POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

AutomloT: Generating Smart Devices Interactions Using Android Ul

Automator for IoT Forensics

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Author: ANGeELO CLAUDIO RE

Advisor: PRoOF. ALESSANDRO CESARE ENRICO REDONDI

Co-advisor: DoTrT. FABIO PALMESE

Academic year: 2022-2023

Abstract

[oT forensics is a new branch of digital foren-
sics, gaining attention due to the rapid growth
of IoT devices. Its goal is to extract information
from such devices, to be later used for investi-
gations. However, there are many challenges in
the specific field of IoT network forensics. One of
these is the lack of labeled datasets, from which
it could be extracted reliable sources of evidence.
Such datasets should contain both the network
traffic and the device activity in the form of
(“E®VENTs”). Building such datasets requires
much time and human effort, bringing our focus
to this work. This work presents AutomloT, a
framework able to automate the interaction be-
tween a smart device and its companion app to
produce a labeled network dataset using Ul Au-
tomator framework. The tool generates events
while the network traffic is being acquired, and
all the operations performed are associated with
an activity log, allowing us to label the obtained
dataset. Finally, we analyze the existence of
“spontaneous” traffic, discerning it from those
related to the devices “BEVENTs”. We refer to
different data visualization techniques giving a
quantitative measure of the spontaneous traffic,
that represents about 60% of the whole dataset.

1. Introduction

IoT forensics is a new branch of digital foren-
sics that aims to extract information from de-
vices in the field of the Internet of Things. It
can be very challenging due to the nature of IoT
devices and the heterogeneous environment in
which they operate. Depending on where the in-
formation is gathered, IoT forensics deals with
different possible sources of evidence: our work
focuses on network traffic extracted from such
devices. In the specific field of network forensics,
gathering data related to IoT devices has a cru-
cial role in analyzing network traffic to discover
possible vulnerabilities and also to spot some ev-
idence that could be relevant in investigations.
Our research focuses on IoT smart home devices
and their network traffic. When dealing with
network traffic for forensics purposes, the major
limitation highlighted in the literature is the lack
of labeled datasets that can be used for extract-
ing evidence using ML /DL techniques. To ap-
ply ML techniques, such datasets should contain
network traffic and a label describing the device
activity, if any. Our work poses the goal of solv-
ing this gap, presenting a tool able to automate
the EVENTs generation to produce a labeled
network dataset, using the Ul Automator frame-

work to trigger the devices in the smart home
without involving human effort. The operations
performed while the traffic is collected are then
associated with an activity log generated by the
proposed framework, allowing us to label the ob-
tained network traffic traces and build the final
dataset. After describing the tool, we built our
dataset containing traffic traces associated with
activity logs from four different devices and an-
alyzed it to inspect the presence of spontaneous
traffic, which is made up of network data gen-
erated when a smart device is in its state and
is not triggered by the user. To conclude the
work, we use different data visualization tools to
measure the spontaneous traffic phenomenon by
correlating the activity log and the network traf-
fic dataset. The rest of the work is organized as
follows: Section 2 comments [oT Forensics and
Mobile App Testing Automation related work,
Section 3 describes the architecture of our sys-
tem and the implementation of the tool that we
have developed, Section 4 presents the results
obtained, Section 5 are the conclusions.

2. Related Work

Our work is connected to the IoT Network
Forensics subdomain and Mobile App Testing
fields. We selected two works concerning both
topics as a starting point for our research. These
papers involve the discovery and blocking of
non-essential IoT traffic destinations without
breaking the normal functioning of the mobile
app involved|2|, [1]. The authors propose a so-
lution to manage network traffic generated by
smart devices and their companion apps to in-
crease privacy and security. They classified the
network traffic as either critical or not criti-
cal. The critical label is associated with the
traffic essential for the smart devices to oper-
ate their main functions correctly. They have
also implemented two complementary methods
able to generate, identify (loTrigger) and block
(loTrimmer) non-critical traffic. To generate
network traffic from smart devices, they ex-
ploited the Monkey ! framework offered by An-
droid Studio. We consider this work the base-
line for the tool proposed in this thesis since our
primary goal is to automate the “6VENTSs” gen-
eration to automatically generate activity from

"https://developer.android.com /studio/test /other-
testing-tools/monkey

AT =
IMutomIST

=

~" Access Point
- —_—— Cloud

Services

Smart Devices

Figure 1: Overall Architecture

IoT devices and collect a labeled dataset. The
authors also provided a way to handle possible
failures in the interaction between the two com-
ponents, using screenshot matching. In partic-
ular, they compare the screenshots taken before
firing the sequence of events using Monkey, with
the screenshots registered after the events have
been executed. If the matching is correct, it
means the device has been triggered successfully.
As we will see later in this work, we avoided im-
plementing the same idea but we handled this
check directly in our code.

3. Project Overview

This section presents the main components of
the AutomloT framework: system architecture,
UI Automator test development, and the data
gathering process.

3.1. Architecture

Figure 1 sketches the architecture of the pro-
posed system and how the different entities com-
municate in the network. Two macro elements
constitute the architecture: the local network
where all the devices are located, as well as
the computer running the AutomloT software
for Android emulation, and the remote servers,
which usually take care of all the functionali-
ties executed by the IoT devices, checking their
operations and logging the activities, optionally
storing relevant data. The head of the frame-
work is the computer, which is used as a mobile
device emulator for the Ul Test automation.

3.2. Implementation

As discussed in previous sections, to collect a
labeled dataset containing network traffic with

the activity log, we need a tool to automate
the event generation using the Android appli-
cations to control the smart devices. The gener-
ated events induce state changes in the paired
smart device, usually causing the generation
of specific network traffic patterns for commu-
nication with the remote servers that should
check/execute/log the operations. A few works
in the literature have shown that it is possi-
ble to automate Android interactions with Mon-
key, an Android tool usually involved in mo-
bile testing to generate pseudo-random events
to see the robustness and check the functional-
ities of the mobile application tested. Monkey
is a command-line-based tool that exploits the
ADB [3| command line program to launch the
tests. In our scenario, we choose and adopt the
UI Automator framework that allows us to con-
duct cross-app functional black-box style UI In-
strumented Unit tests, but with complete con-
trol over the test execution to assign the label
correctly to the network dataset. It also belongs
to the Android toolchain as Monkey, and along
with Espresso 2, it is the primary tool Android
developers use for usual testing operations be-
fore the app release. The Ul Automator frame-
work can be programmed using Kotlin or Java:
in our case, we use the Kotlin programming lan-
guage to implement the AutomloT system func-
tions. To develop a Ul Instrumented Unit Test,
it is necessary to initialize a UiDevice object
and to collect a UlSelector with a GUI inspec-
tion tool. The UiDevice object provides access
to state information about the device: it repre-
sents the core component used to interact with
a UlElement exploiting a UlSelector. By using
a proper method (findObject) and passing as in-
put the selector, the UlDevice can interact with
a UIElement and emulate gestures performed on
the screen of the emulated device. Figure 2 re-
ports some examples of the gestures that can be
produced. Alternatively, it is possible to use the
click method to generate the tap gesture, passing
the pixel position of the UIElement that we want
to trigger as input, referring to the (x,y) coor-
dinates. The framework can use UlSelectors to
identify, detect, and select the UlElements that
are parts of a mobile application that can be in-
teracted with. The selectors are identifiers the
developer specifies during the app development

Zhttps://developer.android.com /training /testing/espresso

TOUCH GESTURES

@ c‘?a M- [I o
— - .. v ' - /I A\
TAP DOUBLE TAP DRAG SLIDE HOLD / PRESS
A L o o °
7 @ e L RS N

SWIPE ROTATE PRESS & DRAG PINCH SPREAD

Figure 2: Example of Gesture icons

process (e.g., resource 1D, text labels), or the
UlElement pixel positions. They can univocally
identify UlElements in the application: we man-
ually discover them by exploiting UIAutoma-
torViewer, which is an Android GUI inspection
tool that provides a convenient visual interface
to inspect the layout hierarchy (an XML file),
named Views, and shows the properties of Ul
components that are visible on the foreground of
the device. This way, we can create a Ul selec-
tor matching a specific visible property. Figure 3
depicts an example of UTAutomatorViewer GUI:
in this case, we show the part of the Tapo mobile
application and the area portion of a UlElement
with the corresponding coordinates that can be
used for generating the required gestures.

(0;0) X

® v

My home ~ (3) androidx.recyclerviewwidget.R
~ (0) FrameLay 9,871](540,
0) Fr
1 Camera 8

[42,884](52
jout [42,884]|
t [42,€

(x1=29,y1=871) | | ravoRITES

() .
(3) RelativeLayout [3'

Smart Bulb Smart Plug

android widget. FrameLayout
com.tplink.iot

Tapo_Comera_A26E > s (x2-54033=1179)

false

bounds [29,871](540,1179]

Figure 3: UTAutomatorViewer Example

Considering the previous basic blocks, we create
one Kotlin class for each unique device to gen-
erate the events. This choice was driven by two
factors: (i) the app can have different behav-
iors during the navigation of the various Views
to reach the one with the required Ul Element
to trigger, and (ii) the action needed to be ex-
ecuted to trigger the Ul Element usually differ
from device to device. Given this, there is no

general pattern to generate the events for all
the devices, so we create one different class per
device to implement all the events that a sin-
gle device can support. Each class is equipped
with some standard variables, attributes, and
methods, used to control the device: the at-
tributes manage a UiDevice element called De-
vice (immutable), an object model called smar-
tObjModel (immutable), and an object state
called smartObjState (mutable). Only the last
one can be changed during the test execution
since the device’s state must be updated depend-
ing on the action performed. The methods, in-
stead, allow us to perform actions, such as view
navigation, or event triggers. After implement-
ing all the methods required to trigger all the
functionalities for each device, two essential ele-
ments of the development should be given par-
ticular care: the activity logs and how to handle
possible exceptions that could arise during the
execution of the tests. For what concerns the ac-
tivity log, after executing a method, a shared file
is used to store information on all the activities
generated by smart devices. After the test exe-
cution, we exploit the ADB tool to extract the
log from the emulator after the data-gathering
phase. Exception handling is essential to de-
crease the source of test crashes and avoid mis-
alignment between the state of the smart device
and the companion app, which usually are re-
lated to backend problems or app feedback pop-
ups. For this reason, we introduce several coun-
termeasures as follows:

e We introduced a time delay set empirically
to 5 seconds that gives time to the Android
View to be loaded, before generating the
first event of the test.

e We added a time delay set empirically to
2 seconds between the different generated
events. In this way, the tests await a cer-
tain amount of time for the smart device to
apply the change of state correctly before
proceeding to the next event, giving time
to the cloud server to check and reply to
the state change.

e We use "try-catch" statements all over the
software parts that trigger an event. If
something goes wrong, the test keeps work-
ing properly for next events, and a NOP
operation is added to the activity log, noti-
fying the error, instead of the correct event

log.

e A proper function is introduced to recog-
nize when a popup View appears over the
device’s screen and to close it accordingly,
allowing the test to continue as expected.

4. Experimental Results

This section presents the testbed we referred to
for evaluating our framework, the primary data
analysis techniques used for the work, and the
experimental results obtained from the differ-
ent smart devices considered. We set up a lo-
cal network with four different Smart Home de-
vices produced by two different brands: Tapo
L530E Smart Bulb, Tapo P100 Smart Plug,
Ezviz LB1 Smart Bulb, and Ezviz T31 Smart
Plug. The firmware is proprietary software for
all four devices, and each device can be con-
trolled from the corresponding proprietary ap-
plication: Fzviz and Tapo. All the devices are
powered on, and connected to the Access Point
at the beginning of the tests. To capture the
network traffic while generating the events, we
used the LinkSys WRT3200ACM Access Point,
which supports the OpenWrt firmware [4] and
can run tcpdump 2 to sniff the network traf-
fic. We refer to an open-source network feature
extraction framework to capture the interested
features directly [5] for the selected devices, fil-
tering the traffic by MAC address, and comput-
ing statistics on a time base with windows of X
seconds. The tests are executed for 48 consec-
utive hours approximately, generating a dataset
containing more than 3000 events. The network
traffic is stored in a different folder for each de-
vice, producing an outcome of one PCAP and
one CSV per device. During the event gener-
ation, the NOP operations were 116 over 3000
events, meaning that less than 4% of the activ-
ities incurred errors. For the data analysis, we
correlated the network dataset with the activity
log to assign a label to the data. We performed
a twofold kind of analysis: we created Time Se-
ries plots to understand how the network traffic
changes concerning the events, and we created
Sankey Diagrams to discover how many pack-
ets were associated with events and spontaneous
traffic what IPs/services or ports were used. The
analysis has been conducted using Python li-
braries, filtering the data by the smart devices’

3https://www.tcpdump.org/

Ezviz Bulb Mean Packet Size over Time

600

500 -

400 A

300 A

Packet Size [B]

Emm Aggregate Value
« ! o« Event

21:30
21:35
40
21:45
21:55

n
—
~

21

jZEMLLMIHJI‘HiHH o I

22:20 4
22:25 - —
E——-—'

22:00
:05 A
22:10

22

—
o~
o~

Timestamp [s]

Figure 4: Ezviz LB1 Time Series Example

Mac addresses.

We have aggregated data using different time
window values (0.5, 1, 5, and 10 seconds) with
the Feature-Sniffer tool. We have compared the
four different window values and created the cor-
responding time series plots. Based on the qual-
itative appearance of the different plots, we de-
cided to report the results for the case using 2-
second time windows. The behavior of the time
series for all four devices is very similar. To avoid
redundancy and reduce space, we focus only on
one of the four devices: the Ezviz Light Bulb.
To discern EVENT’s Network Traffic (ENT) and
Spontaneous Network Traffic (SNT) we use a
time window of 2 seconds in the proximity of
the event generated. This value is not the aggre-
gation time window, but another window used
to discriminate what packets are considered in
the events and what are instead associated with
spontaneous traffic. In this way, if the event
occurred at time x, all packets in the range [x-
1,x-+1] are considered generated by the event,
while the rest are associated with spontaneous
traffic. This value was chosen considering the
delay in the event generation phase. Figure 4
reports the time series generated using 2-second
time windows for the Ezviz Bulb devices, se-
lecting the mean packet size as the aggregate
value. The improve the visibility, we selected
only 1 hour of traffic to highlight the relation be-
tween the aggregate value and the events. The
blue bars in the plot represent the aggregated
value, while the red lines report the time when
an EVENT occurred for the device. As we can

see, the red bars usually correspond to a spike
in the bar plot. From the plot, we can conclude
that a simple way exists to distinguish event-
associated traffic from spontaneous traffic. In-
deed, a simple threshold-oriented approach can
distinguish if the traffic is produced by generat-
ing an event, or if the device is spontaneously
transmitting packets to the cloud servers. For
example, for the Ezviz smart bulb, a threshold of
150 Bytes in the average packet size of 2-second
windows can represent a good division between
ENT and SNT, meaning that all window values
above the threshold can be considered as ENT,
and the rest as SN'T.

To conclude our analysis, we have analyzed pos-
sible differences in Sankey Diagrams from pack-
ets sent (outgoing flow) and received (incom-
ing flow) for the smart devices, under events
and silent periods. A Sankey diagram graphi-
cally represents the network traffic by aggregat-
ing the packets by protocol, transport layer port,
and destination. Figure 5 reports the Outgoing
Sankey Diagram of the Ezviz Smart Bulb device
under silent periods.

The Sankey of Ezviz brand devices SNT pro-
duced a lot of network traffic compared to Tapo.
This could be why the emulated device suffered
from random crashes during the Ezviz app exe-
cution. Using an actual device could solve this
problem, which was partially countermeasured
by increasing the RAM used by the emulator.
Outgoing and Incoming traffic have identical be-
haviors. Different devices from the same brand
do not show a significant change and result in

Network Spontaneous Traffic Outgoing for EZVIZ Smart Bulb LB1

55239

64:f2:fb:df:fbiel *.amazonaws.com. 31006 TCP;

—8666
Afpm

—53 DNS—

=39866 UEMB=
—123 NTP—

Figure 5: Ezviz LB1 Outgoing Sankey Diagram
SNT Example

very similar diagrams. Instead, for what con-
cerns the same device but from different brands
(e.g., the two bulbs), we see that there is a lot
of DNS traffic and noise traffic, maybe related
to the integration of external services, or third-
party analytics services as spotted for instance
in the papers presented in section 2. The main
aspect of spotting here is using AWS web ser-
vices to host the backend of the smartphone ap-
plications for both Tapo and Ezviz. There is
no direct interaction between the device and the
controlling application, but everything passes
through the Internet, given that no local des-
tination is contacted. We can point out the to-
tal packet size generated by Ezviz LB1 Smart
Bulb as quantitative data. The results com-
pared to other smart devices are very similar.
For the Sankey Diagram, we analyzed more than
70k packets, of which 45k are labeled as spon-
taneous, and 25k are related to EVENTs. To
summarize the obtained results, Ezviz smart de-
vices generate a lot of network traffic, which
is not strictly related to the use of the device,
which may have a significant impact on energy
consumption and forensic analysis tasks. Tapo
smart devices are simpler logic-wise: they usu-
ally generate the strictly necessary traffic, only
when events trigger them. We have demon-
strated how collecting a network traffic dataset
automatically is possible by exploiting a mo-
bile app testing framework. We can now an-
swer our questions. The smart devices produce
spontaneous (unsolicited) traffic, representing
more than 60% of all the network traffic the
device produces. Finally, we have found a sim-

ple methodology based on threshold approaches,
with which we can distinguish spontaneous from
network traffic, detecting when the device is be-
ing used only from network traffic

5. Conclusions

In this work, we designed and tested Au-
tomloT, a new tool that automatically generates
“BVENTs” that allows the collection of labeled
network data for Smart Home devices. After
presenting the framework logic and its imple-
mentation, we collected our dataset and pro-
posed an analysis of four smart home devices.
We study the network traffic from the devices
and try to understand if network traffic exists
when the devices are not explicitly triggered by
the user, trying to understand a relation be-
tween the traffic and the triggered events. We
measure the spontaneous traffic that represents
about 60% of the total traffic exchanged by the
considered smart devices. The tool we presented
can be the baseline for future works to build new
labeled network datasets, for Machine Learning
forensics analysis. It is possible to extend the
framework to work for other smart devices not
considered in this proposal, to be able to work
in different IoT networks.

References

[1] Anna Maria Mandalari, Daniel J. Dubois,
Roman Kolcun, Muhammad Talha Paracha,
Hamed Haddadi, and David Choffnes. Block-
ing without breaking: Identification and mit-
igation of non-essential iot traffic, 2021.

[2] Anna Maria Mandalari, Roman Kolcun,
Hamed Haddadi, Daniel J. Dubois, and
David Choffnes. Towards automatic identifi-
cation and blocking of non-critical iot traffic
destinations, 2020.

[3] Open Handset Alliance and commercially
and sponsored by Google. Android Debug
Bridge (ADB) Docs, 2022.

[4] OpenWrt. OpenWrt project, 2022.

[5] Fabio Palmese, Alessandro EC Redondi, and
Matteo Cesana. Feature-sniffer: Enabling
iot foremsics in openwrt based wi-fi access
points. In 2022 IEEE 8th World Forum
on Internet of Things (WF-1oT), pages 1-6.
IEEE, 2022.

	Introduction
	Related Work
	Project Overview
	Architecture
	Implementation

	Experimental Results
	Conclusions

