
 

Blob analysis for dimensional 
features and shape defect 
extraction in agri-food 
production 

TESI DI LAUREA MAGISTRALE IN  

FOOD ENGINEERING-INGEGNERIA ALIMENTARE 

Author: Davide Mondin 

 

Student ID: 964907 
Advisor: Prof. Marco Tarabini 
Co-advisor: Ing. Chiara Conese 
Academic Year: 2022-2023 



 

 

 

 

 



 i 

 

 

Abstract 

This document deals with quality inspection of aubergine slices through the analysis 

of RGB images: localisation, classification, and features extraction. A deep learning 

neural network named “Yolov8” has been coupled with Radom Forest in order to 

localise/classify the targets and extracting the BLOBs; the results for localization are 

excellent while the poor classification performances confirm the difficulties 

experienced by image oriented neural networks when played to distinguish similar 

objects and feed with insufficient material. Feature analysis revealed high potential for 

classification. The proposed workflow is prone to be used in early stages of those 

processes that intend to implement an online non-contact sorting technique based on 

deep learning imaging. 

Key-words: Object detection, Machine learning, Food sorting, Deep learning, BLOB 

analysis. 

 





 iii 

 

 

Abstract in italiano 

Questo documento tratta l’ispezione qualitativa delle fette di melanzana attraverso 

l’analisi di immagini RGB: localizzazione, classificazione ed estrazione di 

caratteristiche. Una rete neurale conosciuta come “Yolov8” è stata utilizzata insieme a 

“Random Forest” con l’obbiettivo di localizzare/classificare i bersagli ed estrarre i 

BLOBs, i risultati dell’attività di localizzazione sono eccellenti, tuttavia, le scarse 

prestazioni in fase di classificazione confermano la difficoltà affrontate da queste reti 

neurali quando chiamate a distinguere classi simili, lo stesso succede quando il 

materiale a loro disposizione è insufficientemente elevato. L’analisi delle 

caratteristiche a dimostrato un buon potenziale per l’attività di classificazione. Il 

workflow proposto può essere utilizzato nelle fasi iniziali di quei processi che 

intendono implementare lo smistamento di oggetti basato sull’apprendimento 

profondo di immagini. 

Parole chiave: Rilevamento di oggetti, Apprendimento automatico, Smistamento di 

alimenti, Apprendimento profondo, analisi di BLOBs. 

 

 

 

 

 



 

 

 

 



 v 

 

 

Contents 

Abstract ................................................................................................................................. i 

Abstract in italiano .......................................................................................................... iii 

Contents ............................................................................................................................... v 

1 Introduction ............................................................................................................... 1 

1.1. Scheme of the thesis ....................................................................................... 5 

1.2. State of the art ................................................................................................. 5 

1.2.1. YOLO ............................................................................................................ 5 

1.2.2. SGD ............................................................................................................. 10 

1.2.3. Decision Tree ............................................................................................. 11 

1.2.4. Random Forest .......................................................................................... 13 

1.2.5. Softmax Regression Classifier ................................................................. 13 

1.2.6. K-Means ..................................................................................................... 14 

1.2.7. DBscan ........................................................................................................ 15 

1.2.8. Object Detection ........................................................................................ 16 

1.2.9. BLOB analysis ........................................................................................... 20 

2 Methods ................................................................................................................... 23 

2.1. Workflow ....................................................................................................... 23 

2.2. Working dataset ........................................................................................... 24 

2.3. Yolov8 dataset preparation ......................................................................... 26 

2.4. Yolov8x .......................................................................................................... 29 

2.5. Pixel sorting................................................................................................... 33 

2.5.1. SDG application ........................................................................................ 35 

2.5.2. Softmax Regression Classifier application ............................................ 37 

2.5.3. Decision Tree application ........................................................................ 37 

2.5.4. Random Forest application ..................................................................... 38 

2.5.5. DBscan application ................................................................................... 39 

2.5.6. K-Means application ................................................................................ 40 

2.6. Features extraction ....................................................................................... 40 

2.7. Feature description & Feature comparison .............................................. 45 

3 Results ...................................................................................................................... 47 



vi | Contents 

 

 

3.1. Yolov8x results .............................................................................................. 47 

3.2. Machine learning results ............................................................................. 48 

3.2.1. Supervised ML algorithms results ......................................................... 48 

3.2.2. Unsupervised/Semisupervised ML algorithms results ....................... 52 

3.3. Features extraction results .......................................................................... 53 

4 Discussion and Conclusion .................................................................................. 59 

Bibliography ..................................................................................................................... 63 

List of Figures ................................................................................................................... 67 

List of Tables .................................................................................................................... 69 

Acknowledgments ........................................................................................................... 73 

 

 



|Introduction 1 

 

 

1 Introduction 

Food sorting plays a crucial role in food manufacturing facilities in order to filter out 

alien objects or/and products characterized by poor quality (unsellable). In this 

context, machine vision technologies have revealed high potential in recent years, Jun-

Hu Cheng managed to predict chemical composition of fish muscle with 

Hyperspectral imaging [1], a paper from Daniel Caballero demonstrates the possibility 

to sort ham pieces on their tasting properties in a non-destructive process based on 

Magnetic resonance imaging [2], in 2015, Weishan Zhang trained a deep learning 

network on RBG images depicting various fruits with the purpose to locate and 

classify the objects [3]. Indeed, the typical food sorting procedure takes place along a 

conveyor belt, with a few human operators that are in charge of selecting and 

removing non-compliant items following instructions provided by someone else. This 

human activity inherently has effect on the production, mainly due to the following: 

human beings are unable to maintain the same standards over a long period of time, 

sorting operators are expensive, the task is alienating, food products selection criteria 

are different among the operator staff and sometimes conveyor belts’ speed is too high 

to be followed by human hands. 

This Master thesis deal with BLOB analysis, a technique used to classify extracted 

objects leveraging on their properties (like colour, shape and size). The thesis’ aim is 

to locate aubergine slices from RBG images obtained from a conveyor belt going up to 

3 m/s, distinguish between slices that match different predefined classes and describe 

them through BLOB analysis; detection was performed in various ways, including 

deep learning. Deep learning technology relies on neural networks (so called because 

it tries to simulate neural connections in natural brains), a model made by a huge 



2 | Introduction 

 

 

number of parameters, it allows to achieve difficult tasks and sometimes can “explain” 

how solve problems in those fields in which humans perform good but are unable to 

provide the process that leads to the solution/s [4]. The main challenges encountered 

throughout the whole process were: 

 Overlapped objects isolation. 

 Distinguish pixels belonging to aubergine skin when compared to background 

due to the artificial light reflects. 

 Dataset's underrepresentation of certain classes. 

This Master thesis is part of a project named TESORO (Studio e sviluppo di TEcnologie 

avanzate per il SORting automaticO nei processi di produzione industriali), 

“Politecnico di Milano” university is partner of such project as well as startups and big 

companies operating in automation, machine vision and food manufacturing. The 

TESORO project is carried out in a series of sequential steps, such steps are 

summarized as follow: 

 Selecting the most effective wavelength bands able to sort the products. 

 Realize a solution to detect the objects to be removed. 

 Realize a solution able to remove items from a high-speed conveyor belt. 

 Apply a prototype to an operative food manufacturer facility. 

TESORO’s novelty involves the usage of a hyperspectral camera, able to acquire 

hundreds of wavelengths in parallel for selecting the most effectives. Although several 

wavelengths are acquired, only few channels can be processed on a real time 

application due to the high computation load to be processed. Data coming from HSI 

(Hyperspectral imaging) undergo to data reduction that select few channels, the 

filtered channels are used to localise and classify the products moving along the 

conveyor belt; this thesis investigates an algorithm that may be used in this phase. The 

algorithm involves a deep leaning application named Yolov8 and machine learning 



| Introduction 3 

 

 

techniques; the working database is made of RGB images of aubergine slices, such 

images were acquired under two different conditions, one of which portrays highly 

overlapped aubergine slices, a condition that  makes harder to separate the product 

instances; this dataset is affected by a further couple of issues that are common to be 

found in real application cases: the presence of disturbing reflects and the colour 

similarities between the objects and the background. 

 





| Introduction 5 

 

 

1.1. Scheme of the thesis 

Three main chapters in addition to an introduction compose this thesis. A simple 

review of the most recent technologies employed in this thesis is provided in the 

Introduction chapter, along with methods used to overcome challenges similar to 

those encountered during its development. Yolo’s versions are described in this 

chapter, with a spotlight on the first and last because Yolo’s original kicks off the 

successful idea behind this network while Yolov8 is the one used in this thesis; an 

overview on the most common techniques applied in object detection field is provided 

too. Methods chapter shows the workflow in detail as well as the tools and procedures 

adopted to address the thesis, the target of the work, the type of data that has been 

collected and used in this thesis work are explained in this part. The second main 

chapter is “Results”, it presents the outcome of those activities described by “Methods” 

chapter, visual results as well as metrics and performances are provided. The last part 

is the one dedicated to “Discussion and Conlusion”, here the results are summarized 

and analysed, in particular, the repeatability of the presented workflow to real case 

scenarios, possible limitations arising when trying to apply the same process, whether 

or not the metrics are satisfying, possible improvement that may be done to achieve 

better results and what are possible future researches suggested by this thesis 

‘outcomes. 

1.2. State of the art 

1.2.1. YOLO 

Yolo (you only look once) is a deep learning technology used in the field of machine 

vision for object recognition and classification. Since its first appearance [5], Yolo and 

followings have been state-of-the art online applications due to their rapid inference 

times and good precision. 



6 | Introduction 

 

 

Yolo relies on an end-to-end “neural network” responsible for both localise and 

classify one or more targets, the great intuition behind Yolo is the usage of a unified 

“neural network” to predict class and bounding box coordinates whereas state-of-art 

solutions (before 2015) were based on split networks, like R-CNN [6], Yolo is a 

simplified solution that decreases inference speed, a highly critical performance for 

online applications. 

Yolo received multiple updates from its release, constituted by minor advancements, 

Yolo's performance has substantially improved as a result of those changes. Yolo’s 

development was carried out by a research group led by Joseph Redmon until the 

arrival of Yolov3 (Yolo version 3), when he gave up due to ethical concerns 

surrounding Yolo applications [7]. The desire to improve Yolo's performance and 

adapt it to real case applications drove the continued development of the software and 

its interface, today’s versions are Yolov7 and Yolov8, they take few minutes from the 

official repository to the train setup and even less than ten lines of code from the user 

side. 

The original Yolo works on a simple network composed almost exclusively of 

sequence of convolutional layers, activation function, pooling and a flat layer like 

shown in Figure 1.1. 

 
Figure 1.1:Original Yolo network. 

 

The aim of Yolo’s training is to optimise hundreds of thousands of parameters across 

the network, all of them play a role in “convolution” layers. 



| Introduction 7 

 

 

The first layer is represented by a 3D information matrix, two of these dimensions are 

the image’s height and width (or their proxies in case a resize is necessary), and a third 

dimension is the number of channels, which is 3 when dealing with RGB pictures, the 

values range from 0 to 255 (only integer values) representing the grade of green, blue 

and red colours for each pixel.  

 
Figure 1.2: Yolo's output structure. 

The final data object is named “Result”, it is represented as a SxSx(Bx5+C) 

parallelepiped, it is shown in Figure 1.2. The picture is divided into a SxS grid, each 

cell is responsible for predicting the bounding boxes of objects whose centres fall inside 

that cell; each cell predicts B bounding boxes too (decided by the user). A box has 5 

data: x, y, w, h and confidence score, x and y locate box’s centre inside the cell, w and h 

are the relative width and height of the box with respect to the whole image size, the 

confidence score is defined by Jospeh Redmon as follow: “These confidence scores reflect 

how confident the model is that the box contains an object and also how accurate it 

thinks the box is that it predicts. Formally we define confidence as Pr(Object) ∗ 

IOUtruthpredict .” [5], IoU means “intersection over union”, it is the ratio between the 

intersection of two rectangles and their union, larger the value larger the similarity of 

those boxes, a graphical explanation is shown in Figure 1.3.  



8 | Introduction 

 

 

 
Figure 1.3: Intersection over union (IoU). 

Each cell has multiple conditional probability values (C), one for each class in the 

model (Pr(CLASSi|Object)). The confidence scores are multiplied by C to measure both 

classification and localisation during the interference, a cutoff is used to filter out those 

boxes having an extremely low score, and a non-max suppression is applied to 

eliminate duplicate boxes assigned to the same object [5]. Figure 1.4 summarizes the 

inference process assuming B equal to 2, S equal to 5 and two classes. 



| Introduction 9 

 

 

 
Figure 1.4: Yolo result postprocessing and output representation. 

When trained, YOLO relies on backward propagation in order to adjust the weights 

(and biases). Once an image used in training has reached the network’s end, is 

compared to the ground truth, a loss function is calculated, and the parameters are 

adjusted. The learning speed it governed by an hyperparameter called “learning rate”, 

it should be controlled since a small value may cause huge training time while large 

values could lead to overshooting or divergency. 



10 | Introduction 

 

 

1.2.1.1. Yolov8 

Yolov8 is one of the most recent versions, it has been released by Ultralytics in latter 

half of 2022.  

The network’s structure and its performances depend on the subversion 

(Yolov8x/l/m/s/n) (Figure 1.5), they realize a trade-off between precision and inference 

speed, Yolov8x is the most precise while Yolov8n is the fastest. The precision is 

obtained fixing an IoU threshold that defines whether or not the ground truth object 

has been correctly identified, the usual procedure imposes to measure the average 

precision (across the classes) value sliding the IoU threshold between 0.5 and 0.95, then 

the mean of those values defines the mAP (mean average precision), this value is 

widely used in literature to compare object detection techniques. 

Yolov8x has been used during the development of this thesis, even though Yolov8’s 

technical paper doesn’t exist (as for many others Yolo releases), Ultralytics provides a 

detailed official documentation and the official repository, that are far enough to 

satisfy a wide range of needs in the machine vision field. 

 
Figure 1.5: Yolo releases comparison, average precision vs number of 

parameters(https://github.com/ultralytics/ultralytics). 

1.2.2. SGD 
SGD (Stochastic Gradient Descent) is a machine learning technique applied to 

optimize an error function; it relies on sensing the function’s gradient from time to 

time in order to modify the set of parameters associated to a model, like Equation (1.1) 

describes.  



| Introduction 11 

 

 

𝛉 = 𝛉 − η

⎣
⎢
⎢
⎢
⎡
∂Error function (𝐗𝐭, 𝛉 )

∂θ

∂Error function (𝐗𝐭, 𝛉 )

∂θ
… ⎦

⎥
⎥
⎥
⎤

 (1.1) 

 

𝜽 is a vector that represents the model’s parameters at iteration 𝑡 of the training, 𝜂 is 

the learning rate, a value that imposes the pace of gradient descending, 𝑿  vector 

includes model’s features at iteration 𝑡, the function’s gradient is subtracted to the 

parameters vector since the aim is to minimize the error function. 

The learning rate plays an important role: a large value might lead to divergency 

(overshooting) while a small value consumes more time and possibly prevent training 

algorithm to find the global minimum. A possible solution to figure out this issue is to 

change learning rate while training the model. 

SDG is more efficient when compared to BGD (Batch Gradient Descent) since it doesn’t 

need to iterate through the entire training set but only one instance at time is processed. 

However, the gradient is less "stable" in contrast to BGD. 

When SGD is applied to linear regression, MSE (mean squared error) is chosen as error 

function. MSE hasn’t local minimum but only a global minimum, even though BGD 

or Equation (1.2) are more precise, SGD is favourited in those cases where hundreds 

of thousands of parameters are present since it’s faster [8]. 

𝛉 = (𝑿 𝑿) 𝑿 𝒚 (1.2) 

𝒚 vector retains the ground truth values in the training set. 

1.2.3. Decision Tree 
Decision Tree is a machine learning application developed for classification tasks, 

Decision Tree is a graph made of three types of elements: “root”, “flower” and “leaf”. 

The “root” is the graph’s starting node, it and the “flowers” are nodes that represent 

threshold choices based on features, these choices split the dataset in two parts with 



12 | Introduction 

 

 

the precise aim to build up instance groups being pure in term of class. During 

prediction, the Decision Tree is climbed up to a termination node named “leaf” that 

tells which class is to be chosen. A Decision Tree’s structure looks like the one in Figure 

1.6. 

 
Figure 1.6: Decision Tree structure. 

The main training algorithm is CART (Classification And Regression Tree), it works 

in a simple way: starting from the root, the algorithm iterates through all tuples of 

classes and values (i, ε) that minimize Equation (1.3)-Equation (1.4)-Equation (1.5). 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑖𝑜𝑛 =
𝑛

𝑛
𝐺 +

𝑛

𝑛
𝐺  (1.3) 

𝑦 ∈ 𝑌𝐸𝑆 𝑖𝑓 𝑥 < ε
𝑦 ∈ 𝑁𝑂 𝑒𝑙𝑠𝑒

 (1.4) 

𝐺 = 1 − 𝑝 ,  (1.5) 

 

𝑛 is the number of training instances undergoing to division on the node, 𝑛  and 𝑛  

are the number of instances on the “yes” branch and “no” branch respectively if that 

specific (i, ε) tuple if chosen, 𝐺 is the Gini impurity index as described by Equation 

(1.5), 𝐽 is the number of possible classes, 𝑘 identifies a node, 𝑝 ,  defines the ratio 



| Introduction 13 

 

 

between the instances belonging to 𝑗 class in the 𝑘 node and all the instance in the 

𝑘 node. 

The procedure continues until one or more of the following stop criteria are satisfied: 

the node's Gini index reaches zero, the tree reaches its deepest point, or the node has 

fewer residual instances than a threshold. The Entropy index (Equation (1.6)) could be 

used instead of Gini impurity index (Equation (1.5)). 

𝐻 = − 𝑝 , log ( 𝑝 , ) 𝑝 , ≠ 0 (1.6) 

1.2.4. Random Forest 
Random Forest is an ensemble of Decision Trees, trees’ variance is pushed forcing 

CART to ignore a subgroup of features then trying to split the dataset; prediction is 

made passing an instance to the “forest” and selecting the class having the higher 

relative frequency among Decision Trees’ outcomes. Random forest’s variance could 

be pushed forward letting CART evaluate only one threshold for each feature/node 

couple. 

Random forest includes the possibility to rank the features by their “importance”, such 

“importance” values could help to remove useless features, it is particularly useful 

then dealing with a high number of features [8]. 

1.2.5. Softmax Regression Classifier 
Softmax Regression Classifier (SRC) is a machine learning technique widely applied 

for classification tasks. SRC’s prediction takes an instance and computes many 

prediction scores as there are classes, each one is a linear combination of the instance’s 

features (without bias). Prediction scores are calculated as imposed by Equation (1.7) 

[8]. 

𝑠𝑐𝑜𝑟𝑒(𝒙) = 𝒙 𝛉 (1.7) 



14 | Introduction 

 

 

𝜽 matrix represents the model’s parameters, so the matrix’s size is equal to the 

number of features by the number of classes. 

The score vector (𝑠𝑐𝑜𝑟𝑒(𝒙)) feed the Softmax function, doing so, each class has a 

probability value associated to the instance (Equation (1.8)). 

𝑝(𝒙, 𝑘) =
𝑒 (𝒙)

∑ 𝑒 (𝒙)
 (1.8) 

 

𝑝(𝒙, 𝑘) is the probability that instance 𝒙 belongs to class 𝑘(estimated), 𝐽 is the number 

of classes in the model. 

The higher score (or probability) defines the chosen class for that instance. 

Training relies on tools like SGD, in that case, the loss function to be optimized is the 

Cross entropy cost function (Equation (1.9)). 

𝐻 = −
1

𝑚
𝑦 (i)log (𝑝(𝒙(𝑖), 𝑗)) (1.9) 

𝑦 (𝑖) is the ground truth value, it is equal to 1 if the 𝑖  instance belongs to the 𝑗 class 

(otherwise is zero), 𝑚 is the number of instances processed during the training. 

1.2.6. K-Means 
K-Means is an unsupervised machine learning algorithm; this unsupervised tool 

doesn’t depend on a ground truth set like happens in supervised classification tasks 

(Softmax, Decision Tree…). K-Means is in charge to partitioning the training instances 

leveraging on their known features, each “group” is also named “cluster”. The 

prediction is made by comparing the new instance’s features to the training once and 

selecting the cluster sharing more similarities with it, the new instance is then assigned 

to that cluster [8]. 



| Introduction 15 

 

 

The training’s output is a set of clusters’ centroids, such centroids are used do define 

clusters’ boundaries (hard clustering) or to calculate the Euclidean distance between 

the new instance and the centroids in the features space (soft clustering). 

The original training algorithm works in few simple steps: 

 Select K (provided by the user) starting centroids. 

 Label the training instances with respect to the distance between them and the 

centroids. 

 Update centroids’ locations based on the labels, if the centroids moved after 

this, run the previous step. 

It is possible for proof that the algorithm reaches an end point after a finite number of 

steps. The training is usually performed on minibatches in order to speed up the 

process, the cost to play for that is a lower training inertia. 

Selecting the number of clusters is a key activity when dealing with clustering; a 

possible way to address the problem points toward the “silhouette score”, in practice, 

the mean silhouette score is calculated ones the training is over (Equation (1.10)). 

𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝐾) =
𝑏 − 𝑎

max(𝑎, 𝑏)
 (1.10) 

𝑎 is the mean distance of the 𝑖  instance with the other instances in the same cluster, 

𝑏 is the distance to the closest centroid (excluding the one to which the instance 

belongs), 𝐾 is the number of clusters. The K to be chosen is the one having the higher 

mean “silhouette score”. 

1.2.7. DBscan 
DBscan defines cluster regions, it works under the assumption that close instances (in 

the features space) belongs to the same group. DBscan hasn’t its own prediction 

routine but it is used as an input by KNN (K-nearest neighbours) and other tools [8]. 

The training process is summarized in three steps: 



16 | Introduction 

 

 

 The instances that have at least 𝑛  instances that are less than 𝜀 (distance in 

the features space) away from the instance itself are the core instances (𝑛  

and 𝜀 are passed parameters). 

 All instances being closer than 𝜀 from a core instance belongs to the same 

cluster (it applies to the core instances too). 

 The residuals are assumed to be anomalies. 

Figure 1.7 shows a possible successful case, where DBscan is applied because the 

training dataset obeys to DBscan’s main assumption (dense and continuous regions). 

 
Figure 1.7: DBscan working principle [8]. 

A new instance is labelled by KNN predictor based on DBscan in accordance with the 

higher relative frequency in the K (user-selected parameter) closest instances (labelled 

using DBscan criterion). 

1.2.8. Object Detection 
Object detection is part of machine vision techniques, its goal is to locate something 

inside a picture or a video, it is strictly related to classification since object detection 

should be able to separate image’s area it is interested into with respect to others. A 

detection has various output types depending on the used techniques, a common 

detection output uses bounding boxes to tells where the object/s is/are located, Yolo is 

one of them; someone may be interested in encircling the interest object or locating it 

through a single point. Representing object’s place using a single point is wide used in 

those applications where the user is interested in moving the target. [9] [10] [11]. 



| Introduction 17 

 

 

Deep learning technologies are becoming widely applied for object detection tasks, an 

increasing interest from researchers for this immature technology makes deep learning 

for machine vision a highly dynamic topic where the State-of-the-Art changes every 

few months (Figure 1.8); Yolov8 is only the last of several tools developed in the 

attempt to push networks’ performances. 

 
Figure 1.8: Documents indexed by Scopus on "deep learning" AND "object detection" entries 

over time. 

Detection was possible even without deep learning, techniques based on human 

knowledge or “semi supervised” machine learning techniques, such techniques 

leverage on known objects’ properties to isolate those pixels belonging to potential 

interesting pixels, if the conditions allow it, the same may be done leveraging on 

background’s properties. The already mentioned techs are shared with instance 

segmentation/ semantic segmentation. 

The colour is a possible sorting criterion when trying to filter pixels, it has been 

exploited by Dewi [9] to sort grape pixels and tomato pixels; it works when the 

background’s intensity values are bounded in a certain range, colour usage is 

particularly weak in variable light conditions due to uncontrolled background and 

reflects, some authors, like Yulua Ekawaty managed to correct bad lightening 

condition applying “gamma correction”, a preprocessing method used to fix non-

uniform illumination [12]. 



18 | Introduction 

 

 

Hailing Zhou managed to modelling ocean with GMM (Gaussian Mixture Models) 

and acquiring all pixels that were different from it like foreground, this is a successful 

case where known background’s properties are exploited to sort it out and detecting 

objects of interest [13], a visual result is show in Figure 1.9. 

 
Figure 1.9: Object detection based on background filtering [13]. 

An object detection application deals with several issues depending on the specific 

task, variable and unpredictable light conditions are major obstacles when the objects 

to be detected are located in natural environments or in saturated light conditions, the 

presence of partially occluded objects are a relevant barrier when the target is to locate 

targets randomly distributed in front of the camera. 

1.2.8.1. Overlapped objects. 

Overlapped instances don't affect the performances when dealing with semantic 

segmentation but still a common problem to solve in those cases where the separation 

of the instances makes the difference. Common techniques like “erosion” are enough 

to face slightly overlapped items. “Erosion” modifies a binary mask zeroing those 

pixels having at least a zeroed pixel the nxm size kernel centred in the pixel itself, 

“Erosion” applied to a picture portraying rice grains is shown in Figure 1.10. 



| Introduction 19 

 

 

 
Figure 1.10: Erosion on rice grains image. 

There are few sophisticated tools that are used to separate overlapped instances, like 

filling the foreground with known shapes [14], K-Means and watershed 

transformation; K-Means is always an option when dealing with objects that are 

different among them but are internally uniform, in those cases where similar but 

overlapped instances have been detected, watershed transformation could be applied. 

Watershed transformation is a technique invented to separate blood cells exploiting 

their well-known circle-like shape and their almost constant size, even though gives 

its best when the input has the already listed properties, this thesis will show that is 

possible to obtain decent results providing an “unperfect” input only making few 

changes to the original watershed transformation [15]. 

Watershed transformation is fed with a binary mask, the algorithm is summarized in 

three steps: 

 A distance map is created: each pixel’s value in the input map is turned into the 

minimum distance between it and the closest background pixel. 

 A threshold is applied to the distance map to get nuclei, connected regions we 

are sure they belong to the objects if the assumptions on input structure are met. 

 The nuclei are labelled and expanded to fill the input mask, they expand until 

they find the background bound or another expanding nucleus is met, each 

nucleus is a assumed to be a different object. 



20 | Introduction 

 

 

1.2.9. BLOB analysis 
BLOBs (Binary Large Objects) are connected components on a binary mask, most of 

the times, they come from semantic segmentation tools. The binary map tells which 

pixels are of interest, to distinguish each component one from each other an algorithm 

named “connected-component labelling” is run. Once the association between objects 

and pixel is known (BLOB extraction), is possible to calculate a wide range of features 

on an object level depending on the number of channels of the original image. Figure 

1.11 shows an example of BLOB extraction applied to an RGB picture. 

 
Figure 1.11: Isolated BLOB/ aubergine slice. 

The sorting, classification and comparison of those feature is called BLOB analysis. 

Here are listed possible features sorted by number of channels (grey scale image, RGB 

and multispectral) [16] [17] [18] [19]: 

 Gray scale features: perimeter, diameter, minor axis length, major axis length, 

area, circularity, eccentricity, convexity, shape factor, compactness, mean 

intensity, mass centre and solidity. 

 RGB features (they can be calculated for other colourspaces too): mean red, 

mean green, mean blue, std. dev red, std. dev green and std. dev blue. 

 Multispectral features: mean in X-Y nm range and spectral variance. 

The classic approach to figure out BLOB analysis is different for each specific 

application, an example applied to Cocoa pods is provided in Figure 1.12 [12]. 



| Introduction 21 

 

 

 
Figure 1.12: Classic BLOB analysis pathway. 

The raw image is pre-processed to fix some problems, such tools are usually performed 

in difficult lightning conditions, then a wide range of technologies is applied with the 

purpose of sorting out the pixels of interest; in this stage, there are several techniques 

used to refine the result of the previous step, these procedures help to distinguish the 

instances and clean the image from noise. The instances are isolated through the 

“connected component labelling” algorithm which allows to calculate the features for 

each BLOB. The obtained features are used in a wide range of applications based on 

classification, like quality inspection [20], quality grading [21] [22] or fruit inspection 

[23] [24] [25] .





| Methods 23 

 

 

 

2 Methods 

2.1. Workflow 
This thesis’ workflow is split in three parts, the first involves Yolov8 as well as the 

necessary procedures to setup the dataset: establishing the classes, dataset labelling, 

deciding the images mix used to train Yolov8 and hyperparameters setup. The second 

part is dedicated to set up and run machine learning (ML) algorithms with the purpose 

of sorting pixels in aubergines classes or background. The output of the ML algorithm 

reveals better performances is combined with the results of Yolov8, in order to filter 

out background pixels. The third step is focused on features extraction applied to the 

BLOBs obtained in the previous phase as well as the description and comparison of 

such features (Figure 2.1). 

 
Figure 2.1: Thesis workflow. 



24 | Methods 

 

 

2.2. Working dataset 
The images used in this thesis has been acquired in a real food production plant called 

O.P. COTRAPA 2000, an Italian food manufacturer and partner of the TESORO project 

collaborating with Politecnico di Milano. 

The components used for RGB image acquisition are the following and are shown in 

Figure 2.2: 

 Genie Nano C2420 camera. 

 LM8JC optics, with focal distance of 8 mm. 

 MidOpt BP550-2 filter, centered in the visible light spectrum. 

 SmartVision Lights LW300-WHI-L light emitter. 

 

Figure 2.2: Camera and lightning system setup. 

The aforementioned system is applied to an ongoing process into a manufacturing 

plant owned by O.P. COTRAPA 2000, more precisely, the location is between the 

product selection and the oven inlet, such place is shown in Figure 2.3. 

 



| Methods 25 

 

 

 
Figure 2.3: Camera system location in COTRAPA. 

The pictures’ size is 2048x448 pixels and it doesn’t include the entire conveyor belt 

width. 

The working material used in this work has been originated from an ongoing sorting 

process carried out by multiple human operators, the sorting criteria applied are 

aligned with the company’s ones which deviates to the ones presented in this thesis 

because the sorted product was intended for sale and consumption, as a result, the 

processed image material was biased and inconsistent, caused by the company’s need 

and the number of people in charge of the sorting respectively. 

Aubergine slices were acquired under two conditions, the first condition (“compliant” 

from now) refers to slices acquired downstream of the sorting process carried out by 

human operators, here the product is almost completely compliant and properly 

distributed on the conveyor belt in term of quantity and without significantly 

overlapped slices, 824 images of this type are available, one of them is show in Figure 

2.4. The second part of the dataset was acquired under a different condition (named 

“discard” from now), it is made of 256 pictures obtained arresting the sorting process 

and loading an high quantity of product, such product was classified as non-compliant 

by the operators working on that specific line, as a consequence, the majority of the 

product doesn’t satisfy the quality requirements chosen by the company, the shoots 

got under this condition doesn’t looks like a typical industrial application case since 



26 | Methods 

 

 

the slices are highly overlapped and the conveyor belt is overloaded, an example is 

shown in Figure 2.5. Both “complaint” and “discard” have been acquired on an online 

working process, therefore the image acquisition process needed to affect the ongoing 

production process as little as possible, “compliant” pictures portraits the “as is” 

working conditions while “discard” acquisition caused a production times loss due to 

the setup procedure needed to reload the product discarded during a previous run; 

none of the images used in this work represents the expected “to be” working 

condition, which is similar to “compliant” dataset in term of product arrangement but 

the relative frequency of the product to be discarded is higher. 

 
Figure 2.4: "Compliant" image sample. 

 
Figure 2.5: "Discard" image sample. 

2.3. Yolov8 dataset preparation 
Yolov8, like others supervised classification tasks needs to establish the working 

classes before the technique is applied. The chosen classes are listed: 

1. Back/Top: aubergine slices exposing the skin to the camera. 

2. Speckled: those products having one or more significant black spot/s. 

3. Broken/Holes: this class includes slices that are unintentionally broken or 

presenting other kind of discontinuities, like holes. 



| Methods 27 

 

 

4. Other/Compliant: this class is dedicated to all the other objects released on the 

conveyor belt that can’t be sorted into the previous three classes. Most of the 

material in this class is expected to be compliant slices. 

Few samples for the already described classes are shown in Figure 2.6. 

 
Figure 2.6: Class samples: "1" is "Back/Top", "2" is "Speckled", "3" is "Broken/Holes", "4" is 

"Other/Compliant". 

Even though the acquisition was made under two different conditions with the 

purpose of acquiring more non-compliant products, not all the “discards” objects 

belong to class “Back/Top”, “Speckled” and “Broken/Holes”, and the same applies 

to the product under “compliant” condition, they don’t belong entirely to 

“Other/Compliant” class. There are some reasons behind that: the sorting process 

is affected by human errors, the slices may hide the deciding defect on the side 

which is occluded to the camera and there are defects that aren’t covered by 

“Back/Top”, “Speckled” and “Broken/Holes” classes but still relevant for the food 

manufactured when the images were acquired. 

The images were labelled using LabelImg, an open-source software written in 

python that allows to label in the most common formats through a user-friendly 

interface (Figure 2.7). 



28 | Methods 

 

 

 
Figure 2.7: LabelImg interface. 

LabelImg gives the possibility to save the annotation files in “YOLO” format, it is 

the standard used by Yolo’s family, the standard requires one annotation file in 

“.txt” format for each annotated image and, in addition, a further “.txt” file that 

codifies the classes. Each row identifies a bounding box which is made of five 

information pieces separated by “spacebar” key; the first data is an integer number 

that codifies for a specific class, the remaining data are float numbers that 

represents the box’s centre coordinates as well as its width and height, normalized 

with respected to the whole image size, an example is given in Figure 2.8. The 

annotation file that codifies the classes’ names is a simple list of the true class names 

separated by “enter” key, the sequential position of the name defines the integer 

number used as its proxy in the other annotations files, LabelImg produces this file 

too and automatically names the annotation file as the image it came from. The 

class defining file is shown in Figure 2.9. 



| Methods 29 

 

 

 
Figure 2.8: Annotation file in "Yolo" standard. 

 
Figure 2.9: Class defining file in "Yolo" standard. 

2.4. Yolov8x 
Yolov8x is the heaviest Yolov8’s network, it has been chosen due to the importance of 

the precision when compared to the inference speed, in fact, the last depends on the 

subversion. However, the most impacting leverage on this performance is proved to 

be the hardware and the software used for running the inference process which have 

great potential. 

The model set up was carried out with the convenient interface supplied by Ultralytics, 

it is inserted in a package named “Ultralytics”, it is written in “Python”. “Ultralytics” 

isn’t the only “Python” package required to run Yolov8x; the developers released 

“requirements.txt” on Yolov8 official repository, running this file with “pip3”, all the 

required packages are installed all in one go, “pip3” is a package manager tool 



30 | Methods 

 

 

dedicated to “Python”. The packages to be installed are numerous, they include 

general purpose packages like “Matplotlib”, “NumPy” and “pandas” but also 

machine learning oriented tools like “nvidia-pyindex”, “TensorFlow” and “PyTorch”. 

To run the training is necessary to specify which subvariant is desired, where the 

algorithm is supposed to find the training set and the hyperparameters. In most of the 

cases, the new model is initialized with “preloads”, “preloads” is nothing but an alias 

of the model’s parameters in case they aren’t initialized randomly. The preloads are 

useful even if they are specialized on detecting objects different from the ones the user 

is interest in, in fact, initializing the model with preloads coming from a completely 

different training session is better than initialize the parameters with random values 

because it saves training time, for this reason, the training performed in this thesis is 

“preloaded” with the parameters from Yolov8x trained on COCO (Common Objects 

in Context) dataset(https://cocodataset.org/#overview). 

The hyperparameters set used in this case are summarized in Table 2.1. 

  



| Methods 31 

 

 

 

Table 2.1: Yolov8x training hyperparameters. 

Hyperparameter Value Default Description 
Epochs 400 100 Maximum number of training cycles. 

Patience 50 50 
Epochs to wait without significant 

improvements. 
Batch 2 16 Number of images for each iteration. 
Size 640 640 Size of input image is SizexSize. 

Mosaic True True Include mosaic augmentation. 

Optimizer auto auto 
Type of optimizer, “auto” means that 

“AdamW” is used up to 10,000 
iterations, then “SDG” for the surplus. 

Seed 0 0 Random seed value for reproducibility. 

AMP True True 
Usage of Automatic Mixed Precision 

training, a speed up tool for deep 
learning applications. 

Fraction 1.0 1.0 
Fraction of the designated training set to 

use in the training phase. 
LR0 0.01 0.01 Starting learning rate. 
LRF 0.01LR0 0.01LR0 Final learning rate. 

OP1 0.937 0.937 
This value is the momentum when using 
“SDG” and beta1 if “Adam” optimizers 

family is in play. 

Decay 0.0005 0.0005 
The optimizer decay value penalizes 

larger weights in the attempt to avoid 
overfitting. 

WU epochs 3.0 3.0 Warmup epochs. 
WU momentum 0.8 0.8 Momentum value during the warmup. 

WU LR bias 0.1 0.1 
It is the starting learning rate in the 

warmup, starting from this value, LR 
approaches LR0 linearly. 

BOX loss 7.5 7.5 Box loss gain. 
CLS loss 0.5 0.5 Classification loss gain. 
DFL loss 1.5 1.5 Dual Focal loss gain. 

The maximum number of epochs has been increased to avoid early stoppage during 

the training, the batch size was modified too, higher batch sizes require higher 



32 | Methods 

 

 

memory consumption, however, the GPU used to run the training is “ASUS GeForce 

GTX 1050Ti”, which is unable to work under the default batch size condition (16 

images for batch) due to its limited resources. 

The dataset has been split following the usual proportion: 

 70% for “training set”. 

 20% for “validation set”. 

 10% for “test set”. 

The “training set” and “validation set” are made by 50/50 mix of “discard” and 

“compliant” images while “test set” is made solely by “complaint” images. Although 

the inference on “discard” images lead to poor results due to the high density of 

overlapped products, they have been included in the “training set” and “validation 

set” because of their preciousness in shortage conditions, in fact, this technology works 

properly when trained with several images. The instances were mixed before the 

sorting procedure. 

The material used to feed Yolov8x is summarized in Table 2.2. 

Table 2.2: Yolov8x dataset composition. 

Set split Compliant Discard Total 
Train 179 179 358 

Validation 51 51 102 
Test 51 0 51 

Since the entire “compliant” dataset undergoes to the workflow, a method to apply 

the Yolov8x training’s output is necessary, “Ultralytics” package offers a convenient 

toolbox for the inference phase too. The “prediction” needs the following inputs: 

images, the network model and hyperparameters; the output is nothing but a list of 

Yolo annotation files, one for each processed image. 

The hyperparameters of interest that could be modified in this phase are show in Table 

2.3. 



| Methods 33 

 

 

Table 2.3: Yolov8x prediction hyperparameters. 

Hyperparameter Value Default Description 

IOU NMS 0.7 0.7 
IoU value threshold used in 

non-max suppression. 

Confidence 0.25 0.25 
Confidence score value 

threshold. 
Size 640 640 Size of input image is SizexSize. 

2.5. Pixel sorting 
Some machine learning algorithms were trained to predict whether a pixel belongs to 

the product or not, in order to facilitate the candidate models and understand the 

results, two classes have been assigned to the foreground: aubergine pixels are sorted 

in “Pulp” and “Skin” classes, they represent the internal part of the product and the 

vegetable skin respectively. 

Most of the proposed machine learning techniques are supervised, therefore, they 

require a ground truth to be trained. 50 pictures from “compliant” dataset were 

selected and two masks for each of them were drawn, these masks cover “Pulp” and 

“Skin” pixels. Masks creation was carried out by hand through Photoshop.exe; the 

masks look like the ones shown in Figure 2.10. The proposed algorithms were applied 

through “Scikit-learn”, a python library package specialized on machine learning 

applications while the data management relies on “Pandas” library. 



34 | Methods 

 

 

 
Figure 2.10: Pixel level mask drawn through Photoshop.exe. 

Those pixels that have been classified as foreground in both the masks have been 

excluded by the process, their frequency account for 0.2% of the total. The pixel values 

are shuffled and split in “train set” and “test set” following a 90/10 proportion, the 

machine learning tools are fed with the pixel values, the most promising technique 

was selected after the performance comparison, F score has been used as deciding 

performance for the supervised models; the whole process is show in Figure 2.11. 

 
Figure 2.11: ML for pixel sorting workflow. 

Even though the RGB colourspace is the most common representation in imaging and 

machine vision field, others colour representations have high potential, depending on 

the application. In this case, 4 colourspaces were used to feed machine learning 

applications, they are “RGB”, “HSV”, “Luv” and “YCbCr”; all the already listed 

colourspaces are made of three values and can be calculated from “RGB”, which is the 



| Methods 35 

 

 

standard for the raw images used in this thesis. The interpretation of the channels 

values is provided in Table 2.4. 

Table 2.4: Colour channels description. 

Colourspace Channel Description 
RGB R Red component. 
RGB G Green component. 
RGB B Blue component. 
HSV H Hue component. 
HSV S Saturation component. 
HSV V Value: defines the black quantity. 
Luv L Intensity component. 
Luv u First chromaticity coordinate. 
Luv v Second chromaticity coordinate. 

YCbCr Y Luminance component. 
YCbCr Cb Blue scale component. 
YCbCr Cr Red scale component. 

2.5.1. SDG application 
“Scikit-learn” package’s SDG multiclass classifier proposes SVM (Support Vector 

Machine) as support algorithm, the approach is called “One-vs-All”, it means that 

multiple SVM are trained, as many as the classes. When coming to the prediction task, 

the trained models predict a score independently, the scores represent how “far” is the 

proposed instance in the positive region (positive score) or in the negative region 

negative region), the higher score defines which class the new instance belongs to. A 

graphical explanation of SVM algorithm in One-vs-All approach is provided in Figure 

2.12. 



36 | Methods 

 

 

 
Figure 2.12: One-vs-All Support Vector Machine (SVM). 

SDG classifier has few available parameters, the once used in this thesis are listed in 

Table 2.5. 

Table 2.5: SDG parameters. 

Parameter Value Description 
Loss Function hinge Linear SVM loss function. 

Penalty L2 
What kind of penalty function should be 
applied, L2 is the standard regularized 

penalty. 
Alpha 0.0001 Regularization term gain. 

Iter_Max 10000 Maximum number of iterations. 
E_Stop None Early stop criterion. 

LR optimal 

Learning rate function, “optimal” is a 
function that decrease through each 

iteration, it depends on Alpha 
parameter. 

Validation 0.1 
Validation set as percentage of training 

set. 

Stop 0.001 

If the calculated loss is larger than the 
best experience loss score minus Stop 

for NumIter in a row, then the training 
is stopped. 

NumIter 5 
Number of iterations in a row that cause 

training stoppage if the designated 
criterion is met. 



| Methods 37 

 

 

2.5.2. Softmax Regression Classifier application 
Softmax is nothing but the Logistic classification applied to multiple classes, this 

algorithm tries to guess the probability that a new instance belongs to a given class, 

the higher probability drives the decision. The parameters listed in Table 2.6 were used 

in this thesis to run Softmax. 

Table 2.6: Softmax parameters. 

Parameter Value Description 

Solver lbfgs 
Is the solver algorithm used by scikit-
learn; “lbfgs” approximates Broyden-
Fletcher-Goldfarb-Shanno algorithm. 

Penalty L2 
What kind of penalty function should be 
applied, L2 is the standard regularized 

penalty. 
Alpha 1 Regularization term gain. 

Iter_Max 10000 Maximum number of iterations. 
Tolerance 0.001 Tolerance for the stop criterion. 

2.5.3. Decision Tree application 
“Scikit-learn” offers a package to train “Decision Tree” on custom datasets, it is a 

supervised machine learning algorithm. The parameters used to run the algorithm are 

listed below, in Table 2.7. 

  



38 | Methods 

 

 

 

Table 2.7: Decision Tree parameters. 

Parameter Value Description 

Criterion Gini 
The function to be used as criterion to 

decide the split. 
MAX_depth 6 Maximum Tree’s depth. 

MIN_node_split 2 
Minimum number of samples to split a 

“leaf”. 

MIN_leaf_split 1 
Minimum number of samples to make a 

“leaf”. 

MIN_imp_decr 0.0 

During the “Tree growth”, if a split 
decreases the impurity less than 

MIN_imp_decr, such split doesn’t 
happen. 

2.5.4. Random Forest application 
Although Random Forest is one of the most promising supervised machine learning 

algorithms, it requires a lot of time to be trained depending on the “forest” size, the 

same is true for the prediction stage. Random Forest offers few parameters to rank 

features based on their importance, therefore Random Forest has been used to exclude 

the less relevant features (image channels). In this thesis, when Random Forest has 

been applied, the parameters shown in Table 2.8 have been used. 

  



| Methods 39 

 

 

 

Table 2.8: Random Forest parameters. 

Parameter Value Description 
Trees 50 Number of “Trees” in the “forest”. 

Criterion Gini 
The function to be used as criterion to 

decide the split. 
MAX_depth 7 Maximum Tree’s depth. 

MIN_node_split 2 
Minimum number of samples to split a 

“leaf”. 

MIN_leaf_split 1 
Minimum number of samples to make a 

“leaf”. 

Feat_split sqrt 

The number of features to consider 
when split a node, “sqrt” is the squared 

root of the number of features. The 
candidate features are chosen randomly. 

MIN_imp_decr 0.0 

During the “Tree growth”, if a split 
decreases the impurity less than 

MIN_imp_decr, such split doesn’t 
happen. 

2.5.5. DBscan application 
For comparison, few unsupervised algorithms were trained, DBscan is one of them, it 

was built and used to feed a K-nearest neighbours (KNN) model. The result would be 

successful if DBscan is able to build up groups that are pure in term of ground truth 

classes. DBscan was trained with the parameters listed in Table 2.9. 

Table 2.9: DBscan parameters. 

Parameter Value Description 
eps 1.0 Distance parameter, named “epsilon”. 

Core_thresh 800 
Minimum number that defines a 
training instance as core point. 

Algorithm Ball tree 
The algorithm to be used to find the 

nearest neighbours. 

When coming to KNN, the following parameters (Table 2.10) are applied. 



40 | Methods 

 

 

Table 2.10: KNN parameters. 

Parameter Value Description 

N_neighbours 30 
Number of closest neighbours to be 

found. 

Algorithm Ball tree 
The algorithm to be used to find the 

nearest neighbours. 

2.5.6. K-Means application 
K-Means is an unsupervised algorithm, the user defines the number of clusters. In this 

case, K-Means has been run changing the number of clusters, they range from 3 up to 

13. The best number of groups has been decided looking at the higher “silhouette 

score”. Minibatching was required due to the high number of samples to be processed. 

The same parameters were used to run K-Means, only “K” changed, such parameters 

are shown in Table 2.11. 

Table 2.11: K-Means parameters. 

Parameter Value Description 
K 3-13 Number of clusters. 

Iter_Max 100 Maximum number of iterations. 
Batch 1024 Batch size. 

NumIter 10 
Number of iterations in a row that cause 

training stoppage if the designated 
criterion is met. 

2.6. Features extraction 
Refinement tools, Yolov8x, and pixel sorting are all part of the feature extraction 

process. The refining tools are a collection of techniques used to address substantial 

issues put on by machine learning's poor performance. The whole process aims to get 

features for each BLOB. 

The process starts when Yolov8x locates the aubergine slice and its class, for the way 

Yolov8x works, it identifies the object through a rectangle. From this rectangle, the 

pixels are filtered according with the predicted class. The products belonging to 



| Methods 41 

 

 

“Back/Top” are made almost exclusively by “Skin” pixels whereas the other classes 

are associated to “Pulp” pixels, hence only one type of pixel is extracted from the 

drawn rectangle. This procedure is accomplished for every Yolov8x’s output line 

unless the box’s centre fall within 250 pixels from the image’s vertical border or 75 

pixels from the horizontal border, those products are excluded because is challenging 

to reconstruct the true shape for those products that aren’t completely included in the 

picture. The intermediate result and the first part of the process looks like the ones 

shown in Figure 2.13: Random Forest applied to Yolov8x. The BLOB isn’t extracted 

immediately since few problems still in place, in fact, Yolov8x’ rectangle may include 

more than one complete slice or exclude parts of the object, moreover, “Back/Top” 

products are affected by a relevant lack of pixels due to presence of reflects. 

 
Figure 2.13: Random Forest applied to Yolov8x. 

Only the largest BLOB inside the rectangle is chosen and “expanded”, this means that 

the pixels contiguous to the BLOB and belonging to the same pixel class are included 

in the BLOB itself, such procedure tackle those cases where the aubergine slice is 

partially located outside the rectangle; this solution introduces an extra problem if the 

target is overlapped (or extremely close) with one or more slices of the same pixel class, 

along with the target, the neighbouring slice/slices may be fully enclosed in the BLOB. 

The previously obtained BLOB undergoes to “closing”. “Closing” is a morphological 

transformation which applies to single channel masks, it is a “dilation” followed by an 

“erosion”, always in this order, “dilation” is the opposite of “erosion”, it turns positive 



42 | Methods 

 

 

the pixels close to the once that are already positive; as its name suggests, “closing” 

close small and large gaps inside the slices, a critical problem that affects “Back/Top” 

more than the remaining classes. In this thesis, the kernel is a circle 30 pixels in 

diameter. 

Watershed transformation is applied in order to separate the target from the 

neighbouring products. Since aubergine slices don’t meet the ideal conditions to apply 

watershed transformation, the tool has been properly modified. Watershed 

transformation relies on a threshold cut to extract the nuclei from the distance map, to 

do so, is necessary to define a threshold value which is inflexible to the object size and 

causes larger nuclei to overcome the smaller generating a highly distorted border. 

Distance map associates to each foreground pixels a value equal to the minimum 

distance between it and the background, an example of distance map applied to all 

foreground elements can be visualized in Figure 2.14. 

Watershed transformation was modified in the nuclei extraction method, the distance 

map is processed by means of a median filter and the local maxima of such map are 

recorded. 

 
Figure 2.14: Distance map on aubergines slice. 

The nuclei are circles located in the local maxima having a diameter equal to a half of 

the pick value. The core growth and borders definition are the same used in the 

original watershed transformation [15](Yi and Zhou, 2000) (1.2.8.1). 

Watershed transformation output is a group of BLOBs that are close each other but no 

more contiguous due to the borders introduced by watershed itself; only one of such 

BLOBs is the target, it is selected in three steps: 



| Methods 43 

 

 

 Candidates BLOBs having an area equal to 5 pixels or less are deleted. 

 For each residual BLOB, calculate the distance between the centre of the 

rectangle circumscribed to the BLOB and the centre of the Yolov8x output 

rectangle. 

 Chose the closer BLOB. 

Once target BLOB is located, dimensional and shape-based features can be measured, 

all the residual features are extracted superimposing the BLOB to the original RGB 

picture. 

A list of the feature taken into consideration while writing this thesis are displayed in 

Table 2.1 as well as their description.  



44 | Methods 

 

 

 

Table 2.12: Features list. 

Feature Description 

Box distance 
Is the centre-centre distance between the rectangle 

circumscribed to the BLOB and the rectangle coming from 
Yolov8x; the unit of measure is “pixels”. 

Area Number of pixels that makes the BLOB. 
Perimeter BLOB perimeter length in pixels. 

Circularity 
It measures how the BLOB is similar to a circle, it is 

calculated by Equation (2.1). 

Solidity 
It measures the BLOB convexity. Is the ratio between Area 

and Hull area. 

Extent 
Is the ratio between Area and the area of the rectangle 

circumscribed to the BLOB. 
G_avg Is the average value in the green channel. 

G_stddev Is the sample standard deviation in the green channel. 
B_avg Is the average value in the blue channel. 

B_stddev Is the sample standard deviation in the blue channel. 
R_avg Is the average value in the red channel. 

R_stddev Is the sample standard deviation in the red channel. 
H_avg Is the average value in the hue channel. 

H_stddev Is the sample standard deviation in the hue channel. 
S_avg Is the average value in the saturation channel. 

S_stddev Is the sample standard deviation in the saturation channel. 
V_avg Is the average value in the V channel. 

V_stddev Is the sample standard deviation in the V channel. 

Major_axis 
Is the major axis length of the ellipse that approximates the 
BLOB, measured in pixels. The elliptical approximation is 

carried out by opencv.fitEllipse function. 

Minor_axis 
Is the minor axis length of the ellipse that approximates the 
BLOB, measured in pixels. The elliptical approximation is 

carried out by opencv.fitEllipse function. 

Inertia_X 
Is the second momentum of the BLOB, calculated in BLOB’s 

centre with respect to the X axis passing through the 
centroid. 

Inertia_Y 
Is the second momentum of the BLOB, calculated in BLOB’s 

centre with respect to the X axis passing through the 
centroid. 



| Methods 45 

 

 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4𝜋𝑨𝒓𝒆𝒂

𝑷𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓
 (2.1) 

2.7. Feature description & Feature comparison 
The features are collected and sorted by class. For each feature-class combination the 

sample mean and the sample standard deviation are calculated, such data are useful 

to describe the products, moreover the features are potentially able to distinguish 

between the classes. In this thesis, the t-test is applied to each class couple in order to 

test whether or not their mean is the same, and this is done for each feature. In case the 

hypothesis that the mean difference isn’t equal to zero, the feature may be used to 

distinguish between two classes, all the statistical tests are performed with alpha equal 

to 5%. Figure 2.15 summarizes t-test characteristics. The calculations and the statistical 

tests are performed by means of Minitab.exe. 

 
Figure 2.15: T-test for feature comparison. 

 





| Results 47 

 

 

 

3 Results 

3.1. Yolov8x results 
Volov8x performances can be represented in several ways, confusion matrix is one of 

them, “Ultralytics” package offers a function dedicated to model’s performances 

evaluation, it provides a confusion matrix and the trade-off profile related to precision, 

recall and F score. The training has been stopped after 81 training epochs, the resulting 

cross-class confusion matrix is shown in Figure 3.1. 

 
Figure 3.1: Yolov8x confusion matrix, values as percentage of the true instances for that class. 

This matrix was calculated with a fixed IoU threshold value, equal to 0.45, when 

comparing prediction and ground truth, only those boxes having IoU larger than 0.45 

with a ground truth of the same class are accounted as true positives. 

Yolov8x is able to detect “Back/Top” instances, it is expected since this class is well 

represented in the dataset and is fairly different with respect to the other classes, 10 % 

of the instances belonging to “Back/Top” are misclassified and, in those cases, half of 

the times are classified as “Background”. “Speckled” and “Holes/Broken” classes are 

characterized by poor performances, “Speckled” instances are misclassified as 

“Other/Compliant” half of the times while “Holes/Broken” are predicted as 

Back/Top Speckled Holes/Broken Other/Compliant Background

Back/Top 0.9 0.00 0.00 0.01 0.30
Speckled 0.01 0.49 0.24 0.02 0.16
Holes/Broken 0.01 0.01 0.21 0.01 0.07
Other/Compliant 0.03 0.47 0.56 0.92 0.48
Background 0.06 0.03 0.00 0.03 -

True

Pr
ed

ic
te

d

Confusion matrix



48 | Results 

 

 

“Other/Compliant” in 56% of the cases, the remaining are almost evenly distributed 

between the true positive (“Holes/Broken”) and “Speckled” class; “Other/Compliant” 

products are retrieved 92% of the times. In case the IoU value between the prediction 

and ground truth boxes is low, the prediction is recorded in the last column, this 

happened 48% of the times when trying to predict the location of a “Other/Compliant” 

object. 

The localization performance is one of the best achievements in this case, the “box 

loss”, a performance measuring the deviation between the predicted box and the 

ground truth, is equal to 0.55. 

Yolov8x applied to the whole dataset led to the detection of 8,835 objects, distributed 

in the four classes, Table 3.1 shows the relative frequency for the ground truth 

instances too. 

Table 3.1: Yolov8x predictions on "compliant" dataset vs ground truth. 

Class 
#Prediction 
instances 

Relative 
frequency on 
predictions 

Relative frequency 
on ground truth 

Back/Top 1220 13.8% 11.6% 
Speckled 168 1.9% 7.9% 

Holes/Broken 80 0.6% 1.3% 
Other/Compliant 7397 83.7% 79.2% 

 

3.2. Machine learning results 

3.2.1. Supervised ML algorithms results 
Supervised machine learning algorithms where compared based on confusion matrix 

performances. 

SGD for pixel sorting has been applied and the results are shown in Figure 3.2, the 

deciding performance is the weighted F score, the second most relevant performance 



| Results 49 

 

 

is the recall on “Skin” class that looks the weaker performance caused by the reflects 

on slices skin. 

 
Figure 3.2: SGD confusion matrix and performances. 

While the F score is equal to 0.95, the recall on the “Skin” class is equal to 0.74, such 

performance is significantly lower than the same for the other two classes and it 

impacts negatively on the F score associated to the “Skin” class; the same applies to 

most of the machine learning algorithms used in this thesis. 

Softmax Regression classifier results are show in Figure 3.3. 

 

Figure 3.3: Softmax Regression confusion matrix and performances. 

Softmax Regression Classifier performances are better when compared with SGD, 

even though the overall weighted F score is the same, Softmax Regression performs 

better on predicting “Skin” pixels, its recall on this class is 0.04 higher. 

Decision Tree Classifier results are show in Figure 3.4. 



50 | Results 

 

 

 

Figure 3.4: Decision Tree confusion matrix and performances. 

Decision Tree multiclass classifier performed better than SGD and Softmax classifier, 

although weighted F score still equal to 0.95, the recall in “Skin” gain 0.03 over Softmax 

classifier. 

Random Forest classifier was applied to all channels listed in Table 2.4 and the results 

are show in Figure 3.5. 

 

Figure 3.5: Random Forest confusion matrix and performances, 12 features run. 

Random Forest classifier is slightly better than Decision Tree, it offers a feature ranking 

too. Random Forest were run deleting the features having an “importance score” lower 

than 0.1. The importance scores and the feature used in the second run are listed in 

Table 3.2. 

  



| Results 51 

 

 

 

Table 3.2: Features ranked by Random Forest classifier. 

Channel Importance score Retained 
R 0.1039 Yes 
G 0.0367 No 
B 0.0099 No 
H 0.0050 No 
S 0.0205 No 
V 0.0873 No 
L 0.0439 No 
u 0.1050 Yes 
v 0.1773 Yes 
Y 0.0463 No 

Cb 0.2304 Yes 
Cr 0.1333 Yes 

Random Forest was rebuilt feeding the model with R, u, Cb and Cr features in the 

attempt to reduce the inference time; the same happened for the maximum “Tree’s 

depth” and the maximum number of “trees” in the “forest”, they were reduced to 4 

and 50 respectively. Figure 3.6 shows the new performances. 

 

Figure 3.6: Random Forest confusion matrix and performances, 5 features run. 

The performance loss caused by the model’s dimensional reduction still limited if 

compared with the dimensional reduction degree, in fact, F score still equal to 0.95 and 



52 | Results 

 

 

the recall is close the full dimension model’s one. The last is the chosen one to be 

inserted in the thesis’ workflow as show in Figure 2.1. 

3.2.2. Unsupervised/Semisupervised ML algorithms results 
DBscan+KNN has been evaluated as an alternative to supervised algorithms, a good 

result is achieved when the clusters are pure in terms of class frequency. DBscan 

identified 8 clusters and, the test instances were classified in these groups. The result 

is show in Figure 3.7. 

 

Figure 3.7: DBscan+KNN cluster purity. 

DBscan+KNN detected 4 highly “pure” clusters, they are: cluster 1, 2, 3 and 8, instances 

belonging to those groups are classified as “Skin”; cluster 6 is the only one retaining 

“Pulp” pixels but its purity degree is only 40%; the remaining clusters are distributed 

between “Background” and “Skin” pixels with a proportion that is close to 50%, this 

result is aligned to the lack in recall experienced by the supervised algorithms due to 

the reflects on product’s skin. 

When dealing with K-Means, the user is in charge of selecting the number of clusters 

used to run the algorithm, for this reason, a “silhouette score” has been computed, it 

is plotted in Figure 3.8. 



| Results 53 

 

 

 

Figure 3.8: Silhouette score vs #clusters. 

The silhouette score doesn’t show its maximum at a meaningful number of clusters; 

therefore, a large “K” was selected, equal to 9. K-Means was tested, and class frequency 

for each group was measured, the result is show in Figure 3.9. 

 

Figure 3.9: K-Means cluster purity. 

K-Means can identify “Pulp” pixels, they are enclosed in the second, third and sixth 

cluster, the residuals are similar to the clusters find by DBscan+KNN, those clusters 

struggle to separate “Skin” and “Background” pixels. 

3.3. Features extraction results 
The feature extraction process has been applied as described in 2.6, the resulting 

BLOBs are less than the ones listed in Table 3.1 since those predictions placed close to 

the border have been excluded from the process; the residual BLOBs are summarized 

in Table 3.3. 

  



54 | Results 

 

 

 

Table 3.3: Yolov8x predictions excluding elements close to the border. 

Class #Instances Relative frequency 
Back/Top 731 12.2% 
Speckled 148 2.5% 

Holes/Broken 59 1.0% 
Other/Compliant 5047 84.3% 

Mean and sample standard deviation have been calculated for each class-feature, the 

output values are listed in Table 3.4 and Table 3.5. 

Table 3.4: Features mean by class. 

Feature Back/Top Speckled Holes/Broken Other/Compliant 

Box distance 38.51 25.12 15.67 13.16 

Area 18,340 24,895 38,218 39,302 
Perimeter 570.7 673.3 830.4 802.2 
Circularity 0.56 0.63 0.67 0.74 

Solidity 0.81 0.88 0.92 0.95 
Extent 0.56 0.64 0.69 0.72 
G_avg 14.8 140.5 144.0 156.1 

G_stddev 6.6 28.4 29.1 28.4 
B_avg 16.7 188.0 195.4 206.7 

B_stddev 8.5 32.6 32.9 29.5 
R_avg 13.6 85.6 88.8 97.7 

R_stddev 6.1 21.9 22.1 22.3 
H_avg 30.6 15.7 15.0 15.6 

H_stddev 31.5 1.4 1.5 1.8 
S_avg 37.4 140.4 140.4 135.9 

S_stddev 22.9 13.3 13.8 14.3 
V_avg 16.8 188.0 195.4 206.7 

V_stddev 8.7 32.6 32.9 29.5 
Major_axis 192 208 257 262 
Minor_axis 127 149 195 193 
Inertia_X 16.2e+9 18.6e+9 43.9e+9 33.0e+9 
Inertia_Y 16.2e+9 18.6e+9 43.9e+9 33.0e+9 



| Results 55 

 

 

 

Table 3.5:Features standard deviation by class. 

Feature Back/Top Speckled Holes/Broken Other/Compliant 

Box distance 29.67 32.51 22.08 14.15 

Area 15,399 16,633 14,936 15,541 
Perimeter 261.8 242.5 177.3 167.4 
Circularity 0.20 0.15 0.12 0.10 

Solidity 0.15 0.08 0.07 0.04 
Extent 0.16 0.09 0.09 0.07 
G_avg 5.3 23.3 19.3 22.5 

G_stddev 7.8 7.3 5.7 5.6 
B_avg 6.9 28.7 22.1 23.1 

B_stddev 10.0 8.4 4.6 6.4 
R_avg 4.2 16.9 13.2 16.3 

R_stddev 5.8 5.6 4.5 4.4 
H_avg 17.8 1.0 0.9 1.4 

H_stddev 17.8 0.6 0.6 0.8 
S_avg 18.5 8.5 6.6 9.1 

S_stddev 9.6 3.2 3.0 3.8 
V_avg 7.0 28.7 22.1 23.1 

V_stddev 10.1 8.4 4.6 6.4 
Major_axis 94 75 52 56 
Minor_axis 73 54 46 45 
Inertia_X 24.2e+9 22.8e+9 33.4e+9 33.7e+9 
Inertia_Y 24.2e+9 22.8e+9 33.4e+9 33.7e+9 

The t-tests on feature means have been performed for each class couple, and the results 

of such tests are show in Figure 3.10, 22 features are tested and the null hypothesis has 

been accepted 21 times over the 132 tests. 

  



56 | Results 

 

 

 

 
Figure 3.10: T-tests on features mean, alpha equal to 0.05. 



| Results 57 

 

 

Most of the features means are statistically different when the pairwise comparison is 

performed but only the differentiation is even higher whether the null hypothesis is 

rejected in t-test against all the classes; it happened for the classes for the following 

features: Circularity, Solidity, Extent, B_avg and V_avg; this result suggests that the 

features measuring the object compactness are able to distinguish the target class. All 

but two of the t-tests involving “Back/Top” class have been rejected, it suggests this 

class as the most different with respected to the others and almost all the features may 

be used to characterize the class, the RGB colour averages still the most characterizing 

ones due to their significant difference with respect to the other classes and their 

understandable meaning. The less valuable features are the ones related to the 

standard deviation in both the colourspaces; it worths for all the classes but 

“Back/Top”, as already mentioned, its characteristics aren’t equal to the relative 

counterparts, moreover, 11 over the 21 tests resulting in an acceptance of the null 

hypothesis have been caused by t-tests involving the standard deviation features. 





| Discussion and Conclusion 59 

 

 

 

4 Discussion and Conclusion 

This thesis faces a deep learning application case that could be found when trying to 

adopt machine learning technologies in an ongoing manufacturing process. The 

proposed method sees the combination of deep learning and classical machine 

learning techniques to localise and classify defective products in aubergine production 

lines. As DL model, Yolov8 has been selected as it represents the state of the art for 

object detection purposes. Among the selected classed to be identified within the 

acquired dataset, “Speckled” and “Holes/Broken” classes are underrepresented in the 

“compliant” dataset, they account approximately 7.9% and 1.3% respectively. Yolov8x 

managed to retrieve more than 90% of the objects belonging to “Back/Top” and 

“Other/Compliant” classes while it struggles on distinguish the remaining classes 

(“Speckled” and “Holes/Broken”), when those instances are misclassified, they are 

assumed to be “Other/Compliant” but the opposite doesn’t happens, this performance 

fit the user’s needs in case the interest points towards the retention of “good” samples 

and the minimization of the not compliant slices isn’t a priority; on the localisation 

perspective, the model is extremely good on locating the targets when applied to 

“compliant” dataset, the drawn boxes enclose properly the objects while the 

completely missed targets are only those slices located on picture’s borders, those 

products are barely visible. Yolov8x performances may be enhanced increasing the 

training pictures quantity, this operation still time consuming and introduces 

inconsistencies when carried out by multiple operators; adding or changing the 

channels may introduce additional useful information, in fact, RGB imaging looks 

effective in recognizing “Back/Top” aubergine slices while specific wavelength bands 



60 | Discussion and Conclusion 

 

 

are proved to be in detecting rotten organic matter and fungal contaminations [26] [27] 

[28], the choice about the wavelengths selection is driven by the manufacturer needs, 

“Speckled” is one of those classes that is expected to show relevant contrast in some of 

the NIR wavelengths and is candidate to receive benefits to the addition of further 

wavelength channels; Yolov8x performances on “Holes/Broken” product is less 

dependent to the wavelengths/channels selection process until the contrast between 

the product and the background is guaranteed, in fact, “Holes/Broken” are recognized 

due to through their shape and size; wavelength selection methods have been 

successfully applied to aubergine’s pixels in order to retrieve the best wavelength set 

having high effectiveness in sorting the product under the following conditions [29]:  

 Burnt. 

 Cooked. 

 Fresh product. 

 Skin exposed to the camera. 

The second part regarding the application of ML techniques sees the comparison of 

different algorithms to classify images at pixel level in effective parts and background; 

among the ML techniques tested in this work, Random Forest has been selected to be 

used in the main workflow due to its higher performances when compared to other 

ML techniques, moreover, such performances are retained when the number of 

features (colour channels) are decreased. Random Forest performances are explained 

by the similarity of the background pixels and reflects on the product, although “Skin” 

pixels are severely affected by a low Recall value (Figure 3.6), they account for less 

than 7% (in “compliant” images), as a result, its impact on the weighted performances 

is low. This problem may be tackled adopting two approaches, the first requires 

changing the process such a way that the product’s skin is distinguishable to the 

background, replacing the conveyor belt tape with another one having a different 

colour addresses the issue only if the new material doesn’t reflect the incident light, a 

possible solution is the replacement of the lighting system itself, backlighting or 



| Discussion and Conclusion 61 

 

 

diffusive lighting are possible ways to reduce the reflects. The second approach is 

based on wavelength selection, in fact, conveyor belt reflectivity may be significantly 

different to the organic matter’s one when acquiring in specific wavelengths [27]. 

Random Forest provides a further significant result, it ranks colour channels by 

relative importance, based on this technique, the three most important are: “Cb”, “v” 

and “Cr”; these colour representations aren’t easily understandable from a human 

point of view, but they are the most useful when Random Forest splits the training 

instances. 

This thesis introduces a variant to watershed transformation, it allows to separate 

overlapped objects even if the targets don’t satisfy the implicit requirements put in 

place by the original watershed transformation paper (2.6). The already explained 

error sources interact with watershed transformation in “feature extraction” phase 

generating errors, most of them are partial BLOB extractions since the procedure isn’t 

able to fix the gaps originated by the reflects in all the cases, the same happened for 

the unperfect product’s circularity, in particular, sometimes the modified watershed 

transformation detects a “fake nuclei” close to sharp angles, those nuclei and all their 

associated pixels are considered autonomous BLOBs by the watershed transformation 

causing an area loss and shape deformation to the “real” BLOB representing that 

specific slice. 

Feature values has been successfully extracted; therefore, mean and standard 

deviation have been calculated, the test results show as the features have good 

potential when trying to guess the classes. The errors generated in the previous phases 

impact on t-test reliability since the afore mentioned tests are partially fed with highly 

deformed BLOBs, as shown in Figure 3.1, a relevant fraction of “Speckled” and 

“Holes/Broken” are misclassified, hence, a significant quantity of feature values are 

allocated to the wrong class, therefore is reasonable to think that such errors affect the 

feature comparison. The workflow deployed in this thesis up to and excluded the 

feature extraction may be replaced by Yolov8x-seg, a Yolov8 variant based on instance 



62 | Discussion and Conclusion 

 

 

segmentation, it localises the borders drawing continuous segments instead of 

rectangles, hence the techniques used to refine the rectangles aren’t needed, Yolo 

segmentation requires a slightly different process to be put in place, the labelling 

requires different support tools and a significantly larger amount of time which might 

be not justified since many applications require a roughly localisation.  

The workflow proposed in this document (Figure 2.1) may be applied as set up 

procedure in industrial applications, although the limited effort put in labelling, the 

model is effective in locating the food products while the poor classification 

performances can be adjusted in two possible non-exclusive ways: 

 Leveraging on operators’ knowledge on the features; some features are easy to 

understand from a human perspective, thus the operators could establish a few 

thresholds on features’ values with the purpose to assign the instance in the 

classes, this process operates on the workflow upstream fixing the incorrect 

class predictions that can be used to refeed a training process. 

 A possible improvement is the addition of further image material to the already 

existing one, since a limiting resource is the labelling time, the existing model 

could be used to speed up this activity because the localisation is correct, and 

the operator is only responsible for selecting the class. 

Future researches may investigate the usage of image channels different to the ones 

used in this thesis, starting from those wavelengths that showed good potential for 

food quality inspection, also for detecting quality criticalities different to what seen in 

in this case, RGB channels still useful to classify some objects (like “Back/Top” class), 

furthermore, the related sensors/filters are easy to access due to the industrial 

development experienced in RGB imaging. 



 63 

 

 

Bibliography 

 

[1]  J.-H. Cheng and D.-W. Sun, “Partial Least Squares Regression (PLSR) Applied to 
NIR and HSI Spectral Data Modeling to Predict Chemical Properties of Fish 
Muscle,” Food engineering reviews, vol. 9, pp. 36-49, 2017.  

[2]  D. Caballero, T. Antequera, A. Caro, M. L. Duran and T. Perez-Palacios, “Data 
Mining on MRI-Computational Texture Features to Predict Sensory 
Characteristics in Ham,” Food and Bioprocess Technology, vol. 9, pp. 699-708, 2016. 

[3]  W. Zhang, Y. Zhang, Z. Jia, Z. Dehai, X. Liang, Z. Liehan, L. Zhongwei and Y. Su, 
“Multi-source data fusion using deep learning for smart refrigerators,” Computers 
in Industry, vol. 95, pp. 15-21, 2018.  

[4]  A. D. Arya, S. S. Verma, P. Chakarabarti, T. Chakravarti, A. A. Elngar, M. Nami 
and A.-M. Kamali, “Asystematic review on machine learning and deep learning 
techniques in the effective diagnosis of Alzheimer's disease,” Brain Informatics, 
vol. 10, no. 1, pp. 1-15, 2023.  

[5]  J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: 
Unified, Real-Time Object Detection,” in In Proceedings of the IEEE conference on 
computer vision and pattern recognition, 2016.  

[6]  R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for 
accurate object detection and semantic segmentation,” in Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2014.  

[7]  J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv 
preprint arXiv, no. 1804.02767, 2018.  

[8]  A. Géron, “Hands-On machine learning with scikit-learn, keras & tensorflow,” 
O'Reilly, 2019, pp. 114-124;149-151;177-184;199-200;240-249;256-259. 



64 Bibliography | 

 

 

[9]  T. Dewi, P. Risma and Y. Oktarina, “Fruit sorting robot based on color and size 
for an agricultural product packaging system,” Bulletin of Electrical Engineering 
and Informatic, vol. 9, no. 4, pp. 1438-1445, 2020.  

[10] T. Dewi, Z. Mulya, P. Risma and Y. Oktarina, “BLOB analysis of an automatic 
vision guided system for a fruit picking and placing robot,” Int. J. Computational 
Vision and Robotics, vol. 11, no. 3, pp. 315-327, 2021.  

[11] W. Chen, Z. Li, J. Zhang and B. Yi, “A Study of Workpiece Targeting Based on 
Improved Blob Analysis,” in In 2020 5th International Conference on Automation, 
Control and Robotics Engineering (CACRE), 2020.  

[12] Y. Ekawaty, Indrabayu and I. S. Areni, “Automatic Cacao Pod Detection Under 
Outdoor Condition Using Computer Vision,” in 2019 4th International Conference 
on Information Technology, Information Systems and Electrical Engineering 
(ICITISEE), 2019.  

[13] H. Zhou, L. Llewellyn, L. Wei, D. Creighton and S. Nahavandi, “Marine object 
detection using background modelling and blob analysis,” in 2015 IEEE 
International Conference on Systems, Man, and Cybernetics, Hong Kong, 2023.  

[14] S. Yang, B. Ni, W. Du and T. Yu, “Research on an Improved Segmentation 
Recognition Algorithm.,” Sensors, vol. 22, no. 10, p. 3946, 2022.  

[15] Y. Cui and N. Zhou, “Blob Analysis Using Watershed Transformation,” in 
International Conference on Industrial, Engineering and Other Applications of Applied 
Intelligent Systems, Berlin, 2000.  

[16] A. Wang, W. Zhang and X. Wei, “A review on weed detection using ground-
based machine vision and image processing techniques,” Computers and 
electronics in agriculture, no. 158, pp. 226-240, 2019.  

[17] S. M. Pelkey, J. F. Mustard, S. Murchie, R. T. Clancy, M. Wolff, M. Smith, R. 
Milliken, J.-P. Bibring, A. Gendrin, F. Polulet, Y. Langevin and B. Gondet, 
“CRISM multispectral summary products:Parameterizing mineral diversity on 
Mars from reflectance,” Journal of Geophysical Research: Planets, vol. 112, no. E8, 
2007.  

[18] İ. ÇINAR, M. KOKLU and Ş. TAŞDEMİR, “Classification of Raisin Grains Using 
Machine Vision and Artificial,” Gazi Mühendislik Bilimleri Dergisi, vol. 6, no. 3, pp. 
200-209, 2020.  



| Bibliography 65 

 

 

[19] N. Oppelt and W. Mouser, “Hyperspectral monitoring of physiological 
parameters of wheat during a vegetation period using AVIS data.,” International 
Journal of Remote Sensing, vol. 25, no. 1, pp. 145-159, 2004.  

[20] A. A. Khule, M. S. Nagmode and R. D. Komati, “Automated Object Counting for 
Visual Inspection,” in 2015 International Conference on Information Processing 
(ICIP), 2015.  

[21] G. Feng and C. Quixin, “Study on color image processing based intelligent fruit 
sorting system.,” in Fifth world congress on intelligent control and automation, 
Hangzhou, 2004.  

[22] R. Azadina, S. Fouladi and A. Jahanbakhshi, “Intelligent detection and waste 
control of hawthorn fruit based on ripening level using machine vision system 
and deep learning techniques.,” Results in Engineering, vol. 17, p. 100891, 2023.  

[23] X. Xue, Z. Guomin, Q. Yun, L. Zhuang, W. Jian, H. Lin, F. Jingchao and G. 
Xiuming, “Detection of young green apples in orchard environment using 
adaptive ratio chromatic aberration and HOG-SVM,” in Computer and Computing 
Technologies in Agriculture XI, Jilin, 2017.  

[24] D. P. Penumuru, S. Muthuswamy and P. Karumbu, “Identification and 
classification of materials using machine vision and machine learning in the 
context of industry 4.0.,” Journal of Intelligent Manufacturing, vol. 31, no. 5, pp. 
1229-1241, 2020.  

[25] C. S. Lauguico, S. R. Conception, D. J. Alejandrino, R. R. Tobias, D. D. Macasaet 
and P. E. Dadios, “A comparative analysis of machine learning algorithms 
modeled from machine vision-based lettuce growth stage classification in smart 
aquaponics.,” Int. J. Environ. Sci. Dev, vol. 11, no. 9, pp. 442-449, 2020.  

[26] J. Gòmez-Sanchìs, G. Camps-Valls, E. Moltò, L. Gòmez-Chova, N. Aleixos and J. 
Blasco, “Segmentation of hyperspectral images for the detection of rotten 
mandarins.,” in Analysis and Recognition: 5th International Conference, Póvoa de 
Varzim, 2008.  

[27] E. Minieri and E. Milani, “POLITesi,” 4 Maggio 2023. [Online]. Available: 
https://hdl.handle.net/10589/212282. [Accessed 7 Novembre 2023]. 

[28] J. Sun, R. Künnemeyer, A. McGlone and N. Tomer, “Optical properties of healthy 
and rotten onion flesh from 700 to 1000 nm,” Postharvest biology and technology, 
vol. 140, no. 1, pp. 1-10, 2018.  



66 Bibliography | 

 

 

[29] M. Di Raimondo, “POLITesi,” 7 Ottobre 2021. [Online]. Available: 
https://hdl.handle.net/10589/179617. [Accessed 7 Novembre 2023]. 

 

 



 67 

 

 

List of Figures 

Figure 1.1:Original Yolo network.......................................................................................... 6 

Figure 1.2: Yolo's output structure. ....................................................................................... 7 

Figure 1.3: Intersection over union (IoU). ............................................................................ 8 

Figure 1.4: Yolo result postprocessing and output representation. ................................. 9 

Figure 1.5: Yolo releases comparison, average precision vs number of 
parameters(https://github.com/ultralytics/ultralytics). ................................................... 10 

Figure 1.6: Decision Tree structure. .................................................................................... 12 

Figure 1.7: DBscan working principle [8]. ......................................................................... 16 

Figure 1.8: Documents indexed by Scopus on "deep learning" AND "object detection" 
entries over time. ................................................................................................................... 17 

Figure 1.9: Object detection based on background filtering [13]. ................................... 18 

Figure 1.10: Erosion on rice grains image. ......................................................................... 19 

Figure 1.11: Isolated BLOB/ aubergine slice. ..................................................................... 20 

Figure 1.12: Classic BLOB analysis pathway. .................................................................... 21 

Figure 2.1: Thesis workflow. ................................................................................................ 23 

Figure 2.2: Camera and lightning system setup. .............................................................. 24 

Figure 2.3: Camera system location in COTRAPA. .......................................................... 25 

Figure 2.4: "Compliant" image sample. .............................................................................. 26 

Figure 2.5: "Discard" image sample. ................................................................................... 26 

Figure 2.6: Class samples: "1" is "Back/Top", "2" is "Speckled", "3" is "Broken/Holes", "4" 
is "Other/Compliant". ............................................................................................................ 27 

Figure 2.7: LabelImg interface. .............................................................................................. 28 

Figure 2.8: Annotation file in "Yolo" standard. ................................................................. 29 

Figure 2.9: Class defining file in "Yolo" standard. ............................................................ 29 

Figure 2.10: Pixel level mask drawn through Photoshop.exe. ........................................... 34 

Figure 2.11: ML for pixel sorting workflow. ..................................................................... 34 

Figure 2.12: One-vs-All Support Vector Machine (SVM). ............................................... 36 



68 | List of Figures 

 

 

Figure 2.13: Random Forest applied to Yolov8x. .............................................................. 41 

Figure 2.14: Distance map on aubergines slice. ................................................................ 42 

Figure 2.15: T-test for feature comparison. ........................................................................ 45 

Figure 3.1: Yolov8x confusion matrix, values as percentage of the true instances for 
that class. ................................................................................................................................. 47 

Figure 3.2: SGD confusion matrix and performances. ..................................................... 49 

Figure 3.3: Softmax Regression confusion matrix and performances. .......................... 49 

Figure 3.4: Decision Tree confusion matrix and performances. ..................................... 50 

Figure 3.5: Random Forest confusion matrix and performances, 12 features run. ...... 50 

Figure 3.6: Random Forest confusion matrix and performances, 5 features run. ........ 51 

Figure 3.7: DBscan+KNN cluster purity............................................................................. 52 

Figure 3.8: Silhouette score vs #clusters. ............................................................................ 53 

Figure 3.9: K-Means cluster purity. .................................................................................... 53 

Figure 3.10: T-tests on features mean, alpha equal to 0.05. ............................................. 56 

 

 

 

 

 

 

 

 

 

 



 69 

 

 

List of Tables 

Table 2.1: Yolov8x training hyperparameters. .................................................................. 31 

Table 2.2: Yolov8x dataset composition. ............................................................................ 32 

Table 2.3: Yolov8x prediction hyperparameters. .............................................................. 33 

Table 2.4: Colour channels description. ............................................................................. 35 

Table 2.5: SDG parameters. .................................................................................................. 36 

Table 2.6: Softmax parameters. ............................................................................................ 37 

Table 2.7: Decision Tree parameters. .................................................................................. 38 

Table 2.8: Random Forest parameters. ............................................................................... 39 

Table 2.9: DBscan parameters. ............................................................................................. 39 

Table 2.10: KNN parameters. ............................................................................................... 40 

Table 2.11: K-Means parameters. ........................................................................................ 40 

Table 2.12: Features list. ........................................................................................................ 44 

Table 3.1: Yolov8x predictions on "compliant" dataset vs ground truth. ...................... 48 

Table 3.2: Features ranked by Random Forest classifier. ................................................. 51 

Table 3.3: Yolov8x predictions excluding elements close to the border. ....................... 54 

Table 3.4: Features mean by class. ....................................................................................... 54 

Table 3.5:Features standard deviation by class. ................................................................ 55 

 





 71 

 

 





 73 

 

 

Acknowledgments 

Thanks to the staff of the Politecnico di Milano for their professionalism. Thanks to 
Prof. Marco Tarabini and Ing. Chiara Conese for the assistance provided to produce 
this document. 

 



 

 

 

 

 


