

EXECUTIVE SUMMARY OF THE THESIS

Physically Based Rendering of Animated Point Clouds

TESI MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING – INGEGNERIA INFORMATICA

AUTHOR: MATTEO POZZI

ADVISOR: MARCO GRIBAUDO

ACADEMIC YEAR: 2020-2021

1 Introduction

Rendering is a key concept in the Computer

Graphics field since its very first years. Among the

many techniques developed for this task, a famous

one is Physically Based Rendering, born in the ‘80s

and aiming to achieve photorealistic lighting and

currently widely used in many applications such

as videogames, design and many other fields

involving the creation of digital images. Through

the years, Computer Graphics pipelines have been

optimized to work with polygonal meshes but, in

recent years, the spread of scanning systems using

radar or laser scanners have led to the diffusion of

a different kind of 3D model using only point

primitives, which have been called point clouds.

This class of models have many advantages with

respect to meshes and could be heavily used in

Computer Graphics applications by substituting

them. At present day most applications using point

clouds use simple rendering techniques to display

only the color of the model acquired during

scanning, but there exist other applications

involving animations which needs a point cloud to

be better contextualized in the environment and a

photorealistic look would be desired. In such

scenarios Physically Based Rendering could be

used to allow the animated point cloud having a

photorealistic look under any external lighting

condition. In this work we will show how

Physically Based Rendering can be applied to

animated point clouds as to polygonal meshes to

obtain a photorealistic appearance of the model.

2 State of the Art

2.1 Point Clouds

Point clouds are a set of high-density individual

points used to represent volumetric visual data,

which can be computer-generated or directly

captured from the real world, where each point

carries various attributes like the position in the

Figure 2.1 - Point cloud example

representing a monkey

Executive summary Matteo Pozzi

2

space and the color. Since there is no connectivity

information, storage and transmission of point

clouds are simpler, as points can be acquired,

stored and transmitted in any order as long as the

whole set of points is considered. The most

common solutions used to acquire point clouds are

LiDAR-based scanning and photogrammetry, but

other alternatives are possible, for example

videogrammetry, RGB-D cameras and stereo

cameras.

The first standardization activity for Point Cloud

Compression was initiated in 2014 by the MPEG

group [1] and consists in two approaches: video-

based, where the point cloud is projected in a 2D

space and existing standards used in video

encoding compression are exploited, and

geometry-based, which works directly in a 3D

space using a data structure called octree.

2.2 Rendering

Rendering is the process of automatically creating

a 2D or 3D digital image from a scene defined by a

series of objects. It is a very expensive task in terms

of calculation and time and the key is to find a good

balance between image quality and rendering

speed. A good choice is to use algorithms that

produce images with an acceptable perceived

quality for the specific application we intend to use

them for and don’t require too much time to be

computed.

Physically Based Rendering, or PBR, is an

interesting and currently widely used collection of

rendering techniques used in real time rendering

which tries to mimic how light interacts with

surfaces in a physically plausible way. An

additional advantage is that it is possible to create

different materials by changing physical

parameters and making models look correctly

under any lighting condition without the need to

resort to coding hacks, as instead is needed with

different pipelines.

To be physically based, the pipeline has to fulfill

three conditions: satisfy the energy conservation

principle, be based on the microfacet theory and

use a physically based BRDF (Bidirectional

Reflective Distribution Function). PBR is often

used in combination with Image Based Lighting to

produce even more realistic and physically

accurate results, by transforming the environment

into a cubemap that can be used in the lighting

equations as a big light source to capture the

environment’s global illumination. PBR with

Image Based Lighting looks a good suit to create

images containing point clouds with a

photorealistic look.

3 Physically Based Rendering

of Animated Point Clouds

To conduct the experiments an animated point

cloud will be used, where each frame is stored in a

different file, to better study the impact of lighting

on a non-static model. . The specific models which

are going to be used as reference come from the

basketball_player sequence provided by [2], which is

a collection of 600 frames stored in .ply format.

3.1 Point Cloud normals check

The first step is to make sure that all the available

point clouds come out with correctly estimated

normal vectors associated to points. To make this

check the software MeshLab is used, which allows

to visualize the whole point cloud and the normals

associated to its points.

It turns out that many frames of the animation are

decorated with correct normal vectors but, in some

frames, these have been erroneously estimated and

are oriented inward the model (Figure 3.2). Since

even the models with correct estimated normals

Figure 2.2 - Environment's cubemap used in Image

Based Lighting Figure 3.1 - Point Cloud frame

visualized in MeshLab

Executive summary Matteo Pozzi

3

look a bit rough and “squared”, all frames have

been subjected to normal vectors re-computation,

to make the models look as smooth as possible.

The operation is performed with a filter called

“compute normals for point sets” available in

MeshLab, which computes the normal vector of

each point by estimating the plane tangent to the

surface from the point neighborhood.

After the operation, all point clouds have correct

normal vector information associated to points and

can be imported into Unity.

3.2 Importing models into Unity and

PBR shader

Unity has no native package allowing to import

and directly use in a project a .ply asset, so it is

necessary to use a custom importer to load the

point clouds into the project. For this purpose, a

package available on GitHub called Pcx [3]

developed by the user Keijiro has been added to

the project and used to import the models. The

package also provides a basic unlit shader that

displays the point cloud with its original points

color, which will be used, with a minor

modification, as baseline to compare the PBR with.

However, the importer has an issue: it hasn’t be

designed to import point clouds with normal

vectors and hence normals are not parsed and

included in the imported models. So, the parser

needed to be slightly modified as well to include

normal vectors.

After having solved the issue, the PBR shader can

be developed. To be faster in the development, the

Unity’s Universal Render Pipeline with

ShaderGraph support is enabled. A lit shader

graph, which contains all the parameters needed

by PBR like metalness and smoothness, is created

and applied to a frame of the point cloud. The

comparison between the point clouds rendered

with the two techniques and with different lighting

conditions is shown in Figure 3.3.

As can be noted, the model rendered with PBR

looks different with respect to the incoming light

direction and intensity, as opposed to the unlit one

which instead looks exactly the same under any

lighting condition.

In the next sections a couple of relevant scenes

developed during the work are exposed.

3.3 Test scene: background 360°

video of an indoor basketball

court

In this first test scene the objective is to try to better

contextualize the point cloud model by inserting it

into an environment it might be found in. The

background choice fell on a 360 degrees video

uploaded on YouTube by the Columbia

International University representing an indoor

basketball court with some people playing around.

The video comes up in the equirectangular format,

so it can be easily rendered on the scene’s skybox

using a Render Texture and the built-in

Skybox/Panoramic shader.

Figure 3.3 - Comparison between the point clouds rendered

with PBR (left) and unlit (right) shaders

Figure 3.2 - Frames with correct (left) and wrong

(right) estimated normals

Figure 3.4 - Depth issue: when zooming the camera, the

background doesn't zoom with the point cloud

Executive summary Matteo Pozzi

4

A few issues in the rendered scene can be spotted

related to the integration of the point cloud with

the video: since the background is rendered on the

skybox, there is no sense of depth when the camera

is moved towards the model, and when the camera

is rotated the model looks like fluctuating over the

background.

In this setting nothing can be done to solve the

other issues since the Unity’s skybox represents the

content of the scene placed on an infinite distance

from the camera and will always be rendered

behind any other 3D model inserted in the scene.

To produce realistic scenes, other 3D models need

to be placed together with the point cloud, with the

background having a content on a sufficient

distance to prevent unrealistic behaviors when the

images overlap.

3.4 Test scene: outdoor basketball

court in a daylight environment

Since a background video alone is unusable due to

the introduced issues, other 3D models are needed

to be placed in fore-midground to contextualize the

point cloud model. Regarding the 3D model, the

choice went to an outdoor basketball court which

is shown in Figure 3.5, while for the background a

360 degrees video recorded on a sunny beach in

California with some beach volley fields has been

chosen. After having adjusted some light intensity

parameters to better simulate daylight, the point

clouds are inserted into the scene.

Although the unlit point cloud, being very bright,

suits quite well the surrounding environment, it

still is not as realistic as the point cloud rendered

with PBR which shows a darker appearance due to

occlusions and self-occlusions of the model,

noticeable on the neck of the player, on the t-shirt

and on the lower part of the ball. When using PBR

many smaller details become more

distinguishable, like the t-shirt folds which due to

the harder shadows produced by self-occlusion

become more highlighted, for example regarding

the upper part of the clothing.

It is also clear how, with PBR, the incoming light

direction is visible on the model, being the left side

of the player in shadow, while this is not

happening on the unlit point cloud. In conclusion

it can be said that in a daylight environment the

PBR point cloud is more suited to realistically

reflect the external lighting condition with respect

to a point cloud using a standard shader.

3.5 Test scene: playing with

metalness and smoothness

parameters

One of the most powerful features provided by

PBR is its capability of emulating metallic and

glass-like materials, thanks to the microfacet

theory and the energy-conserving principle. In this

scene the focus will not be on integrating a point

cloud inside an environment but on demonstrating

how point clouds, as meshes, can be used to render

different type of materials, for example perfect

Figure 3.5 - 3D model of an outdoor basketball

court

Figure 3.6 - Comparison between PBR (left) and unlit (right)

shaded point clouds in daylight environment

Executive summary Matteo Pozzi

5

mirrors. As background, various environment

textures rendered on the skybox will be used

without the basketball court model. To render a

material representing a perfect mirror, the

smoothness and metalness parameters are both

modified to 1.0. In Figure 3.7 the point cloud

reflecting the environment as a perfect mirror is

shown for a couple of sample environments.

It is evident how the point cloud, when placed in

different environments showing different lighting

dynamics, still looks physically accurate regardless

of the specific environment.

4 Applications

Although at present day the use of point clouds

might still not be very affordable in many

circumstances due to the high cost of producing

them, there are many fields that could potentially

benefit from a wide exploitation of such models.

Three example macro areas are:

Learning: point clouds could be used in guided

tours, by acquiring guides as animated point

clouds with audio that can be rendered in

Augmented Reality to give tourists higher

flexibility on the tour, or in sports where specific

movements need to be learnt, like martial arts and

dance. The use of a point cloud representing a

trainer of the discipline can be used to effectively

study the movements to reproduce the target

technique.

Advertising: point clouds can be used to sponsor

clothing online, in place of the many pictures

usually needed to show the item from different

angulations or also generate an animated avatar

wearing the item itself and reflecting the customer

movements showing how the item fits.

Entertainment: point clouds could be used in

videogames to render specific objects and save the

time needed to create a 3D mesh by designers, or

in animated movies and immersive experiences.

The use of PBR is not mandatory in any

application, but as shown, using point clouds with

just their own color results in having a model

disconnected from the environment in which is

placed and gives a strange look to the scene. By

using PBR, the point cloud fits better into the scene

and gives a better overall appearance to the

rendered image.

5 Conclusion

In this work the goal was to demonstrate how a

point cloud rendered with PBR could achieve

better realism during visualization with respect to

a point cloud rendered with a basic unlit shader

using just the original vertices colors of the model.

It has been observed how with PBR a point cloud

better integrates with the surrounding

environment in any lighting condition, by casting

shadows due to direct lighting and self-occlusions.

It was also shown that it is possible, for a point

cloud using PBR, to render different kind of

materials as glass-like and mirrors in a physically

plausible way. As point clouds are becoming more

and more popular, using PBR to render them

would be a benefit for many applications, going

from simple model visualization to immersive

experiences in Virtual or Mixed Reality.

This work was intended to show the potential of

using PBR to render point clouds but there are

many areas and topics that were left uncovered

and beyond its purpose, which can be subject of

future developments for improvement, like the

efficiency of the process to visualize an animated

point cloud.

Figure 3.7 - Point cloud rendered as a perfect mirror placed

in two sample environments -

Executive summary Matteo Pozzi

6

6 Bibliography

[1] MPEG-PCC, "Introduction to the MPEG-PCC

project," 2019. [Online]. Available:

https://mpeg-pcc.org/.

[2] Y. Xu, Y. Lu and Z. Wen, "Owlii Dynamic

human mesh sequence dataset," in

ISO/IEC/JTC1/SC29/WG11 m41658, 120th

MPEG Meeting, Macau, 2017.

[3] Keijiro, "Pcx," GitHub Repository, 2021.

[Online]. Available:

https://github.com/keijiro/Pcx.

