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Abstract

Precision medicine aims at improving the clinical treatment of patients by proposing subject-
specific therapies, which are designed on the basis of individual characteristics, such as
age and lifestyle, but also more complicated biological features. To this end, precision
medicine mostly relies on biomarkers, complex indicators that characterize the genotype
and phenotype of a patient. In pratical applications, such biomarkers are commonly derived
by synthesizing the information coming from both data-driven and physics based models.

The aim of this Thesis is to explore a unified framework for quantitative methods in
precision medicine, leveraging on Machine Learning tools. In particular, we focus on the
case of personalized treatment planning of radiotherapy. Recently, many new research lines
are being explored in this field, two of which are the main focus of this Thesis. The first
one concerns the study of radiosensitivity as a genetic trait, and thus aims at identifying
the genetic mutations associated with late toxicity in order to build suitable predictive
biomarkers. The second line of research, instead, consists in the analysis of the cellular
response to radiation by means of accurate and extensive numerical simulations. Both
approaches present significant challenges, which in this Thesis are addressed through the
development of new Machine Learning and Deep Learning algorithms.

In the first part of the Thesis, we focus on studying the connection between late toxicity
and mutations in the DNA. There, the main difficulties arise from the presence of complex
interactions among genetic loci and from the intrinsic class imbalance characterizing clinical
data. To tackle these adversities, we take advantage of different Machine Learning tools,
from deep autoencoders to data mining algorithms, ultimately developing a novel approach
to polygenic risk scoring that enables the construction of interpretable interaction-aware
biomarkers. Throughout the Thesis, we assess the scientific value of the proposed approach
on both simulated and real data, showcasing the impact of our work on the clinical world.

Conversely, in the second part of the dissertation, we discuss how Deep Learning can
be used to reduce the computational cost entailed by the numerical simulation of biophys-
ical models relevant for radiotherapy, such as oxygen transfer models. In particular, we
develop several strategies based on Deep Learning algorithms for replacing the original nu-
merical solver with a cheaper, yet accurate, surrogate model. Thanks to these tools, the
computational bottleneck entailed by using physics based numerical simulations in the com-
plex workflow of biomarker discovery and validation can be completely resolved. From the
methodological and, in particular, the mathematical standpoint, the proposed approaches
are inspired by the flourishing literature of Reduced Order Modeling, but they also share
unique benefits that distinguish them from state-of-art techniques, such as the ability of
handling singularities, transport and mass propagation, in an extremely efficient way. In
order to make our proposal mathematically sound, we also derive innovative theoretical re-
sults that support our reasoning. In particular, the Thesis contains innovative results about
the latent dimension of autoencoders and the properties of convolutional neural networks.
Finally, as a by-product of our studies, we also end up developing completely new tools,
such as mesh-informed architectures, that, for their generality, stand out as independent
topics of research.





Sommario

La medicina di precisione nasce con l’obiettivo di perfezionare i trattamenti clinici pro-
ponendo l’utilizzo di terapie personalizzate, le quali possono essere definite sulla base di
caratteristiche individuali più o meno semplici, quali l’età e lo stile di vita, nonché altre
caratteristiche biologiche più complesse. Per fare ciò, la medicina di precisione si affida
principalmente ai biomarcatori, indicatori complessi in grado di sintetizzare il genotipo ed
il fenotipo del paziente. Nella pratica, tali biomarcatori vengono generalmente ottenuti
attraverso la sintesi di svariate fonti d’informazione, le quali possono provenire da dati sper-
imentali o da modelli fisico-matematici.

L’obiettivo di questa Tesi è quello di esplorare un contesto unificato dove sviluppare
metodi quantitativi per la medicina di precisione, facendo leva, nello specifico, sugli stru-
menti offerti dal mondo del Machine Learning. Particolare attenzione è dedita alla person-
alizzazione dei trattamenti radioterapici, un settore che ha recentemente visto la nascita
e lo sviluppo di diverse linee di ricerca, due delle quali costituiscono il focus principale di
questa Tesi. La prima concerne lo studio della radiosensitività come tratto genetico, e mira
dunque ad identificare quelle mutazioni genetiche che sono associate all’insorgenza della
tossicità tardiva, con il fine ultimo di produrre opportuni biomarcatori predittivi della ra-
diotossicità. La seconda linea di ricerca, invece, consiste nell’analisi della risposta cellulare
alla radiazione, analisi resa possibile da un uso mirato ed estensivo di simulazioni numeriche
altamenta accurate. Entrambi gli approcci presentano sfide particolarmente significative, le
quali, all’interno di questa Tesi, vengono affrontate attraverso lo sviluppo di nuove tecniche
di Machine Learning e di Deep Learning.

La prima parte della Tesi è focalizzata sullo studio del legame che sussiste tra tossicità tar-
diva e mutazioni del DNA. In questo contesto, le difficoltà principali nascono dal complesso
meccanismo che regola l’interazione tra loci genetici, nonché dall’intrinseco sbilanciamento
tipico del dato clinico. Nella Tesi, queste problematiche vengono affrontate adoperando
svariati strumenti di Machine Learning, a partire dalle reti neurali autocodificanti fino agli
algoritmi di estrazione dei dati. In definitiva, l’analisi messa in atto si configura nello
sviluppo di un nuovo approccio al calcolo dei punteggi di rischio poligenico, portando, in
ultima analisi, alla costruzione di biomarcatori capaci di preservare l’interpretabilità clinica
e la capacità predittiva. Nel corso della Tesi, la metodologia proposta viene testata su dati
reali afferenti ad un caso clinico ben preciso, nonché su diversi studi di simulazione, volendo
così dimostrare come, in potenza, il lavoro presentato possa avere un riscontro immediato
sul mondo clinico ed ospedaliero.

Nella seconda parte del trattato, invece, si discute di come le tecniche di Deep Learning
possano coadiuvare la simulazione numerica di modelli biofisici utili alla radioterapia, quali i
modelli di microcircolazione dell’ossigeno, grazie ad una sostanziale riduzione dei costi com-
putazionali. Più precisamente, all’interno della Tesi, vengono sviluppate diverse strategie
basate su algoritmi di Deep Learning, volte a rimpiazzare i solutori numerici con opportuni
modelli surrogati, i quali possano essere meno dispendiosi ma, al contempo, sufficientemente
accurati. Grazie a questi strumenti, l’onere computazionale implicato dall’utilizzo delle sim-
ulazioni numeriche nel complesso processo di ricerca e validazione dei biomarcatori, può
essere completamente risolto.

Da un punto di vista prettamente metodologico e matematico, gli approcci proposti
trovano ispirazione nella fiorente letteratura sulla Riduzione di Ordine di Modello; tut-



tavia, tali approcci godono anche di proprietà uniche che li distinguono dallo stato dell’arte,
quali l’abilità di gestire in maniera estremamente efficiente fenomeni come il trasporto e la
propagazione di massa, nonché la presenza di singolarità. Nel presentare tali approcci, par-
ticolare enfasi viene riposta nella loro controparte teorica, la quale, in più circostanze, viene
avvalorata da opportune considerazioni matematiche. In particolare, la Tesi contiene diversi
risultati innovativi sulla dimensione latente delle reti autocodificanti e sulle proprietà delle
reti neurali convoluzionali. Infine, sulla scia dell’analisi proposta, vengono anche sviluppati
strumenti interamente nuovi, quali le architetture neurali mesh-informed (letteralmente:
"informate dalla griglia"): questi strumenti, in luce della loro generalità, possono essere
considerati argomento indipendente di ricerca.
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Introduction

The purpose of precision medicine, or personalized medicine, is to enhance clinical treat-
ments by proposing subject-specific therapies that are tailored at the patient level. By
taking into account the different characteristics of each patient, precision medicine aims at
ensuring the right treatment at the right time, with the intention of improving the final
outcome of medical healthcare [107].

Clearly, the idea itself is far from being new. In fact, we may trace the origins of precision
medicine back to the late eighteenth century, when statistical inference was firstly applied to
design medical treatments [107]. However, things have changed a lot since then, especially
during the last century, with the advent of genomics, computers and numerical modeling.
Currently, precision medicine is an extremely active and cross-disciplinary area of research
that counts a large number of successful applications, which definitely shows the importance
of including patients characteristics in the development of treatment planning systems.

In some cases, even basic information about the patient, such as lifestyle, age or sex,
turns out be relevant. For instance, we can think of how certain habits affect the outcome of
medical treatments, as in the case of smokers with periodontitis [149], or how certain drugs
produce different results in males and females, as in the case of serotonergic antidepressants
[20]. Conversely, in other circumstances, more complicated genotypic or phenotypic traits
are considered, such as the presence of mutations and their expression rates (see e.g. the
case of epileptic disorders [47]), or the shape of an organ and its mechanical properties (see
e.g. the case of coronaries interventions for myocardial ischaemia [198]).

One of the practical challenges of precision medicine is thus related with the management
of incredibly large amounts of heterogeneous information, a scenario that, in the big data
era, is increasingly important. To deal with such complexity, many approaches to precision
medicine rely on the so-called biomarkers, suitable indicators that aim at synthesizing differ-
ent aspects of a given phenomenon. For instance, polygenic risk scores are genetic biomark-
ers that summarize the impact of multiple genetic mutations over a specific phenotype.
The discovery and development of such indicators is usually based on purely data-driven
methodologies, with a possible integration of external biological knowledge.

In addition to data-driven biomarkers, which are undoubtedly of paramount importance,
a significant contribution is also provided by a diametrically opposite class of indicators,
which we may refer to as physics based biomarkers. Differently from the previous, the latter
are derived from accurate physical and physio-biological models that aim at describing a
given biological phenomenon in mathematical terms. In this case, researchers exploit phys-
ical models and numerical simulations to discover new biological mechanisms and to derive
physically interpretable biomarkers that can aid the optimization of clinical treatments.

Nonetheless, the development of both data-driven and physics based biomarkers poses signif-
icant challenges to scientists and researchers. Among these, one of the fundamental barriers
is generalizability. In the case of data-driven approaches, this corresponds to ensuring that
the data at hand, over which a discovery or a methodology was developed, represents the
rest of the population sufficiently well. For physics based biomarkers, instead, the difficulty
is related to the reliability of the physical model itself, which, being an approximation of a
real biological system, first needs to be validated. However, in addition to these, there are
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Figure 1: A unified framework for precision medicine where Machine Learning algorithms enable
the fruitful combination of data-driven and physics based approaches.

also other problems that depend specifically on the context.

For instance, let us briefly mention the difficulties commonly encountered when dealing
with genetic biomarkers. During the discovery phase, the main drawback is arguably given
by the computational cost that is required to analyze the massive amount of information
available in the DNA. Still, even after the identification of useful genetic variants/loci, the
construction of predictive biomarkers is far from being straightforward. In fact, most of
the times, the effect of single genetic loci over the phenotype is too small to grant any
meaningful predictive power. Even when combining multiple genes, as in polygenic risk
scores, one may end up with biomarkers that add little to nothing with respect to what
is already known, leading health professionals to favor simpler and more standard clinical
models, see e.g. [171, 175]. Nevertheless, these negative findings might be a hint that we
are synthesizing genetic information in the wrong way, calling for novel approaches that are
able to summarize complex genetic mechanisms.

In the case of physics based biomarkers, instead, one of the main difficulties is given
by the calibration of model parameters, which may be patient specific and subject to un-
certainty, ultimately leading to unreliable predictions. Addressing these issues requires a
careful and extensive exploration of the physical model, a so-called many-query scenario,
which in turn calls for numerous numerical simulations. Because this can lead to a dra-
matic increase in the overall computational cost, the applicability of these approaches can
be severely limited. For this reason, many researchers (us included) are now working on
novel ways for circumventing these drawbacks.

The purpose of this Thesis is to address these methodological and computational issues
by leveraging on Machine Learning algorithms, ultimately developing a unified framework
for the construction of predictive biomarkers. In particular, as we detail below, we shall
focus on a specific application to precision medicine concerning the personalized treatment
planning of radiotherapy for oncological patients. Nonetheless, thanks to the use of math-
ematical tools, we shall end up with completely general methodologies that can be easily
adapted to other clinical settings.
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Personalized treatment planning of radiotherapy

Radiotherapy, also known as radiation therapy, is a well-known medical treatment that is
commonly employed for killing cancer cells in oncological patients. It is based on the use
of ionizing radiation, which enables the effective eradication of tumor masses. In practical
applications, the irradiation of the interested region can be carried out in several ways. One
of the most common is external beam radiotherapy, where a machine is used to suitably
target beams at cancer cells. However, other approches exist as well, such as brachytherapy,
where the tumor is irradiated by placing a radioactive material next to it (inside the body).
In general, though, radiotherapy is a treatment that is carried out over multiple sessions,
usually covering a time interval of 5 to 8 weeks, with a suitable alternation between periods
of treatment and days of rest according to the different national health system protocols.

As radiotherapy is one of the primary approaches in oncological healthcare, concerning
up to 50-67% of the patients, there is a constant effort in trying to make it better and
better. In particular, we may identify two main research directions that aim at improving
the final outcome of radiotherapy. On the one hand, there is the interest in limiting long
term complications, as the repeated use of radiations can cause mild to severe side-effects.
On the other hand, there is the optimization of the treatment itself, which aims at a more
efficient eradication of tumors, possibly reducing the total treatment time and the exposure
to radiation. In both cases, though, it is unlikely that a substantial improvement will
be obtained through the employment of more sophisticated or technologically up-to-date
machines. Instead, precision medicine might actually lead to a significant breakthrough in
the world of radiotherapy. We discuss how below.

Avoiding long term toxicity: NTCP models

In general, sources of radiation, such as X-rays, can be extremely aggressive on biological
organisms. As a consequence, it is very common that healthy tissues nearby the tumoral
region are damaged during radiotherapy. While some of these wounds recover within days,
permanent damage is also likely to happen and, after years, the latter may give rise to long
term complications (a phenomenon known as late toxicity). For instance, prostate cancer
patients that have received radiation doses to the bladder may experience incontinence or
presence of blood in the urine. Conversely, breast cancer patients may report oedemas or
fibrosis near the mammary glands.

Ideally, these complications could be avoided if we could fire radiation beams with a
very high precision. However, this is not the only way to prevent late toxicity. In fact, it
is now acknowledged that patients have an individual subsceptibility to radiation, which is
commonly referred to as radiosensitivity : while some people are more vulnerable to radia-
tion and thus prone to experiencing side-effects, others are intrinsically more resistant. If
we were able to know beforehand the radiosensitivity of each patient, we could tailor the
treatment of radiotherapy to reduce the probability of late toxicity. For instance, for those
patients at a higher risk, we could favor hyperfractionation (that is, a schedule with smaller
doses of radiation given over a longer period of time), or we could suggest the daily use
of much careful procedures such as IGRT (Image Guided Radiation Therapy). Conversely,
highly resistant patients could be treated with higher doses to speed up their treatment
cycle (hypofractionation).

In the literature, the probability of long term toxicities is estimated using the so-called
Normal Tissue Complication Probability (NTCP) models. The latter aim at quantifying
the radiosensitivity of a given patient on the basis of several quantities, including dosimetric
variables (e.g. amount of dose per day) and individual characteristics (e.g. age, presence of
comorbidities etc.). To this end, a classical approach to NTCP modeling is to use Logis-
tic Regression models. Namely, if Y is the binary outcome standing for late toxicity, and
X1, . . . ,Xp are the model covariates, the probability of long term complications is estimated
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as
P(Y = 1) = [1 + exp (−β0 − β1X1 + ⋅ ⋅ ⋅ − βmXm)]−1 (1)

where β0, . . . , βm are suitable coefficients, to be estimated from the available clinical data,
that quantify the effect size of each predictor.

Recently, there is an increasing interest in finding ways for integrating NTCP models
with genetic information. In fact, several studies have now highlighted that radiosensitivity
is a heritable human trait, implying that genetic variants might play a remarkable role in
predicting late toxicity. However, the integration of genetic scores in NTCP models is still
in the process of being. In fact, the first attempts in this direction have encountered severe
limitations, typically yielding genetic scores that add no predictive power with respect to
classical clinical/dosimetric models. As we mentioned before, the reason might lie in the
complex interactions among genetic loci, a puzzling mechanism that is often very hard
to capture. As we shall discuss later on, one of the purposes of this Thesis is to give a
contribution towards this direction, leveraging on Machine Learning tools.

Optimizing the treatment efficiency: TCP models

At the moment, radiation oncologists rely on well-established physical models to calculate
radiation doses and schedule treatments. The most famous one is arguably the so-called
linear-quadratic model, which exploits the relationship between oxygen partial pressure and
resistance to radiation to estimate the probability of tumor eradication. These models are
commonly referred to as Tumor Control Probability (TCP) models.

The idea goes as follows. Previous studies in the literature have highlighted that the
concentration of oxygen in biological tissues significantly affects the outcome of radiother-
apy. This is because oxygen molecules can magnify the strength of high energy beams: as
a consequence, radiotherapy becomes more aggressive in highly supplied regions and less
effective were oxygen is missing (the so-called hypoxia regime). In mathematical terms, this
is modeled as

Sf(O2,D) = exp (−α(O2)D − β(O2)D2) , (2)

where O2 is the oxygen partial pressure, defined over a suitable region of the body Ω ⊂ R3, D
is the radiation dose and Sf is the survival fraction. More precisely, Sf(O2(x),D) denotes
the fraction of cells at point x ∈ Ω that are still alive after the treatment. Here, α,β ∶ R→ R
are suitable functions that have already been characterized in the literature. The survival
fraction Sf is then used to estimate the probability of complete tumor eradication. The
latter is commonly modeled as

TCP(D) = exp(−∫
Ω
N(x)Sf(O2(x),D)dx) , (3)

where N(x) is the number of clonogenic cells per unit volume at the point x ∈ Ω. The power
of this model, which has been extensively studied and tested, is that it provides an estimate
of a successful treatment given the radiation dose.

However, this assumes that the distribution of the oxygen partial pressure is actually
known, which, in practice, is never the case. To account for this, researchers rely instead on
accurate numerical models that simulate the transfer of oxygen in biological tissues. Still,
a proper description of the tissue perfusion near tumors is extremely difficult because of
the small scales involved (capillaries, which are the main source of oxygen have a diameter
of 8 to 10 micron), and because of the peculiar structure of tumoral regions, which usually
feature irregular vessels and hypoxic zones. In particular, even though we may have accurate
numerical simulations at our hand, we also need ways for assessing their uncertainty and
reliability. As a matter of fact, this is the second purpose of this Thesis: to develop Deep
Learning techniques that can enable such evaluations by making them computationally
feasible.
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Machine Learning: a twofold approach envisioning
precision medicine

Machine Learning is a remarkably broad field that concerns the analysis of large datasets
and their employment in different tasks, such as predictive modeling, pattern recognition
and data representation. It is sometimes considered as a subfield of Artificial Intelligence,
even though some researchers disagree and only acknowledge the existence of an overlap
between the two subjects [138]. Instead, it is highly recognized that Machine Learning
is intimately related to Statistics, as both fields exploit sample data to draw conclusions.
Indeed, the two share several methodologies, and their difference is sometimes more of a
philosophical matter rather than a practical one, see e.g. [90].

Nonetheless, Machine Learning also comes with unique and remarkable tools such as
neural networks, which constitute the foundations of Deep Learning. The latter is an ex-
tremely flourishing field that counts many successful applications, from speech recognition
to computer vision, and that is recently being enriched with a preeminent mathematical
theory, see e.g. the comprehensive overview in [53]. Our interest in Machine and Deep
Learning is thus motivated by their uttermost flexibility and by their capacity to handle,
and exploit, complex high dimensional data. In particular, we believe that these tools can
significantly aid the study of NTCP and TCP models, fostering the development of a unified
framework for precision medicine and personalized treatment planning. To further explain
our vision, we detail below how, throughout the Thesis, we plan to apply Machine Learning
to the case of radiotherapy treatments.

Machine Learning and Statistics:
Boosting NTCP models with novel genetic biomarkers

In the context of NTCP modeling, we propose the use of Machine Learning to build in-
formative genetic risk scores that maintain their predictive power when integrated in clin-
ical/dosimetric models. In short, the idea goes as follows. Given a set of genetic variants
S1, . . . , Sq, we employ a Deep Learning algorithm based on outlier detection techniques to
extract a smaller subset

{S1, . . . , Sq}Ð→ {Sj1 , . . . , Sjp},

with p ≪ q, that is informative with respect to the occurrence of late toxicity, while also
accounting for nonlinear interactions. Then, we exploit Data Mining techniques to identify
suitable predictive patterns and build a high-order interaction-aware polygenic risk score,

hiPRS = g(Sj1 , . . . , Sjp),

where g is a suitable nonlinear function. The idea is then to include the latter in NTCP
models, such as (1), by introducing an additional predictor Xm+1 ∶= hiPRS that synthesizes
the genetic information. This is ultimately the goal of Chapters 1, 2 and 3.

Our methodological and scientific contributions in this context are well synthesized by the
following publications:

[135] Massi MC, Gasperoni F, Ieva F, Paganoni AM, Zunino P, Manzoni A, Franco
NR, et al. (2020). A deep learning approach validates genetic risk factors for
late toxicity after prostate cancer radiotherapy in a REQUITE multi-national
cohort, Frontiers in oncology.

This first work is about the use of deep learning for the selection of ge-
netic variants in a clinical case study concerning prostate cancer patients
treated with external beam radiotherapy. In the Thesis, this aspect is addressed
in Chapter 2.
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[133] Massi MC, Franco NR, Manzoni A, Paganoni AM, Park H et al. (2023).
Learning High-Order Interactions for Polygenic Risk Prediction, PLOS ONE.

This second work is a natural prosecution of the previous and concerns
the problem of building predictive genetic biomarkers that include interaction
effects. It is a purely methodological contribution that defines the foundations
of Chapter 3.

[68] Franco NR, Massi MC, Ieva F, Manzoni A, Paganoni AM, Zunino P et
al. (2021). Development of a method for generating SNP interaction-aware
polygenic risk scores for radiotherapy toxicity, Radiotherapy and Oncology.

This third work is a clinical application of the methodology addressed in
the previous contribution and it is also described in Chapter 3.

[165] Rancati T, Massi MC, Franco NR et al. (2021). Prediction of toxicity
after prostate cancer RT: the value of a SNP-interaction polygenic risk score,
Radiotherapy and Oncology.

This fourth work is an extension of the previous paper in which the pro-
posed genetic biomarker is integrated into clinical/dosimetric NTCP models.
This aspect is also addressed in Chapter 3.

Machine Learning and physical models:
Studying TCP models through numerical simulations

Regarding TCP models, instead, we propose the use of Deep Learning in replacement to
expensive numerical simulations, by adopting the perspective of reduced order modeling
techniques. In particular, we consider the case in which a suitable oxygen transfer model is
available (either as an open or a black-box tool). The latter defines a natural map from the
model parameters µ, which may describe both physical and geometrical quantities (e.g. the
permeability of the blood vessels and the topology of the vascular network), to the oxygen
partial pressure O2, namely

µÐ→ Oµ
2 .

The idea is then to build a nonintrusive model Φ based on deep neural networks such that

Φ(µ) ≈ Oµ
2 , (4)

which, thanks to Equations (2) and (3) would then enable a comprehensive and robust
analysis of TCP models. In order to construct such Φ, we exploit the numerical solver as a
generator of trusted samples, ultimately turning our problem into one of Statistical Learn-
ing. Throughout Chapters 4, 5, 6 and 7, we develop suitable strategies that go towards
this direction, while also providing mathematical insights on their practical implementa-
tion, design and performance. In doing so, we do not limit ourselves to the specific case of
radiotherapy applications, but rather take a much broader perspective.

Our research along this direction is well represented by the publications and preprints below.

[65] Franco NR, Manzoni A, Zunino P (2022). A deep learning approach to reduced
order modeling of parametrized partial differential equations, Mathematics of
Computation.

In this first work, which constitutes the core of Chapter 5, we develop a
Deep Learning approach for the efficient approximation of the parameter-to-
solution map of parametrized PDEs, keeping Equation (4) in mind.
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[66] Franco NR, Fresca S, Manzoni A, Zunino P (2023). Approximation bounds for
convolutional neural networks in operator learning, Neural Networks.

This second work has instead a purely mathematical flavor. Here, we as-
sess the ability of convolutional neural networks in learning nonlinear operators,
providing novel insights on their application to parametrized PDEs (and thus
of interest for our purposes). This work is addressed in Chapter 6.

[67] Franco NR, Manzoni A, Zunino P (2022). Learning operators with mesh-
informed neural networks, arXiv preprint.

In this last work, we develop a novel class of neural network architectures
that can process complex high dimensional data defined over generic spatial
domains, thus extending the applicability of the aforementioned approaches.
There, we also discuss a first application to oxygen transfer models. The latter
is anticipated in Chapter 4, while the methodology is described in full detail in
Chapter 7.

Outline of the Thesis

The Thesis is organized as follows. In Part 1, we focus on the development of genetic
biomarkers and their integration in NTCP models. More precisely, in Chapter 1, we discuss
the relationship between DNA mutations and sensitivity to radiation, introducing all the
required biological concepts and providing the description of an actual clinical cohort.

Then, in Chapter 2, we address the problem of identifying useful genetic variants, high-
lighting the corresponding challenges and presenting a solution based on Deep Learning
algorithms, specifically deep autoencoders, originally developed by Massi et al. [135]. The
latter approach, which shares interesting connections with Chapter 5 and is ultimately pro-
pedeutical to Chapter 3, is then applied to a clinical case study concerning radiotherapy
toxicity in prostate cancer patients.

We then devote Chapter 3 to one of our main contributions to the field: the development
of a novel interaction-aware polygenic risk score, obtained by leveraging on the data mining
literature. We assess the capabilities of the proposed approach through an extensive set of
simulation studies and report the results obtained in the clinical application addressed in
the previous Chapter, with additional insights on integrated NTCP models.

In the second Part of the Thesis, instead, we move to physics based approaches and TCP
models. Specifically, in Chapter 4, we introduce the radiobiological model and its rela-
tionship to precision medicine. There, we highlight the main challenges and limitations
encountered by the state-of-the-art, discussing on the potential benefits provided by Deep
Learning. In particular, we showcase our results in an idealized setting, leaving the detailed
description and derivation of the methodologies to the remaining Chapters.

Specifically, in Chapter 5, we present our Deep Learning approach to model order reduc-
tion, providing both theoretical and practical insights. There, even though in a different way
with respect to Chapter 2, the autoencoder architecture ends up being the main character
on stage. In particular, the primary novelty of Chapter 5 resides in our theoretical results,
where we are able to explicitly characterize the so-called latent dimension.

In the proposed approach, aside from autoencoders, another fundamental ingredient are
te so-called convolutional neural networks. For this reason, we devote Chapter 6 to a deeper
and rigorous study of these architectures, ultimately deriving novel approximation bounds
that are completely original with respect to the vivid and rapidly evolving field of con-
structive approximation applied to Deep Learning. Then, in Chapter 7, we generalize our
approach to arbitrarily complicated geometries, introducing a novel class of sparse neural
network architectures termed Mesh-Informed Neural Networks. There, after a suitable val-
idation against several benchmark examples, we return to the original question about TCP
models anticipated in Chapter 4.
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Finally, in the last Chapter, we wrap everything up and draw the corresponding conclu-
sions, with an in depth discussion about the two Parts and their potential in providing a
unified framework for precision medicine.

Last but not least, at the beginning of the dissertation, we have included a preliminary
Chapter with the fundamental concepts of Deep Learning used throughout the Thesis. In
doing so, we have adopted an intrinsically mathematical perspective that, we hope, will
make the reader further appreciate our work.



Mathematical foundations of
Deep Learning

In this preliminary Chapter, we provide a mathematical overview of the fundamental ideas
at the core of Deep Learning, one of the most flourishing areas of Machine Learning. In par-
ticular, we introduce concepts such as neural network, layer and activation function. Then,
we discuss the training of neural network models and provide general insights about their
capabilities, both in terms of generalization and expressivity. All these notions, as well as
the corresponding mathematical results, will serve as guidelines for the rest of the Thesis.

Deep Learning is arguably one of the most successful areas of Machine Learning, and it
consists in the study and development of models based on artificial neural networks. The
origins of Deep Learning can be traced back to the early ’60s, when Frank Rosenblatt first
proposed a probabilistic model called the perceptron [170], which he later generalized to the
multi-layer perceptron [169]. Now, we refer to these models as to shallow and deep (artificial)
neural networks, respectively. However, it is not only the names that have changed. Today
we also understand neural networks through a completely new formalism which is mostly
based on Linear Algebra, Statistics and Functional Analysis. Our purpose for the next
Sections is to present the fundamental notions of Deep Learning through this mathematical
language. Throughout the whole Chapter, we shall make use of basic concepts of Probability
Theory and Functional Analysis. If needed, the reader can refer to [91, 96] and [60, 203],
respectively.

Deep neural networks

Originally inspired by the connections of neurons in the human brain, Deep Neural Net-
works (DNNs) are computational models that have become extremely popular after their
tremendous successes in areas such as language processing [73], autonomous driving [101],
computer vision and image processing [188]. Nowadays, DNNs have also found application
in several scientific areas, such as Statistics and Numerical Analysis, which has gained them
the attention of both applied and theoretical mathematicians.

Mathematically speaking, DNNs are a class of nonlinear approximators that is ultimately
based on the composition of affine and nonlinear transformations. Here, we shall focus on
DNNs having a so-called feedforward architecture. We report below some basic definitions,
starting from the fundamental building block of a DNN model, the layer.

Definition 0.1. Let m,n ≥ 1 and ρ ∶ R→ R. A layer with activation ρ is a map L ∶ Rm → Rn
of the form L(v) = ρ (Wv + b), for some W ∈ Rn×m and b ∈ Rn.

In the literature, W and b are usually referred to as the weight matrix and bias vector,
respectively. We point out that the above definition contains an abuse of notation, as ρ is
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evaluated over an n-dimensional vector. We understand the latter operation component-
wise, that is

ρ([x1, . . . , xn]) ∶= [ρ(x1), . . . , ρ(xn)]

whenever ρ ∶ R → R. From here, DNN models are defined through the composition of
multiple layers.

Definition 0.2. Let m,n ≥ 1. A neural network of depth l ≥ 0 is a map Φ ∶ Rm → Rn
obtained via composition of l + 1 layers, Φ = Ll+1 ○ . . . L1.

The layers of a neural network do not need to share the same activation function and usually
the output layer, Ll+1, does not have one, see e.g. [112, 176]. Architectures with l = 1 are
known as shallow networks, while the adjective deep is used when l ≥ 2. Note that we also
allow for the degenerate case l = 0, where the DNN actually reduces to the output layer.
This is somewhat unusual, but it will help us in making the notation lighter. Finally, we
say that Φ has activation function ρ, or equivalently that Φ is a ρ-DNN, if all of its (hidden)
layers share that same activation. Common choices for ρ include smooth functions, such as
the the hyberbolic tangent,

tanh ∶ x→ ex − e−x

ex + e−x
,

or the sigmoid, x → tanh(x/2)/2 + 1/2, but also piecewise linear maps, such as the ReLU
activation,

ReLU ∶ x→max{x,0},

or the α-leaky ReLU activation, x→max{x,0} + αmin{x,0}.

The classical pipeline for building a DNN unit starts with the design of the model ar-
chitecture. This corresponds to choosing the depth l and the number of neurons within
each layer Li, that is the output dimension ni+1. In particular, at this stage, the entries
of the weights and biases do not have specific values: these are to be learned later on by
exploiting the data available, a procedure commonly known as training phase. We postpone
this discussion, which is of crucial importance, to the next Section.

Remark. In principle, we should distinguish between the model architecture and its real-
ization, as some authors correctly do, see e.g. [112, 131]. In fact, for instance, we cannot
retrieve the depth of a DNN if we have no knowledge of its architecture, or at least we
cannot do this without ambiguity. To see this, assume that f ∶ Rm → Rn is some DNN. Let
now L be the identity layer. Then, f = L ○ f but, strictly speaking, the two have different
depths. However, as soon as we grant some context these ambiguities can be avoided. Thus,
we prefer not to make this distinction and, instead, keep the notation lighter.

Model training and evaluation

DNN models only become operational once we tune their weights and biases. This procedure
typically involves the optimization of a suitable objective function, and it is commonly
referred to as training phase. In the most simple scenario, the training of a DNN model is
a form of nonlinear regression, which thus consists of a purely data-driven routine. Given
a dataset of desired input-output pairs, say {(vi,ui)}Ni=1 ⊂ Rm × Rn, and having fixed the
architecture of a DNN Φ ∶ Rm → Rn, one optimizes the weights and biases in Φ by minimizing
a quantity of the form

L (Φ) = 1

N

N

∑
i=1

ℓ (ui, Φ(vi)) +R(Φ). (0.5)
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Here, ℓ ∶ Rn ×Rn → R is some measure of discrepancy, such as the Euclidean metric, while
R is a (nonlinear) functional that introduces some regularization. For instance, the latter
may involve the L2-norm of Φ or, if possible, other energy functionals, such as

R(Φ) = ∫
Rp
∣∆Φ(v)∣2dv.

As a matter of fact, in some cases, as in the so-called Physics-Informed Neural Networks
[164], the regularization term can be the residual of some partial differential equation that
Φ is required to satisfy. Then, one may even consider discarding the data-driven term in
(0.5).

In the literature, {(vi,ui)}Ni=1 is referred to as training set, while the term loss function
is used for L . In general, because of the way in which Φ depends on its weights and bi-
ases, the training of a DNN model is a very difficult problem of nonconvex optimization.
Furthermore, as DNN architectures often have more than thousands of degrees of freedom,
(0.5) ultimately translates into an extremely high-dimensional problem with many local
minima. For all these reasons, the optimization of the loss function is usually carried out
using batching strategies and stochastic gradient descent algorithms [174]. Among these, the
most common optimizers are arguably Adam, an adaptive first-order method that exploits
momentum [102], and L-BFGS (Limited-memory BFGS), a quasi-Netwon method that is
based on estimates of the inverse Hessian matrix [124].

After the training phase, it is fundamental to check whether the model obtained is able
to generalize over unseen data. To this end, it is a common practice to assess the DNN
performance by relying on an external test set, {(vtest

i ,utest
i )}

Ntest
i=1 . If such a collection of

data is available, then the quality of the DNN model can be measured in terms of quantites
such as

E(Φ) = 1

Ntest

Ntest

∑
i=1

e (utest
i , Φ(vtest

i )) , (0.6)

where e ∶ Rn × Rn → [0,+∞) is a suitable error function. If E(Φ) is large, then Φ is said
to not generalize well, and that is irrespectively of the performance registered during the
training phase. In particular, we talk about overfitting whenever the DNN performes well
over the training set but poorly over the test set.

Of note, if we endow the input-output space with a probability distribution P, and if the
test samples are drawn independently from P, then we can interpret (0.6) as a Monte Carlo
estimate of

E (Φ) = E [e(U,Φ(V ))] , (0.7)

where E denotes the expectation operator, while (V,U) ∼ P are random variables describing
the input-output pairing. In this sense, there is a strong connection between DNNs and
the emerging field of Statistical Learning. Still, as we shall discuss below, we can also un-
derstand a lot about neural networks if we adopt the perspective of Numerical Analysis,
specifically Approximation theory.

Error decomposition and upper-bounds

Let P be a probability distribution over the input-output space, Rm×Rn, and let (V,U) ∼ P.
We shall assume that the output variable is square-integrable in the Bochner sense, that is
E∥U∥2 < +∞, and that the input variable is almost surely bounded, ∥V ∥ ≤ R for some R > 0.
For the sake of simplicity, we shall also restrict to the case in which errors and losses are
measured using the Euclidean norm ∥ ⋅ ∥. Then, (0.5) and (0.7) become

L (Φ) = 1

N

N

∑
i=1

∥ui −Φ(vi)∥, E (Φ) = E∥U −Φ(V )∥.
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The difference of the two quantifies how well the training set can represent the underlying
phenomenon, and it is commonly referred to as generalization gap,

Ggap(Φ) ∶= ∣E (Φ) −L (Φ)∣ .

Let us assume to have fixed, once and for all, a suitable neural network architecture. Then,
let H be the collection of all possible DNN models that can be obtained with such an
architecture (that is, by only changing the entries in the weights and biases). In order to
analyze the role played by all the ingredients, it is useful to define the following maps:

• the conditional expectation of U given V = v,

Φideal(v) ∶= E [U ∣ V = v] .

This is our ideal objective as, among all square-integrable and V -measurable maps, it
is the one that minimizes E (Φ). In general, it is not a DNN and it does not belong to
our hypothesis space H ;

• our best candidate (assuming it exists),

Φbest(v) ∶= argmin
Φ̃∈H

sup
∥v∥≤R

∥Φideal(v) − Φ̃(v)∥

that is, the DNN model that better resembles Φideal. Note that, here, we adopt a worst-
case scenario approach to measure errors. While not necessary, this will simplify our
reasoning later on;

• finally, the solution to our empirical optimization problem,

Φoptimal(v) ∶= argmin
Φ̃∈H

L (Φ̃)

that is, the DNN sought during the training phase. Once again, we assume the above
to exist.

We can exploit these definitions to bound E (Φ) in terms of several quantities that describe
different aspects of the problem. Given Φ ∈H , we have,

E (Φ) ≤L (Φ) + Ggap(Φ) =

=L (Φoptimal) +L (Φ) −L (Φoptimal) + Ggap(Φ) ≤

≤L (Φbest) +L (Φ) −L (Φoptimal) + Ggap(Φ). (0.8)

Now, as a direct consequence of the triangular inequality,

L (Φbest) ≤L (Φideal) +
1

N

N

∑
i=1

∥Φideal(vi) −Φbest(vi)∥ ≤

≤ E (Φideal) + Ggap(Φideal) + sup
∥v∥≤R

∥Φideal(v) −Φbest(v)∥. (0.9)

Finally, by putting together (0.8) and (0.9), we get

E (Φ) ≤ E (Φideal) +Serror +Aerror +Oerror (0.10)

where we have defined, respectively, the sample error

Serror ∶= Ggap(Φideal) + Ggap(Φ)
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the optimization error
Oerror ∶= ∣L (Φoptimal) −L (Φ)∣.

and the approximation error

Aerror ∶= inf
Φ̃∈H

sup
∥v∥≤R

∥Φideal(v) −Φ(v)∥.

By definition, E (Φideal) measures the extent to which the input variable can explain the
output variable, so there is nothing that we can do about it. The sample error Serror, instead,
is a purely statistical quantity that depends on the available training data. Conversely, the
optimization error Oerror has more of a computational flavor, as it is all about our ability of
properly minimizing the loss function. Finally, the approximation error Aerror is where the
choice of the network architecture comes into play, and thus constitutes a theoretical question
for numerical analysts. In light of these considerations, it is worth to comment (0.10) through
the eyes of both Statistics and Numerical Analysis, specifically Approximation theory.

The perspective of Statistics
The statistical core of (0.10) lies in the sample error, Serror. The latter is composed of two
similar quantities. The first one, is the generalization error of Φideal, and it is arguably the
easier quantity to address. To see this, we define the random variable X ∶= ∥U −Φideal(V )∥.
If the observations in the training set are drawn independently, then the values {xi}i ∶=
{∥ui −Φideal(vi)∥}i become i.i.d. realizations of X. Hence, if we take the expectation over
all training sets SN of size N , by the law of large numbers,

ESN
∣Ggap(Φideal)∣ ≤

√
Var∥U −Φideal(V )∥

N
. (0.11)

Note that, due to the presence of ESN
, the above is not a uniform upper-bound, rather it is

a probabilistic one. If we repeatedly sample from P a collection of N training points, then
on average we will get a value of Ggap(Φideal) that is bounded as in (0.11).

The situation becomes more subtle if we move to the second contribute, Ggap(Φ). In
this case, in fact, the errors ∥ui − Φ(vi)∥ are most likely correlated one another, as Φ was
built on the basis of the whole training set. This makes the previous argument invalid,
forcing us to resort to something else. One way to overcome this difficulty is by exploiting
the aforementioned test set, TN ∶= {(vtest

i ,utest
i )}Ni=1, which we here assume to have size N

for simplicity. Then, we may define the test gap,

Gtest ∶= ETN
ESN
∣L (Φ) −E(Φ)∣

where we recall that E(Φ) is defined as in (0.6). With this setup one can prove that

ESN
∣Ggap(Φ)∣ ≤ Gtest +C

√
1

N

for some constant C > 0, as shown in [128]. Consequently, we may bound the average sample
error as

ESN
[Serror] ≤ Gtest +C ′

√
1

N
.

This shows that, if the performances over the training and the test sets are comparable,
then the expected sample error decays at a rate of N−1/2 as a function of the training size.

The perspective of Approximation theory
We conclude this Section with a discussion on the approximation error. As the majority of
the literature focuses on the scalar case, n = 1, we shall do the same.
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The first question is whether the approximation error can be made arbitrarily small.
Under suitable assumptions, the answer is positive. At this regard, we report below two
historical results by Cybenko and Pinkus, which show that DNNs are dense in the space
of continuous maps over compact domains. For the interested reader we refer to [50] and
[159], respectively.

Theorem 0.1. (Cybenko, 1989). Let f ∶ Ω ⊂ Rm → R be a continuous map defined over
a compact domain. Let ρ be the sigmoidal activation. Then, for every ε > 0, there exists a
ρ-DNN Φ such that supv∈Ω ∣f(v) −Φ(v)∣ < ε.

Theorem 0.2. (Pinkus, 1999). Let f ∶ Ω ⊂ Rm → R be a continuous map defined over a
compact domain. Let ρ ∶ R → R be a continuous map that is not a polynomial. Then, for
every ε > 0, there exists a ρ-DNN Φ such that supv∈Ω ∣f(v) −Φ(v)∣ < ε.

The above have many generalizations and alternative formulations, but they all fall under
the common name of universal approximation theorem. Until recently, these were the main
results available in the literature. In particular, there was no quantitative analysis of the
approximation error: we knew that these DNNs existed but we had no clue about their
architecture. The first breakthrough happened in 2017, with the innovative contribution of
Dmitry Yarotski. We report below his main result, which can be found in [202].

Theorem 0.3. (Yarotski, 2017). Let f ∶ [0,1]m → R be (s − 1)-times differentiable, and
assume that all its derivatives of order s − 1 are Lipschitz continuous. Then, for every
0 < ε < 1/2, there exists a ReLU network Φ with at most

i) c log(1/ε) layers,

ii) cε−m/s log(1/ε) active weights (i.e. nonzero weight entries),

such that
sup

v∈[0,1]m
∣f(v) −Φ(v)∣ < ε.

Here, c = c(m,s) > 0 is a universal constant independent on f and ε.

Further generalizations also exist: see e.g. [78] for the case of integral and energy norms, or
[79] for more general activation functions. Nevertheless, the key point is that we now have
an intepretation for the design of network architectures. According to Theorem 0.3, the
depth of a neural network scales logarithmically with the approximation error; conversely,
the number of active weights depends on the wished accuracy and on the smoothness of the
underlying ground truth.

The result by Yarotski is extremely powerful but also leaves some open questions. If
the input dimension m increases dramatically, how should we proceed to avoid the curse of
dimensionality in (ii)? Similarly, what happens if we consider vector-valued maps with very
high-dimensional outputs? We postpone this discussion, which will be of crucial importance
for us, to Chapter 6. There, we will provide a first answer to these questions and we will
present innovative results that aim at expanding the state-of-the-art.
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Machine Learning
and genomics in

precision medicine
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1 | Radiotherapy and genomics

In this first Chapter we introduce the concept of radiosensitivity, that is the individual sub-
sceptibility to radiation, discussing its relation to genetic variants. To this end, we also
provide a brief description of Single Nucleotide Polimorphisms and epistasis, two funda-
mental notions in genomics that will play an important role in the next Chapters. Finally,
as an example, we describe the data concerning an actual clinical cohort.

In oncological healthcare, radiotherapy is a well-established approach that is commonly
employed for the treatment of cancer patients. Fundamentally, it exploits ionizing radiation
in the form of X-rays or neutron beams in order to kill tumor cells by breaking their DNA
filaments. This can happen either directly, by depositing high levels of energy on DNA
strands, or indirectly, by effect of free radicals resulting from the radiolysis of water [160].
In particular, radiotherapy is a destructive process, and, depending on the circumstances, it
can produce short to long term complications. Short term by-products include, for instance,
an increased permeability of the tissue near the irradiated region, which in turn may hinder
the correct functioning of subsequent pharmacological treatments, such as chemotherapy.
Long term side effects, however, are arguably the most worrying, as they can significantly
impact patients lives for years. These aftereffects, which are commonly referred to as late
(radiotherapy) toxicity, can remain silent for up to 5 years, and they can be very different
depending on the situation. For instance, in the long term, prostate cancer patients may
experience haematuria [99], i.e. presence of blood in the urine, while breast cancer patients
may incurr in skin induration (fibrosis) [178].

Despite the massive improvements of oncological research and radiotherapy techniques,
late toxicity remains a hot topic, as it still affects a relevant number of patients undergoing
radiotherapy (up to 50% in some cases [98]). The current understanding of this phenomenon
is that some patients, due to environmental and genetic factors, happen to be more sensi-
tive to radiation than others. This individual susceptibility to radiation has been termed
radiosensitivity. While the latter can be influenced by external factors, such as past surgeries
[114], we have now evidence that radiosensitivity is a heritable human trait [199]. Inspired
by these findings, several works have been conducted along this direction, e.g. [61, 99, 100],
highlighting a deep connection between the manifestation of long term complications and
the presence of certain genetic variants.

The purpose of these investigations is to go towards the implementation of personalized
treatment routines that can prevent late toxicity. For instance, on the basis of their DNA,
each patient could be assigned a (genetic) risk score that quantifies his/her susceptibility to
ionizing radiation, before actually undergoing radiotherapy. If the resulting score is consid-
ered too high, then we may accommodate this fact by proposing lower doses of radiation
to be distributed across a larger number of days. Conversely, if the risk score turns out to
be sufficiently small, we may opt for a different strategy known as hypofractionation, where
more doses are delivered in fewer days, thus allowing the patient to complete his/her treat-
ment cycle faster. In general, the approach may be refined further through the integration
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Chapter 1. Radiotherapy and genomics

of the genetic risk score into more sophisticated Normal Tissue Complication Probability
(NTCP) models, where dosimetric and clinical variables are also included.

In radiation oncology, NTCP models are commonly employed to estimate the probability
of late toxicity on the basis of previous knowledge about the patient. In the majority of
the approaches, they are built by exploiting well-established techniques such as logistic
regression. Thus, an example of an integrated NTCP model can be

logitP(Y = 1) = γ + β0PRS + β1C1 + ⋅ ⋅ ⋅ + βmCm. (1.1)

Here, logit is the inverse of the sigmoid activation,

logit(q) ∶= log ( q

1 − q
) ,

while Y is the binary variable representing the presence of long term complications. Thus,
on the left-hand side of (1.1) we have a function of the probability of late toxicity, P(Y = 1),
while on the right-hand side we have the affine predictor written in terms of the model
covariates. The latter include a genetic term, the polygenic risk score PRS, and other vari-
ables of clinical/dosimetric nature, Ci, such as age, presence of comorbidities (e.g. diabetes)
or radiation dose. The coefficients γ, βi ∈ R are instead the model parameters, which are
estimated from data.

Because of their simplicity and interpretability, these kind of NTCP models are usually
highly appreciated by clinicians. The only practical challenge posed by this approach lies
in the definition for the genetic term in (1.1). In fact, there are at least two fundamental
bottlenecks that hinder the straightforward implementation of polygenic risk scores. One
lies in the identification of useful genetic variants, as the human genome contains millions
of them. The other resides in the complex interaction that genetic loci can entail with one
another, a phenomenon known as epistasis. In Chapters 2 and 3 we will discuss on how to
overcome these difficulties using Machine Learning. Before that, we devote the next two
Sections to a more in depth discussion about genetic variants and their interaction. We
also take the chance, in Section 1.3, to provide a detailed description about a clinical cohort
consisting of prostate cancer patients.This latter population will serve as a case study later
on, in Chapters 2 and 3 .

1.1 Single Nucleotide Polimorphisms (SNPs)

Single Nucleotide Polimorphisms, SNPs for short, are a way for encoding genetic mutations
that occur at a specific position in the genome and that involve a single nucleotide. In
general, the human genome consists of a polymer known as deoxyribonucleic acid (DNA),
which comprises two specular polynucleotide chains. The latter are essentially a sequence
of nucleotides, each composed by one of four nucleobasis, namely cytosine (C), guanine (G),
adenine (A) or thymine (T). The majority of these sequences is the same across all human
beings, as that is what ultimately defines our species in the biological sense. However,
there are some locations at which different individuals may present different nucleotides.
For example, at a given genetic loci, most individuals may present a G nucleotide, but in
a minority of individuals, that same position is occupied by an A. In this case we say that,
at that specific location in the genome, there is a SNP. The two variants, G or A in this
example, are said to be the major (or dominant) allele and the minor (or recessive) allele,
respectively [139]. Of note, as the mutation may concern any of the two polynucleotide
chains, each person has three possible configurations for each SNP:

• Dominant homozygosis (G-G), that is, when both DNA chains present the major allele
at the given position.

• Recessive homozygosis (A-A), as above but with the minor allele appearing in both chains.

• Heterozygosis (G-A or A-G), i.e. when the two DNA helix disagree, as they each present
one of the two variants.
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Since the three situations only differ by the number of minor alleles, a common approach
is to represent SNPs configurations with numeric labels: 0 for dominant homozygosis, 1 for
heterozygosis and 2 for recessive homozygosis.

At this point, it is worth to make a practical remark. Despite what we just said, it is
actually very common to spot noninteger values in SNPs datasets. This is due to the so-called
imputation, an established statistical technique that is employed for inferring unobserved
genotypes. In fact, due to the very large number of SNPs in the human genome, ∼ 106, it
can be very expensive to obtain a complete DNA sequencing of a single individual. Thus,
a common strategy is to measure only a limited portion of the genome, and then infer
the unobserved genotypes by exploiting either the correlation among genetic traits or the
existence of haplotypes (that is, group of alleles that are inherited together from a single
parent [49]). While this clearly helps reducing the costs of DNA sequencing, it comes with
the drawback of assigning continuous values to imputed SNPs. Consequently, for those
applications where integer entries are imperative, imputed values have to be converted
somehow, e.g. by rounding to the closest integer.

In general, however, SNPs values do not provide an exhaustive overview of the genetic
information, as they only signal the presence of mutations without specifying their expression
rates. Not only, it is a matter of fact that SNPs are mostly located in noncoding regions of
the DNA, impyling that they mostly affect the patient indirectly [173, 194]. Still, despite
all these considerations, SNPs have turned out to be a powerful tool for predicting the
insurgence of certain diseases, such as Alzheimer [59], breast and ovarian cancer [132],
diabetes [194] and many others, see e.g. [94]. In particular, as we anticipated, it has been
shown that SNPs play an important role in determining the susceptibility of patients to
radiotherapy [199].

1.2 The epistatic effect

Epistasis, literally "resting upon", is a phenomenon in which a certain phenotype is deter-
mined by the interaction of multiple genetic loci. The term was first coined by Bateson [14],
in 1909, in an attempt to describe a form of interaction in which a gene was able to mask
the effects of another gene. A common example is that of the shepard’s purse, a ruderal
plant that can either produce triangular or oval seed capsules. As we now understand it,
the shape of the capsules is determined by two SNPs, say S1 and S2. When crossing dou-
bly heterozygous individuals, that is plants with {S1 = 1, S2 = 1}, researchers have found
15:1 Mendelian ratios, meaning that only 1 out of 16 new born plants would present oval
capsules. The biological explanation is that the two genes can mask each other whenever
exhibiting a dominant allele; it is only when {S1 = S2 = 2} that the plant will produce oval
seeds (recessive-by-recessive interaction).

Over the years, scientists have found evidence of gene-gene interactions in many different
biological contexts, including human healthcare, to the point that epistasis is now considered
ubiquitous in determining the susceptibility to common human diseases [140]. Epistatic
effects are also found in relation to radiosensitivity, a mechanism that was first observed in
simple organisms, such as plants [22] or yeast [106], and later in human beings [11].

In light of this, it is clear that any predictive model of radiosensitivity should take epis-
tasis into consideration. This calls for novel methodologies and approaches that can handle
the intrinsic complexity of genes interactions. To this end, several researchers (including
ourselves) are now finding a valuable help in the literature of Machine Learning, see e.g.
[10, 95, 135].

1.3 Clinical case study for the next Chapters

In this Section we present a dataset of primary importance for Chapters 2 and 3, which
consists of a population of male patients diagnosed with prostate cancer and later treated
with external beam radiotherapy (no brachytherapy). The cohort counts 1’681 prostate
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cancer patients recruited across the hospitals of seven European countries (Belgium, France,
Germany, Italy, the Netherlands, Spain, UK) plus the United States. Prior to radiotherapy,
between April 2014 and October 2016, the patients enrolled as a part of the REQUITE
project, where they agreed to participate in a clinical follow-up of at least 2 years, with the
purpose of monitoring the occurrence of long term complications. Before the start of the
radiotherapy treatment, the patients also donated two blood samples from which genomic
and transcriptomic data were collected. In particular, the genotype data was generated
under the format of SNPs encoding, with imputation being applied to most genetic loci.
During the treatment, patients where prescribed with either conventionally fractionated or
hypofractionated radiotherapy depending on the local standard-of-care regimens.

Toxicity endpoints were defined either by health professionals (CTCAE scoring) or
through the use of individual surveys (Patient Reported Outcome). For our studies, we
have been focusing on the following toxicities.

● Rectal bleeding (CTCAE scoring),
Presence of blood in the rectum associated to anorectal injuries.

● Urinary frequency variation (CTCAE scoring),
Significant change in the urinary frequency with severe limitation of every day activities.

● Haematuria (CTCAE scoring),
Anomalous presence of blood in the urine (either visible by microscope or by eye).

● Nocturia (Patient Reported Outcome),
Form of incontinence that leads patients to urinate more than 2-3 times per night.

● Decreased stream flow (Patient Reported Outcome),
Hesitant or dripping stream while urinating.

Patients were scored with a degree of severity for each endpoint separately (grade 0 = no
toxicity, grade 1 = mild toxicity, grade 2 and 3 = severe toxicity), before the treatment and
once a year during the follow-up. This was to ensure a proper definition of late toxicity
and avoid confounding factors. More precisely, the long term endpoints were defined as
follows. Let Z denote any of the toxicities above. For k ∈ N, let Zk ∈ {0,1,2,3} be the
degree of severity k years after the treatment, where Z0 denotes the value at baseline (i.e.
before radiotherapy). Given a minimum grade value z ∈ {1,2,3}, we define the late toxicity
endpoint at year k as

Yk ∶=
⎧⎪⎪⎨⎪⎪⎩

1 Zk ≥ z and Zk > Z0

0 otherwise.
(1.2)

In other words: for a given endpoint, and a given follow-up time, we say that the patient
experienced late toxicity if the reported symptoms were above a given threshold (Zk ≥ z)
and the situation was actually worse than the one before treatment (Zk > Z0). We report in
Table 1.1, the minimum grades that we adopted for our studies in Chapters 2 and 3. There,
we focused on the occurrence of late toxicity within the first two years of follow-up, i.e. on
the outcome

Y ∶=max{Y1, Y2}. (1.3)

Finally, to further avoid confounding factors, we excluded those patients with an intrinsically
known higher risk of toxicity. In particular, we did not include patients who had systemic
lupus erythematosus, rheumatoid arthritis and other collagen vascular diseases. Addition-
ally, for the analysis of the rectal bleeding endpoint, we also excluded those patients with
hemorrhoids before radiotherapy. Conversely, for the urinary endpoints, we neglected those
that underwent transurethral resection of the bladder or were using anti-muscarinic drugs.

Concerning the genomic data, after an in depth review of the existing literature, we
decided to restrict our attention to a subset of 43 SNPs previously identified as associated
to radiotoxicity and prostate cancer. We report them in Table 1.2.

For additional details about the cohort and the REQUITE project we refer to [179].
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Endpoint Min. grade Patients With toxicity

Rectal bleeding 1 1366 160 (11.7%)

Urinary frequency variation 2 1334 56 (4.2%)

Haematuria 1 1343 74 (5.5%)

Nocturia 2 1250 223 (17.8%)

Decreased stream flow 1 1234 211 (17.1%)

Table 1.1: Definition of the long term endpoints for 1-2 years follow up, cf. Equation (1.3). Min.
grade = minimum degree of severity, cf. Equation (1.2). The total number of patients can vary
from endpoint to endpoint due to missing values or additional exclusion criteria.

SNP Alleles AIG
rs147596965 G - T 0.06
rs2842169 T - C 0.03
rs11219068 G - A 0.13
rs708498 A - G 0.01
rs4906759 C - T 0.01
rs4775602 A - C 0.01
rs79604958 G - C 0.03
rs12591436 G - T 0.15
rs8075565 C - T 0.11
rs62091368 G - A 0.12
rs673783 T - G 0.18
rs8098701 C - T 0.01
rs141799618 C - G 0.03
rs76273496 T - C 0.01
rs7366282 A - C 0.01
rs11122573 C - T 0.00
rs6003982 C - G 0.25
rs10497203 A - C 0.00
rs7582141 G - T 0.00
rs6432512 C - T 0.00
rs264651 A - G 0.01
rs264588 C - A 0.01

SNP Alleles AIG
rs264631 C - G 0.01
rs77530448 A - G 0.04
rs1045485 G - C 0.00
rs10209697 G - A 0.01
rs144596911 G - A 0.01
rs71610881 G - A 0.02
rs342442 C - T 0.03
rs6535028 T - C 0.00
rs10519410 A - G 0.00
rs7720298 C - G 0.03
rs141342719 C - T 0.01
rs17599026 C - T 0.03
rs17055178 A - G 0.01
rs7356945 C - T 0.06
rs4997823 G - A 0.10
rs845552 A - G 0.01
rs1799983 T - G 0.10
rs7829759 A - C 0.02
rs17362923 C - G 0.00
rs10101158 T - A 0.04
rs10969913 A - G 0.01

Table 1.2: SNPs considered for our studies concerning radiosensitivity in prostate cancer patients.
Dominant alleles are reported first, recessive alleles last. AIG = Average Imputation Gap, that is,
the average difference (in absolute value) between the reported SNP value and its closest integer;
values close to 0.5 indicate a high level of imputation.
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2 | Feature selection using
Deep Learning

We devote this second Chapter to the presentation of a Deep Learning algorithm, originally
developed by Massi et al. in [134], that we employ for the identification of genetic variants
associated to radiotoxicity. The whole idea is grounded on the use of an autoencoder archi-
tecture: an extremely powerful tool that, in a completely different context, will also play an
important role in Chapter 5.

The identification of useful genetic loci is a fundamental prerequisite for the development
of predictive genomic models. A first answer to this problem is provided by Genome-Wide
Association Studies (GWAS), a data-driven approach where the entire genome is scanned
for statistically significant associations with the outcome of interest. In GWAS, researchers
assess the significance of each SNP individually by using classical methods of statistical
inference, such as the χ2 test for independence, see [44]. Only those SNPs that obtain a
sufficiently small p-value in the χ2 test are selected, while the others get discarded. Depend-
ing on the application, the p-value threshold may vary from 10−5 to 10−8. Researchers also
employ suitable strategies to account for multiple hypothesis testing, such as Bonferroni
and Sidak corrections, or permutation procedures [44]. Nevertheless, GWAS only provide
a first insight on the selection of useful genetic loci. In fact, they often identify a large
number associations, leaving researchers with hundreds or thousands of SNPs to work with.
Not to mention that the methods employed in GWAS do not account for epistatic effects.
Therefore, other approaches are needed to further refine this selection. Some of these are
based on greedy strategies, such as Maximum-Relevance-Minimum-Redundancy algorithms
[122], while others exploit the intrinsic selection performed by certain classifiers, such as
LASSO logistic regression models [7]. In the following Sections, after a brief introduction
about autoencoders, we describe a novel approach based on deep neural networks that has
the benefit of accounting for epistatic effects. The latter was first proposed by Massi et al.
in [134, 135], to which I partially contributed at beginning of my PhD.

2.1 Autoencoders in a nutshell

An autoencoder is a specific type of neural network architecture that is commonly employed
for data compression (cf. Figure 2.1). We report a rigorous definition below.

Definition 2.1. Let q, n ∈ N with q > n. Let Ψ′ ∶ Rq → Rn and Ψ ∶ Rn → Rq be two neural
networks, such that all the hidden layers of both Ψ and Ψ′ have at least n neurons. Then,
the map

Ξ ∶= Ψ ○Ψ′

is said to be an autoencoder of latent dimension n, while the networks Ψ′ and Ψ are respec-
tively known under the names of encoder and decoder.
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Chapter 2. Feature selection using Deep Learning

Figure 2.1: Visual representation of an autoencoder architecture.

Given a training set {xi}i=1,...,N ⊂ Rq the autoencoder Ξ = Ψ ○ ψ′ is usually trained
according to the loss function below,

L (Ξ) = 1

N

N

∑
i=1

∥xi −Ξ(xi)∥2 (2.1)

where ∥ ⋅ ∥ is the Euclidean norm. In this way, the autoencoder is pushed to learn a latent
representation of the input variable. In fact, after the training, the encoder Ψ′ naturally
yields a synthetic representation of the input z = Ψ′(x) ∈ Rn, where only n latent features
are used instead of the initial q components. The fact that such representation is meaningful
is automatically granted by the fact that the autoencoder has been trained to minimize the
loss of information, i.e. such that x ≈ Ψ(z). In this sense, an autoencoder can be seen
as a nonlinear alternative to linear compression methods, such as the well-known Principal
Component Analysis (PCA). Indeed, when the concept first appeared in the literature,
several authors spoke about autoencoders as a form of nonlinear PCA performed through
neural networks, see e.g. [110].

In some cases it is useful to provide the latent space with additional structure. To this
end, several alternatives to classical autoencoders have been proposed, such as variational,
denoising and deep sparse autoencoders. For our purposes, we are interested in the latter
class of models. A deep sparse autoencoder is a particular type of autoencoder in which the
latent representations are given by sparse vectors. In practice, this is achieved by modifying
the loss function in (2.1) to

L (Ψ,Ψ′) = 1

N

N

∑
i=1

∥xi − (Ψ ○Ψ′) (xi)∥2 +
λ

N

N

∑
i=1

∣Ψ′(xi)∣ (2.2)

where λ > 0 is some penalization parameter, while ∣ ⋅ ∣ is the ℓ1-norm. Once again, this is
similar in spirit to sparse PCA. The idea in this case is that, instead of considering extremely
small values of the latent dimension n, we may allow for larger latent spaces but recover
a similar compression of information by requiring the additional sparsity constraint. If we
are more interested about the autoencoder learning a suitable representation than having
a small latent dimension, this can be a valid alternative. Furthermore, it has the practical
advantage of leading to architectures that are easier to identify, in terms of tuning of the
hyperparameters.

Aside from dimensionality reduction, autoencoders can also be used for other purposes,
such as anomaly and outlier detection, see e.g. [17, 39]. In that case, the idea is to train
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Ξ by only considering a subsample of conventional observations (to be defined in a suitable
sense), in such a way that the autoencoder can develop a latent representation of normality
(in the sense of ordinariness). Then, whenever a new input datum x ∈ Rq is found with a
high reconstruction error, ∥x − Ξ(x)∥, it is marked as an outlier. Up to some adjustments,
this is the key idea underlying the Deep Sparse AutoEncoder Ensamble algorithm, which
we shall describe in the next Section. While the approach is completely general, for the sake
of simplicity, we shall present it limitedly to the case of SNPs identification.

2.2 The Deep Sparse AutoEncoder Ensamble
algorithm (DSAEE)

We now return to our original problem of selecting genetic variants. Mathematically speak-
ing, the identification of relevant SNPs is a problem of feature selection. To set some
notation, let S1, . . . , Sq be the SNPs under investigation, and let Y be the binary outcome,
such as, for instance, the presence/absence of late toxicity after radiotherapy. We assume to
have at our disposal a corresponding dataset {s(i)1 , . . . , s

(i)
q , y(i)}Ni=1 consisting of independent

and identically distributed observations. In general, if the analysis is conducted on the basis
of previous GWAS, q ∝ 102,103, otherwise the order of magnitude is q ∝ 106.

At this stage, our main goal is to exploit the available data in order to identify a restricted
pool {Sj1 , . . . , Sjp} ⊂ {Sj}

q
j=1 of SNPs that are predictive for Y . As we mentioned previously,

this is nothing but a problem of feature selection in a binary classification setting. Still, it
is a rather challenging task because of the following.

i) The large number of features q, which sometimes is even higher than the number of
observations N .

ii) The presence of epistasis, which may cover up the effects of certain mutations if high-
order interactions are not considered.

iii) The class imbalance, i.e. the disproportion between the two groups of patients, respec-
tively Z ∶= {j ∣ y(j) = 0} and O ∶= {j ∣ y(j) = 1}. This scenario is typically encountered
when dealing with rare outcomes or diseases, in which case one has ∣O∣≫ ∣Z ∣.

Despite the vast literature on feature selection, addressing all the above issues in a
computationally feasible way remains a challenging task. Our proposal is to accommodate
these problems by employing the Deep Learning approach developed by Massi et al. in [134].

As we anticipated, the whole idea revolves around the use of autoencoders. To start, we
fix an ensamble dimension B ∈ N, B > 1. For each b ∈ {1, . . . ,B}, we select randomly a
subset Zb ⊂ Z of patients without toxicity, where ∣Zb∣ = ∣O∣. This selection is used to define
a test set of equally balanced observations, and a training set that only consists of patients
without toxicity,

Xb
test ∶= {xi}i∈Zb∪O, Xb

train ∶= {xi}i∈Z∖Zb
,

where xi ∶= [s(i)1 , . . . . , s
(i)
q ] ∈ Rq is the vector of SNPs values. Then, in analogy to anomaly

detection algorithms, for each b ∈ {1, . . . ,B}, we train an autoencoder Ξb ∶ Rq → Rq such
that x ≈ Ξb(x) for all x ∈ Xb

train. To this end, the authors in [134] propose the use of deep
sparse autoencoders, as the introduction of the sparsity penalization appeared to improve
their results.

After the training, each autoencoder is tested against its own test set, Xb
test, where it is

expected to commit higher errors. To quantify this difference for each of the q SNPs, we
compute the following error gaps

∆
(j)
b ∶= 1

∣O∣ ∑i∈O
∣x(j)i −Ξ

(j)
b (xi)∣ −

1

∣Zb∣
∑
i∈Zb

∣x(j)i −Ξ
(j)
b (xi)∣
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where j ∈ {1, . . . , q}, x(j)i = s(j)i is the value of the jth SNP as observed in patient i, while
Ξ
(j)
b (xi) is the jth component of Ξb(xi) ∈ Rq. The results are then averaged across all

ensambles, yielding a unique gap for each SNP Sj ,

∆(j) ∶= 1

B

B

∑
b=1

∆
(j)
b .

Now, the idea is that the SNPs with a higher ∆(j) are the most useful for stratifying patients.
In fact, those SNPs are the ones that contribute the most in increasing the reconstruction
error over the minority class. In particular, if we consider the occurrence of late toxicity
as an anomaly, those SNPs are the ones that facilitate the identification of outliers, i.e.
patients with toxicity. Of note, treating late toxicity as a rare event is often a reasonable
assumption, especially if we restrict to severe complications, which are usually experienced
by 1 out of 10 patients.

From an operational point of view, we can think of ∆(j) as to a measure of importance,
which allows us to rank the q SNPs in the following natural way,

Sj1 , . . . , Sjq

with ∆(jk) ≥∆(jk+1) for all k ∈ {1, . . . , q−1}. In particular, to draw a restricted pool of p≪ q
SNPs that are predictive for Y , we may simply select the first p in the sorted list, namely
{Sj1 , . . . , Sjp}.

The main strenghts of the DSAEE approach are: (i) its ability in handling the class imbal-
ance, which comes from the exploitation of anomaly detection routines; (ii) the fact that it
can account for possible interaction effects, thanks to the nonlinear capabilities of autoen-
coders, (iii) its scalability, as autoencoders can notoriously handle inputs in high dimensional
spaces. However, it has some limitations as well. For instance, it is blind to feature cor-
relation: in the extreme case of two identical SNPs that are both predictive for Y , it will
likely select both of them. For the interested reader, we leave [134] as a reference, where
the authors analyze the DSAEE algorithm in full detail, providing also suitable comparisons
with the state-of-the-art.

2.3 Clinical application

We now report the results obtained by applying the DSAEE approach to the clinical cohort
presented in Chapter 1, Section 1.3. We shall not comment the performance of the algo-
rithm or provide comparisons with other approaches: as I did not contribute directly to the
development of this methodology, we only consider this application as a preliminary step
for the actual construction of the polygenic risk score, which is carried out in Chapter 3,
Section 3.5.

We recall that the aforementioned cohort concerns a population of prostate cancer pa-
tients, in which five toxicity endpoints were monitored. We applied the DSAEE algorithm
to all of the five outcomes available, considering a 1-2 years follow-up time frame for their
definition (cf. Equation (1.3) in Section 1.3).

To foster the comparability of the results, we chose a single autoencoder architecture
for all the experiments, which we have reported in Table 2.1. In particular, we employed
deep sparse autoencoders with a latent dimension of n = 20 and a sigmoidal activation at
the most inner layer to favor sparse representations. During training, the penalization term
was set to λ = 10−5, see Equation (2.2). The ensamble dimension was set to B = 50, and the
autoencoders were trained for 400 epochs using the Adam optimizer with default settings
(learning rate equal to 10−3). After running the ensamble algorithm, for each endpoint
separately, we picked the top 13 SNPs in the DSAEE ranking (equivalently, the top 30%
out of the initial 43). We report in Figure 2.2 the SNPs selected and their rankings for
each endpoint. Of note, it often happened that SNPs previously reported as associated
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Figure 2.2: Visual representation of the SNPs selected by the DSAEE algorithm for the prostate
cancer cohort, Section 2.3. Darker colors correspond to higher rankings. For each endpoint, only
the rankings of the top 13 SNPs are reported. REC = Rectal bleeding, URI = Urinary frequency
variation, HAE = Haematuria, NOC = Nocturia, DEC = Decreased stream flow.
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Layer Input Output Activation dofs

Dense 43 40 Hyperbolic tangent 1760

Dense 40 30 Hyperbolic tangent 1230

Dense 30 20 Sigmoid 620

Dense 20 30 Hyperbolic tangent 630

Dense 30 40 Hyperbolic tangent 1240

Dense 40 43 None 1763

Table 2.1: Autoencoder architecture. dofs = degrees of freedom, i.e., the total number of entries
in the weight matrix and in the bias vector of a given layer.

to a given outcome were selected for a different endpoint. For instance, SNP rs10969913
appeared highly relevant for the nocturia endpoint, even though it was originally discovered
as associated to decreased urinary stream. In general, we can appreciate from Figure 2.2
that several SNPs were simultaneously ranked as highly important for different toxicities. In
particular, coherently to what we would expect, urinary endpoints tend to have more SNPs
in common compared to rectal bleeding. Overall, 13 of the initial 43 SNPs were discarded
as they were not selected for any of the five endpoints. For an in depth discussion about all
these findings we refer to the clinical paper [135], where we have published all our results in
full detail.
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3 | Interaction-aware
Polygenic Risk Scores

In this third Chapter, we present a novel approach to polygenic risk scoring that is able
to handle class imbalance while also accounting for high order interactions and preserving
model interpretability. I developed this methodology, that we now call hiPRS, during my
PhD, with the collaboration of Dr. Massi M.C. The approach was applied successfully in the
context of biomarker discovery for radiosensitivity in prostate cancer patients, see Franco et
al. "Development of a method for generating SNP interaction-aware polygenic risk scores for
radiotherapy toxicity", Radiotherapy & Oncology [68], and later generalized in a subsequent
work, see Massi et al., "Learning High-Order Interactions for Polygenic Risk Prediction",
PLOS One [133]. Here, we shall proceed in reverse: first, we present the idea and assess
its properties on simulated data; then, we move to the clinical applications, and discuss how
the proposed approach can be integrated in NTCPs to foster their predictive performance.

In computational biology, the development of predictive genetic biomarkers is a notori-
ously challenging task that brings together complex high dimensional data and statistical
inference. Still, it is also an incredibly active area of research because of its massive implica-
tions in healthcare and precision medicine. Here, we shall focus on a specific class of genetic
biomarkers that are commonly known under the name of Polygenic Risk Scores (PRSs).
The latter are risk indicators that are derived from SNPs values, and whose purpose is to
estimate the effect of multiple genetic variants on a given phenotype [192]. However, as
we shall discuss throughout the Chapter, classical approaches to polygenic risk scoring have
several limitations: for instance, they rely on the assumption that SNPs effects over the phe-
notype are purely additive, which is often not true [148]. All these drawbacks may hinder
the development of useful polygenic risk scores and, in the case of radiotherapy treatments,
preclude the improvement of NTCP models. In light of this, we propose a novel algorithm,
termed hiPRS, for the construction of interaction-aware biomarkers. The latter, coupled
with a suitable feature selection strategy, such as the DSAEE, results in a comprehensive
approach to polygenic risk scoring that combines together predictive power and clinical
interpretability.

We have structured the rest of the Chapter as follows. First, in Section 3.1, we provide
some additional context and briefly synthesize the state-of-the-art. Then, in Section 3.2,
we detail the methodology underlying the hiPRS approach, whose capabilities are assessed
in Section 3.3. There, within a controlled environment, we perform several simulation
studies, analyzing the behavior of hiPRS under different clinically relevant conditions (e.g.,
varying sample size or noise in the data) and providing a suitable comparison with different
benchmark algorithms. Finally, in Section 3.5, we apply the methodology to the clinical
case studies first introduced in Chapter 1 and partially analyzed in Section 2.3.
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Chapter 3. Interaction-aware PRSs

Figure 3.1: Strengths and weaknesses of three main PRS categories (cf. 3.1). Green tick = strength
that is also enjoyed by hiPRS. Blue arrow = weakness of which hiPRS does not suffer.

3.1 Literature review

PRSs are one of the most traditional approaches to model genetic risk. They exploit a fixed
model approach to sum the contribution of multiple risk alleles over a specific complex dis-
ease [38]. Calculating PRSs is a common practice because of their simplicity, computational
efficiency, and straightforward interpretability. Indeed, while polygenic scores are used to
predict phenotypes, there are other interests beyond forecasting. For instance, model in-
terpretability is often key for research purposes such as the discovery or validation of SNPs
associations. The scheme in Figure 3.1 gives an overview on the strenghts and weaknesses
of the most common PRS approaches in the literature.

Standard weighted PRS estimation relies on the summary statistics of Genome-Wide
Association Study (GWAS), obtained on one or more discovery cohorts, modeling the in-
dependent effect of individual SNPs on the outcome. These PRSs (cf. Figure 3.1, first
column, GWAS-based PRSs) exploit SNP-specific odds ratios or effect sizes to weight the
contribution of the risk alleles on the disease risk or outcome [37, 43]. The set of SNPs
to be included in this estimation may of course affect the predictive power of the PRS
significantly. Some approaches include all SNPs, with the risk of incorporating useless or
redundant information, while others retain a subset of SNPs based on predefined criteria
(e.g., those passing an arbitrary p-value threshold in the GWAS results [37]).

Despite their wide adoption and appreciated simplicity and interpretability, the performance
and reliability of traditional PRSs have been largely discussed and several methodological
concerns have been raised (see, e.g., [92] and references therein) as the approach presents
some evident limitations.

In particular, (i) the GWAS studies exploited for weights estimation are oftentimes un-
derpowered by multiple independent testing and their effect sizes overestimated because of
winners’ curse and biases [181, 19, 185, 144]. Additionally, (ii) GWAS effect weights are
traditionally computed considering the effect of single SNPs on the phenotype. By doing so,
they do not account for the complex and nonlinear interactions between alleles in the geno-
type and their role in determining the phenotype, or the epistasis effect [1, 38, 120, 121, 148,
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151]. Essentially, as we discussed back in Chapter 1, epistasis translates into the departure
from independence (or additivity, from a statistical point of view) of the effects of multiple
loci in the way that they combine to cause disease [48]. In other words, interaction effects
exist between loci, and their presence was reported to make major contributions to pheno-
types [85, 120, 121, 141, 151, 183, 195]. However, including SNP-SNP interactions in GWAS
and risk scoring models is computationally challenging due to the high dimensions involved:
in fact, the number of possible interactions grows exponentially with the number of SNPs
considered. Additionally, this also increases dramatically the amount of independent tests
to be carried out, thus strongly affecting their reliability. The authors in [119] attempted
the inclusion of SNP-SNP interactions by filtering those that where relevant accordingly to
some imposed biological criteria, but only managed to consider up to second-order inter-
actions. Other methodological concerns of GWAS-based approaches are the fact that (iii)
GWAS weights ignore the mediating role of clinical covariates when estimating SNPs effect
on complex diseases [92], and that (iv) these models incorporate strict assumptions, e.g.,
they include additive and independent predictor effects, and assume that observations are
uncorrelated [1, 38, 197]. These assumptions do not necessarily hold true when modeling
complex polygenic diseases. For instance, linkage disequilibrium, i.e., the non-random asso-
ciation of alleles at two or more loci in a population [38], statistically translates into strong
correlation between predictors. To account for linkage disequilibrium, some methods were
developed to optimize SNPs reweighting (LD pruning and p-value thresholding, LDpred
[193], and others).

Other well-recognized solutions to polygenic risk scoring discard GWAS weights and di-
rectly take genotype data as input, including various forms of penalization to restrict the
pool of predictors (cf. Figure 3.1, Penalized PRSs). These include genomic BLUP [81],
shrinkage methods (e.g. LASSO) or generalized linear mixed models. However, all these
methods share with the most traditional PRSs the assumption of additive effect of single
SNPs on the outcome, and may incur in the curse of dimensionality when trying to include
all potential interaction terms, with the risk of overestimating effect sizes and obtaining un-
reliable models. This is particularly true if modeling high-order interactions. Nevertheless,
these complex interactions were found useful in describing genotype-phenotype relationships
for complex traits and common diseases both in humans and model organisms [46, 68, 77,
167, 190], highlighting the need for novel approaches able to account for high-order interac-
tions.

In this respect, great attention has been recently devoted to polygenic risk prediction via
Machine Learning algorithms, (Figure 3.1, right-most column). These algorithms employ
multivariate, non-parametric methods that robustly recognize patterns from non-normally
distributed and strongly correlated data [151, 183, 197]. Moreover, these methods are natu-
rally capable of modeling highly interactive complex data structures, making them powerful
tools for complex disease prediction [151, 183, 197]. However, most Machine Learning algo-
rithms, such as random forests, support vector machines or neural networks, demonstrate
great predictive power but lack in model interpretability, leaving researchers with no in-
formation on the role and structure of the complex interactions influencing the phenotype
prediction. Moreover, these algorithms require a lot of training samples to avoid overfitting,
but the available cohorts in real world research settings are oftentimes quite small.

In this Chapter, we aim at addressing polygenic risk prediction by proposing a novel PRS
approach, called High-order Interactions-aware Polygenic Risk Score (hiPRS), whose most
remarkable feature is the capability of robustly and reliably incorporating high-order in-
teractions in modeling polygenic risk, while constructing a simple and interpretable model.
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Figure 3.2: Workflow of the hiPRS algorithm. Starting from SNPs data (A), the algorithm exploits
data mining routines to identify candidate interactions that appear with a sufficient frequency in
the positive class (B). Then, a corresponding dataset of observations is computed, reporting the
value of each candidate interaction across all patients (C). Interactions are then ranked on the
basis of their association with the outcome, quantified by means of relevance measures such as
mutual information (D). Then, a maximum relevance - minimum redundancy algorithm is applied
to filter out the list of candidates, leaving the user with a smaller pool of K interaction terms (E-F).
Finally, the latter are combined through a weighted sum into the final polygenic risk score, where
the weights are estimated by fitting a logistic regression model.

3.2 The hiPRS algorithm

In order to describe our approach, we first introduce some notation. Let S1, . . . , Sp be
p SNPs and let Y be a random variable denoting a binary outcome. We consider each
SNP to be a categorical variable taking values in {0,1,2}, where labels read as in Chapter
1. In particular, we denote major allele homozygosis by 0, heterozygosis by 1, and minor
allele homozygosis by 2. To model SNP-alleles interactions, we use products of indicator
functions. For instance, I ∶= 1{0}(S1)1{1}(S2) encodes the interaction between major allele
homozigosis in S1 and heterozygosis in S2. Here, 1A denotes the indicator function of the
set A ⊆ R, which equals 1 for all x ∈ A and 0 otherwise. Then, we may then define the
collection of all SNP-allele interactions as

I ∶=
⎧⎪⎪⎨⎪⎪⎩
∏
j∈J

1{lj}(Sj) such that J ⊂ {1, . . . , p} and lj ∈ {0,1,2}
⎫⎪⎪⎬⎪⎪⎭
.

We note that, with little abuse of notation, the set I also contains the dummy-variables
associated to the SNP-alleles, as those are obtained when J is a singleton.

We are given a dataset {s(j)1 , . . . , s
(j)
p , y(j)}Nj=1 consisting of N i.i.d. realizations of the SNPs

and the outcome Y . Starting from these, we aim to construct a PRS of the form

hiPRS = β0 + β1I1 + . . . + βKIK (3.1)

where {Ik}Kk=1 ⊂ I. To this end, we propose a novel scoring method, hiPRS, where K
is user-specified and a data-driven algorithm returns the list of interactions with the cor-
responding weights. We detail the whole idea, which we have depicted in Figure 3.2, below.
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For any I ∈ I, let {i(j)}Nj=1 be the corresponding observations in the dataset. We define
the collection of all cases and its complement as

O ∶= {j ∣ y(j) = 1}, Z ∶= {j ∣ y(j) = 0}.

We make the assumption that ∣O∣ ≪ ∣Z ∣, which is the typical scenario of a rare outcome.
We refer to O and Z respectively as the minority and majority class. As a first step, we
scan the data relative to the minority class, and we search for those interactions Iδ,lmax that
appear with an empirical frequency above a given threshold δ > 0, and have length at most
lmax. More precisely, we define

Iδ,lmax ∶=
⎧⎪⎪⎨⎪⎪⎩
I ∈ I such that

1

∣O∣ ∑j∈O
i(j) > δ and Length(I) ≤ lmax

⎫⎪⎪⎬⎪⎪⎭
, (3.2)

where the Length(I) is the number of SNPs involved in the definition of I. In principle,
computing Iδ,lmax can be very demanding since ∣I ∣ = 4p. However, this drawback is mitigated
by two key factors. First of all, we note that each interaction uniquely corresponds to a
pattern of alleles. For instance, let

I = 1{1}(S2)1{0}(S3)1{1}(S5) = 1{1}×{0}×{1}(S2, S3, S5).

Then i(j) = 1 if and only if the pattern {S2 = 1, S3 = 0, S5 = 1} is observed in the jth patient.
This duality between interactions and patterns allows us to reframe (3.2) in the context of
frequent itemsets mining, where we can rely on a multitude of algorithms such as Apriori
and FP-Growth. Additionally, the computational cost is alleviated by the fact that we limit
our search to the minority class O.

The next step is to extract a suitable sublist {Ik}Kk=1 ⊂ Iδ,lmax to be used in (3.1). While
this problem can be framed in the context of feature selection, finding an optimal solution
can be very hard due to the large number of candidates. To overcome this drawback, we
introduce a filtering technique based on the so-called Minimum Redundancy – Maximum
Relevance approaches, mRMR for short. The idea goes as follows. First, we introduce a
relevance measure based on the (empirical) mutual information, that is

I(I, Y ) ∶= ∑
j=1,...,N
a=0,1
b=0,1

1

N
∣{i(j) = a, y(j) = b}∣ log( ∣{i(j) = a, y(j) = b}∣/N

∣{i(j) = a}∣/N ⋅ ∣{y(j) = b}∣/N
) . (3.3)

By definition, I(I, Y ) ≥ 0 and larger values are obtained when I and Y are informative with
respect to each other. Parallel to this, we introduce a redudancy measure S ∶ I ×I → N that
quantifies the similarity between two given interactions. More precisely, we define S(I, T )
to be the number of common alleles within the two patterns. We then construct the set
{Ik}Kk=1 along the lines of mRMR methods, that is through the greedy optimization of the
ratio between relevance and redundancy. We report a detailed pseudocode in Algorithm 1.

We remark that K is an hyperparameter chosen by the user. In particular, one may as
well optimize its value according to some grid-search algorithm of choice. Indeed, the most
computationally expensive parts in the hiPRS pipeline are the candidates search and the
computation of relevance/redundancy measures. Once these steps have been carried out,
multiple values of K can be tested and the user may choose the one considered to be optimal.

Once the set Ipicked = {Ik}Kk=1 has been identified, we compute the weights β0, . . . , βK by
fitting the Logistic Regression model below

logitP(Y = 1) = β0 + β1I1 + ⋅ ⋅ ⋅ + βKIK . (3.4)

Finally, we define the hiPRS according to (3.1), meaning that the score is actually the
(affine) linear predictor in (3.4).
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Algorithm 3.1: Extraction of the hiPRS allele-patterns.

Input : K, Iδ,lmax and {(i(j)1 , . . . , i
(j)

∣Iδ,lmax ∣
, y(j))}Nj=1.

Output: {Ik}Kk=1 ⊂ Iδ,lmax .

/* Select most relevant interaction */
I1 ← argmaxI∈Iδ,lmax

I(I, Y )
Ipicked ← {I1}
Ileft ← Iδ,lmax ∖ Ipicked

/* Add patterns iteratively */
while ∣Ipicked∣ <K do

for I ∈ Ileft do

VI ← I(I, Y ) // Relevance

WI ← 1
∣Ipicked∣

∑T ∈Ipicked
S(I, T ) // Average redundancy

end

if minI∈Ileft WI = 0 then

/* If no redundancy, select most relevant */
I∗ ← argmaxI∈Ileft∶WI=0 VI

else
/* Otherwise, pick best compromise */
I∗ ← argmaxI∈Ileft(VI/WI)

end
Ipicked ← Ipicked ∪ {I∗}
Ileft ← Iδ,lmax ∖ Ipicked

end

return Ipicked

Remark. It is interesting to note that the representation formula considered in Equation
(3.4) is completely general. By that, we mean that any model (including the best one) can
be written in such form. To see this, we note that any predictive model would take the form

P(Y = 1) = f(S1, . . . , Sp)

for some f ∶ {0,1,2}p → [0,1]. Equivalently, logitP(Y = 1) = g(S1, . . . , Sp), where g ∶=
logit○f . Depending on the approach, the actual definition of the optimal model may change,
but it will nevertheless be given by some g∗ ∶ {0,1,2}p → R. Now let A ∶= {0,1,2}p. Since A
is finite, it is straightforward to see that

g∗(S1, . . . , Sp) = ∑
a∈A

g∗(a)1{a}(S1, . . . , Sp).

In particular, if we let

K ∶= ∣A∣ = 3p, βk ∶= g∗(ak), Ik ∶=
p

∏
j=1

1
{a
(j)
k
}
(Sj),

where A = {ak}Kk=1 and ak = [a(1)k , . . . , a
(p)
k ], then we exactly recover Equation (3.4). Of
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course, in practice, our idea is to resort to much smaller values of K by exploiting the use
of general interaction terms of any order.

Remark. Despite the great efficiency of data mining algorithms, such as FP-Growth, the
computational cost of hiPRS may still grow exponentially with the number of SNPs, p.
In particular, even though we may alleviate this cost by posing tighter constraints on the
hyperparameters δ and lmax, and even if the minority class is fairly small, the algorithm
cannot scale to the dimensions addressed in GWAS, that is p∝ 106. In light of this fact, it is
fundamental to either support hiPRS with previous knowledge coming from the literature,
or to resort, in a preliminary stage, to some reliable and scalable feature selection algorithm,
such as the DSAEE approach in Chapter 2.

Remark. The computation of the empirical mutual information, I(I, Y ), in Equation (3.3),
pretends the preliminary computation of the supports over both the minority and majority
class. In particular, let L ∶= ∣Iδ,lmax ∣. To evaluate (3.3), we are required to compute the
data matrix C = (cj,k)j,k ∈ RN×L, where cj,k is the observed value of the kth candidate
interaction in the jth patient. In fact, since we restricted our preliminary search to the
minority class, it is not straightforward to fill all the entries in C. Also, as the number of
candidate patterns is typically very large, evaluating each interaction term by its formula
can be unnecessarily expensive. Parallel computing may surely help, but we can also exploit
the particular structure of patterns to grant faster computations. The idea goes as follows.
Let {Zi}3pi=1 be the dummy variables associated to the p SNPs, that is

Zi = 1{mod(i,3)}(Sceil(i/3)),

where mod(a, b) is the modulus remainder of the integer division of a and b, while ceil(a) ∶=
min{c ∈ N ∣ c ≥ a}. The corresponding data matrix is then Z ∶= (zj,i)j,i ∈ RN×3p. Let us
define the incompatibility matrix M ∶= (mi,k)i,k ∈ R3p×L as

mi,k ∶=
⎧⎪⎪⎨⎪⎪⎩

1 Zi ⋅ Ik ≡ 0
0 otherwise

,

where Iδ,lmax = {Ik}Lk=1. If we now consider Z,M and C as logical matrices, that is, matrices
having entries in the boolean domain {0,1}, then it is straightforward to prove that

C = ¬ (Z ⋅M) , (3.5)

where the matrix product is intended in the boolean sense, whereas ¬ is the common notation
for the logical negation operator, here applied entrywise. To see that (3.5) holds, consider
the jth observation for the kth interaction, cj,k. By definition of logic sum and product, the
corresponding term on the right-hand side of (3.5) is

¬(
3p

∑
i=1

zj,imi,k) = ¬ (∃i ∈ {1, . . . ,3p} ∣ zj,i ∧mi,k) =

= ¬ (∃i ∈ {1, . . . ,3p} ∣ zj,i ∧ Zi ⋅ Ik ≡ 0) = ¬ (¬ij,k) = cj,k.

Equivalently, the above states that a pattern is not observed in a patient if and only if the
latter reports the presence of an incompatible dummie variable. With this approach, the
computational time for constructing the data matrix C is O(pLNα), with α ≤ 0.3728596, cf.
[4, 104]. In particular, if p < N1−α, this procedure can be substantially better with respect
to the naive term by term computation, which would require O(NL) operations.
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3.3 Simulation study

In this Section, we assess the predictive power of hiPRS and its capability to capture
interactions in the generative mechanism of the phenotype. To do so, we run a large set
of experiments within a simulated environtment, whose generative mechanism was designed
to present complex nonlinear dependencies between a binary outcome Y and high-order
SNP-SNP interactions. In particular, we test hiPRS against several benchmark scoring
algorithms and we verify its robustness with respect to sample size, class imbalance and
noise.

To this end, we shall first describe the mathematical model underlying the simulated
data and the benchmark algorithms. Then, we report all the different experiments and
their results.

3.3.1 Generative model

The synthetic data was built as follows. We considered a pool of p = 15 independent SNPs,
S1,...,Sp, and a binary outcome variable Y . We assume each of the SNPs to follow a uniform
distribution over {0,1,2}. In order to impose a nonlinear dependence between the two, we
considered a model of the following form

Y ∶= (1 − F )Ỹ + F (1 − Ỹ ),

where Ỹ is univocally determined by the fifteen SNPs via the relation below (see also Figure
3.3),

Ỹ = 1 ⇐⇒ {S4 = 2, S5 = 2, S6 = 2, S7 = 2} ∨
{S4 = 1, S5 = 1, S6 ≠ 2, S7 ≠ 2) ∨ {S8 = S9 = S10},

whereas F ∼ B(ε) is a binary random variable, independent on the SNPs, that we use to
model either noise in the data or unexplained variability. Note in fact that if F = 0, then Ỹ
and Y coincide, otherwise the labels are flipped. It is worth noting the following facts.

1. Let p̃Y ∶= P(Ỹ = 1) and pY ∶= P(Y = 1). Upto some basic calculations, one can show
that

p̃Y = 121/729 ≈ 16.6% and pY = p̃Y (1 − ε) + (1 − p̃Y )ε. (3.6)

To see this, define the events A ∶= {S4 = 2, S5 = 2, S6 = 2, S7 = 2}, B ∶= {S4 =
1, S5 = 1, S6 ≠ 2, S7 ≠ 2}, C ∶= {S8 = S9 = S10}. Since we assumed the SNPs to be
independent and uniformly distributed, it follows that

P(A) = (1/3)4, P(B) = (1/3)2 ⋅ (2/3)2, P(C) = 3 ⋅ (1/3)3.

Also, since A and B are disjoint, P(A ∪B) = 1/81 + 4/81 = 5/81. Finally, since A ∪B
and C are independent, we have

p̃Y = P(A ∪B ∪C) = P(A ∪B) + P(C) − P((A ∪B) ∩C) =
= P(A ∪B) + P(C) − P(A ∪B)P(C) = 5/81 + 1/9 − (5/81)(1/9) = 121/729.

thus proving the first statement in (3.6). Conversely, the second one is obvious as the
independence of Ỹ and F implies

pY = E[Y ] = E[(1 − F )Ỹ ] +E[F (1 − Ỹ )] = E[1 − F ]E[Y ] +E[F ]E[1 − Ỹ ].

In particular, we note that for ε ≤ 0.2 we have pY ≤ 30%, resulting in a class imbalance
where cases are the minority.

36



Figure 3.3: Graphical representation of the three rules describing the positive class. Cases are
obtained when A ∨B ∨C. More details on the generative model are provided in Section 3.3.1.

2. We can explicitely quantify the amount of variability in Y that cannot be explained
by the SNPs only. Indeed,

1 −
Var (E[Y ∣S1, . . . , Sp])

Var(Y )
= 1 − (1 − 2ε)2p̃Y (1 − p̃Y )

pY (1 − pY )
, (3.7)

since E[Ỹ ∣S1, . . . , Sp] = Ỹ and thus E[Y ∣S1, . . . , Sp] = (1 − 2ε)Ỹ + ε, by exploiting
independence and classical properties of conditional expectations. We refer to (3.7)
as to missing heritability. In our final experiment, we use the latter to provide better
insights on the hiPRS performance for different values of ε.

3.3.2 Benchmark algorithms
We report below a short description and the benchmark algorithms together with their im-
plementation details.

Penalized PRSs with additive effects. From this class of methods we chose three of hiPRS
competitors, namely Lasso [191], Ridge [87] and Elastic-Net [208]. These algorithms are
traditional penalized LR models that only account for the additive main effect of the pre-
dictors on the target variable, while imposing an ℓ2 bound of the form ∣∣β∣∣22 ≤ s (Ridge) or
an ℓ1 bound ∣∣β∣∣ ≤ s (Lasso), or the combination of the two (Elastic-Net) on the coefficients.
Note that ℓ1 penalizations also perform feature selection by shrinking coefficients to zero,
making these approaches popular to model polygenic risk from large genotype data. Funda-
mentally, the penalization terms enter the loss function during the training phase, and their
contribution is weighted by some hyperparameter, e.g. λ for Lasso and Ridge, λ1 and λ2 for
Elastic-Net. To run these algorithms in our experiments, we relied on the implementation
available in the Python library scikit-learn, with default values for λ,λ1 and λ2. All the
code was written in Python 3.7.

Glinternet. Glinternet is a method for learning pairwise interactions in a LR satisfying
strong hierarchy: whenever an interaction is estimated to be nonzero, both its associated
main effects are also included in the model. The idea of the algorithm is based on a variant
of Lasso, namely group-Lasso [204], that sets groups of predictors to zero. Glinternet sets
up main effects and first-order (i.e., pairwise) interactions via groups of variables and then
intuitively selects those that have a strong overall contribution from all their levels toward
explaining the response. For more formal definitions we refer the reader to [123].

The amount of regularization is controlled by λ, with larger values corresponding to
stronger shrinkage and less interactions included. The freely distributed R implementation
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of glinternet allows the user to define the number of pairwise interactions (n_int) to find
and the size of a grid of λ values of decreasing strength to fit the model with. This grid
is built automatically by splitting equally from λmax, that is data-derived as the value for
which all coefficients are zero, to the minimum value, computed as λmin = λmax/0.01. The
algorithm will fit this path of values and stop when n_int is reached. For this experiment
we set n_int = [3,8], defining a grid of 100 λs. All the other hyperparameters were left to
default settings.

DNN-Badre. DNN-Badre [10] constructs a Deep Feed Forward Neural Network (DNN) to
predict a binary outcome. To implement their approach, we built a DNN architecture with
the same specifics provided by the authors, i.e. number of layers, neurons and activation
functions. We trained the models via stochastic gradient descent, with mini-batches of batch
size 10 and for a total of 200 epochs. The optimization was carried out using the Adam
optimizer, with a learning rate of 10−3. All the code was written in Python 3.7, mostly
using the Pytorch library.

SVM-Behravan. SVM-Behravan is a multi-step Machine Learning based algorithm recently
presented as a state-of-the-art approach to polygenic risk scoring [16, 15]. We will provide
here an intuitive description of the algorithm with the needed details to understand our
settings for the present work, while for more technical specifications we refer the reader to
the seminal work in [16]. The algorithm presented in Behravan et al. (2018) is composed
of a so called first module, where an XGBoost is used to evaluate the importance of SNPs
on a risk prediction task by providing an initial list of candidate predictive SNPs. The
authors use the average of feature importances (a.k.a. “gain”) provided by the gradient tree
boosting method, as the contribution of each SNP to the risk. Then, in the second module,
the candidate SNPs are used for an adaptive iterative search to capture the optimal ways
of combining candidate SNPs to achieve high risk prediction accuracy on validation data.
In particular, top M and bottom M SNPs from the candidate list are ranked separately
based on accuracy, then top and bottom N SNPs are switched between the two lists. The
process is repeated with M (i.e., window size) increased of W at each iteration, until the
two sublists overlap and the optimal ranking is achieved. Finally, an SVM is trained to
distinguish cases (positive samples) and controls (negative samples) using the S top-ranked
SNPs in the optimal ranking as feature vectors and a linear kernel.

In the original paper the performance of the algorithm is averaged across 5-fold CV,
meaning that the pipeline from first module to SVM is repeated 5 times on different folds of
the training and test set. As the author included this step to overcome the problem of small
samples to train high-performance risk prediction models, we followed their instructions
and for each of the 30 simulated dataset we performed the 5-fold CV. However, to keep
the running time of this computationally very expensive method reasonable and for a fair
comparison with all the other methods for which we did not perform extensive optimal
hyperparameter search, we avoided the very long optimization of the XGBoost model by
setting manually the optimal hyperparameters described in the paper. In particular, we set
M = 2, W = 1 and N = 1.

3.3.3 Performance metrics

In imbalanced settings, the Accuracy of a classifier (i.e., the fraction of correctly classified
observations) can be a misleading metric to assess a model performance. Therefore, to
evaluate hiPRS and the benchmark algorithms in predicting the outcome, we exploited two
metrics that combined provide a full picture of the real performance of these methods, es-
pecially in predicting the most interesting class (i.e. the positive class), which is oftentimes
the underrepresented one in real data. Therefore, for our experiments we chose the Area
Under the receiving operating characteristic Curve (AUC) and the Average Precision (AP).
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The two are computed as follows. For any fixed discrimination threshold, let TP and
FP be the true and false positives, respectively. Similarly, let TN and FN be the true and
false negatives, respectively. First, we derive the following quantities,

TPR = TP

TP + FP
, FPR = FP

FP + FN
, Recall = TP

TP + FN
.

that is, the True Positive Rate (TPR), the False Positive Rate (FPR) and the Recall. TPR
is the fraction of true positives out of the positives, also known as sensitivity or precision.
FPR, or specificity, is the fraction of false positives out of the negatives. Finally, the Recall
quantifies the ability of the classifier to recognize positive samples. By plotting TPR against
FPR for various discrimination threshold levels, we obtain the ROC curve. Conversely, the
pair (Recall, TPR) yields the precision-recall curve. AUC summarizes the performance of
a binary classifier by computing the area under the ROC curve, while AP considers the area
under the precision-recall curve. In practice, the two areas are estimated using quadrature
rules. In our implementation, we employ the trapezoidal rule for AUC, while we use the
rectangular rule for AP.

3.3.4 Results
We now describe the results obtained for a large set of experiments. We recall that the
simulated data was designed to present complex nonlinear dependencies between a binary
outcome Y and p = 15 SNPs. In particular, the positive class in the generated data, namely
{Y = 1}, was defined in terms of the rules reported in Figure 3.3, which are ultimately
high-order interactions. Additionally, each of the observed outcome values was mislabeled
with probability ε (hereby called random noise), in an attempt to make the relationship
between the outcome and the predictors less deterministic.

hiPRS outperforms benchmark algorithms in prediction performance

To judge the performance of hiPRS, we run a first experiment on simulated data and we
compared the results with those of a comprehensive set of benchmark algorithms coming
both from the traditional and more recent literature on polygenic risk prediction. Note
that, to ensure a fair comparison, we only included methods that did not rely on any type
of external information (e.g. summary statistics) besides individual-level genotype. More
precisely, we recall that we picked methods from the following two classes: PRSs taking raw
SNP values as input (Penalized PRSs) and algorithms from the Machine Learning litera-
ture. In the first group we included Lasso [191], Ridge [87], Elastic-Net [208] and glinternet
[123]. The first three are penalized LR-based PRS methods with additive main effects and
no interactions, while the last one is a penalized LR with group-Lasso regularization that
includes second-order interactions. Conversely, as Machine Learning methods, we included
two scoring algorithms accounting for high-order interactions: the approach proposed by
Behravan et al. [16], that exploits XGboost for interaction selection and SVM for classifi-
cation, and the one by Badre et al. [10], that relies on a DNN model. Specific technical
details on each of these approaches, together with their implementation and chosen hyper-
parameters, can be found in Section 3.3.2. All of this was considered within an experimental
setting of mild complexity (i.e. reasonable sample size and low noise), consisting of 30 in-
dependent simulations. For each of these we generated 1000 observations for training and
500 observations for testing. The mislabeling noise probability was set to ε = 0.01. The
glinternet algorithm allows the user to define the number of interaction terms to include
in the model, which we set to 3 and 8. Note that this method includes main effects of
all considered interactions and estimates a parameter for each categorical level and their
products. Therefore, 8 interaction terms actually correspond to more than 8 × 32 = 72 re-
gressors in the LR model (in particular, in our experiments we obtained 93 of them). In
light of this, we chose 8 as maximum number of interactions, as that reflected the amount
of generating rules in the simulated data (cf. Figure 3.3), while the value of 3 is meant to
test the performance of a simpler model. Differently from glinternet, in hiPRS the number
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Figure 3.4: Results on risk prediction against benchmark PRSs and Machine Learning approaches,
Simulation study, Section 3.3. AUC (left) and AP (right) performance distributions of 30 indepen-
dent trials. In grey the three traditional penalized PRSs approaches with additive effects only; in
violet the two ML algorithms (SVM-Behravan and DNN-Badre); in pink glinternet algorithm for
two model dimensions (3 interactions, i.e. 36 terms, and 8 interactions, i.e. 93 terms); in green
hiPRS for K = 10 and K = 40.

of interaction terms K actually corresponds to the final dimension of the model. Here, we
set K = 10,40, resulting in two models of different complexity. In principle, both of them
have enough degrees of freedom to discover the generative model, nevertheless, they both
allow for handy readability and interpretability of the fitted model. We did not impose any
limit on the order of the interactions, whereas we set the frequency threshold δ to 0.05.

In Figure 3.4, we report the boxplots of the performance metrics in the 30 independent
trials. The three Penalized PRSs behave similarly, with an average AUC around 0.6 and an
Average Precision (AP) slightly above 0.3. Their performance reflects the maximum pre-
dictive power achievable by additive PRSs in the presence of epistatis. SVM-Behravan has
the worst performance among the classifiers on both metrics, probably due to the fact that
despite the SNP selection step accounts for interactions, it is followed by a linear SVM clas-
sifier that considers additive effects only. The DNN is unsurprisingly extremely performing,
but its black box nature does not allow us to identify the role of the predictors in scoring
observations. Moreover, whilst still high, it has a slightly lower and more variable AP. This
might be due to the tendency to overfit the small sample of positive observations during
training, possibly caused by the very large number of parameters typical of these models.
Glinternet best AUC performance is achieved when including 8 interactions. However, the
same model has a significant drop in AP, falling behind its simpler version with 36 terms:
this goes to show that, despite the inclusion of more predictors, the identified interactions
are not necessarily the most useful to identify the class of interest when the data is imbal-
anced. Moreover, the 93 parameters associated to the 8 interactions could easily overfit the
underrepresented positive class. The best performer overall is hiPRS modeling 40 terms,
showcasing the ability of our approach to identify predictive interactions that generalize
well irrespectively of the under-representation of the positive class. The results obtained
for K = 10 are also remarkable, especially if we consider that they correspond to the model
having the least number of parameters.
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Figure 3.5: Interpretability analysis of hiPRS, Simulation study, Section 3.3. (A) Absolute fre-
quency of the generative rules in the training data, limited to the positive class. (B) Interactions
selected by hiPRS with K = 10 and corresponding β coefficients. (C) Coefficients of the glinternet
model with 3 interaction terms: main effects are in gray, interactions in yellow. (D) Lists of SNPs
selected by SVM-Behravan during its five internal cross validations, cf. Benchmark Algorithms in
the Materials and Methods Section. Note: reported results are limited to one simulation among
the 30 randomly generated datasets.

hiPRS captures and explains interaction-based generative mechanisms better
than benchmarks

One of the added values of hiPRS is the capability of capturing dependencies among predic-
tors, by selecting the most relevant to determine the phenotype and presenting them within
a simple and interpretable model. In many research settings, a slight loss in prediction
quality may be acceptable if it leads to a more meaningful interpretation of the predictors
[36, 89]. To test the ability of hiPRS in capturing them, we focused on one of the previously
mentioned datasets, and checked the 10 interactions selected by the simplest model, K = 10.
We report the selected interactions in Figure 3.5. We mention that, to ensure a fair compar-
ison, we picked the dataset where the worst performer, SVM-Behravan, achieved one of its
highest AUC. This dataset contained 182 cases in the training set, i.e. 18.2% of the total.
The bar chart in Figure 3.5 reports the absolute frequency of the generating rules available
in the positive class. hiPRS captures most of rule C, assigning very high positive betas to
the first, second and fourth interaction. Combined together, the fourth and fifth selected
interactions partially recover rule A, while the third one almost fully captures rule B.3. Note
that, among positive samples in the training data, B.3 is the most frequent version of rule
B (see Figure 3.5, left panel). It is also interesting to note that hiPRS finds two protective
terms, namely {SNP4 = 0} and {SNP5 = 0}, that both nullify rules A and B.

Let us now briefly discuss the results obtained by the competitors. In panel (c) of Figure
3.5 we report the model parameters for glinternet when modeling 3 interactions. Here, we
see that the good performance of glinternet is granted by the inclusion of three interaction
terms in the model, which, despite being of second order only, are subsets of the true
generating rule C. Moreover, the estimated effect sizes are correctly positive for couples of
identical allele frequencies only (i.e., the diagonal of the matrices of coefficients associated
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Figure 3.6: Sensitivity analysis with respect to sample size, Simulation study, Section 3.3. Average
performance of hiPRS in terms of AUC (left and AP (right).

to each interaction). However, due to extremely large number of parameters, it is very hard
to inspect the model and drive suitable conclusions. Furthermore, main effect sizes are not
truly relevant in determining the phenotype and the generative mechanism is only captured
partially, as rule C is the only one that is actually identified. Within the same Figure, but
in panel (d), we list the SNPs selected by SVM-Behravan during its 5-fold cross-validation.
Notably, SVM-Behravan is able to recover some of the SNPs associated with the generating
rules, however, we are left with no information on the structure of the interactions.

hiPRS can deal with extremely small sample size

We tested hiPRS performance for small sample sizes. We believe this to be a relevant
setting, as in most real research scenarios clinicians have to deal with individual-level data
of significantly small cohorts. To this end, starting from the sample size that we considered in
our previous experiments, we repeated our analysis on a sequence of four decreasing sample
sizes, namely n = 1000,750,500,250. That is, for each n, we run 30 independent simulations,
and we registered hiPRS performance in terms of AUC and AP. To ensure comparable
results, the noise level was fixed to ε = 0.01 for all experiments, and the model was always
evaluated on a test set of 500 instances. Once again, we tested hiPRS with K ∈ {10,40},
while δ = 0.05 as before. Results are reported in Figure 3.6. Despite the unavoidable
decrease in performance, we note that even for very small samples, 250 observations, hiPRS
is able to provide insightful results, with AUC levels of 0.8 and ∼ 0.7 respectively. AP is
lower, ∼ 0.5 for K = 40, but still significantly better than traditional penalized PRSs when
trained on 1000 observations. Nonetheless, note that a training sample of 250 observations
in total corresponds to less then 75 cases to learn from (cf. Simulated Data in Materials and
Methods), which is an extremely challenging setting. For 500 training samples (i.e. ∼ 150
cases at most) hiPRS with K = 40 reaches almost 0.9 AUC and an AP of ∼ 0.7. These results
testify in favour of hiPRS generalization potential, which is likely induced by the mRMR-
based interaction selection algorithm. Indeed, the latter is optimized to select the most
predictive features, while favouring the introduction of diverse information in the model.
Minimizing redundancy in the selection makes hiPRS less prone to overfitting, irrespectively
of the sample size or the number of cases.

hiPRS is robust to class imbalance

To test hiPRS against extreme class imbalance, we had to modify slightly our procedure in
the generation of the simulated data. This is because although our generative mechanism
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Figure 3.7: Sensitivity analysis with respect to class imbalance, Simulation study, Section 3.3.
Average performance of hiPRS in terms of AUC (left and AP (right).

is based upon random generation of allele categories and random noise (ε), it also relies
on a deterministic rule-based definition of the positive class. Therefore, the positive class
will always appear in the data with an approximately fixed frequency depending on ε. We
overcame this drawback via undersampling. More precisely, let 0 ≤ q ≤ 1 be any wished
proportion. To obtain a training sample of 1000 instances and 1000q cases, we generate a
larger dataset where observations are added iteratively until there are at least 1000q cases
and 1000(1 − q) controls, then we discard all exceeding observations. We adopted this
procedure for a varying proportion of cases, namely q = 2.5%, 5%, 10%, 15% and 20%.
For each of those values, we generated 30 independent training sets, and measured hiPRS
performance over as many independent test sets of 500 instances. We mention that, while we
used subsampling to generate the training data, we stuck to our usual approach for the test
data. Indeed, the complexity lies in training the models on imbalanced data; furthermore,
the distribution of classes in the test set has no impact on the metrics that we use for
evaluation, i.e. AUC and AP.

We report in Figure 3.7 the results for this simulation study. Notably, even for the
smallest proportion of observations in the positive class (2.5%), hiPRS succeeds in learning
a sufficiently generalizable set of interactions, with AUC values above 0.6 when K = 10, and
above 0.75 when K = 40. Moreover, the larger model goes beyond 0.7 on both AUC and
AP for a proportion of cases of 5%, meaning only 50 observations to learn from.

hiPRS is robust to variability (missing heritability)

Missing heritability is the proportion of variance in the phenotype that cannot be explained
by genotype information [130]. This variability can be induced by several factors [130]: one
is the need to account for SNP-SNP interactions when modeling phenotypic traits [129],
but it can be nonetheless induced by factors that cannot be modeled with the data at
hand. In our simulation setting, we reproduce the effect of missing heritability via the
noise parameter, as the two can be easily linked together. The explicit way by which the
missing heritability depends on ε is detailed in Equation (3.7). To test hiPRS robustness
to variability in the training data, we generate 30 training and test sets, respectively with
1000 and 500 observations, for each of the following noise levels, ε = 0.01, 0.02, 0.05, 0.1 and
0.2. Results are in Figure 3.8. Note that, up to a noise level of 10% (i.e. ∼ 100 mislabeled
observations in the training set, and ∼ 50 in the test set), both models maintain an average
AUC near 0.8. This is a remarkable fact if we consider that a noise of ε = 0.1 corresponds
to a missing heritability of 51%, i.e. a setting where the SNPs themselves can only explain
at most 49% of the target variability.
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Figure 3.8: Sensitivity analysis with respect to noise (equivalently, missing heritability, cf Equation
3.7), Simulation study, Section 3.3. Average performance of hiPRS in terms of AUC (left and AP
(right).

3.4 Favoring interpretability: Splitted hiPRS

Sometimes, it is more important to favor clinical interpretability with respect to predictive
performance. To this end, we propose an alternative implementation of hiPRS that can
better accommodate this necessity. In Section 3.2, we ranked the candidate interactions
Iδ,lmax through a criteria based on mutual information. In general, the latter is only a
measure of association and it does not distinguish between positive or negative effects.
To account for this, we may replace mutual information scores with odds-ratios. More
precisely, for each candidate interaction I ∈ Iδ,lmax we compute its corresponding odds-ratio
with respect to Y , namely,

OR(I, Y ) ∶=
(∑j∶ ij=1 yj) / (∑j∶ ij=1(1 − yj))
(∑j∶ ij=0 yj) / (∑j∶ ij=0(1 − yj))

.

Then, we use the latter to split the candidates list into two sublists,

Rδ,lmax ∶= {I ∈ Iδ,lmax ∣ OR(I, Y ) > 1}, Pδ,lmax ∶= {I ∈ Iδ,lmax ∣ OR(I, Y ) < 1},

respectively consisting of risk and protective interactions. Given two integers K,J , we then
apply our mRMR selection algorithm to the two sublists separately, thus extracting two
groups, RK ⊂ Rδ,lmax and PJ ⊂ Pδ,lmax , each, respectively, of dimension K and J . At
this stage, the mRMR routine can be implemented exactly as before or using alternative
relevance measures. For instance, instead of the mutual information, one may exploit again
the odds-ratio to quantify the relevance of each interaction (e,g, by replacing I(I, Y ) with
∣ logOR(I, Y )∣, which works both for the risk and protective case). We take advantage of
the two groups to define a risk score R and protection score P ,

R ∶= 1

K
∑
I∈RK

I, P ∶= 1

J
∑
T ∈PJ

T.

The intuition is that the risk score, R, counts the number of risk interactions observed
within a given patient, and similarly for the protection score. In this way, the information
relevant for inferring on Y gets squished into a single pair of highly interpretable variables.
Note however that, here, differently from Equation (3.1), all terms are weighted equally. In
this case, the final model is

logitP (Y = 1) = γ + αR + βP, (3.8)
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leading to the polygenic risk score below,

Splitted hiPRS = γ + αR + βP. (3.9)

We call this approach Splitted hiPRS. As it is highly similar to the original one, we shall
not investigate its properties through another simulation study. In general, though, because
this model weights multiple interactions with the same coefficient, it is expected to perform
slightly worse with respect to hiPRS.

3.5 Clinical application

We now apply the proposed methodologies to the clinical cohort presented in Chapter 1, Sec-
tion 1.3. The analysis include the construction of the polygenic risk score and its integration
in NTCP models.

3.5.1 PRS construction and evaluation
We recall that the clinical case study featuring prostate cancer patients concerned the devel-
opment of a genetic risk score for five different toxicities, namely urinary frequency variation,
haematuria, nocturia, decreased stream flow and rectal bleeding (cf. Chapter 1, Section 1.3),
reported 1-2 years after radiotherapy. The original dataset contained information about
thousands of genetic variants: looking at the literature we identified 43 SNPs to start with,
which we later reduced to 13 (per endpoint) in Chapter 2 thanks to the DSAEE algorithm.
We have reported them in Table 3.1 for better readability.

In agreement with the clinicians involved, we decided to apply our splitted version of
hiPRS to further favor clinical interpretability. The procedure for the score generation was
carried out separately for each of the five endpoints. Regarding the interaction search,
we set a frequency threshold of δ = 10% and no upper-bound on the interactions length,
lmax = +∞. As the splitted version of hiPRS uses odds-ratios to partition the candidates
list, we also employed them to quantify the relevance of each interaction alone. That is, as
discussed in Section 3.4, we replaced the mutual information with the absolute value of the
log odds-ratio. As in principle we had no reason to diversify between risk and protection,
we also set K = J . The number of interaction terms, K, was then selected via grid search,
optimizing the AUC performance over a small subset of possible values, K ∈ {1, . . . ,15}. Of
note, this latter routine is not particularly expensive as the majority of the computational
cost lies in the candidates search and in the computation of the contingency tables, which
can be done once for all.

We have reported in Table 3.2 the details about the final model describing the hiPRS im-
plementation for each endpoint, cf. Equations (3.8) and (3.9). Further details about the risk
and protection patterns can be found in Figures 3.9-3.13, where we have provided a visual
representation of the interactions selected by our algorithm. In general, for all endpoints,
the risk and protection scores show a statistically significant association with the outcome
(the 95% confidence bands never contain the origin). Furthermore, the two are always as-
signed coefficients with the expected sign, namely α > 0, corresponding to an increased risk,
and β < 0, resulting in a protective effect. To better quantify the predictive capability of
the proposed genetic score, we have also computed the performance of a benchmark PRS,
obtained by directly including all the SNPs in Table 3.1 but without interaction effects. In
particular, the latter considers a logistic regression model of the form

logitP(Yj = 1) = β0 +
p

∑
i=1

2

∑
k=0

βi,j,k1{k}(Si,j), (3.10)

with p = 13 and Si,j being the ith SNP selected for the outcome Yj .
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URI HAE NOC DEC REC
rs141799618 rs10101158 rs10969913 rs10209697 rs62091368
rs8075565 rs708498 rs77530448 rs1799983 rs4775602
rs12591436 rs77530448 rs62091368 rs17362923 rs264631
rs76273496 rs17055178 rs11219068 rs673783 rs17599026
rs10969913 rs147596965 rs264651 rs8098701 rs11122573
rs1799983 rs7366282 rs1799983 rs77530448 rs76273496
rs8098701 rs10969913 rs8098701 rs6535028 rs17362923
rs17599026 rs12591436 rs7366282 rs7366282 rs10969913
rs7366282 rs79604958 rs11122573 rs845552 rs6535028
rs708498 rs8098701 rs17055178 rs1045485 rs10209697
rs17055178 rs845552 rs17599026 rs76273496 rs141799618
rs11122573 rs7829759 rs10497203 rs17055178 rs8098701
rs10209697 rs10209697 rs6432512 rs11122573 rs1045485

Table 3.1: SNPs employed for the polygenic risk scores in the prostate cancer cohort. Toxicity end-
points read as follows: URI = Urinary frequency variation, HAE = Haematuria, NOC = Nocturia,
DEC = Decreased stream flow, REC = Rectal bleeding.

URI HAE NOC DEC REC
K 15 13 8 15 12
α 13.25 ± 3.86 9.63 ± 3.43 3.22 ± 1.57 7.04 ± 1.94 3.73 ± 1.84
β -5.37 ± 2.62 -4.60 ± 2.53 -3.82 ± 1.57 -4.51 ± 1.66 -2.48 ± 1.66
γ -3.27 -3.13 -1.32 -1.63 -2.16
Sensitivity∗ 67.9% 71.6% 77.6% 64.9% 75.6%
Specificity∗ 77.9% 60.2% 38.6% 65.6% 45.5%
OR∗ 7.456 3.818 2.171 3.529 2.593
Cutoff 5.1% 4.5% 17.6% 18.8% 10.3%
AUC 0.78 0.71 0.61 0.68 0.63
Benchmark AUC 0.65 0.63 0.60 0.61 0.61

Table 3.2: Performance of the logistic regression models, fitted using the risk and protection scores
as predictors (cf. Equation 3.8). Toxicity endpoints read as in Table 3.1. K = number of risk
(protective) interactions, α = risk score coefficient, β = protection score coefficient, γ = intercept,
OR = odds-ratio, AUC = Area Under the ROC Curve. The α and β coefficients are reported
with their 95% confidence intervals. (*) These rows refer the metrics obtained by thresholding the
predicted probabilities in the logistic model according to the cutoff that maximizes the Youden
index (third-last row). Benchmark AUC = performance of the additive model, obtained using the
SNPs in Table 3.1 but without interaction terms, cf. Equation 3.10.

URI HAE NOC DEC REC
Median (toxicity) 0.611 0.740 -0.149 0.168 0.208
Median (no toxicity) -0.357 0.033 -0.224 -0.133 0.001
Wilcoxon 5.76e-13 9.73e-10 3.48e-07 2.35e-16 8.73e-08
Kolmogorov-Smirnov 3.39e-10 1.41e-06 1.44e-04 1.41e-14 6.52e-06

Table 3.3: Comparison of the PRS distribution in patients with toxicity vs patients without.
Wilcoxon = p-value of the Wilcoxon test, used to compare the medians in the two populations.
Kolmogorov-Smirnov = p-value of the two-samples Kolmogorov-Smirnov test, used to compare the
distribution of the biomarker across the two populations. Endpoints read as in Table 3.1
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Figure 3.9: Splitted hiPRS for the urinary frequency variation endpoint. Panel a) Selected
risk interactions, encoded as ∎ = 2, ∎ = 1, ∎ = 0. Panel b) Selected protective interactions, encoded
as ∎ = 2, ∎ = 1, ∎ = 0. Panel c) Receiver Operating Characteristic (ROC) curve associated to the
genetic score. Dashed lines indicate the point maximizing the Youden index (that is, the point
with the smallest ℓ1 distance from the top-left corner). Panel d) Score distribution in patients with
toxicity vs patients without. Red dashed line = score value associated to the cutoff with maximum
Youden index.

Figure 3.10: Splitted hiPRS for the haematuria endpoint. Panels read as in Figure 3.9.

Figure 3.11: Splitted hiPRS for the nocturia endpoint. Panels read as in Figure 3.9.
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Figure 3.12: Splitted hiPRS for the decreased stream endpoint. Panels read as in Figure 3.9.

Figure 3.13: Splitted hiPRS for the rectal bleeding endpoint. Panels read as in Figure 3.9.

It is remarkable to see that, despite fitting way more coefficients with respect to our hiPRS
implementation, the benchmark model performed consistently worse. In particular, the
urinary toxicities concerning frequency variation, blood presence and decreased stream flow,
appear to be those were epistatic effects are more relevant. Of note, here, the benchmark
model features d = 40 learnable parameters. In general, fitting too many coefficients can
result in biased estimates if the data at hand are not sufficiently numerous (for instance,
some authors consider d ≥ n/5 as a rule of thumb, cf. [189]). Clearly, such bias becomes
even more problematic when the model is used for prediction over new patients.

To further investigate the ability of the proposed genetic score in stratifying patients
with/without toxicity, we have also compared the score distribution within the two popu-
lations, see Table 3.3. In general, the two classes of patients report statistically significant
differences in terms of median values and overall score distribution, with p-values always
below 10−3. In light of these promising results, we also tested whether classical NTCP mod-
els could benefit from the introduction of the proposed polygenic risk score. We discuss this
latter analysis below.

3.5.2 PRS integration in NTCP models

Continuing our analysis on the prostate cancer cohort, we now extend the use of our PRS
to general NTCP models. As we discussed back in Chapter 1, the latter are a standard tool
for the estimation of late toxicity. Clinicians use NTCP models to predict the probability
of late toxicity on the basis of individual characteristics (e.g. age, previous surgeries) and
treatment details (e.g. radiation dose). Our purpose is to see whether the inclusion of our
interaction-aware PRS can improve the performance of classical NTCP models.
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URI HAE NOC DEC REC
Clinical/dosimetric NTPC (AUC) 0.64 0.66 0.66 0.56 0.57
Genetic NTPC (AUC) 0.78 0.71 0.61 0.68 0.63
Combined NTPC (AUC) 0.83 0.75 0.70 0.68 0.63
p-value < 0.0001 0.001 0.01 < 0.0001 0.014

Table 3.4: Comparison of the three NTCP models in terms of AUC performance (for each endpoint
separately). The reported p-value refers to the statistical test assessing whether the introduction
of the PRS actually increased the AUC of the original clinico-dosimetric model.

To this end, for each of the five endpoints, we fit a corresponding logistic regression model
of the form

logitP(Yj = 1) = γ0 +
qj

∑
i=1

αi,jXi,j + βjPRSj , (3.11)

where, Yj is the jth toxicity outcome, PRSj is the polygenic risk score constructed at the
previous step (thus with the Splitted hiPRS approach), whileXi,j are the clinical/dosimetric
covariates. In general, the latter are different for each toxicity endpoint, as we defined them
according to the existing literature: see Table 3.5 at the end of this Section for a detailed
description. To assess the added value of the genetic score, we fit (3.11) in three different
ways: i) by forcing βj ≡ 0 (clinical/dosimetric model), ii) by letting all αi,j ≡ 0 (genetic
model), iii) without imposing any constraint (integrated NTCP model). Internal validation
was performed using bootstrapping (10000 resamples).

Results are in Table 3.4 and Figure 3.14. As shown from the p-values in Table 3.4, the
contribution of the PRS is always reflected in a statistically significant increase in AUC
performance, especially for urinary toxicites. Additionally, for nearly all endpoints except
the nocturia one, classical clinical/dosimetric models tend to perform worse with respect to
purely genetic NTCPs. Of note, the most relevant predictor in the nocturia models appears
to be the baseline covariate: as this endpoint was defined using patients questionnaires (cf.
Chapter 1, Section 1.3), this might indicate an intrinsically poor tracking of the outcome.
Nonetheless, for the other toxicities, the aforementioned increase in AUC can also be ap-
preciated in Figure 3.14, with the genetic approach nearly always dominating the clinical
NTCP model.

These promising results show that, if genetic information is included in a suitable way,
it is actually possible to improve clinical/dosimetric NTCP models, paving the way to the
harmonious combination of the two. Finally, we note how these integrated models can
suggest ways for optimizing the treatment planning of radiotherapy. For instance, Figure
3.15 shows how the radiation dose impacts on the probability of late toxicity for different
values of the PRS. More precisely, the curves are plotted according to Equation (3.11), by
fixing the PRS values and letting the dose change: there we see how changes in the radiation
dose can be extremely relevant for patients with a higher genetic risk, while they have little
effect on more resistant individuals (at least on the range of Gray values considered). We
mention that Figure 3.15 does not report the risk curves for the nocturia outcome: in fact,
our previous observations already raised doubts about the actual validity of the results
obtained for that specific toxicity endpoint.

In practical applications, clinicians could then exploit these models to optimize radia-
tion doses, for instance by choosing values that keep the probability of late toxicity under a
suitable threshold while preserving the treatment efficiency (if possible).

For further details about this case study, the interested reader can refer to our recent pub-
lications, see [68, 165].
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Figure 3.14: Comparison of different NTCP models for five late toxicity endpoints in prostate
cancer patients treated with radiotherapy. Clinical/dosimetric models covariates are as in Table
3.5. Genetic models refer to our Splitted hiPRS approach. Combined model = Clinical/dosimetric
model with an additional covariate given by the proposed genetic score (Splitted hiPRS approach).

Figure 3.15: Radiation dose optimization based on individual genetic characteristics. The curves
reported are slices of the logistic regression models obtained for different values of the polygenic
risk score and varying radiation dose (other clinical variables are fixed to default values).
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URI HAE NOC DEC REC
Rectum equivalent uniform dose ✓
Bladder maximum dose ✓ ✓ ✓ ✓
Baseline symptoms ✓ ✓
Diabetes ✓ ✓
Smoking habit ✓
Prostatectomy ✓ ✓
TURP ✓

Table 3.5: Clinical/dosimetric covariates for the NTCP models of the five toxicity endpoints (URI =
Urinary frequency variation, HAE = Haematuria, NOC = Nocturia, DEC = Decreased stream flow,
REC = Rectal bleeding). Rectum equivalent uniform dose = daily radiation dose to the rectum
(in Grays), converted in equivalent dose according to the linear-quadratic model, see e.g. [31].
Bladder maximum dose = maximum dose received by the bladder during each treatment (in Grays),
converted in equivalent dose according to the linear-quadratic model. Baseline symptoms = binary
variable indicating whether a mild form of the given toxicity was already observed before treatment.
Diabetes = binary variable (yes vs no). Smoking habit = binary variable (equals "no" if and only if
the patient never smoked or quitted smoking before being diagnosed with cancer). Prostatectomy,
TURP (TransUrethral Resection of the Prostate) = binary variables encoding whether the patient
underwent the specified surgical operation. Checkmarks indicate whether a given clinical/dosimetric
covariate was included or not in the corresponding NTCP model.

3.6 Conclusions

In this Chapter we presented hiPRS, a novel approach to polygenic risk scoring that cap-
tures and models the effect on the phenotype of single SNPs and SNP-SNP interactions of
potentially very high order. The algorithm takes individual-level genotype data as an input,
overcoming potential biases of GWAS information, and providing a predictive yet easily
interpretable tool. hiPRS allows the user to define the size of the model and the maxi-
mum order of the interactions to search for, which allows for reliable parameter estimations,
especially for small samples, and convenient inspection by domain practitioners.

We have tested hiPRS against similar benchmark methods that rely on individual-level
data, demonstrating its superior performance with respect to traditional PRSs and more
complex Machine Learning based methods. In the presence of epistatic effects, hiPRS out-
performs additive models, such as Lasso and Ridge, and yields comparable results to other
state-of-the-art methods accounting for interactions, such as penalized PRSs (glinternet)
and models based on artificial neural networks (DNN-Badre). Still, the interpretability of
hiPRS also grants some additional insights, allowing users to gather information about the
true generating mechanism of the phenotype. This is not to say that hiPRS always discovers
biologically meaningful interactions, but its results can be considered hypothesis-generating,
thus inspiring new experiments to evaluate epistasis at the biological level [48]. To evaluate
the capability of hiPRS in tackling the complexities of real research scenarios, we also as-
sessed the approach through an extensive set of simulations, showcasing its ability to deal
with noise, strong class imbalance and small sample sizes.

Finally, we applied the algorithm to a clinical case study concerning radiotherapy late
toxicity in prostate cancer patients. There, we showed how hiPRS can extract useful ge-
netic information for boosting the performance of clinical/dosimetric NTCP models, with
encouraging results for three out of five toxicity endpoints. This confirms the fact that
radiosensitivity is a complex trait, influenced by both environmental and genetic factors,
and that it cannot be explained by the segregation of single genes.

In the future, these integrated models may provide clinicians with suitable guidelines for
the personalized treatment planning of radiotherapy, suggesting changes in the prescription
dose or the use of specific aid devices like rectum spacers [200].
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We conclude with two final remarks. The first one, is about the computational cost. In-
deed, one major limitation of hiPRS lies in the scalability of the algorithm, especially when
the number of SNPs grows dramatically. In fact, the search of high-order interactions is
intrinsically expensive, and the computational cost of the mRMR selection routine grows
quadratically with the number of candidate interactions. For this reason, our algorithm is
better suited for those contexts where the number of SNPs is limited, as in clinical studies
that start from literature-validated SNPs or that perform a preliminary selection of genetic
variants (e.g., with the DSAEE approach in Chapter 2). There, the computational cost
can be almost negligible: for instance, fitting hiPRS always took less than 5 seconds in our
experiments.

As a final remark, instead, we point out that the proposed approach can flexibly ac-
commodate any kind of categorical data, even though hiPRS was originally designed to
process SNPs data. For instance, it might be effortlessly applied to other data describing
genetic variants or epigenetic mutations encoded as binary variables, single and multi-level
categorical clinical information, or their combination. This makes the hiPRS approach par-
ticularly interesting to tackle multi-omic studies, or to model the recognized interactions
between genotype and environmental factors, or to investigate the mediating role of clini-
cal conditions in determining the genotype effect on complex traits, widening the scope of
applicability and relevance of our proposal.
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Part 2:

Enabling real-time
simulations for

precision medicine
with Deep Learning
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4 | Mechanistic models for
radiotherapy

We devote this fourth Chapter to the presentation of physics based models for radiotherapy.
These are based on the relationship between the damage to the tissue caused by ionizing
radiation and the presence of oxygen, a biological fact that is made mathematically rigorous
through Tumor Control Probability (TCP) models. After having presented the fundamental
ideas, we highlight some of the practical challenges, such as the elevated computational cost,
that prevent a robust analysis of TCP models, including sensitivity analysis and uncertainty
quantification. In response to these drawbacks, we then show how Deep Learning can enable
the pursuit of these tasks, showcasing our results over a simplified model for oxygen trans-
fer. Nonetheless, we postpone the detailed description (and derivation) of the corresponding
Deep Learning algorithms to Chapters 5 and 7.

Tumors are abnormal masses that appear due to an excessive cell proliferation, usually
caused by erroneous replications of the DNA. They are also known as neoplasms (literally
"new formation" in ancient Greek), and they may be either benign or malignant, depending
on whether they tend or not to continue their growth and spread all over the body. Tumors of
this type are notoriously known as cancers, and they are characterized by an an uncontrolled
proliferation that results in a constant invasion and destruction of the neighbouring healthy
tissue. In particular, cancers consist of clonogenic cells, that is, cells with a genetic anomaly
responsible for their ungoverned replication (clonality).

Because of the complicated way in which neoplasms growth, the tumoral microenvi-
ronment can be very intricated and difficult to describe. Nonetheless, tumors also share
common characteristics, such as their multi-layer structure. Generally speaking, we may
simplify the tumoral tissue as composed of three nested layers: the outer one is character-
ized by a good perfusion in terms of blood and oxygen supplies; middle layers, instead, are
hypoxic in nature, meaning that they report extremely low oxygen concentrations, reaching
the critical values of 8–10 mmHg in partial pressure [33]; finally, the last layer at the core is
characterized by necrotic cells.

The eradication of clonogenic cells that populate malignant neoplasms, is one of the main
purposes in oncological healthcare. To this end, one of the most well-established approaches
is radiotherapy. As we discussed in the previous Chapters, radiotherapy is a destructive
process that aims at killing cancer cells by depositing high levels of energy over their DNA
strands, ultimately provoking either cellular apoptosis or non-apoptotic death [12]. Sur-
prisingly, as first argued by JC Mottram [142] in 1936, the proportion of cells that survive
a given radiation dose is not only dependent on the dose itself, but also depends on the
local oxygen partial pressure, a phenomenon known as the oxygen effect. More precisely,
those regions that are in hypoxic conditions tend to be more resistant to radiation, while
the impact of radiotherapy is magnified in the presence of larger oxygen supplies.
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In light of this, it is clear that understanding the perfusion of oxygen in biological tissues
is of fundamental importance for the development of optimized radiotherapy treatments.
Still, because of the small scales involved and the consequent impracticality in making real-
life measurements, the study of this phenomenon has to rely on numerical simulations. As we
shall discuss in a moment, accurate biophysiological models for oxygen transfer already exist
and may be exploited for such tasks. However, high computational costs and uncertainty in
the model parameters can significantly reduce the true potential of these approaches. Our
purpose for this Chapter is to provide additional details on this topic and showcase how
Deep Learning methods can help us in overcoming these drawbacks.

The Chapter is organized as follows. First, in Section 4.1, we describe a model for microvas-
cular oxygen transfer, highlighting the presence of model parameters and their uncertainty.
Then, in Section 4.2, we discuss the radiobiological model, where resistance to radiation is
linked to oxygen deficiencies through the so-called linear-quadratic model, ultimately leading
to Tumor Control Probability models (TCP) for the optimization of radiotherapy. Finally,
in Section 4.3 we anticipate how Deep Learning can enable a robust analysis of TCP models,
showcasing our results in a simplified scenario.

4.1 A mesoscale model for oxygen transfer

Cellular respiration is a fundamental biological process in which cells convert nutrients, such
as sugar and amino acids, into energy resources stored in the form of adenosine triphosphate
(ATP). These processes consist of a sequence of metabolic reactions that are commonly en-
abled by oxidizing agents such as oxygen molecules. In humans, cells receive oxygen supplies
from the capillaries, small blood vessels of roughly 8-10 micrometers in diameter that are
spread all over the body and that constitute the terminal part of the cardiocirculatory sys-
tem. The purpose of oxygen transfer models is to capture this mechanism at the correct
scales, providing a suitable description of both the vascular network and the tissue perfusion.
For this reason, this phenomenon is typically modelled at the so-called mesoscale [177].

In this Section, we aim at briefly describing the mesoscale oxygen transfer model pro-
posed by Possenti et al. in [160], with the intent of later using it as a starting point for
radiotherapy applications. The model presented in [160] can be thought as a more accu-
rate and general version of Krogh’s model, which was originally developed in 1919 by danish
physiologist August Krogh [111]. In order to properly state and comprehend its formulation,
it is worth to introduce some preliminary notation.

We denote by Ω ⊂ R3 a bounded domain representing the biological tissue. In Krogh’s
model, capillaries are represented as concentric cylinders with a suitable diameter. In [160],
instead, they are approximated with 1-dimensional piecewise linear manifolds representing
their centerline, which significantly simplifies the problem at the computational level while
also allowing for more complicated geometries, cf. [51, 117]. We denote by Λ ⊂ Ω the
1D vascular graph. To preserve some additional information about the capillaries and their
permeability, a scalar quantity R > 0 describing their radius is also defined. We let Ct ∶ Ω→ R
and Cv ∶ Ω → R be the oxygen concentration in the interstitial tissue and the vascular
network, respectively. With this set up, the authors in [160] model the microvascular oxygen
transfer through the coupled 3D-1D model below,

O ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ (−Dt∇Ct + utCt) + Vmax (Ct + αtpm50)
−1
Ct = ϕO2δΛ in Ω

πR2∂s (−Dv∂sCv + uvCv + uvk1 (Cγv + k2)
−1
CγvH) = −ϕO2 on Λ

ϕO2 = 2πRPO2(Cv −Ct) + 1
2
(1 − σO2) (Cv +Ct)ϕv on Λ

Cv = Cin on ∂Λin

−Dv∂sCv = 0 on ∂Λout

−Dt∇Ct ⋅ n = βO2(Ct − c0,t) on ∂Ω

. (4.1)
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Fundamentally, the model consists of a stationary advection-diffusion equation coupled with
suitable interface and boundary conditions. Here, ∂Λin and ∂Λout are used to describe the
flow direction in the blood vessels, characterizing respectively points of inflow and outflow.
The overline is used to denote average quantities, specifically, Ct(x) is the average value of
Ct over the cross-section at the specified point in the blood vessel (thus, a circle of radius
R centered at x ∈ Λ). The parameters Dt, αt, pm50 , ϕO2 ,Dv, k1, γ, k2, PO2 , σO2 ,Cin, βO2 , c0,t
are all given physical quantities: for a detailed description of these, we refer to Table 4.1.

Besides these quantities and the main unknowns, namely Ct and Cv, the oxygen trans-
fer model O also features other physical terms that need to be specified. These are:

• δΛ, the singular measure describing the oxygen resources coming from the vascular
graph. The latter is defined as the unique measure for which the following

∫
Ω
v(x)δΛ(dx) = ∫

Λ
v(s)ds (4.2)

holds for all v ∈ C(Ω);

• ut and uv, respectively the interstitial and vascular fluid velocities. These are com-
puted by solving the following system of equations, namely

F ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + K
µt
∇pt = 0 in Ω

∇ ⋅ ut + ϕl − ϕvδΛ = 0 in Ω

8µvuv +R2∂spv = 0 on Λ

πR2∂suv + ϕv = 0 on Λ

,

in the unknowns ut, uv (fluid velocity) and pt, pv (fluid pressure, respectively in the
tissue and the blood vessels). Here K,µt, µv, ϕl are given physical quantities (cf. Table
4.1), while

ϕv ∶= 2πRLp ((pv − pt) − σ(pv − pt))

is the exchange term between the two domains. As before, pt indicates the cross-section
average. The coefficients Lp, σ, πv, πt are given (see Table 4.1);

• H ∶ Λ → R, the discharge hematocrit, which is modeled as the solution to the conser-
vation law below,

H ∶ {πR2uv∂sH − ϕvH = 0 on Λ.

complemented with suitable boundary conditions, see [161].

In practice, once the model parameters have been set, problems F and H are solved sequen-
tially to enable the solution of the oxygen transfer model O. For additional details about
the numerical discretization and solution of these systems we refer to [161, 160].

For our purposes, model O is interesting because of two main reasons. The first one, is
that it provides an accurate description of microvascular oxygen transfer which has already
been validated against physiological data, cf. [161, 160]. The second one, is that is allows
for a flexible description of the vascular network and the overall micro-environment: in
particular, it can be used to properly model the different layers of a tumoral region, and
thus explore extensively the effects of radiotherapy in different scenarios. The link between
model O and TCP models is discussed in the next Section.
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Parameter Description
Λ Vascular network
R Vessels radius
Vmax Maximum oxygen consumption rate
Dt Oxygen diffusion coefficient in interstitial tissue
Dt Oxygen diffusion coefficient in blood vessels
αt Interstitium oxygen solubility
pm50 Oxygen partial pressure at half consumption rate
γ Hill constant
k1 Product of Hüfner’s factor and mean corpuscolar hemoglobin

concentrations
k2 Product of plasma oxygen solubility and oxygen partial pressure at half

saturation, raised to the γ power
PO2 Permeability of the vascular wall to oxygen
σO2 Reflection coefficient relative to the oxygen molecule
Cin Oxygen inflow
βO2 Boundary resistance simulating the presence of adjacent tissues
c0,t Far-field concentration
K Permeability of the interstitial tissue
µt Fluid viscosity in interstitial tissues
µv Fluid viscosity in blood vessels
ϕl Lymphatic drainage

Table 4.1: Physical and geometric parameters of the microvascular oxygen transfer model O.

4.2 Tumor Control Probability (TCP) models

TCP models aim at estimating the probability of tumor eradication given physical and
dosimetric factors. Among radiobiologists, the most famous model is arguably the linear-
quadratic model, which describes cells survival in terms of radiation dose. More precisely,
the latter states that the survival fraction Sf depends on the radiation dose D through the
empirical law

Sf = e−αD−βD
2

.

The parameters α and β are local coefficients that depend on physical properties of the
tissue. In particular, they depend on the oxygen partial pressure O2, which is a function
of the spatial domain proportional to the oxygen concentration, according to Henry’s law
O2 ∝ Ct. Therefore, a better description of the survival fraction is given by the equation
below

Sf(O2,D) = exp (−α(O2)D − β(O2)D2) , (4.3)

where

α(O2) =
(a1 + a2ℓ)O2 + (a3 + a4ℓ)η

O2 + η
, β(O2) = (

b1O2 + b3η
O2 + η

)
2

.

Here, the coefficients ai, bi are suitable constants that have already been estimated in the
literature. Conversely, ℓ is the so-called linear energy transfer, which depends on the type
of radiation: for instance, X-rays are associated with lower values of ℓ compared to neutron
beams radiations. Finally, η represents the oxygen partial pressure at which the relative
radiosensitivity equals half of its maximum.
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Equation (4.3) models the survival fraction as a map x→ Sf(O2(x),D), that associates
to each point x ∈ Ω the local proportion of cells surviving radiation. In the case of tumor
control, the ultimate goal is to eradicate all the clonogenic cells present at the points x ∈
Ω. To estimate the overall probability of success (in other words, the TCP), a classical
approach is to describe the phenomenon in terms of Poisson point processes, leveraging on
the assumption of unicellular independence [187]. The idea goes as follows. We let N be an
inhomogeneous Poisson point process defined over Ω, such that for all measurable subsetsA ⊆
Ω, N (A) is the (random) number of clonogenic cells in A surviving a given radiation dose.
We prescribe the intensity λ ∶ Ω → [0,+∞) of such process as λ(x) = N(x)Sf(O2(x),D),
where N(x) is the density of clonogenic at the point x ∈ Ω. Then, given a suitable radiation
dose D, the global probability of tumor eradication is TCP(D) = P(N = 0), that is

TCP(D) = exp(−∫
Ω
N(x)Sf(O2(x),D)dx) . (4.4)

Equation (4.4) is of high interest as it can be used to optimize radiation doses. In particu-
lar, given the characteristics of the tumoral microenvironment, such as the distribution of
oxygen partial pressure, we can compute the minimum value of D for which the probability
of successful treatment remains above a given threshold.

Nonetheless, there are some limitations. For an accurate computation of the TCP, Equa-
tion (4.4) requires a precise description of the scalar field O2. As we mentioned before, this
is only manageable through the numerical simulation of mathematical models such as O,
Equation (4.1). However, while these models may be biologically accurate, they are limited
by our uncertainty about the actual structure of the tumoral microenvironment.

For instance, if we want to analyze the case of a poorly vascularized tissue, we may solve
system (4.1) for a sufficiently sparse vascular network Λ ⊂ Ω. This will yield some solution
for the oxygen partial pressure, O2(Λ) for which we can evaluate the TCP. However, our
choice of Λ is completely arbitrary: in fact, even if we prescribe the graph density, there
are still uncountably many possible topologies for the vascular network. This uncertainty in
the actual structure of Λ is reflected in our approximation for O2 and, consequently, in the
value of the TCP. Similar issues also are also encountered for the other parameters in (4.1):
in fact, even though they are scalar values, they might be subject to random fluctuations
around the actual physiological (or pathological) values, generating additional sources of
uncertainty that propagate to the final TCP computation.

Consequently, a robust investigation of TCP models requires multiple runs of the nu-
merical solver and results in a so-called many-query scenario. In particular, this can be
an extremely demanding task because of the non negligible computational cost entailed by
each numerical simulation: as soon as we change the parameter values, the PDE model has
to be solved once again. Also, there is nearly nothing that we can precompute to save up
computational time, as some parameters, such as the topology of the vascular network Λ,
can completely change the properties of system.

Within this Thesis, our objective is to overcome this computational bottleneck by develop-
ing suitable model reduction strategies based on Deep Learning algorithms. It will be a long
journey, distributed across the next three Chapters. However, our efforts will be completely
repaid, as we will then have a whole new spectrum of reduction strategies at our disposal.

Even though our methodologies are developed and presented in the remainder of the
dissertation, in the next Section we shall provide a brief anticipation on the potential of our
approaches, showcasing how Deep Learning can help us in the study of TCP models.
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4.3 Deep Learning for radiotherapy optimization

To showcase how we plan to use Deep Learning for the study of TCP models, in this Section
we provide a brief anticipation on the results that we obtained limitedly to a simplified
model for oxygen transfer. In the Thesis, the latter is addressed at the end of Chapter 7,
in Section 7.3. The purpose of this analysis is to quantify how uncertainties in the vascular
network can affect TCP values. To this end, we consider the following ideal setting. We
denote by Ω ∶= {x ∈ R2, ∣x∣ < 1} the open unit disk, representing an idealized bidimensional
tissue. We model the oxygen partial pressure u ∶ Ω → R through the differential model
below,

⎧⎪⎪⎨⎪⎪⎩

−α∆u + u = (1 − u)C(Λ)δΛ in Ω

−α∇u ⋅ n = βu on ∂Ω
(4.5)

where α = 0.1 and β = 0.01 are a fixed diffusion and resistance coefficient, respectively, Λ ⊂ Ω
is the vascular network, δΛ is defined as in (4.2), and

C(Λ) = 1

∣Λ∣
,

where ∣Λ∣ is the total length of the vascular graph. This normalization is introduced to en-
sure that all vascular networks provide the same oxygen supply: in this way, the perfusion
of the tissue is only affected by the morphology of the graph.

We focus our attention on the following quantities of interest,

• The proportion of the tissue that is exposed to low oxygen supply, modeled as

V ∶= 1

∣Ω∣
∣{u < ε}∣ ,

representing the size of the region under hypoxia. Here, ∣A∣ is the Lebesgue measure
of the set A, while we set the pressure threshold to ε = 0.1.

• The TCP for a given radiation dose, here fixed to be D = 10, computed according to
Equation (4.4).

We remark that system (4.5) is an extremely simplified model for oxygen transfer, and,
in particular, all scalar quantities are dimensionless. As a consequence, we need to reset
the values for the parameters appearing in the formulae of the survival fraction and the
TCP (namely, ai, bi, η, ℓ and N , which we assume to be uniform over Ω, coherently with the
simplified dimensionless setting).

Now, our objective is to quantify the effect of Λ over these quantities of interest. In
order to explore properly the possible scenarios and model the presence of uncertainties we
proceed as follows. We use a macroscale parameter, λ > 0, to indicate the expected level of
vascularization in the interstitial tissue. Then, given λ, we generate the vascular network
Λ randomly, exploiting a suitable Poisson point process and Voronoi diagrams (for further
details, we refer to Chapter 7, Section 7.3). Figure 4.1 shows the example of two vascular
graphs and the corresponding solutions.

This way of modeling uncertainties turns our quantities of interest, V and TCP, into
random variables, whose distribution changes together with the macroscale parameter λ.
Higher values of λ correspond to denser graphs and thus higher TCPs: however, even if we
fix λ, the values of the TCP will still be subject to random fluctuations because of the un-
certainty in the vascular graph. The quantification of these fluctuations is what the current
literature about TCPs lacks. Some authors conjecture that these effects might have little
relevance under certain circumstances [75], while others believe that unraveling the causal
relationship between tumor vascular structure and tissue oxygenation will pave the way for
new personalized therapeutic approaches [21].
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Figure 4.1: Two vascular networks of different density (left) and the corresponding distributions of
oxygen (right).

To achieve our objective, many numerical simulations of Equation (4.5) are required, as
we need to explore the range of possible solutions for many different configurations of the
vascular network. To overcome this computational bottleneck, we replace the original nu-
merical solver with a suitable surrogate given by a neural network architecture Φ. The
latter, given the vascular network Λ, provides an approximation of the whole solution field,
i.e.

Φ(Λ) ≈ uΛ

where uΛ is the solution to (4.5). The neural network model is built using the tools devel-
oped later in the Thesis, specifically in Chapter 7, and is trained on 4500 trusted samples
generated with the original solver. After training, the network was able to approximate new
solutions, for unseen network topologies, with an average L2 error of 3.89%.

We used the neural network model to explore the variability of the oxygen distribution
over 100′000 new configurations, ultimately yielding the results in Figure 4.2. There, we
see how the expected volume under hypoxia, E[V ], decays exponentially with the vascular-
ization level λ. The random fluctuations, represented by the inter-quantile and inter-decile
bands, become smaller and smaller for increasing values of λ. For the TCP we see a similar
behavior: the uncertainties tend to vanish for highly vascularized tissues and the average
probability of tumor eradication saturates at 1 exponentially fast. Still, we point that, even
in poorly vascularized regions, the TCP can reach values near 90%: it is a rare event, as
shown by the inter-decile bands, but it can still occur.

Despite their simplicity, these results show how Deep Learning enables a completely new
understanding of these models. Moreover, the proposed approach is completely general and
thus provides a remarkable potential. We observe in fact that the neural network model is
providing a global approximation of the whole solution field u. In particular, once trained,
the same surrogate model can be employed for many different tasks and analysis. This
would have not been possible if we only focused on the direct correspondence between the
input parameters and the scalar quantities of interest. These promising results are the main
motivation for our research in this field, which we shall report in the next Chapters.
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Figure 4.2: Volume fraction under hypoxia (left) and TCP at fixed radiation dose (right) for different
levels of tissue vascularization. Dashed lines correspond to average values. IQR = Inter Quantile
Range, IDR = Inter Decile Range.

Remark. In this example, and more in general, the key point is to have an efficient ap-
proximation of the parameter-to-solution map, Λ → uΛ. This problem is at the core of a
research field known as Reduced Order Modeling (ROM), which features a very active and
diverse literature. In particular, it may be worth to further motivate why we decided to
employ Deep Learning algorithms to achieve our goal, considering the uncountable alterna-
tives available in the literature. As we shall discuss in Chapter 5, the main motivation lies
in the limitations of classical ROMs, which are notoriously based on linear projection tech-
niques. In short, these approaches can encounter significant difficulties when dealing with
space-localized parameters and singularities (see, e.g., Example 5.1 in Chapter 5). These,
however, are two fundamental features of our case study: in fact, the dependency of the so-
lution on the blood vessels is purely geometrical, and the vascular graph Λ enters the PDE
model through a singular measure with 1D support. While linear techniques can hardly
tackle these problems, nonlinear methods based on deep neural networks, instead, have the
potential of providing an effective practical solution.

62



5 | A Deep Learning approach to
Reduced Order Modeling of PDEs

In this fifth Chapter, we present a Deep Learning approach for the approximation of the
parameter-to-solution map in the context of parametrized PDE models. In the same spirit of
other works in the literature, see e.g. [70], our approach is based on the use of autoencoders
and ultimately results in the construction of a nonintrusive surrogate model. However, with
respect to the existing literature, our presentation is enriched with a corresponding mathe-
matical analysis, providing rigorous results about the choice of the latent dimension and the
complexity of the neural networks involved. These findings have been recently reported in
Franco et al., "A Deep Learning approach to Reduced Order Modeling of parameter depen-
dent Partial Differential Equations", Mathematics of Computation [65]. At the end of the
Chapter, we also present a simplified application to oxygen transfer models, discussing its
advantages and limitations.

In many areas of science, such as physics, biology and engineering, phenomena are modeled
in terms of Partial Differential Equations (PDEs) that exhibit dependence on one or multiple
parameters. As an example, consider the stationary advection-diffusion equation below,

⎧⎪⎪⎨⎪⎪⎩

−∇ ⋅ (σµ∇u) + bµ ⋅ ∇u = fµ in Ω,

u = gµ on ∂Ω,
(5.1)

where Ω ⊂ Rd is a bounded domain and µ a vector parameter taking values in a suitable
parameter space Θ ⊂ Rp. For each µ ∈ Θ, we assume the above to admit a unique solution
uµ, to be sought within a given Hilbert space (V, ∥ ⋅ ∥). Equation (5.1) can be thought as
a prototype problem for more comprehensive clinical models, such as the oxygen transfer
model in Section 4.1.

In some cases, one is not interested in computing the PDE solution for a single fixed
µ ∈ Θ, but rather for an ensemble of parameter values. In general, this corresponds to
exploring the so-called solution manifold S ∶= {uµ}µ∈Θ [63, 116]. The map µ→ uµ is known
under many equivalent names such as the parametric map [176], the parameter-to-state map
[88] or the solution map [150]. Approximating the parametric map in a highly-efficient way
is a challenging task that can be encountered in several contexts, from optimal control prob-
lems with parametric PDEs constraints [25] to multiscale fluid mechanics [103], or Bayesian
inversion and uncertainty quantification [32]. In all these cases, the main drawback is repre-
sented by the computational cost entailed by traditional PDE solvers. In fact, despite their
accuracy, each query of a numerical scheme such as the Finite Element Method (FEM)
implies a computational cost that easily becomes unsustainable in many query applications,
where computations are supposed to be carried out within a very short amount of time.

One possibility is then to replace Full Order Models (FOMs) with cheaper surrogate
models, namely Reduced Order Models (ROMs). ROMs originate from the need of allevi-
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ating the computational burden of FOMs at the price of a negligible compromise in terms
of accuracy. During the last decades, several successful model reduction techniques have
been developed, such as the Reduced Basis method [162] and others. However, the majority
of these ROMs heavily relies on linear projection techniques, thus limiting significantly the
spectrum of possible applications. Indeed, ROMs based on linear reduction methods en-
counter substantial difficulties whenever the solution manifold has a so-called Kolmogorov
n-width [105] that decays slowly with n. The Kolmogorov n-width is a quantity that mea-
sures the degree of accuracy by which a set can be approximated using linear subspaces of
dimension n, namely

dn(S) ∶= inf
Vn⊂V,

dim(Vn)=n

sup
u∈S

inf
v∈Vn

∥u − v∥. (5.2)

If dn(S) decays slowly with n, then projection-based ROMs can reach meaningful accuracies
only for large values of n, which in turn leads to expensive models. We point out that this
phenomenon is far from being uncommon. As a matter of fact, the slow decay on dn(S) is
typical of time-dependent transport-dominated problems, even under fairly simple circum-
stances [74, 150]. The same is also true for stationary problems that are mostly diffusive,
such as the oxygen transfer model in (4.1), as spatially localized parameters, singularties
and nonlinearities can easily decelerate the decay of the Kolmogorov n-width. The inter-
ested reader can find a simple yet remarkable example of this fact at the end of Section 5.1,
Example 5.1.

In order to tackle these drawbacks, we propose a novel approach based on Deep Neural
Networks (DNNs) that naturally accounts for possible nonlinearities in the solution mani-
fold. Our construction is mostly inspired by the recent advancements in nonlinear approx-
imation theory, see e.g. [45, 52, 176], and the increasing use of deep learning techniques
for parametrized PDEs and operator learning, as in [41, 70, 112, 126]. In particular, we
focus on nonintrusive ROMs where the solution map is approximated by a deep neural net-
work Φ. This idea has been recently investigated both theoretically, as in [112, 136, 176],
and practically, e.g. [70, 72]. By now, the drawbacks posed by this approach are mainly
practical: it is often unclear how the network architecture should be designed and which
optimization strategies are better suited for the purpose. Also, we lack the understanding
of the possible ways the nonlinearities in the DNN should be exploited in order to make the
most out of it. Here, we wish to partially answer these questions and provide a constructive
way of designing such Φ.

The key idea is to break the problem into two parts. First, we seek for a low-dimensional
representation of the solution manifold, which we obtain by training a deep autoencoder [84],
Ψ ○Ψ′. The encoder, Ψ′, is used to map the solution manifold into a reduced feature space
Rn, while the decoder serves for the reconstruction task. Here we see a clear analogy with
the Nonlinear Kolmogorov n-width as defined in DeVore et al. [54]. There, the authors
define

δn(S) ∶= inf
Ψ′∈C(S, Rn

)

Ψ∈C(Rn, V )

sup
u∈S

∥u −Ψ(Ψ′(u))∥,

as a nonlinear counterpart of dn(S). In light of this, we introduce the concept of minimal
latent dimension, denoted as nmin(S), which we define as the smallest n for which δn(S) = 0.
By choosing this particular nmin(S) as latent dimension for the autoencoder, we are then
able to perform a significant model reduction.

Once the autoencoder has been trained, we exploit the encoder Ψ′ in order to represent
each solution uµ through a low-dimensional vector unµ ∈ Rn. We then train a third network
ϕ ∶ Θ→ Rn to learn the reduced map µ→ unµ. In this way, by connecting the architectures of
ϕ and Ψ we obtain the complete model, Φ ∶= Ψ ○ ϕ, which we later term as DL-ROM (Deep
Learning based Reduced Order Model, in the same spirit of previous works [70, 71]).

The novelty of our contribution is twofold. First, we develop a new constructive way of
using neural networks to approximate the solution map and we test it on some numerical
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examples. Second, we prove theoretical results that motivate the choice of the ROM dimen-
sion. Indeed, despite the popularity of autoencoders, e.g. [70, 118, 143, 207], the choice
of the latent dimension n is often handled by trial and error. In contrast, we establish
precise bounds on n thanks to a rigorous theoretical analysis. More precisely, in Theorems
5.1 and 5.2, we investigate the link between the minimal latent dimension nmin(S) and the
topological properties of S. In Theorem 5.3 we explicitly bound nmin(S) in terms of the
dimensionality of the parameter space. In particular, we show that nmin(S) ≤ 2p + 1 as
soon as the parametric map is Lipschitz continuous. The theory is then applied to the case
of second order elliptic PDEs, in Theorem 5.4, where we demonstrate how the parameters
directly affect the value of the minimal latent dimension. Finally, in Theorem 5.5, we bound
the model complexity in terms of the ROM accuracy, deriving suitable error estimates that
are later confirmed experimentally.

The remainder of the Chapter is organized as follows. In Section 5.1 we introduce our
general framework and briefly recall the driving ideas of linear reduction. In Section 5.2
we move to the nonlinear case, where we establish a solid theoretical background for the
construction of the DL-ROM, with particular emphasis on minimal representations and
parametrized PDEs. In Section 5.3 we dive into the details of our deep learning approach,
thereby discussing the general construction and its numerical properties. In Section 5.4 we
present some numerical results and assess the proposed methodology, while in Section 5.5
we show a first application on a prototype problem of oxygen transfer. Finally, to keep
the Chapter self-contained, auxiliary mathematical results are reported at the end, in a
dedicated Section.

5.1 General setting

Within the present Section we formally introduce the problem of reduced order modelling
for parametrized PDEs. For later comparison, we also take the chance to recall the lin-
ear reduction technique known as Principal Orthogonal Decomposition [127, 162]. In the
remainder of the Chapter, we make use of elementary notions coming from the areas of
Functional Analysis, Numerical Analysis and Topology. We respectively refer to [2, 60],
[163] and [86].

5.1.1 Reduced Order Models for parametrized PDEs

We are given a parameter space Θ ⊂ Rp, a Hilbert state space (V, ∥ ⋅ ∥) and parameter
dependent operators aµ ∶ V × V → R and fµ ∶ V → R. For each µ ∈ Θ we consider the
variational problem

u ∈ V ∶ aµ(u, v) = fµ(v) ∀v ∈ V. (5.3)

We assume the problem to be well-posed, so that for each µ ∈ Θ there exists a unique solution
u = uµ ∈ V . Our interest is to define a ROM that is able to approximate the parametric map
µ→ uµ efficiently. In general, the workflow goes as follows. First, one chooses a FOM, which
we here assume to be based on Galerkin projections. This corresponds to fixing a so-called
high-fidelity discretization, that is a finite dimensional subspace Vh ⊂ V , dim(Vh) = Nh, used
to replace the original trial space. Having chosen a basis for Vh, say {φi}Nh

i=1, for each µ ∈ Θ
one turns equation (5.3) into the (discrete) problem

uhµ = [uhµ,1, . . . ,uhµ,Nh
] ∈ RNh ∶ aµ (

n

∑
i=1

uhµ,iφi, v) = fµ(v) ∀v ∈ Vh. (5.4)

The main purpose of the high-fidelity discretization is to reframe the original problem within
a finite dimensional setting, without particular care on the computational cost (for now).
Regarding the choice of Vh, we make the following assumption.
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Assumption 5.1. For any ε > 0 there exists Vh ∶= span{φi}Nh

i ⊂ V such that

sup
µ∈Θ
∣∣uµ −

Nh

∑
i=1

uhµ,iφi∣∣ < ε

that is, the FOM accuracy can be bounded independently on the value of µ ∈ Θ.

The above is a very common assumption in the literature, see e.g. [112], that allows us to
formally replace V with Vh. The objective now becomes that of learning the map µ → uhµ
in a way that reduces the FOM cost. In particular, the construction of the ROM consists in
finding a suitable map Φ ∶ Rp → RNh for which Φ(µ) ≈ uhµ. To do so, the common practice
is to make extensive use of the FOM during a preliminary offline stage, which results in
the collection of the so-called snapshots, {µi,uhµi

}i ⊂ Rp × RNh . These snapshots are then
processed in order to build the ROM. In this sense, the identification of Φ can be seen as a
problem of Statistical Learning, as argued in [112]. The way Φ is defined from the data is
what characterizes each ROM, its efficiency and accuracy.

5.1.2 Methods based on linear projections
Many state-of-the-art ROMs are built upon the use of linear reduction techniques, which
are known to work particularly well for second order elliptic PDEs with affine coefficients
[9]. The idea is the following. Having fixed a high-fidelity discretization, one considers
the (discretized) solution manifold Sh ∶= {uhµ}µ∈Θ and tries to approximate it using linear
subspaces. This translates into fixing a reduced dimension n ∈ N and searching for the
orthonormal matrix V ∈ RNh×n that minimizes the errors ∥uhµ − VVTuhµ∥. In practice,
the identification of such V is done empirically by exploiting the aforementioned snapshots
{µi,uhµi

}Ni=1, which is often achieved through the so-called Principal Orthogonal Decompo-
sition (POD). In short, this latter approach considers all the FOM snapshots as columns of
a matrix, U ∶= [uhµ1

, ,uhµN
] and computes its singular value decomposition

U = ŨΣWT

where Σ =diag(σ1, .., σN) with σ1 ≥ ... ≥ σN ≥ 0. Then, in the POD approach, V is defined
by extracting the first n columns of Ũ. It is well-known that this choice of V is optimal
-in some sense- over the training sample {uhµi

}Ni=1. We also mention that, while this version
of the POD considers RNh as a Euclidean space, slight modifications allow to account for
different (e.g. energy) norms.

Once V has been built, the solution manifold is projected onto the reduced space Rn,
and each FOM solution is associated with the corresponding low-dimensional representa-
tion, unµ ∶= VTuhµ. To be operational, the ROM then needs to implement a suitable al-
gorithm that approximates the correspondence µ → unµ. If we represent the latter as a
map ϕ ∶ Θ → Rn, then the ROM approximation of high-fidelity solutions can be written as
Φ(µ) ∶=Vϕ(µ) ≈ uhµ. Within the literature, this step has been handled in multiple ways. In
the Reduced Basis method [116, 162], particularly in the so-called POD-Galerkin method, ϕ
is defined intrusively by projecting and solving equation (5.4) onto span(V). Depending on
the parametrization and on the type of PDE, this procedure may turn to be too expensive,
which is why several alternatives have been proposed, see e.g. [13, 147, 180]. Nonintru-
sive approaches for defining ϕ include Gaussian process regression [80], polynomial chaos
expansions [93], neural networks [41, 40] and others.

Nevertheless, because of the linear approximation, these ROMs encounter substantial
difficulties as soon as S has a Kolmogorov n-width, see equation (5.2), that decays slowly.
In fact,

sup
µ∈Θ
∥uhµ −Vϕ(µ)∥ ≥ sup

µ∈Θ
∥uhµ −VVTuhµ∥ ≥ dn(Sh) ≥ dn(S) − ε,

where ε > 0 is the accuracy of the high-fidelity discretization. Therefore, if dn(S) decays
slowly, one may be forced to consider large values of n, which in turn makes ϕmore expensive
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and harder to identify. A didactic example of slow decay is shown below, Example 5.1. As
we argue in the next Section, one possible solution to this problem is given by nonlinear
reduction techniques. However, despite this being a promising direction, only a few steps
have been made so far, e.g. [23, 70, 118].

Example 5.1. Let Ω ∶= (−2,2). For any x0 ∈ Ω, let δx0 be the Dirac delta distribution
centered at x0. Consider the 2-dimensional parameter space Θ ∶= {µ = (µ1, µ2) ∈ [−1,1] ×
[0,1] ∣ − 1 ≤ µ1 − µ2 ≤ µ1 + µ2 ≤ 1}, together with the differential problem below

⎧⎪⎪⎨⎪⎪⎩

−u′′ = 2δµ1 − δµ1−µ2 − δµ1+µ2 x ∈ Ω
u(−2) = u(2) = 0

For each µ ∈ Θ, the corresponding solution uµ is a piecewise linear function with support
given by [µ1 − µ2, µ1 + µ2]. In particular, uµ is a hat function with a peak of height µ2 at
x = µ1. Also, by direct calculation,

∥uµ∥L2(Ω) =
√

2

3
µ3
2.

Let now S ∶= {uµ}µ∈Θ ⊂ V ∶= L2(Ω) and fix any positive n ∈ N. It is then easy to see that
the functions

vi,n ∶= u(−1+ i
n−

1
2n ,

1
2n
), i = 1, ...,2n

are mutually orthogonal in L2(Ω). As a consequence, the Kolmogorov n-width of S satisfies

dn(S) ≥ dn({vi,n}2ni=1) =

= dn ({∥vi,n∥−1L2(Ω)vi,n}
2n

i=1
) ∥vi,n∥L2(Ω) =

1√
2
∥vi,n∥L2(Ω) =

1

2
√
6
n−3/2,

where the second last equality follows by noticing that the set {∥vi,n∥−1L2(Ω)vi,n}
2n
i=1 is isometric

to the canonical basis of R2n (see [150]). Therefore, dn(S) decays with a rate of at most
n−3/2, which is relatively slow when compared to the ideal case where the parametric map is
analytic and the Kolmogorov n-width is known to decay exponentially, dn(S) ∼ e−γn.

5.2 Nonlinear dimensionality reduction

In the present Section we formalize the idea of using nonlinear reduction techniques for the
compression of the solution manifold. We start by introducing all concepts and results in
an abstract fashion. Only at the end, Section 5.2.2, we rephrase the content in terms of
parametrized PDEs.

5.2.1 Minimal dimension and nonlinear Kolmogorov n-width
Within this Section, we consider an abstract setting where (V, ∥ ⋅ ∥) is a Hilbert space
and S ⊂ V a generic subset. In particular, S needs not to be the solution manifold of a
parametrized PDE and the theory is presented regardless of a possible discretization. We
address the problem of finding a low-dimensional representation of S while minimizing the
reconstruction error.

When V is finite-dimensional, the linear reduction described in Section 5.1.2 performs
an encoding of S via the map u → VTu =∶ un ∈ Rn, where n is the reduced dimension; the
set is then recovered through un → Vun ≈ u. Therefore, a possible generalization to the
nonlinear case is to substitute VT with some encoder Ψ′ ∶ S → Rn and V with a decoder
Ψ ∶ Rn → V . Of note, this is also an approach that easily extends to infinite-dimensional
settings. Depending on the restrictions that we impose on Ψ′ and Ψ, different reconstruction
accuracies can be obtained.
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Here, we only require Ψ′ and Ψ to be continuous. This, naturally gives rise to the
optimization problem below,

δn(S) ∶= inf
Ψ′∈C(S, Rn

)

Ψ∈C(Rn, V )

sup
u∈S

∥u −Ψ(Ψ′(u))∥, (5.5)

where C(X,Y ) denotes the collection of all continuous maps from X to Y . As we mentioned
in the Introduction, the above corresponds to the (continuous) Nonlinear Kolmogorov n-
width as defined in [54]. It is clear that dn(S) ≥ δn(S). Also, δn(S) is nonincreasing in
n, which reflects the fact that better approximations can be achieved in higher dimensional
spaces. However, in the context of reduced order modelling, smaller values of n are often
preferable, as they allow for less expensive models. In this sense, whenever there exists a
smallest dimension nmin that allows for an arbitrarily accurate reduction, i.e. δnmin

(S) = 0,
we may want to focus on that one. For this reason, we introduce the notation

nmin(S) ∶=min{n ∈ N ∣ δn(S) = 0},

were we adopt the convention min∅ = +∞. We refer to nmin(S) as to the minimal latent
dimension of S. Clearly, when V ≅ RNh is finite-dimensional, the above definition is of
interest only if nmin(S) ≪ Nh. Nevertheless, as we will see below, this is always the case
as soon as S has an intrinsic low-dimensional structure. Indeed, the value of nmin(S) is
strongly related to the topological properties of S. For instance, in the case of compact sets,
it is invariant under bicontinuous transformations. More precisely, we have the following.

Theorem 5.1. Let V and W be two Hilbert spaces. Let S ⊂ V andM ⊂W be two compact
subsets. If S and M are homeomorphic, then nmin(S) = nmin(M).

Proof. Since the situation is symmetric in S andM, it is sufficient to prove that nmin(S) ≥
nmin(M). If nmin(S) = +∞, the inequality is obvious. Hence, we assume there exists some
n ∈ N for which δn(S) = 0. By definition of infimum, there exists a sequence of encoding-
decoding pairs {(Ψ′j ,Ψj)}j≥0 in C(S,Rn)×C(Rn, V ) such that supu∈S ∥u−Ψj(Ψ′j(u))∥V → 0
as j → +∞. Let now ϕ ∶ S →M be bicontinuous (recall that the sets are homeomorphic).
Since S is compact, ϕ admits a uniformly continuous extension ϕ̃ ∶ V → W (cf. Theorem
1.12 in [18]). We are then allowed to consider the continuous maps Ψ̃j ∶= ϕ̃ ○Ψj ∶ Rn → W

and Ψ̃′j ∶= Ψ′j ○ ϕ−1 ∶M→ Rn. For ω a monotone modulus of continuity of ϕ̃, we have

δn(M) ≤ lim
j→+∞

sup
m∈M

∥m − Ψ̃j(Ψ̃′j(m))∥W =

= lim
j→+∞

sup
m∈M

∥m − ϕ̃(Ψj(Ψ′j(ϕ−1(m))))∥W =

= lim
j→+∞

sup
s∈S
∥ϕ̃(s) − ϕ̃(Ψj(Ψ′j(s)))∥W ≤

≤ lim
j→+∞

sup
s∈S

ω (∥s −Ψj(Ψ′j(s))∥V ) ≤

≤ lim
j→+∞

ω (sup
s∈S
∥s −Ψj(Ψ′j(s))∥V ) = 0,

as ω(h) ↓ 0 whenever h ↓ 0. This proves that δn(S) = 0 Ô⇒ δn(M) = 0 and hence
nmin(S) ≥ nmin(M).

The minimal latent dimension is also related to the so-called topological dimension, or
Lebesgue covering dimension. For a formal definition of the latter we refer to [56, 58]. In
particular, if S has an intrinsic p-dimensional structure, then we are able to bound nmin(S)
explicitly. Indeed, by classical results of Dimension Theory, the following theorem holds
true.
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Theorem 5.2. Let V be a Hilbert space and S ⊂ V a compact subset. If S has topological
dimension p, then nmin(S) ≤ 2p + 1, and the infimum appearing in (5.5) is attained at all
reduced dimensions n ≥ 2p + 1. Additionally, if S is a topological p-manifold, then the lower
bound nmin(S) ≥ p also holds.

Proof. We shall prove that δ2p+1(S) = 0, and that the infimum is attained. To this end, we
notice that S is compact and thus separable. Therefore, by the Menger–Nöbeling embedding
theorem (see Theorem 1.11.4 in [58]), there exists a subset A ⊂ R2p+1 and a bicontinuous
map ϕ ∶ S → A. By continuity, the set A is compact. In particular, ϕ−1 admits a continuous
extension Ψ ∶ A → V . The existence of such an extension can be argued as in the proof
Theorem 5.1, or using other results such as Dugundji extension theorem [57], with the
advantage of generalizing Theorem 5.2 to the case of normed spaces. Next, we define Ψ′ ∶= ϕ.
Then, the pair (Ψ′,Ψ) agrees with the definition of Nonlinear Kolmogorov n-width and it
also yields a perfect reconstruction of S. The first claim in the theorem follows. Assume
now that S is a p-manifold and let n < p. By definition, there exists a bicontinuous map ϕ
from the closed unit ball B ∶= {x ∈ Rp, ∣x∣ ≤ 1} to a certain compact subset U ⊆ S. Let

m ∶=min
∣x∣=1

∥ϕ(x) − ϕ(−x)∥.

Due to compactness, the minimum is attained and thus m > 0 (recall that ϕ is bijective). We
now prove that δn(S) ≥ m/2, and therefore nmin(S) ≥ p. Let Ψ′ ∶ S → Rn and Ψ ∶ Rn → V
be continuous. We note that the composition Ψ′ ○ ϕ is continuous from B ⊂ Rp → Rn.
Therefore, as n < p, by the Borsuk-Ulam theorem [28] we are granted the existence of a
point x∗ ∈ B, ∣x∗∣ = 1, for which Ψ′(ϕ(x∗)) = Ψ′(ϕ(−x∗)) =∶ z. It follows that,

sup
v∈S
∥v −Ψ(Ψ′(v))∥ ≥ sup

v∈U
∥v −Ψ(Ψ′(v))∥ = sup

x∈B
∥ϕ(x) −Ψ(Ψ′(ϕ(x)))∥ ≥

≥max {∥ϕ(x∗) −Ψ(Ψ′(ϕ(x∗)))∥, ∥ϕ(−x∗) −Ψ(Ψ′(ϕ(−x∗)))∥} ≥

≥ 1

2
∥ϕ(x∗) −Ψ(z)∥ + 1

2
∥ϕ(−x∗) −Ψ(z)∥ ≥ 1

2
∥ϕ(x∗) − ϕ(−x∗)∥ ≥ m

2
.

We mention that, in the particular case of p-manifolds and under suitable smoothness
assumptions, the bounds in Theorem 5.2 can be sharpened to nmin(S) ≤ 2p or even nmin(S) ≤
2p − 1 in case p is not a power of 2. These are all consequences of the so-called Whitney
embedding theorem and a few of its variants. We do not dive deeper into the matter but
leave [184] as a reference for the interested reader. We also note that the intrinsic dimension
of S does not uniquely determine the value of nmin(S). In particular, S may have topological
dimension p but nmin(S) > p, coherently with Theorem 5.2. In this respect, we report below
two simple examples.

Example 5.2. Let V = R2 and S = {x ∈ V ∶ ∣x∣ = 1} be the unit circle. Then, S is a
one-dimensional manifold but δ1(S) = 1 and nmin(S) = 2. To see this, consider any pair of
continuous maps Ψ′ ∶ S → R and Ψ ∶ R → R2. By the Borsuk-Ulam theorem, there exists a
point x ∈ S such that Ψ′(x) = Ψ′(−x). Therefore, being ∥ ⋅ ∥ = ∣ ⋅ ∣ the Euclidean norm,

sup
v∈S
∥v −Ψ(Ψ′(v))∥ ≥max{∣x −Ψ(Ψ′(x))∣, ∣ − x −Ψ(Ψ′(−x))∣} ≥

≥ 1

2
(∣x −Ψ(Ψ′(x))∣ + ∣ − x −Ψ(Ψ′(−x))∣) ≥ 1

2
∣x − (−x)∣ = 1.

As Ψ′ and Ψ are arbitrary, we conclude that δ1(S) ≥ 1. The equality is then obtained by
considering the case in which both Ψ′ and Ψ are identically zero.
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Figure 5.1: Reference picture for Example 5.3, Sec-
tion 5.2.1. In blue (dashed line), the curve µ →
(20µ3 − 30µ2 + 10µ, 2∣1 − 2µ∣ − 1), for 0 ≤ µ ≤ 1; in
red (straight line), the unit circle. The two curves are
clearly homeomorphic.

Example 5.3. On the spatial domain Ω = (0, π), consider the boundary value problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u′′ = −u x ∈ Ω
u(0) = 10(2µ3 − 3µ2 + µ)
u′(π) = 1 − 2∣1 − 2µ∣,

where µ ∈ [0,1] is a parameter. Let us then consider the solution manifold S = {uµ}µ∈[0,1]
as a subset of V = L2(Ω). Then, S is a 1-dimensional manifold but its minimal latent
dimension equals nmin(S) = 2. Indeed, explicitly expanding the solutions reads

uµ(x) = 10(2µ3 − 3µ2 + µ) cosx + (2∣1 − 2µ∣ − 1) sinx.

It is then clear that, up to scaling of the L2-norm, S can be isometrically identified with the
curve µ→ (20µ3−30µ2+10µ, 2∣1−2µ∣−1) in R2. But the latter curve is a compact manifold
with positive nonlinear Kolmogorov 1-width, as it is homeomorphic to the unit circle (see
Figure 5.1 and Theorem 5.1).

Remark. Here, we only considered the case of Hilbert spaces, which is the typical framework
used for elliptic PDEs. However, as mentioned in the proof of Theorem 5.2, many of the
above ideas and results can be adapted to the more general context of normed and Banach
spaces.

5.2.2 Application to parametrized PDEs
Let us now consider the case of a PDE that depends on a vector of p parameters. We fix a
parameter space Θ ⊂ Rp and a Hilbert state space V . As before, for each µ ∈ Θ we denote
the corresponding PDE solution with uµ. Similarly, we define S = {uµ}µ∈Θ. Notice that
we refer to S as the solution manifold even though, in fact, it is not granted that S is a
manifold in the topological sense. This latter property can be recovered under additional
hypotheses on the parameter space and the parametric map.

We consider the problem of finding a low-dimensional representation of S by means of
nonlinear reduction. In particular, we wish to compress S as much as possible without paying
in terms of accuracy, which corresponds to working with the minimal dimension nmin(S).
To this end, we must take into account the fact that the dimension of the parameter space
Θ influences the low-dimensional structure of S, in fact, the latter is ultimately defined in
terms of p scalar parameters.

Parallel to this, one may also exploit the parameters as additional tools during the
dimensionality reduction process. This corresponds to replacing the solution manifold with
the augmented set SΘ ∶= {(µ, uµ)}µ∈Θ ⊂ Rp × V , where µ appears explicitly. The following
Theorem provides some insights about both alternatives.
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Theorem 5.3. Let µ → uµ be a map from a compact set Θ ⊂ Rp to some Hilbert space V .
Define the sets S ∶= {uµ}µ∈Θ and SΘ ∶= {(µ, uµ)}µ∈Θ. We have the following:

a1) if the map µ→ uµ is Lipschitz continuous, then nmin(S) ≤ 2p + 1.

a2) if there exists at least an internal point µ0 ∈ Θ where the correspondence µ → uµ is
locally injective, then nmin(S) ≥ p.

a3) if the map µ→ uµ is continuous and injective, then nmin(S) = nmin(Θ). In particular,
nmin(S) = p whenever Θ has nonempty interior.

b1) if the map µ→ uµ is continuous, then nmin(SΘ) = nmin(Θ). In particular, nmin(SΘ) =
p whenever Θ has nonempty interior.

Proof. For the sake of brevity, let us define the map u ∶ Θ→ V as u(µ) ∶= uµ.

a1) Let dim(S) and dimH(S) be respectively the topological dimension (covering dimen-
sion) and the Hausdorff dimension of S. A result due to Sznirelman, see Theorem
2.43 in [56], ensures that dim(S) ≤ dimH(S). Since u is Lipschitz, we also have
dimH(S) = dimH(u(Θ)) ≤ dimH(Θ) ≤ p, as Θ ⊂ Rp and dimH is known to be Lips-
chitz subinvariant. Thus dim(S) ≤ p and the conclusion follows by Theorem 5.2 (notice
that, since Θ is compact and u is continuous, S is also compact).

a2) Let B ⊆ Θ be a closed ball centered at µ0 such that u∣B , the restriction of u to B,
is injective. Then, u∣B ∶ B → u(B) is a continuous bijection between compact metric
spaces, which is enough to grant the existence and the continuity of the inverse map
u−1
∣B . In particular, the sets B and u(B) are homeomorphic and, by Theorem 5.1,
p = nmin(B) = nmin(u(B)). Since nmin(u(B)) ≤ nmin(S), this proves (a2).

a3) As in the proof of a2), we notice that u admits a continuous inverse and is thus
an homeomorphism between Θ and S (which are both compact). Then, nmin(Θ) =
nmin(S) by Theorem 5.1. Finally, if Θ has nonempty interior, we may select a closed
ball B ⊆ Θ and notice that p = nmin(B) ≤ nmin(Θ) ≤ p Ô⇒ nmin(Θ) = p.

b1) Define the Hilbert space Ṽ ∶= Rp×V and the map U ∶ Θ→ Ṽ as U(µ) ∶= (µ, uµ). Then
U is both continuous and injective. Thus, by a3) we have nmin(Θ) = nmin(U(Θ)) =
nmin(SΘ).

Remark. Theorem 5.3 holds for a generic Hilbert-valued map, meaning that the correspon-
dence µ → uµ needs not to involve the solution of a PDE. Because of this generality, some
hypotheses cannot be weakened. For instance, one cannot replace the requirement of Lip-
schitz continuity in statement (a1) with continuity, mainly because of space-filling curves.
As a counterexample, consider the Hilbert space of real square summable sequences, V = ℓ2.
Then, by a straightforward application of the Hahn–Mazurkiewicz theorem (see Theorem
3-30 in [86]), there exists a continuous map from the unit interval to ℓ2 whose image S is
the so-called Hilbert cube, informally S = ∏+∞n=1[0,1/n]. Therefore, being Θ ∶= [0,1] the
parameter space, we have a case in which p = 1 but nmin(S) = +∞. In fact, for each n ∈ N,
the Hilbert cube contains an homeomorphic copy of the n-dimensional unit cube In. Thus,
n = nmin(In) ≤ nmin(S) for all n ≥ 0 and so nmin(S) = +∞.

Before moving to the actual description of our Deep Learning approach, we conclude this
Section with a practical application of the results we have presented so far. In particular,
we focus on the case of second order elliptic PDEs.
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Second Order Elliptic PDEs

In order to state the main result, we first provide some notation. We denote by Ω a bounded
domain in Rd and by ⋅ the scalar product in Rd. For 1 ≤ q < +∞, we denote by Lq(Ω) the
Lebesgue space of q-integrable real-valued maps; when q = +∞, L∞(Ω) is defined as the
Banach space of essentially-bounded maps. Similarly, we define the spaces Lq(Ω,Rd) and
Lq(Ω,Rd×d) in the Bochner sense, where Rd is considered with the Euclidean norm ∣ ⋅ ∣ and
Rd×d with the operator norm, ∣A∣Rd×d ∶= sup∣ξ∣=1 ∣Aξ∣. Given k ∈ N, 1 ≤ q < +∞, we write
W k,q(Ω) for the Sobolev space of all w ∈ Lq(Ω) that are k-times weakly differentiable with
derivatives in Lq(Ω). We use W k,q

0 (Ω) to denote the subspace of all w ∈ W k,q(Ω) that
vanish on ∂Ω, and we write W −k,q(Ω) for the dual space of W k,q

0 (Ω) with respect to the
duality product ⟨f, g⟩→ ∫Ω fg. In order to prescribe Dirichlet boundary data, we also make
use of the Sobolev-Slobodeckij spaces W s,q(∂Ω), where s > 0 is typically not an integer. All
the aforementioned spaces are considered with their usual norms, see e.g. [60].

We define the sets of all admissible conductivity tensor-fields and transport fields, re-
spectively Σ(Ω) ⊂ L∞(Ω,Rd×d) and B(Ω) ⊂ L∞(Ω,Rd×d), as follows. We let σ ∈ Σ(Ω) if
and only if it is uniformly elliptic, that is, there exists ε > 0 such that for almost all x ∈ Ω
one has σ(x)ξ ⋅ ξ ≥ ε∣ξ∣2 for all ξ ∈ Rd. We let b ∈ B(Ω) if and only if it is differentiable and
divergence free, that is, b ∈ C1(Ω,Rd) and ∇ ⋅ b = 0 in Ω. We endow both Σ(Ω) and B(Ω)
with the infinity norm ∥ ⋅ ∥∞. We are now able to state the following.

Theorem 5.4. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary, and let Θ ⊂ Rp be
a compact subset with nonempty interior. Let q ≥ 2d/(d+2) be finite, and define the conjugate
exponent q′ ∶= q/(q − 1). Moreover, let µ→ σµ ∈ Σ(Ω), µ→ bµ ∈ B(Ω), µ→ fµ ∈W −1,q′(Ω)
be parameter dependent coefficients and µ → gµ ∈ W 1/q′,q(∂Ω) boundary data. For each
µ ∈ Θ, we define uµ ∈W 1,q(Ω) as the unique solution to the following second order elliptic
PDE

u ∈W 1,q(Ω) ∶

u∣∂Ω = gµ and ∫
Ω
σµ∇u ⋅ ∇w + ∫

Ω
(bµ ⋅ ∇u)w = ∫

Ω
fµw ∀w ∈W 1,q′

0 (Ω),

Consider the solution manifold S ∶= {uµ}µ∈Θ as a subset of V ∶= L2(Ω). The following hold
true:

i) if the dependence of σµ, bµ, fµ, gµ on µ is Lipschitz continuous, then nmin(S) ≤ 2p+1.

ii) if σµ, bµ, fµ, gµ depend continuously on µ and the solution map µ → uµ is one-to-
one, then nmin(S) = p.

Additionally, let SΘ ∶= {(µ, uµ)}µ∈Θ ⊂ Rd × V be the augmented manifold. Then:

iii) if σµ, bµ, fµ, gµ depend continuously on µ, then nmin(SΘ) = p.

Proof. First of all, we notice that if the data σµ,bµ, fµ, gµ depend continuously on µ,
then so does uµ ∈ W 1,q(Ω). This is easily proven by composition (cf. Lemma 5.3 in the
Appendix). Also, the compactness of Θ implies that of the subsets

{σµ}µ∈Θ ⊂ Σ(Ω), {bµ}µ∈Θ ⊂ B(Ω),

{fµ}µ∈Θ ⊂W −1,q′(Ω), {gµ}µ∈Θ ⊂W 1/q′,q(∂Ω).

Therefore, whenever the coefficients and the boundary data are Lipschitz continuous in
µ, so is the solution map Θ → W 1,q(Ω) (by composition, cf. Lemma 5.3). Finally, since
q ≥ 2d/(d + 2), we have the embedding W 1,q(Ω) ↪ L2(Ω) according to classical Sobolev
inequalities (cf. Theorem 5.4 in [2]). In particular, all the aforementioned properties are
preserved if we consider the parametric map as taking values in V ∶= L2(Ω). Statements (i),
(ii) and (iii) now directly follow from Theorem 5.3.
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Remark. In Theorem 5.4, the PDE is firstly solved in the Banach space W 1,q(Ω) and the
solution manifold is then embedded in the Hilbert space L2(Ω). This construction allows
for a large spectrum of PDEs where the solution uµ may exhibit singularities. A remarkable
example is found for the dimensions d = 2,3, where singular forces such as Dirac delta
functions produce solutions uµ ∉H1(Ω) ∶=W 1,2(Ω) [34]. In these cases, the above Theorem
still applies, e.g. with q′ = 4 and q = 4/3 (cf. Morrey embedding). Nevertheless, we shall
point out that in the Hilbert case, q′ = q = 2, it is possible to restrict the state space to
V = H1(Ω) ⊂ L2(Ω). Note also that in this case the condition q ≥ 2d/(d + 2) is trivially
satisfied for all d ≥ 1, coherently with the fact that H1(Ω) always embeds in L2(Ω).

5.3 Learning the solution manifold by means of neural
networks

We now present our Deep-Learning approach to Reduced Order Modelling (DL-ROM).
We shall first demonstrate the general idea, discussing both the theoretical and numerical
properties of the DL-ROM. Then, respectively in Sections 5.3.1 and 5.3.2, we will dive deeper
into the design choices for the nonlinear dimensionality reduction and the approximation of
the reduced map. For all the basic definitions concerning neural networks and their training,
we refer to the introductory Chapter at the beginning of the dissertation.

We are given a parameter space Θ ⊂ Rp, a parameter dependent PDE and a high-fidelity
FOM µ→ uhµ ∈ RNh . Our purpose is to approximate the solution map by means of a suitable
neural network Φ ∶ Rp → RNh . For the sake of simplicity, through the whole section, we
make the following assumption.

Assumption 5.2. All DNNs use the same activation function ρ ∶ R → R for the hidden
layers, where ρ is Lipschitz continuous and not a polynomial. The parameter space Θ is
compact and the parametric map µ→ uhµ is continuous.

A typical activation function satisfying the above requirements is the so-called α-leaky
ReLU, i.e. ρ(x) = x1[0,+∞)(x) + αx1(−∞,0)(x) where α > 0 is fixed. In order to build Φ, we
mimic the two steps paradigm of the Reduced Basis method, yielding the workflow depicted
in Figure 5.2. This corresponds to introducing the three networks below,

Ψ′ ∶ RNh → Rn, Ψ ∶ Rn → RNh

ϕ ∶ Rp → Rn.

The first two, respectively the encoder Ψ′ and the decoder Ψ, serve for the nonlinear di-
mensionality reduction of the solution manifold Sh ∶= {uhµ}µ∈Θ ⊂ RNh , which we map onto
Rn. According to our previous analysis, we set the latent dimension to be n ∶= nmin(Sh).
As discussed in Theorem 5.3, this often translates to n ≤ 2p + 1, resulting in a massive re-
duction whenever p≪ Nh. The purpose of the third network is to approximate the reduced
parametric map Rp ∋ µ → Ψ′(uhµ) ∈ Rn, so that the final ROM is obtained by composition
of ϕ and Ψ.

At the very end, the role of the encoder Ψ′ is only auxiliary as the DL-ROM ultimately
results in a single network Φ ∶= Ψ ○ ϕ. However, we believe that our construction signifi-
cantly facilitates the practical problem of designing the architectures. This is because the
three networks have very different purposes. Ψ′ and Ψ are required to learn the intrinsic
characteristics of the solutions, so their complexity is related to the richness of the solution
manifold and the geometrical properties of the solutions. Conversely, ϕ needs to understand
the interplay between solutions and parameters, which can result in a very complicated
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Chapter 5. A Deep Learning approach to Reduced Order Modeling of PDEs

Figure 5.2: Workflow of the DL-ROM approach. The whole process consists of three neural networks,
Ψ′, Ψ and ϕ. First, the autoencoder Ψ ○ Ψ′ learns to compress and reconstruct the solution manifold by
exploiting the available highfidelity snapshots (step 1). This allows the encoder to yield a low-dimensional
representation of the solutions, uh

µ ∈ RNh → un
µ ∶= Ψ′(uh

µ) ∈ Rn. Then, ϕ is trained to learn the reduced
map µ → un

µ (step 2). Finally, the composition Φ ∶= Ψ ○ ϕ defines the DL-ROM approximation of the
parameter-to-state map (step 3).

relation even if the solution manifold is fairly simple (e.g. linear). As the design of DNN
architectures is still far from obvious, we believe that this perspective can be of help in
practical implementations. Nonetheless, this splitting of the ROM also allows for a few
considerations on the numerical errors, as we shall discuss at the end in Section 5.3.3.

5.3.1 Dimensionality reduction
We propose two alternative ways for compressing the solution manifold. The first one is
completely unsupervised, in the sense that it only operates on the solutions irrespectively
of the parameter values, and it is based on the use of autoencoders. The second one is a
variation of the previous where we explicitly include µ in the encoding process. We detail
them below.

Autoencoder approach

According to the reasoning in Section 5.3, we let n ∶= nmin(Sh) and we introduce two DNN
architectures, an encoder Ψ′ ∶ RNh → Rn and a decoder Ψ ∶ Rn → RNh , which we design as
follows. In principle, the encoder can be very simple, as its only purpose is to provide a
different representation for each solution. The hard job is left to the decoder that needs to
perform the reconstruction. In this sense, a plain design choice can be Ψ′(u) ∶= ρ (Wu + b),
i.e. to use a degenerate architecture with no hidden layers. Conversely, designing the decoder
requires a little extra caution. If Ω is an hypercube, a good choice is to employ dense layers
at the beginning and conclude with a block of convolutional layers, as in [70, 118]. This
allows the decoder to account for spatial correlations and be sufficiently expressive without
growing too much in complexity (for now, this is just a rule of thumb suggested by the
intuition, however we shall make it rigorous in the next Chapter, see Theorem 6.1). Indeed,
convolutional layers have been proven to be very effective in image reconstruction tasks,
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and we see a clear analogy with our setting when Ω is an hypercube. More complicated
geometries may require different strategies, but the terminal part of the decoder should still
consist of sparse layers of some sort, such as those in Graph Convolutional Networks [172]
or Mesh-Informed Neural Networks, see Chapter 7. The expressiveness of the decoder may
be increased in several ways. Empirically, we see that interesting results can be obtained
for fixed depths but varying number of channels in the convolutional layers. Once again,
we shall justify this fact in the next Chapter, Theorem 6.1.

After having fixed the DNN architecture, we optimize the autoencoder by minimizing
the loss function below

L (Ψ′,Ψ) = 1

Ntrain

Ntrain

∑
i=1

ℓ(uhµi
, Ψ(Ψ′(uhµi

))),

where ℓ is a suitable measure of discrepancy. A classical choice is to consider squared errors,
ℓ(y, ŷ) = ∥y − ŷ∥2, in order to favor differentiability of the loss function. However, other
metrics, such as relative errors ℓ(y, ŷ) = ∥y−ŷ∥/∥y∥, can be used as well. The minimization of
the loss function is handled via stochastic gradient descent, mainly using batching strategies
and first order optimizers. For further details about the training of DNN models, we refer
to the preliminary Chapter at the beginning of the dissertation.

Transcoder-decoder approach

As an alternative, we also propose a different architecture where the encoder is replaced
with a transcoder Ψ′µ ∶ Rp × RNh → Rn. The idea is to facilitate the encoding by making
explicitly use of the parameters, so that different solutions are more likely to have different
latent representations. This is clearly linked with Theorem 5.3.b1, and has the advantage
of always enabling a maximal reduction, as we can now set n = p = nmin({µ,uhµ}µ∈Θ). We
define the decoder exactly as before, so that uhµ ≈ Ψ(Ψ′µ(µ,uhµ)). We refer to the combined
architecture, Ψ ○ Ψ′µ, as to a transcoder-decoder. In practice, the transcoder-decoder is
analogous to an autoencoder but has p additional neurons in the input layer, which is where
we pass the parameters. To design the architectures, we follow the same rule of thumb as
before. In general, we give more weight to the decoder, where we employ deep convolutional
networks, while we use lighter architectures for the transcoder. For instance, in the limit
case of 0-depth, the latter becomes of the form Ψ′µ(µ,u) = ρ (W′µ +Wu + b). During the
offline stage, the transcoder-decoder is trained over the snapshots by minimizing the loss
function below,

L (Ψ′µ,Ψ) =
1

Ntrain

Ntrain

∑
i=1

ℓ(uhµi
, Ψ(Ψ′µ(µi,uhµi

))),

where ℓ is as before. The two approaches, autoencoder and transcoder-decoder, adopt
different perspectives and provide different advantages. The first one is completely based on
the solution manifold, so it is likely to reflect intrinsic properties of Sh. On the other hand,
the transcoder-decoder ensures a maximal compression, the latent dimension being always
equal to p. In particular, the latent coordinates can be seen as an alternative parametrization
of the solution manifold. In this sense, we say that Ψ′µ performs a transcoding.

5.3.2 Approximation of the reduced map
The second step in the DL-ROM pipeline is to approximate the reduced map Rp ∋ µ →
unµ ∈ Rn, where either unµ ∶= Ψ′(uhµ) or unµ ∶= Ψ′µ(µ,uhµ), depending on the adopted ap-
proach. As we noted in Section 5.3, the reduced map is continuous, as it is given by the
composition of µ → uhµ and Ψ′ (resp. Ψ′µ), hence it can be approximated uniformly by
some ρ-DNN ϕ ∶ Rp → Rn. In general, we do not impose a particular structure on ϕ, rather
we use a generic fully connected network with dense layers. To design the architecture in
terms of number of layers and neurons, we rely on Theorem 5.5 (next subsection) and on the

75



Chapter 5. A Deep Learning approach to Reduced Order Modeling of PDEs

Algorithm 5.1: DL-ROM training.

Input : Training snapshots {µi,uhµi
}Ni=1, reduced dimension n, optimizers

Optimizer1, Optimizer2, number(s) of epochs E1, E2, batch size(s) S1,
S2, encoding type useparameters (boolean), discrepancy measures ℓ1, ℓ2.

Output: Neural network Φ approximating the parametric map.

Ψ′0,Ψ0 ← Initialize encoder/transcoder and decoder with latent dimension n
e← 0 Initialize epochs counter
B1 ← N/S1 // number of batches
if useparameters then

vi ← [µi,uhµi
] // transcoder case

else
vi ← uhµi

// encoder case
end
while e < E1 do

shuffle training data {vi,uhµi
}Ni=1;

for m = 1 ∶ B1 do

vbatch ← [v(m−1)S1+1, ..,vmS1]

ubatch ← [uhµ(m−1)S1+1
, ..,uhµmS1

]

loss ← 1
S1
∑S1

i=1 ℓ1 (ubatch
i ,ΨeB1+m−1(Ψ′eB1+m−1

(vbatch
i )))

Ψ′eB1+m
,ΨeB1+m ← Optimizer1(loss,Ψ′eB1+m−1

,ΨeB1+m−1)
end
e← e + 1

end

ϕ0 ← Initialize reduced map DNN
e← 0 Reset epochs counter
B2 ← N/S2 // number of batches
unµi
← Ψ′(vi) // define training data for ϕ

while e < E2 do

shuffle training data {µi,unµi
}Ni=1;

for m = 1 ∶ B2 do

µbatch ← [µ(m−1)S2+1, ..,µmS2
]

un,batch ← [unµ(m−1)S2+1
, ..,unµmS2

]

loss ← 1
S2
∑S2

i=1 ℓ2 (u
n,batch
i , ϕeB2+m−1(µbatch

i ))

ϕeB2+m ← Optimizer2(loss, ϕeB2+m−1)
end
e← e + 1

end

Φ← ΨE1B1 ○ ϕE2B2

return Φ
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underlying theoretical results available in the literature, e.g. [27, 52, 79, 153, 157, 182]. In
order to train ϕ we minimize the objective function below

L (ϕ) = 1

Ntrain

Ntrain

∑
i=1

ℓ(unµi
, ϕ(µi))

where, once again, ℓ is some discrepancy measure (this time having inputs in Rn × Rn).
Notice that the optimization of the above only involves ϕ, as the weights and biases of Ψ′

(resp. Ψ′µ) are frozen. At the end of the whole process, which we summarized in Algorithm
1, we let Φ ∶= Ψ ○ ϕ.

Now the DL-ROM is fully operational, and for each new µ ∈ Θ we can approximate online
the corresponding solution Φ(µ) ≈ uhµ almost effortlessly, with very little computational cost.
Also, the model can be efficiently evaluated on multiple parameter values simultaneously.
In fact, as DNNs are ultimately based on elementary linear algebra, it possible to stack
together multiple parameter vectors M = [µ1, . . . ,µl] in a single matrix and directly return
the corresponding list of ROM approximations Φ(M) ≈ [uh1 , . . . ,uhl ].

Remark. We mention that, in the case n = p, an interesting alternative for ϕ could be pro-
vided by the so-called ODE-nets [40]. In fact, if the reduced map happens to be injective,
then Θ and {unµ}µ∈Θ define two homeomorphic sets of coordinates. Even though homeomor-
phisms can be approximated by classical DNNs, we note that fully connected unconstrained
networks can easily result in noninvertible models. In this sense, an alternative architecture
which ensures the existence and continuity of ϕ−1 would be appealing. ODE-nets enjoys
such property and have been proven to be universal approximators for homeomorphisms
[205]. However, the development and implementation of ODE-nets is still in its infancy so
we did not investigate this further.

5.3.3 Error analysis
We conclude this Section with some considerations about the numerical errors entailed by
the DL-ROM approach. We notice that, due to assumption (5.2), all the networks in the DL-
ROM pipeline are Lipschitz continuous. Also, without loss of generality, we can assume that
Ψ has a Lipschitz constant equal to 1. In fact, for any C > 0, the maps Ψ̃′(x) ∶= CΨ′(x)
and Ψ̃(x) ∶= Ψ(x/C) define the same autoencoder as Ψ′ and Ψ. As a consequence, the
worst-case approximation error of the DL-ROM

EA ∶= sup
µ∈Θ
∥uhµ −Ψ(ϕ(µ))∥,

can be bounded as EA ≤ ER + EP , the latter being respectively the reconstruction error and
the parametric error,

ER ∶= sup
uh∈Sh

∥uh −Ψ(Ψ′(uh))∥, EP ∶= sup
µ∈Θ
∣Ψ′(uhµ) − ϕ(µ)∣.

where ∣ ⋅ ∣ is the Euclidean norm, while we recall that ∥ ⋅ ∥ comes from the metric originally
chosen over the state space Vh ⊂ V . In fact,

sup
µ∈Θ
∥uhµ −Ψ(ϕ(µ))∥ ≤ sup

µ∈Θ
∥uhµ −Ψ(Ψ′(uhµ))∥ + sup

µ∈Θ
∥Ψ(Ψ′(uhµ)) −Ψ(ϕ(µ))∥ ≤

≤ sup
uh∈Sh

∥uh −Ψ(Ψ′(uh))∥ + sup
µ∈Θ
∣Ψ′(uhµ) − ϕ(µ)∣.

We remark that both ER and EP can be made arbitrarily small. In fact, as proven by Pinkus
back in 1999 [159], DNNs are dense in the space of continuous functions defined over compact
domains (note that here our assumption on ρ is crucial). Therefore, since Θ is compact and
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µ→ Ψ′(uhµ) is continuous, the parametric error can become as small as possible. Similarly,
the reconstruction error can get closer and closer to the limit value δn(Sh) = 0. In fact, we
can approximate the reconstruction provided by any two continuous maps Ψ′∗ ∶ Sh → Rn
and Ψ∗ ∶ Rn → RNh using DNNs. To see this, fix any ε > 0 and let V ∶= Ψ∗(Sh) be the
embedded solution manifold. Since V is compact, the aforementioned density result ensures
the existence of some DNN Ψ that approximates Ψ∗ over V upto an error of ε. Similarly,
there exists a DNN Ψ′ that approximates Ψ′∗ over Sh upto an error of ε/C, where C > 0 is
the Lipschitz constant of Ψ. Then, for any uh ∈ Sh one has

∥uh −Ψ(Ψ′(uh))∥ ≤
≤ ∥uh −Ψ∗(Ψ′∗(uh))∥ + ∥Ψ∗(Ψ′∗(uh)) −Ψ(Ψ′∗(uh))∥ + ∥Ψ(Ψ′∗(uh)) −Ψ(Ψ′(uh))∥ ≤

≤ ∥uh −Ψ∗(Ψ′∗(uh))∥ + ε +C ∣Ψ′∗(uh)) −Ψ′(uh)∣ ≤
≤ ∥uh −Ψ∗(Ψ′∗(uh))∥ + 2ε.

This shows that ER can reach the limit value δn(Sh). In particular, since we decided to let
n = nmin(Sh), the reconstruction error can get arbitrarily close to zero.

In general, all these considerations suggest a two-step approach where we first train the
autoencoder Ψ○Ψ′ and then the reduced map ϕ, as we discussed in Sections 5.3.1 and 5.3.2.
Nevertheless, an additional analysis about the networks complexity is needed. In fact, while
the DL-ROM can reach any level of accuracy, the size of the networks involved may grow
quickly, making their optimization problematic. The result below provides a first answer to
such question.

Theorem 5.5. Under Assumption 5.2, let ρ be the ReLU activation function. Assume that
the map µ → uhµ is Lipschitz continuous for some constant L > 0, and that the infimum in
(5.5) is attained, i.e. there exists two continuous maps Ψ′∗ ∶ RNh → Rn and Ψ∗ ∶ Rn → RNh

such that
Ψ∗(Ψ′∗(u)) = u ∀u ∈ Sh.

Additionally, assume that Ψ′∗ and Ψ∗ are s-times differentiable, s ≥ 2, and have bounded
derivatives. Let

C1 = sup
∣α∣≤s

sup
u∈RNh

∣DαΨ′∗(u)∣, C2 = sup
∣α∣≤s

sup
ν∈Rn

∥DαΨ∗(ν)∥.

For any 0 < ε < 1, let m ∈ N be the first integer for which dm(Sh) < ε. Then, for some
constant c = c(Θ, L,C1,C2, p, n, s), there exists a DL-ROM with a decoder Ψ having at most

i) cm1+n/(s−1)ε−n/(s−1) log(m/ε) +mNh active weights

ii) c log(m/ε) layers

and a reduced map ϕ having at most

iii) cε−p log(1/ε) active weights

iv) c log(1/ε) layers

such that the approximation error satisfies EA < 2ε.

Proof. Let V ∶= Ψ′∗(Sh) ⊂ Rn be the embedded solution manifold. The latter is a compact
subset of diameter at most diam(V) ≤ LC1diam(Θ). Let m be as in the Theorem. Then
there exists an orthonormal matrix V ∈ RNh×m such that ∥u −VVTu∥ < ε for all u ∈ Sh.
Define F ∶ Rn → Rm as F (ν) ∶=VTΨ∗(ν). Then F is s-times differentiable and

sup
ν∈V
∣DαF (ν)∣ ≤ sup

ν∈V
∥DαΨ∗(ν)∥ ≤ C2,
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for any multi-index α with 0 ≤ ∣α∣ ≤ s. In particular, as a direct consequence of Theorem
4.1 in [78], there exists a ReLU DNN ψ ∶ Rn → Rm of depth at most C log(m/ε) and active
weights at most mC(mε)−n/(s−1) log(m/ε) such that for all j = 1, . . . ,m one has

sup
ν∈V
∣Fj(ν) − ψj(ν)∣ ≤

ε

2m
, ess sup

ν, ν′∈V

∣(Fj − ψj)(ν) − (Fj − ψj)(ν′)∣
∣ν − ν′∣

≤ ε

2m

where C > 0 is a constant depending on C2, n, s and diam(V) (thus on Θ, L and C1), wherease
Fj and ψj are the jth components of the two vector-valued maps. In particular, we also
have a control on the Lipschitz constant of ψ, which we can bound by C2 + ε/(2m) ≤ C2 + 1.
We now define the decoder DNN Ψ(ν) ∶= Vψ(ν) as a network with no activation on the
output layer, so that for any ν ∈ V we have

∥Ψ∗(ν) −Ψ(ν)∥ ≤ ∥Ψ∗(ν) −VVTΨ∗(ν)∥ + ∥VVTΨ∗(ν) −Ψ(ν)∥ ≤

≤ ε + ∣F (ν) − ψ(ν)∣ ≤ 3

2
ε

as Ψ∗(ν) ∈ Sh. Clearly, Ψ has the same depth of ψ up to one layer, and it comes with mNh
additional weights. Define now ϕ∗ ∶ Rp → Rn as ϕ∗(µ) ∶= Ψ′∗(uhµ). Then ϕ∗ is Lipschitz
continuous with constant at most equal to LC1 and is bounded in norm by C1. Thus, we
can apply again Theorem 4.1 in [78], this time with respect to the infinity norm, to obtain
a DNN ϕ ∶ Rp → Rn such that for all µ ∈ Θ

∣ϕ∗,j(µ) − ϕj(µ)∣ <
ε

2n(C2 + 1)
∀j = 1, . . . , n

where ϕ has at most nC̃(nC2ε)−p log(nC2/ε) weights and at most C̃ log(nC2/ε) layers, C̃
being a constant only dependent on Θ, L and C1. In particular, if we let C̃ absorb the
dependence with respect to n and C2, and we set c ∶= max{C, C̃}, then the architectures
of Ψ and ϕ satisfy the claimed requirements. Finally, we note that uhµ = Ψ∗(Ψ′∗(uhµ)) =
Ψ∗(ϕ∗(µ)), due to our hypothesis on the perfect embedding. Therefore, the approximation
error for the DL-ROM with decoder Ψ and reduced map ϕ is bounded by

EA ≤ sup
µ∈Θ
∥Ψ∗(ϕ∗(µ)) −Ψ(ϕ∗(µ))∥ + sup

µ∈Θ
∥Ψ(ϕ∗(µ)) −Ψ(ϕ(µ))∥ ≤

≤ sup
ν∈V
∥Ψ∗(ν) −Ψ(ν)∥ + (C2 + 1) sup

µ∈Θ
∣ϕ∗(µ) − ϕ(µ)∣ ≤

≤ 3

2
ε + (C2 + 1) ε

2(C2 + 1)
= 2ε.

Theorem 5.5 suggests that the DL-ROM approach can take advantage of intrinsic regularities
in the solution manifold, even if the parameter-to-solution map is just Lipschitz continuous.
This situation reflects the case in which although the solutions depend in a complicated way
with respect to the parameters, the solution operator has good analytical properties. For
instance, it is known that the solution operator of elliptic PDEs is analytic with respect to
the coefficients [8, 88]. Thus, we can think of µ → ϕ(µ) as a change of coordinates that
enables a smooth description of the solutions.

Secondly, we note that an important role is played by the parameter m. This is in
agreement with other results in the literature, see e.g. Theorem 4.3 in [112], and it suggests
a link between the DL-ROM complexity and the linear Kolmogorov m-width. We may
interpret m as an equivalent linear dimension: in fact, the DL-ROM accuracy in Theorem
5.5 is roughly equivalent to the optimal one achievable via projections on m-dimensional
subspaces. In this sense, we can think of m as being the number of modes in a Reduced Basis
approach or, analogously, the number of trunk nets in a DeepONet based ROM [126, 115].
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In the case of DL-ROMs, the value of m does not affect the latent dimension but has an
impact on the DNNs complexity: the slower dm(Sh) decays, the more degrees of freedom
in the DNN architecture and, consequently, the higher the number of training snapshots
required for the optimization. Conversely, if the linear width decays mildly, then a mix of
linear and nonlinear reduction may be an interesting choice, as in the recently proposed
POD-DL-ROM approach [71].

Nevertheless, we mention that the complexity bounds for the decoder are suboptimal in
the way they include the FOM dimension Nh. In fact, the extra contribute mNh comes from
the choice of considering the state space Vh as consisting of vectors rather than functions.
In particular, we expect that better estimates can be found if the solutions are smooth
with respect to the space variable x ∈ Ω. This goes in favor of architectures that explicitly
account for space dependency, such as convolutional layers (see the next Chapter), or even
mesh-free approaches, such as DeepONets.

5.4 Numerical experiments

We now present some numerical results obtained with our DL-ROM approach. So far, neural
networks have shown remarkable performances in the approximation of the parametric map
at least in those contexts where classical POD-based methods succeed, e.g. [24, 72]. There
is now an increasing interest in understanding how and if NNs can be of help in more
challenging situations. In the case of transport problems, some theoretical and numerical
results are now appearing in the literature, see respectively [113] and [70].

Here, we focus on parameter dependent second order elliptic PDEs, which can considered
as a prototypical class of problems for forthcoming applications. The first test case concerns
an advection-diffusion problem with a singular source term. The PDE depends on 7 scalar
parameters which affect the equation both in a linear and nonlinear fashion. We consider
two variants of the same problem, one of which is transport-dominated. The idea is to study
the behavior of the DL-ROM when dealing with space singularities, as that is a feature also
shared by the oxygen transfer model in Section 4.1.

As second test case, we consider a stochastic Poisson equation. The main difference with
respect to the previous case is that the equation is parametrized by a stochastic process, with
PDE formally depending on an infinite-dimensional parameter. In order to apply the DL-
ROM approach, we consider a suitable truncation of the Karhunen–Loève expansion of the
stochastic process. In this case, the problem under study can be seen as a prototype model
for diffusion phenomena in porous media, which is the typical mathematical framework
encountered when describing the perfusion of organs at the macroscale [168].

In all our experiments we consider V = L2(Ω) as state space, and we quantify the ROM
performance via the Mean Relative Error (MRE)

Eµ∼P [
∥uhµ −Φ(µ)∥L2(Ω)

∥uhµ∥L2(Ω)

] , (5.6)

where Φ = Ψ ○ ϕ is the DL-ROM network, and P is some probability measure defined
over the parameter space Θ. We estimate (5.6) with a Monte Carlo average computed
over 1000 unseen snapshots (test set). To evaluate whether there is a gap in performance
between training and testing, we also compute the MREs over the training set. For an easier
comparison, in all our experiments, we fix the latter to have size Ntrain = 9000.

We highlight that, differently from our worst-case approach in Sections 5.2 and 5.3,
Equation (5.6) adopts a probabilistic perspective in evaluating the model performance. As
this is a common choice in many applications, see e.g. [72, 70, 136], we have decided to
adopt it for our numerical experiments. Additionally, resorting to expectations rather than
suprema, allows us to handle general unbounded parameter spaces. In fact, our theoretical
results can be easily extended to such settings if one adopts a probabilistic perspective. We
shall briefly comment on this fact when discussing our second experiment, Section 5.4.2.
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Figure 5.3: Decomposition of the unit square
Ω = (0,1)2 according to the conventions
adopted in the first numerical experiment, Sec-
tion 5.4.1.

All our experiments were implemented in Python 3 and ran over GPUs. Specifically, we
used the FEniCS library1 to run the FOMs and obtain the high-fidelity snapshots, while
the construction and the training of the DL-ROM was handled in Pytorch2.

5.4.1 Stationary advection-diffusion with singular source

Problem definition

On the spatial domain Ω = (0,1)2, we define the subdomains {Ωi}4i=0 as in Figure 5.3. We
consider the following parameter dependent PDE in weak form

1

10
∫
Ω0

∇u ⋅ ∇w +
4

∑
i=1
∫
Ωi

µi∇u ⋅ ∇w +C ∫
Ω
(cosµ5

∂u

∂x1
w + sinµ5

∂u

∂x2
w) =

= w(µ6, µ7) ∀w ∈ C∞0 (Ω)

with Dirichlet boundary condition u∣Ω = 1. The above corresponds to a stationary advection-
diffusion equation where: the conductivity field σµ ∶= 0.1 +∑4

i=1 µi1Ωi is piecewise constant
with values that change parametrically within the circular subdomains; the transport field
bµ ∶= (C cosµ5,C sinµ5) has a parametrized direction while it is uniform in space and
has a fixed intensity C > 0; finally, the source term fµ is a Dirac delta located at the
parameter dependent coordinates (µ6, µ7). Globally, the PDE depends on 7 parameters
that we consider to be varying in the parameter space Θ = [0,1]4×[0,2π]×[0.1,0.9]2, which
we endow with a uniform probability distribution P. We note that the PDE does not admit
solutions in H1(Ω) because of the singularity introduced by the Dirac delta. Nevertheless,
the variational problem is well-posed in the Banach space W 1,4/3(Ω)↪ L2(Ω), see e.g. [34].
We are hence allowed to consider the solution manifold S ∶= {uµ}µ∈Θ as a subset of the
Hilbert space L2(Ω).

We analyze two different settings. In the first case we fix the transport field intensity
to be C = 0.5, so that the diffusion and the advection act over the same scale. Then, we
consider a transport-dominated case where C = 40.

1https://fenicsproject.org/
2https://pytorch.org/

81



Chapter 5. A Deep Learning approach to Reduced Order Modeling of PDEs

Discretization and Full Order Model

As FOM, we employ Lagrange piecewise linear finite elements over a triangular mesh. Prior
to the discretization, we provide a Gaussian approximation of the Dirac delta as

f ϵµ(x1, x2) ∶=
1

2πϵ2
exp(−(x1 − µ6)2 − (x2 − µ7)2

2ϵ2
) .

We shall write uϵµ for the solutions of this smoothed problem and Sϵ for the corresponding
solution manifold. We see that the following claim holds (for the details see the Appendix,
Section 5.7)

Claim 1. supµ∈Θ ∥uµ − uϵµ∥L2(Ω) → 0 as ϵ→ 0.

In particular, Sϵ approximates S uniformly. From here on, we shall fix ϵ = 1/420 and
formally replace S with Sϵ. Next, we discretize the variational problem through P1-Finite
Elements over a triangular mesh. Using the classical estimates from the FEM theory, e.g.
[163], it is not hard to see that Assumption 5.1 is satisfied within the state space L2(Ω).
Here, we fix the mesh size to be h = 1/210, which results in a high-fidelity space Vh ≅ RNh

of dimension Nh = 44521. We exploit the FOM to generate respectively Ntrain = 9000 and
Ntest = 1000 random snapshots.

DL-ROM design and training

In the construction of the DL-ROM, we do not make a distinction between the case of
mild and strong advection, respectively C = 0.5 and C = 40. In this way, we can see more
clearly whether the intensity of the transport field affects the ROM performance. For the
dimensionality reduction, we explore both the two alternatives presented in Section 5.3.1.
For the autoencoder, we choose to consider the original solution manifold as a reference for
the latent dimension, thus we let n ∶= nmin(S). Thanks to Theorem 5.3, the claim below
holds true.

Claim 2. nmin(S) = p = 7.

The proof is straightforward and we leave the details to the Appendix, Section 5.7. Note
that in this way, regardless of the encoding strategy, we are fixing the reduced dimension to
be n = 7. Since Nh = 44521, this corresponds to a compression of almost 99.98%.

The networks architectures are detailed in Tables 5.1.a, 5.1.b (encoding step) and Table
5.1.c (decoding step). The encoder and the transcoder are particularly light, as they actually
consist of a single dense layer. In contrast, Ψ is far more complex, with a depth of l = 4.
The proposed architecture is closely related to the ones adopted in [70, 118], upto to some
specifics dictated by the problem itself (namely the fact the high-fidelity mesh consists of a
211× 211 square). The decoder makes use of transposed convolutional layers, choice that is
mainly motivated by two reasons: (i) convolutional layers correspond to sparse operators,
and are more easy to deal with in the case of high-dimensional data, (ii) 2D convolutions
best describe spatially localized behaviors so they are a natural choice when the data itself
is defined on a spatial domain. We shall also remark that the decoder architecture is given
in terms of a hyperparameter m ∈ N, m > 0, which controls the number of channels in the
convolutional layers. This was done in order to investigate how the network complexity
impacts the reconstruction error, and allows for a direct comparison with linear methods
such as the POD. We analyze the performance of the networks for different values of m
separately, namely m = 4,8,16,32.

Prior to training, the networks are initialized differently depending on the encoding
type. In the autoencoder case, we initialize both Ψ′ and Ψ according to the (Gaussian) He
initialization [83]. Conversely, we initialize the transcoder in such a way that Ψ′µ(µ, uµ) = µ.
This is equivalent to using the parameters as first guess for the intrinsic coordinates: then,
during the training, and depending on the decoder needs, Ψ′µ will have the possibility of
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Table 5.1: Architectures for the Advection-Diffusion problem (Section 5.4.1). Tables (a) and (b)
refer to the encoder and transcoder, respectively. Table (c) reports the decoder architecture. Transp.
Conv. = Transposed Convolutional layer, Conv. = Convolutional layer. CNNs hyperparameters
are defined along the lines of Definitions 6.1 and 6.2. For a more detailed explanation we refer to the
Pytorch library documentation. The complexity of the decoder architecture is tuned accordingly
to the value of m ∈ N. Table (d) refers to the change of coordinates DNN, ϕ. All layers use the
0.1-leaky ReLU activation.

a) Ψ′ b) Ψ′µ

Layer Input Output dof

Dense 44521 7 311654

Layer Input Output dof

Dense 44528 7 311703

c) Ψ

Layer Input Output Kernel Stride dof

Dense 7 288m - - 2304m

Transp. Conv. 8m × 6 × 6 4m × 20 × 20 10 2 3200m2 + 4m

Transp. Conv. 4m × 20 × 20 2m × 48 × 48 10 2 800m2 + 2m

Transp. Conv. 2m × 48 × 48 m × 102 × 102 8 2 128m2 +m
Transp. Conv. m × 102 × 102 1 × 211 × 211 9 2 81m + 1

d) ϕ

Layer Input Output dof

Dense 7 1024 7168
Dense 1024 512 524288
Dense 512 256 131072
Dense 256 7 1792

finding other representations. As discrepancy measure for the loss function, we use squared
errors, ℓ(y, ŷ) = ∥y − ŷ∥2. We train the autoencoder (resp. transcoder-decoder) using the
AdamW optimizer [125], with learning rate 10−4, weight-decay 10−2, moments coefficients
β1 = 0.99, β2 = 0.999 and adjustment ε = 10−8. We perform the gradient descent using
batches of 50 and for a total of 1000 epochs. At the end of this first training session, we
pick the best performing architecture and continue the construction of the DL-ROM from
there.

Table 5.1.d reports the architecture for our third network, ϕ. We initialize ϕ using the
He initialization and proceed with its training according to Section 5.3.2. We consider again
a loss function based on square errors, and we perform the gradient descent using the same
optimizer as before, only changing the learning rate to 10−3.

Numerical results

Figure 5.4 reports the results limited to the dimensionality reduction, that is the first step
in the DL-ROM pipeline. There, we compare the performance of autoencoders, transcoder-
decoders and POD in terms of model complexity. In general, regardless of whether C = 0.5
or C = 40, both nonlinear methods show interesting results, with training errors close or
below 1%. Unsurprisingly, as the networks grow in complexity, the gap between training and
test errors becomes larger, highlighting the need for more samples and a tendency towards
overfitting (see the autoencoder in case C = 40). Still, transcoders seem to mitigate this
phenomenon, possibly because they provide more information in the latent space.

For POD, the degrees of freedom are defined as the number of entries in the projection
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Figure 5.4: Error decay in terms of network complexity for the Advection-Diffusion problem (Section
5.4.1). Plots are reported in loglog scale. Case C = 0.5 on the left, C = 40 on the right. Lines are
drawn by considering the least-square fit logMRE ≈ β0 + β1 logdof. Dashed-lines = training errors,
straight lines = test errors. AE = autoencoder (red), TD = transcoder-decoder (green). The
MREs reported refer to the architectures in Table 5.1 with m = 4,8,16,32. POD-projection errors
are reported in blue. POD degrees of freedom (dof) are computed as nNh and correspond to the
number of entries in the projection matrix V. Remark: for POD the reduced dimension increases
with the complexity. Conversely, in the DL-ROM approach the reduced dimension is always fixed
to n = p = 7.

Figure 5.5: DL-ROM results for the Advection-Diffusion problem (Section 5.4.1). Panels (a) and
(b) respectively refer to the case of mild and strong advection. In both cases, the picture shows
two examples extracted from the test set (one for each row) and compares the high-fidelity solution
(first column) with the DL-ROM approximation (second column).
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C Data MRE Equivalent POD modes

0.5 Train 1.05% 428
0.5 Test 2.01% 164
40 Train 0.31% more than 1000
40 Test 1.23% 316

Table 5.2: DL-ROM performance for the Advection-Diffusion problem (Section 5.4.1). The final
model Φ ∶= Ψ(ϕ) was constructed by choosing the decoder with highest performance (cf. Figure
5.4). Equivalent POD modes = minimum number of POD-modes needed by any POD-based ROM
to outperform the DL-ROM.

matrix V, while the errors are computed as ∥u−VVTu∥/∥u∥ (relative projection error). In
particular, the MREs reported in Figure 5.4 provide a lower-bound for all POD-based ROMs.
Interestingly, all the curves show a similar trend. This goes to support our conjecture that
the decoder complexity may be linked with the Kolmogorov n-width (Section 5.3). More
precisely, linear methods can improve the accuracy by adding ∆n modes, i.e. ∆nNh degrees
of freedom, but they also have to increase the ROM dimension. Conversely, in the DL-ROM
approach, we can obtain a similar boost by investing the same degrees of freedom in the
decoder, without having to modify the latent dimension. This is in agreement with Theorem
5, where we proved that O(m1+n/(s−1) log(m)) active weights are sufficient for the decoder
to match the accuracy of any projection method with m modes. Of note, if we assume the
solution manifold to be infinitely smooth and we let s → +∞, then we may conjecture the
decoder complexity to behave as O(m log(m)). As matter of fact, this is what we observe
in the picture, at least for the training errors. In fact, if the red lines were to be perfectly
parallel to the blue ones, that would reflect a scenario in which the decoder complexity
grows as O(m).

On the same time, Figure 5.4 goes to show that the upper bounds in Theorem 5 are
suboptimal. In fact, both in the case of mild and strong advection, the nonlinear reduction
is able to outperform POD with fewer degrees of freedom, i.e. without the extra contribute
mNh in the decoder. As we shall discuss in the next Chapter, this is made possible by the
use of convolutional layers.

Let us now move to the actual approximation of the parametric map. To this end, we
trained our third network ϕ on the basis of the best performing transcoder-decoder (m = 32).
Numerical results for the complete DL-ROM Φ ∶= Ψ ○ ϕ are in Table 5.2 and Figure 5.5. In
general, the results are satisfactory, with test errors near 2%. Both in the case of mild and
strong advection, we note that POD-based ROMs require more than 300 modes to achieve
the same accuracy. This makes intrusive ROMs, such as POD-Galerkin, too expensive to be
used online. Conversely, the DL-ROM approach provides an appealing alternative. Indeed,
while the whole offline stage took around 4 hours, the model is extremely fast when used
online: solving the PDE for 1000 different values of the parameters (simultaneously) requires
less than 2 milliseconds on GPU.

5.4.2 Stochastic Poisson equation

Problem definition

On the spatial domain Ω = (0,1)2, we consider a Gaussian process W with constant mean
w = − log(10) and covariance kernel Cov(x,y) = 10exp(−4∣x − y∣2). The latter is used to
model the stochastic Poisson equation below,

⎧⎪⎪⎨⎪⎪⎩

−∇ ⋅ (eW (ω)∇u) = ∣x∣2 in Ω,

u = 0 on ∂Ω.
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Here, for each event ω, the map W (ω) ∶ Ω → R denotes the corresponding path of the
stochastic process W . The above problem can be seen as a parameter dependent PDE that
depends on (countably) infinite many parameters. To see this, we recall that there exist
positive real numbers {

√
λi}

+∞

i=1
, orthonormal functions {ζi}+∞i=1 ⊂ L2(Ω) and independent

standard gaussians {Xi}+∞i=0 such that

W = w +
+∞

∑
i=1

√
λiXiζi

almost surely. The latter is the so-called Karhunen-Loève expansion of W . We assume the
λi coefficients to be nonincreasing in i. In order to cast the problem into our framework,
we approximate W by truncating the aforementioned expansion at some index k. More
precisely, we define Θ ∶= Rk and W k

µ as

W k
µ(x) ∶= w +

k

∑
i=1

√
λiµiζi(x).

Thanks to the usual continuity results and the convergence ensured by the Karhunen-Loève
expansion, the impact of this substitution on the PDE can be made arbitrarily small with
k. We note that, by construction, the probability distribution to be considered over the
parameter space is the Gaussian distribution P of density

G(µ) ∶= (2π)−k/2 e−
1
2 ∣µ∣

2

.

Discretization and Full Order Model

On Ω we define a triangular mesh of size h = 10−2, over which we construct the high-
fidelity space of piecewise linear Finite Elements Vh. The corresponding FOM dimension
is Nh = 10121. To approximate the Karhunen-Loève expansion of W , we project and solve
over Vh the following eigenvalue problem.

∫
Ω

Cov(x,y)ζi(y)dy = λiζi(x).

In particular, we compute the first k eigenvalues λi and corresponding eigenfunctions ζi ∈ Vh
for which

0.9 ≤ ∑
k
i=1 λi

∑+∞i=1 λi
= 1

10

k

∑
i=1

λi,

where the last equality is easily deduced by the covariance kernel, as∑+∞i=1 λi = ∫Ω Cov(x,x)dx =
∫[0,1]2 10dx = 10. Figure 5.6 shows how the normalized eigenvalues λk/10 decay with k.
This procedure results in the choice of the truncation index k = 38. From a statistical point
of view, we say that W k

µ explains at least 90% of the variability in W . We run the FOM
to generate respectively Ntrain = 9000 and Ntest = 1000 snapshots, where the parameter
values are sampled from Θ independently and according to a k-variate standard Gaussian
distribution.

DL-ROM design

We note that, in this case, the parameter space Θ is not compact, as it is unbounded.
Nevertheless, since Θ has finite measure with respect to P, it is straightforward to adapt the
reasoning in Section 5.3 to this context. For instance, the error defined in (5.6) can be made
arbitrarily small provided that Φ is sufficiently accurate within some compact subdomain
ΘM ∶= {µ ∈ Rp s.t. ∣µ∣ < M}. For a more in depth discussion about the regularity of the
parametric map in the case of stochastic coefficients we refer to [8].

For the dimensionality reduction, we employ a transcoder-decoder. This is to ensure a
maximal compression, as the number of parameters is already mildly large. The network
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Figure 5.6: Normalized eigenvalues decay for the covariance matrices of the parameters, i.e. the
random field Wµ, and the solutions uµ. The eigenvalues are normalized with respect to the total
variance of the two fields, so that their cumulative sum converges to 1. The y-axis is reported in
logarithmic scale. Note that the solutions are sampled by considering the truncated field W k

µ as
parameter.

topology is reported in Tables 5.3.a, 5.3.b. Coherently with the chosen approach, we fix the
reduced dimension to be n ∶= k = p = 38. In general, the architecture is very similar to those
considered in Section 5.4.1, the only difference being in the specifics of the convolutional
layers.

As before, we adopt the He initialization for the decoder while we force the initial state
of the transcoder to behave as Ψ′µ(µ, uµ) = µ. We train Ψ ○Ψ′µ using stochastic gradient
descent with minibatches of size 10 and for a total of 1200 epochs. In this case, we observe
that snapshots come in rather different scales when compared one another. For this reason,
we choose to define the loss function in terms of relative errors, ℓ(y, ŷ) ∶= ∥y − ŷ∥/∥y∥.
To optimize the latter we employ the Adamax optimizer [102], with default parameters and
learning rate of 10−3. Here, the choice of Adamax over AdamW is motivated by the fact that
the former is known to be more stable. Table 5.3.c reports the architecture for reduced map
network, ϕ. We train ϕ using the Adamax optimizer with batch size 50 and learning rate
5e-3, for a total of 5000 epochs. Here also we use relative errors as discrepancy measures.
The whole offline stage of the DL-ROM took around 4 hours.

Numerical results

The dimensionality reduction is satisfactory, with mean relative errors of 1.10% and 2.57%
respectively on the training and test sets. Conversely, the approximation of the reduced
map was more challenging, see Table 5.4 and Figure 5.7. While the final model is able to
approximate the parameter-to-state map with an error of 4.69% over the training set, the
inaccuracy increases to 12.50% on the test set. This is a situation in which the solution
manifold is relatively simple (even linear subspaces provide good approximations, cf. Figure
5.6), but the parameter dependency is complicated. Therefore, while 9000 snapshots are
sufficient for the training the transcoder-decoder, they are not enough for ϕ to generalize
well. Another reason is that the parameter space is very large, and ϕ has to face the curse of
dimensionality. Possible ways to overcome this drawback without having to generate more
samples would be to exploit low-discrepancy sequences, as in [137], or use physics-informed
approaches at the reduced level, as in [41].
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Table 5.3: Architectures for the Stochastic Poisson equation (Section 5.4.2). Tables (a) and (b)
together describe the transcoder-decoder, while (c) concerns the change of coordinates map ϕ. All
layers are considered with the 0.1-leaky ReLU activation.

a) Ψ′µ

Layer Input Output dof

Dense 10239 38 389120

b) Ψ

Layer Input Output Kernel Stride dof

Dense 38 18432 - - 718848
Transp. Conv. 512 × 6 × 6 256 × 12 × 12 2 2 524544
Transp. Conv. 256 × 12 × 12 128 × 24 × 24 2 2 131200
Transp. Conv. 128 × 24 × 24 64 × 48 × 48 2 2 32832
Transp. Conv. 64 × 48 × 48 1 × 101 × 101 7 2 3137

c) ϕ

Layer Input Output dof

Dense 38 256 9984
Dense 256 128 32896
Dense 128 64 8256
Dense 64 38 2470

Figure 5.7: DL-ROM results for the Stochastic Poisson equation (Section 5.4.2). The picture shows
three examples coming from the test set. The first row reports the high-fidelity solutions, while the
second row displays the corresponding DL-ROM approximations. Relative errors are also reported.
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Data MRE Equivalent POD modes

Train 4.69% 39
Test 12.50% 17

Table 5.4: DL-ROM performance for the Stochastic Poisson problem (Section 5.4.2). Equivalent
POD modes = minimum number of POD-modes needed by any POD-based ROM to outperform
the DL-ROM.

5.4.3 On alternative Deep Learning approaches

The Reduced Order Modelling literature is becoming more and more flourishing, with a
large variety of techniques being developed. It is thus important to understand how the
DL-ROM approach relates to other Deep Learning based ROMs. In particular, we would
like to comment on those alternative strategies that are significantly different in spirit. One
approach, is to directly approximate the correspondence (µ,x)→ uµ(x) using a single DNN,
namely Φ ∶ Rp+d → R. This has the advantage of yielding a mesh-free ROM that can be
trained on pointwise observations. Also, since Φ is scalar-valued, light architectures are
expected to be sufficiently expressive. However, this approach has a few drawbacks. In fact,
if uµ is not highly regular with respect to x, e.g. not Lipschitz, then one may require a
very deep (or large) architecture to obtain reliable approximations, and thus many samples
too. For example, we have tested this approach on the Advection-Diffusion problem using
a scalar-valued architecture with 7 hidden layers of constant width (50 neurons). We have
used the same snapshots available for the DL-ROM, where each high-fidelity solution now
contributed with a total of Nh observations. Despite all our efforts, we were unable to obtain
a sufficiently accurate network, as we always obtained relative errors above 20% (both for
the training and test sets). We believe that the main drawback is given by the singular
source, which generates high gradients in the PDE solution. We also mention that, despite
the light architecture, training Φ was quite expensive. In fact, each computation of the
squared error ∥uhµ −Φ(µ, ⋅)∥2L2(Ω) required Nh evaluations of the DNN. Even though these
can be computed in parallel by stacking all quadrature nodes in a single matrix, the cost
of the backpropagation step increases substantially, as keeping track of all the gradients
becomes challenging.

An alternative strategy is given by DeepONets [126], which are now becoming very
popular. DeepONets are primarily employed for learning operators in infinite dimensions,
but they have a natural adaptation to the case of finite-dimensional parameters. In fact,
the first step in the DeepONet pipeline is to encode the input through p sensors, which
allows us to formally recast the problem into one with p scalar parameters. With this set
up, DeepONets are still a mesh-free approach, but they consider an approximation of the
form uµ(x) = Ψ(x) ⋅ ϕ(µ), where ⋅ is the dot product, while Ψ ∶ Rd → Rn and ϕ ∶ Rp → Rn
are two neural networks, respectively called the trunk net and the branch net. The main
advantages of DeepONets are the following. First of all, as they are intrinsically mesh-
free, it is possible to train them on sparse pointwise data. Secondly, as they decouple the
dependency between µ and x, it is possible to bound their complexity and to estimate their
generalization capabilities in ways that are specific to this approach, see e.g. [115]. Finally,
due to their original construction, they can be a natural choice when the input parameters
are actually sensor observations of some functional input. However, DeepONets have their
limitations as well. In fact, despite sharing some terminology with the DL-ROM approach,
such as encoder and decoder, they ultimately rely on a linear strategy for representing
solutions. To see this, let {xi}Nh

i=1 be the nodes in the high-fidelity mesh. Then, the DeepONet
approximation over these vertices is Vϕ(µ), where V ∶= [Ψ(x1), . . . ,Ψ(xNh

)]T ∈ RNh×n.
As a consequence, the choice of n is subject to the behavior of the linear Kolmogorov n-
width. For instance, to match the DL-ROM accuracy in the Advection-Diffusion problem
with C = 40, a DeepONet architecture would require n ≥ 300, which may hinder its actual
implementation. Also, due to the poor regularity with respect to the x variable, training Ψ
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may be a challenging task.
Conversely, the DL-ROM approach treats solutions as single objects, uhµ ∈ Vh. While this

clearly results in a loss of information, the space dependency of solutions can be partially re-
covered by interchanging nonlocal and local operators (respectively, dense and convolutional
layers) in the ROM pipeline. Finally, thanks to the use of nonlinear reduction techniques,
the DL-ROM can overcome some of the difficulties implied by the Kolmogorov n-width. Of
course, though, our approach has some limitations too. First of all, it is mesh-constrained, as
it is bounded to the existence of a high-fidelity model. Secondly, it mostly relies on convolu-
tional layers, which makes it less obvious to adapt the current implementation to non-cubic
domains. Finally, the approach was originally designed for the case p ≪ Nh. Even though
infinite-dimensional parameters spaces can be handled as in Section 5.4.2, better strategies
may be available, see e.g. the recent work in [69].

5.5 A first application to oxygen transfer models

Model description

Let Ω ∶ [0,1]2 be the unit square, which we use to represent a small portion of biological
tissue, and let u ∶ Ω → [0,+∞) be the oxygen distribution all over the domain. We assume
that the tissue is perfused by ν vessels, Λi ⊂ Ω, i = 1, . . . , ν, which we represent as straight
lines of length ≥ l0. We model the oxygen transfer between the vessels and the tissue with
the oversimplified diffusion equation below,

⎧⎪⎪⎨⎪⎪⎩

−∆u = ∑νi=1 αiδΛi in Ω

−∇u ⋅ n = βu on ∂Ω
(5.7)

which we understand in the weak sense. Here, β is a fixed constant associated to the Robin
boundary condition. Conversely, for each i = 1, . . . , ν, we have denoted by δΛi the singular
measure whose action is characterized by the following identity

∫
Ω
v(x)δΛi(dx) = ∫

Λi

v(s)ds, (5.8)

holding for all v ∈ C(Ω). Finally, the coefficients αi describe the amount of oxygen carried
by each vessel alone.

Over all, the model parameters are: the total number of capillaries ν ∈ N, the location
of the blood vessels Λi, which we let vary in

V ∶= {Λ = {tp1 + (1 − t)p2}t∈[0,1] s.t. pi ∈ ∂Ω, Λ ∩ ∂Ω = {p1,p2}, ∣p1 − p2∣ ≥ l0} ,

and the intensities αi ≥ 0. Given {Λi}i=1,...,ν ⊂ V and {αi}i=1,...,ν ⊂ [0,+∞), with little abuse
of notation let us write uα1Λ1,...,ανΛν for the corresponding solution to (5.7). By linearity of
(5.7), it is straightforward to see that

uα1Λ1,...,ανΛν =
ν

∑
i=1

αiuΛi . (5.9)

In other words, it is sufficient to study the case of a single vessel with normalized intensity in
order to obtain a comprehensive understanding of (5.7). Of course, this comes from the fact
that the latter model is extremely oversimplified. Nevertheless, the consequence is that,
in order to build a suitable ROM, we can restrict to the following parameter space, and
correspond solution manifold,

Θ ∶= V , S ∶= {uΛ}Λ∈Θ.
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Discretization and Full Order Model
In order to discretize system (5.7), we first provide an approximation to the line integral
in (5.8), which we employ to replace the 1D-2D formulation. In particular, we consider the
smoothed approximation below,

∫
Λ
v(s)ds ≈ ∫

Ω
v(x)σΛ(x)dx, (5.10)

where
σΛ(x) ∶=

1

ϵ2
max{ϵ − dist(x,Λ),0} , with dist(x,Λ) ∶= inf

y∈Λ
∣x − y∣

Here, ϵ > 0 is a smoothness parameter that we fix to ϵ = 0.01. It is not hard to prove that,
for each fixed v ∈ C(Ω), the right-hand side of equation (5.10) converges to the left hand-side
as ϵ ↓ 0+. We refer to the appendix for a detailed and more general proof: see Lemma 5.1,
where Λ is allowed to be any finite union of straight segments. Finally, in order to discretize
the PDE, we employ continuous P1 finite elements on a structured triangular grid consisting
of Nh = 10201 nodes. Finally, we endow the Θ with a uniform probability distribution.

DL-ROM design
In the single vessel scenario, the oxygen model in (5.7) only depends on two scalar param-
eters, p = 2, as the only variable entity is Λ ∈ V , whose location is uniquely determined by
the extremes p1,p2, both moving across the one-dimensional manifold ∂Ω. Therefore, our
rule of thumb would suggest picking a latent dimension of 2 ≤ n ≤ 5 for our autoencoder
approach. However, in this case one can be more precise and say that nmin(S) ≤ 3. Further-
more, the infimum in Equation (5.5) is attained for n = 3 but not for n = 2, which suggests
choosing the former to ensure a much stable optimization of the autoencoder architecture.
These observations come from the fact that, in this case, the solution manifold is topo-
logically equivalent to the so-called Möbius strip, a well-known example of a nonorientable
surface that can be embedded in R3 but not in R2 (see Figure 5.8 for a "visual proof" of
such equivalence). In light of this, we proceed with the autoencoder approach, letting the
latent dimension be equal to n = 3. We design the architectures of Ψ′,Ψ and ϕ along the
same lines of the previous experiments, cf. Table 5.5. This time, however, we introduce an
exogenous layer in the third network, ϕ, to enforce our a priori knowledge of the problem.
The idea goes as follows. Suppose that we parametrize the vessel Λ using the extremes p1

and p2. Then, we can describe each pi by the angle θi ∈ [0,2π] formed by the revolution
of the point around the center of the square. With this parametrization, the reduced map
becomes ϕ = ϕ(θ1, θ2). However, if we let ϕ be any DNN, we lose the guarantee that same
basic properties of the FOM are reflected by the ROM. For instance, we would like ϕ to be
periodic and symmetric with respect to its arguments, that is

ϕ(θ1 + 2kπ, θ2 + 2jπ) = ϕ(θ1, θ2) = ϕ(θ2, θ1) (5.11)

for all k, j ∈ Z. In fact, there is an intrinsic redundancy in the way the angles θ1 and θ2
parametrize Λ: swapping the extreme points yields the same vessel, as well as performing
a full rotation of 360○. To account for this, we enforce a better parametrization of Λ in the
first layer of ϕ: we let ϕ = ϕ̃ ○ ϕ0, where ϕ̃ ∶ R4 → Rn is a DNN, while ϕ0 is defined as

ϕ0(θ1, θ2)→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ1 + cos θ2

cos θ1 ⋅ cos θ2
sin θ1 + sin θ2

sin θ1 ⋅ sin θ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The advantage of this transformation is twofold. On the one hand, it ensures that (5.11)
holds. On the other hand, it results in no loss of information as it is always possible to
recover the (unordered) pair {θ1, θ2} given the output ϕ0(θ1, θ2).
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Figure 5.8: Visual representation of the single-vessel solution manifold, Section 5.5. In this case,
parameters and solutions are in a one-to-one correspondence, and the solution manifold is topolog-
ically equivalent to a Möbius strip. Points along the center line of the strip correspond to vessels
that pass through the center of the domain, while boundary points represent configurations where
the vessel reaches the minimal length allowed. Traveling across the boundary of the Möbius strip
requires two loops, while a single revolution is sufficient at the center line: similarly, rotating a
small vessel around the domain center requires a full circle, while a half twist is sufficient for vessels
crossing the center. Intuitively, the nonorientability of the Möbius strip is reflected by the fact
that, in the solution manifold, swapping the extremes of a vessel leaves the situation unchanged (in
analogy to the so-called symmetric product of the circle, see e.g. [29]).

Finally, concerning the model training, we train the DL-ROM on Ntrain = 1500 random
snapshots and test its performance over another Ntest = 500 instances. This time, we train
all the architectures with the L-BFGS optimizer, with learning rate equal to 1, no batching
and for a total of 500 epochs.

Results
Results are shown in Figure 5.9 and Table 5.6, where we compare DL-ROM approximations
and FOM solutions. We mention that, while the results reported in Table 5.6 correspond to
the single vessel scenario (coherently with our training strategy), the pictures in Figure 5.9
refer to the general case, where we exploited the superposition formula in Equation (5.9).

In general, the performance is satisfactory and the DL-ROM achieves an L2-relative
error of 5% over the test set. As for the previous experiments, we also report the linear
benchmark associated to POD-based ROMs. In general, the results are in agreement with
our findings in Section 5.4: the DL-ROM approach is able to recover the ground truth with
good accuracy, preserving the main properties of the solutions; conversely, linear methods
encounter significant difficulties and require a larger number of modes to capture all the
relevant features. In terms of training cost, thanks to the L-BFGS optimizer, which allowed
us to avoid the use of batching strategies, we were able to train all the networks in the
DL-ROM pipeline in less than 15 minutes (GPU time).

Nevertheless, we must mention that building such a reduced order model for (5.7) is,
without any doubt, redundant and of little interest. In fact, (5.7) describes an oversimplified
scenario that carries no useful insights for the clinical applications. Furthermore, at this
level, there is no need to introduce a surrogate model, as the FOM can already be made
extremely efficient. In fact, one could pre-assemble the stiffness matrix associated to the
diffusion operator and, online, only assemble the right-hand-side vector with little compu-
tational cost. We have presented this example only for didactic purposes, highlighting how
DL-ROMs can be of help where linear methods fail. In the next Chapters, we shall consider
more complicated (but also more meaningful) models for oxygen transfer, and build
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a) Ψ′µ

Layer Input Output dof

Dense 10201 3 30606

b) Ψ

Layer Input Output Kernel Stride dof

Dense 3 400 - - 1600
Dense 400 1152 - - 461952
Transp. Conv. 128 × 3 × 3 64 × 14 × 14 8 3 524352
Transp. Conv. 64 × 14 × 14 32 × 47 × 47 8 3 131104
Transp. Conv. 32 × 47 × 47 1 × 101 × 101 9 2 2593

c) ϕ

Layer Input Output dof

Exogenous 3 4 0
Dense 4 50 250
Dense 50 50 2550
Dense 50 50 2550
Dense 50 3 153

Table 5.5: Architectures for the simplified oxygen transfer model (Section 5.5). Tables (a) and (b)
report the autoencoder architecture, while (c) concerns the change of coordinates map ϕ. All layers
are considered with the 0.1-leaky ReLU activation.

Data MRE Equivalent POD modes

Train 4.49% 74
Test 5.34% 62

Table 5.6: DL-ROM performance for the simplified oxygen transfer model (Section 5.5). Equivalent
POD modes = minimum number of POD-modes needed by POD-based ROMs to outperform the
DL-ROM. MRE = Mean relative error, computed accordingly to the L2-norm.

Figure 5.9: Comparison of different ROMs for the simplified oxygen model, Equation (5.7). The
ground truth is u = uλ1 +uλ2 +2uΛ3 , where all the Λi come from the test set. Here, n is the reduced
dimension, respectively for the DL-ROM and the POD approach. Relative errors are: 1.63% (DL-
ROM), 14.34% (POD, n = 3) and 3.63% (POD, n = 30), respectively.
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corresponding strategies to tackle them. In fact, the as-is DL-ROM will not be sufficient,
the reason being a significant increase in the parametric dimension p. For instance, at the
end of Chapter 7, we will consider a more realistic setting in which Λ is a generic piecewise
linear graph with a seemingly biological structure. In that case, larger values of p are
required to parametrize the network architecture, which, as in Section 5.4.2, may affect the
approximation power of the DL-ROM.

5.6 Conclusions

In this Chapter, we developed a novel Deep Learning approach for reduced order modelling
of parameter dependent PDEs, DL-ROM, where the solution map is approximated by a
deep neural network Φ. Our construction is based on the use of autoencoders, which we
employ as a nonlinear alternative to other reduction techniques such as the POD. In the DL-
ROM approach, we choose the latent dimension to be the smallest one granting arbitrary
accuracy. The value of such dimension was investigated in detail in Section 5.2. There,
we proved some theoretical results, respectively Theorem 5.3 and Theorem 5.4, that can
be used as guidelines for practical applications. Further insights on the potential of the
DL-ROM approach were discussed in Theorem 5.5, Section 5.3. There, we provided explicit
error estimates that were later confirmed via empirical evidence (cf. Section 5.4.1).

The results obtained in our experiments are promising. The DL-ROM appears to be a
captivating alternative to traditional ROMs, especially in challenging situations where linear
models fail. Our first test case, Section 5.4.1, shows that the method behaves well in the
presence of singularities, both under diffusive or transport-dominated circumstances. Good
results are also obtained for high dimensional parameter spaces, Section 5.4.2, even though
it becomes harder to handle the generalization error. The latter can be either improved
by increasing the number of training samples or by including physical terms in the loss
function. While we wish to investigate this further in future works, we acknowledge that
multiple researchers are now working on this topic, e.g. [41, 136].

In principle, being completely nonintrusive and data-driven, the proposed approach can
be readily applied to nonlinear PDEs and more complicated systems. Also, at the cost of
treating time as an additional parameter, as in [70], one may extend the DL-ROM approach
to time dependent problems. However, some changes have to be made in order to extrap-
olate over time, for instance by enforcing those properties that are typical of dynamical
systems (e.g. the existence of underlying semi-groups). We leave all these considerations
for future works.

We conclude with a few comments on the computational cost. While the offline stage is
clearly expensive, our design choices allow for a significant reduction in the model complex-
ity, which results in architectures that are easier to train (cf. e.g. [70, 72]). Nevertheless,
the DL-ROM is extremely fast when used online. This makes the method suited for de-
manding tasks with multiple queries, as the ones typical of sensitivity analysis, uncertainty
quantification and multiscale methods.

5.7 Technical proofs

Proofs of the claims in Section 5.4
Proof of Claim 1. Let µ ∈ Θ. For the sake of brevity, define xµ ∶= (µ6, µ7) ∈ Ω. We shall
recall that, by Morrey’s embedding theorem [60], we have W 1,4

0 (Ω) ↪ C0,1/2(Ω), the latter
being the space of 1/2-Hölder maps. As a consequence, for any w ∈W 1,4

0 (Ω), we have

∣w(xµ) − ∫
Ω
fµ(z)ϵw(z)dz∣ = ∣∫

Ω
(w(xµ) −w(z))f ϵµ(z)dz∣ ≤

≤ ∫
Ω
∣w(xµ) −w(z)∣f ϵµ(z)dz ≤ C ′∣∣w∣∣W 1,4

0 (Ω) ∫R2
∣xµ − z∣1/2f ϵµ(z)dz
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for a constant C ′ > 0 independent on both w and µ. The change of variables y ∶= (z−xµ)/ϵ
then yields

∣w(xµ) − ∫
Ω
fµ(z)ϵw(z)dz∣ ≤ .. ≤ C ′∣∣w∣∣W 1,4

0 (Ω)ϵ
1/2 ∫

R2
∣y∣1/2G(y)dy

where G is the probability density of the standard normal distribution in R2. By passing at
the supremum over w with ∣∣w∣∣W 1,4

0 (Ω) = 1 and µ ∈ Θ we get

sup
µ∈Θ
∣∣fµ − f ϵµ∣∣W−1,4(Ω) ≤ C ′′ϵ1/2

for some constant C ′′ > 0. By classical stability estimates for elliptic PDEs, see e.g. Lemma
5.2, we then have supµ∈Θ ∣∣uµ − uϵµ∣∣W 1,4/3(Ω) ≤ 10C ′′ϵ1/2, as σµ(x) ≥ 10−1 for all µ ∈ Θ. Up
to the embedding the solution manifold in L2(Ω), the claim now follows.

Proof of Claim 2. The idea is to re-parametrize the solution manifold, as the given
parametrization suffers from the lack of injectivity. In fact, both µ5 = 0 and µ5 = 2π re-
turn the same advective field (and we cannot exclude one extreme, or Θ would lose its
compactness). To do so, let S1 be the unit circle in R2. We define the hypercylinder
Θ′ ∶= [0,1]4 × S1 × [0.1,0.9]2. We will adopt a seven component notation as before, even
though Θ′ ⊂ R8, as µ5 ∈ S1 is now 2-dimensional. We re-parametrize the coefficients of the
PDE in terms of this new coordinates in the obvious way, especially for σµ′ and fµ′ . For
the advective field we let bµ′ ∶= µ5. We shall now prove that: (i) the new parameter space
satisfies nmin(Θ′) = 7, (ii) the new parametric map µ′ → uµ′ is continuous and (iii) injective.

Proof that nmin(Θ′) = 7. Consider the map ϕ ∶ Θ′ → R7 given by

ϕ(µ′) = (µ′5(1 + µ′1), µ′2, µ′3, µ′4, µ′6, µ′7).

Then the image ϕ(Θ′) = {z ∈ R2 ∶ 1 ≤ ∣z∣ ≤ 2}×[0,1]3×[0.1,0.9]2 ⊂ R7 has nonempty interior.
In particular, nmin(ϕ(Θ′)) = 7. Since ϕ clearly admits a continuous inverse, ϕ−1 ∶ ϕ(Θ′)→ Θ′,
we conclude that nmin(Θ′) = 7.

Proof that the parametric map µ′ → uµ′ is continuous. Clearly σµ′ and bµ′ depend con-
tinuously on µ′. Using again the embedding W 1,4

0 (Ω) ↪ C0,1/2(Ω) as in the proof of Claim
1, it is also easy to see that the map µ′ → fµ′ is Θ′ → W −1,4(Ω) Hölder continuous. By
composition (see Lemma 5.3), we then obtain the continuity of the parametric map.

Proof that the parametric map µ′ → uµ′ is injective. Let µ′,µ′′ ∈ Θ′ and assume that
u ∈ W 1,4/3(Ω) is a solution for both parameters, that is u = uµ′ = uµ′′ . Classical results
on inner regularity of solutions to elliptic PDEs ensure that uµ′ is locally H1 at all points
except at the location of the Dirac delta fµ′ . The analogue holds for uµ′′ , so clearly it must
be µ′6 = µ′′6 and µ′7 = µ′′7 in order for the solutions to coincide. Next, let w ∈ C∞0 (Ω0) and
extend it to zero on Ω ∖Ω0. Using w as test function for the equations of both µ′ and µ′′

and then subtracting term by term yields

C ∫
Ω0

(bµ′ − bµ′′) ⋅ ∇uw = 0.

As w is arbitrary, it follows that ∇u is orthogonal to (bµ′ − bµ′′) on Ω0. In particular, if
bµ′ ≠ bµ′′ , then u must be constant along the direction (bµ′ − bµ′′) within Ω0. But, because
of the boundary conditions, this would make u identically constant near at least one edge
of ∂Ω. However, this is a contradiction. In fact, u∣∂Ω ≡ 1, thus classical maximum principles
ensure that u > 1 a.e. in Ω (see e.g. Lemma 5.4). It follows that bµ′ = bµ′′ and so µ′5 = µ′′5 .
We now notice that, by subtracting the equations for µ′ and µ′′, we have

4

∑
i=1

(µ′i − µ′′i )∫
Ωi

∇u ⋅ ∇w = 0 ∀w ∈ C∞0 (Ω).
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Fix any i ∈ {1,2,3,4} and let v ∈ C∞(Ωi). Define w ∈ C∞(Ωi) to be any of the strong
solutions to the PDE −∆w = v with homogeneous Neumann boundary condition on ∂Ωi.
Since the subdomains are clearly separated, it is possible to extend w on the whole domain
Ω so that w is still smooth but also vanishes on ∂Ω and on Ωj for all j ≠ i. Using such w in
the last identity above and integrating by parts yields

0 = (µ′i − µ′′i )∫
Ωi

∇u ⋅ ∇w = (µ′i − µ′′i )∫
Ωi

u(−∆w) = (µ′i − µ′′i )∫
Ωi

uv.

Now assume that µ′i ≠ µ′′i . Then ∫Ωi
uv = 0 for all v ∈ C∞(Ωi) Ô⇒ u∣Ωi

≡ 0, contradiction.
Then µ′i = µ′′i and thus µ′ = µ′′, as claimed.

Thanks to the resultes above, Claim 2 now follows by Theorem 5.3.

Auxiliary results and proofs for Section 5.5

Lemma 5.1. Let Ω be a Lipschitz domain. Let Λ ⊂ Ω be the union of finitely many segments,
where each segment intersects ∂Ω in at most two points (the extremes). For any fixed
v ∈ C(Ω) one has

1

ϵ2
∫
Ω
v(x)max{ϵ − dist(x,Λ),0}dx→ ∫

Λ
v(s)ds as ϵ ↓ 0+.

Proof. Let φϵΛ be the (unscaled) kernel

φϵΛ(x) ∶=max{ϵ − dist(x,Λ),0}.

By definition, we note that φϵΛ vanishes outside of the set Λ +B(0, ϵ) ∶= {x + ϵv ∣ x ∈ Λ, v ∈
B(0,1)}. We now proceed in three steps.

Step 1. We start by proving that the lemma holds whenever Λ is composed by a single
segment. Without loss of generality, we let Λ = [0,1] × {0}. For the sake of simplicity, we
further assume that Λ ∩ ∂Ω = ∅. The case in which Λ has an extreme on the boundary can
be handled similarly by exploiting the Lipschitz regularity of ∂Ω. Let ϵ < dist(Λ, ∂Ω), so
that Λ +B(0, ϵ) ⊂ Ω. By direct computation we have

∫
Ω
v(x)φϵΛ(x)dx =

1

ϵ2
∫
Λ+B(0,ϵ)

v(x)φϵΛ(x)dx =

= 1

ϵ2
∫
Aϵ∪Bϵ

v(x)φϵΛ(x)dx +
1

ϵ2
∫
[0,1]×[−ϵ,ϵ]

v(x)φϵΛ(x)dx

where Aϵ and Bϵ are two half circles of radius ϵ respectively centered at the extremes of
the segment Λ. It is easy to see that the first contribute vanishes as ϵ ↓ 0+. In fact, since
∣∣φϵΛ∣∣∞ = ϵ,

∣ 1
ϵ2
∫
Aϵ∪Bϵ

v(x)φϵΛ(x)dx∣ ≤
1

ϵ2
∣∣v∣∣∞ ⋅ ϵ∣Aϵ ∪Bϵ∣ = πϵ∣∣v∣∣∞.

Conversely, for the second term we have

∫
1

0

1

ϵ2
∫

ϵ

−ϵ
v(x1, x2)φϵΛ(x1, x2)dx2dx1 = ∫

1

0

1

ϵ2
∫

ϵ

−ϵ
v(x1, x2)(ϵ − ∣x2∣)dx2dx1 =

= ∫
1

0

1

ϵ2
∫

1

−1
v(x1, ϵz)(ϵ − ϵ∣z∣)ϵdzdx1 = ∫

1

0
∫

1

−1
v(x1, ϵz)(1 − ∣z∣)dzdx1.

By letting ϵ ↓ 0+ we then get

∫
1

0
∫

1

−1
v(x1,0)(1 − ∣z∣)dzdx1 = (∫

Λ
v(s)ds)(∫

1

−1
(1 − ∣z∣)dz) = ∫

Λ
v(s)ds.

96



Step 2. Let Λ = L1 ∪ ⋅ ⋅ ⋅ ∪ Ln be given by the union of n segments. For any i = 1, . . . , n, let
L̂i ∶= {x ∈ Ω ∣ dist(x, Li) < dist(x,Λ ∖Li)}. We prove the following auxiliary result,

∣(Ω ∖ L̂i) ∩ (Li +B(0, ϵ))∣ = o(ϵ2).

To see this, we note that, upto sets of measure zero,

(Ω ∖ L̂i) ∩ (Li +B(0, ϵ)) = (L̂1 ∪ . . . L̂i−1 ∪ L̂i+1 ∪ . . . L̂n) ∩ (Li +B(0, ϵ)).

It is then sufficient to prove that ∣L̂j ∩ (Li + B(0, ϵ))∣ = o(ϵ2) for all j independently. If
Li ∩Lj = ∅, the proof is trivial. Conversely, if the two segments intersect, let θ be the angle
between the two lines. It is easy to see that the intersection L̂j ∩ (Li +B(0, ϵ)) is contained
in a triangle of height ϵ and width ϵ/ tan(θ/2) + ϵ tan(θ/2). The conclusion follows.

Step 3. Let Λ = L1 ∪ ⋅ ⋅ ⋅ ∪ Ln and define the regions L̂1, . . . L̂n as in the previous step.
Fix any v ∈ C(Ω). Then

1

ϵ2
∫
Ω
v(x)φϵΛ(x)dx =

1

ϵ2

n

∑
i=1
∫
L̂i

v(x)φϵΛ(x)dx =
n

∑
i=1

1

ϵ2
∫
L̂i

v(x)φϵLi
(x)dx.

Therefore, we can prove the original claim by showing that 1
ϵ2 ∫L̂i

v(x)φϵLi
(x)dx→ ∫Li

v(s)ds
for each i. At this purpose, fix any i = 1, . . . , n. We have

∣ 1
ϵ2
∫
Ω
v(x)φϵLi

(x)dx − 1

ϵ2
∫
L̂i

v(x)φϵLi
(x)dx∣ ≤ 1

ϵ2
∫
Ω∖L̂i

∣v(x)∣∣φϵLi
(x)∣dx ≤

≤ 1

ϵ2
∣∣v∣∣∞ ⋅ ϵ∣(Ω ∖ L̂i) ∩ (Li +B(0, ϵ))∣ = o(ϵ)

and the conclusion follows from Step 1.

Auxiliary results on Partial Differential Equations
Lemma 5.2. Let (V, ∥ ⋅ ∥V ) and (W, ∥ ⋅ ∥W ) be two Banach spaces, with W reflexive. Let
(W ∗, ∥ ⋅ ∥∗) be the dual space of W and define (B(V,W ), ∣∣∣ ⋅ ∣∣∣) as the normed space of
bounded bilinear forms V ×W → R, where

∣∣∣a∣∣∣ ∶= sup
∥v∥V =1
∥w∥W =1

∣a(v,w)∣.

Let Bc(V,W ) ⊂B(V,W ) be the subset of coercive bounded bilinear forms, i.e. a ∈B(V,W )
for which

λ(a) ∶= inf
∥v∥V =1

sup
∥w∥W =1

∣a(v,w)∣ > 0, and inf
∥w∥W =1

sup
∥v∥V =1

∣a(v,w)∣ > 0.

Then,

i) λ is B(V,W )→ R continuous

ii) For each a ∈ Bc(V,W ) and F ∈ W ∗ there exists a unique u = ua,F ∈ V such that
a(v,w) = F (w) for all w ∈W . Furthermore, u depends continuously on both a and F .
In particular:

∥ua,F − ua′,F ′∥V ≤
1

λ(a)
(∥F − F ′∥∗ +

1

λ(a′)
∣∣∣a − a′∣∣∣ ⋅ ∥F ′∥∗) (5.12)

for all a, a′ ∈Bc(V,W ) and F,F ′ ∈W ∗.
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Proof. i) Let a, a′ ∈B(V,W ). For every v ∈ V and w ∈W with ∥v∥V = ∥w∥W = 1 we have

a(v,w) = a′(v,w) + (a − a′)(v,w) ≤ ∣a′(v,w)∣ + ∣∣∣a − a′∣∣∣.

Since the above holds for both w and −w, we actually have ∣a(v,w)∣ ≤ ∣a′(v,w)∣ + ∣∣∣a − a′∣∣∣,
and thus λ(a) ≤ λ(a′) + ∣∣∣a − a′∣∣∣. As the situation is symmetric in a and a′, it follows that
∣λ(a) − λ(a′)∣ ≤ ∣∣∣a − a′∣∣∣. In particular, λ is Lipschitz-continuous.

ii) Given a ∈ Bc(V,W ) and F ∈ W ∗, the existence and the uniqueness of ua,F follow
from a Banach space version of the Lions-Lax-Milgram theorem (see Lemma 3.1. in [88]).
Furthermore, one also has the stability estimate ∥ua,F ∥V ≤ (λ(a))−1∥F ∥∗.

To get the inequality in (5.12), let a, a′ ∈B(V,W ), F,F ′ ∈W ∗ and u ∶= ua,F , u′ ∶= ua′,F ′ .
Then a(u,w) = F (w) and a′(u′,w) = F ′(w) for all w ∈ V . We subtract these two identities
to get

a(u,w) − a′(u′,w) = F (w) − F ′(w)
Ô⇒ a(u − u′,w) = (F − F ′)(w) + (a′ − a)(u′,w).

It follows that, for all w ∈W , one has a(u− u′,w) ≤ ∥F −F ′∥∗∥w∥W + ∣∣∣a′ − a∣∣∣ ⋅ ∥u′∥V ∥w∥W .
By linearity, using both w and −w, we conclude that

∣a(u − u′,w)∣ ≤ ∥F − F ′∥∗∥w∥W + ∣∣∣a − a′∣∣∣ ⋅ ∥u′∥V ∥w∥W ∀w ∈W.

In particular, passing at the supremum over ∥w∥W = 1 yields

λ(a)∥u − u′∥V ≤ ∥F − F ′∥∗ + ∣∣∣a − a′∣∣∣ ⋅ ∥u′∥V .

Now, we may apply the stability estimate for ∥u′∥V and divide by λ(a) to get (5.12). Finally
the latter, together with (i), shows that u′ → u as soon as a′ → a and F ′ → F .

For the next Lemma, we consider the notation introduced in Section 5.2.2.1.

Lemma 5.3. Let Ω ⊂ Rd be a bounded domain. Let 1 < q < +∞ and define the conjugate
exponent q′ ∶= (q − 1)−1q. For each σ ∈ Σ(Ω), b ∈ B(Ω), f ∈W −1,q′(Ω) and g ∈W 1/q′,q(∂Ω)
let u = uσ,b,f,g be the unique solution to the following variational problem

u ∈W 1,q(Ω) ∶

u∣∂Ω = g and ∫
Ω
σ∇u ⋅ ∇w + ∫

Ω
(b ⋅ ∇u)w = ∫

Ω
fw ∀w ∈W 1,q′

0 (Ω).

Then, the solution map (σ,b, f, g) → uσ,b,f,g is: (i) continuous, (ii) Lipschitz continuous
on all compact subsets.

Proof. Before moving the actual proof, we shall recall that there exists a bounded lin-
ear operator T ∶ W 1/q′,q(∂Ω) → W 1,q(Ω) for which Tg∣∂Ω = g, namely a right-inverse
of the trace operator (see [146]). In particular, there exists a constant C̃ > 0 such that
∣∣Tg∣∣W 1,q(Ω) ≤ C̃ ∣∣g∣∣W 1/q′,q(∂Ω).

For the sake of brevity, we let V ∶= W 1,q
0 (Ω), W ∶= W 1,q′

0 and define W ∗ as the dual
space of W 1,q′

0 endowed with the operator norm. As in Lemma 5.2, we also let B(V,W )
be the collection of all bounded bilinear maps V ×W → R equipped with the corresponding
operator norm. Similarly, we define Bc(V,W ) to be the subset of coercive bounded bilinear
maps. We introduce the following operators:

A ∶ L∞(Ω,Rd×d) ×L∞(Ω,Rd) Ð→ B(V,W )
(σ,b) Ð→ aσ,b ∶= A(σ,b),

F ∶ L∞(Ω,Rd×d) ×L∞(Ω,Rd) ×W −1,q′(Ω) ×W 1/q′,q(∂Ω) Ð→ W ∗

(σ,b, f, g) Ð→ Fσ,b,f,g ∶= F(σ,b, f, g),
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where,
aσ,b(v,w) ∶= ∫

Ω
σ∇v ⋅ ∇w + ∫

Ω
(b ⋅ ∇v)w,

Fσ,b,f,g(w) ∶= ∫
Ω
σ∇Tg ⋅ ∇w + ∫

Ω
(b ⋅ Tg)w + ∫

Ω
fw.

We claim that:

1) The operator A is linear and continuous. Also, aσ,b ∈ Bc(V,W ) for all choices of
σ ∈ Σ(Ω) and b ∈ B(Ω).

2) The operator F continuous. Also, it is Lipschitz continuous when restricted to any
compact subset of its domain.

We shall now prove these claims. First of all, let C > 0 be the Poincàre constant for the
domain Ω and the exponent q′. Then, it is straightforward to see that

∣aσ,b(v,w)∣ ≤ ∣∣σ∣∣L∞(Ω,Rd×d)∣∣v∣∣W 1,q
0 (Ω)∣∣w∣∣W 1,q′

0 (Ω)

+C ∣∣b∣∣L∞(Ω,Rd)∣∣v∣∣W 1,q
0 (Ω)∣∣w∣∣W 1,q′

0 (Ω)
,

for all v ∈ V and w ∈W . In particular, A is both linear and bounded, thus continuous. Let
now σ ∈ Σ(Ω), b ∈ B(Ω) and define ε = ε(σ) > 0 to be the ellipticity constant of σ. We
notice that if φ ∈ C∞0 (Ω), then φ is both an element of V and W . Also, integrating by parts
yields

aσ,b(φ,φ) = ∫
Ω
σ∇φ ⋅ ∇φ + ∫

Ω
b ⋅ (φ∇φ) ≥

≥ ε∣∣φ∣∣W 1,q
0 (Ω)∣∣φ∣∣W 1,q′

0 (Ω)
+ ∫

Ω
b ⋅ ∇(1

2
φ2) =

= ε∣∣φ∣∣W 1,q
0 (Ω)∣∣φ∣∣W 1,q′

0 (Ω)
− 1

2
∫
Ω

div(b)φ2 =

= ε∣∣φ∣∣W 1,q
0 (Ω)∣∣φ∣∣W 1,q′

0 (Ω)
,

as b is divergence free. It follows that for each φ ∈ C∞0 (Ω) with φ ≠ 0

sup
ψ∈C∞0 (Ω)

∣∣ψ∣∣
W

1,q′
0

(Ω)
=1

∣aσ,b(φ,ψ)∣ ≥ aσ,b (φ, ∣∣φ∣∣−1
W 1,q′

0 (Ω)
φ) ≥ ε∣∣φ∣∣W 1,q

0 (Ω)

and, similarly,

sup
ψ∈C∞0 (Ω)

∣∣ψ∣∣
W

1,q
0

(Ω)=1

∣aσ,b(ψ,φ)∣ ≥ aσ,b (∣∣φ∣∣−1W 1,q
0 (Ω)

φ,φ) ≥ ε∣∣φ∣∣
W 1,q′

0 (Ω)
.

Since aσ,b is continuous and C∞0 (Ω) is both dense in V and W , by the above we conclude
that aσ,b ∈Bc(V,W ). This proves claim (1).

We now move to (2). For each σ,b, f, g and w ∈W we have

∣Fσ,b,f,g(w)∣ ≤ ∣∣σ∣∣L∞(Ω,Rd×d)∣∣Tg∣∣W 1,q(Ω)∣∣w∣∣W 1,q′
0 (Ω)

+C ∣∣b∣∣L∞(Ω,Rd)∣∣Tg∣∣W 1,q(Ω)∣∣w∣∣W 1,q′
0 (Ω)

+ ∣∣f ∣∣W−1,q′(Ω)∣∣w∣∣W 1,q′
0 (Ω)

.

In particular, for all w ∈W with unitary norm,

∣Fσ,b,f,g(w)∣ ≤ C̃ ∣∣g∣∣W 1/q′,q(∂Ω) (∣∣σ∣∣L∞(Ω,Rd×d) +C ∣∣b∣∣L∞(Ω,Rd)) + ∣∣f ∣∣W−1,q′(Ω).
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From here, arguing by linearity easily yields (2).

Finally, for each σ ∈ Σ(Ω),b ∈ B(Ω), f ∈ W −1,q′(Ω), g ∈ W 1/q′,q(∂Ω) let ũσ,b,f,g ∈ V =
W 1,q

0 (Ω) be the unique solution to the variational problem

aσ,b,f,g(ũ,w) = Fσ,b,f,g(w) ∀w ∈W.

At this regard, we notice that W = W 1,q′
0 (Ω) is reflexive, in fact 1 < q < +∞ implies

1 < q′ < +∞. Therefore, by Lemma 5.2, we know that ũσ,b,f,g exists unique and it depends
continuously (by composition) on (σ,b, f, g). Furthermore, as clear from inequality (5.12)
in Lemma 5.2, the correspondence (σ,b, f, g) → ũσ,b,f,g is Lipschitz continuous on every
compact subset of the product space Σ(Ω)×B(Ω)×W −1,q′(Ω)×W 1/q′,q(∂Ω). This is easily
deduced by the properties of A and F as well as by the fact that compactness is preserved
under continuous transformations. Finally, we notice that

uσ,b,f,g = ũσ,b,f,g + Tg.

The conclusion follows.

Lemma 5.4. Consider the context and notation in Lemma 5.3. If g ≡ c ∈ R and f > 0 in
the distributional sense, then u > c a.e. in Ω.

Proof. This simply derives from maximum principles. We first prove the case c = 0. Let
η ∈ C∞0 (Ω) be such that η > 0 everywhere in Ω. Let w ∈ H1

0(Ω) be the solution to the
following adjoint variational problem:

∫
Ω
σT∇w ⋅ ∇v − ∫

Ω
(b ⋅ ∇w)v = ∫

Ω
ηv ∀v ∈ C∞0 (Ω).

Within this regular case, the classical maximum principle states w > maxw∣Ω = 0 in Ω, see
e.g. Theorem 2 in [42]. Now we notice that w ∈W 1,q′

0 (Ω), as the PDE also admits a unique
solution in that space. Thus, by density, we are allowed to consider u as test function for w
and viceversa. Doing so and subtracting the equations for u and w yields

∫
Ω
ηu = ∫

Ω
fw,

since σ∇u ⋅ ∇w = σT∇w ⋅ ∇u and the advective terms cancel out using the integration by
parts formula (recall that b is divergence free while both u and w vanish on ∂Ω). The above
shows that ∫Ω ηu > 0, as the right hand side is positive by hypothesis. As η was arbitrary,
we conclude that u > 0 a.e. in Ω. Let now c ≠ 0. It is elementary to see that u = c+u0, where
u0 solves the variational problem with homogenous boundary conditions. The conclusion
follows.
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6 | Convolutional Neural Networks and
their role in operator learning

After autoencoders, one of the main ingredients of the DL-ROM approach presented in
Chapter 5, are Convolutional Neural Networks (CNNs). For this reason, we devote this
sixth Chapter to the study of these architectures. More precisely, we focus on the approxi-
mation capabilities of CNNs in the context of Operator Learning, emphasizing their ability in
the reconstruction of high dimensional outputs, a situation that is of particular interest for
applications involving parametrized PDEs. Surprisingly, despite the rapidly evolving litera-
ture of constructive approximation applied to Deep Learning, at the best of our knowledge,
there are no mathematical results about CNNs towards this direction. Our purpose for this
Chapter is thus to extend the state-of-the-art by deriving novel approximation bounds for
CNN models. To do so, we shall exploit an intimate connection between convolutions and
the Fourier transform. This research was carried out during my last year of PhD, in collab-
oration with Dr. Fresca S., and it was recently published in Franco et al., "Approximation
bounds for convolutional neural networks in operator learning", Neural Networks [66].

If the dimensions into play become very large, the total number of weights and biases in
a DNN model can quickly become computationally intractable. In fact, given input-output
dimensions m,n ≥ 1, and an activation function ρ, the collection of all possible layers

Dense(m,n, ρ) ∶= {v → ρ(Wv + b) ∣ W ∈ Rn×m, b ∈ Rn}

is a set parametrized by mn + n parameters. Therefore, even after having fixed the archi-
tecture, it can be very hard to identify the correct layer that suits our needs.

For this reason, whenever dealing with high-dimensional regimes, data scientists avoid
the use of layers that are as general as the ones in Definition 0.1. Instead, they restrict their
attention to subclasses S ⊆ Dense(m,n, ρ) that are usually obtained by imposing constraints
on the weight matrix W. One main example of this fact are the so-called convolutional
layers: there, the weight matrix is required to have a suitable structure so that the linear
map v →Wv can be reproduced by a cross-correlation operator. In practice, this forces
sparsity patterns in the weight matrix and ensures that multiple entries have unique common
values (see Figure 6.1). While it is tempting to provide a rigorous mathematical description
of these objects, the notation can quickly get extremely heavy. For this reason, it might be
worth to start with some heuristics before getting to their formal definition.

The idea of convolutional layers was first introduced to handle image-like data, which
are typically stored in 3D tensors, V ∈ Rc×m2×m3 : one dimension to specify the RGB channel
(red, green or blue), and the remaining two to span the pixel values. In that case, researchers
proposed the use of convolutional layers to account for spatial dependence: image-like inputs
are not just generic vectors in Rcm2m3 ≅ Rc×m2×m3 , instead they enjoy specific properties
that we can exploit in order to define lighter architectures, see Figure 6.1. While this is
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Chapter 6. CNNs in operator learning

Figure 6.1: Visualization of a 2D convolutional layer (linear part). Panel (A) shows the action
of the layer as a cross-correlation operator, while panel (B) uses a matrix-vector representation,
highlighting how CNNs are actually particular DNNs.

for 2D convolutional layers, the idea easily generalizes to any spatial dimension. In general,
a dD convolutional layer assumes the input to have an underlying d-dimensional structure
and thus only accepts inputs of the form

Rcm1⋅⋅⋅⋅⋅md ≅ Rc×m1×⋅⋅⋅×md .

The process of moving back and forth from the vectorized representation, Rcm1⋅⋅⋅⋅⋅md , to the
tensor-like one, Rc×m1×⋅⋅⋅×md is called reshaping. The advantage of this operation is that
it allows us to compute the action of a convolutional layer without actually assembling its
weight matrix W.

In order to fix the ideas, let us restrict to the case d = 1, where we can more easily re-
port the formal definition of convolutional layers in mathematical terms. To this end, we
shall use the following notation to describe tensor objects. Given A ∈ Rn1×⋅⋅⋅×nd , we write
Ai1,...,ip for the subtensor in Rnp+1×⋅⋅⋅×nd obtained by fixing the first p dimensions along the
specified axis, where 1 ≤ ij ≤ nj . We can now define in a formal way the concept of a 1D
convolutional layer and its transpose counterpart. These definitions are given along the lines
of the existing literature, and correspond to those adopted by the Python library Pytorch.

Definition 6.1. Let m,m′s, t, d be positive integers and let g be a common divisor of m and
m′. A 1D Convolutional layer with m input channels, m′ output channels, grouping number
g, kernel size s, stride t, dilation factor d and activation function ρ ∶ R→ R, is a map of the
form

Φ ∶ Rm×n → Rm
′
×⌊

n−d(s−1)−1
t +1⌋

whose action on a given input X ∈ Rm×n is defined as

Φ(X)k′ = ρ(∑
k

Wk′,k ⊗t,dXk +Bk′) ,

where 1 ≤ k′ ≤m′, while the sum index k runs as below,

k = ⌊g(k′ − 1)/m⌋m/g + 1, . . . , (⌊g(k′ − 1)/m⌋ + 1)m/g.

Here, W ∈ Rm
′
×(m/g)×s and B ∈ Rm

′
×⌊

n−d(s−1)−1
t +1⌋ are the weight tensor and the bias term,

respectively. The symbol ⊗t,d denotes the cross-correlation operator with stride t and dilation

d. That is, for any w ∈ Rs and x ∈ Rn one has w ⊗t,d x ∈ R⌊
n−d(s−1)−1

t +1⌋
, where

(w ⊗t,d x)j ∶=
s

∑
i=1

wix(j−1)t+(i−1)d+1.
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The default values for stride and dilation are t = 1, d = 1. For this reason, with little
abuse of notation, one says that Φ has no stride and no dilation to intend that t = 1, d = 1.
Similarly, we assume g = 1 whenever the grouping number is not declared explicitly.

Definition 6.2. Let m,m′s, t, d be positive integers and let g be a common divisor of m
and m′. A 1D Transposed Convolutional layer with m input channels, m′ output channels,
grouping number g, kernel size s, stride t, dilation factor d and activation function ρ ∶ R→ R,
is a map of the form

Φ ∶ Rm×n → Rm
′
×(n−1)t+d(s−1)+1

whose action on a given input X ∈ Rm×n is defined as

Φ(X)k′ = ρ(∑
k

Wk,k′ ⊗⊺t,dXk +Bk′) ,

where 1 ≤ k′ ≤m′, while the sum index k runs as below,

k = ⌊g(k′ − 1)/m⌋m/g + 1, . . . , (⌊g(k′ − 1)/m⌋ + 1)m/g.

Here, W ∈ R(m/g)×m
′
×s and B ∈ Rm

′
×(n−1)t−d(s−1)+1 are the weight tensor and the bias term,

respectively. The symbol ⊗⊺t,d denotes the transposed cross-correlation operator with stride
t and dilation d. That is, for any w ∈ Rs and x ∈ Rn one has w ⊗⊺t,d x ∈ R

(n−1)t−d(s−1)+1,
where

(w ⊗⊺t,d x)j ∶=∑
i

w
⌊
(i−1)t+1−j

d ⌋+1
xi,

the sum index i running as below,

i = ⌊j − 1

t
+ 1⌋ , . . . , ⌊(s − 1)d + j − 1

t
+ 1⌋ .

Definition 6.3. A Convolutional Neural Network (CNN) is any map that, up to reshaping
operations, can be written as the composition of (transposed) convolutional layers. In par-
ticular, as (transposed) convolutional layers can be seen as a special case of dense layers,
every CNN is a DNN.

As we mentioned, the power of CNNs lies in that they can tackle high dimensional
objects without requiring too many degrees of freedom. This makes them suited for handling
image-like data, but also more complex objects such as discretized functions. In particular,
as we discussed in Chapter 5, they can be a natural choice when dealing with parameter
dependent PDEs or, more in general, with problems of operator learning. Indeed, CNNs have
reported remarkable successes in these fields, and our experience with these architectures
was extremely positive (cf. Chapter 5, Section 5.4). However, the current literature still
lacks: (i) a clear understanding of the role played by CNN hyperparameters, (ii) rigorous
error bounds such as the ones by Yarotski in Theorem 0.3. Our purpose for this Chapter
is to remedy this shortcoming. To this end, we shall directly state our main result in
the next Section, after a brief contextualization. However, as the proof is quite technical
and requires the derivation of several preliminary results, we postpone its demonstration
to Section 6.4. Finally, even though mathematical proofs already speak for themselves, we
have decided to include some additional numerical experiments for the empirical validation
of our error bounds. We report them in Section 6.2. In general, we mention that all the
analyses presented in this Chapter refer a work that we recently published, see [66].
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Chapter 6. CNNs in operator learning

6.1 Understanding CNNs: a new interpretable
approximation bound

Convolutional neural networks have become very popular after their tremendous success
in computer vision, with applications ranging from image processing to generative models
for images generation [55, 188]. From a mathematical point of view, image-like data are
equivalent to discrete functional signals defined over rectangular domains and vice versa.
Indeed, each continuous function u ∶ [0,1]2 → R can be discretized in matrix form as

U ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

u(x1,1) . . . u(x1,N)
. . . . . . . . .

u(xN,1) . . . u(xN,N)

⎤⎥⎥⎥⎥⎥⎥⎦

∈ RN×N ,

where {xi,j}i,j=1,...,N are the vertices of some uniform grid defined over the unit square. In
light of this, CNNs have been recently employed for tasks that go beyond computer vision,
such as operator learning and reduced order modelling of parameter-dependent PDEs [65,
70, 71, 118, 143].

As an example, let Ω = (0,1)d and assume we are given an operator µ → uµ that
maps a finite dimensional input µ ∈ Rp onto some functional signal uµ ∶ Ω → R. As
we already discussed in Chapter 5, this is a classical set-up in parameter-dependent PDE
models, where each parameter instance is associated with the corresponding PDE solution.
Once a suitable, discrete grid of points {xi1,...,id}i1,...,id=1,...,N ⊂ Ω has been introduced, the
operator of interest can be expressed as

Rp ∋ µ→Uµ ∈ RN×⋯×N ,

denoting by Ui1,...,id
µ ≈ uµ(xi1,...,id). The final goal is then to construct a neural network

model
Φ ∶ Rp → RN×⋯×N , such that Φ(µ) ≈Uµ,

with the idea of replacing an operator that is otherwise computationally expensive to eval-
uate. As previously mentioned, this task can be successfully achieved by CNNs, as they
allow to intrinsically account for underlying spatial correlations. However, the literature
still lacks a comprehensive mathematical analysis and foundation motivating the remark-
able performance shown by CNNs, and the role played by each hyperparameter in a CNN
model remains unclear. In this work, we aim at addressing these critical points, show-
ing rigorous estimates on the error E ∶= supµ supj∈{1,...,N}d ∣uµ(xj) −Φj(µ)∣ generated when
approximating the operator of interest by means of CNNs.

6.1.1 Review of the state-of-the-art
As we discussed at the beginning of the Thesis, neural networks were known to be universal
approximators since Cybenko in 1989 [50]. However, the design of effective NN architectures
able to preserve desired accuracy properties had not been in-depth investigated until recent
years. A substantial improvement was achieved by Yarotsky in 2017, [202], where a rigorous
mathematical meaning to structural DNN properties such as width and depth has been
first provided. In particular, Yarotsky proved that any s-differentiable scalar-valued map
f ∶ [0,1]p → R can be approximated uniformly with error 0 < ε < 1/2 by some ReLU DNN
with c log(1/ε) layers and cε−p/s log(1/ε) active weights, where c = c(p, s, f) is some constant
that depends on the derivatives of f (see Theorem 0.3 in the introductory Chapter). This
result was later extended to more general activation functions and different norms, see e.g.
[78, 79, 182], and adapted to the case of CNNs exploiting some algebraic arguments that
link dense and convolutional layers, see e.g. [206, 82].

However, all these results are limited to the approximation of scalar-valued maps and
they are not suited for operator learning. To this end, it is worth to note the following as-
pect. Assume that we are interested in approximating a vector-valued map f ∶ [0,1]p → Rn,
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f(µ) = [f1(µ), . . . , fn(µ)], with a DNN model Φ. Clearly, we could exploit the aforemen-
tioned results to approximate each fi with some DNN ϕi, and then stack together the models
to get Φ ∶= [ϕ1, . . . , ϕn]. However, with this construction the number of active weights in
Φ would grow linearly with n as n → +∞. In our context, where we deal with functional
outputs and n = Nd comes from having discretized Ω = (0,1)d with a computational grid
with N nodes per side, this would be rather undesirable.

Nevertheless, new approaches are now appearing in the literature, in a first attempt to
employ DNNs for operator learning. Some of these, such as Neural Operators [109] and
DeepONets [126], work with a continuous functional output space, while a second class of
approaches relies on a discretization of the output space, see e.g. [112]. Here, we focus on
the latter family of approaches.

Neural Operators provide a novel framework for building models between infinite dimen-
sional spaces, and are essentially based on integral operators. Among them, those that have
been mostly investigated are Fourier Neural Operators, for which several error estimates
have been derived, see, e.g., [108]. Conversely, DeepONets are a class of models based on a
separation of variables approach, which decouples the input parameter and the space vari-
able at output. Error estimates for DeepONets are also available, see [115], and they are
mostly settled on the aforementioned results in the scalar case and on those by [176] for
high-dimensional inputs.

Besides these methods, Deep Learning approaches that discretize the functional output
space are also available. This need usually arises, for instance, when dealing with parameter-
dependent PDEs, whose solutions are usually computed through numerical discretization
schemes like, e.g., the finite element method. In this case, the functional output space –
usually given by a Sobolev space – is replaced by a finite-dimensional trial space (e.g., the
space of polynomial finite elements of degree r built over a triangulation of the spatial do-
main Ω). Aside from our proposal in Chapter 5, Deep Learning approaches of this type
were also proposed in [24] and [112]. The former relies on linear reduction methods to deal
with the functional component at output, and it is able to recover mesh independence. The
second one, instead, is purely based on DNNs. Both works provide error estimates, most of
which are derived by exploiting the results in the scalar-case and projection arguments.

This flourishing literature indicates a growing interest at understanding the properties of
DNN models and their potential in operator learning. However, at the best of our knowl-
edge, no comprehensive study has yet been proposed for CNN models, despite these being
extremely popular in practical applications. One reason might be that CNN architectures
can be traced back to sparse versions of dense models, which led researchers to focus on
deriving error bounds for DNNs, see e.g. [156]. Moreover, CNN models have been mostly
studied for handling high-dimensional data at input and not at output, as in [82]. As a
consequence, the available literature is left with a missing piece, which is to understand
the approximation properties of convolutional layers when reconstructing functional signals.
Here, we aim at addressing this issue.

6.1.2 Our contribution

Let µ→ uµ be some nonlinear operator whose output are functions uµ ∶ [0,1]d → R defined
over the unit hypercube. We provide error bounds for the approximation of such an operator
via a CNN model Φ ∶ Rp → (RN)d. In particular, we characterize the model architecture in
terms of the approximation error

E ∶= sup
µ∈Θ

sup
j∈{1,...,N}d

∣uµ(xj) −Φj(µ)∣,

where Θ ⊂ Rp is some parameter space and {xj}j ⊂ [0,1]d is a suitable N × ⋅ ⋅ ⋅ ×N grid. By
doing so, we also provide a clear interpretation to the model hyperparameters, including the
number of dense and convolutional layers, the amount of active weights and the number of
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convolutional channels. In what follows, we limit ourselves to the 1-dimensional case, d = 1,
even if the ideas at the core of our proofs can be extended to higher dimensions with little
effort.

We report below our main result, Theorem 6.1, in which we characterize the approxi-
mation error in terms of the complexity of a DNN model comprised of a dense and a
convolutional block. In what follows, we denote by Hs(Ω) the Sobolev space of s-times
weakly-differentiable maps with square-integrable derivatives.

Theorem 6.1. Let Ω ∶= (0,1) and let {xj}Nh

j=1 ⊂ Ω be a uniform grid with stepsize h = 2−k.
Let Θ ⊂ Rp ∋ µ → uµ ∈ Hs(Ω) be a (nonlinear) operator, where Θ is a compact domain and
s ≥ 1. For some r ≥ 1, assume that the operator is r-times continuously Fréchet differentiable.
For any 0 < ε < 1/2, there exists a deep neural network Φ ∶ Rp → RNh such that

∣uµ(xj) −Φj(µ)∣ < ε

uniformly for all µ ∈ Θ and all j = 1, . . . ,Nh. Additionally, Φ can be defined as the compo-
sition of a fully connected network ϕ and a convolutional neural network Ψ, i.e. Φ = Ψ ○ ϕ,
such that the overall architecture has at most

i) C log(1/ε) dense layers, with ReLU activation, and C log(1/h) convolutional layers,

ii) Cε−2/(2s−1) [ε−p/r log(1/ε) + log(1/h)] active weights,

iii) Cε−2/(2s−1) channels in input and output,

where C > 0 is a constant dependent on Θ and on the operator µ→ uµ, thus also on s, r, p.

In particular, the above result shows that:

(i) The number of dense layers depends logarithmically on the desired accuracy, while
that of the convolutional layers depends logarithmically on the mesh resolution, i.e.
on the number of discretization points.

(ii) The width of the dense block is related to the regularity of the operator itself, with
smooth operators requiring less neurons.

(iii) The number of convolutional features depends on the regularity of the signals uµ at
output.

Our proof of Theorem 6.1 is based on a link between CNNs and the Fourier transform,
which we establish step-by-step through a sequence of technical Lemmas. For better read-
ability, we have decided to postpone all the proofs and the technical results until the end of
the Chapter.

6.2 Numerical validation

We present some numerical experiments that confirm the decay rates predicted in Theorem
6.1. We proceed as follows. First, we introduce the operator to be learned and we identify the
smoothness indices, s and r, that appear in Theorem 6.1. Then, we fix a guess architecture
Φ(1) that serves as a starting point. Following the ideas of Theorem 6.1, we prescribe Φ(1)

as a DNN that is made of two blocks,

Φ(1) = Ψ(1) ○ ϕ(1),

where ϕ(1) is dense, while Ψ(1) is of convolutional type. More precisely:

• we let ϕ(1) have L1 hidden layers of constant width w1, while we equip the output
layer with m1(2ℓ + 5) neurons. In this way, the output of ϕ(i) can be reshaped in the
form of a m1×(2ℓ+5) matrix, which allows the CNN block to interpret it as a discrete
signal having m1 features of length 2ℓ + 5;

106



• we let Ψ(1) ∶= R2 ○ Ψ̃(1) ○R1, where the Ri are auxiliary reshape operations, whereas
Ψ̃(1) contains the actual convolutional part. In particular, R1 is used to reshape the
output of ϕ(1) as m1 × (2ℓ + 5). Conversely, Ψ̃(1) is comprised of k − ℓ + 1 transposed
convolutional layers, where k ∶= log2(1/h) depends on the final grid resolution. All
these layers have m1 channels at input and output, grouped by m1 (cf. Definition
6.1). The architecture of Ψ̃(1) is then further supplemented with a convolutional layer
having a single output channel, and a terminal transposed convolution. All layers in
Ψ̃(1) use a kernel of size 5 and a stride of 2, except for the last one, which resorts to
the default stride of 1. With this set up, the output of Ψ̃(1) ○R1 ○ ϕ(1) is guaranteed
to have shape 1 × (2k+1 + 1). The final reshaping, R2, is then used to flatten and half
the output, leaving us with the correct dimension, that is, 2k + 1.

Table 6.1 reports in full detail the complete structure of the neural network architec-
ture. We remark that the latter is itself parametrized by five hyperparameters, namely
L = L1,w = w1,m = m1, k and ℓ. The first three allow us to tune the overall complexity of
the model, and we shall exploit them to verify the estimates in Theorem 6.1. Conversely,
the last two, k and ℓ, are problem dependent and we shall fix their value for each experiment
alone. In fact, k is related to the grid discretization, while ℓ is used to define an intermediate
level of resolution.

We initialize all the weights and biases of Φ(1) randomly, following the approach intro-
duced by He et al. in [83]. We then train Φ(1) over a training set {µi, uµi

}Ntrain
i=1 in such a

way that the loss function below is minimized

L(Φ(1)) ∶= 1

Ntrain

Ntrain

∑
i=1

⎛
⎝
h
Nh

∑
j=1

∣uµi
(xj) −Φ

(1)
j (µi)∣

2⎞
⎠
, (6.1)

where x1, . . . , xNh
is some dyadic partition of (0,1) associated to a given grid resolution

h = 2−k. We then evaluate Φ(1) over a test set of unseen instances {µtest
i , uµtest

i
}Ntest
i=1 in

order to compute the empirical uniform error, given by

E(Φ(1)) =max
i,j
∣uµtest

i
(xj) −Φ

(1)
j (µ

test
i )∣. (6.2)

Then, we exploit Theorem 6.1 in an attempt to define a second architecture, Φ(2), that can
be twice as accurate, i.e. such that E(Φ(2)) ≈ E(Φ(1))/2. We do this as follows:

• we update the number of channels according to (iii) in Theorem 6.1. In particular, up
to rounding operations, we let

m2 ∶= 22/(2s−1)m1;

• we increase the with of the dense layers coherently with (ii) in Theorem 6.1, that is

w2 ∶=
√
2p/r+2/(2s−1)w1,

where the square root comes from the fact that a dense layer from Rw → Rw carries
O(w2) active weights;

• as suggested by (i) in Theorem 6.1, we also increase the number of dense hidden layers.
In principle, the depth of the dense block should be increased by a constant factor
C log(2). In practice, we let

L2 = L1 + l,

where l is either 1 or 2. This is to ensure that the obtained architectures are still
feasible to train, as very deep models may become hard and expensive to optimize.
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Layer Input Output Active weights

Dense p w pw

Dense w w w2

...
Repeat last layer L-1 times

...

Dense w (2ℓ + 5)m (2ℓ + 5)wm

Reshape (2ℓ + 5)m m × (2ℓ + 5) -

ConvTr5,2 m × (2ℓ + 5) m× (2ℓ+1 + 13) 5m
...

Repeat last layer k − ℓ + 2 times
...

Conv5,2 m × (2k+2 − 3) 1 × (2k+1 − 3) 5m

ConvTr5,1 1 × (2k+1 − 3) 1 × (2k+1 + 1) 5

Reshape 1 × (2k+1 + 1) 2k+1 + 1 0

Truncate 2k+1 + 1 2k + 1 0

Table 6.1: Parametric architecture for the numerical experiments, Section 6.2. The dense block
depends on the structural hyperparameters p (input dimension), w (width of the hidden layers), L
(number of hidden layers-1), m and ℓ (intermediate output). Conversely, the design of the convo-
lutional part depends on m (number of channels), ℓ and k = log2(1/h) (depth of the convolutional
block, upto a constant), where h is the stepsize of the discretization. Here, Convs,t = Convolutional
layer with kernel of size s and stride t; ConvTrs,t = Transposed convolutional layer with kernel of
size s and stride t; Truncate = weightless layer that keeps only the central 2k + 1 components of
the input. All learnable layers, except the last one, employ the 0.1-leakyReLU activation.

We then train Φ(2) and iterate the above steps to generate Φ(3), so that

E(Φ(j))∝ 2−j .

We highlight that, according to Theorem 6.1, this procedure should be robust with respect
to the space discretization. In other words, we expect to obtain similar results regardless of
the number of grid points employed in the discretization. To assess whether this behavior
is actually observed in practice, we repeat our analysis for different mesh step sizes h = 2−k
(when possible).

6.2.1 Benchmark example
To start, we consider the approximation of an operator that is defined analytically. More
precisely, let Θ = [0,1] × [0,1] × [1,2] ⊂ R3. For any fixed µ = (µ1, µ2, µ3) ∈ Θ let

uµ(x) = µ3∣x − µ1∣3e−µ2x.

We are interested in learning the map µ → uµ. To this end, we note that {uµ}µ∈Θ ⊂
H3(Ω) ∖H4(Ω). Also, the operator is at most twice differentiable with respect to µ, as
its third derivative becomes discontinuous. According to the notation in Theorem 6.1, this
results in s = 3 and r = 2. However, due to the boundness of the third derivative, we can
actually apply Theorem 6.1 with an increased smoothness index, i.e. r = 3 (see Remark
6.4.3 in the technical proofs Section).

For the space discretization, we consider three different mesh resolutions, h = 2−5,2−6,2−7,
corresponding respectively to Nh = 33,65,129 grid points. We train the networks by min-
imizing (6.1) via the so-called L-BFGS optimizer, where the training set consists of 500
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Figure 6.2: Benchmark example, Section 6.2.1. In blue, an instance uµ coming from the test set,
here for µ = [0.1125,0.5409,0.1255]. The red dashed lines report the approximations proposed by
the three DNNs, respectively Φ(1),Φ(2),Φ(3). Grid resolution is h = 2−6.

Model ℓ mj wj Lj Active weights E(Φ(j))

Φ(1) 3 5 1 1 223 0.884

Φ(2) 3 7 2 2 407 0.489

Φ(3) 3 9 3 3 653 0.177

Table 6.2: Architectures and corresponding errors for the Benchmark example, Section 6.2.1. Re-
sults are reported limitedly to the case of grid resolution h = 2−7. The hyperparameters read as in
Section 6.2, that is: mj = maximum number of convolutional features in the CNN block, upto a
multiplicative constant; wj = number of neurons per dense layer; Lj = depth of the dense block.
The errors E(Φ(j)) are computed as in Equation (6.2).

randomly sampled parameters instances. We do not use batching strategies and we set the
learning rate to its default value of 1. To avoid possible biases introduced by the optimiza-
tion, we initialize and train each architecture multiple times (here, five), only to keep the
best out of all the training sessions. This is a common practice known as ensemble training.
For our starting architecture, Φ(1), we set

m1 = 5, w1 = 1, L1 = 1.

In this case, we have 22/(2s−1) ≈ 1.32 and
√
2p/r+2/(2s−1) ≈ 1.62, since p = 3. In particular, our

strategy for enriching the architectures can be stated as follows: to obtain a model that is
twice as accurate, we increase the number of channels in the convolutional layers by nearly
30%, while we add about 60% new neurons to the dense layers. The theory also suggests to
increase the depth of the dense block by some constant factor l. Here, we let l = 1. Finally,
for this numerical experiment we choose a fixed coarse resolution of 13 = 2ℓ + 5, that is, we
let ℓ = 3 in Table 6.1.

Results are in Table 6.2, Figures 6.2 and 6.3. The first picture compares the output of
the three architectures with that of the operator, for an unseen value of the input parame-
ter µ. The quality of the approximation clearly increases as we consider richer and richer
models. In general, we see that the estimated signals are rougher compared to the ground
truth. This, however, is most likely due to our use of the leaky ReLU activation (which we
chose in order to be consistent with Theorem 6.1): other activations may lead to smoother
results, with a possible benefit in terms of approximation properties, see e.g. [79], or training
strategies, see e.g. [137]. We also note that the regions with lower regularity are the most
difficult to capture, coherently with what we expected. Indeed, the architectures mostly
struggle in capturing flat regions, which is understandable as these entail discontinuities in
the higher-derivatives. Finally, Figure 6.3, reports the errors E(Φ(j)) in comparison with
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Chapter 6. CNNs in operator learning

Figure 6.3: Numerical validation of Theorem 6.1 for the Benchmark example, Section 6.2.1. Axis
are in loglog scale. The red line corresponds to the predicted decay rate, 2−j , while the markers
refer to the DNN models. Different markers correspond to different grid resolutions. The errors
E(Φ(j)) obtained for the architectures j = 1,2,3, are computed as in Equation (6.2). Dashed lines
are obtain through least square estimates.

the expected decay rate 2−j . There, we see that the numerical results perfectly match the
theory, regardless of the grid resolution that is considered.

6.2.2 Application to a parametrized time-dependent nonlinear PDE

We now consider a benchmark consisting of a one-dimensional coupled PDE-ODE nonlinear
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ
∂uµ

∂t
− µ2 ∂

2uµ

∂x2
+R(uµ) +wµ = 0, (x, t) ∈ Ω × (0, T )

dwµ

dt
+ (2wµ − 0.5uµ) = 0, (x, t) ∈ Ω × (0, T )

∂uµ

∂x
(0, t) = 50000t3e−15t, t ∈ (0, T )

∂uµ

∂x
(1, t) = 0, t ∈ (0, T )

uµ(x,0) = 0, wµ(x,0) = 0, x ∈ Ω,

(6.3)

where R(uµ) ∶= uµ(uµ − 0.1)(uµ − 1), while Ω = (0,1) and T = 2. The above consists in
a parametrized version of the monodomain equation coupled with the FitzHugh-Nagumo
cellular model, describing the excitation-relaxation of the cell membrane in the cardiac tis-
sue [64, 145]. System (6.3) has been discretized in space through linear finite elements, by
considering Nh = 2k, with k ∈ N, grid points, and using a one-step, semi-implicit, first order
scheme for time discretization with time-step ∆t = 5 × 10−3; see, e.g., [152] for further de-
tails. The solution of the former problem consists in a parameter-dependent traveling wave,
which exhibits sharper and sharper fronts as the parameter µ gets smaller. The numerical
transmembrane potential solution uµ represent the ground truth data in the experiments
reported in the following.

Here, we consider the map (µ, t) → uµ(⋅, t) as our operator of interest. In particular, the
two dimensional vector parameter µ ∶= (µ, t) consists of the scalar parameter µ and the time
variable t. We let µ vary in the (time-extended) parameter space Θ ∶= Θ0 × [0, T ], where
Θ0 ∶= 5 ⋅[10−3,10−2]. In this case, it is not straightforward to identify the smoothness indices
s and r. The numerical simulations show that the solutions uµ to (6.3) tend to have sharp
gradients for certain values of the scalar parameter µ. In light of this, we let s = 1; if the
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Figure 6.4: Numerical validation of Theorem 6.1 for the coupled FitzHugh-Nagumo problem, Sec-
tion 6.2.2. Axis read in loglog scale. The red line corresponds to the predicted decay rate, 2−J ,
while the blue markers report the errors E(Φ(j)) obtained for the architectures j = 1,2,3. Different
markers correspond to different choices of the initial guess architecture Φ(1), respectively. Errors
are computed accordingly to Equation 6.2.

solutions are actually smoother, then we expect the errors to decay faster than the predicted
rate. Conversely, we make the assumption that r = +∞, i.e. that the parameter-to-solution
map is infinitely differentiable. We remark that the constant C appearing in Theorem 6.1
actually depends on r. To this end, we make the further assumption that C = C(r) is
bounded with respect to r. This is a rather restrictive assumption, but we expect the latter
to hold for analytic operators with fast decaying coefficients: indeed, in this case, one could
adapt the proof of Theorem 6.1 by replacing the result due to Yarotsky with a stronger one,
such as, e.g., Theorem 3.9 in [176].

As a starting point, we build our reference architecture, Φ(1), by considering the follow-
ing structural hyperparameters

m1 = 1, w1 = 5, L1 = 1.

In this case, we have 22/(2s−1) = 2p/r+2/(2s−1) = 4. In particular, in order to half the test error,
Theorem 6.1 suggests to quadruplicate the number channels in the convolutional layers, and
to double that of the neurons in the dense layers. Regarding the depth of the dense block,
instead, we increase it by a constant factor of l = 1 when moving from a simpler architecture
to a more complex one. In this case, we do not assess the model performance for varying
resolution levels as we stick to the same grid employed by the Finite Element solver. Instead,
to collect more data, we repeat the same analysis for a different guess architecture, namely

m1 = 1, w1 = 2, L1 = 2.

To collect the training and test sets, we proceed as follows. We sample Ntrain = 20 equally
spaced values for the scalar parameter µ ∈ Θ0, and we consider their midpoints to obtain
Ntest = 19 test instances. For each µ ∈ Θ0 fixed, we then extract uniformly Nt = 25 time
snapshots from the global trajectory defined over the interval [0, T ]. Once again, we train
the DNN models using the L-BFGS optimizer (no batching, learning rate = 1).

Results are reported in Figures 6.4 and 6.5. As for the benchmark example, we see
that the DNN models become more and more expressive as we move from Φ(1) to Φ(3).
Furthermore, the error trend, reported in Figure 6.4, is in agreement with the estimates
presented in Theorem 6.1 regardless of the initial guess for the architecture. Note, once
again, that here we only consider one resolution level, as we employ the same step size h
adopted by the Finite Element solver.
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Model mj wj Lj Active weights E(Φ(j))

Φ(1) 1 5 1 225 0.765

Φ(2) 4 10 2 1’705 0.398

Φ(3) 16 20 3 13’085 0.208

Table 6.3: Architectures and corresponding errors for the coupled FitzHugh-Nagumo problem, Sec-
tion 6.2.2. Results are reported limitedly to one of the initial guess architectures. Hyperparameters
read as in Section 6.2 and Table 6.2. Errors are computed as in Equation (6.2).

Figure 6.5: Learning the parameter-to-solution operator of a parametrized time-dependent nonlin-
ear PDE, Section 6.2.2. In blue, a snapshot uµ(⋅, t) coming from the test set, here for µ = 0.0488
and t = 0.7250. The red dashed lines correspond to the approximations proposed by the three DNN
models, respectively Φ(1),Φ(2),Φ(3).

Figure 6.6: Learning the parameter-to-solution operator of a parametrized time-dependent nonlin-
ear PDE, Section 6.2.2. Comparison between Finite Element solutions and DNN approximations
for different µ. The first and the third plot report the spacetime surface [0, T ]×Ω→ R representing
the Finite Element simulation, thus (t, x)→ uµ(x, t). Conversely, the second and the fourth picture
show the corresponding DNN approximation over the same spatial grid, (t, xj) → Φj(t, µ). Here,
Φ is constructed considering the third architecture generated during the iterative augmentation
process in Section 6.2, starting from the second guess architecture in Section 6.2.2.
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Since we included time as an additional parameter, the plots in Figure 6.5 fix both the
scalar parameter µ and the time instant t. However, we recall that according to Equation
(6.2) the model was evaluated in terms of worst-case errors. In particular, the quality of
the approximation is guaranteed over the whole time interval [0, T ] and for any choice of
the scalar parameter µ ∈ Θ0. Figure 6.6, shows the overall dynamics of the solution for
two different choices of µ, with a comparison between Finite Element solutions and DNN
approximations. Despite containing a few numerical artifacts, we see that the DNN model
fully captures the general behavior of the solutions, both in the hyperbolic and diffusive
case (µ = 1.33 ⋅ 10−2 and µ = 4.64 ⋅ 10−2 respectively). Of note, the spurious oscillations
in the DNN approximation are in perfect agreement with the errors reported in Table 6.3.
Accordingly to Theorem 6.1, these can be removed by considering larger architectures and,
possibly, more training data.

6.3 Conclusions

In this Chapter, we have established and verified theoretical error bounds for the approxima-
tion of nonlinear operators by means of CNNs. Our results shed a light on the role played
by convolutional layers and their hyperparameters, such as input-output channels, depth
and others. In particular, they show how operator learning problems can be decoupled in
two parts: on the one hand, the difficulty in characterizing the dependence with respect
to the input parameters; on the other hand, the issue in having to reconstruct complex
space-dependent outputs. The presented research is original and timely. Indeed, at the best
of our knowledge, all the available results on DNNs and operator learning do not address
the peculiar properties of CNNs, instead they consider classic fully connected architectures.
Conversely, those works that focus on CNN models are typically not framed in the context
of operator learning.

Our analysis is limited to the 1-dimensional case, d = 1, that is when the output of
the operator are functions defined over an interval. However, we note that the main ideas
underlying our proofs can be extended to higher dimensions with little effort. The critical
points are Lemmas 6.1, 6.3 and 6.4 (see the next Section). To generalize the first two,
one needs to define suitable convolutional layers that are able to advance along different
dimensions separately, which can be carried out via 2D and 3D convolutions whenever
d = 2,3. Conversely, Lemma 6.4 has to be adapted in a proper way, since it becomes trickier
to turn generic maps f ∶ [0,1]d → R onto periodic functions. Furthermore, as the spatial
dimension d plays an important role in Sobolev inequalities, it may be convenient to replace
the output space Hs(Ω) with other functional spaces, such as W s,∞(Ω) or Cs(Ω), when
addressing the case d > 1.

Nevertheless, we believe that our results motivate the recent success of CNNs, especially
in areas such as Reduced Order Modeling of PDEs. This is because, as shown in Theorem
6.1, smooth outputs are those that are better approximated by CNNs: as solutions to partial
differential equations often enjoy regularity properties, this makes them an appealing area
of application for the proposed analysis. In general, these considerations further promote
the practical use of CNNs, as well as their theoretical study from a purely mathematical
point of view.

6.4 Technical proofs

In this Section, we report the proof of Theorem 6.1 together with the Lemmas propedeutical
to it. In what follows, we make use of the embedding C↪ R4,

z→ [Re(z), Im(z),Re(z), Im(z)],

to represent complex numbers. This will come in handy when trying to mimic the algebra of
complex numbers using neural networks. With this convention, we also let Cn ↪ R4×n in the

113



Chapter 6. CNNs in operator learning

obvious way. In particular, when defining CNN architectures of the form ϕ ∶ R4×n → R4×m,
we shall write ϕ ∶ Cn → Cm. However, this is only a matter of notation: in practice, all the
networks considered from now on will never deal with complex values (neither at input or
output) but only with the equivalent representation in R4.

6.4.1 Interpolation of the discrete Fourier transform
Convolution operations are intimately connected to the Fourier transform via the so-called
Convolution Theorem, see e.g. [97]. Here, we further investigate this connection by deriving
some preliminary results that will serve as building blocks for Theorem 6.1. The idea can
be stated as follows. Given any dyadic partition of the unit interval,

{xj}Nh

j=1 ∶= {(j − 1)2−k}Nh

j=1,

where Nh ∶= 2k + 1, and any positive integer m, we construct a CNN model Sm that inter-
polates the (discrete) map

[z−m,⋯,zm]→ [
m

∑
k=−m

zke2πikx0 , . . . ,
m

∑
k=−m

zke2πikxNh ]

associating the coefficient zk ∈ C, k = −m, . . . ,m, to the truncated Fourier transform at the
points xj , j = 1 , . . . ,Nh, with i the imaginary unit. The construction of Sm is detailed step-
by-step, starting at Lemma 6.1 and concluding with Lemma 6.3. The proofs are constructive,
as they explicitly describe how to implement Sm. In particular, we are able to characterize
the complexity of Sm in terms of those specific features that are typical of CNNs, such
as depth, kernel size, stride, dilation, padding, and number of input-output channels. For
instance, we shall see in Lemma 6.3 that the depth of Sm grows logarithmically with the
grid resolution, while the active weights grow linearly with m. These observations will play
a key role when deriving the upper bounds in Lemma 6.4 and Theorem 6.1.

Lemma 6.1. For any k ∈ N+ and any z ∈ C there exists a convolutional neural network
ϕkz ∶ C2k−1 → C2k such that

i) it is linear (no activation at any level),

ii) it only employs 1D convolutional and reshaping operations,

iii) it has an architecture of at most six layers,

iv) the input and the output of its convolutional layers have at most 8 channels,

v) the kernels of the convolutional layers have size at most equal to 2,

and such that
ϕkz([w1, . . . ,w2k−1]) = [w1,zw1, . . . ,w2k−1 ,zw2k−1]

for all w1, . . . ,w2k−1 ∈ C.

Proof. Let n = 2k−1 be the (complex) input dimension. Let f1 be a 1D transposed convo-
lutional layer with the following specifics. The layer has four channels at input and four
channels at output. It uses a 2-sized window that acts with a stride of 2. The layer has
no bias and its weight matrix W1 ∈ R4×4×2, which is obtained by stacking together the
convolutional kernels, is zero at all but six entries. These are given by the relations below

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1,1,1
1 W1,1,2

1

W2,2,1
1 W2,2,2

1

W3,3,1
1 W3,3,2

1

W4,4,1
1 W4,4,2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

Re(z) Im(z)

−Im(z) Re(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.4)
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Note that, here, we have also listed some of the zero entries in W1: this is to facilitate
the reader in understanding the purpose of f1. The first block in (6.4) is used to mimic
the action of the identity matrix. Conversely, the second block encodes a 2 × 2 matrix
representation of the complex number z. The idea is that these two blocks should provide
a way of computing the map w → [w,zw]. However, for these computations to be actually
carried out, we also need a further layer that performs a suitable summation of the outputs
given by f1. To this end, we define the second layer, f2, as a 1D convolution that maps
4-channeled inputs onto 2-channeled outputs. The latter uses a 1-sized window that acts
with a stride of 1. The layer has no bias and its weight matrix W1 ∈ R2×4×1 contains either
zeros or ones. The positive entries are

W1,1,1
2 , W1,2,1

2 , W2,3,1
2 , W2,4,1

2 = 1.

Then, f2 ○ f1 ∶ R4×n → R2×2n, and, upto some basic calculations, we have

(f2 ○ f1) ([w1, . . . ,wn]) =

⎡⎢⎢⎢⎢⎢⎣

Re(w1), Im(w1), . . . , Re(wn), Im(wn)

Re(zw1), Im(zw1), . . . , Re(zwn), Im(zwn)

⎤⎥⎥⎥⎥⎥⎦
.

In practice, the desired output of ϕkz is already there, but we need to adjust the output
dimension in order to match our convention for complex numbers.

To this end, we start by introducing a reshape operation R1 ∶ R2×2n → R1×4n that flattens
the whole output. Then, we add a third convolutional layer, f3, whose purpose is to double
the entries in input. More precisely, we define f3 has a 1D convolution that has 1 channel
at input and 4 at output. The layer uses a 2-sized kernel that acts with a stride of 2. Once
again, the layer introduces no bias and has a weight matrix W3 ∈ R4×1×2 given by

W3 = [[[1,0]], [[0,1]], [[1,0]], [[0,1]]].

With the notation adopted to represent complex numbers, the current action of f3○R1○f2○f1
becomes

[w1, . . . ,wn]→ [w1, . . . ,wn,zw1, . . . ,zwn] .

Let us now act further on the output to sort the entries in the desired order. To do so, we
introduce a 1D convolutional layer, f4, that has a dilation factor of 2k (this is because we
want to group w1 with zw1, which is 2k entries faraway, and so on). We let f4 go from 4 to
8 channels, and employ a kernel of size 2 with unit stride. Once again, f4 does not have a
bias term, while its weight matrix satisfies

Wi,j,k
4 =

⎧⎪⎪⎨⎪⎪⎩

1 if i = j + 4(k − 1)
0 otherwise.

At this point we have,

f4 ○ f3 ○R1 ○ f2 ○ f1 ∶ [w1, . . . ,wn]→
⎡⎢⎢⎢⎢⎢⎣

w1, . . . , wn

zw1, . . . , zwn

⎤⎥⎥⎥⎥⎥⎦
,

and we only need to add a final reshaping operation, R2. We define the latter as follows.
First, it transposes the input by mapping R8×n → Rn×8. Then, it performs the reshaping
Rn×8 → R2n×4, where entries are read by rows, and finally it transposes back the input so
that it ends up in R4×2n ≅ C2k . Finally, letting ϕkz ∶= R2 ○ f4 ○ f3 ○R1 ○ f2 ○ f1 concludes the
proof.

Lemma 6.2. Let k ∈ N+ and h = 2−k. Let {x1, . . . , xNh
} be an uniform partition of [0,1]

with stepsize h. For any ω ∈ R there exists a convolutional neural network Fω ∶ C → CNh−1

such that
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i) Fω is linear (no activation at any level),

ii) Fω has at most depth C log(1/h),

iii) Fω has at most C log(1/h) active weights,

iv) Fω(w) = [weiωx1 , . . . ,weiωxNh−1].

where C > 0 is a constant independent on h and ω. Furthermore, up to reshape operations,
Fω only uses 1D convolutional layers that have at most 8 channels at both input and output.
Moreover, the kernel size of all convolutional layers in Fω is at most 2.

Proof. Let z ∈ C. For all j = 1, . . . , k, define the CNNs ϕj
z2j−1 as in Lemma 1. For the sake

of simplicity assume that k ≥ 2. Then it is straightforward to check that ϕ1z ∶ w → [w,wz],
while ϕ2z2 ○ ϕ1z ∶w → [w,wz2,wz,wz3] and so on. In particular,

ϕk
z2k−1 ○ ⋅ ⋅ ⋅ ○ ϕ1z ∶w → πk ([w,wz,wz2, . . . ,wz2

k
−1])

where πk ∶ CNh−1 → CNh−1 is some (invertible) map that acts as a permutation over the
entries. We now claim that this permutation can be nullified through the composition of
three suitable reshape operations: that is, there exist three reshape layers R(k)1 ,R

(k)
2 ,R

(k)
3

such that
π−1k = R

(k)
3 ○R(k)2 ○R(k)1 . (6.5)

Before proving it, we note that (6.5) would immediately yield the desired conclusion. In
fact, if we let z ∶= eiωh, then (6.5) allows us to define Fω ∶= π−1k ○ϕk

z2k−1 ○ ⋅ ⋅ ⋅ ○ϕ1z, which results
in the map

Fω ∶w → [weiω0h,weiω1h, . . . ,weiω(Nh−2)h].

Therefore, it is sufficient for us to prove that (6.5) holds. To this end, we define the three
maps as

R
(k)
1 ∶ C2k → C

k times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
2 × ⋅ ⋅ ⋅ × 2,

where the output entries are filled by rows,

R
(k)
2 ∶ C2×⋅⋅⋅×2 → C2×⋅⋅⋅×2,

which acts as a full transposition of the indexes, that is

R
(k)
2 (Qi1,...,ik) =Qik,...,i1 ,

and finally
R
(k)
3 ∶ C2×⋅⋅⋅×2 → C2k ,

that flattens back the input. With this setup, we shall now prove (6.5) following an argument
by induction over k. To start, let k = 2. We choose to skip the trivial case k = 1 to provide
the reader with a more insightful computation that anticipates the ideas used later for
the inductive step. In this case, we note that πk([0,1,2,3]) = [0,2,1,3], where we write
k = k + 0i ∈ C to embed real numbers in C. The reshape layers act on the latter vector as

R
(k)
3 ○R(k)2 ○R(k)1 ([0,2,1,3]) =

= R(k)3 ○R(k)2

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0 2

1 3

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= R(k)3

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0 1

2 3

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
=

= [0,1,2,3].
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Since πk is a permutation, the above directly implies (6.5). To conclude, we shall now prove
the inductive step: assuming that (6.5) holds for k, we show that the statement is also true
for k + 1. For any j ∈ N, let

Ej ∶= πj ([0, . . . ,2j − 1]) .

We split the vector ek+1 into halves by introducing the following notation

Ek+1 = [A1, . . . ,A2k ,B1, . . . ,B2k],

so that Ek+1 is the concatenation of the two (complex) vectors A,B ∈ C2k . Following the
construction in Lemma 6.1, it is not hard to see that

A = 2Ek, B = 2Ek + 1, (6.6)

where, with little abuse of notation, we intend [v1, . . . ,vn]+1 ∶= [v1+1, . . . ,vn+1]. Let now

Z ∶= R(k+1)1 (ek+1), Z̃ ∶= Rk+12 (Z).

By definition, we have

Z̃j1,...,jk,1 = Z1,jk,...,j1 =A(jk−1)21−1+⋅⋅⋅+(j1−1)2k−1 ,

Z̃j1,...,jk,2 = Z2,jk,...,j1 = B(jk−1)21−1+⋅⋅⋅+(j1−1)2k−1 .

We note that, the subtensor of Z̃ obtained by fixing the last index equal to 1 is equivalent
to R(k)2 ○R(k)1 (A), and similarly for B. In particular, if we let

Â ∶= R(k)3 ○R(k)2 ○R(k)1 (A), B̂ ∶= R(k)3 ○R(k)2 ○R(k)1 (B),

then the action of the final layer, R(k+1)3 , results in

R
(k+1)
3 (Z̃) = [Â1, B̂1, . . . , Â2k , B̂2k].

Finally, by recalling (6.6) and by applying our inductive hypothesis, we have

Â = [0,2, . . . ,2k+1 − 2], B̂ = [1,3, . . . ,2k+1 − 1]

Ô⇒ R
(k+1)
3 (Z̃) = [0,1, . . . ,2k+1 − 1] = π−1k+1(Ek+1),

which proves our original claim in (6.5).

Lemma 6.3. Let k ∈ N+ and h = 2−k. Let {x1, . . . , xNh
} be a uniform partition of [0,1]

with stepsize h. For any positive integer m, there exists a convolutional neural network
Sm ∶ C2m+1 → CNh such that

i) Sm is linear (no activation at any level),

ii) Sm has at most depth C log(1/h),

iii) Sm has at most Cm log(1/h) active weights,

iv) Sm uses convolutional layers with at most Cm channels,

v) for any complex vector Z = [z−m, . . . ,zm] ∈ C2m+1 one has

Sm(Z)i =
m

∑
k=−m

zke2πikxi ,

for all i = 1, . . . ,Nh, where Sm(Z)i is the ith component of the output vector Sm(Z).

Here, C > 0 is a universal constant independent on h and m. Furthermore, up to reshape
operations, Sm only uses 1D convolutional layers whose kernel size does not exceed 2.
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Proof. Fix any k ∈ {−m, . . . ,m}. Let F(k) be the CNN in Lemma 6.2 when ω = 2πk. We
note that, as k varies, the structure of F(−m), . . .F(m) does not change: these architectures
have the same depth and they employ convolutional layers with the same specifics. Also,
the reshaping operations entailed by the networks occur at the same locations. Therefore,
we can stack all these models on top of each other to obtain a global CNN S̃m such that

S̃m(Z) = [F(−m)(z−m), . . . ,F(m)(zm)]

where Z = [z−m, . . . ,zm] ∈ C2m+1 is a generic input vector. This can be done as follows. To
stack 2m + 1 convolutional layers with cin channels at input and cout channels at output
each, we define a single CNN layer with (2m + 1)cin channels at input and (2m + 1)cout at
output. Then, to avoid the introduction of redundant kernels, we constrain the new layer to
group its kernels in (2m+1) subsets. This ensures the wished behavior, i.e. that we actually
stack the outputs of the 2m + 1 original layers as if they work in parallel (thus each seeing
only the part of interest of the input). Similarly, reshaping and transpositions can be easily
stacked together. For instance, stacking (2m+1) transpositions of the form ϕ ∶ Ra×b → Rb×a
results in a map from R(2m+1)×a×b to R(2m+1)×b×a. Since S̃m takes values in C(2m+1)×(Nh−1),
our next purpose is to append a further layer L such that

(L ○ S̃m)(Z) =
m

∑
k=−m

F(k)(zk) ∈ CNh−1.

It is easy to see that L can be obtained with a convolutional layer having (2m+1) channels at
input and 1 at output, no stride or dilation, and a kernel of size 1 whose weight is constantly
equal to 1. Finally, we note that for all k ∈ {−m, . . . ,m} we have

e2πikx1 = e2πik0 = 1 = e2πik = e2πikxNh

due to periodicity. Therefore, we may simply define Sm ∶= A ○L ○ S̃m, where A has the only
purpose of augmenting the input vector by appending a copy of its first component, that is

A([w1, . . . ,wNh−1]) = [w1, . . . ,wNh−1,w1].

This can be seen as a form of reshaping or padding. By construction, Sm satisfies (v).
Similarly, (i) and (iv) hold. In fact, each of the F(k) has length C log(1/h), where C is a
common constant. Since we stacked them in parallel to get S̃m, our final model has depth
C log(1/h)+2 = C̃ log(1/h). Also, the CNNs F(k) featured at most 8 channels, thus Sm uses
no more than (2m + 1)8 = C̃m channels at input-output. Property (iii) follows similarly by
recalling that we grouped the CNNs kernels in order to properly stack the architectures.

6.4.2 Signals reconstruction
Our next goal is to show that, for any desired accuracy, there exists a single CNN architecture
that is able to provide an approximation of any function belonging to a given smoothness
class. More precisely, let s ≥ 1 be a smoothness index, and fix some m ∈ N. Let also {xj}Nh

j=1

be some dyadic grid defined over Ω = (0,1). We build a CNN model Ψ ∶ C2m+1 → RNh such
that

∀f ∈Hs(Ω) ∃Zf ∈ C2m+1 such that sup
j=1,...,Nh

∣f(xj) −Ψj(Zf)∣ < Cm1/2−s∣∣f ∣∣sH(Ω),

where C = C(s) > 0 is some constant and Ψj is the jth component of the CNN output. The
above states that any smooth function f can be well approximated by Ψ, provided that the
model is fed with a suitable input vector. As for Lemma 6.3, we characterize the network
complexity in terms of depth, channels and active weights. Furthermore, we show that the
map f → Zf can be realized by some continuous linear operator that depends, at most, on s.
Before stating this rigorously in Lemma 6.4, it is worth to remark that this result concerns
the approximation of any functional output in Hs(Ω). In particular, although the proof is
based on classical estimates coming from the literature of Fourier series, no periodicity is
required.
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Lemma 6.4. Let k ∈ N+ and h = 2−k. Let {xj}Nh

j=1 be a uniform partition of Ω ∶= (0,1)
with stepsize h, so that Nh = 2k + 1. For any positive integer m and a universal constant C
independent on m and h, there exists a linear convolutional neural network Ψ ∶ C2m+1 → RNh

with

i) at most C log(1/h) layers,

ii) at most Cm log(1/h) active weights,

iii) at most Cm channels in input and output, with kernels coming in 2m + 1 groups,

such that for any s ≥ 1 and all f ∈Hs(Ω) one has

sup
j=1,...,Nh

∣f(xj) −Ψj(Tf)∣ ≤ cm1/2−s∣∣f ∣∣Hs(Ω).

Here, c = c(s) > 0 and T ∶ Hs(Ω) → C2m+1 are a positive constant and a continuous linear
operator that depend on s, respectively.

Proof. Let us denote by T the 1-dimensional torus, T ∶= R/Z, so that the spaces Ck(T) refer
to those functions that are k-times differentiable on the torus, namely

Ck(T) = {f ∈ Ck[0,1], f (j)(0) = f (j)(1) ∀j = 1, . . . , k} .

We start by defining an operator T0 ∶ Hs(Ω) → Hs(Ω) that perturbs the signal at input
to match suitable boundary conditions. To this end, we recall that there exist polynomials
p0, . . . , ps−1 and q0, . . . , qs−1, of degree 2s − 1, such that

p
(k)
j (0) = δj,k, p

(k)
j (1) = 0,

q
(k)
j (0) = 0, q

(k)
j (1) = δj,k,

for j, k ∈ {0, . . . , s − 1}, see e.g. [186]. Then, the linear operator

v → Pv ∶=
s−1

∑
j=0

vj(pj − qj)

maps any input vector v ∈ Rs−1 into a smooth polynomial with given boundary values. By
recalling that Hs(Ω)↪ Cs−1(Ω) thanks to classical Sobolev inequalities, we are then allowed
to define

T0 ∶ f → f + P [f (0)(1) − f (0)(0), . . . , f (s−1)(1) − f (s−1)(0)]
so that T0 ∶ Hs(Ω) → Hs(Ω). We now introduce the following notation for "periodicized
signals". For any f ∈Hs(Ω) we let f̃ be defined as

f̃(x) =
⎧⎪⎪⎨⎪⎪⎩

(T0f)(2x) 0 ≤ x ≤ 1/2
f(2x − 1) 1/2 < x ≤ 1

.

It is straightforward to see that f̃ ∈Hs(Ω) ∩ Cs−1(T). For instance,

f̃(0) = f(0) +
s−1

∑
j=0

[f (j)(1) − f (j)(0)] ⋅ [pj(0) − qj(0)]

= f(0) + [f(1) − f(0)]p0(0) = f(1) = f̃(1),

while

f̃(1/2) = f(1) +
s−1

∑
j=0

[f (j)(1) − f (j)(0)] ⋅ [pj(1) − qj(1)]

= f(1) − [f(1) − f(0)]q0(1) = f(0) = lim
x→ 1

2
+ f̃(x).
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Similar calculations hold for the derivatives as well. Furthermore, the mapping f → f̃ is
linear and continuous, in the sense that for some constant C > 0, depending only on s, we
have

∥f̃∥Hs(Ω) ≤ C∥f∥Hs(Ω) (6.7)

for all f ∈ Hs(Ω). With this construction, for any positive integer m, let Smf̃ be the m
truncated Fourier series of the function f̃ ,

(Smf̃) (x) =
m

∑
j=−m

ck
f̃
e2πikx

where
ck
f̃
∶= ∫

Ω
f̃(x)e−2πikxdx.

Since f̃ ∈ Cs−1(T) and its s-derivative is in L2(T), by exploiting classical estimates of Fourier
analysis, we have the error bound

∥f̃ − Smf̃∥L∞(Ω) ≤
√

2

2s − 1
m1/2−s∥f̃∥Hs(Ω). (6.8)

Let now T ∶Hs(Ω)→ C2m+1 be defined as

T ∶ f → [c−m
f̃
, . . . , cm

f̃
] ,

so that T maps each signal into the Fourier coefficients of its periodic alias. Let {y1, . . . , y2Nh−1}
be a uniform partition of (0,1) that is twice as fine as the original one {x1, . . . , xNh

}, that is
yj+1 − yj = h/2. With this partition as a reference, let then Sm be the CNN in Lemma 6.3.
By definition, we have

(Smf̃) (yi) = Sm(Tf)i.

Finally, let Ψ ∶= E ○R ○ Sm, where

• R is a reshape truncation layer,

R(w1, . . . ,w2Nh−1) = [wNh
, . . . ,w2Nh−1],

that we use to remove the undesired output. Note in fact that, the signal f̃ over
(1/2,1) is practically f over (0,1). Thus, in light of (6.8), we are only interested in
the second half of the output.

• E ∶ CNh → RNh is the embedding that only keeps the real part of the input. This can
also be seen as a reshape layer with a truncation at the end. Since f , and thus f̃ , are
real valued, so are Smf̃ and Sm(Tf). Therefore, we are not losing any information.

Finally, let j ∈ {1, . . . ,Nh}. We have

∣f(xj) −Ψj(Tf)∣ = ∣f(xj) − Sm(Tf)Nh−1+j ∣ =
= ∣f̃(1/2 + xj/2) − Sm(Tf)Nh−1+j ∣ =

= ∣f̃(yNh−1+j) − (Smf̃) (yNh−1+j)∣ .

Thus, by putting together (6.8) and (6.7) we get

∣f(xj) −Ψj(Tf)∣ ≤ ⋅ ⋅ ⋅ ≤ Cm1/2−s∥f̃∥Hs(Ω) ≤ C̃m1/2−s∥f∥Hs(Ω).
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Figure 6.7: Numerical validation of the upper bounds in Lemma 6.4. The two panels show the
results obtained for signals of different smoothness, respectively H1(0,1) on the left and H2(0,1)
on the right. The results are reported for different grid resolutions, the mesh stepsize being h = 2−k.

We remark that, as for the results in the previous Section, the proof is constructive. The
pictures in Figure 6.7 show the approximation rates obtained by the actual implementation
of Ψ (and T ) along the lines detailed in the proof. Note that we do not train the network,
as we directly initialize Ψ with the wished weights and biases. The left panel in Figure
6.7 shows the results obtained for a mildly smooth signal, f(x) = ∣x − 1/5∣. In this case we
have s = 1, and the L∞ error between the desired output, f , and the CNN approximation,
is shown to decay at the expected rate, that is 1/

√
m. This is also true regardless of the

grid resolution, coherently with Lemma 6.4. Indeed, we obtained nearly the same results for
Nh = 33,65,129. Finally, the right panel in Figure 6.7 refers to a smoother case, f(x) = ∣x∣3/2,
where s = 2. Here we can remark, once again, the expected behavior.

6.4.3 Proof of Theorem 6.1

We are now ready to prove Theorem 6.1. For better readability, we report both the Theorem
and its proof below.

Theorem 6.1. Let Ω ∶= (0,1) and let {xj}Nh

j=1 ⊂ Ω be a uniform grid with stepsize h = 2−k.
Let Θ ⊂ Rp ∋ µ → uµ ∈ Hs(Ω) be a (nonlinear) operator, where Θ is a compact domain and
s ≥ 1. For some r ≥ 1, assume that the operator is r-times continuously Fréchet differentiable.
For any 0 < ε < 1/2, there exists a deep neural network Φ ∶ Rp → RNh such that

∣uµ(xj) −Φj(µ)∣ < ε

uniformly for all µ ∈ Θ and all j = 1, . . . ,Nh. Additionally, Φ can be defined as the compo-
sition of a fully connected network ϕ and a convolutional neural network Ψ, i.e. Φ = Ψ ○ ϕ,
such that the overall architecture has at most

i) C log(1/ε) dense layers, with ReLU activation, and C log(1/h) convolutional layers,

ii) Cε−2/(2s−1) [ε−p/r log(1/ε) + log(1/h)] active weights,

iii) Cε−2/(2s−1) channels in input and output,

where C > 0 is some constant dependent on Θ and on the operator µ → uµ, thus also on
s, r, p.

Proof. Let ε > 0 and let c = c(s) > 0 be the constant in Theorem 6.4. We take advantage of
the compactness of Θ and the continuity of the operator to define

M ∶=max
µ∈Θ
∥uµ∥Hs(Ω) < +∞.
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Let now Ψ be the CNN in Lemma 6.4, where we fix m = ⌈(ε/2)−2/(2s−1)Mc⌉. Then,

∣uµ(xj) −Ψj(Tuµ)∣ < ε/2 (6.9)

for all j = 1, . . . ,Nh and µ ∈ Θ, where T ∶Hs(Ω)→ C2m+1 ≅ R4m+2 is some continuous linear
operator. We now note that, by composition, the map

µ→ Tuµ

is an element of the Sobolev space W r,∞(Θ;R4m+1). In particular, by Theorem 1 in
[202], there exists a ReLU DNN ϕ ∶ Rp → R4m+2 with C log(m/ε) hidden layers and
Cmε−p/r log(m/ε) active weights, such that

sup
µ∈Θ
∥Tuµ − ϕ(µ)∥1 < ε/2, (6.10)

where ∥ ⋅ ∥1 is the ℓ1 norm over R4m+2, while C > 0 is a constant that depends on r, p,Θ, s
and the operator µ → uµ. The dependence on s comes from the Lipschitz constant of T ,
which may inflate the magnitude of the partial derivatives of µ→ Tuµ.

Let now consider the composition Φ ∶= Ψ ○ ϕ. It is easy to see that, up to replacing the
value of the constant C, this DNN architecture satisfies the requirements claimed in the
Theorem. In fact, we note that, since 0 < ε < 1/2,

log(m/ε) = log(m) + log(1/ε) = C ′ log(1/ε) +C ′′ log(22/(2s−1)Mc) ≤ C ′′′ log(1/ε).

Furthermore, for any µ ∈ Θ and j = 1, . . . ,Nh we have the desired bound. In fact, by (6.9),

∣uµ(xj) −Φj(µ)∣ ≤
≤ ∣uµ(xj) −Ψj(Tuµ)∣ + ∣Φj(µ) −Ψj(Tuµ)∣ <

< ε
2
+ ∣Ψj(ϕ(µ)) −Ψj(Tuµ)∣. (6.11)

Now, we note that ∣Ψj(a) − Ψj(b)∣ ≤ ∥a − b∥1. In fact, in Lemma 6.4, Ψ was defined as
E○R○Sm, where E and R were reshape layers, while Sm was as in Lemma 6.3. In particular,

∣Ψj(a) −Ψj(b)∣ ≤ sup
x∈[0,1]

∣
m

∑
k=−m

ake2πikx −
m

∑
k=−m

bke2πikx∣ ≤
m

∑
k=−m

∣ak − bk ∣.

The above, together with (6.10), finally allows us to continue (6.11) as

∣uµ(xj) −Φj(µ)∣ ≤ ⋅ ⋅ ⋅ <
ε

2
+ ∥ϕ(µ) − Tuµ∥1 < ε.

Remark. The hypothesis of Frechét differentiability in Theorem 6.1 can be relaxed. Indeed,
for the error bounds to hold, it is sufficient that the map µ → Tuµ is in the Sobolev
space W r,+∞(Θ,R4m+1). For instance, one may require the operator µ → uµ to be r-times
Frechét differentiable, with the first r−1 derivatives being continuous and the last one being
(essentially) bounded.
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7 | Beyond convolutions:
Mesh-Informed Neural Networks

In this seventh Chapter, we present a novel class of neural networks architectures, called
Mesh-Informed Neural Networks, an original idea developed during my PhD. These models
enable in the most natural way the development of Deep Learning based ROMs for problems
that feature general geometries, overcoming the limitations posed by convolutional architec-
tures. After the presentation of the approach and its numerical validation, we conclude the
Chapter with a connection to oxygen transfer models, eventually explaining in full detail the
construction of the surrogate model employed back in Section 4.3.

In Chapter 5, we developed a Deep Learning approach for Reduced Order Modeling of
parametrized PDEs, DL-ROM, discussing its potential applications to the study of oxy-
gen transfer models. However, the proposed methodology is mostly grounded on the use
of convolutional autoencoders, which may limit the applicability of DL-ROMs to certain
geometries. Our purpose for this Chapter is to overcome this limitation by developing and
validating a novel class of neural network architectures that can handle general non-convex
domains. We call them Mesh-Informed Neural Networks (MINNs).

The rest of the Chapter is organized as follows. In Section 7.1, we set some notation and
formally introduce our new class of architectures from a theoretical point of view. There, we
also discuss their practical implementation and comment on the parallelism between MINNs
and other emerging approaches such as Graph Neural Networks. Then, in Section 7.2, we
assess the approximation power of MINNs in the context of Operator Learning. To do this,
we compare the use of MINNs with that of classical fully connected architectures, testing
their performance over a broad set of numerical experiments, with applications to nonlinear
operators and nonlinear PDEs, and ultimately validating their scientific value. Finally, in
Section 7.3, we revert our attention back to the case of oxygen microcirculation in biological
tissues, reconnecting to the example treated at the end of Chapter 4.

7.1 Mesh-informed architectures

As we extensively discussed in Chapters 5 and 6, Deep Neural Networks (DNNs) have
recently become a valuable tool for learning nonlinear operators in high dimensional spaces.
In particular, architectures such as Convolutional Neural Networks (CNNs) have shown
a remarkable power when addressing this kind of problems. When the operator under
study concerns functions defined over discrete hypercubes, CNNs are a natural alternative
to classical fully connected architectures, as they can achieve the same expressivity with
far less learnable parameters (i.e., weights and biases). However, CNNs cannot be applied
directly to data defined over general domains, which constitutes a major limitation for PDE
applications. So how should we extend this idea for it to work?
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Chapter 7. Mesh-Informed Neural Networks

Clearly, this is not a new question: many researchers have been working on this prob-
lem, and new alternative architectures, such as Graph Neural Networks [172], have been
developed. However, most of these approaches were motivated by applications unrelated to
operator learning. In particular, within this context, more natural and efficient construc-
tions may exist. Here, we shall present our own proposal, a novel type of architecture called
Mesh-Informed Neural Network.

To derive its construction, let us reconsider once again CNNs and their successes. Among
all the properties that characterize CNNs, one fundamental feature is arguably their capac-
ity to operate at different resolutions. To achieve data compression, CNNs send their input
through hidden states of decreasing resolution; conversely, when reconstructing functional
signals, CNN models start from data at low resolution and proceed with multiple subse-
quent refinements. We have also seen throughout the previous Chapters, both in practical
experiments, as in Chapter 5, and in theoretical proofs, as in Chapter 6.

When considering the numerical resolution of PDE models, we find a similar paradigm
in the so-called multigrid methods, where multiple meshes are used to solve different scales
of the same spatial domain. Inspired by this analogy, we propose a new type of architecture
that can handle general non-convex domains by operating at different resolution levels. To
do so, we shall equip the components of the architecture with a geometrical meaning, turn-
ing, for instance, classical neurons into mesh vertices. We detail our idea below, in a much
more rigorous way.

We are given a bounded domain Ω ⊂ Rd, not necessarily convex, and two meshes having
respectively stepsizes h,h′ > 0 and vertices

{xj}Nh

j=1, {x
′
i}
Nh′
i=1 ⊂ Ω.

The two meshes can be completely different and they can be either structured or unstruc-
tured. To each mesh we associate the corresponding space of piecewise-linear Lagrange
polynomials, namely Vh, Vh′ ⊂ L2(Ω). Our purpose is to introduce a suitable notion of
mesh-informed layer L ∶ Vh → Vh′ that exploits the apriori existence of Ω. In analogy to
the case of dense layers, see Definition 0.1, L should have Nh neurons at input and Nh′

neurons at output, since Vh ≅ RNh and Vh′ ≅ RNh′ . However, as we already discussed in
Chapter 6, thinking of the state spaces as either comprised of functions or vectors is fun-
damentally different: while we can describe the objects in Vh as regular, smooth or noisy,
these notions have no meaning in RNh , and similarly for Vh′ and RNh′ . Furthermore, in
the case of PDE applications, we are typically not interested in all the elements of Vh and
Vh′ , rather we focus on those that present spatial correlations coherent with the underlying
physics. Starting from these considerations, we build a novel layer architecture that can
meet our specific needs. In order to provide a rigorous definition, and directly extend the
idea to higher order finite element spaces, we first introduce some preliminary notation. For
the sake of simplicity, we will restrict to simplicial finite elements.

Definition 7.1. (Admissible mesh) Let Ω ⊂ Rd be a bounded domain. Let M = {Ki}i∈I be
a collection of d-simplices in Ω, that is K ⊂ Ω for each K ∈M. For each element K ∈M,
define the quantities

hK ∶= diam(K), RK ∶= sup {diam(S) ∣ S is a ball contained in K} ,

where diam(⋅) is the set diameter. We say that M is an admissible mesh of stepsize h > 0
over Ω if the following conditions hold.

1. The elements are exhaustive, that is

dist(Ω, ⋃
K∈M

K) ≤ h

where dist(A,B) = supx∈A infy∈B ∣x − y∣ is the distance between A and B.
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2. Any two distinct elements K,K ′ ∈M have disjoint interiors. Also, their intersection
is either empty or results in a common face of dimension s < d.

4. The elements are non degenerate and their maximum diameter equals h, i.e.

min
K∈M

RK > 0 and max
K∈M

hK = h.

In that case, the quantity

σ = min
K∈M

hK
RK
< +∞,

is said to be the aspect-ratio of the mesh.

Definition 7.2. (Function to node operator) Let Ω ⊂ Rd be a bounded domain and let
M = {Ki}i∈I be a mesh of stepsize h > 0 defined over Ω. For any positive integer q, we write
Xq
h(M) for the finite element space of piecewise-polynomials of degree at most q, that is

Xq
h(M) ∶= {v ∈ C(Ω) s.t. v∣K is a polynomial of degree at most q ∀K ∈M}.

Let Nh = dim(Xq
h(M)). We say that a collection of nodes {xi}Nh

i=1 ⊂ Ω and a sequence of
functions {φi}Nh

i=1 ⊂X
q
h(M) define a Lagrangian basis of Xq

h(M) if

φj(xi) = δi,j i, j = 1, . . . ,Nh.

We write Πh,q(M) ∶Xq
h(M)→ RNh for the function-to-nodes operator,

Πh,q(M) ∶ v → [v(x1), . . . , v(xNh
)],

whose inverse is

Π−1h,q(M) ∶ c→
Nh

∑
i=1

ciφi.

We now have all we need to introduce our concept of mesh-informed layer.

Definition 7.3. (Mesh-informed layer) Let Ω ⊂ Rd be a bounded domain and d ∶ Ω × Ω →
[0,+∞) a given distance function. Let M and M′ be two meshes of stepsizes h and h′,
respectively. Let Vh =Xq

h(M) and Vh′ =Xq′

h′(M) be the input and output spaces, respectively.
Denote by {xj}Nh

j=1 and {x′i}
Nh′
i=1 the nodes associated to a Lagrangian basis of Vh and Vh′

respectively. A mesh-informed layer with activation function ρ ∶ R → R and support r > 0 is
a map L ∶ Vh → Vh′ of the form

L = Π−1h′,q′(M′) ○ L̃ ○Πh,q(M)

where L̃ ∶ RNh → RN
′
h is a layer with activation ρ whose weight matrix W satisfies the

additional sparsity constraint below,

d (xj ,x′i) > r Ô⇒ Wi,j = 0.

The distance function d in Definition 7.3 can be any metric over Ω. For instance, one
may choose to consider the Euclidean distance, d (x,x′) ∶= ∣x−x′∣. However, if the geometry
of Ω becomes particularly involved, better choices of d might be available, such as the
geodesic distance . The latter quantifies the distance of two points x,x′ ∈ Ω by measuring
the length of the shortest path within Ω that starts at x and ends at x′, namely

d (x,x′) ∶= inf {∫
1

0
∣γ′(t)∣dt, with γ ∈ C([0,1],Rd), γ([0,1]) ⊆ Ω,

γ(0) = x, γ(1) = x′}
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Chapter 7. Mesh-Informed Neural Networks

Figure 7.1: Comparison of a dense layer (see the preliminary Chapter, Definition 0.1) and a mesh-
informed layer (cf. Definition 7.3). The dense model features 3 neurons at input and 5 at output.
All the neurons communicate: consequently the weight matrix of the layer has 15 active entries.
In the mesh-informed counterpart, neurons become vertices of two meshes (resp. in green and red)
defined over the same spatial domain Ω. Only nearby neurons are allowed to communicate. This
results in a sparse model with only 9 active weights.

It is worth pointing out that, as a matter of fact, the projections Πh,q(M) and Π−1h′,q′(M′)
have the sole purpose of making Definition 7.3 rigorous. What actually defines the mesh-
informed layer L are the sparsity patterns imposed to L̃. In fact, the idea is that these
constraints should help the layer in producing outputs that are more coherent with the
underlying spatial domain (cf. Figure 7.1). In light of this intrinsic duality between L and
L̃, we will refer to the weights and biases of L as to those that are formally defined in L̃.
Also, for better readability, from now on we will use the notation

L ∶ Vh
rÐ→ Vh′ ,

to emphasize that L is a mesh-informed layer with support r. We note that dense layers can
be recovered by letting r ≥ sup {d (x,x′) ∣ x,x′ ∈ Ω}, while lighter architecture are obtained
for smaller values of r. The following result provides an explicit upper bound on the number
of nonzero entries in a mesh-informed layer. For the sake of simplicity, we restrict to the
case in which d is the Euclidean distance.

Theorem 7.1. Let Ω ⊂ Rd be a bounded domain and d the Euclidean distance. Let M and
M′ be two meshes having respectively stepsizes h,h′ and aspect-ratios σ,σ′. Let

hmin ∶= min
K∈M

hK , h′min ∶= min
K′∈M′

hK′

be the smallest diameters within the two meshes respectively. Let L ∶ Vh
rÐ→ Vh′ be a mesh-

informed layer of support r > 0, where Vh ∶=Xq
h(M) and Vh′ ∶=Xq′

h′(M
′). Then,

∥W∥0 ≤ C (σσ′
r

hminh′min

)
d

where ∥W∥0 is the number of nonzero entries in the weight matrix of the layer L, while
C = C(Ω, d, q, q′) > 0 is a constant depending only on Ω, d, q and q′.

Proof. Let Nh ∶= dim(Vh), Nh′ ∶= dim(Vh′) and let {xj}Nh

j=1,{x
′
i}
Nh′
i=1 be the Lagrangian nodes

in the two meshes respectively. Let ω ∶= ∣B(0,1)∣ be the volume of the unit ball in Rd. Since
minK′ RK′ ≥ h′min/σ′, the volume of an element in the output mesh is at least

vmin(h′) ∶= (h′min/σ′)dω.
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Figure 7.2: MINNs operate at different resolution levels to enforce local properties. Here, three
meshes of the Elba island, in Italy, represent three different hidden states in the pipeline of a
suitable MINN architecture, where neurons are identified with mesh vertices. Due to the sparsity
constraint (Definition 7.3), the red neuron only fires information to the nearby neurons within the
circle (second mesh). In turn, these can only communicate with the neurons in the third mesh that
are sufficiently close (largest red circle). Even though the supports are limited, the composition of
mesh-informed layers eventually lets information spread all over the domain.

It follows that, for any x ∈ Ω, the ball B(x, r) can contain at most

ne(r, h′) ∶=
ωrd

vmin(h′)
= ( σ

′r

h′min

)
d

elements of the output mesh. Therefore, the number of indices i such that ∣x′i − xj ∣ ≤ r is
at most ne(r, h′)c(d, q′), where c(d, q′) ∶= (d + q′)!/(q′!d!) bounds the number of degrees of
freedom within each element. Finally,

∥W∥0 ≤ Nhne(r, h′)c(d, q′) ≤

≤ c(d, q)∣Ω∣
vmin(h)

ne(r, h′)c(d, q′) =
c(d, q)c(d, q′)∣Ω∣

ω
⋅ ( σσ′r

hminh′min

)
d

Starting from here, we define MINNs by composition, with a possible interchange of
dense and mesh-informed layers. Consider for instance the case in which we want to define
a Mesh-Informed Neural Network Φ ∶ Rp → Vh ≅ RNh that maps a low-dimensional input,
say p≪ Nh, to some functional output. Then, using our notation, one possible architecture
could be

Φ ∶ Rp ÐÐÐ→ V4h

≅

RN4h

r = 0.5ÐÐÐÐ→ V2h

≅

RN2h

r = 0.25ÐÐÐÐ→ Vh

≅

RNh

, (7.1)

The above scheme defines a DNN of depth l = 2, as it is composed of 3 layers. The first
layer is dense (Definition 0.1) and has the purpose of preprocessing the input while mapping
the data onto a coarse mesh (stepsize 4h). Then, the remaining two layers perform local
transformations in order to return the desired output. Note that the three meshes need
not to satisfy any hierarchy, see e.g. Figure 7.2. Also, the corresponding finite element
spaces need not to share the same polynomial degree. Clearly, (7.1) can be generalized by
employing any number of layers, as well as any sequence of stepsizes h1, . . . , hn and supports
r1, . . . , rn−1. The choice of the hyperparameters remains problem specific, but a good rule of
thumb is to decrease the supports as the mesh becomes finer, so that the network complexity
is kept under control (cf. Theorem 7.1).
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Chapter 7. Mesh-Informed Neural Networks

Figure 7.3: Approximation of the geodesic distance d (x,y) as the shortest path across elements
(blue triangles). In general, the latter is different from the Euclidean distance between the two
points (orange dashed line).

7.1.1 Implementation details
For simplicity, let us first focus on the case in which distances are evaluated according to
the Euclidean metric, d (x,x′) = ∣x−x′∣. In this case, the practical implementation of mesh-
informed layers is straightforward and can be done as follows. Given Ω ⊂ Rd, h,h′ > 0, let
X ∈ RNh×d and X′ ∈ RNh′×d be the matrices containing the degrees of freedom associated
to the chosen finite element spaces, that is Xj,. ∶= [Xj,1, . . . ,Xj,d] are the coordinates of the
jth node in the input mesh, and similarly for X′. In order to build a mesh-informed layer
of support r > 0, we first compute all the pairwise distances Di,j ∶= ∣Xj,. −X′i,.∣2 among the
nodes in the two meshes. This can be done efficiently using tensor algebra, e.g.

D =
d

∑
l=1

(eNh′ ⊗X.,l −X′.,l ⊗ eNh
)○2

where X.,l is the lth column of X, ek ∶= [1, . . . ,1] ∈ Rk, ⊗ is the tensor product and ○2 is
the Hadamard power. We then extract the indices {(ik, jk)}dof

k=1 for which Dik,jk ≤ r2 and
initialize a weight vector w ∈ Rdof. This allows us to declare the weight matrix W in sparse
format by letting the nonzero entries be equal to wk at position (ik, jk), so that ∥W∥0 = dof.
Preliminary to the training phase, we fill the values of w by considering an adaptation of the
so-called He initialization. More precisely, we sample independently the values w1, . . . ,wdof
from a normal distribution having mean zero and variance 1/∥W∥0.

The above reasoning can be easily adapted to the general case, provided that one is
able to compute efficiently all the pairwise distances d (Xj,.,X

′
i,.). Of course, the actual

implementation will then depend on the specific choice of d . Since the case of geodesic dis-
tances can be of particular interest in certain applications, we shall briefly discuss it below.
In this setting, the main difficulty arises from the fact that, in general, we are required to
computed distances between points of different meshes. Additionally, if we consider Finite
Element spaces of degree q > 1, not all the Lagrangian nodes will be placed over the mesh
vertices, meaning that we cannot exploit the graph structure of the mesh to compute short-
est paths.

To overcome these drawbacks, we propose the introduction of an auxiliary coarse mesh
M0 ∶= {Ki}mi=1, whose sole purpose is to capture the geometry of the domain. We use this
mesh to build another graph, G , which describes the location of the elements Ki. More
precisely, let ci be the centroid of the element Ki. We let G be the weighted graph hav-
ing vertices {ci}mi=1, where we link ci with cj if and only if the elements Ki and Kj are
adjacent. Then, to weight the edges, we use the Euclidean distance between the centroids.
Once G is constructed, we use Dijkstra’s algorithm to compute all the shortest paths along
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the graph. This leaves us with an estimated geodesic distance gi,j for each pair of centroids
(ci,cj), which we can precompute and store in a suitable matrix. Then, we approximate
the geodestic distance of any two points x,x′ ∈ Ω as

d (x,x′) ≈ gi(x),i(x′),

where i ∶ Ω → {1, . . . ,m} maps each point to one of the elements that contains that point
(see Figure 7.3). In other words,

i(x) ∶=min{i ∣ x ∈Ki}.

If the auxiliary mesh does not fill completely Ω, then one may also use the relaxed version
below

i(x) ∶=min{i ∣ dist(x,Ki) = min
j=1,...,m

dist(x,Kj)}.

In general, evaluating the index function i can be done in O(m) time. In particular, going
back to our original problem, we can approximate all the pairwise distances between the
nodes of the input and the output spaces in O(mNh +mN ′n +m2) time. In fact, we can run
Dijkstra’s algorithm once and for all with a computational cost of O(m2). Then, we just
need to evaluate the index function i for all the Lagrangian nodes {x}Nh

i=1 and {x′}Nh′
i=1 , which

takes respectively O(mNh) and O(mNh′). In particular, the total computational cost for
building the mesh-informed layer can be substantially smaller than the one obtained with a
brute force approach, which would be O(NhNh′).

7.1.2 How MINNs relate to existing literature
It is worth to comment on the differences and similarities that MINNs share with other
Deep Learning approaches. We discuss them below.

Relationship to CNNs and GNNs

Mesh-Informed architectures can work at different resolutions simultaneously, in a way that
is very similar to CNNs. However, their construction comes with multiple advantages. First
of all, Definition 7.3 adapts to any geometry, while convolutional layers typically operate
on square or cubic input-output. Furthermore, convolutional layers use weight sharing,
meaning that all parts of the domain are treated in the same way. This may not be an
optimal choice in some applications, such as those involving PDEs, as we may want to
differentiate our behavior over Ω (for instance near of far away from the boundaries).

Conversely, MINNs share with GNNs the ability to handle general geometries. As a
matter of fact, we mention that these architectures have been recently applied to mesh-
based data, see e.g. [62, 76, 158, 201]. With respect to GNNs, the main advantage of
MINNs lies in their capacity to work at different fidelity levels. This fact, which essentially
comes from the presence of an underlying spatial domain, has at least two advantages: it
favors resolution independence and it increases the interpretability of hidden layers (now
the number of neurons is not arbitrary but comes from the chosen discretization). In this
sense, MINNs exploit meshing strategies as auxiliary tools and they appear to be a natural
choice for learning discretized functional outputs.

Relationship to DeepONets and Neural Operators

Recently, some new DNN models have been proposed for operator learning. One of these
are DeepONets [126], a mesh-free approach that is based on an explicit decoupling between
the input and the space variable. More precisely, DeepONets consider a representation of
the following form

(Ghf)(x) ≈ Ψ(f) ⋅ ϕ(x),

where ⋅ is the dot product, Ψ ∶ Vh → Rm is the so-called trunk-net, and ϕ ∶ Ω → Rm is
the branch-net. DeepONets have been shown capable of learning nonlinear operators and
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are now being extended to include apriori physical knowledge, see e.g. [196]. We consider
MINNs and DeepONets as two fundamentally different approaches that answer different
questions. DeepONets were originally designed to process input data coming from sensors
and, being mesh-free, they are particularly suited for those applications where the output
is only partially known or observed. In contrast, MINNs are rooted on the presence of a
high fidelity model Gh and are thus better suited for tasks such as reduced order modeling.
Another difference lies in the fact that DeepONets include explicitly the dependence on the
space variable x. This can then make it harder to process general domains and include
additional information such as boundary data. Conversely, MINNs can easily handle this
kind of issues thanks to their global perspective.

In this sense, MINNs are much closer to the so-called Neural Operators, a novel class of
DNN models recently proposed by Kovachki et al. [109]. Neural Operators are an extension
of classical DNNs that was developed to operate between infinite dimensional spaces. These
models are ultimately based on Hilbert-Schmidt operators, meaning that their linear part,
that is ignoring activations and biases, is of the form

W ∶ f → ∫
Ω
k(⋅,x)f(x)dx (7.2)

where k ∶ Ω × Ω → R is some kernel function that has to be identified during the training
phase. Clearly, the actual implementation of Neural Operators is carried out in a discrete
setting and integrals are replaced with suitable quadrature formulas.

The construction of Neural Operators is of full generality, to the point that other ap-
proaches such as DeepONets [126] can be seen as a special case. Similarly, we note that
MINNs also form a special class of Neural Operators. Indeed, a rough Monte Carlo-type
estimate of (7.2) would yield

(Lf)(x′i) = ∫
Ω
k(x′i,x)f(x)dx ≈

∣Ω∣
Nh
∑
j

k(x′i,xj)f(xj).

If we let {xj}j and {x′i}i be the nodes in the two meshes, then the constraint in Definition
7.3 becomes equivalent to the requirement that k is supported somewhere near the diagonal,
that is supp(k) ⊆ {(x,x + ε) with ∣ε∣ ≤ r}.

We believe that these parallels are extremely valuable, as they indicate the existence of
a growing scientific community with common goals and interests.

7.2 Numerical experiments

We provide empirical evidence that the sparsity introduced by MINNs can be of great
help in learning maps that involve functional data, such as nonlinear operators, showing
a reduced computational cost and better generalization capabilities. We first detail the
setting of each experiment alone, specifying the corresponding operator to be learned and
the adopted MINN architecture. Then, at the end of the current Section, we discuss the
numerical results.

Throughout all our experiments, we adopt a standardized approach for designing and
training the networks. In general, we always employ the 0.1-leakyReLU activation for all
the hidden layers, while we do not use any activation at the output. To build mesh-informed
layers we adopt the Euclidean distance as a metric function d . Additionally, every time a
mesh-informed architecture is introduced, we also consider its dense counterpart, obtained
without imposing the sparsity constraints. Both networks are then trained following the
same criteria, so that a fair comparison can be made. As loss function, we always consider
the mean square error computed with respect to the L2 norm, that is

Ef∼P∥Ghf −Φ(f)∥2L2(Ω)

where Gh is the (discretized) operator to be learned and Φ is the DNN model. Here, P
is some given probability distribution over the input space Θ, which we allow to be either
finite or infinite dimensional.
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a) b) c) d)

Figure 7.4: Domains considered for the numerical experiments in Section 7.2. Panel a): upto
boundaries, Ω is the difference of two circles, B(0,1) and B(x0,0.7), where x0 = (−0.75,0). Panel b):
A polygonal domain obtained by removing the rectangles [−0.75,0.75]×[0.5,1.5] and [−0.75,0.75]×
[−1.5,−0.5] from (−2,2) × (−1.5,1.5). Panel c): the unit circle B(0,1). Panel d): Ω is obtained by
removing a square, namely [−0.4,0.4]2, from the unit circle B(0,1).

The optimization of the loss function is performed via the L-BFGS optimizer, with
learning rate always equal to 1 and no batching. What may change from case to case are the
network architecture, the number of epochs, and the size of the training set. After training,
we compare mesh-informed and dense architectures by evaluating their performance on 500
unseen samples (test set), which we use to compute an unbiased estimate of the relative
error below,

Ef∼P [
∥Ghf −Φ(f)∥L2(Ω)

∥Ghf∥L2(Ω)

] . (7.3)

All the code was written in Python 3, mainly relying on Pytorch for the implementation
of DNNs. Instead, we employed the FEniCS library for defining meshes and, when needed,
solving PDEs.

7.2.1 Description of the benchmark operators

Learning a parametrized family of functions

Let Ω be the domain defined as in Figure 7.4a. For our first experiment, we consider a
variation of a classical problem concerning the calculation of the so-called signed distance
function of Ω. This kind of functions are often encountered in areas such as computer vision
[155] and real-time rendering [3]. In particular, we consider the following operator,

G ∶ Θ ⊂ R3 → L2(Ω)

G ∶ µ→ uµ(x) ∶= min
y∈∂Ω,
y2>µ1

∣y −Aµ3x∣ex1µ2

where µ = (µ1, µ2, µ3) is a finite dimensional vector, and Aµ3 = diag(1, µ3). In practice, the
value of uµ(x) corresponds to the (weighted) distance between the dilated point Aµ3x and
the truncated boundary ∂Ω ∩ {y ∶ y2 > µ1}.

As input space we consider Θ ∶= [0,1] × [−1,1] × [1,2], endowed with the uniform prob-
ability distribution. Since the input is finite-dimensional, we can think of G as to the
parametrization of a 3-dimensional hypersurface in L2(Ω). We discretize Ω using P1 tri-
angular finite elements with mesh stepsize h = 0.02, resulting in the high-fidelity space
Vh ∶=≅ R13577. To learn the discretized operator Gh, we employ the following MINN archi-
tecture

R3 → R100 → V9h
r=0.4ÐÐÐ→ V3h

0.2ÐÐ→ Vh.

The corresponding dense counterpart, which servers as benchmark, is obtained by removing
the sparsity constraints (equivalently, by letting the supports go to infinity). We train the
networks on 50 samples and for a total of 50 epochs.
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Learning a local nonlinear operator

As a second experiment, we learn a nonlinear operator that is local with respect to the input.
Let Ω be as in Figure 7.4b. We consider the infinitesimal area operator G ∶H1(Ω)→ L2(Ω),

G ∶ u→
√
1 + ∣∇u∣2.

Note in fact that, if we associate to each u ∈H1(Ω) the cartesian surface

Su ∶= {(x1, x2, u(x1, x2)} ⊂ R3,

then Gu yields a measure of the area that is locally spanned by that surface, in the sense
that

∫
Su

ϕ(s)ds = ∫
Ω
ϕ(u(x)) (Gu) (x)dx

for any continuous map ϕ ∶ Su → R. Over the input space Θ ∶= H1(Ω) we consider the
probability distribution P induced by a Gaussian process with mean zero and covariance
kernel

Cov(x,y) = 1

∣Ω∣
exp(−1

2
∣x − y∣2) .

We discretize Ω using a triangular mesh of stepsize h = 0.045 and P1 finite elements, which
results in a total of Nh = 11266 vertices. To sample from the Gaussian process we truncate
its Karhunen-Loeve expansion at k = 100. Conversely, the output is computed numerically
by exploiting the high-fidelity mesh as a reference.

To learn Gh we use the MINN architecture below,

Vh
r=0.15ÐÐÐÐ→ V3h

r=0.3ÐÐÐ→ V3h
r=0.15ÐÐÐÐ→ Vh,

which we train for 50 epochs over 500 snapshots.

Learning a nonlocal nonlinear operator

Since MINNs are based on local operations, it is of interest to assess whether they can also
learn nonlocal operators. To this end, we consider the problem of learning the so-called
Hardy-Littlewood Maximal Operator G ∶ L2(Ω)→ L2(Ω),

(Gf) (x) ∶= sup
r>0
⨏
∣y−x∣<r

∣f(y)∣dy

which is known to be a continuous nonlinear operator from L2(Ω) onto itself [154]. Here,
we let Ω ∶= B(0,1) ⊂ R2 be the unit circle, see Figure 7.4c. Over the input space Θ ∶= L2(Ω)
we consider the probability distribution P induced by a Gaussian process with mean zero
and covariance kernel

Cov(x,y) = exp (−∣x − y∣2) .

As a high-fidelity reference, we consider a discretization of Ω via P1 triangular finite elements
of stepsize h = 0.033, resulting in a state space Vh with Nh = 7253 degrees of freedom.
As for the previous experiment, we sample from P by considering a truncated Karhunen-
Loeve expansion of the Gaussian process (100 modes). Conversely, the true output u →
Gh(u) is computed approximately by replacing the suprema over r with a maxima across
50 equispaced radii in [h,2]. To learn Gh we use a MINN of depth 2 with a dense layer in
the middle,

Vh
r=0.25ÐÐÐÐ→ V2h → V2h

r=0.25ÐÐÐÐ→ Vh.

The idea is that nonlocality can still be enforced through the use of fully connected blocks,
but this are only inserted at the lower fidelity levels to reduce the computational cost. We
train the architectures over 500 samples and for a total of 50 epochs.
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Operator Nh Architecture Test error Gen. error

manifold
Low-dimensional 13’577 Dense

Mesh-Informed
4.78%
4.14%

4.07%
3.08%

Local area operator 11’266 Dense
Mesh-Informed

3.89%
1.49%

2.54%
1.36%

H-L maximal operator 7’253 Dense
Mesh-Informed

6.70%
3.65%

3.09%
1.49%

Nonlinear PDE solver 5’987 Dense
Mesh-Informed

18.53%
4.29%

6.56%
3.03%

Table 7.1: Comparison of Mesh-Informed Neural Networks and Fully Connected DNNs for the test
cases in Section 7.2. Nh = number of vertices in the (finest) mesh. Gen. error = Generalization
error, defined as the gap between training and test errors. All reported errors are intended with
respect to the L2-norm, see Equation (7.3).

Learning the solution operator of a nonlinear PDE

For our final experiment, we consider the case of a parameter dependent PDE, which is
a framework of particular interest in the literature of Reduced Order Modeling. In fact,
learning the solution operator of a PDE model by means of neural networks allows one to
replace the original numerical solver with a much cheaper and efficient surrogate, which
enables expensive multi-query tasks such as PDE constrained optimal control, Uncertainty
Quantification or Bayesian Inversion.

Here, we consider a steady version of the so-called porous media equation, defined as
follows

−∇ ⋅ (∣u∣2∇u) + u = f.

The PDE is understood in the domain Ω defined in Figure 7.4d, and it is complemented
with homogeneous Neumann boundary conditions. We define G to be the data-to-solution
operator that maps f → u. This time, we endow the input space with the push-forward
distribution #P induced by the square map f → f2, where P is the probability distribution
associated to a Gaussian random field with mean zero and covariance kernel

Cov(x,y) = 1

1 + ∣x − y∣2
.

To sample from the latter distribution we exploit a truncated Karhunen-Loeve expansion
of the random field. We set the truncation index to k = 20 as that is sufficient to fully
capture the volatility of the field. For the high-fidelity discretization, we consider a mesh
of stepsize h = 0.03 and P1 finite elements, resulting in Nh = 5987. Finally, we employ the
MINN architecture below,

Vh
r=0.4ÐÐÐ→ V4h → V2h

r=0.2ÐÐÐ→ Vh,

which we train over 500 snapshots and for a total of 100 epochs. Note that, as in our third
experiment, we employ a dense block at the center of the architecture. This is because the
solution operator to a boundary value problem is typically nonlocal (consider for instance
the so-called Green formula for the Poisson equation).

7.2.2 Numerical results
Table 7.1 reports the numerical results obtained across the four experiments. In general,
MINNs perform better with respect to their dense counterpart, with relative errors that
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Figure 7.5: Comparison of DNNs and MINNs when learning a low-dimensional manifold µ → uµ ∈
L2(Ω), cf. Section 7.2.1. The reported results correspond to the approximations obtained on an
unseen input value µ∗ = [0.42,0.04,1.45].

Figure 7.6: Comparison of DNNs and MINNs when learning the local operator u →
√
1 + ∣∇u∣2,

cf. Section 7.2.1. The reported results correspond to the approximations obtained for an input
instance outside of the training set.

are always below 5%. As the operator to be learned becomes more and more involved,
fully connected DNNs begin to struggle, eventually reaching an error of 18% in the PDE
example. In contrast, MINNs are able to keep up and maintain their performance. This
is also due to the fact that, having less parameters, MINNs are unlikely to overfit, instead
they can generalize well even in poor data regimes (cf. last column of Table 7.1). Consider
for instance the first experiment, which counted as little as 50 training samples. There, the
dense model returns an error of 4.78%, of which 4.07% is due to the generalization gap. This
means that the DNN model actually surpassed the MINN performance over the training set,
as their training errors are respectively of 4.78%−4.07% = 0.71% and 4.14%−3.08% = 1.06%.
However, the smaller generalization gap allows the sparse architecture to perform better on
unseen inputs.

Figures 7.5 to 7.8 reports some examples of approximation on unseen input values.
There, we note that dense models tend to have noisy outputs (Figures 7.6 and 7.8) and often
miscalculate the range of values spanned by the output (Figures 7.5 and 7.7). Conversely,
MINNs always manage to capture the main features present in the actual ground truth.

Nonetheless, Mesh-Informed Neural Networks also allow for a significant reduction in the
computational cost, as reported in Table 7.2. In general, MINNs are ten to a hundred times
lighter with respect to fully connected DNNs. While this is not particularly relevant once the
architecture is trained (the most heavy DNN weights as little as 124 Megabytes), it makes
a huge difference during the training phase. In fact, additional resources are required to
optimize a DNN model, as one needs to keep track of all the operations and gradients in order
to perform the so-called backpropagation step. This poses a significant limitation to the use
of dense architectures, as the entailed computational cost can easily exceed the capacity of
modern GPUs. For instance, in our experiments, fully connected DNNs required more than
2 GB of memory during training, while, depending on the operator to be learned, 10 to 250
MB were sufficient for MINNs. Clearly, one could also alleviate the computational burden
by exploiting cheaper optimization routines, such as first order optimizers and batching
strategies, however this typically prevents the network from actually reaching the global
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Figure 7.7: Comparison of DNNs and MINNs when learning the Hardy-Littlewood Maximal Op-
erator, cf. Section 7.2.1. The pictures correspond to the results obtained for an unseen input
instance.

Figure 7.8: Comparison of DNNs and MINNs when learning the solution operator f → u of a
nonlinear PDE, cf. Section 7.2.1. The reported results correspond to the approximations obtained
for an input instance f outside of the training set.

Architecture dof Training speed Memory usage
(static) (training)

Dense
Mesh-Informed

21.7M
00.3M

123.5 s/ep
031.5 s/ep

86.9 Mb
01.3 Mb

3.49 Gb
0.01 Gb

Dense
Mesh-Informed

31.0M
00.3M

195.3 s/ep
060.5 s/ep

124.1 Mb
001.0 Mb

4.96 Gb
0.04 Gb

Dense
Mesh-Informed

12.8M
01.0M

83.0 s/ep
33.9 s/ep

51.2 Mb
03.9 Mb

2.05 Gb
0.16 Gb

Dense
Mesh-Informed

12.5M
01.4M

130.7 s/ep
070.0 s/ep

50.0 Mb
05.4 Mb

2.00 Gb
0.22 Gb

Table 7.2: Comparison of Mesh-Informed Neural Networks and Fully Connected DNNs in terms
of their computational cost. dof = degrees of freedom, i.e. number of parameters to be optimized
during the training phase. Memory usage (static) = bytes required to store the architecture.
Memory usage (optimization) = bytes required to run a single epoch of the training phase. s/ep =
seconds per epoch, M = millions, Mb = Megabytes, Gb = Gigabytes.

minimum of the loss function. In fact, we recall that the optimization of a DNN architecture
is, in general, a non-convex and ill-posed problem. Of note, despite being 10 to 100 times
lighter, MINNs are only 2 to 4 times faster during training. We believe that these results
can be improved, possibily by optimizing the code used to implement MINNs.
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7.3 Application to oxygen transfer models

We finally consider an application to Uncertainty Quantification (UQ) in the context of
oxygen transfer models. UQ is an essential aspect of computational science and engineering,
which often involves expensive numerical and statistical routines. In this Section, we provide
an example on how MINNs can alleviate these costs by serving as model surrogates in the
computational pipeline. In particular, starting from a generalization of the case study
analyzed in Chapter 5, we address a problem of quantifying how the morphology of the
vascular network affects the distribution of oxygen in biological tissues.

Model description

As we already discussed back in Chapter 4, oxygen is a fundamental constituent of most bi-
ological processes. In humans, oxygen is delivered by the circulatory system from the lungs
to the rest of the body. At the small scales, cells receive oxygen from the vascular network
of capillaries that spread all over the body. An efficient oxygen transfer is fundamental to
ensure a healthy micro-environment of any biological tissue, and abnormal values in oxy-
gen concentration are often associated to pathological scenarios. In particular, low oxygen
supply, the so-called hypoxia, plays an important role in the development and treatment of
tumors. It has been shown that hypoxic tissue opposes a resistance to chemotherapy and
radiotherapy [35, 160]. These issues are caused by perturbed properties of the tumor blood
vessels in terms of morphology and phenotype. Here, we aim at developing a methodology
to assess the role of vascular morphology on tissue hypoxia. More precisely, we wish to
address the following question: how does the topology of the vascular network relate to the
size of the tissue under hypoxia? We answer this question in the simplified setting that we
describe below.

Within an idealized setting, we consider a portion of a vascularized tissue Ω ∶= {x ∈ R2 ∶ ∣x∣ <
1}. Let Λ ⊂ Ω be a graph representing the vascular network of capillaries (cf. Figure 7.9)
and let u ∶ Ω→ [0,1] be the oxygen concentration in the tissue, normalized to the unit value.
We model the oxygen transfer from the network to the tissue with the following equations,

⎧⎪⎪⎨⎪⎪⎩

−α∆u + u = (1 − u)δ̂Λ in Ω

−α∇u ⋅ n = βu on ∂Ω
(7.4)

where α = 0.1 and β = 0.01 are respectively a fixed diffusion and resistance coefficient, while
δ̂Λ is the unique singular measure for which

∫
Ω
v(x)δ̂Λ(dx) =

1

∣Λ∣ ∫Λ
v(s)ds

for all v ∈ C(Ω). Here, we denote by ∣Λ∣ ∶= ∫Λ 1ds the total length of the vascular graph.
The first equation in (7.4) describes the diffusion and consumption of oxygen, balanced
accordingly to the amount released from the vascular network on the right hand side. Finally,
the model is closed using resistance boundary conditions of Robin type. We understand (7.4)
in the weak sense, meaning that define u = uΛ as the unique solution to the problem below

∫
Ω
α∇u(x) ⋅ ∇v(x)dx + ∫

Ω
u(x)v(x)dx + ∫

∂Ω
βu(s)v(s)ds =

= 1

∣Λ∣ ∫Λ
(1 − u(s))v(s)ds (7.5)

where the above is to be satisfied for all v ∈ C∞(Ω).
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Figure 7.9: Forward UQ problem (Section 7.3). Topology of the microvascular network Λ (left)
and corresponding oxygen distribution in the tissue u = uΛ (right). The top and the bottom rows
corresponds respectively to a poorly and a highly vascularized tissue (resp. λ = 1 and λ = 3).
Globally, the two networks provide the same amount of oxygen (cf. Equation 7.5), but their
topology significantly affects the values of u in the tissue. In the first case (top row), nearly 31%
of the tissue has an oxygen level below the threshold value u∗ ∶= 0.1. Conversely, only 3% of the
tissue reports a low oxygen concentration in the second example.

Uncertainty quantification setting
As we mentioned previously, we are interested in the relationship between Λ and u. To this
end, we introduce the parameter space

Θ ∶= {Λ ⊂ Ω ∶ Λ is the union of finitely many segments}

which consists of all vascular networks. Note that, due to the normalizing factor 1/∣Λ∣ in
(7.5), all the vascular networks actually provide the same global amount of oxygen. However,
as we will see later on, only those vascular graphs that are sufficiently spread across the
domain can ensure a proper oxygen supply to the whole tissue (cf. Figure 7.9). In other
words, we explore the influence of the distribution of the network, rather than its source
density, on the oxygen level.

The next subsection is devoted to prescribing a suitable discretization of (7.5) to work
with, and to introduce a class of probability measures {Pλ}λ defined over Θ. The idea is the
following. We will use a macro-scale parameter λ to describe the general perfusion of the
tissue. Higher values of λ will correspond to a highly vascularized tissue. This means that
the topology of the vascular network will still be uncertain, but the corresponding probability
distribution Pλ will favor dense graphs. Conversely, lower values of λ will describe scenarios
where capillaries are more sparse (see Figure 7.9, top vs bottom row). This will then bring
us to consider the family of random variables

Qλ ∶=
1

∣Ω∣
∣{uΛ < 0.1}∣ with Λ ∼ Pλ,

that measure the portion of the tissue under the oxygen threshold 0.1, which we take as
the value under which hypoxia takes place. Our interest will be to estimate the probability
density function of each Qλ and capture their overall behavior. While these tasks can
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be achieved using classical Monte Carlo, the computational cost is enormous as it implies
solving equation (7.5) repeatedly. To alleviate this burden, we will replace the original PDE
solver with a suitable MINN architecture trained to learn the map Λ→ uΛ.

Discretization and implementation details
For the random generation of vascular networks we exploit Voronoi diagrams [6]. Let P ∶=
{P ⊂ Ω ∣ P finite} be the collection of all points tuples in Ω. To any P ∈ P, we associate the
vascular graph Λ(P ) defined by the edges of the Voronoi cells generated by P . In this way,
we obtain a correspondence P → Θ given by P → Λ(P ), that we can exploit to prescribe
probability measures over Θ. To this end, let λ > 0 and let Xλ be a Poisson point process
over Ω having a uniform intensity of 10λ. We denote by P̃λ the probability measure induced
by Xλ over P. Then, we define Pλ ∶= #P̃λ as the push-forward measure obtained via the
action P → Λ(P ). This ensures the wished behavior: higher values of λ tend to generate
more points in the domain and, consequently, denser graphs.

We now proceed to discretize the variational problem. As a first step, we note that
the vascular graph Λ is not given in terms of a parametrization, which makes it harder
to compute integrals of the form ∫Λ v(s)ds. As an alternative, we resort to the smoothed
approximation that we introduced back in Chapter 5, Section 5.5, i.e.

∫
Λ
v(s)ds ≈ ∫

Ω
v(x)σΛ(x)dx, (7.6)

where
σΛ ∶= 1

ϵ2
max{ϵ − dist(x,Λ),0} .

We recall that, as shown in the appendix of Chapter 5, the right-hand side of equation
(7.6) converges to the left hand-side as ϵ ↓ 0+ for each fixed v ∈ C(Ω). Here, we let ϵ =
0.05. Then, our operator of interest becomes G ∶ σΛ → uΛ, and we can proceed with our
usual discretization via P1 Finite Elements. To this end, we discretize the domain using
a triangular mesh of stepsize h = 0.03, which results in Nh = 7253 degrees of freedom.
Then, we allow λ to vary uniformly in {1,2, . . . ,10} and we generate a total of 4500 training
snapshots accordingly to the probability distributions introduced previously. We exploit
these snapshots to train the MINN model below,

Vh
r=0.1ÐÐÐ→ V3h → V3h

r=0.1ÐÐÐ→ Vh,

where the architecture has been defined in analogy to the one employed for the nonlinear
PDE in Section 7.2.1. The network is trained for a total of 50 epochs and using the same
criteria presented in Section 7.2.

Results

Once trained, the Mesh-Informed Neural Network reported an average L2-error of 3.89%,
with errors below 5% for 454 out of 500 test instances. Figure 7.10 shows the approxima-
tion for three unseen vascular networks of increasing density. We considered these results
satisfactory and we proceeded to sample a total of 100’000 solutions using our DNN model.
More precisely, we considered 100 equally spaced values of λ in [1,10], and for each of those
we sampled 1’000 independent solutions. From there, we obtained an i.i.d. sample of size
1’000 for each of the Qλi , where λi = {1 + i/11}99i=0. Results are in Figure 7.11.

The left panel of Figure 7.11 shows the pointwise approximation of the map λ → E[Qλ],
together with the inter-quantile and inter-decile bands of Qλ. Given the large amount of
data generated, spurious oscillations are most likely due to the numerical errors introduced
by the MINN model, rather than from statistical noise. Coherently with the physical inter-
pretation of λ, we see that the probability of low oxygenation decreases with the vascular
density. Interestingly, although the total intensity of the source term is normalized to the
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Figure 7.10: Ground truth samples (top row) and corresponding MINN approximations (bottom)
for three network topologies not included in the training set.

Figure 7.11: Results for the UQ problem in Section 7.3. Left panel: average volume fraction
exposed to low oxygen supply, E[Qλ], as a function of the vascularization level λ, enriched with
inter-quantile (IQR) and inter-decile (IDR) bands. Right panel: probability distribution of Qλ for
different values of λ. Colors fade from red to purple as λ grows.

same level in any configuration, the networks with higher gaps between neighboring edges
are prone to spots of low oxygen concentration. Not only, the decay appears to be expo-
nential. Further investigations seem to confirm this intuition, as we obtain an R2-coefficient
of 0.987 when trying to relate λ and logE[Qλ] via linear regression. The quantile bands,
instead, allows us to notice how the uncertainty in the quantity interest is larger for smaller
values of λ. In particular, we can see how even poorly vascularized tissues can present
a healthy environment under suitable rare circumstances. Conversely, the behavior of Qλ
tends toward determinism as λ increases. This same phenomenon is also well illustrated
by the right panel of Figure 7.11. The latter shows how the probability distribution of Qλ
changes according to λ. To account for the fact that the densities are compactly supported,
as 0 ≤ Qλ ≤ 1, we have resorted to diffusion methods for their estimation, see [30]. Once
again, we see that the densities are more spread out when λ is near 1, while they shrink
towards zero as λ increases. This is coherent with the physical intuition, and we would
expect the density of Qλ to converge to a Dirac delta as λ→ +∞.

In real scenarios where the physical complexity of a vascularized tissue is appropriately
described as in [160], this analysis would be computationally viable only with the employ-
ment of the MINN model as a surrogate for the numerical solver. In the case presented
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here, both the full order model and the surrogate model are computationally inexpensive.
However, the former required around 2 minutes to generate 1’000 PDE solutions. Con-
versely, the trained DNN model was able to provide the same number of solutions in as
little as 3 milliseconds, corresponding to a speed up factor of approximately 40’000. For
multiphysics models where a simulation of a single point in the parameter space could cost
hours of wall computational time, such gain could enable approaches that would be other-
wise unreasonable. Even in the present simplified setting, such a boost also makes up for
the computational effort required to train the network. In fact: (i) collecting the training
snapshots took 575.96 seconds, (ii) training the MINN model required 926.40 seconds, (iii)
generating the 100’000 new solutions took 0.3 seconds. In contrast, the numerical solver
would generate at most ≈ 13’000 solutions within the same time frame. These considerations
support the interest in further developing model order reduction techniques based on deep
neural networks that are robust for general spatial domains, such as MINNs. Indeed, we are
currently developing model reduction techniques applied to realistic models of the vascular
microenvironment that leverage on the DL-ROM framework, combined with the efficiency
of MINNs. However, this is still an ongoing work that goes beyond the scope of the Thesis.

7.3.1 Application to radiotherapy and TCP models
We conclude this Section by extending the above reasoning to TCP models, with a more
direct application to radiotherapy optimization. In fact, as we discussed back in Chapter 4,
there is a deep connection between the perfusion of oxygen and the sensitivity to radiation
in biological tissues.

Even though system (7.4) describes an ideal dimensionless setting, we can still provide
qualitative insights about this biological mechanism through the use of Equations (4.4) and
(4.3). More precisely, let us assume that the domain under study describes a tumoral region,
with cancerous cells populating the tissue with a uniform density N . Given a radiation dose
D, the probability of tumor eradication is

TCP(u,D) = exp(−N ∫
Ω
e−α(u(x))D−β(u(x))D

2

dx) ,

where we recall that

α(u) = (a1 + a2ℓ)u + (a3 + a4ℓ)η
u + η

, β(u) = (b1u + b2η
u + η

)
2

.

We set the several constants as follows: a1 = 0.2, a2 = 6 ⋅ 10−3, a3 = 0.04, a4 = 3.1 ⋅ 10−3,
b1 = 0.64, b2 = 0.14, ℓ = 2, η = 6.5 ⋅ 10−2, N = 50, D = 10.

Since our MINN model provided an approximation of the overall solution field u, we can
directly study this new quantity of interest without any additional training. This flexibility
is undoubtedly a great advantage with respect to a black-box input-output approach, which
would require two separate models for Qλ and TCP(⋅,D).

We report the results in Figure 7.12, in the same fashion of our previous analysis. Coher-
ently with what we would expect, the TCP shows a reverse behavior with respect to Qλ. As
λ increases, the probability of tumor eradication saturates exponentially fast to 1 (left panel
in Figure 7.12). In general, the probability distributions describing the uncertainity in the
TCP are very different as we move from sparse to dense vascular networks. Interestingly,
for λ = 1, most of the likelihood is concentrated toward zero, highlighting the fact that com-
plete elimination of the tumor is a rarity under those circumstances; however, even a slight
increase in the vascularization results in a significant change. Indeed, for λ = 1.45 we see
that the probability distribution is spread all over the domain in a seemingly uniform way,
indicating that tumor eradication and survival are almost equally likely. Clearly, all these
considerations are qualitative as we would need to consider much accurate oxygen transfer
models to provide useful clinical insights. Also, since tumors are typically hypoxic, future
analysis should be restricted values of λ below a suitable threshold.
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Figure 7.12: Analysis of the relation between tissue vascularization and TCP at fixed radiation
dose. Left panel: average TCP as a function of the vascularization level λ, enriched with inter-
quantile (IQR) and inter-decile (IDR) bands. Right panel: probability distribution of TCP(u,D)
for different values of λ. Colors fade from blue to green as λ grows.

7.4 Conclusions

In this Chapter, we have introduced Mesh-Informed Neural Networks (MINNs), a novel
class of sparse DNN models that can be used to learn general operators between infinite
dimensional spaces. The approach is based on an apriori pruning strategy that is obtained
by embedding the hidden states into discrete functional spaces of different fidelities. Despite
being very easy to implement, MINNs show remarkable advantages with respect to dense
architectures, such as a massive reduction in the computational costs and an increased
ability to generalize over unseen samples. This is coherent with the results available in the
pruning literature [26], even though the setting differs from the one considered thereby.

We have tested MINNs over a large variety of scenarios, going from low dimensional
manifolds to parameter dependent PDEs, showing that these architectures can learn non-
linear operators for general shapes of the underlying spatial domain. This opens a wide new
range of research directions that we wish to investigate further in future works. For instance,
one could test the use of MINNs in more sophisticated Deep Learning based Reduced Order
Models for PDEs (DL-ROMs), such as those in [65, 70, 71, 118]. In addition, considering
how MINNs are actually built, it may be interesting to see whether one can take advantage
of multi-fidelity strategies during the training phase, as in [80].

Finally, to showcase the potential advantages provided by these approaches to precision
medicine, we have reported a case study concerning uncertainty quantification in radiother-
apy treatments. There, thanks to the efficiency of MINNs, we were able to obtain novel
insights about the role of microvascular networks in oxygen transfer and tumor eradication.
While limited to a simplified setting, these results encourage us to further investigate and
transfer these ideas to more complex and accurate physical models.
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Conclusion

In this Thesis, we addressed the use of Machine Learning techniques for precision medicine,
with particular emphasis on applications to personalized treatment planning of radiotherapy.
In the first part of the dissertation, we developed a new approach to polygenic risk scor-
ing, which, leveraging on Deep Learning and Data Mining algorithms, is able to construct
interaction-aware predictive biomarkers. Then, in the second part we exploited Deep Learn-
ing models to build efficient model surrogates that can replace the expensive simulation of
physical models in the complex workflow of biomarker discovery.

The methodologies developed across the several Chapters are extremely diverse, but
they share common tools and objectives. Most importantly, they provide a comprehensive
framework for precision medicine, rooted on the fruitful combination of data-driven and
physics based approaches. We believe that the advantages provided by such cooperation are
well illustrated by our studies concerning radiotherapy treatments. There, the coalescence
of data-driven and physics based approaches allowed us to tackle the problem from two
different perspectives. On the one hand, the personalization of the treatment through
NTCP models, which, by including clinical and genetic variables, aims at the prevention
of long term complications associated to radiation. On the other hand, instead, the study
of TCP models through the numerical simulation of biophysical systems, with the goal of
improving the efficiency of radiotherapy in eliminating cancer cells.

This dichotomy, however, is not specific of this clinical setting. In fact, it is often
the case that biological mechanisms can be understood both through mathematical models
and statistical data. Researchers, in biology and mathematics, have long worked on the
rigorous description of living systems, providing us innovative ways for studying healthy
and pathological scenarios. In the meantime, medical doctors have collected incredible
amounts of data about their patients, ranging from anamnesis to genetic data, which has
pushed statisticians and data scientists to further develop new approaches for their analysis.
In this sense, the fusion of data and physics provides a new paradigm for precision medicine:
an ambitious objective that can only been achieved through suitable tools, such as Machine
Learning.

Ongoing research and future directions

Throughout the Thesis, we have presented several methodologies, highlighting their poten-
tial but also discussing their limitations and considering possible improvements. Future
research in this field may involve both the amelioration of the proposed approaches, as well
as the development of novel tools and the exploration of new clinical applications.

Currently, we are working towards these directions along multiple perspectives. For what
concerns genome-based approaches, we are now investigating the applicability of the DSAEE
and hiPRS algorithms (Chapters 2 and 3, respectively) to a different clinical cohort, consist-
ing of breast cancer patients. Here, the subject of study is once again the occurrence of late
radiotherapy toxicity, which in this case can result in long term complications associated,
e.g., to breast oedema, skin induration and telangiectasia. However, the research is still
ongoing as we are slowly acquiring more data thanks to our collaboration in the RADPre-
cise project. Within this same framework, it would also be interesting to investigate the
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use of other omic-data, such as transcriptomic data associated to mRNA and micro-arrays.
However, this would require a clever adaptation of our approaches, especially hiPRS, as
these are not categorical but rather continuous data.

Another research direction, instead, concerns the generalization of these approaches to
time-to-event outcomes (survival analysis). In fact, in some cases, it is more natural to ask
when an event will occur, rather than it if ever will. This poses significant challenges as the
adaptation of our PRS algorithm to such contexts is not straightforward. At the moment,
we are exploring extensions of our approach based on time-to-event correlation measures,
such as Kendall’s tau index, with promising results.

For what concerns the study of physics based models for precision medicine, we are also
working on several fronts. On the one hand, we are considering the application of our
methodologies to more complex and accurate physical models, such as the microvascular
oxygen transfer model presented in Chapter 4. On the other hand, we are exploring suitable
generalizations and extensions of the DL-ROM approach (Chapter 5), in order to tackle
time-dependent problems and handle unbounded parameter spaces, with some preliminary
insights [69]. Another frontier of research is instead related to the direct integration of phys-
ical knowledge, a topic now explored by many, e.g. [41, 164, 166, 196], which is expected to
reduce data requirements and improve parameter extrapolation.

Finally, we are also working on completely new approaches that combine the efficiency
of deep neural networks with the properties of certified linear methods. In particular, we
are exploring the use of Deep Learning for the development of adaptive-basis surrogates, in
the same spirit of other works found in the literature, e.g. [5].

Adapting the words of the italian writer Alessandro Manzoni:

"We hope you enjoyed reading our work.
But, in case you found it heavy or tiresome,
please trust us: that was not intentional."
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