progressing from an initial empirical geometry obtained
through the segmentation of an actual sample to a steady state. This simulation is con-
ducted based on a specified set of mechanical and numerical parameters. Therefore, to
identify the mechanical configuration that accurately describes our input tissues, it is
necessary to determine the parameter set for which the simulated cellular geometry at
the equilibrium closely resembles the initial structure. As a result, we can rephrase the
research question of inferring the mechanical properties that characterize the organization
of epithelial tissues as a parameter estimation problem.

In the context of our study, we attempt to solve the parameter estimation problem by
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employing a grid search over the plausible ranges. More precisely, the parameter screening
approach can be divided into two consecutive phases. First, starting from the default
values and the predefined plausible ranges, we aim to provide a set of refined intervals
for the model parameters such that simulations are numerically stable and the resulting
steady-state geometries exhibit a somewhat similar structure to the initial one. Afterward,
we repeatedly shrink the novel parameter ranges up to the point in which we find a single
parameter configuration that closely describes the experimental cellular geometry. This
last procedure is performed by empirically maximizing the IoU computed between the
initial and the steady-state geometries for a given sample.

In practice, since the screening of parameter ranges involves launching a simulation run
for each parameter configuration, it is preferable to investigate a few parameters at a time
to reduce the overall computational resource requirements and to facilitate the analysis
of the outcomes. A reasonable choice is to screen for a group of no more than three
parameters at a time. Within the SimuCell3D model, parameters are not independent,
and, hence, their interaction must be taken into account during screening. For instance,
an increase in surface tension necessitates an increase of the bulk modulus for stability,
given its role in counterbalancing the compressing pressure. As a result, we observed that
it is better to first screen for the parameters that are more influential on the simulation
outcomes (e.g., the surface tension), and then refine the search on less impactful ones.

In order to facilitate the analysis of the outcomes of parameter screening runs we developed
some complementary tools in Python. In particular, we implemented the following:

• A function that monitors the total volume loss/gain with respect to the initial
geometry over the iterations of the simulation runs. As we mentioned before, we
generally expect the total volume of cells in the sample to remain approximately
constant during the simulation runs.

• A function that at each simulation step computes the variation of average cell
sphericity with respect to the initial geometry. Monitoring sphericity is a crucial
aspect to assess the validity of the simulated geometries since for some parameter
configurations cells tend to assume rather spherical shapes.

• A function that checks whether, at any point of the simulations, there is at least
a pair of cells that interpenetrate each other. Interpenetration is common when
the repulsion forces among cells are not sufficient to keep volumes apart. Clearly,
geometries presenting any pair of interpenetrating cells are invalid. Hence, the
associated parameter sets must be rejected.
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• A function that computes the value of (1− IoU) between the cell geometry at any
iteration of the simulation process and the initial geometry. Specifically, the IoU

between geometries is obtained as the average of the values computed separately for
each cell.

With the aim of visualizing the results obtained from the function above, we additionally
developed the code for generating a dashboard that reports the values corresponding
to each combination of parameters in a screening. An example of such a dashboard is
reported in Figure 16.
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Figure 16: Example of dashboard illustrating meaningful metrics to assess the
goodness of a simulation run. The dashboard reports the values of an array of metrics
with the aim of facilitating the analysis of simulation outcomes. For instance, knowing
that the outcome of a given simulation presents any interpenetrating cell, or a geometry
characterized by an outlying volume enables us to directly exclude that parameter set
from further analyses. Additionally, the percent variation of sphericity and volume loss
provide a measure of the deformation that the cells were subjected to over the simulation.
The number of iterations performed together with the derivative of the mean(1 − IoU)

metric give information about the advancement of a simulation run and whether it is
close to the equilibrium. Lastly, the mean(1 − IoU) is the objective score that we want
to minimize during our parameter estimation task.
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Step-by-step parameter screening approach

In the following, we describe a common step-by-step approach to perform a complete
screening of the SimuCell3D model parameters. We urge to remark that this is an em-
pirical approach, designed upon experience and advice from the SimuCell3D developers.
Therefore, the same procedure might not generalize well for other samples.

As we mentioned earlier in the chapter, our parameter screening approach is composed of
two stages:

1. In the first stage, from the default parameter ranges we extract sub-intervals for
which simulation outcomes are reasonable. Specifically, we proceed as follows:

• We begin to screen for surface tension γ, repulsion strength ξ, and bulk modulus
K parameters in the ranges defined in Table 6. The goal, in this case, is to
find sub-intervals for which simulations are stable and the cell geometries at
the equilibrium do not show extreme behaviors. For instance, for low surface
tension cell meshes might get noticeably irregular, while for large values they
might assume spherical shapes. At this stage, it is recommended to consider
as wide as possible parameter ranges. This is because adjusting subsequent
parameters may impact those that were previously screened.

• Considering the combinations of boundary values of the working sub-ranges for
surface tension, repulsion strength, and bulk modulus found at the previous
step, we now screen for adhesion strength ω and bending stiffness kb in the
predefined ranges. In this way, we obtain working sub-intervals for the entire
range of mechanical parameters.

• At this point we need to tune the numerical parameters of SimuCell3D, namely
the time increment ∆t and the viscous damping coefficient ζ. Selecting these
parameters involves finding a compromise between numerical stability and the
time required to reach the equilibrium. In other terms, our objective here
is to determine an appropriate range for the viscous damping coefficient that
enables the use of a large enough time step. Practically, in our simulation of
epithelial tissues, we could not use a time increment ∆t larger than 1× 10−7s.

• Given all the computed sub-ranges for the model parameters, we now run
some simulations in order to find the approximate simulation time T required
to reach a steady state. This is useful in order to reserve an appropriate
computational time for the later simulations. It is useful to observe that model
configurations characterized by smaller values of surface tension generally take
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more time to converge to the equilibrium state and, thus, determine the upper
bound for the total computational time. In our case, we set T = 0.1s, which
roughly corresponds to one week of computation.

a b

Initial Geometry

γ = 0.0001 γ = 0.0005 γ = 0.001

γ = 0.002 γ = 0.003 γ = 0.005

Figure 17: Influence of surface tension parameter on simulation outcomes. a,
The initial geometry for the intestinal epithelial tissue sample. b, The simulated geome-
tries for increasing values of surface tension γ. It is evident that as the surface tension
increases, cells tend to assume more and more spherical shapes, resulting in biologically
implausible structures.

Table 8: Results of the first iteration of parameter screening. List of working sub-
ranges and values found by applying the first stage of the step-by-step parameter screening
approach on the intestinal and bronchial cell clumps selected for our preliminary analysis.

Working ranges
Parameter Unit Bronchiole Intestine

Time Step s 1× 10−7 1× 10−7

Viscous Damping Coefficient kg/s [5× 10−10 − 2.5× 10−9] [5× 10−10 − 2.5× 10−9]

Simulation Duration s 0.1 0.1
Surface Tension N/m [3× 10−4 − 2.5× 10−3] [1× 10−4 − 1.5× 10−3]

Repulsion Strength Pa/m [2.5× 108 − 5× 108] [1× 108 − 2.5× 108]

Adhesion Strength Pa/m [0− 5× 108]* [0− 1× 109]*
Bulk Modulus kg/s [2× 104 − 6× 104] [8× 103 − 3× 104]

Bending Stiffness J 0** 0**
* To better assess the influence of adhesion strength on the simulation outcomes, we tested a wider range.
** Resistance to bending was excluded from the model in our case due to numerical stability issues.
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The results regarding the first iteration of parameter screening for the intestine
and bronchiole epithelial samples mentioned above are reported in Table 8. In this
phase, we observed that the mechanical parameter that mostly influences the cell
geometries is the surface tension (Fig. 17). Furthermore, since the contribution of
the adhesion strength to the simulation outcomes was unclear, we decided to explore
a wider range than the plausible one described above. Finally, we decided to exclude
the contribution related to the resistance to bending from our model, as it was a
source of numerical instability within our simulations.

2. In the second stage of our parameter screening approach, we aim to retrieve the pa-
rameter configuration that best characterizes the input geometry. Namely, starting
from the working ranges above, we want to find the set of values for the mechanical
parameters such that the value of (1− IoU) computed between the initial and the
steady-state geometries is minimum, i.e., ideally equal to 0. Earlier we observed that
the shape of cells attained during simulations is dominated by the surface tension
value. Moreover, from previous studies in the field, we expect adhesion strength
to be the other most influential parameter (Runser et al., 2023). Therefore, in this
phase, our goal becomes to minimize (1− IoU) as a function of the surface tension
and the adhesion strength. For this reason, we repeatedly screen for surface tension
and adhesion strength, each time using a finer grid of values.

The results of the second screening stage are reported in Figure 18a, where the average
value of (1− IoU) computed over the cells of the initial and final geometries are reported
for the different combinations of surface tension and adherence strength. From a first look,
we can immediately observe that the value of mean(1 − IoU) shows a clear dependence
on the surface tension and little to none on the adhesion strength. In particular, smaller
values of (1− IoU) are attained for lower values of surface tension.
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Figure 18: Results of the exploratory parameter screening on the bronchiole
and intestine cell clumps. a, Values of mean(1− IoU) for the different combinations
of adhesion strength and surface tension for the bronchiole (left) and intestine (right) cell
clumps. Red crosses correspond to simulation runs that failed due to numerical errors.
b, The distribution of the number of iteration values (bottom) shows a similar pattern of
mean(1 − IoU) values (top). Indeed, it is possible to observe that both values grow as
the surface tension parameter increases. This fact hints that the resulting mean(1− IoU)

could be related to simulations that did not reach a proper steady state.
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4.4. Discussion

In this chapter, we discussed the problem of inferring the mechanical properties that
characterize diverse epithelial tissues. Since the modality of packing of cellular tissue is
deeply related to the stress distribution among cells, the possibility of developing a bio-
physical model that is capable of truthfully depicting the intra-cellular and inter-cellular
interplay of forces is key to the understanding of the fundamental principles that regulate
epithelial morphogenesis. For this purpose, we employed SimuCell3D, a powerful DCM
that efficiently simulates growth and morphogenetic deformation for a wide array of tis-
sue types. In order to improve its accessibility, we developed some Python modules that
complement SimuCell3D functionalities. Specifically, we implemented a mesh refinement
pipeline and an algorithm to generate tight triangular meshes for the ECM shell encap-
sulating a given group of cells. Moreover, we developed functions to compute meaningful
metrics to monitor the quality of simulation outcomes and a dashboard to enable their
direct inspection.

In the previous sections, we explained that the inference of the mechanical properties
regarding the epithelial tissues involved in our study can be translated into a parameter
estimation problem. Specifically, our goal is to identify a collection of model parameters
such that the cellular structure, once simulations have reached an equilibrium state, closely
mirrors the initially segmented structure. The similarity between tissue geometries is
obtained by means of the value of (1 − IoU) averaged over each cell within the sample.
In our research, we performed parameter estimation following the approach presented in
the earlier paragraphs for a patch of 16 epithelial cells from the intestine villus sample
and 19 epithelial cells from the bronchiole sample.

The results of the parameter screening are reported in Figure 18a. We already mentioned
that the mean values of (1−IoU) are heavily dependent on the surface tension parameter,
while there is almost no influence from the value of the adhesion strength parameter. The
little to no impact of the adherence forces could imply that the adhesion model that is
currently implemented within SimuCell3D is not sufficient to portray the actual forces
interplay in epithelial tissues.

For both the tissues subjected to simulations, we see that the minimum for the (1− IoU)

metric is attained for small values of surface tension (Fig. 18a). However, comparing the
values obtained for mean(1− IoU) with the number of simulation iterations performed in
the corresponding simulations (Figure 18b), we notice that the two quantities are strongly
correlated. Namely, the value of mean(1− IoU) increases with the number of simulation
steps performed. This detail can be explained by hypothesizing that the simulation runs
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related to small values of surface tension have not reached a proper steady state at the
time the metric was computed. Therefore, it is not possible to exclude that by letting
these simulations run for a longer time, we could reach different steady-state geometries,
farther from the initial one, and, hence, associated with larger (1−IoU) values. To support
this hypothesis we can analyze in more detail the tissue geometries for simulation steps
closer to the previously supposed steady state. We notice that cell meshes tend to slightly
oscillate among iterations, meaning that a proper equilibrium is not reached. A possible
reason to interpret the presence of such oscillation is that the current choice of viscous
damping coefficient renders the system underdamped. A way to exit the underdamped
regime is to employ a larger damping coefficient. However, this is not a possibility in
our study, as we demonstrated that for ∆t ≥ 1 × 10−7s simulations become numerically
unstable if we employ a larger damping coefficient than the one we utilized.

To conclude, the current status of our research does not provide any undeniable evidence
about the characterization of the mechanical properties associated with epithelial tissues.
Nevertheless, we should acknowledge our study as the first iteration toward the achieve-
ment of a more detailed comprehension of epithelial dynamics using the SimuCell3D
simulation model. In these regards, the contributions brought by our project constitute
valuable bricks for the future development of the research in this framework.

Future Developments

As we mentioned above, our study should be regarded as an exploratory step in broader
research about the mechanical characterization of epithelial tissues. For this reason, the
potential enhancements that can be implemented in order to overcome the current chal-
lenges are manifold.

First of all, an improved version of the SimuCell3D adhesion model is essential to provide a
more realistic representation of the stress distribution and a better assessment of the role of
cell adhesion in the tissue forces interplay. As far as we are concerned, the implementation
of this enhanced model is underway and, hence, we expect to employ it in future iterations
of the project.

An alternative way to reduce the extent of the oscillation in the underdamped system
discussed above could be to limit the value for the bulk modulus K. In fact, a model
characterized by lower cells’ internal pressure generally possesses less energy. Therefore,
the system is inherently more stable, allowing for larger viscous damping. As we men-
tioned earlier, reducing the bulk modulus could impact also other parameters. Therefore,
it would require to re-run the entire parameter screening from scratch.
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Finally, in the previous sections, we extensively showed that finding the optimal ranges for
the model parameters poses a significant challenge, as it requires massive computational
time and manual work to analyze the results. As a consequence, the effort required for
parameter screening represented the main bottleneck in the project’s progression, and,
due to time constraints, it prevented us from performing further experiments with dif-
ferent samples. A possible way to overcome these limitations is to replace the current
grid search approach with a more efficient parameter estimation pipeline. Given an ap-
propriate loss function and a set of metrics to evaluate the goodness of the simulation
outputs, the pipeline would optimize the set of model parameters by minimizing the loss.
Furthermore, such a parameter estimation algorithm would enable us to define and tune
a larger parameter collection. For instance, it would provide the possibility of defining
a distinct set of properties for each cell, increasing the detail of the tissues’ mechanical
description.
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Conclusions and future developments

Throughout this thesis, we extensively explored the fact that, despite their shared role
as protective barriers and separators, epithelial tissues exhibit a diverse range of orga-
nizations across various organs in living organisms. More specifically, different types of
epithelia manifest varying numbers of cell layers (simple vs. stratified) and diverse cell
shapes (cuboidal, squamous, columnar, pseudostratified, transitional). Despite extensive
studies within the biological community, the understanding of the underlying factors that
govern the formation of such a variety of structures remains an unresolved question. To
unravel these mechanisms, it is crucial to pinpoint the distinctive features that charac-
terize the broad spectrum of epithelia. Thus, we defined this study with the objective of
providing a comprehensive characterization of epithelial tissues by conducting a thorough
comparison of their different structures. In particular, our aim was twofold: firstly, to out-
line the morphological features that either unify or diversify epithelial tissues. Secondly,
to explore the mechanical properties linked to different epithelial structures.

With the aim of achieving this objective, we acquired 3D images of various mouse epithelial
samples using the light sheet microscope. By combining these images with others gath-
ered for prior publications, we assembled a dataset encompassing five types of epithelia.
Specifically, our dataset comprises the simple columnar epithelium from an intestine vil-
lus, the simple cuboidal epithelium from a bronchiole, the stratified squamous epithelium
from the esophagus, the transitional epithelium from the bladder, and the pseudostratified
epithelium found in the lung tube.

As a first step in our pursuit of the objective, we established an end-to-end pipeline for
the high-quality 3D cell segmentation of epithelial tissues captured in the microscope
images. This segmentation workflow is achieved through the integration of existing image
preprocessing tools (Fiji, micro-SAM), pre-trained segmentation software based on a 3D
U-Net model (Plantseg), and a collection of complementary enhancements developed by
our team. Although a significant portion of the pipeline operates automatically, the
outputs of the segmentation software necessitate a manual curation step. The purpose of
this step is to identify and rectify significant segmentation errors and artifacts.
The application of this pipeline to our epithelial samples led to the segmentation of 322
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cells from the intestine villus, 180 cells from the bronchiole, 129 cells from the esophagus,
638 cells from the bladder, and 147 cells from the lung tube. The time required for
segmenting different tissues varied based on both the sample size and the version of the
pipeline used. In fact, through successive enhancements to our pipeline, we managed
to reduce the overall segmentation time for a fixed number of cells by approximately
one-third. Despite these significant improvements, the time required to segment images
remains a major constraint, preventing the inclusion of more samples in our analysis. In
particular, the extent of manual curation necessary to produce accurate results is the
main bottleneck of the current version of the workflow.
To potentially expedite the processes and enhance outcome quality in the future, we
suggest implementing a more sophisticated model based on Vision Transformers (e.g.,
UNETR) for predicting cell boundaries and exploring the use of unlabeled images in the
training phase through self-supervised learning. Both these solutions would certainly
enable us to obtain more precise automatic 3D cell segmentation. As a consequence, we
expect that the necessity of extensive manual curation would radically decrease.

In the second part of our research, we focused on studying the salient features that
discriminate epithelial tissues from a morphological perspective. In this framework, we
developed a Python library called EpiStats to extract, gather, and analyze morphological
statistics regarding cell shape and organization. Within EpiStats, we implemented a series
of efficient image analysis algorithms that enable the computation of the cells’ surface
area, volume, elongation, number of neighbors, and contact area with adjacent cells. The
analysis of these morphological features led us to the following observations:

• Intestinal epithelial cells are remarkably larger in size and, as the columnar classifi-
cation might suggest, they exhibit a greater elongation. Compared to other tissues,
the intestine villus epithelium shows striking regularity, implying that its columnar
cells are packed in a well-organized structure.

• Due to its stratified nature, epithelial cells from the bladder sample are surrounded
by neighbors in all directions. As a result, they exhibit a larger number of neighbors
and contact area fractions with respect to simple epithelia. Despite its classification
as a transitional tissue, from the morphological perspective, the urothelium presents
cells with similar characteristics to cuboidal ones.

• The esophageal epithelial tissue, characterized by a stratified structure, exhibits a
substantial number of neighbors for its cells. However, the average contact area
fraction of esophageal cells falls within the range of single-layer tissues, due to
the extended free surface of squamous cells on the esophagus luminal side. The
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distribution of cell features related to cell shape and size suggests that the inner
layers of the esophageal epithelium are composed of cuboidal-like cells.

• The unique geometry of the pseudostratified epithelial cells in the lung tube is
evident in their exceptional elongation and isoperimetric ratio values.

• The morphological features of epithelial cells in the bronchiole do not show any
significantly different value compared to other tissues. This, coupled with the ob-
servation of bronchial cells having a relatively lower average elongation, is consistent
with the classification of bronchial tissue as simple cuboidal.

In addition, EpiStats enables the calculation of area and the count of first and second-
order neighbors on 2D slices extracted from segmented volumes along the apico-basal axes
of the cells. For what concerns our epithelial samples, we compared the experimental 2D
statistics with the theoretical expectations derived from Lewis and Aboav-Weaire’s laws.
In this way, we assessed whether the epithelial tissues under investigation followed com-
mon organizational patterns. The analysis revealed deviations from theoretical results in
some epithelial samples.
Although the causes of these discrepancies are not fully understood, we hypothesized that
one possible explanation is the current algorithm’s difficulty in cases where cells lack a
clear apico-basal axis. Hence, future iterations of the study plan to develop an enhanced
algorithm that determines the slicing direction based on the local curvature of the tis-
sue. Additionally, we realized the need to implement algorithms for the identification of
different cell types within stratified tissues. This enhancement would enable us to sep-
arately analyze distinct features for subgroups of cells within the same sample, allowing
us to draw more refined conclusions about tissue structure and organization in stratified
epithelia.

The last step of our study focused on attempting to characterize epithelial tissues from a
mechanical perspective. Namely, as the tissue structure is heavily impacted by the dis-
tribution of stresses within and among cells, being able to model such a forces interplay
is crucial. To achieve this goal, we employed SimuCell3D, an efficient and versatile 3D-
DCM-based simulation software. SimuCell3D describes the interactions between cells in
tissue by means of a set of mechanical and numerical parameters. Therefore, the problem
of the characterization of epithelial tissue mechanics translated into a parameter estima-
tion problem. Specifically, the objective is to define a collection of mechanical parameters
such that the morphological discrepancy between the experimental and the simulated
steady-state geometry is minimal. In our case, this discrepancy was assessed in terms of
the mean value of (1− IoU) computed over the cells in the selected sub-samples.
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As our study represented one of the initial applications of SimuCell3D to diverse and
intricate biological samples, we confined our investigation to an exploratory analysis in-
volving two subsets of cells from the intestinal and bronchial epithelia. In addition to
this investigation, we developed several complementary tools, including a pipeline for the
refinement of 3D triangular meshes employed in the simulations and functions to analyze
and visualize the parameter screening outcomes.
In this project, we addressed the challenge of parameter estimation through a two-step
grid search approach. The initial stage involved screening default parameter ranges to
identify sub-intervals ensuring numerical stability and reasonable cell geometries in simu-
lation outcomes. Subsequently, in the second stage, the objective was to iteratively refine
the range of the most influential mechanical parameters through sequential screenings,
aiming to identify the parameter set that best aligns with the initial tissue geometry.
This process, applied to selected epithelial samples, helped identify suitable sub-ranges
for the numerical and mechanical parameters of the SimuCell3D model. Despite these ef-
forts, we were unable to obtain a single parameter configuration that accurately described
the structure of our experimental samples.
The potential reasons for this issue are diverse. Firstly, we found that the model de-
scribing cell-cell adhesion in the current version of SimuCell3D lacks the ability to offer
a comprehensive depiction of the interplay of forces. As a matter of fact, our screenings
indicated that the adhesion strength parameter had no impact on determining the final
simulation outcomes. Therefore, in future iterations of the project we plan to employ an
enhanced version of the adhesion model, whose implementation is currently underway by
the SimuCell3D developers. Secondly, to ensure the convergence of simulations to equilib-
rium within a reasonable time frame (5-6 days) while preserving numerical stability, our
parameter screening revealed the necessity of using a relatively small viscous damping
coefficient. However, this resulted in an underdamped system, introducing oscillations
that hinder reaching a proper steady state. To address this issue, we propose rerunning
the entire parameter screening process anew, aiming to identify a parameter configura-
tion linked to lower overall energy within the system. This lower energy regime can be
attained, for instance, by limiting the range for the bulk modulus parameter K. Lastly,
the absence of an automated parameter estimation pipeline makes the screening process
lengthy and demands substantial manual effort for the analysis of the outcomes. This
bottleneck hinders the exploration of more extensive combinations of parameters and the
use of larger epithelial samples. As an improved strategy for parameter estimation, we rec-
ommend the deployment of a novel approach based on operation research. This approach
should incorporate a fitting loss function and a suite of metrics designed to evaluate the
fidelity of simulation outputs, with the ultimate goal of fine-tuning the model parameters
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through the minimization of the loss.

In conclusion, the current status of our research offers meaningful outcomes relative to
the morphological characterization of the different epithelial tissues involved in our study.
Our analysis not only validated expected observations about tissue structure and orga-
nization but also highlighted non-trivial findings that set epithelia configuration further
apart. Moreover, the EpiStats library developed to answer our research questions consti-
tutes a versatile and powerful tool that answers the need for a unified, end-to-end pipeline
for the morphological analysis of 3D segmented tissues. Due to its accessibility and accu-
racy, we expect EpiStats to be a pivotal component of many future studies in the field of
epithelial biology.
On the contrary, the project does not provide any definitive evidence regarding the me-
chanical properties associated with epithelial tissues. The current simulation workflow still
outlines some major bottlenecks and weaknesses that must be overcome in future versions
of the work. Nonetheless, we proudly consider our study as a fundamental milestone to-
ward the implementation of enhanced versions of the SimuCell3D simulation model for a
more detailed understanding of epithelial mechanics.
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A.0.1. Ethics statement

The use of animals was approved by Canton Basel-Stadt (license number 2777/33495).
Experimental procedures were performed in accordance with the Guide for the Care and
Use of Laboratory Animals and approved by the Ethics Committee for Animal Care of
ETH Zurich. All animals were housed at the D-BSSE/UniBasel facility under standard
water, feeding, enrichment, and 12-hour light/dark cycles.

A.0.2. Mouse model

We isolated the epithelial tissues from E17.5 mice homozygous for Rosa26mTmG and
heterozygous for the ShhGFP-Cre allele (ShhGFP-Cre/+; Rosa26mTmG). The epithelial
cell membranes are labeled with GFP following CRE-mediated excision (Muzumdar et al.,
2007). Offspring from Shhcre x mT/mG breedings show membrane-targeted tdTomato
(mT) in all tissues, but have the mT cassette deleted for tissues expressing shh and
therefore express membrane-targeted EGFP (mG).

A.0.3. Immunofluorescence staining and optical clearing

The isolated tissues were fixed in 4% paraformaldehyde (PFA) in PBS (28908, Thermo
Fisher, brand name) for 1.5 hours at 4 deg. C. Samples were washed 4 times with PBSTx
(0.25% Triton X-100 in PBS) following fixation. Samples were incubated with CUBIC-1
clearing solution for 3 days at 37 deg C. Following the first clearing step, samples were
blocked for 2 days in 1% BSA (catalog number, brand name A7906, Sigma), 10% goat
serum (S26-100ml, Sigma) in PBSTx at 4 deg. C on a shaker. The samples were incubated
with the primary antibodies, anti-GFP (1:500, GFP-1020, aves) and anti-laminB1 (1:200,
702972, Thermo Fisher), for 2 days at 4 deg. C. The primary antibodies were diluted
in a blocking buffer. After primary antibody incubation, the samples were washed 3
times with PBSTx. The samples were incubated with secondary antibodies, goat anti-
chicken conjugated with Alexa Fluor 488 (1:200, A11039, Invitrogen), donkey anti-rabbit
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conjugated with Alexa Fluor 647 (1:200, A32795, Invitrogen), and DAPI (1:2000, 1mg/ml
stock solution, D9542, Sigma) for 3 days at 4 deg. C. The secondary antibodies were
diluted in a blocking buffer. After secondary antibody incubation, the samples were
washed 3 times for 15 minutes in PBSTx at 4 deg. C. Samples were fixed a second
time in 4% PFA in PBS for 30 minutes at 4 degrees C. Samples were washed 4 times
in PBSTx for 15 minutes at 4 deg. C. The samples were incubated in 50% CUBIC-2
solution diluted in ddH2O for 1 day. Then, they were then incubated in 100% CUBIC-2
until fully cleared (depending on sample size). During the 100% CUBIC-2 incubation,
the CUBIC-2 solution was exchanged every other day. Finally, they were immersed in a
freshly prepared CUBIC-2 solution. All CUBIC-2 incubations were performed at room
temperature.

A.0.4. Imaging of whole mount epithelial tissues

Cleared and stained samples were embedded in 2% agarose cylinders and incubated in
CUBIC-2 for 2 days. Images were acquired with a Zeiss Z.1 light sheet microscope using
a 20X 1.0NA Plan Neofluar objective (421459-9970, Zeiss).
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Figure 19: 3D rendering and 2D slices of the intestine villus epithelial tissue
sample.
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Figure 20: 3D rendering and 2D slices of the bronchiole epithelial tissue sample.
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Figure 21: 3D rendering and 2D slices of the esophagus epithelial tissue sample.



98 B| Appendix B

Figure 22: 3D rendering and 2D slices of the bladder epithelial tissue sample.
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