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1. Introduction
Upper extremity (UE) function recovery is es-
sential to improve the quality of life and it is
a top priority for people with spinal cord in-
jury (SCI) and stroke. Rehabilitation is cru-
cial to promote brain plasticity and regain lost
function, however, improvement profiles might
change over time and do not always follow a pre-
dictable pattern.
Various assessment scales, such the Fugl-Meyer
Assessment (FMA) and the Action Research
Arm Test (ARAT) are commonly used to evalu-
ate UE function in stroke patients. Scales used
to assess UE function in SCI patients include the
International Standards for Neurological Classi-
fication of Spinal Cord Injury (ISNCSCI), the
Spinal Cord Independence Measure (SCIM), and
Graded Redefined Assessment of Strength, Sen-
sibility and Prehension (GRASSP). Although
such scales are useful for measuring functional
capacity, they may not accurately assess real-
world performance due to their subjective na-
ture and lack of specificity.
Recovering the use of UE can be challenging for
several reasons: financial pressure on the health-

care system which results in early discharge, lack
of outcome measures that take into account the
performance (and not only capacity) mainly at
home, and long distances.
Recent years have seen advancements in daily
life assessment and rehabilitation using wear-
able technologies like accelerometers and iner-
tial measurement units (IMU). However, these
methods fail to capture complex hand and fin-
ger movements [1]. Additionally, patients with
spasticity or a limited range of motion may find
it difficult to use such devices.
First-person vision (FPV) technology combined
with deep learning algorithms has been devel-
oped for detecting the hands, objects, and in-
teractions and to monitor hand movements in
real-life contexts [2]. Through FPV it is pos-
sible to capture the user’s point of view and,
if the camera is worn on the head, to focus
on hand movements and manipulation. Com-
pared to third-person vision, where the camera
is fixed and "watches" the person from an ex-
ternal perspective, FPV offers a more realistic
and engaging experience. Previous studies have
investigated the feasibility and validity of us-
ing FPV technology to measure hand use and
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function in individuals with SCI and in stroke
survivors [2][3]. However, the main drawback is
that, although accurate in detecting hand-object
interactions, FPV fails to discriminate interac-
tions in presence of "non-standard" grasps and
compensatory strategies. The research hypoth-
esis is that such limitation can be overcome by
combining FPV with surface electromyography
(sEMG). sEMG is a non-invasive technique that
involves placing small electrodes on the surface
of the skin to detect electrical signals from mus-
cle contractions and it has been used in various
studies to investigate muscle activation patterns
and to track progress in therapy [4].
Therefore, this thesis aims to develop a multi-
modal classification algorithm that combines
FPV and sEMG to identify functional hand-
object interactions during daily life activities.
To evaluate the feasibility of the multi-modal ap-
proach, data were collected on healthy subjects
during standardized tasks resembling activities
of daily living (ADLs) in a lab setting.

2. Materials and Methods
2.1. Participant and Experimental

Protocol
The study was conducted on 10 healthy adults
(6 males and 4 females with an average age of
27) at the Biorobotics Institute, Scuola Superi-
ore Sant’Anna, Pisa (Italy) and was approved
by the Joint Ethical Committee of Scuola Su-
periore Sant’Anna and Scuola Superiore Nor-
male (Nr. 3/2023). Participants wore a sleeve
with dry sEMG sensors, and a wearable camera
mounted on their foreheads. We used the follow-
ing equipment: OTBioelettronica Sessantaquat-
tro device (OTBioelettronica, Turin, Italy) for
sEMG acquisition (sampled at 2k Hz), an ar-
ray of 32 dry MXene electrodes [5] and a GoPro
Hero 8 (GoPro Inc., California), that recorded
footage at 30 frames per second with a resolu-
tion of 1920x1080 pixels. The sEMG amplifier
included an auxiliary channel (AUX), connected
to a trigger circuit including a button and two
LEDs. The button was pressed at the start and
end of each task. As a result, power was sup-
plied to the LEDs, and 3.3mV-pulses were trans-
mitted to the AUX. This LED-activated switch
provided offline synchronization between sEMG
data and videos.

The experimental protocol involved the simulta-
neous recording the of sEMG signal and videos
of activities. Each session, lasting 60 minutes,
consisted of three phases, including setting up
the sEMG system on the subject’s forearm, set-
ting up the camera, and recording task execu-
tion.
In this study, following the strategy from Ban-
dini et al. (2022) [2], we defined functional in-
teraction as a manipulation of the object, any
contact with a fixed or portable object, while
non-functional interaction referred to no con-
tact between the hand and the object, any self-
contact and any contact with another person.
Each subject was asked to perform the follow-
ing set of functional tasks (that were repeated
three times, with each repetition lasting for five
seconds followed by a five-second resting pe-
riod): box and block test, pouring water, writing
a sentence, and typing a message on a smart-
phone. The maximum voluntary contraction
(MVC) was also performed and the resulting
data were used for sEMG signal normalization
(MVC data were not used for the detection of
functional / non-functional interactions).

2.2. Data Analysis
Using Matlab R2022b, we conducted data anal-
ysis according to the following pipeline:

1. Manual labelling
2. sEMG and FPV synchronization
3. Dataset split
4. Interaction detection from sEMG

(a) Feature extraction
(b) Feature selection
(c) sEMG performance

5. Interaction detection from FPV
(a) Detection extraction
(b) Side correction
(c) FPV performance

6. Interaction detection by combining sEMG
and FPV
(a) Performance comparison (single-

modal vs multi-modal)

2.2.1 Manual labelling

Manual labelling was performed from each video
to identify:
• the ground truth of the hand-object interac-

tion state (i.e. functional interaction (=1)
or non-functional interaction (=0));
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• the ground truth of the bounding box coor-
dinates of the hands, and the detected hand
side (left or right);

• the beginning and end frames of each task
(i.e., frames with the LED switched on).

2.2.2 sEMG and FPV synchronization

A script was created to automatically align the
spike signal from the trigger channel with the
corresponding frame that detected the LED.
This enabled the synchronization of ground
truth frames with the sEMG samples.

2.2.3 Dataset split

The performance of the hand-object interaction
detection was evaluated on sEMG, FPV, and
their combinations. 70% of the data (i.e., 7 ran-
domly selected participants) was used for train-
ing and validating the algorithms, while the re-
maining 30% (3 participants) was used as the
test set. The dataset split was repeated 12 times
to assess the approach’s robustness to variations
in the data across subjects.

2.2.4 Interaction detection from sEMG

Feature extraction First, inter-task periods
(i.e., intervals when the participants prepared
themselves for the next task) were removed.
A Notch filter (2nd-order infinite impulse re-
sponse (IIR) bandstop filter) with a cut-off fre-
quency of 49 Hz and 51 Hz was applied to remove
the power line interference of 50 Hz. The signal
was then filtered with a Butterworth bandpass
filter at 10-250Hz.
Each channel was normalized to the maximum
peak achieved during the MVC recordings. The
highest amplitude value was obtained by recti-
fying the signal and calculating the maximum
value over a 100 ms moving average window.
Principal Component Analysis (PCA) was then
applied, projecting the 32 signals onto the first
11 principal components, which accounted for
over 90% of the total variance of the data. This
choice of 11 components was justifiable given
that there are approximately 11 detectable su-
perficial forearm muscles.
The sEMG signals were windowed using four dif-
ferent window lengths (250ms, 500ms, 750ms,
and 1s) with 50% overlap. From each window,

twelve time-domain (TD) and nine frequency-
domain (FD) features were extracted. Six time-
domain features were generated based on the
rectified signal amplitude, while the other six
required the signal to be enveloped (using a
moving average with a window of 100 ms, i.e.
200 samples) before feature extraction. A Fast
Fourier transform was used to convert the sEMG
signal in the frequency domain and extract FD
features from the resulting power spectral den-
sity (PSD). Some of the features included inte-
grated EMG (IEMG), average amplitude change
(AAC), mean absolute value (MAV), median ab-
solute deviation (MAD), waveform length (WL),
log detector (LD), root mean square (RMS),
variance (VAR), simple square integral (SSI), co-
efficient of variation (COV), kurtosis (KURT),
skewness (SKEW), mean frequency (MNF), me-
dian frequency (MDF), total power (TP), mean
power (MP), peak frequency (PKF), first, sec-
ond, and third spectral moments (SM1, SM2,
SM3), and variance of central frequency (VCF).
Since 21 features were extracted from 11 PCs, a
total of 231 features were achieved for each time
window.
The ground truth of the interaction state, rep-
resented by an array of 1s and 0s (see section
2.2.1), was also divided into windows, and a
value of 1 was assigned if the majority of samples
indicated functional interaction and 0 otherwise.

Feature selection A feature ranking was per-
formed on the training set using the Maximum
Relevance Minimum Redundancy (MRMR) al-
gorithm, which identified the most important
and non-redundant features. We selected the
top 6, 12, and 23 most predictive features, rep-
resenting 2.5%, 5%, and 10% of the total number
of features respectively.

sEMG performance Four classifiers were
compared for detecting the hand-object inter-
action state from sEMG features: support vec-
tor machines (SVM) with linear and radial ba-
sis function (RBF) kernels, random forest (RF),
and k-nearest neighbour (kNN). The selected
features were the predictors, and the ground
truth of the interaction state served as the re-
sponse variable. Hyperparameter tuning in-
volved testing various combinations of hyper-
parameters and selecting the one that yielded
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the highest accuracy and F1-score. The Leave-
One-Subject-Out Cross-Validation (LOSO-CV)
method was used for validation, and the best-
performing hyperparameters were applied to the
test set.
Training and testing were performed only on one
combination of the dataset split to identify the
best algorithm, which was then trained on the
other 12 combinations. The sEMG classification
performance was evaluated using accuracy, F1-
score, precision, recall, and specificity metrics.

2.2.5 Interaction detection from FPV

Detection extraction The video clips were
split into frames and Shan et al.’s deep learning
model [6], which implements a Faster-RCNN,
was used to locate the hands, determine their
contact state, and identify the object they are
in contact with. The detection results were
saved in CSV files, one file per video, with 12
columns containing information about detected
hands and objects, their bounding box coor-
dinates, confidence scores, contact states (0:no
contact, 1:self contact, 2:contact with another
person, 3:contact with portable object, 4:contact
with fixed object), offset vectors (offset between
the hand and the object), and hand side (left or
right).
Just like the sEMG signal processing (see para-
graph 2.2.4), the inter-task periods were re-
moved using the manually marked start-end
frames of each task.
Due to the presence of at least two hands (we en-
sured not to interfere with the subject’s task ex-
ecution so that only his right and left hands were
within the camera view) and objects, each frame
resulted in more than one detection. Therefore,
a series of processing steps were required to ob-
tain a maximum of two detections per frame
(i.e., one for each hand). The first step involved
removing the object detections to focus on the
hand detections. Then the hand detections with
a confidence value lower than 0.5 were discarded.

Side correction To remove duplicated hand
sides (i.e., detection in which left and right
hands were not differentiated), a side correc-
tion step was implemented, using four different
criteria. The first three criteria were: (1) con-
sidering only the duplicated detection with the
highest confidence score; (2) assigning "right"

("left") to the right-most (left-most) detection;
and (3) retaining the duplicated detection with
the uppermost coordinates. A fourth criterion
was based on machine learning algorithms that
were trained to recognize the correct side based
on the coordinates of the hand bounding boxes.

FPV performance We selected as functional
interactions (label=1) the frames where the con-
tact state was either 3 or 4 (i.e., contact with a
movable and fixed object, respectively), whereas
the frames with a contact state < 3 belonged
to the non-functional interaction class (label=0)
(see section 2.1 and [2]).
Finally, the interaction state output and the rel-
ative manual ground truth were processed simi-
larly to the sEMG signal (see section 2.2.4) using
consecutive windows of different duration (250
ms, 500 ms, 750 ms, and 1 s) with a 50% over-
lap. A value of 1 was assigned if the majority
of frames indicated functional interaction and 0
otherwise. By comparing the interaction state of
the test set with the manually identified ground
truth, we were able to obtain the performance of
the FPV in detecting hand-object interactions,
also evaluated in terms of accuracy, F1-score,
precision, recall, and specificity metrics.

2.2.6 Interaction detection by combining
sEMG and FPV

We then combined the sEMG and FPV modal-
ities using three different approaches. The first
(FPV + EMG) involved concatenating the in-
teraction state from the FPV analysis with the
most relevant features extracted from the sEMG
signal. We proceed to train the machine learn-
ing algorithm that performed best in the sEMG
single-modal approach. The second (FPV AND
EMG) and third (FPV OR EMG) approaches
used the AND and OR logical operators, respec-
tively, to combine the interaction state predicted
by the sEMG signal and FPV analysis. The clas-
sification performance combinations were eval-
uated by comparing the predicted interaction
state with the relative ground truth, using the
same five metrics as those used for the single-
modal approaches.

Performance comparison (single mode vs
multimodal) The non-parametric Kruskal-
Wallis test was used to compare the classifi-
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cation performance of the different approaches
(single and multi-modal). If the obtained p-
value was lower than 0.05, a post-hoc analy-
sis was performed using Dunn’s test with the
Bonferroni correction. Two statistical analyses
were conducted: one compared the three algo-
rithms for combining sEMG and FPV, and the
other compared the best-performing combina-
tion method with two single-modal approaches.

3. Results
3.1. sEMG Results
PCA In order to reduce data dimensionality
we considered only the first 11 PCs as, on aver-
age, they covered over 92.2% of the variance.

sEMG feature selection The top six fea-
tures ranked by the MRMR algorithm were:
WL, MDF, KURT, MNF, SM3 and PFK.

sEMG performance Table 1 depicts the
classifier and the relative training and valida-
tion accuracy and F1-score. The SVM model
trained with the RBF kernel, using the top six
sEMG features, and the 1-second window length
had the best performance.

N Classifier Accuracy F1-score

6 SVM (RBF) 0.685 0.720
6 SVM (linear) 0.616 0.587
6 RF 0.679 0.703
6 kNN 0.650 0.669
12 SVM (RBF) 0.666 0.683
12 SVM (linear) 0.601 0.584
12 RF 0.661 0.683
12 kNN 0.618 0.640
23 SVM (RBF) 0.667 0.681
23 SVM (linear) 0.608 0.590
23 RF 0.676 0.696
23 kNN 0.625 0.650

Table 1: Number of features (N), classifier, ac-
curacy and F1-score of the sEMG training and
validation performance, tested on window length
of 1 second. The best classification performances
are highlighted in bold.

As for the testing on the 1-second window length
test set, the sEMG approach achieved an accu-

racy of 0.660, an F1-score of 0.708, a precision of
0.626, a recall of 0.814 and a specificity of 0.501.

3.2. FPV Results
The videos in the study, for each subject, were
about 8.5 minutes long on average and had a
total of about 15,300 frames, which were reduced
in resolution to 848x480 pixels.

Side correction The second criterion (i.e., as-
signing "right" ("left") to the right-most (left-
most) detection) had the highest scores, with an
accuracy value of 0.91. It was also chosen be-
cause it is the most suitable for daily life activity
recording.

FPV performance Based on the F1-score,
the best results were obtained with the 1-second
window length. The five metrics values that
described FPV performance in detecting hand-
object interactions were the following: the ac-
curacy value was 0.528, the F1-score was 0.682,
the precision was 0.518, the recall was 0.997, and
the specificity was 0.047. In particular, FPV
achieved high recall values but had very low
specificity.

3.3. Combination Performance
Comparison of combination techniques
Table 2 reports the results of the three differ-
ent methods implemented for combining FPV
and sEMG predictions. Significant differences
were found in accuracy, precision, and speci-
ficity among the three multimodal approaches,
while none were observed in the F1-score. The
"FPV OR EMG" combination performed sig-
nificantly worse than both "FPV + EMG"
and "FPV AND EMG" which, on the other
hand, had similar results. However, in terms
of recall, "FPV OR EMG" significantly outper-
formed both "FPV + EMG" and "FPV AND
EMG".

Single-modal vs multimodal approach
The "FPV + EMG" method showed the lowest
interquartile range for both accuracy and F1-
score among the combinations, indicating less
variability in the data. Therefore it was selected
for the following analysis which compared the
two single modalities to the "FPV + EMG" (Ta-
ble 3).
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Metric Median (interquartile range) Kruskal-Wallis p-value Post-hoc p-value

FPV+EMG FPV AND EMG FPV OR EMG A B C

Accuracy 0.716 (0.067) 0.719 (0.080) 0.598 (0.043) <0.01 1 <0.01 <0.01

F1score 0.743 (0.061) 0.723 (0.092) 0.717 (0.030) 0.055 / / /

Precision 0.712 (0.075) 0.722 (0.059) 0.560 (0.036) <0.01 1 0.01 <0.01

Recall 0.849 (0.118) 0.771 (0.124) 0.998 (0.004) <0.01 0.525 0.01 <0.01

Specificity 0.631 (0.143) 0.665 (0.133) 0.165 (0.069) <0.01 0.969 <0.01 <0.01

Table 2: Statistical analysis on three combination options. A= FPV + EMG compared to FPV AND
EMG; B= FPV + EMG compared to B=FPV OR EMG; C= FPV AND EMG compared to FPV OR
EMG. Significant difference p-value=0.05

Metric Median (interquartile range) Kruskal-Wallis p-value Post-hoc p-value

FPV EMG FPV+EMG D E F

Accuracy 0.650 (0.067) 0.653 (0.044) 0.716 (0.067) 0.003 1 0.005 0.016

F1score 0.745 (0.037) 0.698 (0.068) 0.743 (0.061) 0.017 0.082 1 0.023

Precision 0.598 (0.048) 0.635(0.036) 0.712 (0.075) <0.01 0.114 <0.01 0.173

Recall 0.990 (0.007) 0.776 (0.125) 0.849 (0.118) <0.01 <0.01 <0.01 1

Specificity 0.297 (0.146) 0.520 (0.081) 0.631 (0.143) <0.01 0.002 <0.01 0.913

Table 3: Statistical analysis single-modal vs multi-modal approach. D=FPV compare to EMG; E=FPV
compare to the multimodal approach FPV+EMG; F=EMG compare to the multimodal approach
FPV+EMG. Significant difference p-value=0.05

Based on the Kruskal-Wallis test, we saw that
there were significant differences between the
three approaches for all metrics. The multi-
modal approach had higher scores for accuracy,
precision, and specificity, while FPV alone per-
formed better in terms of recall. The multimodal
system had a significantly higher F1-score than
the single EMG and a similar one compared to
the FPV approach.

4. Discussion
We introduced and validated, on healthy adults,
a novel multi-modal approach that integrates
FPV and sEMG to automatically detect hand-
object interactions.
As for the sEMG classification performance, the
SVM with RBF kernel (which can capture the
non-linear correlations between the data points
with more intricate decision limits), the 1-second
window length, and the first six selected features
(WL, MDF, KURT, MNF, SM3, PFK) best pre-
dicted functional interactions. Such features can
capture various aspects of the sEMG signal re-
lated to muscle like activation, endurance, co-

contraction, and asymmetry during hand-object
interactions. As suggested by the high value
of most of the metrics, the sEMG approach
was able to accurately distinguish between func-
tional and non-functional interactions to a cer-
tain extent. However, the system had low speci-
ficity, which indicates its lower ability to identify
non-functional interactions.
The analysis of FPV classification performance
revealed that the 1-second time window length
was the most effective, similar to EMG. The high
recall suggested that the FPV performed well in
recognizing functional interactions. However, it
struggled to identify non-functional interactions,
as demonstrated by the very low specificity. We
were interested in detecting hand-object interac-
tions. These occur over a span of a few seconds
rather than milliseconds, which may explain why
the longer window length of 1 second performed
better in both single-modal approaches.
From the non-parametric Kruskal-Wallis test
and post-hoc analysis, we observed that the
"FPV + EMG" and "FPV AND EMG" com-
binations had comparable performance. Even
though "FPV OR EMG" was successful in iden-
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tifying almost all hand-object interactions, as
demonstrated by the very high recall, it had
the poorest performance across every other met-
ric. Both the "FPV + EMG" and "FPV AND
EMG" combinations yielded encouraging results
in terms of correctly predicting most functional
interactions, as indicated by the high values
across most metrics. In addition, the specificity
of the multi-modal analysis improved compared
to both single-modal approaches. These findings
suggest that the combination of FPV technology
and sEMG analysis is an effective approach for
capturing functional and non-functional interac-
tions.
Previous studies ([2][3]) have investigated the
feasibility and validity of using egocentric video
technology to measure hand use and function in
individuals with SCI and stroke survivors liv-
ing in the community. The studies found that
the technology accurately captured hand move-
ments and hand-object interactions, suggesting
that it is an effective method for analyzing hand
use and hand roles during daily activities in
these populations. However, FPV is unable to
differentiate between different types of interac-
tions when unconventional grasping techniques
and compensatory methods are used, therefore a
multimodal approach can be helpful in address-
ing such issue.

Limitations and Future Work The study
had several limitations, including a small sample
size, limited testing on healthy individuals, and
a focus on specific tasks that may not capture
the full range of hand movements. Addition-
ally, issues such as prolonged acquisition time,
short battery life, and extensive manual label-
ing were encountered. Some proposed solutions
for future work include expanding the sample
size, testing the approach on individuals with
hand impairments, evaluating performance out-
side the clinical setting, optimizing the wearable
sleeve design, and distributing the labeling task
to more than one researcher.

5. Conclusion
The study found that using a combination of
FPV and sEMG is an effective way to capture
hand-object interactions in healthy individuals.
This information is important because under-
standing how the hand interacts with objects

can help tailor therapy and maximize treatment
outcomes. The sEMG single-modal approach
shows promising results for both types of in-
teractions but needs improvement in reducing
false positives and negatives. The FPV single-
modal approach can identify functional interac-
tions but is not as good at detecting the non-
functional ones, as shown by low specificity.
The choice of combination significantly impacts
performance and, overall, the multi-modal ap-
proach resulted in positive outcomes for all five
evaluation parameters. Future research will in-
volve validating our findings on subjects with
SCI or stroke, both in a clinical setting and in
their homes.
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