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Abstract

The stochastic multi-armed bandit problem is well understood in settings where the re-
ward distributions are subgaussian or have bounded support. In this thesis, we revisit
the classic regret minimization problem in the stochastic bandit setting where the arm
distributions are allowed to be heavy-tailed. We work under the weaker assumption that
the distributions have finite moments of maximum order 1 + ϵ, with ϵ ∈ (0, 1], which are
uniformly bounded by a constant u. These heavy-tailed distributions naturally arise in
common real-world contexts where uncertainty has a significant impact, including finance,
telecommunications and network traffic. Thus, it is important to understand and develop
a general theory and efficient algorithms, both computationally and statistically, that have
wider applicability and are tailored to handle such practical scenarios effectively. Any ap-
proach that requires prior knowledge on the distribution parameters is not applicable in
these cases, since ϵ and u are not known in real-world, and not even easily quantifiable. In
this work, we move towards the adaptive heavy-tailed bandit setting, where no information
is provided to the agent regarding the moments of the distribution, not even which of
them are finite. Besides proving that no algorithm, without any additional assumption,
can match the performances of the non-adaptive setting, the main novelty we introduce in
the thesis is AdaR-UCB. It is an algorithm based on the optimism in the face of uncertainty
principle that is capable of being fully adaptive with respect to the two parameters ϵ and
u. Under a specific but not restrictive distributional assumption, namely the truncated
non-positivity, it is able to achieve performances comparable to the optimal approaches
knowing the aforementioned quantities. To the best of our knowledge, this is the first
regret minimization strategy in the stochastic adaptive heavy-tailed bandit setting that
does not require any prior knowledge on ϵ nor u, but still achieves optimality, with a regret
upper bound matching the well known lower bound for the standard non-adaptive setting.
Finally, we evaluate numerically and compare our algorithm on a range of heavy-tailed
bandit instances, noting that it outperforms several state-of-the-art baselines.

Keywords: Multi-Armed-Bandit, Distributions with Heavy Tails, Regret Minimization,
Full Adaptivity, Optimism in the Face of Uncertainty, Truncated Non-Positivity.





Abstract in lingua italiana

Il modello Multi-Armed Bandit stocastico è stato ampiamente studiato in ambienti dove
le ricompense sono variabili aleatorie subgaussiane o con supporto finito. In questa tesi,
rivisitiamo il classico problema di minimizzazione del regret nel contesto stocastico dove
le distribuzioni delle azioni sono a coda pesante. Lavoriamo sotto l’assunzione che abbiano
momento finito di massimo ordine 1 + ϵ, con ϵ ∈ (0, 1], maggiorato uniformemente dalla
costante u. Queste distribuzioni con code pesanti emergono naturalmente in contesti del
mondo reale, quali la finanza, le telecomunicazioni e le reti di traffico. È quindi impor-
tante sviluppare una teoria generale e algoritmi efficienti che abbiano un’applicabilità più
ampia e gestiscano efficacemente questi scenari pratici. Qualsiasi approccio che richieda
una conoscenza a priori sui parametri delle distribuzioni non è applicabile in questi casi,
poiché ϵ e u non sono noti né quantificabili nel mondo reale. In questo lavoro, ci ori-
entiamo verso lo studio dei modelli stocastici bandit in un contesto adattivo, in cui non
viene fornita all’agente alcuna informazione sui momenti delle distribuzioni, nemmeno su
quali siano finiti. Oltre a dimostrare che nessun algoritmo, senza alcuna assunzione ag-
giuntiva, è in grado di eguagliare le prestazioni degli approcci non adattivi, la principale
novità introdotta nella tesi è AdaR-UCB. Si tratta di un algoritmo basato sul principio
dell’ottimismo di fronte all’incertezza, che è in grado di essere completamente adattivo
rispetto ai due parametri ϵ e u. Sotto una specifica ma non restrittiva assunzione di
non-positività troncata, è in grado di raggiungere risultati paragonabili agli approcci ot-
timali che conoscono le suddette quantità. Al meglio delle nostre conoscenze, questa è
la prima strategia di minimizzazione del regret, nell’ambito del modello bandit stocastico
adattativo a code pesanti, che non richiede alcuna conoscenza a priori né di ϵ né di u,
ma raggiunge comunque l’ottimalità, con un limite superiore sul regret che combacia con
il ben noto limite inferiore per il problema standard non adattativo. Infine, valutiamo
numericamente e confrontiamo il nostro algoritmo su una serie di istanze a coda pesante,
notando che empiricamente ha performance migliori dello stato dell’arte in letteratura.

Parole chiave: Modello Multi-Armed-Bandit, Distribuzioni con Code Pesanti, Mini-
mizzazione del Regret, Completa Adattività, Non-Positività Troncata.
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1| Introduction

In numerous practical scenarios, decision makers perform a series of choices over time,
where each one can impact future outcomes and decisions. These challenges, termed
as sequential decision-making tasks [54], are prevalent in areas like automated control,
robotics, gaming, and financial sectors.

In solving these kinds of problems, Reinforcement Learning (RL) algorithms [90] are
employed, as a specific differentiation of Machine Learning (ML) techniques [78]. In a
typical RL task, an agent has to take actions in an environment. The execution of an
action has multiple consequences. It generates a reward for the agent and changes the
state of the environment. The goal of the agent is to choose actions to maximize the
cumulative reward. Of course, the difficulty for the agent is that the consequences of the
actions are stochastic and, sometimes, it may be better to sacrifice immediate reward to
gain a larger long-term reward. Such tasks, indeed, necessitate the decision-making entity
to consider the long-term implications of its choices and the unpredictable nature of its
surrounding. The dynamics of the environment are not known, and the agent’s knowledge
is incomplete, implying that the decision strategy must be learnt through interaction.

The concept of Multi-Armed Bandit (MAB) [14] has emerged as a cornerstone in the
realm of these decision-making algorithms under uncertainty, since it provides simple
mathematical models for these type of challenges and dilemmas we all face. In particular,
bandit problems are less general than RL problems because of their nature in which the
state of both the environment and the agent is fixed, i.e., it is not influenced by the chosen
action.

The name “Multi-Armed Bandit” is derived from the analogy of a gambler at a casino,
who faces multiple slot machines (or “one-armed bandits”), each one promising a potential
reward with unknown payout probabilities. The gambler wants to maximize her earnings
by playing the arm with highest winning probability, but, since no prior information is
given, she initially may want to spend her money trying different slot machines and record
all the rewards she received. As soon as there is enough evidence that an option is better
than another, the gambler will play consistently the best identified arm only, with the
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purpose of maximizing the total payoff she gains during this process.

The fundamental dilemma a learner faces when choosing between uncertain options is
captured here, since the decision maker operates under uncertainty and performs choices
that will maximize long-term gains. Each pull of a slot machine arm represents a decision,
and the main challenge lies in deciding whether to explore a new machine or exploit
a machine that has provided good returns in the past. The gambler must weigh the
immediate reward of a known machine against the potential of a higher payout from an
untried machine.
Should one explore an option that looks inferior or exploit by going with the option that
looks best currently? Finding the right balance between exploration and exploitation is
at the heart of all bandit problems. This dilemma is known in the MAB literature as
the exploration/exploitation dilemma. A MAB strategy should find the optimal trade-off
between exploration and exploitation, to maximize the total reward the learner obtains
over a horizon of time.

Bandit algorithms fall under the umbrella of Online Learning (OL) [44], a subfield of
Machine Learning characterized by a fundamentally different approach compared to tra-
ditional ML solutions. Classical ML paradigms often work in a batch (or offline) learning
fashion. For instance, in a supervised learning task, a model is trained following a specific
algorithm and using a predefined set of data (learning phase), and it is then deployed in
production with the target of predicting on new data. Such a paradigm mandates the
availability of the entire dataset before training, and the training typically occurs offline
due to its intensive computational demands. These offline methods face drawbacks like
inefficiency in time and space, and scalability for large-scale applications, because the
model usually has to be retrained to incorporate new training data.

In contrast to batch learning algorithms, OL is suited for data arriving in sequential order,
where a learner aims to learn and update the best predictor for future data at every
step. Since the predictive model can be updated instantly for any new data instances,
OL algorithms are far more efficient and scalable for large-scale real-world data analysis
tasks, where big data are arriving at a high rate. Therefore, an online problem setting
is characterized by getting a single data point at a time. MAB problems adhere to this
paradigm since we start with no data, we select an action, observe the corresponding
outcome, update our model and iterate. A MAB policy is an algorithm which chooses
the next arm to play based on the current model, which incorporates all the information
available and obtained from any data we have observed so far. OL algorithms are usually
evaluated computing the regret, which corresponds to the loss in cumulative reward the
decision-maker suffers with respect to the maximum possible reward.
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In the realm of MABs, the stochastic bandit problem is a significant variant where rewards
are generated independently of past rewards, and based on fixed but unknown probability
distributions. Unlike other settings where rewards might be deterministic, stochastic
bandits introduce an element of randomness, making the exploration-exploitation trade-
off even more challenging.

Traditional MAB problems assume reward distributions which are easy to treat theoret-
ically, but not frequent in practical cases. In many real-world scenarios and domains,
including finance, telecommunications, and internet traffic, these distributions exhibit
heavy-tailed (HT) characteristics [88], where extreme values (or "tail" values) are more
probable than what is predicted by classic distributions, i.e., subgaussian ones (see Section
2.3). These large values occur at an anomalously high frequency, which means, in the con-
text of MAB, that there can be rare but extremely high rewards. Traditional stochastic
MAB algorithms might not be well-suited for such scenarios because they exploit classical
estimators which are badly affected from "tail" values. For this reason, they might lead
to not enough exploration, with the risk of not encountering the mentioned high rewards.
Studying heavy-tailed stochastic MAB settings is necessary to develop algorithms that
can effectively handle such reward distributions and ensure that the potential of receiving
high rewards is not overlooked.

It is also relevant to note that the mathematical formulation of bandit problems, which will
be presented in the next chapter, leads to a rich structure that is strictly connected to other
branches of mathematics. Over the decades, this topic has evolved into a multidisciplinary
research area with contributions from computer science, operations research, economics,
and statistics, and this is what have fascinated us the most to start an in-depth analysis
of it.

1.1. Applications

The significance of the general MAB framework extends beyond the casino. Multi-armed
bandits serve as foundational models for various real-world scenarios where decisions must
be made sequentially under uncertainty.

Thompson’s initial exploration of bandit problems in 1933 [91] was driven by the challenges
in clinical trials design, where multiple treatments for a specific ailment existed. The
dilemma was to select the best treatment in terms of effect on an upcoming patient.

However, with the advent of modern technology, the applications of bandit problems have
expanded significantly, especially in the industrial sector. In the following, we survey
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some of them.

• Online platforms are prime candidates for bandit algorithms since they can be tai-
lored based on a user’s specific sequence of interactions. In online recommendation
systems [57], the goal is to suggest different items in order to understand the tastes
of the clients (explorative action) while maximizing their interests for the items
proposed (exploitative action), thus being suitable to be formulated with the MAB
model.

• Advert placement, where the challenge is about determining the most suitable ad-
vertisement to showcase to a website’s incoming visitor. Firms may decide among
different multiple versions of their ads in order to learn which one is the most ef-
fective [85]. Similarly, the task of website optimization revolves around selecting
the best design elements for a webpage, such as typography, visuals, and overall
layout. The success of these choices is often gauged by user actions, like clicks or
other target behaviors. However, it is worth noting that these scenarios are way
more complex than the foundational bandit problem. The collection of ads might
evolve, the feedbacks from users might be delayed, and the additional information
on context may be necessary [66].

• Source routing, where the learner tries to direct internet traffic sending packets
through the shortest path on a communication network [29]. The chosen route for
each packet can vary, and the cost is typically the time required for packet delivery,
influenced by the congestion on the chosen route’s components. There are several
possible routes and the learner must choose one for each packet to minimize the
transmission cost.

• Game-playing problems, in which decisions are made by simulating potential game
progressions with search trees. Bandit algorithms, especially those tailored for tree-
structured bandit problems, can enhance the exploration of the vast game progres-
sion tree by concentrating on the most promising paths from the root to the leaves.
This approach was effectively employed in the MoGo gaming [40] enabling it to play
the game of Go at an elite level, with a strategy [55] inspired from a well-known
bandit algorithm.

These are just some examples of practical applications, but the list might be way broader,
including waiting problems and resource allocation, such that bandit problems are way
more relevant that what we could expect at a first sight.
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1.2. Motivations

The study of heavy-tailed multi-armed bandits is crucial for several reasons. Most of the
existing works assume that the probability distributions of the rewards are parametric,
e.g. subgaussian (see Section 2.3), or bounded. While this assumption enables the use
of strong theoretical tools, it is often limiting in many practical scenarios such as, for
example, financial environments [37] or network routing problems [67], where it is rarely
the case that the arm distributions are bounded or have tails with a strong decay. In
particular, it is well known that the stock returns in developed economies follow heavy-
tailed distributions that typically have finite moments of order at most 4 [36]. Higher
moments are not guaranteed to exist. Furthermore, daily exchange rates and income or
wealth distributions may have heavier tails with finite moments of order less than 2 [80].
Thus, it is important to understand and develop a general theory and efficient algorithms,
both computationally and statistically, that have wider applicability and are tailored to
handle such real-world scenarios effectively.

Moreover, with the rise of Big Data and the increasing complexity of modern systems,
the occurrence of outliers is becoming more common. Applications like risk assessment,
anomaly detection, and recommendation systems can benefit from algorithms that con-
sider heavy-tailed behavior.

In traditional stochastic MAB, the exploration-exploitation trade-off is relatively straight-
forward due to the well-behaved distributions of rewards. However, in heavy-tailed scenar-
ios, the potential for rare but extremely high rewards makes the decision-making process
more complex. Algorithms need to be more explorative to encounter these rare high
rewards, and, in this case, they are also likely to be more robust and adaptable. For
instance, [93] shows that for heavy-tailed reward distributions, the regret of traditional
algorithms behaves differently compared to light-tailed distributions, emphasizing the
need for specialized approaches in scenarios with heavy tails.

In a nutshell, while the traditional MAB literature provides a foundational understanding
of the exploration-exploitation dilemma, the study of heavy-tailed multi-armed bandits is
essential for a more comprehensive and realistic approach to sequential decision-making
in environments with uncertain and extreme outcomes.

To conclude, current available approaches tackling the stochastic HT bandit setting as-
sume the knowledge of the real parameters that characterize the reward distributions.
This is a strong requirement since in practical cases these parameters are usually not
known. On one side, it is not possible to be completely sure if real-world samples are
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generated or not from a heavy-tailed distribution, so even knowing its parameters seems
like an over-complicated unrealistic task. This fact gives a proper driving force to the
study of new algorithms which are unaware of these quantities, that, from now on, we
will refer to as fully adaptive with respect to the parameters. Thus, in our setting, we will
consider them to be unknown to the agent.

1.3. Goal of the research

As mentioned above, commonly adopted algorithms in the setting of stochastic heavy-
tailed multi-armed bandits have currently practical limitations. In particular, it is canon-
ical to assume the knowledge of two parameters, mentioned in the following as ϵ and
u and, to the best of our knowledge, every optimal regret minimization strategy in the
literature requires at least one of them as an algorithm’s input.

The main open problem we want to target with this work is to extend the current results
trying to analyze whether it is feasible to develop an approach which is fully adaptive
with respect to ϵ and u, not requiring their prior knowledge but still achieving comparable
performances to other approaches knowing them. More in detail, it is relevant:

• to understand if there is any additional underlying assumption needed;

• to stress any theoretical guarantees underlying the possible novelty in algorithmic
approaches;

• to validate how a potential new algorithm performs empirically.

1.4. Contributions

The main contribution of this research is twofold. Firstly, we show that in general it is
not possible to achieve the same order of performance of the state-of-the-art approaches
while being unaware of the aforementioned two quantities. Secondly, we will show that,
under a specific but not restrictive distributional assumption, this is indeed possible.

More precisely, we will discuss the role of the truncated non-positivity assumption [45],
and show that, when this assumption is violated, is not possible anymore to guarantee
the existence of an adaptive algorithm w.r.t. ϵ nor u achieving comparable performance
to optimal approaches in literature.

We will also propose Adaptive Robust UCB (shortly AdaR-UCB), an algorithm based on
the optimism in the face of uncertainty principle that is capable to be fully adaptive w.r.t.
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the two parameters characterizing the reward distributions. We show that, under the
distributional assumption mentioned, it is able to attain the same theoretical guarantees
of the well known RobustUCB algorithm from [22], matching the order of the regret lower
bound for the classic heavy-tailed scenario.

To wrap up, we provide a theoretical analysis to bound the regret measure that a learner
might incur while using AdaR-UCB algorithm, and perform a wide experimental campaign
to compare what we proposed with state-of-the-art policies for heavy-tailed and traditional
MAB problems. Therefore, our research is a blend of learning theory novelties, algorithm
design and numerical evidencies.

1.5. Thesis Structure

The contents of this thesis are organized in the following six chapters.

We start, in Chapter 2, with an overview of the different aspects of stochastic MAB
problems. We introduce here the mathematical notation and formulation for the heavy-
tailed setting, together with the objective and metric to measure performances. Moreover,
we outline the main concentration inequalities that will be relevant and used in successive
chapters. Eventually, we introduce the concept of lower bounds and some well-established
theoretical results and approaches to describe the properties and difficulties of a bandit
setting.

In Chapter 3, we depict the landscape of the state-of-the-art adaptive heavy-tailed bandit
methods. We start presenting the most known algorithms for the standard stochastic
setting and the heavy-tailed one, and then we move straightforward to a detailed review
of the most remarkable extensions to approaches requiring less prior knowledge on the
rewards distributions. A comparative discussion of the properties of these algorithms is
provided here. The goal of this chapter is to guide the reader in a conscious understanding
of the fundamental motivations of this work.

In Chapter 4, we study how the lower bounds on regret change moving from a standard
non-adaptive setting to an adaptive one. It is relevant to stress this point to understand
the theoretical guarantees we could expect from the approach we propose in the new
real-world setting, where the parameters characterizing the rewards are not known.

Chapter 5 is finally devoted to answer our main research question, with an extensive
description of AdaR-UCB algorithm. We first describe in details a probabilistic reasoning
to retrieve an adaptive robust estimator, followed by an illustration of the unique weak
distributional assumption that is required to drive our analysis. The focus of this chapter
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is on the theoretical guarantees supporting AdaR-UCB performance, with its pros and cons
underlined. Many concentration inequalities on the new estimator are proved, to then
conclude with a detailed proof of the main optimality result.

Chapter 6 is the one where our proposed solution is finally validated empirically. We use
a simulated setting to understand the possible numerical results on regret performance in
all the circumstances, both when our key assumption is satisfied and when not. We make
here different experiments to compare AdaR-UCB performances against baseline methods.

In Chapter 7, we summarize the most relevant achievements of this thesis and we highlight
the points of strength and weakness of the proposed approach. Furthermore, we suggest
possible extensions of this work.

Appendix A reports more details on the notation used throughout the thesis, with other
basic functional analysis inequalities. Appendix B, instead, briefly outlines few more side
derivations and possible concerns that were not raised in the main text.
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2| Preliminaries

In the research, we investigate the stochastic multi-armed bandit problem under the
assumption of heavy-tailed reward distributions. Thus, we present here the mathematical
setting and formulations to understand properly the next chapters.

2.1. Stochastic Multi-Armed Bandits Model

A bandit problem is a sequential game between a learner and an environment. The game
is played over an horizon of T ∈ N rounds, and in each round t ∈ [T ]1, the learner first
chooses an action It (called “arm”) from a given set A, and the environment then reveals a
reward Xt ∈ R. The reward is sampled from the distribution corresponding to the selected
arm and independently from past choices and rewards, given that action. Moreover, we
have that It should only depend on the history Ht−1 = (I1, X1, . . . , It−1, Xt−1), since
the learner cannot peek into the future when choosing their actions. A learner adopts
a policy to interact with an environment, with the most common objective of choosing
actions that lead to the largest possible cumulative reward over all T rounds, which is
given by

∑T
t=1Xt.

In their original formulation [84], Stochastic Multi-Armed Bandits were defined with
probability distributions on [0, 1], but the setting could be more general [12].

Definition 2.1 (Stochastic MAB). A Stochastic Multi-Armed bandit problem is a col-
lection of probability distributions ν = (νi : i ∈ A), where A is the finite set of available
actions.

Remark 1 (Notation).

• Let K = |A| <∞ be the number of arms: it is known, as the number of rounds T,
with T ≥ K ≥ 2 (“multi-armed”).

• Let ν1, . . . , νK be the K probability distributions which, on the other side, are un-
1We use [T ] to denote the set {1, . . . , T}.
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known to the learner. If they were known, one would always pull the arm with the
highest mean reward in order to maximize the cumulative rewards.

As expected, the fundamental challenge in bandit problems is that the environment is
generally unknown to the learner. The only partial information about the bandit instance
ν = (νi : i ∈ A) is that ν ∈ E , i.e. the true environment lies in the environment class E .

We focus here on unstructured environment classes E , set of bandits where A is finite and
there exist sets of distributionsMi for each i ∈ A such that:

E = {ν = (νi : i ∈ A) : νi ∈Mi for all i ∈ A} ,

or, in short, E = ×i∈AMi. The product structure means that, by playing action i, the
learner cannot deduce anything about the distributions of actions j ̸= i. Some typical
choices of unstructured bandits are listed in Table 2.1.

Name Symbol Definition

Bernoulli EKB
{
(B (µi))i : µ ∈ [0, 1]K

}
Uniform EKU

{
(U (ai, bi))i : a,b ∈ RK with ai ≤ bi for all i}

Gaussian (known var.) EKN (σ2)
{
(N (µi, σ

2))i : µ ∈ RK
}

Gaussian (unknown var.) EKN
{
(N (µi, σ

2
i ))i : µ ∈ RK and σ2 ∈ [0,∞)K

}
Finite variance EKV (σ2) {(Pi)i : VarX∼Pi

(X) ≤ σ2 for all i}
Bounded support EK[a,b] {(Pi)i : Supp (Pi) ⊆ [a, b]}
Subgaussian EKSG (σ2) {(Pi)i : Pi is σ-subgaussian for all i}
Heavy-tail EKHT (ϵ, u) {(Pi)i : EX∼Pi

[|X|1+ϵ] ≤ u}

Table 2.1: Typical environment classes for stochastic bandits, from [62]. For subgaussian
distributions see Section 2.3

.

Let now νi be the probability distribution associated to arm i, for i ∈ [K]. The ran-
dom variable Xi,t is the payoff (or reward) of arm i when this arm is pulled at time t.
Independence also holds for rewards across the different arms.

In the thesis, we consider stochastic MAB in a stationary setting only, where the distri-
butions do not change over time, such that the rewards of the arms can be modeled with
i.i.d. random variables. We have:

µi,t = µi,t+1 =: µi, ∀i ∈ A, ∀t ∈ [T ],
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where µi,t = E [Xi,t] = E [Xi,1] for all t and µi is the expected reward of arm i ∈ [K].

Nevertheless, many problems can be modeled through non-stationary MAB [39], since
distributions may change over time. Few examples include parameters control [32], in-
vestments [87], the dynamic spectrum access problem [79] and evolving diseases in clinical
trials [94].

Due to its high generality, there are different variants of the MAB model. For some
applications, the assumption that the rewards are stochastic and stationary may be too
restrictive. What if the stochastic assumptions fail to hold? What if they are violated for
a single round? Or just for one action, at some rounds? Will the algorithms developed be
robust to smaller or larger deviations from the modelling assumptions? An extreme idea
is to drop all assumptions on how the rewards are generated, except that they are chosen
without knowledge of the learner’s actions and lie in a bounded set. If these are the only
assumptions, we get what is called the setting of adversarial bandits.

We will not tackle any aspect of these problems, but it is for sure worth to mention
them, so that the reader can have broader overview of the topic. In an adversarial multi-
armed bandit [11, 13] the rewards are generated by a process that cannot be treated as a
stochastic distribution. They are given by an adversary, who may take advantage of the
corner cases in which a bandit algorithm performs badly. As a consequence, adversarial
algorithms must be robust to adversary choice of the rewards (although under some
specific, weaker, definitions of optimality).

2.2. Learning Objective and Regret

In a general stationary stochastic bandit model, the optimal arm is the arm the largest
expected reward. We let i∗ denote the index of such an arm, and we define the optimal
expected reward as µi∗ = max

i∈[K]
µi.

Further, let It denote the arm played at time t and Ni(t) denote the number of times arm
i is chosen by the policy during the first t plays:

Ni(t) =
t∑

s=1

1Is=i,

where 1Is=i represents the indicator function, equal to 1 if Is = i, and 0 otherwise. In
general, Ni(t) is random, because for all rounds t except for the first, the action It depends
on the rewards observed in rounds 1, 2, . . . , t − 1, which are random, hence It will also
inherit their randomness.



12 2| Preliminaries

We recall that a policy is an algorithm able to choose It given the past history of obser-
vations and actions, and that the goal of a bandit algorithm is to maximize the sum of
cumulative rewards. Therefore, to quantify the performance of a policy we introduce the
concept of regret.

Definition 2.2. [21] The (cumulative) regret of a policy operating in the context of
stochastic MAB setting, after T plays, is defined as:

R̃T := max
i∈[K]

T∑
t=1

Xi,t −
T∑
t=1

XIt,t.

It measures the loss due to the fact that the policy does not always play the best arm.

The target of the agent is to minimize its regret after T rounds, which is equivalent to
minimizing the loss incurred during the learning process.

Since both the rewards and the player’s actions are stochastic, we introduce the following
form of expected regret.

Definition 2.3. [21] The expected (cumulative) regret of a policy operating in the context
of stochastic MAB setting, after T plays, is defined as:

RT = E[R̃T ] = T max
i∈[K]

µi − E

[
T∑
t=1

Xi,t

]
= Tµi∗ −

T∑
t=1

µit ,

where it is the realization of random variable It, and the expectation is taken with respect
to the randomness both in the algorithm and the environment.

It represents the average regret of the forecaster with respect to the best arm on average.

Clearly, the expected-regret is a weaker form of regret as it takes as optimum the action
which is optimal only in expectation. However, this form of regret is more suitable for the
purpose of our analysis, therefore in subsequent discussion, unless otherwise specified, we
only consider expected-regret, dropping, for the sake of simplicity, the term “expected”.

The setting depicted so far corresponds to the frequentist approach in which the expected
mean rewards of all the arms are considered as unknown deterministic quantities and the
goal is to achieve the best parameter-dependent performance, which corresponds to the
regret defined in Definition 2.3.

Let us now explicitly mention another way to express the regret in 2.3 which will be useful
in consequent analysis. Let us define the suboptimality gap for arm i as the expected loss
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of playing the arm:

∆i := µi∗ − µi, ∀i ∈ A. (2.1)

Lemma 2.4 (Regret Decomposition Lemma [62]). For any policy and stochastic bandit
environment ν, with A finite and horizon T ∈ N, the regret RT of the policy in ν satisfies:

RT =
∑
i∈A

∆iE [Ni(T )] . (2.2)

Hence, to keep the regret small, the learner should try to minimise the weighted sum of
expected action counts. An algorithm that aims at minimizing the expected regret should
minimize the expected sampling times of sub-optimal arms.

2.3. Stochastic Heavy-Tailed MAB

Most of the existing research on bandits problem assume that, given a stochastic bandit
ν = (νi : i ∈ A), the unknown probability distributions νi are subgaussian.

Assumption 1 (Subgaussianity). A random variable X drawn according to the distribu-
tion νi is σ-subgaussian if, for all λ ∈ R, it holds that:

E[exp(λ(X − E[X])] ≤ exp

(
λ2σ2

2

)
and E[exp(λ(E[X]−X)] ≤ exp

(
λ2σ2

2

)
,

where MX(λ) = E[exp(λ(X − E[X])] is the moment generating function of νi, which is a
function MX : R → R. Moreover, σ2 is the so-called “variance factor”, a parameter that
is usually assumed to be known.

Under Assumption 1, the tails of the distribution present a strong decay, implying that
every moment of finite order is finite. In particular, the tails of a σ-subgaussian random
variable decay approximately as fast as that of a Gaussian with zero mean and the same
variance.

While this assumption enables for strong theoretical tools, it is often limiting in many
practical scenarios we presented in Section 1.2. In settings where uncertainty is very
strong, heavy-tailed distributions naturally arise: the tails decay slower than a Gaussian,
and the moment generating function is no longer assumed to be finite.

Definition 2.5 (Heavy-Tailed Random Variable). A random variable X is heavy-tailed
if MX(λ) =∞ for all λ > 0. Otherwise it is light-tailed.
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In this thesis, we investigate the bandits with heavy tail setting, introduced in the seminal
work [22], in which only moments of order up to 1 + ϵ, with ϵ ∈ (0, 1], are assumed to be
finite and uniformly bounded by a constant u.

Assumption 2 (Bandits with Heavy-Tailed Rewards). Given a stochastic bandit instance
ν = (νi)i∈[K], we assume it is heavy-tailed if, for each arm i generating a reward X, it
holds:

∃ ϵ ∈ (0, 1], u <∞ s.t. Eνi [|X|1+ϵ] ≤ u ∀i ∈ [K], (2.3)

where each moment of higher order than (1+ ϵ) is infinite for at least one arm (otherwise,
in principle, this assumption holds also for a bandit with light-tailed distributions).

This is a standard assumption in the heavy tail literature, noting that the upper bound
on the (1 + ϵ)-th order moment u is assumed to be common for all (νi)i∈[K], without loss
of generality.

In the heavy-tailed bandit problem, it is common to assume the knowledge of both ϵ and
u. This work aims to bring novelty providing a new regret minimization strategy for this
bandit problem that does not require any prior knowledge on ϵ nor u, but still achieves
comparable performances to other approaches knowing them.

Thus, we can wrap up our final stochastic heavy-tailed multi-armed bandit setting as-
suming that, from now on, to each arm i ∈ [K], we associate a probability distribution
νi satisfying Assumption 2. Distributions with infinite variance are then allowed in this
problem formulation. In all the following results presented in Chapter 5, we will consider
both quantities to be unknown to the agent. To better clarify what we have anticipated
in Section 1.2, from now on, we will refer to any algorithm operating without the knowl-
edge of either ϵ or u as adaptive w.r.t. ϵ and/or u, depending on which one is unknown
(possibly both).

2.4. Relevant Concentration Inequalities

We present here some concentration inequalities which will be needed to prove the results
in following chapters. In particular, we do not highlight here the well-known standard
concentration inequalities, but we try to present them in their revisited way to be suited
to our applications. If not differently specified, the starting point of the next propositions
is inspired from relevant literature on this field, as [17, 74].

For future use, we derive our results for the general case where, given the sample X =

(X1, . . . , Xn), the random variables Xi are independent, but not necessarily identically
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distributed.

2.4.1. Notation

For the purpose of the next sections, we employ the following notation. If X is a real
valued random variable we use E[X] and Var(X) to denote its expectation and variance,
respectively. Moreover, given X1, . . . , Xn sequence of independent random variables, we
let:

Pn(X) =
1

n

n∑
i=1

Xi, µ = E[Pn(X)] =
1

n

n∑
i=1

E[Xi]

and

Vn(X) =
1

n(n− 1)

n∑
i,j=1

(Xi −Xj)
2

2
, Var(X) =

1

n

n∑
i=1

Var (Xi) ,

where Pn(X) is the unbiased sample mean estimator, Vn(X) is the unbiased sample vari-
ance estimator and µ and Var(X) their respective expected values.

2.4.2. Bernstein’s Inequalities

We start presenting some Bernstein-type inequalities for bounded random variables. These
are slight variations of the most common standard Bernstein’s inequality, which gives
bounds on the probability that the sum of random variables deviates from its mean.

Proposition 2.1 (Bernstein’s Inequality for Independent Random Variables). Let X1, . . . , Xn

be a sequence of independent random variables with Xt−E [Xt] ≤ b almost surely ∀t ∈ [n].
Then, for every ϵ ≥ 0, we have:

P (Pn(X) ≥ µ+ ϵ) ≤ exp

(
− n2ϵ2

2
∑n

i=1Var (Xi) +
2nbϵ
3

)
= exp

(
− nϵ2

2Var(X) + 2ϵb
3

)
.

The proposition showed above assumes to know the real variance of the random variables,
but knowing a bound is enough since if:

Var(X) =
1

n

n∑
i=1

Var (Xi) ≤ v,

then:

P (Pn(X) ≥ µ+ ϵ) = exp

(
− nϵ2

2Var(X) + 2ϵb
3

)
≤ exp

(
− nϵ2

2v + 2ϵb
3

)
. (2.4)
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We can re-write the inequality exploiting the equivalence between

P (Pn(X)− µ ≥ ϵ) ≤ δ(ϵ) and P (Pn(X)− µ ≤ ϵ(δ)) ≥ 1− δ,

where ϵ(δ) is the inverse function of δ(ϵ).

In this way, if we set:

δ = exp

(
− nϵ2

2v + 2ϵb
3

)
,

we can use that
√
x+ y ≤

√
x+
√
y holds for positive x, y, to show:

ϵ =

√
2v log(δ−1)

n
+

b2 log2(δ−1)

9n2
+

b log(δ−1)

3n
≤
√

2v log(δ−1)

n
+

2b log(δ−1)

3n
.

That is, we have our final useful form of Bernstein’s inequality:

P

(
Pn(X)− µ ≤

√
2v log(δ−1)

n
+

2b log(δ−1)

3n

)
≥ 1− δ. (2.5)

Let us now introduce another useful concentration inequality for self-bounding random
variables (Theorem 13 in [72]):

Theorem 2.6. Let X = (X1, . . . , Xn) be a vector of independent random variables with
values in some set X . For 1 ≤ k ≤ n and y ∈ X , we use Xy,k to denote the vector
obtained from X by replacing Xk by y. Suppose that a ≥ 1 and that Z = Z(X) satisfies
the inequalities

Z(X)− inf
y∈X

Z (Xy,k) ≤ 1 ∀k,
n∑

k=1

(
Z(X)− inf

y∈X
Z (Xy,k)

)2

≤ aZ(X),

(2.6)

(2.7)

almost surely. Then, for t > 0,

P (E[Z]− Z > t) ≤ exp

(
−t2

2aE[Z]

)
. (2.8)

If Z satisfies only the self-boundedness condition (2.7), we have:

P (Z − E[Z] > t) ≤ exp

(
−t2

2aE[Z] + at

)
. (2.9)
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2.4.3. Empirical Bernstein’s Bound

From [73], let us highlight a relevant variance sensitive confidence bound:

Theorem 2.7 (Empirical Bernstein’s). Let X = (X1, . . . , Xn) be a vector of independent
random variables with values in [0, 1]. Let δ ∈ (0, 1). Then, with probability at least 1− δ

in X, we have:

E [Pn(X)] ≤ Pn(X) +

√
2Vn(X) log (2δ−1)

n
+

7 log (2δ−1)

3(n− 1)
. (2.10)

To allow this inequality to hold in a more general case, we extend this result to a vector
of independent random variables in [a, b].

Let us suppose we have Z = (Z1, . . . , Zn) vector of independent random variables in [a, b].
We can normalize them and obtain X = (X1, . . . , Xn), with:

Xi =
Zi − a

b− a
∈ [0, 1] ∀i ∈ [n].

We thus get:

Pn(X) =
1

n

n∑
i=1

Xi =
1

n

n∑
i=1

Zi − a

b− a
=

Pn(Z)

b− a
− a

b− a

⇒ E [Pn(X)] =
E [Pn(Z)]

b− a
− a

b− a
;

Vn(X) =
1

n(n− 1)

n∑
i,j=1

(Xi −Xj)
2

2
=

1

(b− a)2
Vn(Z).

(2.11)

(2.12)

(2.13)

Since X satisfies the hypothesis of Theorem 2.7, we get Equation (2.10). If we substitute
there the results of Equations (2.11), (2.12) and (2.13) we obtain, for δ ∈ (0, 1), a more
general concentration result:

P

(
E [Pn(Z)]

b− a
≤ Pn(Z)

b− a
+

1

b− a

√
2Vn(Z) log (2δ−1)

n
+

7 log (2δ−1)

3(n− 1)

)
≥ 1− δ

⇒ P

(
E [Pn(Z)] ≤ Pn(Z) +

√
2Vn(Z) log (2δ−1)

n
+ (b− a)

7 log (2δ−1)

3(n− 1)

)
≥ 1− δ. (2.14)
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2.4.4. Concentration Result for Sample Variance

For the purpose of Algorithm 5.1, we need to establish confidence bounds for the deviation
of the estimated standard deviation (sample estimate) from the actual one [73]:

Theorem 2.8. Let n ≥ 2 and X = (X1, . . . , Xn) be a vector of independent random
variables with values in [0, 1]. Then for δ > 0 we have, writing E[Vn(X)] for EX [Vn(X)],

P

(√
E[Vn(X)] >

√
Vn(X) +

√
2 log(δ−1)

n− 1

)
≤ δ,

P

(√
Vn(X) >

√
E[Vn(X)] +

√
2 log(δ−1)

n− 1

)
≤ δ,

(2.15)

(2.16)

where E[Vn(X)] is the unknown variance of the vector, since Vn(X) is the unbiased sample
variance.

We now extend these inequalities such that they hold for vector of independent and
bounded random variables, not necessarily in [0, 1].

Using the same perspective of the generalization performed in Section 2.4.3, we can com-
pute

E[(Xi −Xj)
2] = E

[(
Zi − Zj

b− a

)2
]
=

1

(b− a)2
E
[
(Zi − Zj)

2] ∀i, j ∈ [n].

E [Vn(X)] = σ2
n(X) =

1

n(n− 1)

n∑
i,j=1

E
[
(Xi −Xj)

2]
2

=
1

(b− a)2
1

n(n− 1)

n∑
i,j=1

E
[
(Zi − Zj)

2]
2

=
1

(b− a)2
E [Vn(Z)] .

(2.17)

At this point, since X satisfies the hypotheses of Theorem 2.8, we get both (2.15) and
(2.16). If we substitute there the results of Equations (2.17) and (2.13), we obtain the
more general concentration results for the variance of bounded Z. For δ ∈ (0, 1):

P

(√
E[Vn(Z)] ≤

√
Vn(Z) + (b− a)

√
2 log(δ−1)

n− 1

)
≥ 1− δ,

P

(√
Vn(Z) ≤

√
E[Vn(Z)] + (b− a)

√
2 log(δ−1)

n− 1

)
≥ 1− δ.

(2.18)

(2.19)
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2.5. Lower Bounds for Bandits with Finitely Many

Arms

Most of the theoretical notions and mathematical tools presented so far were preliminaries
for the fully adaptive algorithm presented in Chapter 5. The focus of the study will be
on achieving the same order of performance of other less general approaches, where the
performance is evaluated through the upper bound on regret in Definition 2.3.

As satisfying as the upper bounds on the regret might be, the real truth of a problem is
usually found in the lower bounds. An upper bound does not indeed tell much about what
an approach could be missing out on. The only way to demonstrate that an algorithm
really is (close to) optimal is to prove a lower bound showing that no algorithm can do
better. Moreover, thinking about lower bounds forces to understand what is hard about
the problem.

History shows that it usually turns out to be easier to get the lower bound, and then the
challenge lies in improving algorithm guarantees until eventually the upper bound matches
some known lower bound. That’s why we decided here to provide mathematical results
that will help us justifying the analysis on lower bounds at chapter 4, before entering in
the discussion of the algorithm itself.

So what is the form of a typical lower bound?

The first example is the worst-case lower bound, which is suitable for understanding the
robustness of a policy and corresponds to a claim of the form following form:
“For any policy, there exists an instance of a bandit problem ν on which the regret is at
least L”.
In our next analyses, we will focus mostly on finite time worst-case lower bounds, also
called minimax lower bounds, but for the sake of completeness we mention briefly also the
second type, the instance-dependent lower bounds. They provide a lower bounds on the
regret of an algorithm for specific instances, and they have a different form that usually
reads like the following:
“For any reasonable policy, then its regret on any instance ν is at least L(ν)”.
The statement only holds for some policies - the “reasonable” ones, whatever that means.
But the guarantee is also more refined because bound controls the regret for these policies
on every instance by a function that depends on this instance. The inclusion of the word
“reasonable” is unfortunately necessary. For every bandit instance ν there is a policy that
just chooses the optimal action in ν. Such policies are not reasonable because they have
linear regret for bandits with a different optimal arm.
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While minimax lower bounds serve as a useful measure of the robustness of a policy, they
are often excessively conservative. On the other side, instance-dependent lower bounds
try to capture the optimal performance of a policy on a specific bandit instance.

We now introduce the formal definition of minimax regret and lower bounds, discussing
the line of attack for proving them.

2.5.1. Minimax Lower Bounds

Definition 2.9 (Minimax Regret, [62]). The worst-case regret of a policy π on a set of
stochastic bandit environments E is:

RT (π, E) = sup
ν∈E

RT (π, ν).

Let Π be the set of all policies. The minimax regret is:

R∗
T (E) = inf

π∈Π
RT (π, E) = inf

π∈Π
sup
ν∈E

RT (π, ν).

Thus, a policy is called minimax optimal for E if RT (π, E) = R∗
T (E), where R∗

T (E) is
indeed the minimax lower bound on the regret for the stochastic MAB setting.

Minimax optimality is not a property of a policy alone. It is a property of a policy together
with a set of environments E and a horizon T ∈ N. Finding a minimax policy is generally
too computationally expensive to be practical. For this reason, we almost always settle
for a policy that is nearly minimax optimal (see the beginning of Chapter 4).

In the context of minimax theory, the goal is to find a strategy (or policy) that minimizes
the maximum possible loss (or regret) against an adversary. The adversary, in turn, tries
to choose the worst-case scenario (an instance of the bandit problem) to maximize the
regret. See Figure 2.1 for a simplifying representation of this idea.

The term minimax will be used in the following also for RT (π, E) if, except for constant
factors, this worst-case bound cannot be improved on by any algorithm.

The high-level idea is to select two bandit problem instances in such a way that the
following two conditions hold simultaneously:

1. Competition: An action, or, more generally, a sequence of actions that is good for
one bandit is not good for the other.

2. Similarity: The instances are ‘close’ enough that the policy interacting with either
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of the two instances cannot statistically identify the true bandit with reasonable
statistical accuracy.

The problem described here is called hypothesis testing, and hence the two requirements
are clearly conflicting. The first makes us want to choose instances with means µ,µ′ ∈ RK

that are far from each other, while the second requirement makes us want to choose them
to be close to each other. The lower bound will follow by optimising this trade-off.

Figure 2.1: The idea of the minimax lower bound, from [62]: given a policy and one
environment, the evil antagonist picks another environment so that the policy will suffer
a large regret in at least one environment.

In order to prove a lower bound, it suffices to show that, for every strategy π, there exists
a choice of µ and µ′ such that:

max

{
RT (π, ν)

f(K,T )
,
RT (π, ν ′)

f(K,T )

}
≥ C,

where C > 0 is a universal constant and the function f(K,T ) depends on the bandit
setting we are dealing with.

Practically, since we want ν and ν ′ to be hard to distinguish and yet have different optimal
actions, we should make µ′ as close to µ except in the arm where π expects to explore
the least. And this is the approach followed in Chapter 4 to tackle the proofs on lower
bounds.

From now on, we will refer to a policy π as minimax optimal up to constant factors for a
given set of bandit problems EK with K arms, if there exists a constant C > 0, such that:

RT

(
π, EK

)
R∗

T (EK)
≤ C for all K and T.
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Otherwise, we say that a policy π is minimax optimal up to logarithmic factors for the
environment class EK if:

RT

(
π, EK

)
R∗

T (EK)
≤ C(T,K) for all K and T,

where C(T,K) is logarithmic in T and K.

2.5.2. Entropy and Information Theory Inequalities

To make the arguments in the previous section rigorous and generalizable to many settings,
we need some mathematical tools from information theory and statistics. This subsection
takes us on a brief excursion into information theory, with the main references that has
to be found in [30, 70].

The most important of these notions is the relative entropy, also known as the Kull-
back–Leibler divergence (KL divergence) [56]. We first introduce a real analysis notion
to then define the relative entropy between probability measures P and Q on arbitrary
measurable spaces.

Definition 2.10 (Absolutely Continuous Measures). Let P and Q be measures (not nec-
essarily probability measures) on arbitrary measurable space (Ω,F). We say that P is
absolutely continuous with respect to Q, denoted as P ≪ Q, if:

Q(A) = 0 =⇒ P (A) = 0 for all A ∈ F .

Theorem 2.11 (Relative Entropy or Kullback-Leibler Divergence). Let (Ω,F) be a mea-
surable space, and let P and Q be measures on this space. Then,

DKL(P∥Q) =


∫
log
(

dP
dQ

(ω)
)
dP (ω), if P ≪ Q

+∞, otherwise
.

Note that, in this general case, the relative entropy between P and Q can still be infinite
even when P ≪ Q.

The KL divergence is a measure of difference between two distributions, it is non-negative
and assumes its global minimum DKL = 0 when they coincide.

In the case of discrete measures the above expression reduces to the following:
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Corollary 2.12 (KL Divergence for Discrete Distributions). We let P and Q be two
discrete probability distributions defined on the same state space Ω, with Ω discrete such
that pi = P (X = i) and qi = Q(X = i) ∀i ∈ Ω. The relative entropy from Q to P is
defined as:

DKL(P∥Q) =
∑

i∈Ω:pi>0

pi log

(
1

qi

)
−

∑
i∈Ω:pi>0

pi log

(
1

pi

)
=

∑
i∈Ω:pi>0

pi log

(
pi
qi

)
. (2.20)

In other words, DKL(P∥Q) equals the expectation of the logarithmic difference between
the distributions P and Q, where the expectation is taken using P . We see that the
sufficient and necessary condition for DKL(P∥Q) < +∞ is that for each i with qi = 0, we
also have pi = 0. This condition is equivalent to say that P is absolutely continuous with
respect to Q (see Definition 2.10). If not, DKL(P∥Q) =∞. But still, absolute continuity
implies a finite relative entropy when X ∼ P takes finitely many values only.

We also highlight that the KL-divergence is not a distance since it does not satisfy the
triangle inequality, nor is symmetric.

It remains now to state the key lemma that connects the relative entropy to the hardness
of hypothesis testing.

Theorem 2.13 (Bretagnolle-Huber Inequality, [18]). Let P and Q be probability measures
on the same measurable space (Ω,F), and let A ∈ F be an arbitrary measurable event.
Then,

P (A) +Q (Ac) ≥ 1

2
exp(−DKL(P∥Q)), (2.21)

where Ac = Ω\A is the complement of A.

Let us emphasize a simple interpretation of this statement. Suppose that DKL(P∥Q)

is small, then P is close to Q in some sense. Since P is a probability measure, we have
P (A)+P (Ac) = 1. If Q is close to P , then we might expect that P (A)+Q (Ac) should be
large. The purpose of the theorem is to quantify just how large. Also note that the result
is symmetric. We could replace DKL(P∥Q) with DKL(Q∥P ), which sometimes leads to a
stronger result because the relative entropy is not symmetric.

For what is next, we assume to be in the K-armed stochastic bandits framework, with
horizon T > 0 and the number of actions K > 1. In particular, we show an exact
calculation of the relative entropy between measures in a bandit model, considering a
fixed policy and different instances.
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Lemma 2.14 (Divergence Decomposition, [41]). Let ν = (P1, . . . , PK) be the reward
distributions associated with one K-armed bandit instance, and let ν ′ = (P ′

1, . . . , P
′
K) be

the reward distributions associated with another K-armed bandit instance. Fix some policy
π and let Pν = Pνπ and Pν′ = Pν′π be the probability measures induced by the T -round
interconnection of π and ν (respectively, π and ν ′). Then:

D(Pν∥Pν′) =
K∑
i=1

Eν [Ni(T )] DKL (Pi∥P ′
i ) . (2.22)

According to [63], all these theoretical guarantees will be used to prove the novelties
presented in Chapter 4.
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3.1. Stochastic Bandits

Fundamental algorithms for unstructured stochastic bandits with finitely many actions
have been widely studied in literature. Firstly, their simplicity makes them relatively
easy to analyse and allows a deep understanding of the trade-off between exploration and
exploitation. Secondly, many of the algorithms designed for finite-armed bandits, with
the principle underlying them, can be generalised to other settings.

A good strategy to tackle the exploration-exploitation dilemma for the learner is to, in
a certain sense, simultaneously perform exploration and exploitation. A simple heuristic
principle for that is the so-called “optimism in face of uncertainty” [59], which states that
one should act as if the environment is as nice as plausibly possible. In this context,
taking an optimistic view of an unknown choice leads to exploration, while a pessimistic
view would discourage it.

The idea is very general and applies to many sequential decision making problems in
uncertain environments. Assume that the forecaster has accumulated some data on the
environment and must decide how to act next. First, a set of “plausible” environments
which are “consistent” with the data (typically, through concentration inequalities) is
constructed. Then, the most “favorable” environment is identified in this set. Based on
that, the heuristic prescribes that the decision which is optimal in this most favorable
and plausible environment should be made. This principle gives simple and yet almost
optimal algorithms for the stochastic multi-armed bandit problem.

Practically, the optimism principle means using the data observed so far to assign to each
arm an index, called the Upper Confidence Bound (UCB), that with a high probability of
at least 1 − δ, given δ ∈ (0, 1), is an overestimate of the unknown arm expected reward.
The index is usually composed by the empirical estimates of the arm expected reward and
the uncertainty about the estimate. This way guarantees that every arm will be selected
for a sufficient number of times, while also exploiting the currently believed best arm in
the meanwhile.
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Lai et al. [59] also proved that the regret of any stochastic MAB policy is at least logarith-
mic in time, and the intuitive reason behind a sublinear regret is quite simple. Assuming
the upper confidence bound assigned to the optimal arm is indeed an overestimate, then
another arm can only be played if its upper confidence bound is larger than that of the
optimal arm, which, in turn, is larger than the mean of the optimal arm. And yet this
cannot happen too often because the additional data provided by playing a suboptimal
arm implies that the upper confidence bound for this arm will eventually fall below that
of the optimal arm.

Discussing further the “optimism in face of uncertainty”, it is fair to wonder how much
optimistic we should be. This is a difficult decision, which has been tackled in the literature
since [58], with the first version of an UCB algorithm. Choosing the confidence level 1− δ

and quantifying the degree of certainty is, indeed, challenging. It should be high enough to
ensure optimism with high probability, but not so high that suboptimal arms are explored
excessively.

The algorithm we will present in Chapter 5 is also well-founded on this principle, thus it is
worth mentioning how much it has been studied in literature throughout the years. Other
early works in the nineties as [1, 47, 50] dealt with UCB approaches under parametric
assumptions, but all these policies were either computationally unfeasible to implement
or lack of a finite time theoretical analysis of their regret.

The policy proposed in [12], under the name of UCB1, is the first computationally efficient
policy for which a logarithmic regret is guaranteed uniformly over time. For this reason,
let us briefly recap this algorithm for the nowadays usual case of subgaussian random
variables (see Section 2.3), even if in [12] the payoffs are confined in [0, 1] interval. Prior
MAB literature, indeed, mostly studies settings where the loss distributions are supported
on a bounded interval I (e.g., I = [0, 1]) known to the agent before-hand.

Let now (Xt)
T
t=1 be a sequence of independent σ-subgaussian random variables, with σ

known positive parameter, and µ̂ be the sample mean estimator such that µ̂ = 1
T

∑T
t=1Xt.

Then a reasonable candidate for a bound on the unknown mean of arm i which is “as
large as plausibly possible” equals to:

UCBi(t− 1, δ) =

+∞, if Ni(t− 1) = 0

µ̂i(t− 1) + σ
√

2 log(δ−1)
Ni(t−1)

, otherwise
,

where we recall that Ni(t− 1) =
∑t−1

s=1 1Is=i denotes the number of times arm i is pulled
during the first t− 1 rounds. Consequently, the pseudo-code of this policy is reported in
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Algorithm 3.1.

Algorithm 3.1 UCB1

1: Input number of arms K, error probability δ ∈ (0, 1) and variance factor σ2.
2: for t ∈ [T ] do
3: Choose arm It = argmax

i∈[K]

UCBi(t− 1, δ).

4: Observe reward Xt from the arm selected and update upper confidence bounds.
5: end for

The following result due to [62] provides an upper bound on regret relative to UCB1 policy:

Theorem 3.1 (Upper Bound on the Regret for UCB1 Algorithm). Suppose that σ2 > 0 is
a known constant, and consider UCB1 as shown in Algorithm 3.1 on a stochastic K-armed
σ-subgaussian bandit problem, i.e. any ν ∈ EKSG(1) environment. For any horizon T , if
δ = 1/T 2, then the regret is bounded by:

RT ≤ O

( ∑
i:∆i>0

σ2 log(T )

∆i

+
K∑
i=1

∆i

)
,

RT ≤ O

(
σ
√

TK log(T ) +
K∑
i=1

∆i

)
,

(3.1)

(3.2)

where the O notation is defined in Appendix A, Equation (A.1).

Note that a regret of at least
∑K

i=1∆i is suffered by any strategy that pulls each arm at
least once.

Since [12] was published, a huge amount of works have been extending reward assumptions
on the same setting with a frequentist approach, leading to UCB-V [10], MOSS [7] and
KL-UCB [38], for which finite time regret bounds are also provided. Stochastic bandit
problems were also studied under Bayesian assumptions and reasoning [2, 42, 51], as well
as with other specific structures and characteristics [53, 76, 92], for which sub-linear regret
bounds have been provided.

Despite all the different facets, most of the research for stochastic MABs has been in-
vestigated under the sub-Gaussian assumption on reward distributions, which have the
exponential-decaying behavior. This assumption, indeed, includes many well-known dis-
tributions, as Gaussian, Bernoulli [52], and any bounded variable in general. We refer the
reader to [21] for a survey of the extensive literature of this problem and its variations.
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Moreover, there have been several works exploring the case of unknown subgaussian con-
stant σ, as [8, 10, 31]. These are the first examples of finding optimal algorithms that
extend previous results which require the knowledge of the parameters characterizing
the light-tailed distributions. Our contribution is on the same fashion of these ones but
for different environments, i.e., the ones of stochastic bandits with heavy-tailed reward
distributions.

3.1.1. On Finite Time Instance-Independent Lower Bounds

The first known work on lower bounds for stochastic MABs was presented in [95], with
a precise minimax analysis of two-armed Bernoulli bandits. The cases of setting with
Bernoulli rewards have been highly studied in literature [11, 25, 59], but still we would like
to briefly discuss the stochastic subgaussian bandit setting to understand the optimality
of results presented in Section 3.1, and to easily extend the reasoning to heavy-tailed
bandits.

Recall that EKSG(σ) is the class of subgaussian bandits with variance factor σ2 and K arms,
which can be parameterised by the mean vector µ ∈ RK . We let νµ be the subgaussian
bandit instance for which the arm i has reward distribution νi.

Theorem 3.2 (Minimax Lower Bound on Regret for Stochastic σ-Subgaussian Bandit,
[13, 27]). Let K > 1 and T ≥ K − 1. Then, for any policy π, there exists a mean vector
µ ∈ RK such that:

RT (π, νµ) ≥ Ω
(
σ
√
KT

)
,

where the Ω notation is introduced in Appendix A, Equation (A.2).

Since νµ ∈ EKSG(σ), it follows that the minimax regret for EKSG(σ) is lower-bounded by the
right-hand side of the above display as soon as T ≥ K − 1 :

R∗
T

(
EKSG(σ)

)
≥ Ω

(
σ
√
KT

)
. (3.3)

The theorem above, together with Equation (3.2), shows that Algorithm 3.1 is minimax
optimal up to logarithmic factors in T for σ-subgaussian bandits with suboptimality gaps
in [0, 1], or, more generically, in R.
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3.2. Bandits with Heavy Tails

Early researches for stochastic MABs have been investigated under the subgaussian as-
sumption on reward distributions. However, there remains a large class of distributions
which are not covered by the subgaussianity, e.g., distributions with heavy tails. This
setting naturally extends classical MAB settings, including subgaussian-reward MAB and
bounded-reward MAB. We recall that the heavy-tailed bandit problem is defined under
Assumption 2, with the key parameters ϵ and u, such that 1+ ϵ is the maximum order of
finite moments for the reward distributions, and u is a uniform bound on these moments.

While various researches have investigated heavy-tailed reward setting, they focused on
variants of the MAB such as linear bandit [75], contextual bandit [86], Lipschitz bandit
[68], or ϵ-contaminated bandit [81] (none of these algorithms removes the dependency on
parameter ϵ). On the other side, the stochastic HT bandit model was first introduced by
[22]. Here, Bubeck et al. [2013], have proposed RobustUCB by employing the “optimism
in face of uncertainty” principle with a confidence bound on a class of robust estimators
(see Section 3.2.3).

Instance-dependent lower-bounds and instance-independent ones (also known as minimax )
were given in their paper, and reported below:

Theorem 3.3 (Non-Adaptive Lower Bounds for Stochastic HT Bandit, [22]). For any
algorithm and for any fixed T , there exists a set of K distributions satisfying Assumption
2 with u = 1, such that:

RT ≥ Ω

( ∑
i:∆i>0

log T

∆
1
ε
i

)
,

RT ≥ Ω
(
K

ϵ
1+ϵT

1
1+ϵ

)
,

where ∆i refers to the suboptimality gap defined in Equation (2.1).

In particular, re-adapting theorem 3.3 to the general case of bound u ̸= 1, the result easily
extends as:

RT ≥ Ω

( ∑
i:∆i>0

(
u

∆i

) 1
ε

log T

)
,

RT ≥ Ω
(
(uT )

1
1+ϵK

ϵ
1+ϵ

)
.

(3.4)

(3.5)

Equation (3.5) is independent of the problem instance and shows how the dependency
on T deteriorates as ϵ → 0. In the particular scenario in which variance is finite, i.e.,
ϵ = 1, the minimax lower bound achieves the same order as the one for classic stochastic
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multi-armed bandit problems [62], reported in Equation (3.3).

We focus here on a specific type of the RobustUCB algorithm, i.e., the one that considers
the trimmed mean estimator in Definition 3.4 below. This choice is due to the fact that
our algorithm proposed in Chapter 5 will consider an estimator which is its adaptive
extension.

Definition 3.4 (Truncated Mean Robust Estimator, by [22]). Let δ ∈ (0, 1), ε ∈ (0, 1],
and u > 0. Suppose X1, . . . , Xs are i.i.d random variables with finite mean, then the
truncated empirical mean estimator µ̂T defined as

µ̂T
s,δ =

1

s

s∑
j=1

Xj1
|Xj |≤

(
uj

log(δ−1)

) 1
1+ε


. (3.6)

We show in Algorithm 3.2 the pseudo-code of the trimmed mean version of RobustUCB.

Algorithm 3.2 RobustUCB

1: Input number of arms K, error probability δ = t−4, heavy tails parameters ϵ and u.
2: Initialize si ← 0, Xi ← ∅, µ̂i,0,1 ← +∞ ∀i ∈ [K].
3: for t ∈ [T ] do
4: for i ∈ [K] do
5: Compute trimmed mean estimator:

µ̂T
i,s,t(Xi) =


+∞, si = 0

1
si

∑si
j=1Xi,j1

|Xi,j |≤
(

uj

log(t4)

) 1
1+ε


, si ̸= 0

6: end for
7: Select an action:

it ∈ argmax
i∈[K]

{
µ̂T
i,s,t(Xi) + 4u

1
1+ϵ

(
log (t4)

si

) ϵ
1+ϵ

}
.

8: Play action it and receive an observation Xt

9: Update samples Xit ← Xit ∪ {Xt}
10: Update number of pulls sit ← sit + 1

11: end for
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We state now the upper bound on regret suffered by RobustUCB policy:

Theorem 3.5 (Upper Bound on Regret for RobustUCB, [19]). Suppose to be in a stochastic
K-armed heavy-tailed bandit setting, i.e., any ν ∈ EKHT(ϵ, u) environment, with ε ∈ (0, 1],
u < +∞ such that the rewards distributions satisfy Assumption 2. For any horizon T ,
the regret of RobustUCB policy reported in Algorithm 3.2 satisfies:

RT ≤
∑

i:∆i>0

O

((
u

∆i

) 1
ε

log T +
∑

i:∆i>0

∆i

)
. (3.7)

Also, with a suitable T big enough, then

RT ≤ O
(
u

1
1+ε (K log T )

ε
1+εT

1
1+ε

)
. (3.8)

We remark that, even if the variance is finite, i.e., ϵ = 1, but the higher order moments
are not, the same guarantees of order

∑
∆i>0 log T/∆i attained in the classic stochastic

bandit setting [12] can be achieved in the heavy-tailed bandit problem. However, if ϵ < 1,
then the dependency on the suboptimality gaps ∆i deteriorates and the upper bound on
regret is of order

∑
∆i>0 log T/∆

1
ϵ
i . Moreover, the dependency on ∆

1
ϵ
i is unavoidable.

Comparing the results of Theorem 3.5 with Equations (3.4) and (3.5), RobustUCB policy
is optimal for the gap-dependent case (up to constant factors), while it achieves upper
bounds matching minimax lower bounds up to a logarithmic factor in T for the gap-
independent case.

For the analysis of Theorem 3.5, ϵ and u are both known to the agent, and this knowledge
was used both for the estimator and for the algorithm itself. This is a common assumption
in the HT bandit literature and, to the best of our knowledge, every regret minimization
strategy in the stochastic HT bandit literature which is optimal in the instance-dependent
case, requires at least one of them as an algorithm’s input. That is a huge drawback, since
prior knowledge on these two quantities is hardly available for practical problems. We then
aim to design an algorithm based on optimism with a practical usefulness that requires
less prior knowledge about rewards yet achieves an optimal efficiency.

Let us now understand the current state-of-the-art optimal results achieved with adap-
tive algorithms for the stochastic HT bandit problem, even if in a conventional regret
minimization MAB setting only few methods have handled heavy-tailed distributions.

A lot of works still assume the knowledge of both ϵ and u. For instance, [93] derived a
logarithmic upper-bound with ϵ, u presented to the agent, while requiring also the gap
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information to balance the exploration and exploitation. These features make the the
policy proposed by Vakili et al. [2013], namely DSEE, impractical, since information
about the bound or the gap is not accessible in general.

Remark 2 (Parameters knowledge required for estimator and algorithm). In all the works
tackling the heavy-tailed bandit setting, we see some differences in how the approaches pre-
sented depend on ϵ and u. In particular, the knowledge of the two parameters can serve
as input either for both the robust estimator and the algorithm, or only for the algorithm,
with the estimator not depending on them. The latter case has, of course, weaker as-
sumptions, but still can not be considered adaptive since requires anyway a distributional
parameter as input. The fully-adaptive case is the one where both the parameters are not
required, neither to compute the estimator, nor to run the algorithm.

All the contributions presented in the following paragraphs will be collected in Table 3.1
at the end of the chapter, which allows a more straightforward comparison, distinguishing
the cases where the parameters need to be known:

• by both the estimator and the algorithm;

• by the algorithm only;

• by any of the two (adaptive approach).

3.2.1. Adaptive Approaches in u, with ϵ known

The dependence on u was first removed in [28] for both the estimator and the algorithm,
but assuming ϵ = 1. Cesa-Bianchi et al. [2017], instead of using a confidence bound,
employed the Boltzmann-Gumbel exploration (BGE) with a robust estimator.

Also [64] got rid of the requirement of u, yielding near-optimal regret bounds with an
algorithm built on the UCB framework, that uses a novel p-robust estimator and requires
a prior knowledge on ϵ only. In this way, it performs an adaptively perturbed exploration
(APE2), proving that, only for small suboptimality gaps, the perturbation method out-
performs RobustUCB.

The knowledge of the bound u on the moments of rewards was not required even in
[15], where it was adapted in a data-driven manner, through a best arm identification
algorithm in a fixed confidence setting. Anyway, Bhatt et al. [2022], were still requiring
the knowledge of ϵ for both the estimator and algorithm. Their algorithm is based on
Lepski’s method [65], which is an adaptation method that has been employed for many
different tasks, and might be of inspiration to extend fully adaptive approaches [46].
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3.2.2. Fully Adaptive Approaches, with u and ϵ not known

There is a rich literature in deriving algorithms adaptive to the loss sequences, for either
full information setting [69, 82], stochastic bandits [38, 60, 61] or adversarial bandits
[24, 97]. There are also many algorithms adaptive to the loss range when not known, e.g.,
the so-called “scale-free” MAB [35, 83].

However, as mentioned above, to our knowledge, our work is the first regret minimization
approach to adapt fully and optimally to heavy-tail parameters u and ϵ.

The dependency on both u and ϵ ∈ (0, 1] was attempted to be removed firstly in [48], by
proposing a generalized successive rejects (GSR) method. While GSR does not depend on
any prior knowledge of the reward distributions, however, it only focuses on identifying the
optimal arm, also known as pure exploration [20], rather than minimizing the cumulative
regret. Hence, GSR loses much reward during the learning process.

The requirement of ϵ for both the estimator and the algorithm was relaxed also in [6],
proposing a distribution oblivious algorithm, which requires no prior information about
the parameters of the arm distributions. In particular, [6] refers to algorithm, called R-
UCB-G, which suffers a regret slightly super-logarithmic. Nevertheless, it requires anyway
the knowledge of a scaling function as input, since it uses a truncation-based estimator in
conjunction with a robust scaling of the confidence bound. This work proved also that, if
a specific UCB algorithm designed for σ−subgaussian distributions is used in a subgaus-
sian setting with a mismatched variance parameter, the learning performance could be
inconsistent. This is of practical concern because the parameters that define the space of
arm distributions (usually in the form of support/moment bounds) are often estimated
from limited data samples, and are therefore prone to errors. This statement encour-
aged our research towards a fully adaptive algorithm that could still have a logarithmic
performance matching the lower bound in Equation (3.4).

Eventually, [45] proposes a fully adaptive algorithm, namely AdaTINF, with minimax
optimal regret O

(
u

1
1+ϵK

ϵ
1+ϵT

1
1+ϵ +

√
KT

)
, under specific assumptions on the losses (e.g.

“truncated non-negativity”), and with ϵ, u both unknown. This shows that the existing
lower bound for the HT setting Ω

(
u

1
1+ϵK

ϵ
1+ϵT

1
1+ϵ

)
is tight even when all prior knowledge

on ϵ, u is absent. This work looks promising, but still the algorithm is applied to an
adversarial setting employing the Follow-The-Regularized-Leader (FTRL) technique [43],
and allowing the adversary to choose the distributions of losses and not directly the
single losses. Indeed, to our knowledge, the theoretical novelty introduced in Chapter 5
has not been achieved yet by UCB algorithms in stochastic setting with expected regret
minimization. Moreover, for the stochastic setting, [45] presented another fully adaptive
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algorithm, namely Optimistic HTINF, which instead is not optimal, giving a sub-optimal
instance-dependent regret of order:

O

( ∑
i:∆i>0

(
u2

∆2ϵ
i

) 1
ε

log T

)
.

From all these arguments, we can highlight once again that, to our knowledge, there is not
yet any fully adaptive algorithm for the stochastic HT problem giving optimal instance-
dependent regret and, simultaneously, an instance-independent one optimal at most up
to logarithmic terms.

3.2.3. Robust Estimators

The main issue for the extension of traditional MAB algorithms to the stochastic HT
setting lies in estimators theory. It is reflected through the incapacity of the sample mean
in providing a reliable estimate of the mean of a heavy-tailed distributed random variable.

This is why a broad variants of estimators has been employed in the heavy-tailed bandit
literature to overcome the issue of robustness in the estimates.

Theorem 3.5 shows that the subgaussian assumption can be relaxed to require only finite
variance at the price of constant factors. This result is only possible by replacing the
standard empirical estimator with something more robust as employed in RobustUCB

algorithms [19], e.g., truncated mean, median of means [4] for ϵ ∈ (0, 1] or Catoni’s M

estimator for ϵ = 1 [26]. In particular, under Assumption 2 on reward distributions,
the disadvantage of truncated mean estimator and Catoni’s estimator is that they give a
regret bound requiring the knowledge of both ϵ and a bound u on the moments. Choosing
the location of truncation requires prior knowledge about the approximate location of the
mean. On the contrary, median-of-mean estimators is, in some sense, more flexible since
it does not depend on u. Yet another idea of robust approaches would be to minimize
the Huber loss [89]. Sun et al. [2020] focuse on linear models, but the results still apply
in one dimension.

A lot of extensions of basic robust estimators have been tried out. Cesa-Bianchi et al.
[28] have proposed a robust estimator by modifying the Catoni’s M estimator, providing
a weak tail bound that allows error probability to decay slower than that of Catoni’s.
Another extension of Catoni’s estimator has been provided in [15], allowing its validity
for the case of ϵ ∈ (0, 1] and not just ϵ = 1 as in [22].

As said, trimmed mean is a common estimator in the heavy-tailed statistics literature. It
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is, indeed, very robust to outlying values, which are usually cut out and not included in
the computation of averages. This guideline of intuition has been followed in [45], which
presents adaptive approaches that rely on the idea of estimators with truncated losses.
This is worth to mention since it is very relevant also for our research. In Chapter 5,
we will extend these concepts, introducing a new trimmed robust estimator not requiring
any prior knowledge on the parameters of reward distributions.

3.2.4. On Regret Definition

We recall that the (cumulative) regret as defined in Definition 2.2 is a random variable.
In all our research, we are considering its expected value (Definition 2.3), depending on
the arm means, as measure of performance for a policy. Since we highlighted many times
that, in a heavy-tailed setting, the empirical mean does not provide robust estimates, the
reader might wonder about the reason of this choice. The expected regret is indeed a
custom performance measure that is coherent with classical multi-armed bandit problems
literature, where the expected value of an arm is used as a metric to evaluate its goodness.

However, the expected value is a risk-neutral metric, such that, in specific applications,
different approaches should be considered. For instance, in many domains like finance,
one is interested in balancing the expected return of an arm (or portfolio) with the risk
associated with that return. Coherently, in [48], the target problem is the one of selecting
the arm that optimizes a linear combination of the expected reward and the associated
Conditional Value at Risk (CVaR) [5]. Along the same idea, [71] considers CVaR for
stochastic MAB, with an approach where the regret itself is redefined.

This analysis reflect a recent interests in risk-aware multi-armed bandit problems. On
this wave, the optimization of Value at Risk (VaR) measure has often been considered
instead of the usual regret [33, 34]. VaR was also taken into account in the context of a
specific bandit policy family by [8, 10], but CVar is still preferred because it is a more
coherent risk measure.

Despite all the recent research, the analysis of CVaR measure is, on a technical level,
similar to the one of the expected regret. This is why, for our work, we keep assessing
performance in stochastic HT bandit setting being aligned with the most used approach
in literature, i.e. using the expected regret as in Definition 2.3.

To close this chapter, let us report Table 3.1 below to recap the main adaptive results
investigated so far in literature.
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bound u maximal order ϵ ∈ (0, 1]

Estimator Algorithm known

RobustUCB - trimmed mean, Catoni’s (ϵ = 1), [22]
known known DSEE [93]

RobustUCB (median of means), [22]
unknown known

Variant BGE (ϵ = 1), [28]
unknown unknown Adaptively Perturbed Exploration Method (APE2), [64]

Adaptive Best Arm Identif. - Generalized Catoni’s, [15]
Estimator Algorithm unknown

known unknown

unknown known

GSR - Pure Exploration, [48]
Robust-UCB-G, [6]

unknown unknown Optimistic HTINF - AdaTINF, [45]
Our contribution: Adaptive Robust UCB

Table 3.1: Review of the main adaptive Heavy-Tailed bandit algorithms presented in
literature, given their different “degree of knowledge” on parameters ϵ and u.
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Adaptive Heavy-Tailed Bandits

In this chapter, we show that, in a general stochastic heavy-tailed bandit problem with
no additional assumption on the distributions of the arms, it is not possible to derive an
algorithm that is adaptive in either ϵ or u, matching the lower bound on the regret stated
in [22]. This means that any algorithm unaware of these two quantities cannot achieve
the same regret order as the one stated in Theorem 3.3. We recall that in this theorem
we provided non-adaptive lower bounds when ϵ and u are known.

We now prove a lower bound on the expected regret that any adaptive policy or algorithm
(with respect to either u or ϵ) can achieve in this setting.

In the following, we will refer to any algorithm with an upper bound on the regret matching
Theorem 3.3 minimax lower bound as a matching algorithm. More formally, a matching
algorithm provides a regret upper bound UBT at time T , such that:

lim
T→+∞

UBT

LBT

= c ∈ R,

where LBT is the lower bound on regret at time T . In this case, we say that the algo-
rithm is tight, since upper bound and worst-case lower bound have the same order up to
constants.

4.1. Non-Existence of a Matching Algorithm u-Adaptive

We start by stating the regret lower bound for any algorithm adaptive w.r.t. u, the
value (or the lowest upper bound) of the finite moment of maximum order. In particular,
we adopt here a non-standard procedure that consists in constructing lower bounds on

RT

(uT )
1

1+ϵ
. With a fair amount of intuition, we decided to focus on this quantity since the

standard HT lower bound in Equation (3.5) has the same dependencies.
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Theorem 4.1 (Lower Bound on Regret for Stochastic Adaptive Heavy-Tailed Bandit,
unknown u). For any algorithm adaptive w.r.t. to the (1 + ϵ)-th order moment of reward
distributions, and for any fixed T , there exist two stochastic heavy-tailed bandit instances
satisfying Assumption 2 with u and u′ respectively (assume u′ > u without loss of gener-
ality), such that:

max

{
RT

(uT )
1

1+ϵ

,
R′

T

(u′T )
1

1+ϵ

}
≥ C1

(
u′

u

) ϵ
(1+ϵ)2

, (4.1)

where RT and R′
T are the regrets suffered by this algorithm in the two instances, respec-

tively, and C1 is a constant independent of u, u′ and T .

This result states that there exist two particular heavy-tailed bandit problem instances
such that no algorithm can match on both the lower bound on regret, presented in Equa-
tion (3.5), and, instead, some regret is accrued in a way that is proportional to the ratio
of the two (1 + ϵ)-th order moments of those instances. In our construction (more details
can be found in Section 4.1.1), the ratio between u′ and u can be taken arbitrarily large,
and thus the regret gap with the non-adaptive lower bound presented in Equation (4.1)
can be arbitrarily large. In particular, this result shows that is not possible to be adaptive
in u without the risk of incurring in an arbitrarily large regret bound.

Remark 3. In the lower bound in Equation (3.5) we see a dependency in K
ϵ

1+ϵ . The
reader might wonder why this dependency is not included in the discussion here. This
choice is for a matter of simplifying the computations. Without loss of generality, our
focus in only on the dependency on u, u’ and T in the right-hand side part, since, finding
any of these terms, would be enough to show the non-existence of a matching u-adaptive
algorithm.

To show the result of Theorem 4.1, we start from the construction of [19, 22].

4.1.1. Step 1: Instance Construction

Let u < u′, we construct the two instances each made of just two arms.

Base instance  ν1 = δ0,

ν2 =
(
1−∆1+ 1

ϵu− 1
ϵ

)
δ0 +∆1+ 1

ϵu− 1
ϵ δ

u
1
ϵ ∆− 1

ϵ
,

where δx denotes the Dirac delta measure centered in x and ∆ is such that ∆1+ 1
ϵu− 1

ϵ ∈
(0, 1) =⇒ 0 < ∆ < u

1
1+ϵ .
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We have:
µ1 = 0, µ2 = ∆,

Eν1 [|X|1+ϵ] = 0, Eν2 [|X|1+ϵ] = u.

The optimal arm is arm 2.

Alternative instance ν ′
1 =

(
1− (2∆)1+

1
ϵ (u′)−

1
ϵ

)
δ0 + (2∆)1+

1
ϵ (u′)−

1
ϵ δ

(u′)
1
ϵ (2∆)−

1
ϵ
,

ν ′
2 = ν2,

for ∆ such that (2∆)1+
1
ϵ (u′)−

1
ϵ ∈ (0, 1) =⇒ 0 < ∆ < 1

2
(u′)

1
1+ϵ .

We have:
µ′
1 = 2∆, µ′

2 = ∆,

Eν′1
[|X|1+ϵ] = u′, Eν′2

[|X|1+ϵ] = u.

The optimal arm is arm 1.

Remark 4. These two instances belong to the heavy-tailed bandit problem since the re-
ward distributions satisfy Assumption 2. Anyway, we can notice that these distributions
in general have finite second order moments, because they are bounded with support in
[0, u

1
ϵ∆− 1

ϵ ] and [0, (u′)
1
ϵ (2∆)−

1
ϵ ], respectively. This might seem a simplification of our

heavy-tailed framework, but [22] shows that these instances are difficult enough to be suit-
able for our context, meaning that UCB1 algorithm (see Section 3.1) is not tight on them,
it does not provide a regret upper bound matching the lower bounds.

4.1.2. Step 2: Lower Bounding the “Adaptive” Regret

Suppose by contradiction that a matching adaptive algorithm in u exists. In such a case
(see Equation 3.5), we will have that the expected regret of the base instance RT is of
order (uT )

1
1+ϵ while the regret of the alternative instance R′

T is of order (u′T )
1

1+ϵ′ , apart
from constants not dependening on u, u′ and T . Thus, it should hold that:

max

{
RT

(uT )
1

1+ϵ

,
R′

T

(u′T )
1

1+ϵ

}
≤ c, (4.2)

where c is a constant that does not depend on T .
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We will prove that this is not the case and, specifically, that for any algorithm:

max

{
RT

(uT )
1

1+ϵ

,
R′

T

(u′T )
1

1+ϵ

}
≥ f(T, ϵ, u, u′),

being f a function increasing in T . This suffices to show the non-existence of an algorithm
adaptive in u matching the minimax lower bound in Theorem 3.3.

The proof is quite technical and merges the approach of [23] with that of [62].

First, we observe that:

max

{
RT

(uT )
1

1+ϵ

,
R′

T

(u′T )
1

1+ϵ

}
≥ RT

(uT )
1

1+ϵ

(2.2)
=

∆E[N1(T )]

(uT )
1

1+ϵ

, (4.3)

where E[N1(T )] is the expected number of times arm 1 is pulled over the horizon T .

Second, recalling which are the optimal arms in the two instances and that u′ > u, we
have:

max

{
RT

(uT )
1

1+ϵ

,
R′

T

(u′T )
1

1+ϵ

}
(2.2)
≥ (u′T )−

1
ϵ+1 max

{
∆T

2
P (N1(T ) ≥ T/2) ,

∆T

2
P′ (N1(T ) < T/2)

}
≥ ∆

4
(u′)−

1
ϵ+1T

ϵ
ϵ+1 (P (N1(T ) ≥ T/2) + P′ (N1(T ) < T/2))

≥ ∆

8
(u′)−

1
ϵ+1T

ϵ
ϵ+1 exp (−E[N1(T )]DKL(ν1∥ν ′

1)) ,

(4.4)

where we used Bretagnolle-Huber inequality (2.21) and divergence decomposition (2.22),
together with max{a, b} ≥ 1

2
(a + b) for a, b ≥ 0. Let us now compute the KL-divergence

using Equation (2.20) and noting that ν1 ≪ ν ′
1:

DKL(ν1∥ν ′
1) = ν1(0) log

ν1(0)

ν ′
1(0)

= log
1

1− (2∆)1+
1
ϵ (u′)−

1
ϵ

≤ 2(2∆)1+
1
ϵ (u′)−

1
ϵ ,

(4.5)

for 0 < ∆ < u
1

1+ϵ such that (2∆)1+
1
ϵ (u′)−

1
ϵ ∈ (0, 1/2):

=⇒ 0 < ∆ < min

{
u

1
1+ϵ ,

(
1

2

) 2ϵ+1
1+ϵ

(u′)
1

1+ϵ

}
.
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Combining together Equations (4.3), (4.4) and (4.5), we have:

max

{
RT

(uT )
1

1+ϵ

,
R′

T

(u′T )
1

1+ϵ

}

≥ max

{
∆E[N1(T )]

(uT )
1

1+ϵ

,
∆

8
(u′)−

1
ϵ+1T

ϵ
ϵ+1 exp

(
−2E[N1(T )](2∆)1+

1
ϵ (u′)−

1
ϵ

)}

≥ ∆

2

(
E[N1(T )]

(uT )
1

1+ϵ

+
1

8
(u′)−

1
ϵ+1T

ϵ
ϵ+1 exp

(
−2E[N1(T )](2∆)

1+ϵ
ϵ (u′)−

1
ϵ

))

≥ ∆

2
min

x∈[0,T ]

{
x

(uT )
1

1+ϵ

+
1

8
(u′)−

1
ϵ+1T

ϵ
ϵ+1 exp

(
−2x(2∆)

1+ϵ
ϵ (u′)−

1
ϵ

)}
=: g(x)

The latter is a convex function of x and the minimization can be carried out in closed
form vanishing the derivative:

x∗ s.t.
1

(uT )
1

1+ϵ

− 1

4
(u′)−(

1
ϵ+1

+ 1
ϵ )T

ϵ
ϵ+1 (2∆)

1+ϵ
ϵ exp

(
−2x∗(2∆)

1+ϵ
ϵ (u′)−

1
ϵ

)
= 0

=⇒ 2x∗(2∆)
1+ϵ
ϵ (u′)−

1
ϵ = − log

(
1

(uT )
1

1+ϵ

1

1
4
(u′)−(

1
ϵ+1

+ 1
ϵ )T

ϵ
ϵ+1 (2∆)

1+ϵ
ϵ

)

=⇒ x∗ =
1

2
(2∆)−

1+ϵ
ϵ (u′)

1
ϵ log

(
Tu

1
ϵ+1

4(u′)
1
ϵ
+ 1

ϵ+1

(2∆)
1+ϵ
ϵ

)

=⇒ g(x∗) =
∆

4
(uT )−

1
ϵ+1 (2∆)−

1+ϵ
ϵ (u′)

1
ϵ log

(
Tu

1
ϵ+1

4(u′)
1
ϵ
+ 1

ϵ+1

(2∆)
1+ϵ
ϵ

)

+
∆

4

1

8
(u′)−

1
ϵ+1T

ϵ
ϵ+1

8(u′)
1
ϵ
+ 1

ϵ+1

Tu
1

ϵ+1

(2∆)−
1+ϵ
ϵ

=
∆

4
(uT )−

1
ϵ+1 (2∆)−

1+ϵ
ϵ (u′)

1
ϵ

[
log

(
Tu

1
ϵ+1

4(u′)
1
ϵ
+ 1

ϵ+1

(2∆)
1+ϵ
ϵ

)
+ 1

]

=
∆

4
(uT )−

1
ϵ+1 (2∆)−

1+ϵ
ϵ (u′)

1
ϵ log

(
Tu

1
ϵ+1

4(u′)
1
ϵ
+ 1

ϵ+1

e(2∆)
1+ϵ
ϵ

)
.

We take ∆:
Tu

1
ϵ+1

4(u′)
1
ϵ
+ 1

ϵ+1

(2∆)
1+ϵ
ϵ = eϵ

=⇒ (2∆)−
1+ϵ
ϵ =

T

4
e−ϵu

1
ϵ+1 (u′)

− 1+2ϵ

ϵ2+ϵ ,

∆ = 2
ϵ−1
1+ϵ e

ϵ2

1+ϵT− ϵ
ϵ+1u

− ϵ
(ϵ+1)2 (u′)

1+2ϵ

(ϵ+1)2 ,
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which is reasonable since ∆ < min
{
u

1
1+ϵ ,

(
1
2

) 2ϵ+1
1+ϵ (u′)

1
1+ϵ

}
for sufficiently large T .

This implies that:

g(x∗) = 2(
ϵ−1
1+ϵ

−2−2)u

(
− ϵ

(ϵ+1)2
+ 1

ϵ+1
− 1

ϵ+1

)
(u′)

(
1
ϵ
− 1+2ϵ

ϵ2+ϵ
+ 1+2ϵ

(ϵ+1)2

)
e

(
ϵ2

1+ϵ
−ϵ

)
T (1−

1
ϵ+1

− ϵ
ϵ+1)(1 + ϵ).

Ending with the calculations, we get:

g(x∗) = 2−
3ϵ+5
ϵ+1 (1 + ϵ)e−

ϵ
ϵ+1u

− ϵ
(ϵ+1)2 (u′)

ϵ
(ϵ+1)2 ≥ C1 ·

(
u′

u

) ϵ
(ϵ+1)2

,

where C1 = 2−
3ϵ+5
ϵ+1 (1 + ϵ)e−

ϵ
ϵ+1 .

Thus, we have

max

{
RT

(uT )
1

1+ϵ

,
R′

T

(u′T )
1

1+ϵ

}
≥ C1 ·

(
u′

u

) ϵ
(ϵ+1)2

, (4.6)

proving Equation (4.1). Since u′ > u can be taken arbitrarily large, we have that gap can
be arbitrarily large. Note that, when ϵ = 0, the gap vanishes.

4.2. Non-Existence of a Matching Algorithm ϵ-Adaptive

We present a new result concerning adaptivity with respect to the parameter ϵ character-
izing the maximum order (1 + ϵ) of finite moments for reward distributions.

Theorem 4.2 (Lower Bound on Regret for Stochastic Adaptive Heavy-Tailed Bandit,
unknown ϵ). For any algorithm adaptive w.r.t. to ϵ, with the maximum order finite mo-
ment u known, and for any fixed T , there exist two stochastic heavy-tailed bandit instances
satisfying (2.3) with ϵ and ϵ′ respectively (assume ϵ′ < ϵ without loss of generality), such
that:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
≥ C2T

ϵ′(ϵ−ϵ′)
(1+ϵ)(1+ϵ′)2 , (4.7)

where RT and R′
T are the regrets suffered by this algorithm in the two instances, respec-

tively, and C2 is a constant independent of ϵ, ϵ′ and T .

This theorem works independently from the value of u, as soon as Assumption 2 is fulfilled.
It only accounts for the fact that, since we are studying the adaptivity with respect to ϵ-
like parameter only, u is assumed to be known given ϵ and ϵ′. Indeed, u is never mentioned
in the proof below, simply considering that it satisfies the following:

u := max
{
Eν

[
|X|1+ϵ

]
,Eν′ [|X|1+ϵ′ ]

}
.
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Differently from Theorem 4.1, where u and u′ could take arbitrarily high values on the
positive semi-axis of real numbers, the values of ϵ and ϵ′ are known to belong to the set
(0, 1] and thus, for any fixed T , the term on the right-hand side of (4.7) cannot grow arbi-
trarily. Modern statistical literature presents methods to adapt to any unknown quantity
for which lower and upper bounds are known while controlling finite-time convergence
[65], thus, to be adaptive w.r.t. unknown ϵ is an easier task than adapting to an unknown
u. For instance, we can observe that by searching for the maximum value of the right-
hand side of (4.7), we get that for ϵ = 1 and ϵ′ = 1

3
the gap’s order is ≈ T

1
16 .

To show Theorem 4.2 we will start from the construction of [19, 22].

4.2.1. Step 1: Instance Construction

Let 0 < ϵ′ < ϵ < 1, we construct the two instances each made of just two arms:

Base instance  ν1 = δ0

ν2 = (1 + ∆γ − γ1+ϵ)δ0 + (γ1+ϵ −∆γ)δ1/γ,

where γ = (2∆)
1
ϵ , for ∆ ∈ [0, 1/2]. Note that ∆ ∈ [0, 1/2] is chosen such that the

probability density functions are well defined. We have:

µ1 = 0, µ2 = ∆,

Eν1 [|x|α] = 0, Eν2 [|x|α] = 2
1−α
ϵ ∆

1+ϵ−α
ϵ ,

which are guaranteed to be bounded by constant (since we will make ∆ → 0 in the
construction) only if α ≤ ϵ+1. Thus, this bandit admits moments finite up to order ϵ+1.
The optimal arm is arm 2.

Alternative instance  ν ′
1 = (1− (γ′)1+ϵ′)δ0 + (γ′)1+ϵ′δ1/γ′

ν ′
2 = ν2,

where γ′ = (2∆)
1
ϵ′ , for ∆ ∈ [0, 1/2]. We have:

µ′
1 = 2∆, µ′

2 = ∆,

Eν′1
[|x|α] = (2∆)

1+ϵ′−α
ϵ′ , Eν′2

[|x|α] = 2
1−α
ϵ ∆

1+ϵ−α
ϵ ,

(4.8)

(4.9)
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which are guaranteed to be bounded by constant only if α ≤ 1 + ϵ′ (for the same reason
as before, recalling that ϵ′ < ϵ too). Thus, this bandit admits moments finite up to order
1 + ϵ′. The optimal arm is arm 1.

4.2.2. Step 2: Lower Bounding the “Adaptive” Regret

Suppose by contradiction that an adaptive algorithm in ϵ exists. In such a case, we will
have that the expected regret of the base instance RT is of order T

1
1+ϵ , while the regret

of the alternative instance R′
T is of order T

1
1+ϵ′ , apart from constants independent of T .

Thus, it should hold that:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
≤ c, (4.10)

where c is a constant that does not depend on T . We will prove that this is not the case
and, specifically that for any algorithm:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
≥ f(T, ϵ, ϵ′),

being f a function increasing in T . This suffices to show the non-existence of an algorithm
adaptive in ϵ matching the minimax lower bound in Theorem 3.3.

As previously done, we highlight that also here, with respect to the lower bound in
Theorem 3.3, we consider, for simplicity of calculations, only the term of order Ω

(
T

1
1+ϵ

)
.

Finding a dependency on T in the right hand-side of Equation (4.10) is, indeed, enough
to reach our conclusion of non-existence.

The proof is quite technical and emulates the analyses and steps performed at the previous
Section 4.1.

First, we observe that:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
≥ RT

T
1

1+ϵ

(2.2)
=

∆E[N1(T )]

T
1

1+ϵ

, (4.11)

where E[N1(T )] is the expected number of times arm 1 is pulled over the horizon T .

Second, recalling which are the optimal arms in the two instances and that ϵ′ < ϵ, we
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have:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
(2.2)
≥ T− 1

ϵ′+1 max

{
∆T

2
P
(
N1(T ) ≥

T

2

)
,
∆T

2
P′
(
N1(T ) <

T

2

)}
≥ ∆

4
T

ϵ′
ϵ′+1

(
P
(
N1(T ) ≥

T

2

)
+ P′

(
N1(T ) <

T

2

))
≥ ∆

8
T

ϵ′
ϵ′+1 exp (−E[N1(T )]DKL(ν1∥ν ′

1)) ,

(4.12)

where we used Bretagnolle-Huber inequality (2.21) and divergence decomposition (2.22),
together with max{a, b} ≥ 1

2
(a + b) for a, b ≥ 0. Let us now compute the KL-divergence

using (2.20) and noting that ν1 ≪ ν ′
1:

DKL(ν1∥ν ′
1) = ν1(0) log

ν1(0)

ν ′
1(0)

= log
1

1− (2∆)
1+ϵ′
ϵ′
≤ 2(2∆)

1+ϵ′
ϵ′ ,

(4.13)

for ∆ ∈ [0, 1/4].

Putting together Equations (4.11), (4.12) and (4.13), we have:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
≥ max

{
∆E[N1(T )]

T
1

1+ϵ

,
∆

8
T

ϵ′
ϵ′+1 exp

(
−2E[N1(T )](2∆)

1+ϵ′
ϵ′
)}

≥ ∆

2

(
E[N1(T )]

T
1

1+ϵ

+
1

8
T

ϵ′
ϵ′+1 exp

(
−2E[N1(T )](2∆)

1+ϵ′
ϵ′
))

≥ ∆

2
min

x∈[0,T ]

{
x

T
1

1+ϵ

+
1

8
T

ϵ′
ϵ′+1 exp

(
−2x(2∆)

1+ϵ′
ϵ′
)}

=: g(x).

The latter is a convex function of x and the minimization can be carried out in closed
form vanishing the derivative:

x∗ s.t.
1

T
1

1+ϵ

− 1

4
T

ϵ′
ϵ′+1 (2∆)

1+ϵ′
ϵ′ exp

(
−2x∗(2∆)

1+ϵ′
ϵ′
)
= 0

=⇒ 2x∗(2∆)
1+ϵ′
ϵ′ = − log

(
1

T
1

1+ϵ

1

1
4
T

ϵ′
ϵ′+1 (2∆)

1+ϵ′
ϵ′

)

=⇒ x∗ =
1

2
(2∆)−

1+ϵ′
ϵ′ log

(
T

1
ϵ+1

+ ϵ′
1+ϵ′

4
(2∆)

1+ϵ′
ϵ′

)
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Substituting in g(x), we then get:

g(x∗) =
∆

4
T− 1

ϵ+1 (2∆)−
1+ϵ′
ϵ′ log

(
T

1
ϵ+1

+ ϵ′
1+ϵ′

4
(2∆)

1+ϵ′
ϵ′

)
+

+
∆

2

1

8
T

ϵ′
ϵ′+1

[
T

1
ϵ+1

+ ϵ′
1+ϵ′

4
(2∆)

1+ϵ′
ϵ′

]−1

=
∆

4
T− 1

ϵ+1 (2∆)−
1+ϵ′
ϵ′

[
log

(
T

1
ϵ+1

+ ϵ′
1+ϵ′

4
(2∆)

1+ϵ′
ϵ′

)
+ 1

]

=
∆

4
T− 1

ϵ+1 (2∆)−
1+ϵ′
ϵ′ log

(
T

1
ϵ+1

+ ϵ′
1+ϵ′

4
e(2∆)

1+ϵ′
ϵ′

)

We take ∆ such that:
T

1
ϵ+1

+ ϵ′
1+ϵ′

4
(2∆)

1+ϵ′
ϵ′ = 1

=⇒ (2∆)−
1+ϵ′
ϵ′ =

1

4
T

1
ϵ+1

+ ϵ′
1+ϵ′ ,

∆ = 2
ϵ′−1
1+ϵ′ T

− ϵ′
1+ϵ′

(
1

ϵ+1
+ ϵ′

1+ϵ′

)
,

verifying that ∆ < 1/4 holds for sufficiently large T .

This implies:

g(x∗) = 2

(
ϵ′−1
1+ϵ′ −2−2

)
T

[
− ϵ′

1+ϵ′

(
1

ϵ+1
+ ϵ′

1+ϵ′

)
+ 1

ϵ+1
+ ϵ′

1+ϵ′−
1

ϵ+1

]

= 2
−3ϵ′−5
1+ϵ′ T

− ϵ′
1+ϵ′

(
1

ϵ+1
+ ϵ′

1+ϵ′−1
)

= 2
−3ϵ′−5
1+ϵ′ T

ϵ′(ϵ−ϵ′)
(1+ϵ′)2(1+ϵ) ≥ C2 · T

ϵ′(ϵ−ϵ′)
(1+ϵ′)2(1+ϵ) ,

where C2 = 2
−3ϵ′−5
1+ϵ′ .

Thus, we have that:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
≥ C2 · T

ϵ′(ϵ−ϵ′)
(1+ϵ′)2(1+ϵ) , (4.14)

eventually proving Equation (4.7). Notice that the dependence on T vanishes when ϵ′ = 0.
This is correct since, even when knowing that ϵ′ = 0, the regret lower bound is linear, so
that we can just focus on ϵ.

To conclude, in this chapter we have shown how any algorithm adaptive with respect to
either u or ϵ has a higher regret lower bound than the one of the non-adaptive heavy-tailed
bandit problem. We remark that the two bounds introduced here refers to adaptivity with
respect to only one of the unknown quantities. As a future research direction, it could
be interesting to investigate if simultaneous adaptivity to both quantities implies an even
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higher lower bound.
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In this Chapter, we finally answer our original research question, i.e. whether there is an
algorithm adaptive w.r.t. both ϵ and u matching the standard heavy-tailed setting’s lower
bound stated in Theorem 3.3. In Chapter 4, we already showed how adaptivity has a cost,
and, thus, the lower bound presented in Theorem 3.3 is not achievable by any algorithm
unaware of at least one of these quantities. Luckily, it is possible to restrict the set of
heavy-tailed bandit problem instances under analysis to a special set, that will be defined
in Section 5.2, on which our algorithm Adaptive Robust UCB (shortly AdaR-UCB), which
is unaware of parameters ϵ and u, is able to achieve a regret order matching the lower
bound for the standard heavy-tailed bandit problem.

5.1. New Robust Estimator Independent of ϵ and u

Trimmed mean is a common estimator in the heavy-tailed statistics literature, where
observations are averaged while cutting-off values outside of a limited and bounded set of
the form [−M,M ], thus, being more robust to extreme values than the empirical mean
estimator.

Our goal is to seek for a proper value of M giving concentration results which are pow-
erful enough for our algorithm AdaR-UCB to achieve an upper bound on regret matching
the lower bound of Equation (3.4), without requiring the knowledge of u nor ϵ for the
threshold’s construction.

As already mentioned in Section 3.2.3, the most common paper in the stochastic HT
literature [22] presents the RobustUCB algorithm, where the trimmed mean estimator
replaces sample average in a standard optimism in the face of uncertainty strategy. Here,
the truncated mean estimator for the mean of a set of independent observations X =

(X1, . . . , Xs) is defined with the following threshold, depending on both the quantities ε

and u:

M∗
j,s =

(
uj

log (δ−1)

) 1
1+ϵ

, ∀j ∈ [s], (5.1)
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where δ ∈ (0, 1), and ϵ ∈ (0, 1], u < +∞ such that E[|X|1+ϵ] ≤ u.

We now present our extension of this robust estimator, which is similar to the “winsorized
mean” and “trimmed mean” of Tukey [16], and which does not require the knowledge of
the aforementioned parameters.

Definition 5.1. Given s ∈ N and X1, . . . , Xs
i.i.d.∼ X random variables distributed accord-

ing to the same probability distribution, we define the robust estimator of E[X] as:

µ̂s =
1

s

s∑
j=1

Xj1|Xj |≤Ms , (5.2)

where the threshold Ms is a positive random variable defined as the solution of the following
equation, given δ ∈ (0, 1):

f(M) =
1

s

s∑
i=1

min
{
X2

i ,M
2
}
− 25M2 log(δ−1)

s
= 0 (5.3)

⇒ 1

s

s∑
i=1

min {X2
i ,M

2}
M2

− 25 log(δ−1)

s
= 0 (5.4)

Under Definition 5.1, for all s ∈ N, the threshold Ms depends on none of the two param-
eters ϵ and u, and so does the estimator µ̂s. Another relevant difference of our estimator
with respect to the trimmed estimator of [19] is that Bubeck et al. [2013] assumed the
threshold M∗

j,s in Equation (5.1) to be a real number and not a random variable.

5.1.1. Uniqueness of Estimator

The reader might now be wondering whether Equation (5.3) has a unique solution Ms.
We notice that it has a trivial solution Ms = 0, but since to obtain Equation (5.4) we
divided by M , from that point on we started assuming Ms different from 0, looking for a
positive threshold. Is this problem well-posed?

Proposition 5.1 (Uniqueness of positive solution Ms, [96]). Provided δ ∈ (0, 1), s ∈ N
and (Xi)i∈[s] such that

0 < 25 log
(
δ−1
)
<

s∑
i=1

1|Xi|>0, (5.5)

then Equation (5.4) admits a unique positive solution.

This proposition allows us to give a theoretical foundation to all our next results ensur-
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ing that, under mild assumptions, we have uniqueness of our threshold for the trimmed
estimator in Equation (5.2).

Throughout, denote Ms as the solution to Equation (5.4), which is unique and posi-
tive whenever 0 < 25 log (δ−1) <

∑s
i=1 1|Xi|>0. For completeness, we set Ms = 0 on

{25 log (δ−1) ≥
∑s

i=1 1|Xi|>0}.
If P(X = 0) = 0 and 0 < 25 log (δ−1) < s, then Ms > 0 with probability one. With Ms

well defined, we investigate its properties below.

5.1.2. Properties of Solution

Let us algebraically analyze the stochastic Equation (5.4) to find out relevant properties
of its random solution Ms.

We firstly assume M in Equation (5.4) as positive real number, defining the following:

UM = min

{(
X

M

)2

, 1

}
∈ [0, 1]. (5.6)

While, given s ∈ N, we let:

UM(X) =
1

s
ZM(X), with ZM(X) =

s∑
i=1

U
(i)
M =

s∑
i=1

min

{(
Xi

M

)2

, 1

}
∈ [0, s], (5.7)

where X1, . . . , Xs ∼ X are sampled independently, implying U
(i)
M to be independent ran-

dom variables, and M a fixed parameter. For the sake of completeness, we will define

UM :=
(
U

(i)
M

)
i∈[s]

.

It can be easily noticed that EX [UM(X)] = EX [UM ]. In particular,

EX [UM(X)] = EX

[
min

{(
X

M

)2

, 1

}]
=

1

M2
EX [min{X2,M2}]

≤ 1

M2
EX [|X|1+ϵM1−ϵ] =

u

M1+ϵ
.

On the other side,

EX [UM(X)] = EX

[
min

{(
X

M

)2

, 1

}]
≥ EX [1|X|>M ] = P(|X| > M).
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Now, we take advantage of this notation to state the following proposition, which gives a
concentration interval in high probability for the sample mean estimator UM(X).

Proposition 5.2. Assuming UM(X) as defined in Equation (5.7), we have that, for every
δ ∈ (0, 1), with probability at least 1− δ:

∣∣∣√UM(X)−
√

E [UM(X)]
∣∣∣ ≤ 2

√
2 log(2δ−1)

s
. (5.8)

Proof. To prove the result, we need to resort to Theorem 2.6 for self-bounding random
variables. Let us first verify that its two assumptions (2.6) and (2.7) indeed hold for
ZM(X) as defined in Equation (5.7).

Fixing some k = 1, . . . , s and choosing any y ∈ X , with X identifying the support set of
X, we have that:

ZM(X)− ZM(Xy,k) = min

{(
Xk

M

)2

, 1

}
−min

{( y

M

)2
, 1

}
≤ 1 ∀M > 0.

Equation (2.6) then follows straightforward as:

ZM(X)− inf
y∈X

ZM(Xy,k) ≤ 1.

Following a similar reasoning, we also have that:

n∑
k=1

(
ZM(X)− inf

y∈X
ZM(Xy,k)

)2

=
s∑

k=1

(
min

{(
Xk

M

)2

, 1

}
− inf

y∈X
min

{( y

M

)2
, 1

})2

≤
s∑

k=1

(
min

{(
Xk

M

)2

, 1

}
+min

{(
Xk

M

)2

, 1

})2

≤ 4
s∑

k=1

min

{(
Xk

M

)2

, 1

}
= 4ZM(X),

almost surely, since:(
min

{(
Xk

M

)2

, 1

})2

≤ min

{(
Xk

M

)2

, 1

}
∈ [0, 1].
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Therefore, we also proved the second assumption (2.7), giving the self-boundedness of
ZM(X) with a = 4. Applying Theorem 2.6, we get Equation (2.8) and we can now state
that, for ϵ > 0,

P (E[ZM(X)]− ZM(X) > sϵ) ≤ exp

(
−ϵ2s2

8E[ZM(X)]

)

=⇒ P (E[UM(X)]− UM(X) > ϵ) ≤ exp

(
−ϵ2s2

8sE[UM(X)]

)
= exp

(
−ϵ2s

8E[UM(X)]

)
.

Let us now define:
δ(s) = exp

(
−ϵ2s

8E[UM(X)]

)
=⇒ ϵ2s

8E[UM(X)]
= log(δ−1)

=⇒ ϵ = 2

√
2E[UM(X)] log(δ−1)

s
.

We get that, with probability at most δ:

UM(X) < E[UM(X)]− 2

√
2E[UM(X)] log(δ−1)

s

⇔ E[UM(X)]− 2

√
2 log(δ−1)

s

√
E[UM(X)]− UM(X) > 0

⇔
√
E[UM(X)] >

√
2 log(δ−1)

s
+

√
2 log(δ−1)

s
+ UM(X)⋃ √

E[UM(X)] <

√
2 log(δ−1)

s
−
√

2 log(δ−1)

s
+ UM(X).

The event: √
E[UM(X)] <

√
2 log(δ−1)

s
−
√

2 log(δ−1)

s
+ UM(X)

has null probability since UM(X) ∈ [0, 1], such that:

P

(√
E[UM(X)] >

√
2 log(δ−1)

s
+

√
2 log(δ−1)

s
+ UM(X)

)
≤ δ.

Using a root inequality that reads as
√
a+ b ≤

√
a+
√
b for a, b positive, we can rewrite
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the above as:

P

(√
E[UM(X)] > 2

√
2 log(δ−1)

s
+
√

UM(X)

)
≤ δ

=⇒ P

(√
E[UM(X)]−

√
UM(X) ≤ 2

√
2 log(δ−1)

s

)
≥ 1− δ. (5.9)

For the left tail, a similar reasoning holds. We can indeed exploit Theorem 2.6 to get
Equation (2.9), such that, for ϵ > 0:

P (ZM(X)− E[ZM(X)] > sϵ) ≤ exp

(
−ϵ2s2

8E[ZM(X)] + 4sϵ

)

=⇒ P (UM(X)− E[UM(X)] > ϵ) ≤ exp

(
−ϵ2s2

8sE[UM(X)] + 4sϵ

)
= exp

(
−ϵ2s

8E[UM(X)] + 4ϵ

)
.

With similar passages to the above ones, let us define:

δ(s) = exp

(
−ϵ2s

8E[UM(X)] + 4ϵ

)
=⇒ ϵ2s

8E[UM(X)] + 4ϵ
= log(δ−1)

=⇒ ϵ2s− 4 log(δ−1)ϵ− 8E[UM(X)] log(δ−1) = 0

=⇒ ϵ1,2 =
4 log(δ−1)±

√
16 log(δ−1)2 + 32sE[UM(X)] log(δ−1)

2s
.

Since ϵ needs to be positive:

ϵ =
2 log(δ−1)

s
+

2
√

log(δ−1)2 + 2sE[UM(X)] log(δ−1)

s
.

We get that, with probability at least 1− δ, and using the root inequality:

UM(X) ≤ E[UM(X)] +
2 log(δ−1)

s
+

2
√

log(δ−1)2 + 2sE[UM(X)] log(δ−1)

s

=⇒ P

(
UM(X) ≤ E[UM(X)] +

4 log(δ−1)

s
+ 2

√
2E[UM(X)] log(δ−1)

s

)
≥ 1− δ.
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This is equivalent to:

UM(X)
1−δ

≤

(√
E[UM(X)] +

√
2 log(δ−1)

s

)2

+
2 log(δ−1)

s

⇔
√

UM(X)
1−δ

≤

√√√√(√E[UM(X)] +

√
2 log(δ−1)

s

)2

+
2 log(δ−1)

s

=⇒ P

(√
UM(X) ≤

(√
E[UM(X)] +

√
2 log(δ−1)

s

)
+

√
2 log(δ−1)

s

)
≥ 1− δ

⇔ P

(√
UM(X)−

√
E[UM(X)] ≤ 2

√
2 log(δ−1)

s

)
≥ 1− δ

The two inequalities proved for right and left tails are such that:

P

(√
E[UM(X)]−

√
UM(X) > 2

√
2 log(2δ−1)

s

)
<

δ

2
.

P

(√
UM(X)−

√
E[UM(X)] > 2

√
2 log(2δ−1)

s

)
<

δ

2

(5.10)

(5.11)

By using the union bound P(A ∪B) ≤ P(A) + P(B) , we have:

P

(∣∣∣√UM(X)−
√

E[UM(X)]
∣∣∣ > 2

√
2 log(2δ−1)

s

)
< δ

⇔ P

(∣∣∣√UM(X)−
√

E[UM(X)]
∣∣∣ ≤ 2

√
2 log(2δ−1)

s

)
≥ 1− δ

and Equation (5.8) is now proved. ■

For the next theoretical results we will assume, without loss of generality, δ such that:

δ−1 > 2 =⇒ log
(
2δ−1

)
= log(2) + log

(
δ−1
)
≤ 2 log

(
δ−1
)
, (5.12)

so that Equation (5.8) reduces to:

P

(∣∣∣√UM(X)−
√

E[UM(X)]
∣∣∣ ≤ 4

√
log(δ−1)

s

)
≥ 1− δ (5.13)

From now on, if we want to choose the value of M satisfying Equation (5.4), we need to
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start assuming its solution as a random variable, due to the randomness in the equation
f(M) = 0.

Let us now define M = Ms random variable such that, with c positive constant:

c log(δ−1)

s
= UMs(X). (5.14)

We use Proposition 5.2 and Equation (5.13) to show that:√
c log(δ−1)

s
=
√
UMs(X)

1−δ

≥
√

E [UMs(X)]− 4

√
log(δ−1)

s

1−δ

≥
√
P (|X| > Ms)− 4

√
log(δ−1)

s
;

⇔ (
√
c+ 4)

√
log(δ−1)

s

1−δ

≥
√
P (|X| > Ms).

⇔ P (|X| > Ms)
1−δ

≤ (
√
c+ 4)2

log(δ−1)

s
.

On the other side,√
c log(δ−1)

s
=
√

UMs(X)
1−δ

≤
√
E [UMs(X)] + 4

√
log(δ−1)

s

1−δ

≤
√

u

M1+ϵ
s

+ 4

√
log(δ−1)

s
;

⇔ (
√
c− 4)

√
log(δ−1)

s

1−δ

≤
√

u

M1+ϵ
s

⇔ (
√
c− 4)2

log(δ−1)

s

1−δ

≤ u

M1+ϵ
s

⇔M1+ϵ
s

1−δ

≤ us

(
√
c− 4)2 log(δ−1)

.

We choose c = 25 to be consistent with the calculus above, since (
√
c − 4) has to be

greater than 0. Then, we get that Ms is indeed the solution of Equation (5.4) and the
following bounds in high probability hold:

Corollary 5.2 (High Probability Bounds for Random Threshold Ms). For δ ∈ (0, 1) and
Ms random variable solution of Equation (5.4), we have that the following two events hold
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together with probability at least 1− δ:

P (|X| > Ms) ≤
81 log(δ−1)

s
, (5.15)

and

Ms ≤
(

us

log(δ−1)

) 1
1+ϵ

. (5.16)

Inequality (5.16) makes sense since for s→∞ necessarily Ms →∞.

5.2. The Truncated Non-Positivity Assumption

In this section, we state a key assumption for our work, namely the truncated non-positivity
assumption.

Assumption 3 (Truncated Non-Positivity Assumption). Given a set of K distributions
satisfying Assumption (2), let ν1 be the distribution of the unique optimal arm, namely
µ1 > µi for all i ≥ 1, then:

Eν1 [X1|X|>M ] ≤ 0, ∀M ≥ 0. (5.17)

This assumption, intuitively, requires the optimal arm of a heavy-tailed bandit instance
to have more mass on the negative semi-axis, but still allows the distribution to have an
arbitrary support covering, potentially, all R.
We highlight that this assumption only needs to hold for the optimal arm.

A similar version of this assumption, called truncated non-negativity, appeared in [45] in
the context of heavy-tailed bandits, using losses instead of rewards. In that work, authors
discuss the weak nature of this assumption comparing it to more stronger assumptions
that are common in the literature. The two lower bounds stated in Equations (4.1) and
(4.7) have respectively been obtained by introducing four instances which violate this
assumption (see proofs in Sections 4.1.1 and 4.2.1). We, therefore, grasp that the lower
bound on regret for the adaptive heavy-tailed bandit problem under the truncated non-
positivity assumption can be smaller than the ones presented in Chapter 4. At this point,
one may wonder whether enforcing our new assumption leads to a strictly smaller lower
bound on the regret.
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5.2.1. Minimax Lower Bound for Truncated Non-Positive

Bandit Instances

We show now that forcing the truncated non-positivity assumption does not result in an
improvement of the lower bound in Theorem 3.3, which we recall below:
For any algorithm and for any fixed T , there exists a set of K distributions satisfying
Assumption 2, so that we have:

RT ≥ Ω
(
(uT )

1
1+ϵK

ϵ
1+ϵ

)
.

At this point, we employ here the same construction as in [62], but replace the Gaussian
distributions with the mixtures of Dirac deltas. We define:

ν∆ = ∆1+ 1
ϵu− 1

ϵ δ0 +
(
1−∆1+ 1

ϵu− 1
ϵ

)
δ
−u

1
ϵ ∆− 1

ϵ
, (5.18)

The two instances are constructed by the means of Equation (5.18).

Base Instance ν  ν1 = ν2∆,

νj = ν3∆, j ̸= 1
.

Alternative Instance ν ′ 
ν ′
1 = ν2∆,

ν ′
i = ν∆, i ̸= 1

ν ′
j = ν3∆, j ̸= 1 and j ̸= i

,

where i ∈ argminj ̸=1Eν [Nj(T )].

Both instances satisfy Assumption 3, i.e. they are truncated non-positive.

We have:
RT +R′

T ≥
∆T

2

(
Pν

(
N1 ≤

T

2

)
+ Pν′

(
N1 >

T

2

))
.

Using Bretagnolle-Huber inequality (2.21) we get:

RT +R′
T ≥

∆T

2
exp

(
−1

2
DKL(ν||ν ′)

)
.

We then develop the Kullback-Leibler divergence between the two instances, relying on
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the divergence decomposition in Equation (2.22):

DKL(ν||ν ′) =
K∑
j=1

E[Nj(T )]DKL(νj||ν ′
j)

= E[Ni(T )]DKL(νi||ν ′
i)

(∗)
≤ T

K − 1
DKL(νi||ν ′

i),

where the step marked by (*) follows from the fact that i is the least pulled arm in instance
ν. Proceeding with the computations, we employ Equation (2.20) to obtain:

DKL(ν||ν ′) ≤ T

K − 1

[
(3∆)1+

1
ϵu− 1

ϵ log

(
(3∆)1+

1
ϵu− 1

ϵ

∆1+ 1
ϵu− 1

ϵ

)
+

+ (1− (3∆)1+
1
ϵu− 1

ϵ ) log

(
1− (3∆)1+

1
ϵu− 1

ϵ

1−∆1+ 1
ϵu− 1

ϵ

)]
≤ T

K − 1
(3∆)1+

1
ϵu− 1

ϵ log(31+
1
ϵ ).

Plugging this result, we finally get:

RT +R′
T ≥

∆T

2
exp

(
−1

2
DKL(ν||ν ′)

)
≥ ∆T

2
exp

(
−1

2

T

K − 1
(3∆)1+

1
ϵu− 1

ϵ log
(
31+

1
ϵ

))
.

We conclude the proof by noting that max{x, y} > 1
2
(x+ y) and setting ∆ as:

∆ =
1

3

K − 1

T

u
1
ϵ

log
(
31+

1
ϵ

)
 ϵ

1+ϵ

.

Finally, we have:

max{RT , R
′
T} ≥ c(uT )

1
1+ϵK

ϵ
ϵ+1 ,

for some constant c independent of T and u.

This proves that even under Assumption 3 is not possible to further improve the regret
lower bound from [22] (see Theorem 3.3).

In general, introducing an additional assumption as truncated non-positivity, we might
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expect a minimax lower bound that is lower than the one in [22], obtained for the heavy-
tailed bandit setting without further assumptions. In this section, for the two instances
considered, we obtained a regret lower bound of order Ω

(
(uT )

1
ϵ+1K

ϵ
ϵ+1

)
, implying that,

even under Assumption 3, it is not possible to further improve the regret lower bound from
[22]. Since RobustUCB algorithm is tight, with its upper bound matching the instance-
independent lower bound up to logarithmic terms, the result of this section is promising:
if we find an adaptive algorithm with the same order of performance of RobustUCB, we
are sure that it is tight.

We are now ready to show how, under the same assumption, it is possible to be adaptive
with respect to both ϵ and u while attaining the best regret order achievable in the
heavy-tailed stochastic bandit problem.
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5.3. A Fully Adaptive Algorithm: AdaR-UCB

We are now ready to introduce Algorithm 5.1, namely AdaR-UCB, which is based on opti-
mism and able to operate in the heavy-tailed bandit problem without any prior knowledge
on ϵ nor u.

Algorithm 5.1 AdaR-UCB

1: Initialize si ← 0, Xi ← ∅, X′
i ← ∅, µ̂i,0,1 ← +∞ ∀i ∈ [K].

2: for t ∈ [⌊T
2
⌋] do

3: for i ∈ [K] do
4: Compute threshold M̂i,si,t solving

1

si

∑
j∈[si]

min
{(

X ′
i,j

)2
, M̂2

i,si,t

}
M̂2

i,si,t

− 25
log(t4)

si
= 0

5: Compute trimmed observations Yi,t, with its j-th component Yi,j,t, j ∈ [si]:

Yi,t ← {Xi,11{|Xi,1|≤M̂i,si,t
}, . . . , Xi,si1{|Xi,si

|≤M̂i,si,t
}}.

6: Compute trimmed mean estimator µ̂i,si,t(Xi)← 1
si

∑
j∈[si] Yi,j,t

7: Compute sample variance of trimmed observations

Vi,si,t(Yi,t) =
1

si(si − 1)

∑
l,j∈[si]

(Yi,l,t − Yi,j,t)
2

2

8: end for
9: Select an action

it ∈ argmax
i∈[K]

µ̂i,si,t(Xi) + 2

√
Vi,si,t(Yi,t) log(t4)

si
+ 19

M̂i,si,t log(t
4)

si


10: Play action it and receive an observation Xt

11: Update samples Xit ← Xit ∪ {Xt}
12: Play action it and receive an observation X ′

t

13: Update samples X′
it ← X′

it ∪ {X
′
t}

14: Update number of pulls sit ← sit + 1

15: end for
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In RobustUCB algorithm, the trimmed mean estimator replaces sample average in a stan-
dard optimism in the face of uncertainty strategy, by selecting at each round t the action
i maximising the sum of the estimator with a proper upper confidence bound. AdaR-UCB
operates in the same way, it is built under the same principle and strategy, but while in
RobustUCB the threshold choice is driven by the values of ϵ and u, AdaR-UCB computes a
proxy threshold M̂ without resorting to either ϵ or u (or any estimation of them).

AdaR-UCB operates over T rounds, however in Algorithm 5.1 we presented an interaction
with the environment lasting only ⌊T

2
⌋ rounds. Indeed, for each round t, AdaR-UCB chooses

a single arm, but collects two rewards from it instead of one, and this is the reason why
two different sets of collected rewards have been introduced: Xi and X′

i for each arm
i ∈ [K]. The reason behind this choice lies in the fact that threshold M̂i,si,t and trimmed
mean estimator µ̂i,si,t need to be computed from independent samples of data. This design
choice will ensure that the concentration inequalities built on both M̂i,si,t and µ̂i,si,t hold
properly at the cost of a 2 factor in the final regret of the algorithm.

We start by stating the main theoretical result about AdaR-UCB, i.e. its upper bound on
regret.

Theorem 5.3 (Upper Bound on Regret for AdaR-UCB). Given a heavy-tailed bandit prob-
lem instance satisfying Assumption 3, the regret of AdaR-UCB at time horizon T then
satisfies:

RT ≤
∑

i:∆i>0

(
160

(
40u

∆i

) 1
ε

log T + 7∆i

)
. (5.19)

First, we point out that this result provides a positive answer to our initial research
question, since the upper bound matches the order of the regret lower bound for the
classic scenario, even when both ϵ and u are unknown.

Next, as customary in the bandit literature, we also provide an instance-independent
version of the upper bound on regret of AdaR-UCB.

Theorem 5.4 (Instance-Independent Upper Bound on Regret for AdaR-UCB). Given any
heavy-tailed bandit problem instance with K arms that satisfies Assumption 3, if horizon
T is such that:

log T ≥ max
i∈[K]

{
7∆

1+ε
ε

i

160(40u)
1
ε

}
,

then the regret of AdaR-UCB satisfies:

RT ≤ T
1

1+ϵ (320K log T )
ϵ

1+ϵ (40u)
1

1+ϵ . (5.20)
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Remark 5 (Well-posedness of threshold). As can be noticed, since the algorithm performs
differently on different instances, we are not guaranteed to always have, for each arm i, the
parameters s and t satisfying Equation (5.5), i.e. 0 < log (t4) < s. In this unsuccessful
case, we can not find any unique positive threshold M̂i,si,t solving equation in line 4 of
the pseudo-code, such that, without loss of generality, we set both the threshold and the
estimator to +∞ at instant t.

Remark 6. The estimator µ̂s in Definition 5.1 is given for a single process generating
random variables X1, . . . , Xs, so it depends only on the number of pulls s. In Algorithm
5.1 we extend this Definition considering each estimator associated to a given arm i, such
that the rewards Xi considered are sampled only from the selected distribution.

Now, before proving the key results of Theorems 5.3 and 5.4, we need to introduce new
forms of concentration inequalities for the trimmed mean estimator, discussing the role
of Assumption 3 on them.

5.4. Derivations of New Concentration Inequalities

We first state a concentration inequality for the trimmed mean estimator in Equation
(5.2), which is explicitly dependent on the threshold value Ms. This concentration result
is a pivotal ingredient to prove the theoretical performances of our approach.

Theorem 5.5 (Concentration Inequality for Trimmed-Mean Estimator). Given a set of
i.i.d. observations X = {X1, . . . , Xs}, and given a threshold Ms > 0, under Assumption
3 we get that for any given δ ∈ (0, 1):

P

(
µ− µ̂s ≤

√
2Vs(Y) log(2δ−1)

s
+

14Ms log(2δ
−1)

3(s− 1)

)
≥ 1− δ (5.21)

where Y = {X11{|X1|≤Ms}, . . . , Xs1{|Xs|≤Ms}} is the trimmed version of X and Vs(Y) is
its sample variance.

The result above can be obtained by decomposing the gap between the true mean and
the estimator in a bias-variance fashion by the means of the trimmed variable Y. The
bias can be neglected under Assumption 3, while the variance of Y (which is bounded by
construction) is controlled using the well-known Empirical Bernstein bound [73].
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Proof. With probability at least 1− δ:

µ− µ̂s = E[X]− 1

s

s∑
t=1

Xt1|Xt|≤Ms

=
1

n

n∑
t=1

(
E[X]− E

[
Xt1|Xt|≤Ms

])
+

1

n

n∑
t=1

(
E
[
Xt1|Xt|≤Ms

]
−Xt1|Xt|≤Mt

)
=

1

n

n∑
t=1

E[Xt1|Xt|>Ms ] +
1

s

s∑
t=1

(
E
[
Xt1|Xt|≤Ms

]
−Xt1|Xt|≤Ms

)
(I)

≤ 1

s

s∑
t=1

(
E
[
Xt1|Xt|≤Ms

]
−Xt1|Xt|≤Ms

)
(II)

≤
√

2Vs(Y) log(2δ−1)

s
+

14Ms log(2δ
−1)

3(s− 1)
,

with

Vs(Y) =
1

s(s− 1)

s∑
i,j=1

(Yi − Yj)
2

2
,

sample variance estimator of Y = (Yt)t∈[s], given:

Yt = Xt1|Xt|≤Ms ∀t ∈ [s].

Note that in step (I) we used truncated non-positivity (Assumption 3) to bound the bias
with 0 from above. In step (II), instead, we used Equation (2.14) for Yt = Xt1|Xt|≤Ms ∀t ∈
[s] independent random variables, with Yt ∈ [−Ms,+Ms] ∀t ∈ [s] almost surely. ■

Given Equation (5.21), we can further investigate on the concentration bound in high
probability for µ − µ̂s retrieving the assumption on δ made in (5.12). It leads to have
log(2δ−1) ≤ 2 log(δ−1), giving:√

2Vs(Y) log(2δ−1)

s
+

14Ms log(2δ
−1)

3(s− 1)

≤ 2

√
Vs(Y) log(δ−1)

s
+

28

3

Ms log(δ
−1)

s− 1
.

Moreover, we use that 1
s−1
≤ 2

s
, for s ≥ 2, to obtain the final form of the concentration

inequality:

=⇒ P

(
µ− µ̂s ≤ 2

√
Vs(Y) log(δ−1)

s
+ 19

Ms log(δ
−1)

s

)
≥ 1− δ. (5.22)
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Theorem 5.5, together with (5.22), shows that trimmed mean estimator achieves a sub-
Gaussian type concentration rate in function of M . This bound is used at line 9 of
Algorithm 5.1 to compute the upper confidence bounds over the trimmed mean estimators,
allowing AdaR-UCB to choose an action following the optimism in the face of uncertainty
paradigm.

Before stating other concentration rules, given Ms random variable solution of Equation
(5.4), we let ξδ be the event:

ξδ =

{
Ms ≤

(
us

log(δ−1)

) 1
1+ϵ

∩ P(|Xt| > Ms) ≤
81 log (δ−1)

s

}
, (5.23)

for δ ∈ (0, 1). Retrieving the results of Corollary 5.2, we have that PMs(ξδ) ≥ 1− δ.

We are now ready to show another bound in high probability for µ̂s, which now depends on
the true values of parameters ϵ and u, and not on Ms anymore. This happens because we
will use here Bernstein’s inequality for bounded random variables (Equation 2.5), instead
of Empirical Bernstein’s.

Theorem 5.6 (Threshold-Independent Concentration Inequality for Trimmed-Mean Es-
timator). Let X = (X1, . . . , Xs) be a set of i.i.d. observations with Xi ∼ X for all i ∈ [s].
If X satisfies Equation (2.3), we have:

P

(
µ̂s − µ ≤ 11u

1
1+ϵ

[
log(δ−1)

s

] ϵ
1+ϵ

∩ ξδ

)
≥ 1− 2δ (5.24)

Proof. Following the same computations as for the proof of Theorem 5.5, we can first
compute

P

(
µ̂s − µ ≤ 11u

1
1+ϵ

[
log(δ−1)

s

] ϵ
1+ϵ

ξδ

)
.

We have that, with probability at least 1− δ:

µ̂s − µ =
1

s

s∑
t=1

Xt1|Xt|≤Ms − E[X]

=
1

s

s∑
t=1

(
Xt1|Xt|≤Ms − E

[
Xt1|Xt|≤Ms

])
+

1

s

s∑
t=1

(
E
[
Xt1|Xt|≤Ms

]
− E[Xt]

)
=

1

s

s∑
t=1

(
Xt1|Xt|≤Ms − E

[
Xt1|Xt|≤Ms

])
+

1

s

s∑
t=1

E[−Xt1|Xt|>Ms ] ≤
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≤ 1

s

s∑
t=1

(
Xt1|Xt|≤Ms − E

[
Xt1|Xt|≤Ms

])
+

1

s

s∑
t=1

E[|Xt|1|Xt|>Ms ]

(∗)
≤ 1

s

s∑
t=1

(
Xt1|Xt|≤Ms − E

[
Xt1|Xt|≤Ms

])
+

+
1

s

s∑
t=1

(
E
[
|Xt|1+ε

] 1
1+ε

)(
E
[(
1|Xt|>Ms

) 1+ε
ε

] ϵ
1+ε

)
(∗∗)
≤
√

2M1−ϵ
s u log (δ−1)

s
+

Ms log (δ
−1)

3s
+

1

s

s∑
t=1

(
u

1
1+ε

)(
E
[
1|Xt|>Ms

] ϵ
1+ε

)
≤
√

2M1−ϵ
s u log (δ−1)

s
+

Mn log (δ
−1)

3s
+ u

1
1+ε

(
1

n

s∑
t=1

P [|Xt| > Ms]
ϵ

1+ε

)
,

where in step (*) we applied repetitively Hölder’s inequality in (A.4).

In this specific case q = 1+ε
ε

, p = 1 + ε, X = |Xt| and Y = 1|Xt|>Ms for all t ∈ [s].

Moreover, Bernstein’s inequality (2.5) is applied in step (**) since we have that:

1

s

s∑
t=1

(
Xt1|Xt|≤Ms − E

[
Xt1|Xt|≤Ms

])
= µ̂s − µ,

for a sequence of independent random variables Y1, ..., Ys with Yt = Xt1|Xt|≤Ms for all
t ∈ [s]. In this context, the random variables have bounded support and bounded second
moments; the second moments are not known, only a bound is:

Yt ∈ [−Ms,Ms] ∀t ∈ [s];

E[Y 2
t ] = E

(
X2

t 1|Xt|≤Ms

)
= E

(
|Xt|1+ϵ|Xt|1−ϵ1|Xt|≤Ms

)
≤ E

(
|X|1+ϵM1−ε

s

)
≤ uM1−ϵ

s ∀t ∈ [s];

Var(Yt) = E[(Yt − E[Yt])
2] = E[Y 2

t ]− (E[Yt])
2

≤ E[Y 2
t ] ≤ uM1+ϵ

s ∀t ∈ [s],

(5.25)

where in Equation (5.25) the random variable |X|1−ϵ
1|Xt|≤Ms was bounded with M1−ϵ

s

inside the expected value.

To proceed further, we recall that we are computing our probability conditioned to the
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event ξt (see Equation 5.23). In this way, we get, with probability at least 1− δ:

µ̂s − µ ≤
√

2M1−ϵ
s u log (δ−1)

s
+

Ms log (δ
−1)

3s
+ u

1
1+ε

(
1

s

s∑
t=1

P [|Xt| > Ms]
ϵ

1+ε

)

≤

2
(

us
log(δ−1)

) 1−ϵ
1+ϵ

u log (δ−1)

s


1
2

+

(
us

log(δ−1)

) 1
1+ϵ

log (δ−1)

3s
+

+
u

1
1+ε

s

s∑
t=1

(
81 log (δ−1)

s

) ϵ
1+ε

≤ u
1

1+ϵ

[
log(δ−1)

s

] ϵ
1+ϵ
(√

2 +
1

3

)
+ u

1
1+ϵ

[
81 log(δ−1)

s

] ϵ
1+ϵ

≤ u
1

1+ϵ

[
log(δ−1)

s

] ϵ
1+ϵ
(√

2 +
1

3
+ 9

)

=⇒ P

(
µ̂s − µ ≤ 11u

1
1+ϵ

[
log(δ−1)

s

] ϵ
1+ϵ

ξδ

)
≥ 1− δ.

Using Bayes Rule, we complete the proof computing:

P

(
µ̂s − µ ≤ 11u

1
1+ϵ

[
log(δ−1)

s

] ϵ
1+ϵ

∩ ξδ

)

= P

(
µ̂s − µ ≤ 11u

1
1+ϵ

[
log(δ−1)

s

] ϵ
1+ϵ

ξδ

)
P (ξδ) ≥ (1− δ)2 ≥ 1− 2δ.

■

We need just one last theoretical result to recall before proving Theorem 5.3. Taking
advantage of Theorem 2.8 and Equation (2.19), we can state the following:

Proposition 5.3. Let s ≥ 2, Ms positive threshold and Y = (Y1, . . . , Ys) be a vector of
independent random variables with values in [−Ms,Ms]. Then for δ > 0 we have, writing
E[Vs(Y)] for EY [Vs(Y)],

P

(√
Vs(Y) ≤

√
E[Vs(Y)] + 2Ms

√
2 log(δ−1)

s− 1

)
≥ 1− δ,

with

Vs(Y) =
1

s(s− 1)

s∑
i,j=1

(Yi − Yj)
2

2
.



68 5| Adaptive Robust UCB Algorithm

In particular, we can retrieve the same reasoning done for Equation (5.22), noting that
1

s−1
≤ 2

s
, for s ≥ 2. We thus obtain:

P

(√
Vn(Y) ≤

√
E[Vs(Y)] + 4Ms

√
log(δ−1)

s

)
≥ 1− δ. (5.26)

Eventually, let us note that all the concentration inequalities proved will be used in
AdaR-UCB with the choice of δ = t−4 ∈ (0, 1] for all t.

We are now ready to prove the upper bounds on regret for AdaR-UCB under Assumption
3.

5.5. Proof of AdaR-UCB Upper Bound on the Regret

The proof of Theorem 5.3 follows similar steps to the result provided by [22] concerning
the upper bound on regret for RobustUCB. Nevertheless, being adaptive w.r.t. both ϵ and
u brings additional difficulties in constructing the algorithm and proving its theoretical
guarantees.

Proof. We first introduce

v :=

⌈
160

(40u)
1
ε

∆
1+ε
ϵ

i

log T

⌉
(5.27)

and define

Bi,Ni(t−1),t = µ̂i,Ni(t−1),t + 2

√
VNi(t−1)(Y) log(t4)

Ni(t− 1)
+ 19

MNi(t−1) log(t
4)

Ni(t− 1)

where, to not overwhelm the notation, we will use VNi(t−1)(Y) for Vi,Ni(t−1),t(Yi,t) and
MNi(t−1) for Mi,Ni(t−1),t.

For what follows, we will assume to reason under the assumption that event ξt, described
in Equation (5.23), holds. This allows to state that:

MNi(t−1) ≤
(
uNi(t− 1)

log(t4)

) 1
1+ϵ

(5.28)

is true.

We show now that if It = i, for any i such that ∆i > 0, then one of the following four
inequalities is true:
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either Bi∗,Ni∗ (t−1),t ≤ µ∗,

or µ̂i,Ni(t−1),t > µi + 11u
1

1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

,

or Ni(t− 1) < 160
(40u)

1
ε

∆
1+ε
ϵ

i

log t,

or
√

VNi(t−1)(Y) >
√
E[VNi(t−1)(Y)] + 4MNi(t−1)

√
log(t4)

Ni(t− 1)
.

(5.29)

(5.30)

(5.31)

(5.32)

Indeed, assume that all four inequalities are false.

Bi∗,Ti∗ (t−1),t

(5.29)
> µ∗ = µi +∆i

(5.30)

≥ µ̂i,Ni(t−1),t − 11u
1

1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

+∆i

(∗)
≥ µ̂i,Ni(t−1),t + 2

√
Vi,Ni(t−1),t(Yi,t) log(t4)

Ni(t− 1)
+ 19

Mi,Ni(t−1),t log(t
4)

Ni(t− 1)

= Bi,Ni(t−1),t

The step marked with (*) is a consequence of the fact that both (5.31) and (5.32) are
false.

In particular, we need to show that

∆i ≥ 11u
1

1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

+ 2

√
VNi(t−1)(Y) log(t4)

Ni(t− 1)
+ 19

MNi(t−1) log(t
4)

Ni(t− 1)
. (*)

We will resort also to the validity of the following inequality:

E
[
VNi(t−1)(Y)

]
= σ2

Ni(t−1) (Y) = σ2
Ni(t−1)

((
Y1, . . . , YNi(t−1)

))
=

=
1

Ni(t− 1)[Ni(t− 1)− 1]

Ni(t−1)∑
l,j=1

E
[
(Yl − Yj)

2]
2

≤ uM1−ϵ
Ni(t−1) ,

(5.33)

since
σ2(Yt) = E

[
Y 2
t

]
− E [Yt]

2 ≤ E
(
X2

t 1|Xt|≤Mt

)
= E

(
|Xt|1+ϵ|Xt|1−ϵ1|Xt|≤Mt

)
≤ E

(
|Xt|1+ϵM1−ε

t

)
≤ uM1−ϵ

t ∀t.

Now, we make use of the fact that Equations (5.31) and (5.32) are false, together with
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inequalities (5.28) and (5.33), to show that:

Ni(t− 1)
(5.31)
≥ 160

(40u)
1
ϵ

∆
1+ϵ
ϵ

i

log t =⇒ ∆
1+ϵ
ϵ

i ≥ 160
(40u)

1
ϵ

Ni(t− 1)
log t = 40

(40u)
1
ϵ

Ni(t− 1)
log
(
t4
)
.

Exploiting the following inequality:

40
ϵ

1+ϵ40
1

1+ϵ ≥ 40, for all ϵ ∈ (0, 1],

we get:

=⇒ ∆i ≥ 40u
1

1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

= (11 + 2 + 27)u
1

1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

= 11u
1

1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

+ 2

 log(t4)u
(

uNi(t−1)
log(t4)

) 1−ϵ
1+ϵ

Ni(t− 1)


1
2

+

+ 27

(
uNi(t−1)
log(t4)

) 1
1+ϵ

log(t4)

Ni(t− 1)

(5.28)
≥ 11u

1
1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

+ 2

(
log(t4)uM1−ϵ

Ni(t−1)

Ni(t− 1)

) 1
2

+ 27
MNi(t−1) log(t

4)

Ni(t− 1)

(5.33)
≥ 11u

1
1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

+ 2

√
E[VNi(t−1)(Yi)] log(t4)

Ni(t− 1)
+ 27

MNi(t−1) log(t
4)

Ni(t− 1)

= 11u
1

1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

+ 2

√
log(t4)

Ni(t− 1)

[√
E[VNi(t−1)(Y)]+

+ 4MNi(t−1)

√
log(t4)

Ni(t− 1)

]
+ 19

MNi(t−1) log(t
4)

Ni(t− 1)

(5.32)
≥ 11u

1
1+ϵ

[
log(t4)

Ni(t− 1)

] ϵ
1+ϵ

+ 2

√
VNi(t−1)(Yi) log(t4)

Ni(t− 1)
+ 19

MNi(t−1) log(t
4)

Ni(t− 1)
,

which proves Equation (*).

Thus, we obtain the following contradiction:

Bi∗,Ni∗ (t−1),t ≥ Bi,Ni(t−1),t,
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implying, in particular, that It ̸= i.

Now we bound the probability that ξt holds and at least one of Equations (5.29), (5.30)
or (5.32) is true.

By (5.22), (5.24) and (5.26), as well as an union bound over the value of Ni∗(t − 1) and
Ni(t− 1), we obtain:

P ([(5.29) or (5.30) or (5.32) is true] and ξt) ≤ 4
t∑

s=1

1

t4
=

4

t3

At this point, using v as defined in Equation (5.27), we obtain:

E[Ni(T )] = E

[
T∑
t=1

1It=i

]
≤ v + E

[
T∑

t=v+1

1{It=i and (5.31) is false }

]

= v + E

[
T∑

t=v+1

(
1{It=i and (5.31) is false and ξt}+

+ 1{It=i and (5.31) is false and ξCt }

)]

≤ v + E

[
T∑

t=v+1

(
1{It=i and [(5.29) or (5.30) or (5.32) is true] and ξt}+

+ 1{ξCt }
)]

≤ v +
T∑

t=v+1

(
4

t3
+

1

t4

)
≤ v + 6,

where ξCt defines the complementary set of ξt.

This proves that

E[Ni(T )] ≤ 160
(40u)

1
ε

∆
1+ε
ϵ

i

log T + 7, (5.34)

for any i not optimal arm.

Using that RT =
∑K

i=1 ∆iE[Ni(T )] and (5.34), we directly obtain an instance-dependent
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bound on the regret which proves Theorem 5.3:

RT ≤
∑

i:∆i>0

(
160

(
40u

∆i

) 1
ε

log T + 7∆i

)
.

■

On the other hand, for the sake of completeness, we can also prove Theorem 5.4 to show
an instance-independent bound on the regret, assuming T is such that:

log T ≥ max
i∈[K]

(
7∆

1+ε
ε

i

160(40u)
1
ε

)
.

Proof. We have:

RT =
∑

i:∆i>0

∆i (E[Ni(T )])
ϵ

1+ϵ (E[Ni(T )])
1

1+ε

≤
∑

i:∆i>0

∆i (E[Ni(T )])
1

1+ϵ

(
160

(40u)
1
ϵ

∆
1+ϵ
ϵ

i

log T + 7

) ϵ
1+ϵ

(i)

≤
∑

i:∆i>0

∆i (E[Ni(T )])
1

1+ϵ

(
320

(40u)
1
ϵ

∆
1+ϵ
ϵ

i

log T

) ϵ
1+ϵ

=

[ ∑
i:∆i>0

(E[Ni(T )])
1

1+ϵ

](
320(40u)

1
ϵ log T

) ϵ
1+ϵ

(ii)

≤ K
ϵ

1+ϵ

( ∑
i:∆i>0

E[Ni(T )]

) 1
1+ϵ

320
ϵ

1+ϵ (40u)
1

1+ϵ (log T )
ϵ

1+ϵ

≤ T
1

1+ϵ (320K log T )
ϵ

1+ϵ (40u)
1

1+ϵ ,

which proves Equation (5.20).

Step (i) above is given by assumption on T , while step (ii) is an application of Hölder’s
inequality in Appendix A. More specifically, we chose:

p =
1 + ε

ε
, q = 1 + ε, xi = 1 and yi = (E[Ni(T )])

1
1+ε for all i = 1, . . . , K

to then apply Equation (A.3). ■



73

6| Numerical Simulations

In this chapter, we present numerical results to illustrate the performance of AdaR-UCB

algorithm presented in Chapter 5. We empirically validate the theoretical improvements
achieved in using our proposed algorithm based on a fully adaptive approach, by compar-
ing it with some state of the art regret minimization algorithms, i.e., UCB1 and RobustUCB.

We start outlining below the theory behind the reward distributions of classic bench-
mark heavy-tailed problems that we adopt to compare the aforementioned algorithms.
Afterwards, we report the full results of the experiments.

6.1. Experimental Setting: Pareto Distributions

To make an experimental validation of the theoretical novelties introduced in the previous
chapters, we use Generalized Pareto distributed rewards, which represent the prototype of
distributions to adopt in a standard heavy-tailed modeling framework.

A Pareto-distributed random variable X [77] is characterized by a scale parameter xm and
a shape parameter α, which is known as the tail index; the first one is the (necessarily
positive) minimum possible value of the support of X, and the second one is a positive
parameter characterizing the heaviness of the distribution’s tail.

The Probability Density Function (PDF) of X is given by:

fX(x) =


αxα

m

xα+1 , x ≥ xm

0, x < xm

.

When plotted on canonical axes, the distribution assumes the familiar J-shaped curve
which approaches the horizontal axis asymptotically. The Cumulative Distribution Func-
tion (CDF) of X can be consequently computed as:

FX(x) = 1− P(X > x) = 1−
∫ +∞

x

fX(t) dt = 1−
(xm

x

)α
, for x ≥ xm.
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In particular, we have that:

P(X > x)
x→∞∼ x−α, α > 0,

for large x. Thus, tail index α gives an inference about the orders of finite moments.

Properties on the moments:

• The expected value of a random variable X following a Pareto distribution is:

E[X] =

∞ α ≤ 1

αxm

α−1
α > 1

• The variance of a random variable X following a Pareto distribution is:

Var(X) =

+∞ α ∈ (1, 2](
xm

α−1

)2 α
α−2

α > 2
.

If α ≤ 1, the variance does not exist.

• Let us assume X ∼ Pareto(α, xm), with shape parameter α ∈ (1, 2] such that the
second moment is infinite, and xm > 0. We now compute the non-centered moment
of order 1 + ϵ, with ϵ ∈ (0, 1]:

E[|X|1+ϵ] =

∫ +∞

xm

|x|1+ϵfX(x) dx

=

∫ +∞

xm

x1+ϵ αx
α
m

xα+1
dx

= αxα
m

∫ +∞

xm

1

xα−ϵ
,

which converges when α− ϵ > 1⇔ α > 1 + ϵ.

To recap the final point, we can state the following:

Proposition 6.1. A Pareto distributed random variable X with shape parameter α and
scale parameter xm has finite moments of order 1 + ϵ with ϵ ∈ (0, 1] if and only if the
shape parameter α is greater than 1 + ϵ.

Moreover, if α > 1+ ϵ, we can also compute analytically the value of the moment of order
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1 + ϵ, since the integral can be computed in closed form:

E[|X|1+ϵ] = αxα
m

∫ +∞

xm

1

xα−ϵ

=
αxα

m

ϵ− α + 1

[
x−(α−(1+ϵ))

]+∞
xm

=
αxα

m

ϵ− α + 1
(−xϵ−α+1

m )

=
αx1+ϵ

m

α− (1 + ϵ)
.

(6.1)

To understand the possible theoretical differencies, let us now compute the centered mo-
ment of order 1 + ϵ, with ϵ ∈ (0, 1]. Given µ = E[X]:

E[|X − µ|1+ϵ] =

∫ +∞

xm

|x− µ|1+ϵfX(x) dx

= αxα
m

∫ +∞

xm

(x− µ)1+ϵ 1

xα+1
dx.

The last integral cannot be solved analytically, but we have that, for x→∞,∫ +∞

xm

(x− µ)1+ϵ

xα+1
dx ∼

∫ +∞

xm

x1+ϵ

xα+1
dx,

which convergence properties are analogous to the ones of non-centered moments.

In conclusion, for a given α and ϵ, the non-centered moment of order 1 + ϵ exists if
and only if the centered one exists, but the expression of the latter cannot be computed
analytically, and in general the two do not coincide.

To test the performance of AdaR-UCB algorithm, we will consider bandit instances with
arms Pareto-distributed, introducing some generalizations to allow more flexibility in the
chosen instances. In particular, we will consider rewards distributed as:

• Positive Pareto: heavy-tailed Pareto distribution with standard parameters α ∈
(1, 2] and xm > 0, allowing only for a positive tail on the support S = [xm,+∞).

• Negative Pareto: heavy-tailed Pareto distribution which has a symmetric probability
density function with respect to the Positive one. It has parameters α ∈ (1, 2] and
xm > 0, with only a negative tail on the support S = (−∞,−xm].

• Double-tailed Pareto: a random variable which represents the event of sampling with
probability 1/2 from a Positive Pareto, X1 ∼ Pareto(α1, xm1), and with probability
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1/2 from a negative one, X2 ∼ Pareto(α2, xm2). It has support (−∞,−xm2] ∪
[xm1,+∞) and probability density function:

fX(x) =
1

2
fX1(x) +

1

2
fX2(x),

where fX1(x) and fX2(x) are the probability density functions of X1 and X2 respec-
tively.

6.2. Truncated Non-Positive Bandit Instances

We run some experiments on bandits instances which satisfy Assumption 3, i.e. have a
truncated non-positive optimal arm. We will compare the results of our new Algorithm
5.1 with respect to the other two standard algorithms for multi-armed bandits problems,
UCB1 (Algorithm 3.1) and RobustUCB (Algorithm 3.2).

For the instances that follow, we retrieve the result of Proposition 6.1 to compute the value
of ϵ given that 1+ϵ is the number just below the minimum of the shape parameters of the
distributions. In this way, it indeed represents the maximum order of finite moments. The
uniform bound u is the maximum, among all the distributions, of the (1+ ϵ)-th moments
of each one. It is computed analytically as in Equation (6.1).

We first consider cases where all the arms follow Negative Pareto distributions, including
the optimal arm, giving Assumption 3 to be trivially satisfied.

6.2.1. Simulation 1

For the first simulation, the four distributions are displayed in Figure 6.1. The optimal
arm is the first one (arm 0), since it has the highest mean.
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Figure 6.1: Simulation 1 - Instance a - Pareto Distributions.
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The performances of our three reference algorithms on the instance described are reported
in Figure 6.2, where the cumulative regret is computed considering a time horizon T =

25000. Moreover, 20 runs are performed, such that we can plot univariate confidence
intervals for the regret mean estimates,

[
R̄T − σ̂√

20
, R̄T + σ̂√

20

]
, where the uncertainty is

characterized through the sample standard deviation σ̂. The intervals are plotted as
shaded areas with their upper and lower bounds.
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Figure 6.2: Numerical results of simulation 1 - Instance a - Baseline comparison of cumu-
lative regret, which is averaged over 20 independent experiments (20 runs, shaded areas
are standard deviations.

Comparing the results in Figure 6.2 we see that AdaR-UCB performs way better than
UCB1 and RobustUCB, with a clearly sub-linear regret that tends to flatten fast. On
the other side, UCB1 and RobustUCB algorithms show a regret behaviour only slightly
sub-linear, almost linear, with a slower convergence with respect to our algorithm. In
particular, applying UCB1 to a stochastic bandit setting with heavy tails, we do not have
any theoretical guarantee on the upper bound on regret, such that empirically a priori we
can not expect any specific behaviour.

Ideally, since UCB1 uses the sample mean estimator that is not robust to extreme outliers,
it should perform worse than any robust algorithm suited for heavy-tailed instances. This
is not the case in this experiment, and we will show that the empirical evidence of UCB1
performing better than RobustUCB will be recurrent also in the next simulations. The
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reason behind this unexpected result lies in the threshold chosen for the truncated mean
estimator. Even if we have good convergence result for this robust estimator, the threshold
reported in Equation (5.1) is too high with respect to the means of the Pareto, such that
it basically never truncates rewards and it takes too long to tighten the upper confidence
bound interval. Even if we have theoretical results that guarantee a logarithmic regret for
RobustUCB, empirically this algorithm is too slow to converge. We will show in the next
experiments that this is a frequent pattern, with RobustUCB consistently showing poor
performances.

To better understand the behaviour of AdaR-UCB algorithm, we reported in Figure 6.3
the choice of actions that it performed throughout all the 20 runs (upper plot) and the
specific choice of actions performed along time in the last epoch (lower plot).
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Choices of arms for the last epoch of the experiment

Figure 6.3: Simulation 1 - Instance a - Arms pulled by Algorithm AdaR-UCB.

We see that, according to regret results, the optimal arm is the most played, but the
algorithm keeps anyway exploring occasionally along the time horizon. Thus, AdaR-UCB
more efficiently explores an optimal action than RobustUCB despite of the weakness of the
assumptions.

Moreover, doing the last investigations for this instance, we can assess another recurrent



6| Numerical Simulations 79

behaviour that repeats along all the possible experiments. The cumulative regret com-
puted by AdaR-UCB is in all the cases well below the bounds presented in Theorems 5.3
and 5.4. This shows that regret bounds proved are fairly loose, but this happens usually
in literature for all the stochastic bandits algorithms based on UCB approaches [3].

We want now to study how the performances of the algorithms change with respect to
parameter u. Taking two bandit instances and keeping the same type of distributions,
same ϵ and number of arms, we want to test how the different scale parameters influence
the behaviour of cumulative regret. Since in the first instance presented we had Negative
Pareto’s with scale xm between 2 and 11 (Figure 6.1), we now try an experiment with the
same one, but changing the scales to a wider range, e.g. between 40 and 150. The new
distributions are displayed in Figure 6.4.
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Figure 6.4: Simulation 1 - Instance b - Pareto Distributions.

For each algorithm, the mean estimates of cumulative regret over 20 independent runs
and along an horizon of T = 25000 time instants are reported in Figure 6.5.

Comparing Figures 6.2 and 6.5 in terms of regret trends, we do not see a relevant dif-
ference between the two. In both the instances, AdaR-UCB, with a clear sub-linear regret
behaviour, still outperforms the other two algorithms, that show only a slightly sub-linear
behaviour. To compare the absolute values of regret at horizon T , we can refer to Table
6.1.
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Figure 6.5: Numerical results of simulation 1 - Instance b - Baseline comparison of cumu-
lative regret (20 runs, shaded areas are standard deviations).

Regret RT

Algorithm Instance a, u = 7 · 104 Instance b, u = 5 · 106

AdaR-UCB 6 · 104 12 · 105

UCB1 19 · 104 24 · 105

RobustUCB 25 · 104 30 · 105

Table 6.1: Simulation 1 - Performance comparison of same instances with different u

As expected, we see that, given the same algorithm, cumulative regret increases while
increasing u and the suboptimality gaps. On the other hand, with simple computations,
we see that the relative behaviour of cumulative regrets of different algorithms in the same
bandit instance is not strongly affected from how wider is the difference in scale among
Pareto distributions. Considering, for instance, the relative difference in regret between
RobustUCB and AdaR-UCB, and between RobustUCB and UCB1, we get:
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 Instance a : RT (RobustUCB)−RT (AdaR-UCB)
RT (RobustUCB) ≈ 0.75;

Instance b : RT (RobustUCB)−RT (AdaR-UCB)
RT (RobustUCB) ≈ 0.6. Instance a : RT (RobustUCB)−RT (UCB1)
RT (RobustUCB) ≈ 0.24;

Instance b : RT (RobustUCB)−RT (UCB1)
RT (RobustUCB) ≈ 0.2.

We can conclude that changing u between same types of instances does not lead to relevant
differences in relative performances.

6.2.2. Simulation 2

We want then to study how the performances of the algorithms change with respect to
the other key parameter in our stochastic heavy-tailed bandit setting, namely ϵ. For the
next analyses, given a bandit instance, we need first to define the parameter ∆ as the
difference between the mean of the optimal arm and the mean of the second optimal one.

Since the influence of u on the relative performances is negligible, without lack of gener-
ality, we can now compare instances with same number of arms, ∆ ∈ (0, 1) and different
ϵ ∈ (0, 1].
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(a) Pareto Distributions.
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(b) Numerical results (20 runs).

Figure 6.6: Simulation 2 - Instance a - Negative Pareto’s, 6 arms, ϵ = 0.8,∆ ∈ (0, 1).
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(a) Pareto Distributions.
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(b) Numerical results (20 runs).

Figure 6.7: Simulation 2 - Instance b - Negative Pareto’s, 6 arms, ϵ = 0.5,∆ ∈ (0, 1).
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(a) Pareto Distributions.
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(b) Numerical results (20 runs).

Figure 6.8: Simulation 2 - Instance c - Negative Pareto’s, 6 arms, ϵ = 0.3,∆ ∈ (0, 1).
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(a) Pareto Distributions.
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(b) Numerical results (20 runs).

Figure 6.9: Simulation 2 - Instance d - Negative Pareto’s, 6 arms, ϵ = 0.1,∆ ∈ (0, 1).

In Table 6.2, we report a summary of regret results at horizon T = 25000 for every
algorithm, while changing ϵ parameter in each instance.
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Regret RT

Algorithm ϵ = 0.8 ϵ = 0.5 ϵ = 0.3 ϵ = 0.1

AdaR-UCB 15 · 103 31 · 103 75 · 103 180 · 103

UCB1 45 · 103 58 · 103 70 · 103 75 · 103

RobustUCB 55 · 103 68 · 103 80 · 103 100 · 103

Table 6.2: Comparison on the regret performances of the algorithms, given the same type
of instances but with different ϵ.

With simple computations, we see that the relative performances between the algorithms
change significantly depending on ϵ.

Remark 7. At a first sight, Figure 6.9b might be misleading. The cumulative regret of
AdaR-UCB seems to have an almost linear behaviour, disagreeing with the theoretical results
we showed. Keeping the same Pareto’s as in Figure 6.9a, but simply increasing the time
horizon to T = 100000, we see in Figure 6.10 that algorithm AdaR-UCB coherently shows
a sub-linear empirical behaviour, in accordance with the theory.
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Figure 6.10: Simulation 2 - Instance d - Numerical results on regret comparison (20 runs),
T = 100000.
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From the experiments on these instances we can make a relevant conclusion on the em-
pirical performance of AdaR-UCB algorithm: decreasing ϵ parameter makes the slope of
cumulative regret decreasing more slowly.

6.2.3. Simulation 3

Let us now investigate a more complicated setting. We keep the optimal action distributed
as a negative Pareto distribution, but we consider as possible non-optimal arms also some
double-tailed Pareto distributions. The stochastic instance chosen is reported in Figure
6.11. Here Assumption 3 of truncated non-positivity is trivially satisfied since the optimal
arm has a negative tail only.
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Figure 6.11: Simulation 3 - Pareto Distributions.

Computing the expected regrets over 20 runs and T = 25000 time instants, we still see
in Figure 6.12 a pattern of regrets similar to the one in Section 6.2.1, with AdaR-UCB

outperforming the current most common state-of-the-art performances.

6.2.4. Simulation 4

Let us now evaluate empirically the last type of instances we can think of, that still satisfies
Assumption 3 of truncated non-positivity. We consider rewards distributed according to
negative Pareto’s or double-tailed Pareto’s, with the optimal arm that follows the latter
and observes Assumption 3.
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Figure 6.12: Numerical results of simulation 3 - Baseline comparison of cumulative regret
(20 runs, shaded areas are standard deviations).

The reader might wonder how to investigate if a double-tailed Pareto random variable X

satisfies the truncated non-positivity assumption, which we recall here as:

EX [X1{|X|>M}] ≤ 0 ∀M ≥ 0.

Even if, in a Pareto, shape parameter α controls the heaviness of the tails, checking if a
double-tailed Pareto satisfies the assumption cannot be done simply comparing the shape
parameters of the two tails, as one might think straightforward. Since the condition above
needs to hold for all M > 0, it has to be checked analytically considering both the shape
and scale parameters.

Let us assume X to be a random variable such that with a probability of 1
2

we sample
from a Positive Pareto, X1 ∼ Pareto(α1, xm1), and with probability 1

2
we sample from a

Negative Pareto, X2 ∼ Pareto(α2, xm2).

To check the assumption above we need to show that:

1

2
α1x

α1
m1

∫ +∞

M

x

xα1+1
1x>xm1 dx ≤ 1

2
α2x

α2
m2

∫ +∞

M

x

xα2+1
1x>xm2 dx ∀M ≥ 0. (6.2)

Since the support of X1 is [xm1,+∞) and the support of X2 equals to (−∞,−xm2], the
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inequality needs to hold for M ≥ min(xm1, xm2). Let us first study the case of xm1 < xm2.
Equation (6.2) becomes:

α1x
α1
m1

M1−α1

α1 − 1
≤ α2x

α2
m2

x1−α2
m2

α2 − 1
, for all M : xm1 ≤M < xm2

α1x
α1
m1

M1−α1

α1 − 1
≤ α2x

α2
m2

M1−α2

α2 − 1
, for all M : xm2 ≤M

=⇒


M ≥

(
α1(α2 − 1)

α2(α1 − 1)

xα1
m1

xm2

) 1
α1−1

, for all M: xm1 ≤M < xm2

M ≥
(
α1(α2 − 1)

α2(α1 − 1)

xα1
m1

xα2
m2

) 1
α1−α2

, for all M: xm2 ≤M

. (6.3)

While for the case of xm2 < xm1, Equation (6.2) reads:
α1x

α1
m1

x1−α1
m1

α1 − 1
≤ α2x

α2
m2

M1−α2

α2 − 1
, for all M : xm2 ≤M < xm1

α1x
α1
m1

M1−α1

α1 − 1
≤ α2x

α2
m2

M1−α2

α2 − 1
, for all M : xm1 ≤M

=⇒


M ≤

(
α2(α1 − 1)

α1(α2 − 1)

xα2
m2

xm1

) 1
α2−1

, for all M: xm2 ≤M < xm1

M ≥
(
α1(α2 − 1)

α2(α1 − 1)

xα1
m1

xα2
m2

) 1
α1−α2

, for all M: xm1 ≤M

. (6.4)

In particular, it is trivial to understand that a double-tailed Pareto random variable X

with positive mean for sure does not satisfy the assumption of truncated non-positivity.
We have, indeed, that EX [X1{|X|>M}] ≤ 0 does not hold for M = 0. On the other side, it
is not true that the assumption is in general satisfied for every double-tailed Pareto with
negative mean, since it has to be checked for all M ≥ 0.

Let us now consider the instance with rewards of arms distributed as in Figure 6.13.

In particular, the optimal arm is a double-tailed Pareto with the positive tail distributed as
X1 ∼ Pareto(α1, xm1) = Pareto(1.7, 8), and the negative tail as X2 ∼ Pareto(α2, xm2) =

Pareto(1.3, 10). Since xm2 > xm1, we need to verify Equation (6.3):{
M ≥ 2.54, for all M: 8 ≤M < 10

M ≥ 0.10, for all M: 10 ≤M
,

so that the truncated non-positivity holds, and our theoretical analysis in Chapter 5 still
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ensures a logarithmic regret.
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Figure 6.13: Simulation 4 - Pareto Distributions.
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Figure 6.14: Numerical results of simulation 4 - Baseline comparison of cumulative regret
(20 runs, shaded areas are standard deviations).

Comparing the regret results in Figure 6.14, we have that AdaR-UCB algorithm still per-
forms better empirically than state-of-the-art ones, given a lower cumulative regret with
a clear sub-linear behaviour. Nevertheless, the performance of AdaR-UCB has degraded a
little bit with respect to previous simulations, due to the difficulty of the bandit instance
considered.
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To conclude our analysis on truncated non-positive bandit instances, we see that RobustUCB
consistently shows poor performance, while AdaR-UCB generally outperforms both UCB1

and RobustUCB, even if its convergence speed decreases significantly for instances with ϵ

close to 0. The tightness of AdaR-UCB algorithm is more evident for higher values of ϵ and
instances with all negative Pareto distributions.

6.3. General Heavy-Tailed Bandit Instances

We now want to present other numerical results obtained applying AdaR-UCB algorithm
on general heavy-tailed bandit instances, not satisfying Assumption 3.

The possible instances belonging to this framework can be the most varied. We can en-
counter bandits with all the arms distributed as positive Pareto’s (see Figure 6.17a), or
some arms with the positive tail only and some others double-tailed. In this second case,
we might have that the optimal arm is either a positive Pareto or a double-tailed one,
but in both cases the truncated non-positivity assumption is not satisfied since the mean
is necessarily positive. We might also have all the possible combinations of Pareto distri-
butions in the same bandit instance, including all the three generalized cases presented
in Section 6.1 (see Figures 6.15a and 6.16a).

In this case, the theoretical evidencies presented in Chapter 5 for AdaR-UCB algorithm do
not hold, such that we do not have any guarantee on the behaviour of the cumulative
regret.

We present here some experiments showing how the performance of algorithm AdaR-UCB

is not predictable in this setting, with the expected cumulative regrets plotted in Figures
6.15b, 6.16b and 6.17b, considering 20 independent runs and time horizon of either T =

25000 or T = 100000, depending on how fast the algorithms were converging.

We note that the regret curve of AdaR-UCB can grow fast and flatten with time, it can
be logarithmic, slightly sub-linear or even linear, coherently with the fact that we have
no theoretical result supporting this framework for AdaR-UCB. Nevertheless, for general
heavy-tailed bandit instances, our algorithm still shows a slope of cumulative regret which
decreases faster than UCB1 and RobustUCB algorithms.
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(a) Pareto Distributions.
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(b) Numerical results on Regret.

Figure 6.15: Simulation 5 - Negative, positive and double-tailed Pareto’s, 6 arms, 20 runs,
T = 25000, the optimal arm is positive.
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(a) Pareto Distributions.
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(b) Numerical results on Regret

Figure 6.16: Simulation 6 - Negative, positive and double-tailed Pareto’s, 5 arms, 20 runs,
T=100000, the optimal arm is double-tailed.
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Figure 6.17: Simulation 7 - All positive Pareto’s, 6 arms, 20 runs, T=100000.
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7.1. Conclusions

In this thesis, we studied the adaptive stochastic heavy-tailed bandit problem, a variation
on the classical stochastic heavy-tailed bandit problem where no information is provided
to the agent regarding the moments of the distribution, not even which of them are finite.

The study of heavy-tailed multi-armed bandits is essential for a comprehensive and real-
istic approach to sequential decision-making in environments with a strong uncertainty
and extreme outcomes. Nowadays, many real-world scenarios might present extreme out-
lying values occurring at high frequencies, and this explains why the research on the
heavy-tailed bandit framework experienced a notable advancement over the last decade.

In the literature, given a bandit instance with heavy tailed rewards, it is common to
assume the knowledge of the two key parameters characterizing the collection of reward
distributions, namely ϵ and u. This is a strong limitation since in practical cases, where
real-world samples are collected, these parameters are usually not known. Nevertheless, so
far, every regret minimization strategy in literature still requires them as an algorithm’s
input to achieve optimal instance-dependent efficiency.

Approaching these practical problems in a flexible and efficient way has become crucial.
Thus, our focus moved towards an adaptive approach, where agents are unaware of the
aforementioned quantities, but still achieving comparable performances to non-adaptive
approaches.

Our first relevant results concern the intrinsic difficulty of this setting, for which two novel
lower bounds on expected regret have been provided in Chapter 4. In particular, we proved
that, without any additional assumption, no algorithm can match the performances of a
reasonable policy in the non-adaptive setting. This holds because any algorithm adaptive
with respect to either u or ϵ has a higher regret lower bound than the one of the non-
adaptive heavy-tailed bandit problem. In general, it is not possible to achieve the same
order of performance of the state-of-the-art approaches while being unaware of these two



92 7| Conclusions and Future Work

quantities.

We showed how adaptivity comes at a cost, pushing us towards restricting the set of adap-
tive heavy-tailed bandit problem instances under analysis to a special set, that would allow
to accomplish optimality results. In detail, these results hold under a specific distribu-
tional assumption over the optimal arm, namely the truncated non-positivity assumption.

Finally, we provided a novel algorithm, namely AdaR-UCB, that under our assumption
is able to achieve the state-of-the-art performances of the standard non-adaptive heavy-
tailed bandit problem, i.e., an instance-dependent regret order matching the classical
instance-dependent lower bound.
While in the conventional heavy-tailed bandit problem it is not feasible to be adaptive
with respect to both ϵ and u while attaining the best regret order achievable, our algorithm
shows that, under the aforementioned assumption, it is indeed possible.

Together with theoretical guarantees, we provided an empirical validation of AdaR-UCB.
We validated the design choices of our solution in a synthetic environment. In each of
the simulations we conducted, we observed a clear evidence in favor of AdaR-UCB, rather
than the other two well-known baselines, namely RobustUCB and UCB1.

In particular, it is important to note that the theoretical performances in terms of regret
upper bound for AdaR-UCB and RobustUCB coincide when the latter is run with the cor-
rect instance-dependent parameters ϵ and u. Nevertheless, even if in the simulations we
decided to input to RobustUCB the correct values, AdaR-UCB, which does not require any
prior knowledge but the number of arms, still outperforms RobustUCB. This might seem
counter-intuitive since the first is an algorithm fully adaptive with less information, but
the results were outstanding.

7.2. Future Developments

The main future direction of investigation regards the role of the truncated non-positivity
assumption. Since with this assumption we selected a subset of the stochastic heavy-
tailed instances, we wonder if is it possible to find a weaker one ensuring the kind of
performances achieved by AdaR-UCB algorithm. This new assumption would of course
hold for a set that contains the truncated non-positive instance, but does not contain the
bandit instances considered in Chapter 4 to prove the adaptive lower bounds. On the
other side, further future inspections should focus on how AdaR-UCB algorithm performs
on instances not satisfying Assumption 3. We proposed numerical simulations for this
case, but no theoretical result or guarantee has been proven yet.
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We recall that, under our distributional assumption, AdaR-UCB is a tight algorithm for
the instance-dependent case, while the instance-independent regret upper bound matches
the minimax lower bound up to a logarithmic factor in T . A future work would consist in
understanding if it is possible to find an algorithm that, under the truncated non-positive
assumption, is tight in both the instance-dependent and instance-independent cases. This
property was already achieved from MOSS algorithm in the traditional stochastic setting
for subgaussian MAB [9, 60]. Building on UCB, the directly named “minimax optimal
strategy in the stochastic case” (MOSS) algorithm was the first one that, modifying the
confidence levels, managed to remove the log T factor entirely in instance-independent
regret upper bound (see result for UCB1 algorithm in Theorem 3.1).

Moreover, due to the empirical performances showed in Chapter 6, it would be inter-
esting to better analyze how the non-adaptive RobustUCB algorithm behaves when the
parameters ϵ and u are incorrectly specified as input.

Lastly, we recall that the two lower bounds introduced in Chapter 4 refer to adaptivity
with respect to only one of the two quantities ϵ and u. As a future research development,
it could be interesting to investigate if simultaneous adaptivity to both parameters implies
an even higher lower bound.
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A.1. Landau Notation

In the thesis, we make frequent use of the Bachmann-Landau notation [62]. Both were
nineteenth century mathematicians who could have never expected their notation to be
adopted so enthusiastically by computer scientists. Given functions f, g : N → [0,∞),
define

f(n) = O(g(n))⇔ lim sup
n→∞

f(n)

g(n)
< +∞,

f(n) = Ω(g(n))⇔ lim inf
n→∞

f(n)

g(n)
> 0.

(A.1)

(A.2)

We make use of the (Bachmann-)Landau notation to informally describe a result without
the clutter of uninteresting constants. For better or worse, this usage is often a little
imprecise. For example, we will often write expressions of the form: RT ≤ O(u

√
KT ).

Almost always what is meant by this is that there exists a universal constant c > 0

(a constant that does not depend on either of the quantities involved) such that RT ≤
cu
√
KT for all (reasonable) choices of u,K and T . In this context, we are careful not to

use Landau notation to hide large lower-order terms.

A.2. Hölder’s Inequalities

Theorem A.1 (Hölder’s Inequality, [49]). Let (S,Σ, µ) be a measure space, let p, q ∈
[1,∞] with 1

p
+ 1

q
= 1. Then for all measurable, real-valued functions f and g on S:

∥fg∥1 = ∥f∥p∥g∥q,

where the norm here is given by ∥f∥p =
(∫

S
|f |p | dµ

)1/p.
For both the following specialized cases assume that p and q are in the open interval
(1,∞), with 1

p
+ 1

q
= 1.
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Proposition A.1 (µ =Counting measure). Let Rn be the n-dimensional Euclidean space,
and S be the set {1, . . . , n} with the counting measure, which, for each A ⊆ S, computes
the cardinality of A. Then, Hölder’s inequality reads:

n∑
k=1

|xkyk| ≤

(
n∑

k=1

|xk|p
) 1

p
(

n∑
k=1

|yk|q
) 1

q

,

for all (x1, . . . , xn) , (y1, . . . , yn) ∈ Rn.

(A.3)

Proposition A.2 (µ = Probability measure). Let the probability space be (Ω,F ,P), For
real-valued random variables X and Y on Ω, Hölder’s inequality reads:

E[|XY |] ⩽ (E [|X|p])
1
p (E [|Y |q])

1
q . (A.4)
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B.1. Further Lower Bound Analysis

To have a complete discussion on the complexity of the adaptive heavy-tailed bandit
problem, we further discuss the minimax lower bounds. In Chapter 4, we chose specific
instances to state the lower bounds in a general stochastic adaptive HT setting, without
additional assumptions. Indeed, we already noticed that these instances do not satisfy
Assumption 3 on truncated non-positivity.

The reader might wonder if the construction in Sections 4.1.1 and 4.2.1 can be replicated
on the negative axis, in order to enforce the truncated non-positive assumption to hold,
and still repeat the derivation. Fortunately, this is not the case. Let us focus, for simplic-
ity, on the construction in Section 4.2.1, but the same reasoning holds for the one in the
proof of u-adaptive lower bound (Section 4.1.1).

Let us consider the translated base instance (with y ≥ 0): ν1 = δ−y

ν2 = (1 + ∆γ − γ1+ϵ)δ−y + (γ1+ϵ −∆γ)δ1/γ−y

,

where δx denotes the Dirac delta measure centered in x and γ = (2∆)
1
ϵ for ∆ ∈ [0, 1/2].

The optimal arm is arm 2.

Let us enforce the truncated non-positive assumption on the optimal arm:

EX∼ν2 [X1|X|≤M ] = −y(1 + ∆γ − γ1+ϵ)1|−y|≤M+

(1/γ − y)(γ1+ϵ −∆γ)1|1/γ−y|≤M ≤ 0, ∀M > 0.

Clearly, when y ≥ 1/γ, the support contains non-positive points only and thus the as-
sumption holds. Thus, we focus on y < 1/γ. In such a case, in order for the assumption
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to hold it must be that:−y(1 + ∆γ − γ1+ϵ) + (1/γ − y)(γ1+ϵ −∆γ) ≤ 0

1/γ − y ≤ y
=⇒

y ≥ γϵ −∆

y ≥ 1/2γ−1
.

Then, a necessary condition for having the property is that y ≥ 1
2
(2∆)−

1
ϵ .

We immediately observe that:

EX∼ν1 [X] = −y ≤ −1

2
(2∆)−

1
ϵ ,

that gets unbounded by making ∆ → 0 (as in the construction). It follows that, since
the expectation is unbounded, also the (1 + ϵ)-th moments are, and Assumption 2 of
heavy-tailed setting does not hold.

Now, starting from the construction in Section 4.2.1, the reader may propose a different
construction to force the truncated non-positivity assumption. We consider here two new
instances, in which we mirror the two arms for both the base and alternative instance in
Section 4.2.1.

Base instance:  ν1 = δ0

ν2 = (1 + ∆γ − γ1+ϵ)δ0 + (γ1+ϵ −∆γ)δ−1/γ

,

where γ = (2∆)
1
ϵ for ∆ ∈ [0, 1/2]. We have:

µ1 = 0, µ2 = −∆,

Eν1 [|X|α] = 0, Eν2 [|X|α] = −2
1−α
ϵ ∆

1+ϵ−α
ϵ ,

which are guaranteed to be bounded by constant (recall that we will make ∆→ 0 in the
construction) only if α ≤ ϵ+1. Thus, this bandit admits moments finite up to order ϵ+1.
The optimal arm is arm 1.

Alternative instance: ν ′
1 = (1− (γ′)1+ϵ′)δ0 + (γ′)1+ϵ′δ−1/γ′

ν ′
2 = ν2

,
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where γ′ = (2∆)
1
ϵ′ for ∆ ∈ [0, 1/2]. We have:

µ′
1 = −2∆, µ′

2 = −∆,

Eν′1
[|X|α] = −(2∆)

1+ϵ′−α
ϵ′ , Eν′2

[|X|α] = −2
1−α
ϵ ∆

1+ϵ−α
ϵ ,

which are guaranteed to be bounded by constant only if α ≤ 1 + ϵ′ (for the same reason
as before, recalling that ϵ′ < ϵ too). Thus, this bandit admits moments finite up to order
1 + ϵ′. The optimal arm is arm 2.

We can attempt to replicate the non-existence result of Section 4.2, but following the
same steps as in Section 4.2.2, now we get:

max

{
RT

T
1

1+ϵ

,
R′

T

T
1

1+ϵ′

}
≥ max

{
∆E[N2(T )]

T
1

1+ϵ

,
∆

8
T

ϵ′
ϵ′+1 exp

(
−cE[N1(T )](2∆)

1+ϵ′
ϵ′
)}

,

that does not allow to conclude the proof.

This shows that the construction in Section 4.2.1 cannot be extended to the case of
instances satisfying the truncated non-positive assumption.

Remark 8. Note that here we did not prove that there are no instances which satisfy
Assumption 3 and give a regret lower bound for the adaptive setting of order higher than
Ω
(
T

1
1+ϵ

)
. Nevertheless, if our theorem about the upper bound on the regret for the fully

adaptive algorithm AdaR-UCB is correct (see Section 5.3), then these instances could not
exist, otherwise we would get a contradiction.





109

List of Figures

2.1 The idea of the minimax lower bound, from [62] . . . . . . . . . . . . . . . 21

6.1 Simulation 1 - Instance a - Pareto Distributions . . . . . . . . . . . . . . . 76
6.2 Simulation 1 - Instance a - Baseline comparison of regret . . . . . . . . . . 77
6.3 Simulation 1 - Instance a - Arms pulled by Algorithm AdaR-UCB. . . . . . . 78
6.4 Simulation 1 - Instance b - Pareto Distributions . . . . . . . . . . . . . . . 79
6.5 Simulation 1 - Instance b - Baseline comparison of regret . . . . . . . . . . 80
6.6 Simulation 2 - Instance a - ϵ = 0.8,∆ ∈ (0, 1). . . . . . . . . . . . . . . . . 81
6.7 Simulation 2 - Instance b - ϵ = 0.5,∆ ∈ (0, 1). . . . . . . . . . . . . . . . . 82
6.8 Simulation 2 - Instance c - ϵ = 0.3,∆ ∈ (0, 1). . . . . . . . . . . . . . . . . 82
6.9 Simulation 2 - Instance d - ϵ = 0.1,∆ ∈ (0, 1), T = 25000. . . . . . . . . . . 82
6.10 Simulation 2 - Instance d - ϵ = 0.1,∆ ∈ (0, 1), T = 100000. . . . . . . . . . 83
6.11 Simulation 3 - Pareto Distributions. . . . . . . . . . . . . . . . . . . . . . . 84
6.12 Simulation 3 - Baseline comparison of regret . . . . . . . . . . . . . . . . . 85
6.13 Simulation 4 - Pareto Distributions. . . . . . . . . . . . . . . . . . . . . . . 87
6.14 Simulation 4 - Baseline comparison of regret . . . . . . . . . . . . . . . . . 87
6.15 Simulation 5 - Generalized Pareto’s, optimal arm is positive. . . . . . . . . 89
6.16 Simulation 6 - Generalized Pareto’s, optimal arm is double-tailed. . . . . . 89
6.17 Simulation 7 - Positive Pareto’s. . . . . . . . . . . . . . . . . . . . . . . . . 89





111

List of Tables

2.1 Typical environment classes for stochastic bandits, from [62] . . . . . . . . 10

3.1 Literature review on adaptive heavy-tailed bandit algorithms . . . . . . . . 36

6.1 Simulation 1 - Performance comparison of same instances with different u . 80
6.2 Simulation 2 - Performance comparison of same instances with different ϵ . 83





113

Acknowledgements

Prima di tutto, desidero porre una menzione e ringraziamento particolare per il mio
relatore, Prof. Alberto Maria Metelli, e co-relatore, Dott. Gianmarco Genalti. La loro
costante presenza, la loro fervida intuizione e il loro prezioso supporto hanno reso questa
esperienza di ricerca un’opportunità unica di crescita e apprendimento. Onestamente, non
avrei potuto chiedere una conclusione di percorso universitario più appagante di questa.

Ma il mio più grande ringraziamento va a mamma, papà, ai miei nonni, e a tutta la mia
famiglia. Siete immensa fonte di ispirazione e tremenda gratitudine.

Una dovuta menzione va anche a chiunque mi sia stato accanto in questi anni, gli amici
di una vita, quelli dei banchi dell’università, quelli delle esperienze incredibili all’estero e
le persone uniche che hanno illuminato il mio ultimo anno a Milano.

Un grazie speciale, dal profondo del cuore.

Lupo

Milano, 5 Ottobre 2023




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Applications
	Motivations
	Goal of the research
	Contributions
	Thesis Structure

	Preliminaries
	Stochastic Multi-Armed Bandits Model
	Learning Objective and Regret
	Stochastic Heavy-Tailed MAB
	Relevant Concentration Inequalities
	Notation
	Bernstein's Inequalities
	Empirical Bernstein's Bound
	Concentration Result for Sample Variance

	Lower Bounds for Bandits with Finitely Many Arms
	Minimax Lower Bounds
	Entropy and Information Theory Inequalities


	Related Works
	Stochastic Bandits
	On Finite Time Instance-Independent Lower Bounds

	Bandits with Heavy Tails
	Adaptive Approaches in u, with  known
	Fully Adaptive Approaches, with u and  not known
	Robust Estimators
	On Regret Definition


	Regret Lower Bounds for Adaptive Heavy-Tailed Bandits
	Non-Existence of a Matching Algorithm u-Adaptive
	Step 1: Instance Construction
	Step 2: Lower Bounding the "Adaptive" Regret

	Non-Existence of a Matching Algorithm -Adaptive
	Step 1: Instance Construction
	Step 2: Lower Bounding the "Adaptive" Regret


	Adaptive Robust UCB Algorithm
	New Robust Estimator Independent of  and u
	Uniqueness of Estimator
	Properties of Solution

	The Truncated Non-Positivity Assumption
	Minimax Lower Bound for Truncated Non-Positive  Bandit Instances

	A Fully Adaptive Algorithm: AdaR-UCB
	Derivations of New Concentration Inequalities
	Proof of AdaR-UCB Upper Bound on the Regret

	Numerical Simulations
	Experimental Setting: Pareto Distributions
	Truncated Non-Positive Bandit Instances
	Simulation 1
	Simulation 2
	Simulation 3
	Simulation 4

	General Heavy-Tailed Bandit Instances

	Conclusions and Future Work
	Conclusions
	Future Developments

	Bibliography
	Appendix
	Landau Notation
	Hölder's Inequalities

	Appendix
	Further Lower Bound Analysis

	List of Figures
	List of Tables
	Acknowledgements

