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1. Introduction
Shoe manufacturing is a dynamic blend of crafts-
manship, technology, and innovation and is con-
tinuously evolving. Sole deburring, the removal
of unintended protrusions of material on the
edges of the sole called burrs, is crucial for the
quality of the final product. Even if it is still
conventionally done by skilled workers, automa-
tion with CNC machines has been exploited for
extremely high production rates despite facing
adaptability issues. Industrial robotics seeks to
bridge the gap between human flexibility skills
and high volume production. The integration of
new-generation AI technologies, mainly machine
learning (ML) and deep learning (DL), plays a
pivotal role in enhancing robotics across various
sectors. This fusion of advanced manufacturing,
DL, and robotics sets the stage for exploring in-
telligent robotic deburring. This thesis delves
into this transition, emphasizing the synergy of
human expertise with cutting-edge technologies.
The research aims to address the following key
challenges:
• Sole detection and segmentation: pre-

cise identification of the sole with burrs
among industrial scenarios complexities;

• Burr’s identification: develop an efficient

automated method for the detection of the
burrs;

• Cutting tool orientation: teach the
robot the optimal tool orientation from ex-
pert demonstrations;

• Path planning: create an automated path
planning pipeline for efficient deburring.

The thesis recognizes the challenges of indus-
trial conditions and proposes methods that en-
sure precision, robustness, and adaptability. As
the manufacturing landscape transitions into the
intelligent era, this research attempts to con-
tribute to advancements in robotic deburring for
the footwear industry.

2. Related Works
Burrs identification: The identification and
measurement of burrs in manufacturing pro-
cesses are crucial for maintaining product qual-
ity. A burr can be defined as a material protru-
sion beyond the designed dimensions, necessitat-
ing precise detection and removal. Current tech-
niques span from contact to non-contact meth-
ods and the selection of the most suitable system
is highly application-specific.
Touch sensors for measurements can be dis-
turbed by the non-uniformity and considerable

1



Executive summary Luigi Cacciani

size variability of the burrs: the presence of
nearby burrs can disturb the measurement due
to the conical shape of the tracer point.
In the field of non-contact systems, several
methodologies employ laser displacement sen-
sors (LDS) for direct burr size measurement:
when mounted on the deburring robot, LDS al-
low to precisely measure the distance from the
workpiece and, knowing all the other dimensions
and the nominal geometry of the workpiece, the
burr’s height can be found point-wise.
Some very application-specific effects can be ex-
ploited for burrs identification like the temper-
ature variance explored by Wulf [4]: utilizing a
high-temperature thermographic camera during
steel slab cutting burrs are detected based on
thermal contrast.
Vision systems coupled with image processing
techniques, such as thresholding, represent a
promising non-contact solution. For instance,
a 2D image of the workpiece can be trans-
formed into binary form, enabling burr contour
extraction and subsequent burr data derivation.
Thresholding can also be applied for detection
starting from 3D scans of the object of interest.
In recent studies, Neural Networks are joined to
visual systems for burrs identification from im-
ages.
Contour matching is another possible procedure:
ideal geometric profiles are compared to identify
peripheral defects.
Deburring path planning: Robotic debur-
ring involves planning and motion execution.
The planning phase focuses on obtaining the
robot path considering machining parameter es-
timation. The subsequent motion execution
stage translates these planned trajectories into
physical deburring actions.
Path planning for robotic deburring en-
compasses three primary approaches. The
CAD/CAM-Based approach utilizes CAM soft-
ware with the CAD model to select and plan
deburring paths. The Sensor/Vision-Based
approach employs specialized sensors or vi-
sion systems for detecting workpiece geome-
try and defining deburring paths. Teaching
through Human Demonstration involves phys-
ically guiding the robot through direct, indi-
rect, or non-interactive methods, recording the
demonstrated path for autonomous execution.
Literature showcases various path-planning

Figure 1: Sole detection annotations.

methods integrating these approaches. In
vision-assisted methodologies, 2D vision cam-
eras are employed to identify workpiece features,
serving as the basis for deburring paths. Inno-
vative solutions leverage human expertise, like
manual path drawing on the workpiece followed
by digitalization through image processing or
utilizing impedance control for the manual se-
lection of key points on the workpiece.
Additional approaches involve offline teaching
on a reference workpiece and online adapta-
tion through 3D scans made by laser displace-
ment sensors or alignment with the CAD model
through convolutional neural networks.

3. Sole detection and segmenta-
tion

The process of robotic sole deburring proposed
in this study starts with a sole with burrs posi-
tioned on the working plane. An Intel RealSense
D453i RGB camera located on the robot’s end
effector captures an RGB 2D image of the
sole. Classic computer vision image processing
techniques, namely simple global thresholding,
Otsu’s global thresholding and adaptive (local)
thresholding have been tested for segmentation
purposes but lack of robustness against vary-
ing lighting conditions and background changes
has led to the choice of a Deep Learning ap-
proach. Moreover, DL methods can be exploited
for their classification capabilities. The pro-
posed approach for detection, classification and
segmentation relies on Detectron-2 [3], a state-
of-the-art deep learning framework for object de-
tection, built upon Mask R-CNNs.

3.1. Dataset generation and results
A novel dataset has been created for the de-
tection and segmentation of shoe soles. 71
images have been captured with a resolution
of (640x480): soles with and without burrs,
with variations in orientation, background and
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Model Threshold
0.95 0.975 0.99

R50-FPN 100 91.7 73.4
R101-FPN 100 100 71.6
X101-FPN 100 97.8 77.5

Table 1: Segmentation results with Detectron-2.

clamping configuration have been included.
Manual annotations of the bounding box and
segmentation mask have been applied to each
image (Figure 1): the bounding box label con-
sists of class designation (only one class con-
sidered, "sole"), center coordinates and box di-
mensions, while segmentation labels provide the
pixel coordinates defining the sole region. The
dataset has been split into training (80%) and
testing (20%) subsets.
Experiments with three backbone models from
the Detectron-2 model zoo have been carried
out, namely R50-FPN, R101-FPN and X101-
FPN. Table 1 summarizes the results in terms
of segmentation Average Precision (AP) values,
with Intersection over Union (IoU) thresholds
of 0.95, 0.975 0.99. Despite all models showing
excellent segmentation accuracy, the X101-FPN
one has been chosen due to the best performance
under the most stringent demand.

4. Reconstruction of the occlu-
sions

The operating conditions of robotic deburring,
both in the study’s experimental setup and real-
world industrial settings, introduce a crucial
challenge. The sole must be clamped securely to
a fixed base, necessitating a gripping system that
unavoidably obstructs parts of the sole’s profile.
The introduced occlusions may affect the accu-
racy of the burr identification method.
To reconstruct the occluded portions, image-to-
image translation has been exploited, specifi-
cally using Pix2Pix [2], a Conditional Gener-
ative Adversarial Network (cGAN).

4.1. Dataset generation and results
The training dataset for Pix2Pix comprises pairs
of images: a ground truth image representing
the unobstructed sole segmentation and an im-
age featuring randomly created occlusions on the
sole profile.
Since the objective is to reconstruct the profile
independently of the specific shape of the burrs,

ten distinct profiles of soles with burrs have been
used as ground truths. Random rotations and
translations within the image domain have been
introduced to enhance the model’s generaliza-
tion capabilities.
The results, shown in Figure 2, report that
the trained network is able to correctly recon-
struct the profiles provided in the validation
dataset. However, challenges arise when in-
tegrated with the segmentation obtained from
Detectron-2 (Figure 3). Irregularities in the seg-
mentation profile are misinterpreted as occlu-
sions and Pix2Pix tries to address them, leading
to blurred and incorrect reconstructions.
For future developments, it is crucial to intro-
duce a post-processing step for the segmenta-
tion generated by Detectron-2. This step should
distinguish sections with occlusions from those
without, enabling the smoothing of the profile
in areas lacking occlusions. The goal is to refine
Detectron-2’s segmentation, eliminating irregu-
larities and ensuring Pix2Pix’s accurate recon-
struction of occluded portions.

5. Burrs identification
A novel burrs identification method has been
developed leveraging computer vision and im-
age processing techniques. The objective is to
correctly overlay the nominal designed sole pro-
file onto the burr-containing sole profile. This
method is independent of the size, orientation
and position within the image of the sole with
burrs.
Firstly, a template of the nominal profile
has been extracted from an image of a sole with-
out burrs through image simple global thresh-
olding and contour detection. Its scale and po-
sition have been standardized: it has a unitary
scale and is positioned at the origin of the image.
When the image with the segmented sole with
burrs is obtained, its oriented bounding box is
calculated: the nominal template is scaled, ro-
tated and translated to align with the sole’s di-
mensions, orientation and position provided by
the oriented bounding box (Figure 4).
An optimization process is developed to fur-
ther refine the contour matching, maximizing
the ratio of the intersecting area between the
nominal profile and the profile with burrs and
the nominal profile area. The nominal profile is
scaled, translated and rotated to directly search
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Figure 2: Pix2Pix result from validation dataset. Figure 3: Pix2Pix result on
Detectron-2 segmentation.

Figure 4: Initial guess of over-
lap

Figure 5: Optimized contour
matching

Figure 6: Segmentation of the
burrs

the solution. To enhance the convergence speed
and final accuracy, the search space and the uti-
lized steps are enlarged or diminished depending
on the actual value of the areas’ ratio: bigger
steps and ranges when the solution is far from
the optimal, to speed up the search, and smaller
ones when close to the optimal for refinement.
The process stops as soon as the overlapping
percentage is higher than 99.5% (Figure 5).
The burrs, then, correspond to the area in be-
tween the two profiles: a pixel-wise XOR logical
operator has been used to obtain the segmen-
tation of the burrs. Subsequent filtering retains
only the thickest physical portions, eliminating
small areas coming from errors from the segmen-
tation and the image processing steps (Figure 6).

6. Tool orientation through LfD
To achieve effective deburring, the optimal ori-
entation of the cutting tool is crucial. In this
study, the proposed approach involves teach-
ing the robot the ideal orientation through hu-
man demonstration, employing videos of experts
performing the task. Direct teaching methods,
like kinesthetic teaching, have been discarded
to enhance the spontaneity of the demonstrated
deburring gesture, enhancing the precision in
showing the best pose. To extract the pose from
RGB images a Deep Learning approach has been
used, precisely EfficientPose [1], known in the
literature for its exceptional accuracy of pose es-

timation.

6.1. Dataset generation and results
Since precise annotations of the full 6D pose, in a
large volume of images, are required to create an
effective dataset, the process of precisely anno-
tated data generation for pose estimation can be
an exceedingly time-consuming and often costly
task. To address these challenges, this study
has opted to use synthetic data, employing
BlenderProc, an open-source framework for syn-
thetic image rendering (Figure7a): the 3D model
of the tool can be positioned in a known pose,
creating a precise ground truth annotation. To
address the reality gap, backgrounds are com-
posed of soles and hands, enhancing the real-
ism of the data and the similarity with the real
working environment. Physical features like sur-
face roughness and a varying point light source
have been also added for realism and to ensure
adaptability to varying working conditions. The
dataset comprises 10,000 scenes, split into 80%
training and 20% validation. The trained model
achieves an ADD-S value of 64.85%, showing the
capability of pose estimation both on the valida-
tion dataset (Figure 7b) and also on real images
of a tool held by a hand during the demonstra-
tive video (Figure 7c). For experimental pur-
poses, three videos of deburring operations
have been recorded and 116 frames have been
analyzed by EfficientPose from each video. The
system learns the orientation of the Tool Cen-
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ter Point (TCP) reference frame (defined coher-
ently with the cutting tool shape) with respect
to the burr’s local reference frame (defined at
each point of the nominal profile where a burr
is present, composed by a tangent and a normal
to the profile). This orientation has been esti-
mated in every acquired frame, and an average
of the quaternion components has been calcu-
lated. The learned orientation is (X,Y,Z Euler
angles in degrees): [178.70 − 9.61 − 178.77].

(a) Dataset element sample.

(b) Validation dataset pre-
diction.

(c) Real image prediction.

Figure 7: EfficientPose results.

7. Path planning pipeline
Each step in this study has proven effective in its
required contribution. The ultimate objective
is to integrate these diverse outputs cohesively,
deriving the final path.

7.1. Experimental setup
The setup used for the experiments made in
the Mechatronics and Robotics laboratory of Po-
litecnico di Milano, illustrated in Figure 8, com-
prises several key elements, including the sole
requiring deburring, the Intel RealSense RGB
camera, positioned with a suitable support in
correspondence of the final joint of the robotic
arm, and the robotic arm itself, equipped with
a mock deburring tool with the cutting blade
at its tip. The tool has been designed and 3D
printed, in order to simulate the deburring be-
havior, taking inspiration from real robotic ac-
tuated deburring tools.
The RGB image of the sole with burrs is ac-
quired when the robotic arm is in home posi-
tion, a known configuration, easily accessible as

Figure 8: Experimental setup

starting point for all the deburring operations.
The segmentation and the burrs identification
are performed as described in the previous sec-
tions.
The deburring path in the plane is determined
by intersecting the segmentation of the identi-
fied burrs with the nominal profile, obtaining
a collection of deburring points. The result is
calculated in the image reference frame (coor-
dinates of pixels). These coordinates are then
transformed from the image frame to the cam-
era frame exploiting the intrinsic parameters of
the camera (z is the vertical distance in home
position, known):

x =
(u− cx)z

fx
(1)

y =
(v − cy)z

fy
(2)

From the camera frame, the coordinates are
transformed into the robot base frame through
a known transformation, calculated in the robot
home configuration.
In every point of the nominal profile that inter-
sects the burrs, a local reference frame is de-
fined. Normal and tangent vectors to the pro-
file are identified: the normal points outside the
sole and the tangent rotates clockwise along the
profile (found by imposing that the vertical axis
points upwards).
The deburring tool’s orientation is then set by
imposing the learned orientation (section 6) with
respect to these local frames.
Lastly, a clockwise deburring direction is im-
posed.
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Burr Avg.
Eucl.
dist.

1 2 3 4
Test I 8.7 27.1 5.9 35.9
Test II 5.2 7.1 11.5 24.7 15.8

Table 2: Average distance in mm between cal-
culated and demonstrated in-plane trajectories

7.2. Experimental results
The experimental validation aims to quantita-
tively assess the accuracy of the computed de-
burring path by comparing it with the path
demonstrated by an expert who has physically
manipulated the robot to demonstrate the
path. Two tests have been conducted, consid-
ering only the in-plane trajectory (x, y) due to
challenges in precise robot positioning during
physical movement. For every sole, the debur-
ring paths of four burrs have been considered.
The results are shown in Table 2. The average
Euclidean distance between calculated and mea-
sured points has been 15.8 mm, attributed to
accumulated errors from image processing and
accuracy in the transformation matrices’ calcu-
lation. The result is deemed highly acceptable
for the study’s initial deburring path objective,
emphasizing the need for a control algorithm in
practical industrial scenarios to address inherent
errors and uncertainties.

8. Conclusions
This thesis deals with the development of a
robotic deburring path planning pipeline, inte-
grating learning from demonstration, and ad-
dressing challenges such as sole detection and
segmentation, occlusion reconstruction, burrs
identification, and tool orientation learning.
Detectron-2 is employed for sole detection and
segmentation, demonstrating exceptional accu-
racy in recognizing the precise mask, even under
diverse conditions.
To handle occlusions in the detected profile,
Pix2Pix is employed for image-to-image recon-
struction.
The burrs identification method involves obtain-
ing a template of the nominal profile and a novel
contour matching algorithm, composed of the
identification of a first guess and the subsequent
optimization, to find the position of the nominal
profile inside the one with burrs. The segmen-
tation of the burrs is finally found.

The optimal orientation of the tool during the
task is learned from videos of expert demonstra-
tions, exploiting the EfficientPose pose estima-
tion neural network.
The automated pipeline demonstrates the join-
ing of the aforementioned results to compute the
complete deburring path.
The experimental results highlight the high pre-
cision achieved by the designed procedure, show-
ing the potential of these technologies to con-
tribute to advancements in the field.
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