
FPGA-Assisted Verification of
Digitally-Assisted Analog-to-
Digital Converter Calibration Al-
gorithms

Tesi di Laurea Magistrale in
Electronics Engineering - Ingegneria Elettronica

Author: Simone Guglielmino

Student ID: 969891
Advisor: Prof. Andrea G. Bonfanti
Co-advisors: Gabriele Be’
Academic Year: 2021-2022





i

Abstract

This master thesis presents a new verification method that implements an 8-channel
Time-Interleaved (TI) Analog-to-Digital Converter (ADC), which requires extensive dig-
ital calibrations, on a Field-Programmable Gate Array (FPGA). The focus of this thesis
is the verification of the calibration algorithms of the converter, which are needed to
compensate for the effects of gain and offset mismatch between the cores. The implemen-
tation on the FPGA allows simulating in nearly real-time these calibration algorithms
for hours/days in order to detect the presence of misbehaviors that can occur in such
a long time, like, for instance, saturation or drift of the accumulators or integration of
errors caused by the finite precision of the digital implementation. These flaws of the
algorithms are difficult to detect in standard VHDL or MATLAB simulations. In fact,
VHDL simulations are too slow to detect these errors in a reasonable amount of time,
whereas MATLAB is not suited to accurately and realistically describe a digital system
of reasonable complexity. To implement the ADC on an FPGA we have developed a
digital approximation of the analog sections of the converter. The implementation on the
FPGA has been carried out by considering the different architectures possible, modelling
and comparing them when needed in MATLAB, before eventually synthesizing them on
the FPGA. The results obtained with the model implemented on the FPGA have been
then compared with the VHDL and MATLAB simulation outputs. The comparison has
shown a comparable accuracy but a simulation time improvement of a factor 1185 with
respect to VHDL simulations. This improvement can be even larger (up to about 10000)
if a higher-speed communication interface, i.e., PCIe is adopted.

Keywords: FPGA, Mixed-signal, Verification, Prototyping, Analog-to-Digital Converter,
ADC, Time-Interleaved, Digitally-Assisted Analog Circuit





Abstract in lingua italiana

Questa tesi presenta un nuovo metodo di verifica basato sull’implementazione di un Con-
vertitore Analogico-Digitale (ADC) Time-Interleaved (TI) ad 8 canali, che fa largo uso
di algoritmi di calibrazione digitali, su un Field-Programmable Gate Array (FPGA).
L’obiettivo principale di questa tesi è la verifica degli algoritmi di calibrazione del con-
vertitore, necessari per compensare gli effetti dei mismatch di offset e gain dei vari canali.
L’implementazione su FPGA permette di simulare quasi in tempo reale gli algoritmi di
calibrazione per ore/giorni in modo da rilevare la presenza di eventuali comportamenti
errati che possono verificarsi in intervalli di tempo estesi, come, ad esempio, la satu-
razione o la deriva degli accumulatori, o l’integrazione di errori dovuti alla precisione finita
dell’implementazione digitale. Questi difetti degli algoritmi sono difficili da rilevare usando
simulazioni VHDL o MATLAB standard. Infatti, le simulazioni VHDL sono troppo lente
per rilevare questo tipo di errori in tempi ragionevoli, mentre le simulazioni MATLAB
non sono adatte a rappresentare accuratamente e realisticamente sistemi digitali com-
plessi. Per implementare l’ADC su un FPGA abbiamo sviluppato un’approssimazione
digitale delle sezioni analogiche del convertitore. L’implementazione è stata condotta
considerando le diverse architetture possibili, modellandole e comparandole in MATLAB
quando necessario, prima di sintetizzarle su un FPGA. I risultati ottenuti usando il mod-
ello implementato su FPGA sono stati confrontati con i risultati delle simulazioni VHDL
e MATLAB. Il confronto ha mostrato un’accuratezza comparabile, con una riduzione del
tempo di simulazione di un fattore 1185 rispetto alle simulazioni VHDL. Tale miglio-
ramento può essere ancora maggiore (fino a circa 10000) utilizzando un’interfaccia di
comunicazione ad alta velocità, ad esempio, PCIe.

Parole chiave: FPGA, Mixed-signal, Verifica, Prototipazione, Convertitore Analogico
Digitale, ADC, Time-Interleaved, Circuito Analogico Assistito Digitalmente
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Introduction

Modern wireless communication standards like 5G and Wi-Fi 6/6E/7 pose significant
challenges to the physical layer of the protocols, requiring fast, small, accurate, and low-
power transceivers1. In transceivers, the interface between the real world and the rest
of the (digital) system is implemented by Analog-to-Digital Converters (ADCs). Thus,
the performances of the ADC have the utmost importance for the performances of the
transceiver.

To push forward the performances of ADCs, W.C. Black and D.A. Hodges proposed in
1980 [1] the concept of Time-Interleaved (TI) converter. This kind of converter uses
multiple interleaved sub-converters to achieve a higher conversion rate. The main issue
of such converters is that they are subject to a degradation of the performances due to
the presence of mismatches (e.g., gain and offset) between the core sub-converters. To
correct these mismatches, and improve the performances of the whole converter there is
a need for calibration. Multiple approaches to calibration are found in literature, some
implementing the calibration in the analog domain, some others in the digital one, and a
few using mixed-signal techniques.

Digital electronics benefits from the technological scaling of CMOS process, thus it makes
sense to try to calibrate the non-idealities in the digital domain. This approach has a few
noteworthy advantages. First of all, the aforementioned technological scaling continuously
improves the performances (area occupation, energy efficiency, etc.) of digital electronics.
The second advantage is that moving the complexity of the design into the digital domain
relaxes some of the constraints of analog designs in a so-called digitally-assisted analog
design [2].

The focus of this master thesis is the verification of the calibration algorithms of the TI
converter, which are needed to compensate for the effects of gain and offset mismatch
between the cores. In this thesis we propose a novel verification methodology that im-
plements the ADC (in this case an 8-channel TI-ADC), and its calibration algorithms on

1transceiver: a transceiver (portmanteau of transmitter and receiver) is a communication device that
can both transmit and receive.
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a Field-Programmable Gate Array (FPGA). The advantages of this technique are pre-
sented in chapter 1 and are related to the faster simulation/emulation speed and greater
reliability thanks to the execution on a real hardware.

This master thesis is organized as in the following.

Chapter 1 introduces the concept of verification in an IC design flow, focusing on the
evolution and state-of-the-art of digital verification and simulation/emulation techniques.
It briefly describes analog and mixed-signal methodologies before presenting the proposed
verification method (which is to use an FPGA to verify a digital-assisted A/D converter),
and its advantages. Then the chapter briefly introduces ADCs before focusing on the
concept of TI converter, providing an analytical model of an ideal M-channel TI-ADC.
The chapter concludes with an introduction to the concept of digitally-assisted analog
circuit and its main advantages.

Chapter 2 analyzes the different non-idealities of the TI-ADC. Starting from the ideal
model of an M-channel TI-ADC introduced in chapter 1, we consider the effects of offset
and gain mismatches and time-skew separately providing an analytical description of each
of them. This section concludes with a brief analysis of the effect of nonlinearity. The
analytical models of the non-idealities are followed by a section showing the results of
the MATLAB simulations, which are used to confirm the model. The second part of
the chapter focuses on the calibration algorithms, listing a few important results in the
literature before describing the working principle of the selected algorithms. As for the
analysis of the non-idealities, MATLAB simulations results are shown to highlight the
behavior of the algorithms.

Chapter 3 describes the implementation of the on-FPGA model of the TI-ADC. The
chapter begins with a description of the development environment, which is the FPGA,
and a brief description of its capabilities and limitations. Then it analyzes the implemen-
tation of the different blocks that compose the on-FPGA model of the TI-ADC, starting
with the Numerically Controlled Oscillator (NCO), which models the behavior of a real
S&H circuit. An analysis of three different implementations of the NCO is provided before
selecting the most appropriate one. The third section of the chapter focuses on the imple-
mentation of the ADC block, describing in detail how the different non-idealities analyzed
in chapter 2 are implemented in the on-FPGA model. Following the implementation of
the ADC, we show an analysis of the Background Calibration Algorithms (BCAs), start-
ing from the working principles described in chapter 2. This chapter concludes with a
description of the auxiliary entities required for the on-FPGA model to work. These en-
tities include a communication interface between the on-FPGA model and the rest of the
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FPGA, an output buffer to store the samples, and a set of configuration registers.

Chapter 4 is divided into three sections. In the first one we provide a description of
the third-party IPs implemented in the FPGA to communicate and interface with the on-
FPGA model of the TI-ADC described in chapter 3. In the second section, the results of
multiple simulations run using the on-FPGA model are presented, comparing them with
the results of the MATLAB simulations shown in chapter 2. The last section summarizes
the performances achieved by this verification technique and the advantages over classical
VHDL or MATLAB simulations. The chapter concludes with a brief analysis of a few
interesting future developments worth being researched.
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1| Verification of ICs

This chapter introduces the concept of verification in an Integrated Circuit (IC) design
flow and Time-Interleaved Analog-To-Digital Converters (TI-ADC).

The first sections explore the current state-of-the-art for digital, analog, and mixed-signal
verification methodologies before introducing the proposed method and its advantages.

In the last section, ADCs are briefly introduced before presenting the concept of Time-
Interleaved converter and digitally-assisted ADC. The section concludes with a mathe-
matical model of an ideal Time-Interleaved ADC.

1.1. Digital Verification

In this section, we introduce the general concept of verification, before exploring the
state-of-the-art for digital verification.

Verification (sometimes referred to as validation) is the process of evaluating if a system,
in this case, an IC, complies with the specifications [3]. It is a fundamental step of the IC
design flow and its engineering cost is quickly becoming dominant due to the explosive
growth in the complexity of ICs as shown in figure 1.1 [4].

In figure 1.1 we can observe the main components of the design cost of a digital IC,
namely:

• Architecture: cost of the early design phases.

• Software: includes the cost of the tools and the HW infrastructure.

• Verification

• Physical: costs related to the actual manufacturing of the ICs (includes masks).

• IP qualification: the cost of validating an existing IP for integration in the new IC.

In figure 1.1 it is possible to notice how the cost of verification is quickly becoming
dominant, representing up to the 50% of the design cost of modern ICs [4].
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Figure 1.1: Design cost of digital ICs Vs. technological node [4].

Note that while the costs shown in figure 1.1 are referred to digital ICs, the concept of
verification also applies to analog and mixed-signal ICs. The actual objectives of the
verifications might be different, and the methodologies definitely are, but all kinds of
complex systems (and ICs are typical examples of complex systems) require some kind
of validation to ensure the manufactured product corresponds to the specifications. The
more complex the system, the more advanced the verification techniques.

The importance of a correct and complete verification of the IC cannot be underestimated.
Bugs undetected during verification require a new set of photolithographic masks in a so-
called re-spin. This is a common occurrence in the semiconductor industries as less than
35% of the ASICs are able to reach a so-called first silicon success as reported in the
largest survey of ASIC/FPGA industries [5] and shown in figure 1.2.

Verification itself includes multiple different aspects and can be divided into pre-silicon
and post-silicon verification. Pre-silicon verification acts before manufacturing the ICs to
validate the design, whereas post-silicon one uses manufactured ICs (for instance, early
production batches) to ensure the correct behavior of the device.
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Figure 1.2: Number of re-spins required before production [5].

We will focus on pre-silicon, and more precisely on functional verification, which is defined
as the process of ensuring that the system behaves as intended. Functional flaws cause
about 50% of the re-spins as shown in figure 1.3.
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Verification of purely digital designs is far more automated than analog verification. This
is mainly a consequence of the explosive growth in the number of gates characterizing
digital ICs as dictated by Moore’s Law and shown in figure 1.4.

Moore's law: The number of transistors per microprocessor
Number of transistors which fit into a microprocessor. The observation that the number of transistors on an integrated
circuit doubles approximately every two years is called 'Moore's Law'.

1971 20171980 1990 2000 2010

10,000

100,000

1 million

10 million

100 million

1 billion

10 billion

Source: Karl Rupp. 40 Years of Microprocessor Trend Data.

Figure 1.4: Number of transistors Vs. year (log scale) [6].

From figure 1.4 it is possible to observe that digital ICs closely follow Moore’s Law,
something that was made possible by the quick progress of digital Electronic Design
Automation1 (EDA) tools, used both to design and validate the ICs.

The first obstacle to the design of more complex ICs was the so-called design-productivity
gap. Announced in 1997 by SEMATECH, the design-productivity gap refers to the dif-
ferent rates of growth of the manufacturing capability (i.e., what can be manufactured,
which doubles every 18-24 months according to Moore’s law), and the design productivity
(i.e., what can be designed, which doubles every 40 months) as shown in figure 1.5 [7].

1EDA: an Electronic Design Automation tool is a CAD software used to design electronic system like
ICs and PCBs
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This design-productivity gap actually never manifested in industry, as the quick evolution
of EDA tools, and the diffusion of design-reuse concepts allowed for the design productivity
to keep up with the manufacturing capabilities.
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Figure 1.5: Illustration of design-productivity and verification-productivity gaps.

A second, more recent, obstacle to the design of more complex ICs is represented by the
verification-productivity gap, which refers to the different rates of growth of the design
productivity, and the verification productivity (i.e., what can be verified) as shown in
figure 1.5 [7].

For this reason, digital verification is probably the electronic design automation sub-field
that has undergone the fastest evolution in the last decades. We will list a few noteworthy
steps of this evolution below.

It is worth defining three terms that will be found multiple times in the following analysis.
The verification plan represents the properties of the design that needs to be completely
and exhaustively verified (i.e., what should be verified). (Verification) coverage is defined
as the set of tests required to satisfy the verification plan (i.e., what is verified), whereas
(verification) closure is the fulfillment of the verification plan.
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It is mandatory to begin the analysis from the origin of modern digital design, i.e., with
the development of Hardware Description Languages2 (HDL).

The first HDLs developed in the early 80’s like Verilog3 (1984) and VHDL4 (1983) already
included a subset of functionalities for the verification of the described design. Actually,
the synthesizable section (that is the part of the language that describes a behavior that
can be mapped to real hardware) is a subset of the whole language.

Early verification techniques used the same HDL to describe both the Device Under
Test5 (DUT) and the Test Bench6 (TB) in a so-called direct testing. Each TB was
custom-developed for each IP7 resulting in an engineering time spent on verification with
a more-than-linear proportionality both to the engineering time spent on design and to
the required verification plan [7].

As the complexity of the ICs quickly grew outside the capabilities of such a basic system,
the engineering time needed to manually develop the TBs for the verification coverage
became impractical, and other verification methodologies were developed.

The Open Verification Methodology8 (OVM) and Universal Verification Methodology9

(UVM) are industry standard methodologies for the testing of digital designs. Among the
main benefits of these methodologies, there is the concept of reusability, i.e., TBs are not
custom-developed anymore for each different IP. A TB is now made of different modules
that can be shared across different projects and combined to verify different designs with
little overhead. OVM and UVM allowed for the verification coverage to keep up with the
growing complexity of the test plans.

Figure 1.6 shows the adoption in the semiconductor industries of UVM/OVM method-
ologies (together with a few other similar standards).

2HDL: a Hardware Description Language is a language used to describe electronic circuits.
3Verilog: is an HDL developed and later made open by Cadence Design Systems, it is widely used

nowadays for logic design and verification.
4VHDL: VHSIC Hardware Description Language is an HDL originated from VHSIC research program

of the U.S. DoD, it is widely used nowadays for logic design and verification.
5DUT: the Device Under Test is the system subject to verification/validation
6TB: a Test Bench is a test environment used to validate a design
7IP: an Intellectual Property is a (reusable) unit of a circuit.
8OVM: the Open Verification Methodology is a standardized methodology and library for testing

digital designs.
9UVM: the Universal Verification Methodology in an evolution of OVM that improves test automation
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Figure 1.6: Diffusion of different verification methodologies in the semiconductor indus-
tries [5].

It is possible to notice how UVM reaches market penetrations as high as 80% [5]. This can
be explained by its widespread support among the tools of the different EDA companies.

Both direct testing and OVM/UVM TBs use RTL10 simulators to verify the correct work-
ing of a design. The main idea behind RTL simulation is to exploit the hierarchical ar-
chitecture of the design. The lowest level blocks (the single standard cells for instance)
are simulated at gate level, but once verified they are modelled as black boxes with ad
hoc parameters specifying their performances (logic function, delay, etc.). Repeating this
process moving up the hierarchy allows simulating large designs with reasonable times.

Though the aforementioned methodologies allow for the verification coverage to keep up
with the increased complexity of the design (and thus of the verification plan), they
still leave the task of defining the adequate verification plan, a task that also became
impractical with the continuous growth in ICs complexity.

Formal verification is a relatively new set of techniques (introduced in the last 20 years),
which has gained popularity in the last years aiming to solve this issue [8]. The idea is to
use formal mathematics methods (theorem proving, induction, model checking, etc.) to
prove (or disprove) the correct working of a system [9].

10RTL: the Register Transfer Level is an abstraction that models the dataflow of digital designs.
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In standard formal verification (referred to as formal property checking in figure 1.7), the
properties of the system have to be described using dedicated formal languages. Whereas
in automated formal verification the properties are derived automatically from a high-level
HDL like SystemVerilog11 (SV).

Compared to standard RTL simulations, formal verification is equivalent to simulating a
design in all possible ways, resulting in a 100% verification coverage.

Figure 1.7 shows the adoption in the industrial environment of formal verification [5]. It is
possible to notice a 15% increase between 2012 and 2020 of the adoption of this technique.

© 2020 Mentor Graphics Corporation
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Figure 1.7: Adoption of formal verification methodologies in industries [5].

So far we have shown how verification methodologies have evolved to increase both the
coverage (introducing the concept of reusability, and automation) and to ease the defini-
tion of a verification plan, reducing the engineering time required for the task.

However, the explosive growth of the complexity of the circuits still poses another issue.
Even with computers getting more powerful every year, the time required to simulate,
even at behavioral level, an entire IC keeps growing year after year, with similar effects
on the time-to-market and design costs.

11SV: SystemVerilog is an evolution of Verilog (part of the same standard since 2008) focused on higher
level description
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A possible solution to reduce the time required for digital verification is to use specialized
hardware. To be more precise, there are two different alternatives:

• Hardware (HW) emulation: Custom hardware accelerators (custom ASICs12) are
used to execute an opportunely compiled version of the RTL code. These ASICs
are highly-parallel CPU purposedly designed to accelerate RTL simulations and are
able to achieve performances and efficiencies not reachable by standard CPUs.

• FPGA prototyping: The RTL code is implemented into one or more FPGAs13 and
run as actual hardware (with the necessary modifications to the code, if any). This
allows verifying the design on real hardware, at close-to-real speed.

Both solutions have advantages and disadvantages. Hardware emulation is usually slower
than FPGA prototyping but allows full exposure of the design (all the signals are visible
to the user). Furthermore, once the emulators are set up, it is possible to modify the
simulation (for instance, to change the RTL code after a bug is found) with a little time
penalty.

FPGA prototyping, on the other hand, is faster, but only selected and predetermined
signals are available externally. Furthermore, FPGA prototyping usually requires manual
modifications to the original RTL code (targeting an ASIC) to adapt it to an FPGA.

Method Performances [instruction/s]

C model 2 M/s

RTL simulation 200/s

Cadence Palladium (HW emulation) 700 K/s

Cadence Protium (FPGA prototyping) 4 M/s

Custom FPGA prototype 42 M/s

Table 1.1: Performances of different simulations methods [10].

Table 1.1 shows an example provided by Cadence Design System of the performances
achieved by one of their customers with RTL simulations, HW emulation, and FPGA
prototyping. It also lists a C model and a custom-developed FPGA prototype. The
simulations/emulations shown in table 1.1 refer to a CPU, and the column labeled "per-
formances" refers to the number of software instructions the simulations/emulations are
able to execute per second.

12ASIC: an Application Specific IC is an IC custom designed for a particular task
13FPGA: a Field Programmable Gate Array is an IC designed to be reconfigured after manufacturing
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The difference between Cadence Protium and the custom FPGA prototype is that the
latter requires significant modifications to the original RTL, whereas Cadence Protium is
highly automated in this aspect.

Usually, HW emulation is used to test single IP, whereas FPGA prototyping is used to ver-
ify whole systems (i.e., composed of multiple IPs). This is both due to the aforementioned
limitation in the number of signals the user has access to, but also due to the constraint
on the number of I/O available on the FPGA. HW emulation and FPGA prototyping
are, respectively, 3500 and 20000 times faster than an RTL simulation, and approach the
speed of the real hardware.

This allows both a reduction of the time-to-market and the possibility to verify the system
for large time intervals, detecting any long-term bug, which might not be discovered in
a shorter simulation run on a computer. Furthermore, the simulation/emulation speed
close to the one of the real hardware allows for the development and testing of drivers
and microcode before the fabrication of the first ICs.

© 2020 Mentor Graphics Corporation
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Figure 1.8: Adoption of hardware emulation and FPGA prototyping for different design
sizes (measured in M of gates) in the industries [5].

Figure 1.8 shows the adoption of HW emulation and FPGA prototyping in semiconductor
industries for different design sizes (measured in millions of gates). It is possible to notice
that HW emulation is preferred to FPGA prototyping for larger designs [5].



1| Verification of ICs 15

This can be explained by the engineering efforts required to modify the larger design
to implement the system in an FPGA, not to mention that a single FPGA might not
have enough resources for such a system (it is possible to use multiple FPGAs connected
together to prototype a design, but this introduces further, and more intensive, modi-
fications to the original RTL code). HW emulators, on the other hand, only suffer a
performance penalty for larger designs.

These kinds of tool are extremely powerful to verify digital systems. In fact, all three
major semiconductor EDA companies provide similar systems: Cadence Design Systems
with the aforementioned Palladium (HW emulation) and Protium (FPGA prototyping),
Synopsys with ZeBu (HW emulation) and HAPS (FPGA prototyping), and Siemens EDA
with the Veloce Strato (HW emulation) and Veloce Prototyping (FPGA prototyping)
platforms.

Table 1.2 summarizes the simulation/emulation methodologies for digital ICs analyzed in
this sub-section and their advantages/disadvantages. RTL (or HDL) simulation includes
both the ad hoc TBs and the ones using UVM/OVM.

HDL simulation HW emulation FPGA prototyping

Speed low medium-high high
Visibility full high low

Cost low high medium-low
Automation full high medium

(with UVM/OVM)
Design cycle immediate minutes/hours hours/days

Table 1.2: Summary of the different digital simulation and emulation methodologies.

The design cycle refers to the time required to begin a new verification cycle after the
RTL code has been modified. HDL simulators and HW emulators require only a new
compilation of the source RTLs (HW emulation requires a more complex compilation).
FPGA prototyping, on the other hand, requires a new synthesis and implementation.

Formal verification is not listed in table 1.2 because it is fundamentally different in its
principle. It is not based on a simulation/emulation of the design, but on demonstrating
its equivalence to the design specifications.
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1.2. Analog Verification

This sub-section briefly analyzes the different requirements of analog verification with
respect to the digital one mentioned before.

Verification of analog circuits is radically different from the verification of digital designs
described before due to the different levels of detail required [11]. HDL simulators are
based on hierarchical abstraction to reduce the simulation times. This concept is not
applicable to analog circuits due to the complex and interdependent behavior of this kind
of circuits.

Analog simulators are usually transistor-level simulators like SPICE14 and its derivatives.
The single devices are described by extensive models that can also take into account the
process corners, temperature, variations in the power supplies, and so on.

Anyhow, at least until a few years ago, verification of analog blocks was a manual task.
Usually, the designers themselves were in charge of verifying the correct functioning of
the block they have designed. Nowadays, the complexity of analog blocks is approach-
ing the limits of what it is possible to verify manually (like digital blocks did decades
ago), and many methodologies are being adapted from digital to analog and mixed-signal
verification.

Note that the minor degree of automation found in analog verification is not only related
to the smaller density of analog ICs with respect to digital ones. Another, perhaps more
important obstacle to automated analog verification lies in the difficulty of describing
clearly and unequivocally an analog circuit, something that was solved decades ago for
digital circuits with the use of HDLs.

1.3. Mixed-signal Verification

Large digital design containing tightly integrated analog sections like, for instance, an RF
modem with integrated front-ends or a System on a Chip15 (SoC) with embedded radios
(known as RF-SoC) are quite difficult to verify [12–14].

Figure 1.9 shows the evolution in the complexity of ICs to combine large digital sections
with analog functions [15].

14SPICE: Simulation Program with Integrated Circuit Emphasis is the first open-source analog circuit
simulator

15SoC: a System on a Chip is an electronic system contained in a single IC.
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Figure 1.9: Trend to combine analog and digital sections in a single IC to implement
complex functions.

It is possible to verify the single components separately in the respective environment,
but, though this is reasonable in loosely coupled systems like a micro-controller with an
analog peripheral like an ADC or a DAC, it results completely inadequate to tightly
coupled systems like an integrated RF front-end. In the latter case, in fact, the correct
working of the single parts does not imply necessarily the correct functioning of the whole
system [16].

Figure 1.10: Percentage of SoC containing analog components (left), and influences of the
digital and analog section on different design aspects (right) [15].
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Figure 1.10 shows the percentage of SoC containing both analog and digital sections (left),
and the influence that the two domains have on different design aspects (right) [15]. Re-
spins refer to flaws that require a new set of masks to be corrected. Re-spins are extremely
expensive and time-consuming, and, therefore, must be avoided at all costs.

Verifying complex mixed-signal SoC poses serious challenges due to the different issues
and specifications the two domains need to satisfy.

From one point of view simulations of digital designs are more difficult due to the larger
number of transistors. Still in digital circuits, we are not interested in the actual voltage,
but only in the logic level. This is exploited by the simulators to simplify the analysis and
reduce the simulation times, together with the event-driven nature of a clocked system,
and with the hierarchical abstraction mentioned before.

On the other hand, analog designs might be made up of a smaller number of elements,
but the elements need to be characterized orders of magnitude more accurately than in
digital simulations to provide realistic results, thus increasing the simulation times. This
higher level of detail makes simulating an entire SoC impossible.

In the last years, mixed-mode (mixing transistor and behavioral HDL) and mixed-level
(mixing model and transistors) simulators started appearing to speed-up simulation times,
but they achieve this by trading accuracy for speed as shown in figure 1.11 [13].

Figure 1.11: Accuracy-speed trade-off of circuit simulators [17].
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For example: 1) HDLs have been extended to include analog and mixed-signal capabilities
(VHDL with VHDL-AMS and Verilog with Verilog-A and Verilog-AMS). These extensions
allow defining the behavior of mixed-signal blocks. 2) Verification methodologies like
UVM received the same treatment with UVM-AMS that allows the automated testing of
analog blocks [18], even if only as a complement to the standard analog verification of the
circuit due to the limitations on its reliability [19].

Note that the aim of mixed-signal verification is to verify the correct functioning of the
whole complex system. Analog and digital sections are still tested separately using their
dedicated techniques, but, as mentioned before, this is not sufficient to guarantee a func-
tioning system when combined together.

Note that simulation times of complex mixed-signal ICs can reach days/weeks when using
behavioral description and weeks/months for block levels simulations depending on the
complexity of the IC. For this reason, given the large and continuously growing size of
nowadays SoC, there are some attempts to exploit digital techniques like FPGA proto-
typing to validate mixed-signal systems. Some are based on the use of a CPU integrated
in an FPGA to run the simulations of the analog section of the system [20], others make
use of an FPGA implementable model of the analog sections [21–23].

1.4. Proposed Verification Method

The verification methodology proposed in this thesis consists of using an FPGA imple-
mentable model of the analog circuit to prototype its digital logic section. This allows the
validation of the digital logic with a throughput comparable to the one of the real system
[21–23]. The main advantages of this technique are:

• Arbitrarily long run times: this methodology allows running the prototype for
an arbitrary amount of time with throughput close to the real hardware.

• Testing the design on real hardware: using real hardware to verify the design
might reveal implementation bugs that cannot occur in computer simulations.

The first point is probably the greatest advantage because it allows checking long-term
behaviors like, for instance, ensuring that the BER16 of a communication interface satisfies
the requirements, or even revealing long-term bugs like the saturation of accumulators,
or error accumulation. The design runs on a single FPGA instead of a workstation or a
server. Thus, this method is also more efficient from a power consumption standpoint.

16BER: the Bit Error Rate is the number of bits per unit time that have been detected incorrectly
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The second point is also extremely important. Using real hardware means that we don’t
need to purposefully model the effects of the hardware (i.e., finite precision, unknown
initialization state, etc.).

Furthermore, if the selected FPGA has enough resources to implement the design (and
this is the case, as the number of gates in FPGAs is subject to the same rate of growth
that characterizes ICs due to Moore’s law), we will have that the throughput, meant as
emulation speed, is independent of the complexity of the design.

Note that this method allows for the verification of digital design containing also analog
parts. The target is still the verification of the digital part only, while representing the
analog block with adequate realism, and is, therefore, useful to validate whole systems.

1.5. Analog-to-Digital Converters

The verification method proposed in the previous section has been implemented targeting
the verification of Analog-to-Digital Converters (ADCs).

This type of circuit was selected as a demonstrator because it is a typical example of a
mixed-signal circuit. To be more precise, we selected a 10-bit 8-channel 2-GS/s Time-
Interleaved ADC for 5G wireless applications, which makes extensive use of digital cali-
bration algorithms to correct some non-idealities and improve its performances.

ADCs are very common mixed-signal systems. They are everywhere, (transceivers, mi-
crophones, cameras, radios, etc.) and it is not an exaggeration to say that without ADCs
we would not have much of the technology we have now.

An ADC is an electronic system that converts an analog and time-continuous input signal
into a digital one. In the process the signal is also sampled, i.e., it becomes a time-discrete
signal.

ADCS&H   

Figure 1.12: Block diagram of an ADC.
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Figure 1.12 shows a block diagram of an ADC. Typically, an ADC is preceded by a
sampler circuit (S&H) controlled by the clock signal ϕ. Its role is to sample the input
signal (ϕ = 1) and hold it for the duration of the conversion (ϕ = 0).

1.5.1. Time-Interleaved ADCs

In this thesis, we focus on an FPGA implementable model of a particular type of ADC
known as Time-Interleaved ADC.

The first occurrence in the literature of TI converters is in 1980 in a paper written by
W.C. Black and D.A. Hodges [1]. The advantages of this type of converter are presented
by B. Razavi in [24] together with the upper bound of the maximum achievable perfor-
mances. Buchwald in [25] provides a similar analysis while focusing on the different design
opportunities of TI converters.

A TI-ADC is built by placing multiple sub-converters (cores, channels, or slices) in parallel.
Each channel is driven by different phases of the same clock signal, setting a different
sampling instant for each of the cores.

ADC 0

ADC 1

ADC M - 1

S&H   

S&H   

S&H   

MUX

Figure 1.13: Block diagram of an ideal M -channel TI-ADC.

Figure 1.13 shows a block diagram of an ideal M -channel TI-ADC. Each channel is clocked
with a different phase ϕm (with m = 0, 1, ...,M − 1 index of the channel) as shown in
figure 1.14.

This effectively results in a total sampling frequency fS,TI equal to M · fS,CORE, where
M and fS,CORE are the interleaving factor (i.e., the number of cores), and the sampling
frequency of the single core, respectively.
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Figure 1.14: Clock phases of an ideal M -channel TI-ADC.

Figure 1.14 shows the clock phases of an ideal M -channel TI-ADC.

The main advantage of time interleaving lies in the reduced performances required for
each sub-converter. In fact, for the same sampling frequency fS, a TI-ADC with an
interleaving factor M requires a converter M times slower.

This was exploited in 1992 [26, 27] for the first time to implement ADCs with high sam-
ple rate in standard CMOS17 process instead than a more exotic one. The possibility of
implementing a high-speed converter with a standard CMOS process must not be under-
estimated. In fact, the compatibility with a CMOS process allows the implementation
of the analog components (i.e., the ADC in this case) and the digital ones in the same
die, greatly reducing the energy lost in the inter-IC interconnections [28, 29]. This shift
from a System on a Module18 (SoM)/ System on a Package19 (SoP) approach to an SoC
one (as shown in figure 1.9) has its main benefits in the smaller form-factor, higher power
efficiency and lower costs [30].

The use of standard CMOS processes also has the advantage to allow analog circuits
benefitting from the technological scaling of the fabrication processes pushed by digital
applications.

17CMOS: the Complementary Metal Oxide Semiconductor is a family of fabrication processes widely
used nowadays

18SoM: a System on a Module is an electronic system (i.e., multiple ICs and passive components)
contained within a Printed Circuit Board

19SoP: a System on a Package is an electronic system (i.e., multiple ICs and passive components)
contained within a chip carrier (i.e., a single physical package)
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Though analog circuits do not benefit from scaling, they still benefit from the improve-
ment in the manufacturing process (better control, better uniformity, etc) that are a
consequence of the technology scaling.

Another, perhaps more interesting, advantage of TI-ADCs is the additional degree of
freedom in the design space of the converter to optimize the power-speed trade-off as
shown in [31, 32]. Traditionally ADCs have a non-linear relationship between efficiency
and conversion speed. Beyond a certain sampling frequency, it is more efficient to increase
the interleaving factor instead of pushing the single core at a larger conversion rate [24].

1.5.2. Model of an Ideal TI-ADC

From here on, the sampling time of the interleaved converter TS,TI will be referred to as
TS for the sake of simplicity. Likewise, the sampling frequency of the whole converter will
be referred to as fS.

It is possible to express the output signal of each sub-converter as the product of the
input signal x(t) with an opportunely time-shifted Dirac comb (sampling function) with
steps equal to M · TS:

ym(t) =
∞∑

n=−∞

x(t) · δ (t− (nM +m) · TS) , (1.1)

where m = 0, 1, ...,M − 1 represents the index of the channel.

The time domain expression of the sampled signal of all the sub-converters is given by
the summation of all the outputs of the cores, thus:

y(t) =
M−1∑
m=0

∞∑
n=−∞

x(t) · δ (t− (nM +m) · TS) . (1.2)

Reordering equation 1.2, we get:

y(t) = x(t)
∞∑

n=−∞

M−1∑
m=0

δ (t− (nM +m) · TS)

= x(t)
∞∑

n=−∞

δ (t− nTS) .

(1.3)



24 1| Verification of ICs

The expression of the sampled signal for an ideal M -channel TI-ADC, with each sub-
converter sampling at fS/M = 1/MTS, is the same of a monolithic ADC sampling at
fS = 1/TS.

Moving into the frequency domain, equation 1.3 becomes:

Y (f) = F

[
x(t)

∞∑
n=−∞

δ (t− nTS)

]

= X(f) ∗ F

[
∞∑

n=−∞

δ (t− nTS)

]
.

(1.4)

The Fourier transform of a Dirac comb is a Dirac comb, thus, equation 1.4 becomes:

Y (f) = X(f) ∗ 1

TS

∞∑
n=−∞

δ

(
f − n

TS

)

=
1

TS

∞∑
n=−∞

X

(
f − n

TS

)
.

(1.5)

Equation 1.5 expresses the well-known output spectrum of a sampled signal, showing
replicas of the input spectrum at ±nfS.

In our case we are interested only in what falls within the Nyquist band, which is (in a
unilateral spectrum) 0 ≤ f < fS/2.

1.5.3. Digitally-Assisted ADCs

The compatibility with standard CMOS processes also opened another frontier of the IC
design, which is the concept of digitally-assisted analog circuits (in this particular case
digitally-assisted converter). Unlike digital circuits, analog ones are usually constrained by
noise, matching, and linearity requirements. The idea is to relax these constraints where
possible (usually the matching and linearity ones) and correct the errors introduced with
a post-processing in the digital domain with multiple benefits [2, 33, 34]:

First of all, it greatly simplifies the analog section of the circuit. For example, it is possible
to replace complex high-gain amplifiers with negative feedback loops (usually required to
ensure high linearity) with simpler single-stage amplifiers without feedback. Relaxing the
requirement in the matching also reduces the area occupation of the circuit (matching
error is inversely proportional to the square root of the component area). In both cases,
the errors can be corrected by a downstream calibration logic.
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Another advantage of digitally assisted designs is a consequence of the first point. We are
trading the analog complexity for the digital one, but digital logic benefits much more
than analog circuits from technological scaling.

This digitally assisted design method is used in the TI-ADC selected as the target of this
thesis to correct some errors due to the time interleaving that will be analyzed in the next
chapter. The digital assisting logic of the TI-ADC is the exact target of the verification
methodology proposed in this chapter.
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Calibration Algorithms

This chapter shows a mathematical analysis of the non-idealities of the TI-ADC and the
calibration algorithms used to correct them.

In the first section, the ideal model presented in the previous chapter is extended to take
into account different sources of error separately, before showing the MATLAB simulations
of analyzed the non-idealities.

In the second section calibration algorithms are presented and analyzed for two of the
aforementioned non-idealities, namely, offset and gain mismatch.

The chapter concludes with MATLAB simulations of the aforementioned background
calibration algorithms.

2.1. Non idealities

In the previous chapter, an ideal TI-ADC was described. However, real devices are char-
acterized by non-idealities that limit the performances of the converter.

The importance of those non-idealities is well-known in literature since the early works
on the topic by W.C. Black and D.A. Hodges [1]. Y.C. Jenq in [35] provides a theoretical
analysis of the effect of a non-uniform sampling of sinusoidal signals. Starting from those
results, [36] introduced the effects of channel mismatches.

A general analysis of the limitations of Time-Interleaved ADCs is provided by Buchwald
in [37]. Explicit formulas for the effects of the offset, skew, and timing mismatches are pre-
sented in different works [36, 38–42]. [43] provides a detailed analysis of the effects of the
time-skew, whereas [44] presents explicit formulas for the effects of combined mismatches.

C. Vogel in [45] provides a closed-form expression of the SNDR of a M-channel TI-ADC
affected by channel mismatch while laying out a framework for the analysis of TI-ADC.
In [46] C. Vogel and G. Kubin analyze the effect of nonlinearity on a TI-ADC.
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In this thesis the following non-idealities are taken into account:

• Offset mismatch

• Gain mismatch

• Skew error

• Nonlinearity of the core

Each non-ideality is analyzed separately in the following subsections, deriving an analyt-
ical model of the output spectrum where possible.

In the following section, an algorithm for the calibration of the first two mismatches (offset
and gain) will be analyzed. The implementation of the aforementioned algorithms into
an FPGA is detailed in the next chapter.

2.1.1. Offset Error

The offset error of an ADC is defined as the difference between the first ideal code tran-
sition and the first actual code transition [47] as shown in figure 2.1.
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Figure 2.1: Example of ADC characteristic affected by offset error.
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Each core has its own DC offset. The actual sources of the offset depend on the architec-
ture of the converter but they are usually (and this is the case for SAR ADCs) related to
the comparator [48].

In a SAR ADC where there is a single comparator, the offset can be modelled as a global
offset. In principle, in a single SAR ADC, this is not an issue, but in a TI-ADC, because
of the periodic alternation of the channels, the different offsets of the cores determine a
fixed pattern noise, lowering the SNDR and SFDR of the converter [24, 36, 40].

ADC 0

ADC 1

ADC M - 1

MUX

S&H   

S&H   

S&H   

Figure 2.2: Block diagram of a M-channel TI-ADC affected by offset mismatch.

Figure 2.2 shows the block diagram of a M-channel TI-ADC with offset mismatch. Each
channel is characterized by a different offset om.

It is possible to intuitively explain the effect of the offset mismatch considering a 2-channel
TI-ADC. Let’s suppose the input signal is zero (i.e., x(t) = 0 ). In this condition, the
output signal of each channel is the DC offset of the channel. The continuous alternation
of the channels will result in harmonic at fS/2 with an amplitude proportional to the
difference between the two DC offsets. In fact, the overall converter output signal results:

y(t) = ...+ o1 · δ(t− 0) + o2 · δ(t− TS) + o1 · δ(t− 2 · TS) + o2 · δ(t− 3 · TS) + ... , (2.1)

where o1 and o2 represent the offset of the first and second channel, respectively.
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Let’s now provide a more rigorous analysis of the output spectrum due to an offset consid-
ering a generic M-channel TI-ADC like the one represented in figure 2.2. We can model
the effect of the offset mismatch by adding a core offset om, different for each channel, to
the input signal:

x̂m(t) = x(t) + om . (2.2)

Note that the use of the ˆ symbolizes a signal affected by a non-ideality, in this case
offset.

The sampled signal of the mth channel can be written as the convolution of the input
signal x̂m(t) with a sampling function as expressed in equation 1.1 and reported below for
the sake of simplicity:

ŷm(t) = x̂m(t) ·
∞∑

n=−∞

δ (t− (nM +m) · TS) . (2.3)

Note that in this case, the signal convoluted with the sampling function is different for
each channel.

As done for the ideal model, it is possible to reconstruct the complete output signal (of
the interleaved ADC) by adding the output of each channel:

ŷ(t) =
M−1∑
m=0

ŷm(t) =
M−1∑
m=0

x̂m(t)
∞∑

n=−∞

δ (t− (nM +m) · TS) . (2.4)

It is possible to split equation 2.4 in two parts as:

ŷ(t) =
M−1∑
m=0

x(t)
∞∑

n=−∞

δ (t− (nM +m) · TS) +
M−1∑
m=0

om

∞∑
n=−∞

δ (t− (nM +m) · TS) . (2.5)

Reordering equation 2.5, we get:

ŷ(t) = x(t)
M−1∑
m=0

∞∑
n=−∞

δ (t− (nM +m) · TS) +
M−1∑
m=0

om

∞∑
n=−∞

δ (t− (nM +m) · TS) (2.6)
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ŷ(t) = x(t)
∞∑

n=−∞

δ (t− nTS) +
M−1∑
m=0

om

∞∑
n=−∞

δ (t− (nM +m) · TS) . (2.7)

The first part of equation 2.7 represents the ideal sampled signal (without offset mis-
match), thus:

ŷ(t) = y(t) +
M−1∑
m=0

om

∞∑
n=−∞

δ (t− (nM +m) · TS) . (2.8)

In the frequency domain we have:

Ŷ (f) = Y (f) + F

[
M−1∑
m=0

om

∞∑
n=−∞

δ (t− (nM +m) · TS)

]

= Y (f) +
M−1∑
m=0

om · F

[
∞∑

n=−∞

δ (t− (nM +m) · TS)

]
.

(2.9)

Recalling, as mentioned in chapter 1, that the Fourier transform of a Dirac comb is a
Dirac comb, it results:

Ŷ (f) = Y (f) +
M−1∑
m=0

om · 2π

MTS

· e−j2πfmTS

∞∑
n=−∞

δ

(
f − n

MTS

)
. (2.10)

Reordering equation 2.10, we get:

Ŷ (f) = Y (f) +
2π

MTS

∞∑
n=−∞

[
M−1∑
m=0

om · e−j2πfmTS

]
δ

(
f − n

MTS

)
. (2.11)

The part within the square brackets is a Discrete Fourier Transform (DFT):

On =
M−1∑
m=0

om · e−j2πnm/M . (2.12)

Substituting equation 2.12 into equation 2.11, it results:

Ŷ (f) = Y (f) +
2π

MTS

∞∑
n=−∞

On · δ
(
f − n

MTS

)
. (2.13)
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From equation 2.13 we can highlight the output spectrum due to the offset only, which is:

Eoffset(f) =
2π

MTS

∞∑
n=−∞

On · δ
(
f − n

MTS

)
. (2.14)

Thus, the output spectrum of a TI-ADC with an offset mismatch between the channels
has spurious tones at nfS/M . The amplitude of these tones is given by the term On,
which depends on the offset sequence.

2.1.2. Gain Error

The gain error of an ADC is defined as the difference between the last step’s midpoint
of the actual ADC and the last step’s midpoint of the ideal ADC, once compensating for
the offset error [47]. Figure 2.3 shows the characteristic of an ADC affected by gain error.
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Figure 2.3: Example of ADC characteristic affected by gain error.

The gain error is a specific case of transfer function mismatch in which only the DC
gain is taken into account. In the case of SAR converters, gain errors are mainly due to
differences in the capacitive array and in the reference voltages [48].
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As before, a multiplicative coefficient in a single-core SAR ADC is not an issue, but,
in a TI converter, because of the periodic alternation of the channels, it modulates the
amplitude of the signal lowering the SNDR and SFDR of the converter [24, 36, 40].

Figure 2.4 shows the block diagram of a M-channel TI-ADC affected by gain error. As in
the case of the offset error, each channel is characterized by a different gain 1 + gm.

ADC 0

ADC 1

ADC M - 1

MUX

S&H   

S&H   

S&H   

Figure 2.4: Block diagram of a M-channel TI-ADC affected by gain mismatch.

We can model the gain mismatch by multiplying each sampled signal by gain 1 + gm as
shown in figure 2.4. Thus, the input signal of each core is:

x̂m(t) = (1 + gm) · x(t) . (2.15)

The use of a 1 + gm multiplicative factor instead of a simple gm allows to easily separate
at a later stage the expression of the output spectrum due to the gain mismatch only.

Repeating the same algebraic operations done for the offset error, we end up with:

ŷ(t) = x(t)
∞∑

n=−∞

δ (t− nTS) + x(t)
M−1∑
m=0

∞∑
n=−∞

gmδ (t− (nM +m) · TS) . (2.16)
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The first part of equation 2.16 represents the ideal sampled signal (i.e., without gain
mismatch), thus:

ŷ(t) = y(t) + x(t)
M−1∑
m=0

∞∑
n=−∞

gmδ (t− (nM +m) · TS) . (2.17)

Moving now to the frequency domain, we can write:

Ŷ (f) = Y (f) + F

[
x(t)

M−1∑
m=0

∞∑
n=−∞

gmδ (t− (nM +m) · TS)

]

= Y (f) +X(f) ∗
M−1∑
m=0

gm · F

[
∞∑

n=−∞

δ (t− (nM +m) · TS)

]

= Y (f) +X(f) ∗
M−1∑
m=0

gm · 2π

MTS

· e−j2πfmTS

∞∑
n=−∞

δ

(
f − n

MTS

)

= Y (f) +X(f) ∗ 2π

MTS

∞∑
n=−∞

[
M−1∑
m=0

gm · e−j2πfmTS

]
δ

(
f − n

MTS

)
.

(2.18)

As for offset expression, the part within the square brackets is a DFT:

Gn =
M−1∑
m=0

gm · e−j2πnm/M . (2.19)

Substituting equation 2.19 into equation 2.18, it results:

Ŷ (f) = Y (f) +X(f) ∗ 2π

MTS

∞∑
n=−∞

Gn · δ
(
f − n

MTS

)
. (2.20)

From equation 2.20, it is possible to highlight the output spectrum due to the gain mis-
match only:

Egain(f) = X(f) ∗ 2π

MTS

∞∑
n=−∞

Gn · δ
(
f − n

MTS

)
. (2.21)

Now, in case the input signal is a sinewave with a frequency fin, the input spectrum is:

X(f) =
1

2
[δ(f − fin) + δ(f + fin)] . (2.22)
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If we plug equation 2.22 into equation 2.21, we get:

Egain(f) =
1

2
[δ(f − fin) + δ(f + fin)] ∗

2π

MTS

∞∑
n=−∞

Gn · δ
(
f − n

MTS

)

=
π

MTS

∞∑
n=−∞

Gn ·
[
δ

(
f − fin −

n

MTS

)
+ δ

(
f + fin −

n

MTS

)]
.

(2.23)

Thus, the error in the output spectrum of a TI-ADC introduced by the gain mismatch is
represented by a series of spurious tones at nfS/M ± fin. The amplitude of the tones is
given by the term Gn, which depends on the gain sequence.

2.1.3. Skew Error

In an ideal TI-ADC, each channel samples the input signal after a time TS from the
previous core. In a real application, the time interval between consecutive channels is not
constant due to the presence of skew between the different phases of the clock [24].

The clock skew has multiple origins, some are deterministic, like differences in the clock
distribution network, others are statistical, and others, like PVT1 are slowly varying [49].

Wann and Franklin in [50] list four main sources of clock skew:

• Difference in the length of the paths from the clock source to the clock sinks.

• Differences in the delays through active elements (i.e., clock buffers, clock multi-
plexers, etc.) in the paths.

• Differences in the parameters (i.e., resistivity, dielectric constant, width, thickness,
parasitic capacitance, etc.) of the paths.

• Differences in the parameters (i.e., threshold voltage, channel mobility, etc.) of the
active elements in the paths.

Furthermore, in a real case, this time shift is also time-dependent due to the presence of
a clock jitter, resulting in a sampling instant that varies also in time. For our purpose, it
is enough to examine the effects of a deterministic time-skew.

1PVT: Process, Voltage, and Temperature are some of the conditions that influence the performances
of an IC. The Process is related to the variations in the device parameters (threshold voltage, mobility,
etc.). These variations are fixed at fabrication time. Voltage is related to variations in the power supplies,
which might be caused for instance, by a time-dependent IR drop. Temperature influences the properties
of the devices by acting on their parameter. Mobility, for instance, is highly temperature dependant. The
last two conditions (voltage and temperature) can change during the operation of the IC.
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Figure 2.5 shows a block diagram of a M-channel TI-ADC affected by clock skew, where
the skew is represented by the term δϕm (with m = 0, 1, ...,M−1), added to each sampling
phase ϕm.

ADC 0

ADC 1

ADC M - 1

MUX

S&H   

S&H   

S&H   

Figure 2.5: Block diagram of a M channel TI-ADC affected by skew error.

An example of the clock phases of a TI-ADC affected by skew is shown in figure 2.6.

Figure 2.6: Clock phases of a M-channel TI-ADC affected by clock skew.
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It is possible to model the effect of the time-skew by acting on the sampled signal of each
channel, introducing a delay tm, different from each channel, thus, we can write:

ŷm(t) = x(t)
∞∑

n=−∞

δ(t− (nM +m) · TS − tm) , (2.24)

tm being the time-skew corresponding to the phase-skew δϕm.

The overall output signal is given by the summation of the contributions of each channel,
being:

ŷ(t) =
M−1∑
m=0

ŷm(t) =
M−1∑
m=0

x(t)
∞∑

n=−∞

δ(t− (nM +m) · TS − tm) . (2.25)

Reordering equation 2.25, we get:

ŷ(t) = x(t)
M−1∑
m=0

∞∑
n=−∞

δ(t− (nM +m) · TS − tm) . (2.26)

Moving now to the frequency domain:

Ŷ (f) = F

[
x(t)

M−1∑
m=0

∞∑
n=−∞

δ(t− (nM +m) · TS − tm)

]

= X(f) ∗
M−1∑
m=0

F

[
∞∑

n=−∞

δ(t− (nM +m) · TS − tm)

]

= X(f) ∗
M−1∑
m=0

2π

MTS

· e−j2πf(mTS−tm)

∞∑
n=−∞

δ

(
f − n

MTS

)

= X(f) ∗ 2π

MTS

∞∑
n=−∞

[
M−1∑
m=0

e−j2πftm · e−j2πfmTS

]
δ

(
f − n

MTS

)
.

(2.27)

The part within the square brackets is a Discrete Fourier Transform:

Tn =
M−1∑
m=0

e−j2πftm · e−j2πfmTS . (2.28)
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Plugging equation 2.28 into equation 2.27, it results:

Ŷ (f) = X(f) ∗ 2π

MTS

∞∑
n=−∞

Tn · δ
(
f − n

MTS

)
. (2.29)

Now, let’s suppose our input signal is a sinewave at a frequency fin, its spectrum being
the one expressed by equation 2.22. If we plug equation 2.22 into equation 2.29, we get:

Ŷ (f) =
1

2
[δ(f − fin) + δ(f + fin)] ∗

2π

MTS

∞∑
n=−∞

Tn · δ
(
f − n

MTS

)

=
π

MTS

∞∑
n=−∞

Tn ·
[
δ

(
f − fin −

n

MTS

)
+ δ

(
f + fin −

n

MTS

)]
.

(2.30)

The output spectrum of a TI-ADC affected by sampling skew is characterized by a series
of spurious tones at nfS/M ± fin, like the error introduced by the gain mismatch. The
amplitude of the tones is given by the term Tn, which depends on the skew sequence.

Note that unlike the case of gain error, the SNDR degradation due to time-skew depends
on the frequency of the input signal as shown in [36, 39, 45].

2.1.4. Non-ideal Characteristic of the ADC

Aside from the three sources of error analyzed in the previous sections (offset, gain, and
time-skew), ADCs are also affected by nonlinearity errors (DNL, INL) [46].

The transfer function of an ideal ADC is a staircase in which each step corresponds to a
particular digital word. Ideally, each step has the same amplitude equal to an LSB.

In a real ADC, there are deviations from the ideal characteristic. Those deviations are
characterized using two parameters:

• Differential Non-Linearity (DNL): defined as the difference in the step width between
the actual transfer function and the ideal transfer function [47].

• Integral Non-Linearity (INL): defined as the vertical difference between the actual
and the ideal transfer functions [47].

In a SAR ADC, those non-linearities are mainly related to mismatches in the capacitive
array [48]. These deviations from the ideal characteristics lower the SNDR and SFDR of
the converter and represent an issue even for a single SAR.
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Figures 2.7 and 2.8 show the characteristics of a real ADC, compared to an ideal one,
highlighting the concept of DNL and INL, respectively.
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Figure 2.7: Definition of DNL of an ADC.
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Figure 2.8: Definition of INL of an ADC.

In order to understand the effect of the core nonlinearity on the overall converter, it’s
possible to resort to ad hoc simulations since it’s difficult to treat this non-ideality ana-
lytically.
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2.1.5. MATLAB Simulations of the Non-idealities

A MATLAB model has been developed to validate the analytical models presented in the
previous sections.

The model describes a 10-bit 8-channel 2-GS/s TI-ADC. All four non-idealities described
in the first sections of this chapter can be simulated both individually and together.

The input signal is a sinewave with an amplitude between −1 and 1. Offset, gain, and
time-skew errors are modelled exactly as shown in the respective sections, which results
in an input signal for each channel that can be written as:

Sm[k] = om + (1 + gm) · sin
(
2πfin ·

(
M · k +m

fS
+ tm

))
, (2.31)

where tm is the time-skew corresponding to the phase-skew δϕm.

The nonlinearity of each core is modelled according to:

Snonlinear[k] = α · tanh
(
Slinear[k]

α

)
, (2.32)

where α is used to control the magnitude of the nonlinearity effect.

All the parameters can be both specified or randomly generated. The simulations shown in
this chapter have been run with randomly generated parameters. The standard deviations
used for the different parameters are listed in table 2.1.

Parameter µ σ Note average SNDR

om 0 8 · 10−3 16 mV 40.1 dB

Gm = 1 + gm 1 1.2 · 10−2 39.68 dB

tm 0 20 · 10−12 20 ps 49.9 dB

α 5 5 · 10−2 49.4 dB

Table 2.1: Summary of the parameters used for the MATLAB simulation.

The average SNDR reported in the table has been calculated as the average over 100
simulations with the parameters reported in the respective row considered independently.
All the results have been simulated with a sinewave input at fin = 27 MHz.

Figure 2.9 shows the output spectrum of an 8-channel TI-ADC affected by offset mismatch.
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Figure 2.9: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected
by offset mismatch. The input is a sinewave at a frequency fin = 27 MHz.

The spectrum has spurious tones at mfS/8, consistently with the mathematical model.
Note that the spectrum is limited to the Nyquist frequency, thus tones at higher frequen-
cies are not shown.
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Figure 2.10: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected
by gain mismatch. The input is a sinewave at a frequency fin = 27 MHz.
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Figure 2.10 shows the output spectrum of an 8-channel TI-ADC affected by gain mis-
match. The spurious tones are at mfS/8±fin according with the analytical model derived
in the first section of this chapter.

Figure 2.11 shows the output spectrum of an 8-channel TI-ADC affected by time-skew.
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Figure 2.11: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected
by time-skew. The input is a sinewave at a frequency fin = 27 MHz.

Again, the resulting output spectrum shows spurious tones at mfS/8± fin, as predicted
by the model.

Figure 2.12 shows two output spectra of an 8-channel TI-ADC, affected by nonlinearity,
without (left) and with (right) nonlinearity mismatches between the cores. For the right
plot, in fact, different α values have been considered for the 8 cores.

From the two plots in figure 2.12, we can see that a mismatch of the nonlinearity between
the cores has negligible effects (a difference of only 0.06 dB) with respect to the one due
to the presence of the nonlinearity itself, as shown in [51].

Note that this effect is not introduced by the time-interleaved architecture as with the
offset, gain, and time-skew, but it is something that characterizes also each core ADC.
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Figure 2.12: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected
by nonlinearity, without (left) and with (right) nonlinearity mismatches between the cores.
The input is a sinewave at a frequency fin = 27 MHz.
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Figure 2.13: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected
by offset and gain mismatches, time-skew, and nonlinearity. The input is a sinewave at a
frequency fin = 27 MHz.
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Considering all the non-idealities of the TI converter, we obtain the overall output spec-
trum shown in figure 2.13.

The output spectrum shows spurious tones due to the offset mismatch at mfS/8 (250MHz,
500 MHz, 750 MHz, 1 GHz, ...), like in figure 2.9, and at mfS/8 ± fin (223 MHz,
277 MHz, 473 MHz, 527 MHz, 723 MHz, 777 MHz, 973 MHz, ...) due to gain
mismatch and time-skew as shown in figures 2.10 (gain) and 2.11 (time-skew).

Moreover, a large tone at 3fin = 81 MHz is present, which can be ascribed to the effect
of the core nonlinearity, as shown in figure 2.12.

Figure 2.14 shows the SNDR resulting from a frequency sweep of the TI-converter consid-
ering the three non-idealities related to the TI architecture (offset, gain, and time-skew)
independently.
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Figure 2.14: Frequency sweep simulated in MATLAB of a 10-bit 2-GS/s 8-channel TI-
ADC affected separately by offset mismatches, gain mismatches, and time-skew. The
input is a sinewave whose frequency sweeps from 1.5 MHz to 999.5 MHz in 1.0-MHz

steps.

As mentioned in section 2.1.3, the degradation of the performances of the TI converter
introduced by the skew is frequency dependant [36, 39, 45]. The effects of offset and gain
mismatches are, instead, independent of the input frequency.
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2.2. Calibration Algorithms

The need for calibration of the mismatches is clear from the analysis presented in the
previous section. The principal limiting factors of the performances of a TI-ADC are the
offset, gain, and timing mismatches [24, 52]. Among the three errors, offset and again
mismatches are frequency independent, whereas timing mismatches become more relevant
at high-frequency [36, 39, 45]. Furthermore, gain and time-skew errors are also dependent
on the amplitude of the input signal.

There are multiple different approaches found in literature, depending both on the do-
main of implementation (analog or digital) and in the mode of operation (background
or foreground) [52]. Analog calibration methods detect the error and act directly on its
source, changing the operating point of the analog circuit to minimize the non-idealities.
Digital approaches detect and correct the error directly in the digital domain [53–55]. A
third, mixed-signal approach detects the errors in the digital domain and corrects them in
the analog one. Each non-ideality is better calibrated in its own domains. For instance,
time-skew calibration is predominantly corrected in the analog domain (and detected in
the digital one) [56]. On the other hand, offset and gain mismatches are usually corrected
in the digital domain [52]. However, there are opposite examples in literature, like [57–59],
which propose a fully-digital calibration also for time-skew error.

From what concerns the difference between background and foreground calibration we
have that background (BG) calibration occurs during the normal operation of the con-
verter and is, therefore, invisible to the user. Foreground (FG) calibration, on the other
hand, interrupts the normal operation of the converter. Another advantage of background
calibrations consists in their capability of intrinsically tracking PVT variations of the IC.

From this brief description, it looks like background calibration is superior to foreground
calibration. However, background calibration more often than not poses some constraints
on the input signal [52].

The earliest reference regarding methods for mitigating the effects of TI converter focuses
on a two-rank SH architecture to avoid timing error [60]. Dyer, Fu, Lewis, and Hurst
provide in [61, 62] and [63, 64], respectively, a digital and an analog background calibration
of offset and gain mismatches. In both cases, the time-skew error is avoided using a first-
rank S&H architecture.

In this work, we analyze only digital calibration algorithms, which can be implemented
on an FPGA.
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2.2.1. Offset Correction

Let’s start with the calibration of the offset mismatch. The idea is to estimate the DC
offset of the channel and then subtract it from the output, resulting in:

Sm,corrected[k] = Sm,non corrected[k]−Om[k] , (2.33)

with Om[k] being the estimate of the offset of the mth channel at the instant k.

A possible method to achieve this task is to average a certain number of samples from
the channel using a Finite Impulse Response2 (FIR) filter. For instance, using a moving
average FIR results in an estimation of the offset of the channel expressed by:

Om[k] =
1

N

N∑
n=1

Sm,non corrected[k − n] . (2.34)

Actually, we are not interested in removing the offset of each core. It is enough that all
the cores have the same offset, which means the mismatch is eliminated.

It is possible to use one of the channels as a reference and calibrate all other channels
with respect to it. Thus, equation 2.34 becomes:

om[k] =
1

N

N∑
n=1

(Sm,non corrected[k − n]− Sreference[k − n]) , (2.35)

with om[k] representing the estimation of the offset mismatch of the mth channel with
respect to the reference channel at the instant k.

Note that in this case, the reference channel is not subject to calibration.

Though an FIR filter is usually simpler to implement and is inherently stable, it provides
only an approximation of the offset mismatch of the channel and its accuracy depends
on the number N of samples used to calculate the moving average. Furthermore, it also
requires a large number of resources. Referring to the aforementioned moving average,
we need to store a number of samples equal to the length of the filter in a shift register,
a requirement that becomes quickly prohibitive, especially for the low cut-off frequency
required for this kind of application.

2FIR: a Finite Impulse Response is a filter whose impulse response is finite, which means that the
response of the filter to a finite duration input signal has a finite duration.
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A possible solution is to use Infinite Impulse Response3 (IIR) filters [55]. Equations 2.33
and 2.35 become respectively:

Sm,corrected[k] = Sm,non corrected[k]− γoffset · om[k] (2.36)

and

om[k] =
∞∑
n=1

(Sm,corrected[k − n]− Sreference[k − n]) . (2.37)

Equation 2.37 can be rewritten in the more clear form of:

om[k] = om[k − 1] + Sm,corrected[k − 1]− Sreference[k − 1] . (2.38)

IIR filters use feedback to achieve low cut-off frequencies and sharp cut-offs using few
hardware resources. However, the presence of the feedback loops introduces stability
issues. Figure 2.15 shows the block diagram of the offset compensation algorithm using
an IIR filter.

Figure 2.15: Block diagram of offset compensation algorithm using an IIR filter.

The choice of the γoffset factor is critical for the stability and convergence speed of the
offset calibration algorithm. Large γoffset values might cause instability, whereas small
values cause long convergence times. The effects of different values of γoffset have been
investigated using MATLAB simulations.

3IIR: an Infinite Impulse Response is a filter whose impulse response is infinite, this means the response
of the filter to a finite duration input signal has infinite duration
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2.2.2. Gain Correction

The same analysis done for the offset mismatch can be repeated for the gain mismatch. We
limit ourselves to reporting the results. As for the offset mismatch, we are not interested
to remove the gain error from each core, but it is enough to force all cores to have the
same gain.

In this case, we want to correct a multiplicative error, thus equation 2.33 becomes:

Sm,corrected[k] = Sm,non corrected[k] · γgain · gm[k] . (2.39)

Equation 2.38 can be modified to use the absolute value (or the square value) of the
signals [55]:

gm[k] = gm[k − 1]− |Sm,corrected[k − 1]|+ |Sreference[k − 1]| . (2.40)

We prefer the use of the absolute value since it does not involve multipliers, which requires
a lot of hardware. Figure 2.16 shows the block diagram of the gain calibration algorithm
using an IIR filter:

Figure 2.16: Block diagram of gain compensation algorithm using an IIR filter.

As for the offset calibration, the choice of the γgain factor has influences on stability and
convergence speed of the system [55].
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2.2.3. MATLAB Simulations of Correction Algorithms

This sub-section presents the MATLAB simulations of the calibration algorithms used to
correct the output of the TI-ADC affected by non-idealities.

Figure 2.17 shows the output spectrum of an 8-channel TI-ADC affected by offset mis-
match, before (left) and after (right) the calibration algorithm convergence.
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Figure 2.17: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected by
offset mismatch before (left), and after (right) the offset calibration algorithm convergence.
The input is a sinewave at a frequency fin = 27 MHz.

It is possible to notice how the spurious tones caused by the offset mismatch are not
present in the right plot.

The parameters used to model the offsets, and the expected values of γoffset · om of all
the channels are summarized in table 2.2. The use of ˆ denotes the coefficients used to
model the non-idealities.

CH 0 1 2 3 4 5 6 7

ôm 0.001 0.0031 -0.004 -0.0014 -0.005 0.002 0.001 0.0027
γoom 0 -0.0021 0.005 0.0024 0.006 -0.001 0 0.0017

Table 2.2: Summary of the parameters used for the MATLAB simulation of the offset
mismatch and the respective expected offset calibration coefficients.
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Figures 2.18, 2.19, and 2.20 shows the evolution of the γoffset · om[k] coefficients of all the
channels for γoffset equals to 2−12, 2−16, and 2−20, respectively. Note that the x-axes of
the plots are different.
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Figure 2.18: MATLAB simulation of the offset calibration algorithm showing the trend
of the γoffsetom coefficients. γoffset = 2−12.

In figure 2.18 it is possible to notice the oscillation of the γoffsetom coefficients around
their expected values, a symptom that the γoffset coefficient is too small.
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Figure 2.19: MATLAB simulation of the offset calibration algorithm showing the trend
of the γoffsetom coefficients. γoffset = 2−16.
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Figure 2.20: MATLAB simulation of the offset calibration algorithm showing the trend
of the γoffsetom coefficients. γoffset = 2−20.

As mentioned in section 2.2, the value of γoffset influences the stability and the convergence
speed of the algorithm.
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Figure 2.21: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected by
gain mismatch before (left), and after (right) the gain calibration algorithm convergence.
The input is a sinewave at a frequency fin = 27 MHz.
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Figure 2.21 shows the output spectrum of an 8-channel TI-ADC affected by gain mis-
match, before (left) and after (right) the gain calibration algorithm convergence.

As for the offset calibration algorithm, the spurious tones introduced in the output spec-
trum by the gain mismatch are not present in the corrected output spectrum (right).

It is also possible to notice (on the left plot in figure 2.21) the initial attenuation of the
fundamental (of the whole spectrum actually) caused by the zero initial value of γgain · gm
coefficients (as shown in figure 2.22).

In fact, the output sample of the gain calibration algorithm (expressed by equation 2.39,
and reported here for the sake of clarity) can be written as:

Sout = Sin · γgaingm , (2.41)

thus, at the first cycle of the calibration algorithm (i.e., when gm = 0), there is no transfer
to the output.

The transfer to the output increases until the γgain · gm coefficients reach their expected
values as shown in figure 2.22.
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Figure 2.22: MATLAB simulation of the gain calibration algorithm showing the trend of
the γgaingm coefficients. γgain = 2−20.
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It is possible to notice how the γgaingm coefficients converge to the expected values sum-
marized in table 2.3. As before, the use of ˆ denotes the coefficients used to model the
non-idealities.

CH 0 1 2 3 4 5 6 7

ĝm 1 1.03 0.98 1.04 0.96 1.04 0.96 1.06
γggm 1 0.97 1.02 0.96 1.04 0.96 1.04 0.94

Table 2.3: Summary of the parameters used for the MATLAB simulation of the gain
mismatch and the respective expected gain calibration coefficients.

The gain calibration algorithm behaves similarly to the offset calibration one (shown in
figures 2.18, 2.19, and 2.20) with respect to the stability-convergence speed trade-off of
the γgaingm coefficients, therefore the results of the simulations are not reported here for
the sake of brevity.

Figure 2.23 shows the output spectrum of an 8-channel TI-ADC affected by both gain and
offset mismatches, before (left) and after (right) the calibration algorithms convergence.
The two algorithms act in series, the first one is the offset compensation, followed by the
gain calibration.
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Figure 2.23: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected
by offset and gain mismatch before (left), and after (right) the calibration algorithms
convergence. The input is a sinewave at a frequency fin = 27 MHz.



54 2| Non-Idealities of TI-ADC and Calibration Algorithms

Again, we can notice (on the left in figure 2.23) the initial attenuation of the spectrum
caused by the zero initial value of the γgain · gm coefficients.

The calibration algorithms correct the offset and gain mismatches even when working
together (i.e., in series) as shown by the lack of spurious tones in the right plot of figure
2.23.

As for the case where the single non-idealities were considered separately, the SNDR of
the calibrated spectrum tends to the theoretical one of SNDR ≈ 10 ·6.02 dB+1.76 dB ≈
61.96 dB.

The values of the coefficients used to model the non-idealities in the simulations shown
in this chapter are summarized in tables 2.2 (offset) and 2.3 (gain). The respective
coefficients converge to their expected values as shown in figures 2.18, 2.19, 2.20 (for the
offset) and 2.22 (for the gain).

For the sake of completeness, figure 2.24 shows the output spectrum of an 8-channel TI-
ADC affected by all the non-idealities analyzed in this chapter (offset, gain, time-skew,
and nonlinearity), before (left) and after (right) the calibration algorithms convergence.
For this simulation, the same α value has been considered for the 8 cores.
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Figure 2.24: MATLAB simulation results of a 10-bit 2-GS/s 8-channel TI-ADC affected
by offset and gain mismatch, time-skew, and core nonlinearity, before (left), and after
(right) the calibration algorithms convergence. The input is a sinewave at a frequency
fin = 27 MHz.
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In this case, we have some spurious tones related to the nonlinearity and to the time-skew
in the output spectrum. The offset and gain calibration algorithms are (rightly so) unable
to correct these non-idealities.
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3| Implementation of the TI-ADC

Model on FPGA

This chapter contains the details of the implementation of the TI converter and calibration
algorithms discussed in chapter 2.

We start with a brief description of what is an FPGA before going into the details of the
architecture of the model implemented in the FPGA, and the design considerations made
during the implementation of each sub-module.

Any numeric consideration is referred to the particular implementation used to realize the
results illustrated in chapter 4, which is a 10-bit 8-channel TI-ADC.

3.1. Development Environment

A Field-Programmable Gate Array (FPGA) is a type of digital IC designed to be con-
figured after manufacturing (hence the field-programmable in the acronym). FPGAs are
composed internally of logic blocks (the gate array), connected by a programmable inter-
connect matrix. The logic blocks (known as Configurable Logic Blocks (CLBs) in Xilinx’s
FPGAs) are able to implement the most different logic functions, and, in modern devices,
they are also accompanied by blocks implementing specific functions like DSP1 engines
and memories. FPGAs also have plenty of distributed registers that can be used for the
most diverse purposes (pipelining, accumulators, shift registers, etc.).

The configuration is usually described using HDLs in a similar fashion to digital ICs.
This, together with the unlimited reconfigurability of modern FPGAs, makes the use of
FPGAs for prototyping digital ICs quite obvious.

The model of the TI-ADC has been developed on an Arty A7-100T development board2,
(shown in figure 3.1).

1DSP: Digital Signal Processing consists in the elaboration of a signal in the digital domain.
2A development board is an off-the-shelf solution that can be used to test a design before mass

production. They are also useful for familiarizing a designer with a particular device.
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Figure 3.1: Top view of an Arty development board from Digilent [65].

This board is manufactured by Digilent. The resources available in the FPGA are shown
in the Series-7 product lineup [66] and summarized in table 3.1.

Artix-7-A100T

Total Block RAM (kb) 4.860
BRAM (36 kb each) 135

Total Distributed RAM (kb) 1.188
DSP 240
Slices 15.850

Logic cells 101.440
Flip-flops 126.800

Table 3.1: Summary of resources available on the Artix-7 A100T FPGA [65].
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The Xilinx-A100T FPGA is part of the Artix-7 family [67] of Xilinx’s Series 7 FPGAs.
This means that we can easily adapt this project to other FPGAs of the same series like
the Kintex-7 and Virtex-7 [68] without any change to the RTL. Furthermore, the project is
easily editable to be implemented in newer generations of Xilinx’s FPGAs like Ultrascale
and Ultrascale+ as shown in Xilinx’s migration guide [69].

The last aspect is particularly important because many of the design choices (i.e., the
number of the channels of the TI converter, the resolutions of the ADC and of the Nu-
merically Controlled Oscillator (NCO)) are constrained by the resources available on the
FPGA (mainly the amount of available memory).

It is important to remember that this works aims to present only a proof-of-concept
of the proposed verification technique. If a more capable FPGA is available, we could
easily synthesize a higher resolution ADC model, NCO with better phase or amplitude
resolution, or even a TI-ADC with more channels, and so on.

For instance, the most capable Series-7 FPGA, the Virtex-7 XC7VX1140T, has more than
ten times the memory (67.8 Mb Vs. 4.8 Mb) of the Artix-7 A100T [66], whereas newer
generations have orders of magnitude more.

Note that many development boards (and this is the case of the ARTY-A7 boards) also
embed an external RAM3 (SDR4-RAM, DDR5-RAM or HBM6 in high-end devices). How-
ever, the time required to fetch data from external memory is orders of magnitude more
than the one required to access internal memory (hundreds of clock cycles versus 1-2 clock
cycles), introducing a severe performance bottleneck. For this reason, we are bound to
use the internal memory.

More capable FPGAs might also be useful to fully exploit the throughput the FPGA
TI-ADC model is able to provide. In fact, the effective throughput of the TI-ADC model
is limited by the speed of the communication interface available. For a proof-of-concept
this is not an issue, but it is absolutely required should this system be further developed
into a practical verification instrument.

3RAM: a Random Access Memory is a type of computer memory that can be accessed in any order
and whose access time is independent on the accessed address.

4SDR: Single Data Rate RAM is a type of RAM that works on a single clock edge (either rising or
falling edge).

5DDR: Double Data Rate RAM is a type of RAM that works on both clock edges (rising and falling
edges), doubling the bandwidth with respect to SDR-RAM for the same clock frequency.

6HBM: High Bandwidth Memory is a new generation computer memory made up of multiple DDR-
RAM modules stacked-up in a single package. It is characterized by extremely large bus widths and
bandwidths.
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3.2. General Architecture

At a high level, the architecture of the on-FPGA model closely resembles the block di-
agram of the TI-ADC shown in figure 1.13. Like the real TI converter, the on-FPGA
model consists of multiple channels as shown in figure 3.2.

CHANNEL 0

CHANNEL 1

CHANNEL 7

MUX OUTPUT
BUFFER 

Figure 3.2: High-level block diagram of the on-FPGA model.

Differently from the real TI-ADC, in the on-FPGA model the channels work in parallel
to leverage the advantages of an FPGA implementation. The samples are then ordered
correctly by an opportunely managed multiplexer and stored in an output buffer.

The number of channels can be specified at the time of the RTL synthesis (like other
specifications of the on-FPGA model). The design has been successfully synthesized and
tested for different numbers of channels ranging from 4 to 16.

Each channel is functionally identical to the other. It is composed of an NCO, the ADC
itself, and the Background Calibration Algorithm (BCA) block. The BCA itself is com-
posed of two independent parts correcting the offset and gain, respectively. Figure 3.3
shows a high-level block diagram of the structure of each channel.

NCO ADC BCA
OFFSET

BCA
GAIN

BCA

Figure 3.3: High-level diagram of each channel of the TI-ADC modelled on the FPGA.
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A detailed description of each block of the processing chain will be provided in the fol-
lowing sections.

Aside from the aforementioned blocks composing the channels, there are also other aux-
iliary blocks needed to interface with and configure the on-FPGA model.

CH 0

CH 1

CH 7

OUTPUT
BUFFER 

AXI4-to-MM
Interface 

Control Registers

MUX

Figure 3.4: High-level diagram of the on-FPGA model showing auxiliary blocks.

In figure 3.4 we can see the different auxiliary blocks in the on-FPGA model, namely:

• AXI4-Lite to Memory Mapped interface: the external interface of the whole on-
FPGA model translates the global AXI47 interface to a local Memory Mapped8

(MM) interface.

• Control Logic: a set of memory-mapped registers that store the parameters of the
processing chain.

All the blocks within the dotted line shown in figure 3.4 compose the on-FPGA model
itself. There are other blocks implemented in the FPGA but those are third-party IPs
and will be briefly analyzed in the next chapter.

7AXI4: the Advanced eXtensible Interface is an on-chip communication protocol developed by ARM.
AXI is royalty-free and in the last few years has become the de-facto standard in the industry.

8MM: a Memory Mapped interface is a type of communication interface in which different peripherals
are mapped by their memory address.
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3.3. Numerically Controlled Oscillator Model

In a real ADC the input signal is analog and time-continuous, properties that are not
reproducible in a fully-digital system like an FPGA (but the former can be approximated
with arbitrary precision).

The idea is to replace the Sample and Hold (S&H) circuit that samples the analog, time-
continuous signal into an analog, time-discrete one with an NCO, which directly provides
a digital, time-discrete signal. A comparison of the two models is shown in figure 3.5.

S&H

NCO

Real model

FPGA model

Analog, Time-
Continuous

Analog, Time-
Discrete

Digital, Time-
Discrete

Figure 3.5: Comparison of the real and on-FPGA model of the input signals of an ADC.

AMD - Xilinx provides its own configurable NCO implementation known as Direct Digital
synthesis [70], which is capable of synthesizing sinusoidal signals from 3 to 26 bits. How-
ever we decided to implement our own custom NCO to have better control over it (i.e.,
select the desired implementation) and closely couple it (i.e., have access to the whole
internal state of the NCO) with the rest of the system.

Three different implementations have been considered for the NCO, before selecting the
most appropriate one for the task:

• Unstable filter NCO

• Look-Up Table9 (LUT) NCO

• Quarter-LUT NCO

Each different implementation has its own advantages and shortcomings. In the following
sub-sections they are analyzed and explained in detail.

9LUT: a Look-Up Table is a table filled with the results of a particular computation. Instead of doing
the computation at run-time, we look for the result stored in the table.
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3.3.1. Unstable Filter NCO

The first type of NCO considered is an unstable filter NCO (also known as recursive filter
NCO) [71–74], like the one shown in figure 3.6.

      

Figure 3.6: Block diagram of an unstable filter NCO.

This type of numerically controlled oscillator provides both the in-phase (I[k]) and the
quadrature (Q[k]) sinewaves. It is possible to express the equations governing this NCO
as a function of the Frequency Control Word (FCW ), resulting in:

I[k] = I[k − 1] + FCW ·Q[k − 1] (3.1)

Q[k] = Q[k − 1]− FCW · I[K] , (3.2)

with 0 < FCW < 2.

This implementation is quite convenient from a hardware perspective as it requires just
two multipliers, two adders, and some registers, resources that are abundant in an FPGA.
However it has a few major shortcomings, some depending on the architecture itself, and
others related to the FPGA implementation.
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First of all, the dependence of the frequency of the output tone on the FCW parameter
is non-linear.

Another issue is that the amplitude of the sinewave depends on FCW . This implies that
the SNDR depends on the FCW and thus on the frequency of the output tone.

Figure 3.7 shows the results of a sweep of FCW from 0 to 2 (excluded) for a 24-bit unstable
filter NCO. On the left, we can see the non-linear FCW-frequency relationship, on the
right we can observe the normalized amplitude of the output sinewave as a function of
FCW .
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Figure 3.7: Output frequency (left) and normalized output amplitude (right) of a 24-bit
unstable filter NCO simulated in MATLAB for FCW values between 0 and 2 (excluded).

Figure 3.8 shows the SNDR of the output tone of a 24-bit unstable filter NCO resulting
from a sweep of FCW from 0 to 2 (excluded).

We can see how the ENOB of the output tone varies by more than 1 bit (6 dB in SNDR)
across the FCW sweep. This alone is enough to discard the implementation. We need
our NCO to provide a signal with a quality (i.e., SNDR, SFDR) as constant as possible
to verify the calibration algorithms.

We can also see how the effective SNDR of the output tones is lower than the theoretical
24 · 6.02 dB + 1.76 dB ≈ 146 dB.
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Figure 3.8: SNDR of a 24-bit unstable filter NCO simulated in MATLAB for FCW values
between 0 and 2 (excluded).

Note that, for the purpose of the analysis of the oscillators, the sampling frequency fS

was considered equal to the clock frequency fclk = 100 MHz.

Let’s focus now on the limitations related to the actual FPGA implementation.

The number of bits available for the multiplication is limited by the dedicated hardware
we use to implement the operation. In Xilinx’s Series-7 FPGAs products are implemented
using DSP48E1 primitives. The DSP48E1 primitive that implements the multiplier in the
FPGA is limited to 25 × 18 two’s complement multiplications as shown in the DSP48E1
User Guide [75]. This means that we can multiply at most two numbers of 25 and 18 bits,
respectively.

Though this resolution seems satisfactory (we target a 10-bit resolution for the ADC, thus
a 25-bit resolution for the input sample is more than enough), we have to remember that
the unstable filter NCO is based on a recursive approach. This means that the result of
the multiplication at clock cycle k is used as an operand at clock cycle k + 1. Thus we
need to truncate the result of the I[k] · FCW multiplication, introducing an error that
gets integrated with the evolution of the filter. This means that the effective quality of
the output tone is not only frequency-dependent but also time-dependent.

Because of these two limitations, we explored alternative implementations for the NCO.
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3.3.2. LUT-based NCOs

Numerically Controlled Oscillators based on a LUT are probably the simplest implemen-
tation of a frequency synthesizer. The idea is to keep track of the phase and use a phase-
to-amplitude converter to obtain the output waveform. The simplest phase-to-amplitude
converter is a LUT in which we store the waveform samples.

Figure 3.9 shows the general block diagram of a LUT-based NCO. Note that this NCO
has no constraints on the waveforms it can generate, as shown by the use of f(·) in the
phase-to-amplitude converter. ϕS is the phase step.

Figure 3.9: Block diagram of a generic LUT-based NCO.

Full-LUT NCO

In a Full-LUT NCO (or simply LUT NCO) a whole period of the waveform of interest
(in our case a sine or a cosine) is stored in the LUT. A block diagram of simple Full-LUT
NCO is shown in figure 3.10.

Figure 3.10: Block diagram of a Full-LUT sinewave NCO.

At each discrete time instant k, the output signal of the NCO will be:

x[k] = sin (2π · ϕ[k]) , (3.3)

where we use sin(2πϕ) instead of sin(ϕ) to express ϕ as a normalized phase. The reason
why it is useful to have a normalized phase will be made clear later in this section.
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The normalized phase (simply called phase from now on) represents the number of times
we have gone around the unit circle as shown in figure 3.11.

Figure 3.11: Unit circle and definition of normalized phase.

However, since the sine is a periodic function we don’t care about how many integer times
the sinewave went around the unit circle. This means we can discard the integer part of
the phase accumulator as shown in figure 3.12.

integer part

fractional part - phase accumaltor

used to address the LUT used for internal accumulation

Figure 3.12: Structure of the phase accumulator.

Note that we don’t even need to implement or store the integer portion of the phase as it
is completely meaningless for our purpose.

It is also possible to decouple the number of bits used to store the phase from the number
of bits used to address the LUT as shown in figure 3.12.
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This allows for example to represent frequencies that are not achievable with integer steps
through the LUT [76] as shown in figure 3.13.

 

Figure 3.13: Representation of the fractional phase accumulation.

The extra fraction (the part not used to address the LUT in figure 3.12) accumulates
causing a different addressed position with respect to the one we would have using only
the addressing bits for the phase accumulator.

At each cycle, the phase is updated according to:

ϕ[k] = ϕ[k − 1] + ϕS , (3.4)

ϕS being the phase step.

Any overflow of the fractional part is handled automatically by the unsigned arithmetic
(this is why it is useful to have a normalized phase, otherwise we would have to subtract
2π after each period). By acting on the value of ϕS it is possible to select the frequency
of the output sine tone as:

fout = fS ·
(

ϕS

2LUT BITS

)
, (3.5)

where fS is the sampling frequency and LUT BITS is the number of bits used to address
the LUT.

This implementation has the advantage of a linear relationship between the value of ϕS

and the frequency of the output tone. Furthermore, in this case, the quality (i.e., SNDR,
SFDR) of the output sinewave is independent of the ϕS chosen (and thus from the output
frequency).

Again, the sampling frequency fS has been considered equal to the clock frequency fclk =

100 MHz for the analysis of the NCO.
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Figure 3.14: SNDR of the Full-LUT NCO simulated in MATLAB for output frequency
ranging from 0 to 50.0 MHz.

The SNDR varies by about 1 dB across the whole sweep of frequency (0-50 MHz) as
shown in figure 3.14, much better than with the unstable filter NCO shown in figure 3.8.

This NCO implementation has better and more consistent performances than the unstable
filter one seen in the previous subsection. This is, however, paid with a more resource-
intensive implementation. In fact, we need to store the sampled waveform, and each
additional bit of phase resolution doubles the amount of memory required.

The most obvious hardware that can be used to implement a LUT is block RAM. Block
RAMs are dedicated hardware resources that do not consume additional CLBs (as opposed
to distributed RAMs, which are implemented using them). In Xilinx’s Series-7 FPGAs
block RAMs are available as BRAM36K [77]. A BRAM36K is a 36-kb memory array
that can be configured with multiple aspect ratios (32K x 1, 16K x 2, 8K x 4, 4K x 9,
2K x 18, 1K x 36, or 512 x 72). For write/read width larger than 8 bits we gain an
additional bit for each byte resulting from the additional Error Correction Code10 (ECC)
bit. We can use this extra free bit to increase the resolution of the output sample. This,
however, constrains the output samples to a resolution multiple of 9 bits. Given the target
resolution for the ADC of 10 bits, an 18-bit resolution is enough to approximate an analog
signal.

10ECC: an Error Correction Code is a redundant encoding of the data that allows detecting and/or
correcting data corruption
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Quarter-LUT NCO

A Quarter-LUT NCO (or QLUT NCO) is an improvement of the Full-LUT NCO described
in the previous sub-section. The idea is to exploit the symmetry of the sine function to
reduce the number of samples we need to store at the cost of some extra logic.

Figure 3.15: Partitioning of the sinewave according to the symmetry of the function.

Figure 3.15 shows how to partition the period of the sinewave to exploit its symmetry. By
storing only a quarter of the period we are anyhow able to reconstruct the whole period.

To achieve this goal we need to change the sign of either the output sample or the lockup
address according to the value of the phase. To be more precise, we use the two MSBs
of the fractional part to identify the quadrant (or quarter) of the unit circle, whereas the
remaining bits are used to address the LUT as shown in figure 3.16.

integer part

fractional part - phase accumaltor

LUT addressing used for internal accumulationquarter ID

Figure 3.16: Structure of the phase accumulator of a QLUT NCO.

In the first quarter (that is, for 0 ≤ ϕ < 1/4) the QLUT NCO behaves as the Full-LUT
NCO, with the only difference being that we do not use the whole phase to address the
LUT.
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During the second quarter (1/4 ≤ ϕ < 1/2) we should use 1−ϕ to address the LUT (with
1 being the last element of the LUT in a Full-LUT NCO). If we express it as a binary
address, it results:

ADDR = LUT LENGTH − ADDRϕ , (3.6)

where ADDRϕ is the address of the element of the LUT indexed by ϕ.

Now, let’s suppose that the length of the LUT is a power of 2. We can write LUT LENGTH

as a function of the number of bits used to address the LUT (LUT BITS), resulting in:

ADDR = 2LUT BITS − 1− ADDRϕ . (3.7)

However, in two’s complement arithmetic this is equivalent to simply complementing the
phase. In fact, to change the sign of a number we complement it and add 1:

−ADDRϕ = ADDRϕ + 1 , (3.8)

which becomes:

−1− ADDRϕ = ADDRϕ . (3.9)

Plugging equation 3.9 into equation 3.7, we get:

ADDR = ADDRϕ . (3.10)

Thus, it is possible to flip the waveform by using a simple logic complement operation,
which is easily implementable in an FPGA.

In the third quarter ( 1/2 ≤ ϕ < 3/4 ) we should use ϕ to address the LUT. This results
in the same expression used in the first quadrant. The only difference is that we need to
change the sign of the output samples.

Last, in the fourth quadrant ( 3/4 ≤ ϕ < 1 ) we should use again 1 − ϕ to address the
LUT. The result of this operation is the same as equation 3.10. Like in the third quadrant,
in the fourth one we also have to change the sign of the output sample.

Table 3.2 summarizes the logic operations needed in a QLUT NCO.
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Quadrant Change S sign [ϕ[−1]] Complement ADDRϕ [ϕ[−2]]

1st NO [0] NO [0]

2nd NO [0] YES [1]

3rd YES [1] NO [0]

4th YES [1] YES [1]

Table 3.2: Summary of logic operations needed to reconstruct the whole period of a
sinewave from a single quarter of the period.

It is quite evident from table 3.2 that we can easily control the operations that have to
be performed on the lockup address (ADDR) and on the output sample (S) using the
two MSBs of the fractional part as shown in figure 3.16. In table 3.2 ϕ[−1] and ϕ[−2]

represent respectively the first and second bits of the fractional part of ϕ (the 0th bit is
conventionally assumed to be the first bit of the integer part).

The performances of a QLUT NCO match the ones of the Full-LUT NCO and therefore
are not reported here. Like the Full-LUT NCO, the SNDR of the output tone is much
more stable than the one of the unstable filter NCO. The frequency dependence on the
chosen phase step ϕS is still linear.

A Quarter-LUT NCO allows cutting the used memory by a factor of 4 while keeping
the same phase resolution, or, vice versa, to gain 2 bits of phase resolution while using
the same memory resources as a Full-LUT NCO. Still, this technique is less flexible than
Full-LUT NCOs as it poses further constraints on the signal stored in the LUT as it will
be clear in the next sub-section.

As for Full-LUT NCOs, also in the QLUT NCO the LUT is implemented using one or more
BRAM36K. Thanks to the reduction in the number of samples that need to be stored, we
can increase of a factor 4 the phase resolution of the NCO (in the same memory array we
can fit four times the samples as before). Furthermore, in this case we need to store only
positive samples since during the negative half of the sinewave we will directly change the
sign of the output samples. This gives us one more bit of resolution for the NCO gratis,
resulting in a 19-bit approximation of an analog signal.

The logic complementation of ADDRϕ and the change of the sign of the output samples
required for this type of NCOs are easily implementable in the FPGA using Series-7
distributed CLBs [78] without using dedicated hardware like the DSP48E1 needed for the
unstable filter NCO.
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3.3.3. Comparison and Implementation

Comparison of LUT and QLUT NCOs

As mentioned in chapter 1, the ADC taken as an example for this work is designed for a
transceiver application. Thus, it can be useful to generate input signals that are not ideal
sinewave (like, for instance, a modulated signal). With a Full-LUT NCO, it is possible to
load a period of an arbitrary waveform in the LUT and supply it to the ADC. In this case,
the NCO behaves more as an input buffer than as a Numerically Controlled Oscillator.

Another, perhaps more interesting, capability of the Full-LUT NCO consists in the pos-
sibility to model the time-skew. Assuming we are interested in a single sine tone, we will
have that the LUT is filled with:

LUT [ADDRϕ] = sin

(
2π · ADDRϕ

LUT LENGTHFLUT

)
. (3.11)

Now, recalling that in our on-FPGA model we have M different NCOs placed in parallel,
we can load a different waveform into each NCO:

LUTm[ADDRϕ] = sin

(
2π · ADDRϕ

LUT LENGTH
+ δϕm

)
, (3.12)

where δϕm represents the skew that affects each channel as modeled in chapter 2.

This gives us the possibility to assign an arbitrary skew to each channel. This is not
possible in a Quarter-LUT approach as symmetry considerations restrict the values of
δϕm we can select [79] as shown in figure 3.17.
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Figure 3.17: Effect of the phase quantization on the symmetry of the output waveform.

The sampled waveform shown in figure 3.17 is not compatible with a QLUT NCO, as the
5th sample (or the 1st, 9th and 13th) is not strictly part of any quadrant.
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Instead, if we use δϕm = π/LUT LENGTH we can recover the symmetry of the output
waveform as shown in figure 3.18
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Figure 3.18: Effect of the phase quantization on the symmetry of the output waveform
with a δϕm = π/LUT LENGTH phase shift.

Perhaps, it is possible to better explain this concept using the unit circle.

Full-LUT NCO Quarter-LUT NCO

Figure 3.19: Unit circle representation of a 4-bit phase NCO for Full-LUT (left) and
Quarter-LUT (right) NCOs.

Figure 3.19 shows the unit circle divided into 16 different steps, coherently with the
sampled waveforms shown in figures 3.17 (left) and 3.18 (right) respectively. Introducing
a time-skew δϕm means adding a phase offset to the waveforms, which is equivalent to
a clockwise rotation on the unit circle (for positive δϕm). However, while in a Full-LUT
NCO the whole unit circle rotates clockwise, in a QLUT NCO we have that the first and
third quadrants rotate clockwise, while the second and fourth rotate counterclockwise
(vice versa for a negative δϕm), introducing a distortion in the output sinewave.
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With a QLUT NCO, it is not possible to have a different value of δϕm for each channel.

Acting on the initial values of the phase for each of the channels (ϕ0,m) it is possible to
synchronize the sampling of the different channels. Thus, assuming a sinusoidal signal,
the output of each channel will be:

Sm,n = sin

(
2π · ϕ0,m + n · ϕS,m

LUT LENGTH
+ δϕm

)
. (3.13)

Let’s now consider δϕm = 0. We can choose ϕ0,m such that:

ϕ0,m = ϕ0,0 +
ϕS,m

M
·m. (3.14)

Assuming ϕ0,0 = 0 for the sake of simplicity and plugging equation 3.14 into equation
3.13, it results:

Sm,n = sin

(
2π

LUT LENGTH
· ϕS,m

M
· (M · n+m)

)
, (3.15)

which closely resembles the equation describing the signal sampled by the TI-ADC.

Acting on the value of ϕ0,m it is possible to model the time-skew also with QLUT NCOs.
This, however, restricts the values of the skew that can be represented to discrete intervals
with a maximum resolution equal to:

δϕmin =
2π

LUT LENGTH
. (3.16)

Assuming a reasonable size for the LUT equal to LUT LENGTH = 213 and recalling
the relationship between phase and time delay (δϕ = δt · fS), it results that the minimum
resolution at fS = 27 MHz (the same frequency used for the simulations in chapter 2) is
equal to:

δtmin =
δϕmin

fS
≈ 15 ps , (3.17)

which is too large for our purpose (the standard deviation used for the simulations reported
in chapter 2 has the same order of magnitude).

Furthermore, this resolution is also frequency dependent.
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Implementation of the NCO

Eventually, we decided to implement the NCO as a Full-LUT NCO. In fact, even if QLUT
NCO offers unquestionable advantages in the resources required for the implementation,
it also poses strict requirements on the signal that can be generated.

Taking into account that we need the Block RAM also to implement the LUT in the ADC
and the output buffer, we decided to dedicate to the NCOs about a third of the memory
resources available in the Xilinx-A100T FPGA (135 BRAM36Ks) [67]. Considering an
implementation with 8 channels, each channel can use a maximum of 135/(3 · 8) ≈ 5

BRAM36Ks. Recalling the 18 bits of resolution for the NCO mentioned when discussing
the Full-LUT NCO, we end up with a maximum (rounding down to the nearest power of
2) of 213 = 8192 samples for each NCO. The use of other resources (CLBs, registers, etc.)
is negligible.

LUT 
2^13 x 18

PHASE
ACCUMULATOR

MM
INTERFACE

Figure 3.20: Block diagram of the RTL implementation of the NCO.

A block diagram of the implemented design is shown in figure 3.20. The initialization
value of the phase (ϕ0,m) and the amplitude of the phase step (ϕS,m) are stored within
the control logic block and are configurable from the PC.

The LUT is implemented as a Simple Dual Port (SDP) RAM. This means that the RAM
has two different ports: one, the read port is addressed using the phase, the other, the
write port, is connected to the AXI4-Lite-to-MM interface, allowing the LUT to be written
from the PC.

The output interface follows AMBA AXI4-Stream specifications [80].
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3.4. Analog-to-Digital Converter Model

The Analog to Digital Converter is the second block in the channel flow diagram shown
in figure 3.3.

A real ADC receives as input an analog, time-discrete signal, and provides its digital
representation at the output. The on-FPGA model, on the other hand, receives a digital
(albeit at higher resolution), time discrete signal, thus, the "quantization" procedure is in
principle extremely simple as it is enough to discard a number of LSBs to model the effect
of the quantization error. Figure 3.21 shows a high-level comparison of the two models.

ADC

ADC

Real model

FPGA model

Analog, Time-
Discrete

Digital, Time-
Discrete

Digital, Time-
Discrete

Digital, Time-
Discrete

Figure 3.21: Comparison of the real and on-FPGA model of the ADC.

However, the aim of this work is to demonstrate a novel verification technique for cali-
bration algorithms, thus we need some kinds of error or non-ideality to calibrate. In the
previous chapter we showed the effects of four different non-idealities (offset mismatch,
gain mismatch, timing skew, and nonlinearity of the single core). The time-skew is mod-
elled within the NCO, whereas the remaining non-idealities are modelled within the ADC
itself as shown in figure 3.22.

 
QUANTIZATION

ERROR 
(RESIZE) 

 

Gain Offset Non-linearity Quantization

   

Figure 3.22: Block diagram of the on-FPGA model of the ADC.
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The first modelled non-ideality is the gain, otherwise the offset would be multiplied by
the gain coefficient too. In the previous chapter we have described the effect of the gain
error using a 1 + gm coefficient, i.e.,

Sg = Sin · (1 + gm) . (3.18)

As mentioned in the previous chapter, in a SAR ADC the offset can be modelled as a
global offset, that is, we need a single coefficient to model this error. This is simply done
by adding an offset om to the sample:

So = Sg + om = Sin · (1 + gm) + om . (3.19)

Regarding the implementation of the nonlinearity, we have considered two different ap-
proaches.

The first consists of using a series of multipliers to implement a Taylor series approximation
of the characteristic:

Snl = f(Sg) = Sg + k2 · S2
g + k3 · S3

g + k4 · S4
g + k5 · S5

g + ... . (3.20)

This solution was quickly discarded due to the prohibitive number of multipliers required
to implement a pipelined version of the operation for a reasonable degree of the approx-
imate series. Furthermore, the limited width of the multipliers (25 × 18 as mentioned
while discussing the unstable filter NCOs) poses hard limits to the achievable precision
due to the truncation needed to cascade multiple DSPs.

A more elegant solution consists again in using a LUT in which we store the desired
characteristic. In this case, the sample affected by nonlinearity is simply:

Snl = f(Sg) = LUT (Sg) . (3.21)

This allows the use of arbitrarily complex characteristics to model the nonlinearity. It is
also possible to export an ADC characteristic taken from an EDA tool or even from a
measurement of a real device and load it on the LUT to validate the calibration algorithms
against more realistic scenarios. As for the NCO, this improved flexibility is paid with a
greater requirement of resources (mainly the block RAMs).
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Taking into account the three operations (in order, gain, offset, and nonlinearity), the
sample at the output of the ADC can be written as:

Sout = LUT ((1 + gm) · Sin + om) . (3.22)

The effect of the quantization is modelled directly by designing the LUT with the desired
output width. This is achieved by using a number of addressing bits larger than the data
width of the LUT.

It is legitimate to ask at this point what is the need for the first two operations (gain and
offset) if there is a LUT available. We could, in principle, simply load a characteristic
already affected by an offset and a gain error into the LUT.

Though this solution obviously works, it makes impossible to separate the effects of the
three non-idealities without requiring a new initialization of the verification run. Further-
more, changing the value of the offset or gain coefficient would require writing the whole
LUT from the PC instead of a single value in a register.

3.4.1. Implementation of the ADC

The product used to model the gain effect is implemented using a DSP48E1 slice [75] that
is capable of a 25× 18 two’s complement multiplications in a single clock cycle. Both Sin

and 1 + gm are signed numbers in two’s complement representation.

Furthermore, the operation was implemented in such a way to saturate should the product
of the two numbers exceed the maximum (or minimum) value that can be represented
with an 18-bit two’s complement representation. This introduces a small timing penalty
but prevents distortion when amplitudes close to the maximum value are used.

The adder used to represent the offset is instead implemented in the FPGA using the CLBs
that come with a dedicated carry-propagation logic to speed up the algebraic operations
[78]. Both operands are signed numbers in two’s complement representation. As with
the product operation, the adder is also implemented to saturate should the result of
the sum fall outside the values that can be represented with an 18-bit two’s complement
representation.

Nevertheless, a scale factor k < 1 is used when generating the samples for LUT of the
NCO such that for reasonable values of offset and gain coefficients it is verified that
(1 + gm) · Sin + om is within the range of values that can be represented with an 18-bit
two’s complement representation.
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Regarding the nonlinearity effect, the LUT is implemented using BRAM36Ks as done with
the LUT of the NCO. Again, we have considered about a third of the total BRAM36Ks
available on the FPGA for this task, resulting in the same 5 BRAM36Ks per channel as
before.

In this case, the aspect ratio (i.e., the number of elements and the width of each element)
of the memory array is constrained by the target resolution of the ADC. Furthermore,
there is a trade-off between the resolution of the output sample (i.e., the resolution of the
ADC) and the resolution of the input signal, which limits the number of bits of the input
signal effectively used.

The resolution of the input signal is 18 bits (constrained by the NCO), and the first two
operations in the ADC (gain and offset) are also 18 bits wide.

Let’s now assume a target resolution for the ADC equal to 10 bits. Using all the 18 bits
to address the LUT would require 218 · 10 = 2.6 Mb ≈ 71 BRAM36Ks per channel. Such
an amount of memory is unfortunately not available on the FPGA. Taking into account
the 5 BRAM36Ks per channel budget calculated above, and the same 10 bits of resolution
for the output sample, we end up with a maximum (rounding down to the closest power
of 2) of 214 = 16384 size for the LUT.

Thus, we discard 4 LSBs from the input sample when addressing the LUT, and equation
3.21 becomes:

Snl = LUT (Sg[17 : 4]) , (3.23)

where [17 : 4] indicates that we take only bits form the 4th to the 17th of Sg (the LSB is
the 0th bit and the MSB is the 17th bit).

It is possible to change those settings at the time of the synthesis by changing the value of
some generics11. For example, it is possible to halve the number of channels and double
the addressing space of the LUT without variation in the used resources.

Like the NCO’s LUT, this LUT is implemented as an SDP RAM. The read port is
addressed using the sample Sg. The write port is connected to the AXI4-Lite-to-MM
interface allowing the LUT to be written from the PC as shown in figure 3.23.

The values of the offset and gain coefficients are stored within the control logic block and
are configurable from the PC. Each operation can also be bypassed independently using
multiplexers controlled by the control logic (not shown in figure 3.23).

11Generics: Generics are parameters of the entity that can be specified at the time of the synthesis.
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Figure 3.23: Block diagram of the RTL implementation of the ADC.

Both the input and output interfaces follow AMBA AXI4-Stream specifications [80] to
implement the flow-control12. However, both interfaces have a width equal to 18 bits,
which is different than the "multiple of 8 bits" width specified by the standard. This
choice is due to the possibility of bypassing the processing done by the module, resulting
in:

Sout = Sin . (3.24)

Thus, the output interface must be able to represent all the signals that the input interface
is able to represent.

This capability is provided in all the modules along the processing chain (except for
the NCO), both as a debugging tool and to provide a benchmark against which we can
compare the calibration algorithms.

The output sample is aligned to the MSB (i.e., the LSBs are filled with zeros). This
is useful because it extends the output sample, operation required by the Background
Calibration Algorithms.

Each ADC entity requires (for this specific configuration) 5 BRAM36Ks, a single DSP48E1,
106 registers, and 56 slices13 LUTs.

12flow-control: flow-control is a process between two communication nodes that regulates the data rate
through the interface.

13Slice: in Xilinx’s Series-7 FPGAs a slice is a hierarchical unit below the CLB [78]. each CLB is
composed of two slices that can be used independently. Each slice contains 4 LUTs and 8 registers.
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3.5. Background Calibration Algorithms

Differently from the two previous blocks, the BCAs are completely digital even in a real
digitally calibrated TI-ADC, thus there isn’t any need to find a way to model or approxi-
mate its working. In this section, we provide a brief description of the HW implementation
of the two algorithms discussed in the last section of chapter 2.

To simplify the implementation, the two algorithms (offset and gain) are implemented as
a series of two different entities rather than as a single monolithic one, as shown in figure
3.3.

Both blocks use an 18-bit wide modified AXI4-Stream as input and output interface,
implementing a complete flow control system using the AXI4-Stream Valid/Ready hand-
shake [80].

3.5.1. Offset Background Calibration Algorithm

The Offset BCA implements the offset calibration algorithm explained in chapter 2, whose
basic equations (2.36 and 2.38) are reported below for the sake of simplicity:

Sm,corrected[k] = Sm,non corrected[k]− γoffset · om[k] (3.25)

om[k] = om[k − 1] + Sm,corrected[k − 1]− Sreference[k − 1] , (3.26)

with γoffset being a negative power of 2 to transform the hardware-intensive division
operation into a simple bit-shifting one.

Equation 3.26 represents an accumulator, which is implemented with a 32-bit width,
whereas γoffset is fixed at the time of the synthesis.

The effects of the value of γoffset on the stability and convergence of the calibration
algorithm have been analyzed in chapter 2.

The two adders are implemented within the FPGA exploiting the dedicated carry-propagation
resources of the CLBs [78].

Figure 3.24 shows a high-level RTL representation of this entity.
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Figure 3.24: Block diagram of the RTL implementation of the offset BCA.

As for the ADC, it is possible to completely bypass the block, so that Sout = Sin.

3.5.2. Gain Background Calibration Algorithm

The Gain BCA implements the gain calibration algorithm shown in chapter 2. The
equations (2.39 and 2.40) describing its working principle are reported below for the sake
of simplicity:

Sm,corrected[k] = Sm,non corrected[k] · γgain · gm[k] (3.27)

gm[k] = gm[k − 1]− |Sm,corrected[k − 1]|+ |Sreference[k − 1]| , (3.28)

with γgain being a negative power of 2 for the same reason of γoffset. The accumulator is
still implemented with a 32-bit width and γgain is fixed at the time of the synthesis.
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Figure 3.25: Block diagram of the RTL implementation of the gain BCA.

The shift operation is moved after the multiplication (i.e., the DSP) as shown in figure
3.25 (in the offset BCA the shift is done before the sum). This is done to improve the
resolution of the system as the LSBs that would have been discarded now contribute to
the final result.

This however results in operands wider than the 25 bits allowed by the DSP48E1 [75] (to
be more precise the operands are respectively 32-bit and 18-bit wide). This issue is solved
by combining two DSPs to implement a wider multiplier. The multiplication can be split
into a sum of smaller operations opportunity shifted, which is:

P = A ·B = (AH + AL) · (BH +BL) = AH · AH + AH ·BL + AL ·BH +BL · AL ,

(3.29)

where the subscripts H and L indicate respectively the upper and lower bits of A and B.

In this case, the operand B is Sin, which is an 18-bit number, thus BH = 0 and only 2
DSP48E1s are needed for each gain BCA.

As for the offset BCA, this block can be bypassed entirely, so that Sout = Sin
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3.6. Auxiliary logic

Aside from the three entities analyzed above that compose each of the channels in the on-
FPGA model, there are also other entities that are needed to configure and communicate
with the system. In the following sub-sections, these entities are briefly analyzed.

3.6.1. AXI4-Lite to Memory Mapped Interface

This entity implements a bridge between the AXI4-Lite bus used in the FPGA (but
externally to the on-FPGA model) and a custom Memory Mapped bus internal to the
on-FPGA model. AXI4-Lite is a lightweight version of the popular AMBA AXI interface
[81]. The choice of this interface is due to the fact that is the de facto industry standard.

The AXI4 (Full spec or lite) is made of five different channels:

• Write Address (WA) channel

• Write Data (WD) channel

• Write Response (WR) channel

• Read Address (RA) channel

• Read Data (RD) channel

The first three channels (WA, WD, and WR) are part of the write interface, whereas the
last two (RA and RD) constitute the read interface. The two interfaces are independent
of each other and it is possible to read and write concurrently.

The write interface waits for a valid transfer of the address (WA) and data (WD) before
converting the received address to an internal one and starting the write operation on the
MM interface. The response (WR) is used to signal the outcome of the operation to the
master. The WD transaction14 can occur at the same clock cycle or at a later one with
respect to the WA transaction, but not before as specified in the AMBA AXI4 Protocol
Specification [81].

The read interface waits for a valid transfer of the address (RA) before converting it to
an internal address and starting the read operation on the MM interface. Once the read
operation is carried out, the resulting datum is provided on the data channel (RD).

The translation mechanism of the address is the same for both write and read transactions.
Figure 3.26 shows the translation scheme used in this project.

14transaction: a transaction is an interaction between two elements on the bus.
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Figure 3.26: Scheme of the address translation performed by the AXI4-Lite to MM inter-
face.

The bits extending outside the address space of the whole on-FPGA model (bits 28-31)
are simply ignored (actually transactions that fall outside the address space of a slave are
automatically discarded by the AXI interconnect). The remaining bits are used to select
the right bank (bits 27-20) and address (bits 17-2). Bit 1-0 are discarded because AXI4
is byte addressed, whereas the on-FPGA model is word-addressed internally.

Each memory space within the on-FPGA model exposed to the MM interface is selected
using a dedicated enable signal, whereas the address and data buses (separate write and
read busses) are shared by all the modules.

A map of the address space of the on-FPGA model is shown in figure 3.27. Sections
colored in gray fall within the address space of the on-FPGA model but are not mapped
to any module.

Control Logic - 64
0x00000000

Output Buffer - 64k

0x00200000
NCO LUT 0 - 8k

0x00100000

0x00300000
NCO LUT 1 - 8k

NCO LUT 7 - 8k
0x00A00000

0x00000100

0x00207FFC

0x003FFFFC

0x00A07FFC

ADC LUT 0 - 16k
0x00B00000

0x00B0FFFC

ADC LUT 1 - 16k
0x00C00000

0x00CFFFFC

ADC LUT 7 - 16k
0x01200000

0x01207FFC

0x0FFFFFFC

0x00307FFC

0x002FFFFC

0x001FFFFC

0x0011FFFC

0x00C0FFFC

0x000FFFFC

0x00BFFFFC

0x00AFFFFC

Figure 3.27: on-FPGA model address space.
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3.6.2. Control Logic

The control logic is a memory-mapped set of registers that can be accessed from the PC
to set the parameters of the verification run.

RESET
0x00000000

CHANNEL ENABLE

ADC BYPASS

0x00000010
BCA BYPASS

0x00000008

0x00000018

MODE

NCO START 0
0x00000020

0x0000001C

NCO STEP 0

ADC OFFSET 0
0x00000028

ADC GAIN 0

0x00000014

0x0000000C

0x00000004

0x0000002C

0x00000024

NCO START 1
0x00000030

NCO STEP 1

ADC OFFSET 1
0x00000038

ADC GAIN 1
0x0000003C

0x00000034

NCO START 7
0x00000090

NCO STEP 7

ADC OFFSET 7
0x00000098

ADC GAIN 7
0x0000009C

0x00000094

0x00000100

Figure 3.28: Control registers address map.

A map of the address space of the registers is shown in figure 3.28. Sections colored in
gray exist but are not connected to any entity in the on-FPGA model. Each register can
be accessed by the memory-mapped interface from the PC both to be read or written.

Note that not all the bits of all the registers are used. For instance, only the first bit of
the RESET register is used to reset the on-FPGA model. The CHANNEL ENABLE
register exploits a number of bits equal to the number of channels in the particular im-
plementation (in this case 8). Each bit enables the respective channel. This is useful, for
example, if we want to simulate a TI-ADC with a number of channels smaller than the
synthesized one without starting a new synthesis.

ADC BYPASS and BCA BYPASS contain, respectively, the bypass selection bit for
the ADC (gain bypass, offset bypass, LUT bypass) and for the BCA (gain calibration
bypass and offset calibration bypass). MODE is used to select the operating mode of
the output buffer.

The other registers store the configuration values for the NCO (NCO START and NCO
STEP) and for the ADC (ADC OFFSET and ADC GAIN) of each channel.
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3.6.3. Output Buffer

The output buffer stores the samples processed by the on-FPGA model before they are
read by the PC. It consists of a multiplexer (or reorderer) that orders the output of the
channels and a memory that stores them.

Like every other block along the processing chain, the blocks communicate using a slightly
modified version of the AXI4-Stream interface.

Reorderer

The reorderer is essentially an opportunely controlled multiplexer with dedicated control
logic. A block diagram of the implementation is shown in figure 3.29.

MUX

CONTROLCHANNEL
ENABLE

CH 0

CH 1

CH 7

OUTPUT
BUFFER

Figure 3.29: Block diagram of the RTL implementation of the reorderer.

In principle, at each clock cycle, each of the channels is able to provide a new sample. The
flow-control mechanism implemented in each entity blocks the channel when the master
(i.e., the output buffer) is not ready to receive the data (for instance, because it is full).

The control logic selects which of the different channels the multiplexer has to connect
to the output buffer. If all the channels are enabled the multiplexer iterates through the
channels one at a time. If one or more channels are disabled, the reorderer ignores them.

The control logic waits for a valid transaction (READY and VALID high at the same
rising edge) before switching to the next channel.
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MM-FIFO

The MM-FIFO15 is the effective memory of the output buffer. We decided to dedicate
about a third of the 135 BRAM36Ks available on the FPGA to the output buffer, resulting
in about 45 BRAM36Ks.

Actually, there is a more stringent constraint that limits the amount of BRAM36Ks we
can cascade. In fact, it is possible to cascade only BRAM36Ks within the same "column"
[77]. The Artix-7-A100T at disposal has a maximum of 40 BRAMs per column. This
leaves us with a maximum of (rounding down to the closest power of two) 216 = 65536

samples. This number of samples is satisfactory for the characterization of an ADC.

In fact, the FFT of an N-sample signal has a frequency resolution equal to:

∆f =
fS
N

, (3.30)

where, in our case, fS = fclk. If we consider a target clock frequency of fclk = 100 MHz,
equation 3.30 becomes:

∆fFFT =
fclk
N

=
100 MHz

216
≈ 1.5 kHz , (3.31)

whereas the Numerically Controlled Oscillator has a frequency resolution equal to:

∆fNCO =
fclk

LUT LENGTH
=

100 MHz

213
≈ 12.2 kHz , (3.32)

which is bigger than the resolution of the FFT. Thus, the number of samples is satisfactory
for our purposes.

The memory (and thus the on-FPGA model) can operate in two different modes:

• Standard mode (or FIFO mode);

• Continuous mode (or circular buffer mode).

When working in FIFO mode, the memory is filled with the samples coming from the
processing chain (i.e., the channels). Once the memory is full, the on-FPGA model is
stopped until the memory is emptied by reading it from the PC. At this point, the on-
FPGA model resumes, and the output buffer is filled with the next 216 samples.

15FIFO: a First-In-First-Out is a type of memory in which the samples are read in the same order they
are written
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When working in circular buffer mode, the memory is still filled with the samples from the
on-FPGA model, but now, once the memory is full, the on-FPGA model is not stopped.
The oldest sample is overwritten without stopping the process.

This is achieved by moving forward both the write and read pointers as shown in figure
3.30.

Write
pointer

Read
pointer

Figure 3.30: Example of the behaviors of the pointers in a circular buffer.

In a standard FIFO, two pointers, the read pointer (RP ) and write pointer (WP ), are
used to keep track of the data. When a datum is written, WP is increased by 1, and
when a datum is read, RP is increased by the same amount. By calculating the difference
OCC = WP − RP it is possible to know the occupancy (OCC) of the FIFO. If the
occupancy is 0 the FIFO is empty, and vice versa, when the occupancy is equal to the
size of the FIFO, the FIFO is full. In a classical FIFO, when OCC is equal to the size
of the FIFO further write operations are forbidden (i.e., the FIFO signals upstream that
it is not ready to accept new data). In a circular buffer, write operations continue being
accepted and RP is increased together with WP , overwriting the oldest datum.
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This last working mode is useful to fully exploit the throughput of the on-FPGA model.
In fact, as it will be explained in the next chapter, the throughput of the on-FPGA model
when working in FIFO mode is severely restricted by the speed of the communication
interface with the PC.
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4| System-level Architecture and

Results

This chapter is divided into two main sections.

The first section consists of a description of the system architecture and the communica-
tion interface. The system architecture includes all the third-party IPs implemented on
the FPGA, which is everything that was not described in chapter 3.

The second part of the chapter lists the results of this thesis. The results obtained with
the on-FPGA model are compared first with the MATLAB model of the TI-ADC and the
calibration algorithms, and then with VHDL simulations.

4.1. System Architecture

This section contains a description of the design implemented on the FPGA, focusing on
the third-party IPs that surround the on-FPGA model of the TI-ADC.

DUT_TOP_0

DUT_TOP_v1_0

AXI

AXI_ACLK

AXI_ARESETN

axi_interconnect_0

AXI Interconnect

S00_AXI

M00_AXI

S01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

S01_ACLK

S01_ARESETN

clk_wiz_0

Clocking Wizard

clk_in1 clk_out1

hdlverifier_axi_mast_0

MATLAB as AXI Master

axi4m
aclk

aresetn

jtag_axi_0

JTAG to AXI Master

M_AXI
aclk

aresetn

proc_sys_reset_0

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

reset

sys_clock

Figure 4.1: Screenshot of the Block Design view of the project from Vivado 2022.2.

Figure 4.1 shows a screenshot taken from the Block Design1 view of Xilinx Vivado 2022.2.
1Block Design: the Block Design view is the main interface to Vivado IP integrator tool.
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On the far right, we can see the on-FPGA model (DUT_TOP_0) described in the
previous chapter, which communicates with the rest of the system using an AXI4-Lite
interface.

On the left, we can see two service blocks, clk_wiz_0 and proc_sys_reset_0. The
former generates the clock signal [82], whereas the latter handles the reset signal [83]
generation and propagation to the various IPs. These two blocks are IPs provided by
Xilinx.

The two blocks in the middle are the communication interface, hdlverifier_axi_master_0,
which will be briefly described in the next sub-section, and a debug module, jtag_axi_0.
The latter allows the generation of AXI transactions to the FPGA directly from Vivado
and has been extensively used during the early phases of the design. We decided to leave
it in the final design due to its low requirement of resources, especially when compared
to the utility of having a debug tool available.

The central block axi_interconnect_0 represents the AXI interconnection. This IP
provided by Xilinx implements the AXI interconnection matrix [84].

The AXI interconnect IP automatically takes care (among the others) of:

• Data Width Conversion: connects AXI Memory Mapped interfaces with different
widths2, splitting or merging multiple transactions if needed.

• Protocol Converter: connects an AXI (AXI3, AXI4 or AXI4-Lite) interface to an-
other AXI interface using a different protocol (AXI3, AXI4 or AXI4-Lite). Burst3

transactions supported by the full AXI standards (AXI3 and AXI4) are split into
multiple AXI4-Lite transactions.

• Clock Domain Crossing: handles transactions across different clock domains. This
is useful, for instance, to run the interconnect at a higher clock frequency than the
rest of the FPGA logic to achieve higher bandwidth.

• Register Slice: Automatically places register slices to facilitate timing closure at the
cost of increased latency.

• Address Range Checking: Automatically check if the address of the transaction falls
within the assigned address space, if not the transaction is discarded.

2AXI widths: AMBA AXI standard [81] specifies 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide data
buses for AXI3/AXI4 interfaces, whereas AXI4-Lite is limited to 32- or 64-bit wide data buses. The
width of the address bus is instead limited to 32 or 64 bits for both standards.

3Burst: a burst transaction is a type of transaction in which a certain number of sequential addresses
are written/read without requiring a new address [81]. AXI3 supports burst lengths from 1 to 16, whereas
AXI4 supports lengths from 1 to 256. AXI4-Lite does not support burst transactions.
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The AXI interconnect IP automatically selects the best bus topology (crossbar, shared
crossbar, shared access, etc.) to achieve the best performance-resource trade-off [84].

Figure 4.2 shows a high-level diagram of the same design represented in figure 4.1 with
the clocking and reset resources not shown.

                           on-FPGA 
                           TI-ADC model

AXI4-LITE 
MM Interface 

Communication
Interface 

Xilinx JTAG
Debug IP

PC
(MATLAB) 

AXI
Interconnect 

FPGA

Figure 4.2: Block diagram of the whole test apparatus.

In 4.2 we can also see how the on-FPGA model interfaces with the PC through the
communication interface.

4.1.1. Communication Interface

The communication interface is implemented using the AXI manager IP provided by
MathWorks in the HDL Verifier Toolbox [85]. This IP allows accessing the FPGA from
MATLAB. Actually, there are three different IPs within the HDL Verifier Toolbox:

• MATLAB PCIe4 AXI Master

• MATLAB UDP5 AXI Master

• MATLAB JTAG6 AXI Master
4PCIe: the Peripheral Component Interconnect Express (PCIe) is a high-speed bus used to intercon-

nect computing devices. It is the de facto industry standard for high throughput communications.
5UDP: the User Datagram Protocol is one of the most common communication protocols. It imple-

ments the transport layer of the ISO/OSI interconnection model.
6JTAG: it is an industry-standard interface used to test, debug, and program ICs.
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Of the three, the PCIe version has not been considered due to the lack of a PCIe interface
in the Arty-7 development board [65].

The UDP AXI Master implements a UDP to AXI4 interface. MathWorks also provides an
auxiliary IP that implements the UDP and MAC7 functionalities [86] connecting directly
with the PHY8 using a GMII/MII9 interface (depending on the PHY available in the
development board). The Ethernet PHY included in the Arty-7 development board (a
DP83848J from Texas Instruments as shown in figure 4.3) supports only 10/100 Mb/s.
The PHY communicates with the PC through an RJ-45 connector.

Figure 4.3: Arty A7 Ethernet schematic [65].

Once implemented, the UDP Master can be controlled from MATLAB using specific
functions within the HDL Verifier package. From multiple tests, the actual net communi-
cation speed of the interface is about 5 Mb/s. Such a communication speed is sufficient to
demonstrate a proof of concept, but severely constrains the throughput of the on-FPGA
model.

7MAC: the Medium Access Control is a layer of the ISO/OSI that is responsible of the interaction
with the transmission medium.

8PHY: a PHY (from PHYsical) is a device that implements the physical layer of the ISO/OSI inter-
connection model.

9GMII/MII: the Media Independent Interface and its Gigabit version are interfaces used to connect
the PHY to the MAC module.
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Furthermore, the UDP AXI master requires a moderate amount of BRAM36Ks (about
10 of them) to implement the TX/RX buffers in the MAC module, further reducing the
amount of memory available for the on-FPGA model.

Likewise, the JTAX AXI Master implements a JTAG to AXI4 Interface. Differently from
the UDP AXI Master, the JTAG one is standalone (it does not require any other module).

The JTAG interface is connected on dedicated configuration pins of the FPGA as shown
in figure 4.4. The JTAG is interfaced with the PC through an FTDI10 module that acts
as a USB controller.

Figure 4.4: Arty A7 configuration schematic [65].

Like the UDP Master, the JTAG Master can be controlled from MATLAB using specific
functions.

The actual net communication speed of the JTAG interface depends on the frequency of
the JTAG itself. At the maximum possible frequency supported by the FPGA (66 MHz)
it is about 4 Mb/s.

The communication speed of the JTAG is slightly lower than the one achieved by the
UDP interface. Nevertheless, the amount of BRAM36Ks required by the former is much
smaller than the one required by the latter (a single BRAM36K versus 10). For this
reason, we decided to use the JTAG interface rather than the UDP one.

10FTDI: a company that produces USB ICs. It is usual to refer to the interface ICs themselves as
FTDI
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There is only one minor shortcoming in the use of the JTAG interface. The JTAG interface
is also used to program the FPGA, thus it is not possible to connect the FPGA to Vivado
and to MATLAB at once. However, this is not a real issue since the FPGA will never be
connected to Vivado and MATLAB at the same time.

At this point, it is worth understanding and quantifying the type of constraint the speed
of the communication interface poses on the on-FPGA model.

Taking into account the effect of the reorderer, at each clock cycle, the on-FPGA model
is able to provide a new sample. Let’s assume we are using a target clock frequency equal
to fclk = 100 MHz and 18-bit samples. The amount of data (bits) generated per second
is equal to:

fclk · 18 bit = 1.8 Gb/s , (4.1)

which is about 500 times the throughput of the JTAG and UDP interfaces.

Furthermore, the AXI Manager reads/writes 32-bit words, thus the 18-bit samples are
extended to 32-bit words before being transmitted, resulting in an actual amount of data
generated per second of 3.2 Gb/s.

Proceeding backward, i.e., starting from the bandwidth of the JTAG interface, and taking
everything into account, the number of samples that can be transmitted per unit of time
results:

4 Mb/s

32 bit
≈ 125.000 Samples/s , (4.2)

which is about a sample transmitted every 800 samples processed.

It is possible to further parallelize the on-FPGA model. For example, by removing the
reorderer and using a dedicated output buffer for each channel (as shown in figure 4.5),
we can improve the throughput of the on-FPGA model from 1 sample per clock cycle to
M samples per clock cycle, reaching in this case of M = 8 a transmitted-to-processed
ratio of 1 : 6400.
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CH 0

CH 1

CH 7 OUTPUT
BUFFER 

AXI4-to-MM
Interface 

Control Registers

OUTPUT
BUFFER 

OUTPUT
BUFFER 

Figure 4.5: High-level block diagram of a hypothetical on-FPGA model with dedicated
output buffers for each channel.

Note that the architecture proposed in figure 4.5 has not been implemented due to the
aforementioned limitations. The design is already severely constrained in its capabilities
by the lack of a high-speed interface. Implementing an even faster version of the on-FPGA
model makes little sense. Furthermore, in this hypothetical 8-way on-FPGA model, there
is no reorderer, which means we have to reorder the samples on the PC side (for instance,
using MATLAB reshape() function).

Resorting to even wider implementations further exacerbates the issue.

It is clear that the communication interface required to fully exploit such a verification sys-
tem needs to be orders of magnitude faster than the JTAG interface used to demonstrate
the concept.

It is also quite evident the need for an output buffer to store the processed samples waiting
to be transmitted.
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4.1.2. Synthesis and Resource Utilization

The final specifications for the synthesized design are:

• Number of channels (M): 8

• NCO LUT: 213 = 8192× 18 bit samples

• ADC LUT: 214 = 16384× 10 bit samples

• Output buffer: 216 = 65536× 18 bit samples

Table 4.1 reports the amount of resources exploited for the implementation of the design
with the parameters listed above.

Used Available %

Slice LUT 5.741 63.400 9,06
Slice Register 8.884 126.800 7,01
BRAM36K 115.5 135 85,56
DSP48E1 24 240 10,00

Table 4.1: Resources utilization for the implemented design.

Please note that it is possible to split a single BRAM36K into two independent BRAM18Ks
with little reduction of their capabilities [77]. This explains the partial utilization of a
BRAM36K in table 4.1.

As previously stated, the design is heavily reliant on the amount of BRAM36Ks available
on the FPGA. During the preliminary design phase, the use of the external 256-MB RAM
available on the board has been considered (as mentioned in chapter 3). In the end, it
was decided not to use it because it would have been useful only as an output buffer. In
fact, the time (meant as the number of clock cycles) needed to access external memory
makes impossible its use to implement the LUTs. Since the output buffer already has a
satisfactory size it has been decided not to use the external RAM to simplify the design.

The RTL synthesis11 and implementation12 has been carried out using "Vivado synthesis
Default" and "Vivado Implementation Default" strategies in Vivado 2022.2.2 targeting
an Artix-7 XC7A100TCSG324-1 FPGA.

11synthesis: a process that converts the high-level hardware described using an HDL into a technology-
independent gate-list

12Implementation: a process that maps the technology-independent gate-list resulting from the syn-
thesis into the actual hardware available.
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The clock frequency targeted for this design is fclk = 100 MHz, which means the on-
FPGA model is able to process samples at a 1/20 of the speed of the real 10-bit 8-channel
2-GS/s TI-ADC we have used as reference.

Figure 4.6: Screenshot of the Implementation view of the project from Vivado 2022.2.

Figure 4.6 shows the actual implementation of the design into the FPGA. It is possible to
observe the interconnects (shown in green) that branch out from the logic-heavy region
in the center (highlighted in cyan) to reach the BRAM resources spread over the device
(the vertical columns on the side). Each of the eight rectangular sections shown in 4.6
represents a different Super Logic Region13 (SLR).

13SLR: a Super Logic Region is a hierarchical unit of the FPGA that shares the same clocking resources.
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4.2. Results

In this section we show the results of different simulations run on the on-FPGA model.
All the graphs refer to samples processed by the on-FPGA model except where specifically
indicated. The values of the offset, gain, and skew coefficients are kept constant between
the different runs except when explicitly specified.

First of all, we need to verify if the on-FPGA model developed in chapter 3 is faithful
to the MATLAB model. Figure 4.7 shows the spectra of the on-FPGA model (left) and
MATLAB model (right) when considering only offset and gain non-idealities.
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Figure 4.7: Output spectra of the on-FPGA model (left) and MATLAB model (right).
The input is a sinewave at frequency fin = 27 MHz. Only offset and gain non-idealities
are considered.

Both the MATLAB simulation and the on-FPGA emulation use the offset and gain coef-
ficients listed in tables 2.2 (for the offset) and 2.3 (for the gain).

It is possible to notice how the two spectra are virtually identical, and there is only a
0.01 dB difference between the SNDR (SINAD) of the MATLAB simulation and the one
of the on-FPGA emulation.

It is also possible to compare the spectrum from the on-FPGA model (the left plot in
figure 4.7) with the one resulting from the MATLAB simulations (shown in figures 2.9
and 2.10 for offset and gain, respectively) finding the same spurious tones.
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Figure 4.8 shows the output spectrum of the on-FPGA model affected by offset and gain
mismatches obtained considering the first interval of 216 samples (left) and the 128th

interval of 216 samples (right).
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Figure 4.8: FFT of 216 samples of the on-FPGA model, considering the first 216 samples
(left) and the 128th 216 samples (right). The input is a sinewave at frequency fin =

27 MHz. Only offset and gain non-idealities are considered.

It is possible to notice how the spurious tones are still present on the left, indicating that
the BCAs have not yet reached their steady state, whereas on the right the spurious tones
are completely removed. The BCAs are able to recover about 31 dB of SNDR (SINAD),
equivalent to about 5.2 bits.

Figures 4.9, 4.10 and 4.11 show the evolution of the output spectrum of the on-FPGA
model with BCAs enabled. The nine plots represent the output spectrum of the on-
FPGA model of the TI-ADC taken at different intervals. Each interval is composed of
216 samples, and the intervals are sequential. In other words, the output samples are
windowed every 216 samples, and the FFT is calculated.

The gain calibration algorithm converges faster than the offset one as shown by the lack
of harmonics at fS/M ± fin in the 12th interval (right plot in figure 4.10). In the same
plot, we can still observe the harmonics at fS/M due to the offset mismatches, which are
still present also in the 16th interval (central plot in figure 4.11) before disappearing in
then 18th interval (right plot in figure 4.11).



104 4| System-level Architecture and Results

0 0.5 1

Frequency (GHz)

0

20

40

60

80

100

120

P
o

w
e
r 

(d
B

)

2 - SINAD:  32.75 dB

F

0 0.5 1

Frequency (GHz)

0

20

40

60

80

100

120

P
o

w
e
r 

(d
B

)

4 - SINAD:  38.84 dB

F

0 0.5 1

Frequency (GHz)

0

20

40

60

80

100

120

P
o

w
e
r 

(d
B

)

6 - SINAD:  45.59 dB

F

Figure 4.9: FFT of 216 samples of the on-FPGA model. The input is a sinewave at
frequency fin = 27 MHz. Only offset and gain non-idealities are considered. 2nd, 4thd,
and 6th intervals of 216 samples (from left to right) are considered.
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Figure 4.10: FFT of 216 samples of the on-FPGA model. The input is a sinewave at
frequency fin = 27 MHz. Only offset and gain non-idealities are considered. 8th, 10th,
and 12th intervals of 216 samples (from left to right) are considered.
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Figure 4.11: FFT of 216 samples of the on-FPGA model. The input is a sinewave at
frequency fin = 27 MHz. Only offset and gain non-idealities are considered. 14th, 16th,
and 18th intervals of 216 samples (from left to right) are considered.

Figure 4.12 shows the evolution of the SNDR of the TI-ADC model affected only by offset
and gain mismatches. The blue curve refers to the ADC with BCAs enabled.
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Figure 4.12: SNDR of the TI-ADC measured every 216 samples for a total of 223 samples.
Only offset and gain non-idealities are considered.
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In figure 4.12 it is possible to notice how the on-FPGA model (in blue) closely follows
the evolution of MATLAB simulation (in orange, dashed). The SNDR of both models
also converges to the ideal value (in yellow, dotted), which for a 10-bit ADC (taking into
account the reduced amplitude of the input signal) results equal to:

SNDR = 10 · 6.02 dB + 1.76 dB + 20 · log10(0.9) ≈ 61.05 dB , (4.3)

where 0.9 represents the scaling factor k introduced in chapter 3 to guarantee that the
processing chain does not saturate.

For the sake of completeness, figure 4.13 shows the same output spectra shown in figure
4.8 but taking into account also timing mismatches.
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Figure 4.13: FFT of 216 samples of the on-FPGA model, considering the first 216 samples
(left) and the 128th 216 samples (right). The input is a sinewave at frequency fin =

27 MHz. Offset, gain, and time skew non-idealities are considered.

We can notice how the harmonics at fS/M due to the offset mismatches are attenuated
by the offset BCA, but we still have some harmonics (albeit with a reduced amplitude)
at fS/M ± fin. The latters are due to both gain mismatch and time skew. The spurious
tones due to the gain mismatch are filtered out by the gain BCA, whereas the ones due
to the time skew are left unchanged. The timing error is not corrected limiting the SNDR
of the converter as shown in figure 4.14.
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Figure 4.14: SNDR of the TI-ADC measured every 216 samples for a total of 223 samples.
Offset, gain and time-skew non-idealities are considered.

Figure 4.15 shows the same output spectra shown in figure 4.13 but takes into account
nonlinearity instead of time skew. The nonlinearity is modelled as shown in chapter 2.
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Figure 4.15: FFT of 216 samples of the on-FPGA model, considering the first 216 samples
(left) and the 128th 216 samples (right). The input is a sinewave at frequency fin =

27 MHz. Offset, gain, and nonlinearity non-idealities are considered.
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As for the time skew, the BCAs cannot correct the nonlinearity of the cores, and the
spurious harmonics are visible even in the 128th interval, whereas the spurious tones due
to the offset and gain mismatches are completely removed.

Figure 4.16 shows the evolution of the SNDR of the 8-channel TI-ADC model affected by
offset and gain mismatches and nonlinearity of the cores.
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Figure 4.16: SNDR of the TI-ADC measured every 216 samples for a total of 223 samples.
Offset, gain and nonlinearity non-idealities are considered.

As for the case of time skew, the SNDR of the converter does not reach the ideal value of
61.05 dB due to the inability of the calibration algorithms to correct non-idealities other
than gain and offset mismatch.

All the simulations presented in this section were performed using the on-FPGA model in
standard mode (or FIFO mode, as explained in chapter 3), i.e., the FPGA processed 216

samples (the size of the output buffer), and then waited for a readout from the PC. We
have decided to use the on-FPGA model in this mode to better characterize the reliability
of the on-FPGA model with respect to the MATLAB one. In fact, plots like the ones
reported in figures 4.12, 4.14, and 4.16 are achievable only using the standard operation
mode. A similar constraint exists for the results shown in figures 4.9, 4.10, and 4.11.

Nevertheless, the more interesting operating mode is the continuous-run one, which allows
emulating the calibration algorithms on real hardware for large time intervals (hours, days)
at close (1/20) to real speeds.
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This artifice is needed due to the limited speed of the communication interface. In fact,
the speed of the communication interface limits the number of samples per second that
can be sent to the PC. Thus, it is either possible to slow down the on-FPGA model to
keep up with the interface (i.e., using it in standard mode), or discard most of the samples
using the on-FPGA model at its maximum speed (i.e., using it in continuous run mode).

4.2.1. Comparison with MATLAB and VHDL Models

In this section, the results obtained with the on-FPGA model are compared with the ones
obtained from the MATLAB model and from the simulations of the VHDL code.

Comparison with MATLAB model

The MATLAB model is meant as a reference to check the on-FPGA model. In chapter
2 we have presented extensive simulations performed with the MATLAB model. Here we
compare a few of the results for the sake of clarity.

From figure 4.7 we can already appreciate the fidelity of the on-FPGA model to the
MATLAB one. Figures 4.12 (offset and gain), 4.14 (offset, gain and time skew), and 4.16
(offset, gain and core nonlinearity) further confirm its reliability even when the calibration
algorithms are running.

The run time of the MATLAB simulation14 for a 223 samples is about 1 s. The on-FPGA
model is able to process the same number of samples (assuming the lack of any external
bottleneck) in about:

tsim =
223

fclk
≈ 84 ms , (4.4)

providing a factor 12 speed-up.

Aside from the shorter simulation time, which is not exploitable in this case due to
the lack of a high-speed interface, it’s worth noting that the on-FPGA model also has
the advantage of executing the algorithms on real hardware, thus, all the effects related
to the hardware itself (saturation of the accumulators, finite precision, accumulation of
truncation errors, long-term effects, etc.) are better simulated, without requiring ad hoc
models. Furthermore, it is possible to leave the on-FPGA model running for hours/days,
simulating time intervals that are not practical to simulate with MATLAB.

14average run time of 64 simulations on an 8 cores / 16 threads CPU with 64 GB of RAM, Windows
11, MATLAB R2021b.



110 4| System-level Architecture and Results

Comparison with VHDL model

The VHDL model has by definition the same behavior as the implemented design and has
been only used for verification purposes. This comparison is better suited for measuring
the performances of the on-FPGA model with respect to a VHDL simulation performed
on a computer, i.e., compare the time required to simulate a certain number of samples
using the VHDL simulations and the on-FPGA model.

To process the same 223 samples elaborated by the on-FPGA model in 84 ms, a VHDL
simulator15 requires nearly 100 seconds. The on-FPGA model implementation provides a
factor 1185 speed-up. More practically, this means that if we are interested in verifying
the behavior of the calibration algorithms for an hour (i.e., one hour for the 2-GS/s TI-
ADC), we would need about 23700 hours (just over 33 months) using ModelSim, but only
20 hours using the on-FPGA emulation.

4.2.2. Achieved Performances

The average access time required to access the buffer (i.e., to read 216 samples) is about
1.3 s, resulting in a simulation speed equal to:

216

1.3 s
≈ 50.000 Samples/s . (4.5)

This performance is reached when using the on-FPGA model in standard mode, which is
how the simulations in the previous section have been performed.

The result in equation 4.2 is less than half the one in 4.5. This can be explained by the
overhead of the functions provided by MathWorks, i.e., the MATLAB functions used to
communicate with the FPGA do not saturate the JTAG interface. This result is quite
modest and it is easily overcome even by the VHDL simulations.

However, we have to remember that we are heavily bottle-necked by the communication
interface. Should this limitation be removed, the simulation speed will be equal to:

fclk · 1 Sample/clk ≈ 100 MSamples/s , (4.6)

which is a factor 2000 of improvement. This performance is actually reached in this work
when using the on-FPGA model in continuous run mode (as explained in chapter 3).

15average run time of 10 simulations on an 8 cores / 16 threads CPU with 64 GB of RAM, Windows
11, ModelSim Intel FPGA edition 2020.1
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Furthermore, as stated before, it is possible to redesign the reorderer and the output
buffer to allow all channels to work in parallel instead than interleaved, as shown in figure
4.5. This would result in another factor 8 of improvement, resulting in a simulation speed
of:

fclk · 8 Sample/clk ≈ 800 MSamples/s . (4.7)

Such an improved version has not been implemented because even the actual on-FPGA
model is constrained by the communication interface.

To compare the various simulations methods, we defined a Figure of Merit (FoM) as the
number of samples divided by the time needed to process them:

FoM =
Nsamples

tsim
. (4.8)

It would be useful to compare the simulation speed of the different methods directly to
the processing speed of the real converter (2-GS/s). In order to ease the comparison, we
define a normalized Figure of Merit (FoMn) as:

FoMn =
FoMmethod

FoMTI−ADC

. (4.9)

The higher FoMn the faster the method. A FoMn equal to 1 implies that the simula-
tion/verification method is as fast as the real TI-ADC. A FoMn higher than 1 means the
simulation/verification is faster than the original TI-ADC.

Note that it is possible to remove the dependance on Nsamples in equation 4.9, resulting
in:

FoMn =
Tmethod

2 GS/s
, (4.10)

where Tmethod represents the throughput (in samples per second) of the method under
consideration.

Table 4.2 highlights the performances shown by the on-FPGA model compared to other
simulation methods, and with the real ADC this work aims to model.
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Method Simulation time [tsim] FoMn

on-FPGA model (standard mode) 169.1 s 0.000025
on-FPGA model (continuous run mode) 0.084 s 0.05
on-FPGA model (hypothetical 8 way) 0.011 s 0.4

MATLAB model 1.004 s 0.0042
behavioral VHDL 99.4 s 0.000042

Real ADC 0.0042 s 1

Table 4.2: Summary of the simulation times of the verification methodologies considered
for 223 samples, and corresponding normalized FoM (FoMn).

Note that the hypothetical 8-way on-FPGA model is the improved version described
in figure 4.5. This version has not been implemented in this work due to the external
limitations to the throughput of the on-FPGA model previously stated.

The achieved performances (in terms of throughput and improvement over a MATLAB or
VHDL simulation) are comparable with the ones reached by similar works [21–23] (albeit
not targeting a TI-ADC).

4.2.3. Advantages and Limitations of the Proposed Method

This sub-section presents the advantages and the limitations of the proposed method,
aside from the high speed of the emulation enabled by the on-FPGA implementation,
which has been highlighted enough in the previous chapters and sections.

Advantages

The other main advantages of the proposed verification methodology have already been
presented in chapter 1, and are reported here for the sake of completeness:

• Verification of long-term behaviors: the close to real-time (1/20 of the speed
of the 2-GS/s TI-ADC) emulation speed enables the investigation of long-term
behaviors that might require hours/days before manifesting.

• Prototyping on real hardware: the use of real hardware allows verifying the
effects of hardware-related characteristics, without requiring ad hoc models.

• Simulation time independent on the design size: if the FPGA has enough
resources to implement the design, then the simulation speed is independent of the
size of the verification target.
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Limitations

Aside from the limitation on the performances achieved by this proof of concept due to the
limited speed of the communication interface, there is another, perhaps more important,
limitation.

In a computer simulation, like one performed in MATLAB using the model developed in
chapter 2, or using a HDL simulator, or even a real schematic-level simulation performed
in an EDA tool like Cadence Virtuoso, all the variables are exposed to the user (i.e., it is
possible to see the evolution of all the signals in the design). This allows a greater insight
into the inner workings of the Device Under Test16 (DUT), since it is possible to select
any arbitrary signal and track its evolution.

Such a capability is difficult to be obtained in a hardware system like the on-FPGA model
presented in this thesis. Only predetermined signals (in this work the output samples)
are saved. Others like, for instance, the accumulators storing the correction coefficients
of the BCAs are not saved. It is always possible to reconfigure the on-FPGA model to
expose different signals, but this requires a new synthesis and implementation.

Another possibility consists in instantiating an Integrated Logical Analyzer17 (ILA) to
monitor the internal signals [87]. This solution has a few major shortcomings. First of
all, the exposed signals are determined at the time of the synthesis. This alone makes the
solution much less versatile. Furthermore, the ILA has a large requirement of resources
(mainly BRAM36Ks due to the buffer needed to store the sampled signals), which are
better used to implement the on-FPGA model. In fact, it is better to use the available
BRAM36Ks to increase the size of the LUTs (either the NCO or the ADC one), which
have an effect on the reliability and accuracy of the on-FPGA model. Last but not least,
the ILA is able to sample only small intervals (in the order of 210-212 usually). Though
this amount of samples is enough for debugging purposes, it is obviously not sufficient
to verify a design. All those limitations make the ILA not suitable for the scope of this
thesis.

4.3. Future Developments

This section briefly discusses some aspects mentioned in this thesis that deserve further
investigation.

16DUT: a Device Under Test is a technical term referring to a design, product, or system undergoing
a test.

17ILA: an Integrated Logic Analyzer is an IP provided by Xilinx that can be used to observe the internal
signals of a design
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Fully-Digital Time-Skew Calibration

As mentioned in chapter 2, there is a trend to calibrate offset and gain mismatches in the
digital domain, but there is an opposite trend for the calibration of the time skew error,
which is usually avoided using a first-rank S&H architecture [61–64] or detected in the
digital domain and corrected in the analog one [88]. Only few works suggest fully-digital
approaches to time-skew error calibration [57–59].

It would be interesting to develop a fully-digital BCA for time skew errors and use the
proposed verification method to validate it.

Mixed-signal time-skew calibration algorithms are difficult, if not impossible to verify us-
ing the proposed verification method due to the clocked nature of the FPGA environment.
In fact, the vast majority of mixed-signal calibration algorithms for time skew make use of
Digital-to-Time Converters (DTCs), something that is not approximable in a satisfactory
way within a clocked system.

Machine-Learning Assisted Error Calibration

Another, perhaps more interesting, research opportunity related to calibration algorithms
is the use of Machine Learning (ML) (also referred to as Neural Network (NN)) to detect
and correct the non-idealities [89, 90]. ML is perfectly suited to tasks like pattern recog-
nition, which makes them an ideal candidate to detect and reduce spurious harmonics.

In this case, the on-FPGA model could be used both to verify the ML algorithms and,
perhaps more interestingly, to train them. The training process consists in evaluating the
performances of the ML algorithm, estimating the error from the desired behavior, and
updating the coefficients of the ML algorithms. This process is iterated hundreds of times
until the desired performances are met.

FPGAs represent an ideal environment to train the NN due to their reconfigurability [91].

High-speed Interface

To fully exploit the power of this verification technique, a high-speed communication
interface is required.

Some estimations on the required bandwidth have been provided in section 4.1 and sub-
section 4.2.2. The required multi-Gb/s throughput leaves few possible interfaces among
the suitable ones. More precisely, the interfaces better suited to communicate with the
on-FPGA model are PCIe, 10G Ethernet, and USB 3.x.
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Unfortunately, the development board is not equipped with any of the aforementioned
interfaces. Furthermore, the task of implementing the whole communication stack (for
instance, the MAC/TCP/IP stack for the Ethernet) is comparable in complexity to the
entire work done in this thesis.

Nevertheless, it would be interesting to expand the proof of concept presented in this
thesis to a verification instrument capable of reducing simulation and verification times
by orders of magnitude.
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Conclusions

This thesis focused on the verification of the digital calibration algorithms of a Time-
Interleaved (TI) Analog-to-Digital Converter (ADC) by implementing them on a Field
Programmable Gate Array (FPGA). We showed how the use of FPGA prototyping can
shorten the verification times, enabling a nearly real-time simulation, while also providing
new insight into long-term behavior of the calibration algorithms (like, for instance, the
saturation of the accumulators or integration of errors caused by the finite precision of
the digital implementation). We also listed a few scenarios in which standard VHDL or
MATLAB simulations are not able to satisfy the verification requirements. In fact, VHDL
simulations allow to reasonably investigate only short time intervals (due to the extremely
long times required to simulate larger time intervals), whereas MATLAB is not suited to
realistically describe a complex digital system.

To explain the concept of verification we introduced its raison d’être, before presenting
its history, its evolution, and the current state-of-the-art in the semiconductor industries.
We then introduced the advantages of the proposed verification method, which is to use
an FPGA to verify the digital logic of TI-ADC. To achieve this goal we had to implement
a digital approximation of the TI-ADC on an FPGA.

Before going into the details of the actual implementation on-FPGA, we introduced
the concept of time-interleaved converter, discussing its advantages, and disadvantages.
Among the main advantages, we find: 1) the reduced performances required for the sin-
gle sub-converters. 2) the possibility (which is also a consequence of the first one) of
implementing high-speed converters in standard CMOS processes. This second advan-
tage enables tight integration of the converter with the digital functions, which nowadays
constitute the vast majority of the systems. Then we focused on the disadvantage of
time-interleaving, which is the degradation of the performances of the converter due to
the presence of mismatches between the different sub-converters. We analyzed the differ-
ent sources of error (namely gain, offset, time-skew, and nonlinearity) one at the time,
providing an analytical expression for their effects on the output spectrum of the TI-ADC
when possible. The analytical models were compared with an ad hoc MATLAB model,
showing their correct behaviour.
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Once investigated these limitations to the performances of the TI-ADC, we focused on the
calibration algorithms of two of them, namely, the offset and gain mismatches. We listed
a few noteworthy results found in literature before describing the background calibration
algorithms selected for this thesis. We explained their behaviors, and showed the results
of the MATLAB simulations using the same ad hoc model developed for verifying the
correct behaviour of the analysis of the non-idealities.

At this point, we began analyzing the implementation on the FPGA of a digital approxi-
mation of the aforementioned TI-ADC and its calibration algorithms. After a description
of the general architecture of the on-FPGA model, we analyzed separately the imple-
mentation of the different blocks that compose the model of the TI-ADC, starting with
the Numerically Controlled Oscillator (NCO) used to model the sample & hold circuit.
Then, we showed the implementation of the ADC itself, including in the model the afore-
mentioned non-idealities, and the calibration algorithms. Last, we briefly discuss the
implementations of all the auxiliary blocks required to interface and communicate with
the on-FPGA model of the TI-ADC, i.e., the AXI4-to-MM interface, the reorderer, and
the output buffer.

The proposed design was then synthesized and implemented on a Xilinx Artix-100T
FPGA. The results obtained with the model implemented on the FPGA have been then
compared with the VHDL and MATLAB simulations, showing a comparable accuracy but
a simulation time improvement of a factor 1185 with respect to VHDL simulations. The
results and performances achieved by this verification method are shown and analyzed
before listing the advantages of this verification technique.

This master thesis has demonstrated how verification methodologies originally developed
for fully-digital ICs can be repurposed for the verification of the digital sections of a
mixed-signal circuit, in this case, a 10-bit 8-channel 2GS/s Time-Interleaved Analog-to-
Digital Converter. The main advantages of the proposed digital verification techniques
are reported below for the sake of completeness:

• Close to real-time simulation speed: the on-FPGA model is able to simulate
the digital calibration algorithms at 1/20 of the speed of the real TI-ADC this thesis
targets with the same level of detail.

• Analysis of long-term behaviors: the close to real-time simulation speed allows
investigating long-term behaviors of the calibration algorithms. Simulating the on-
FPGA model for hours/days results in a similar amount of simulation times, whereas
a computer simulation requires hours to simulate a few seconds.
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• Prototyping on real hardware: the use of real hardware to prototype the design
allows verifying the effects of hardware-related characteristics (like, for instance,
errors due to the finite precision of the digital implementation), without requiring
complex ad hoc models.

• Simulation time independent on the design size: the use of a parallel device
like an FPGA makes the simulation time independent on the size of the design. If
the FPGA has enough resources to implement the design, then it will run at the
same speed of a smaller one.

Of the advantages listed above, the first one (which is the simulation speed) was con-
strained by the low throughput of the available communication interface, and limited to
about 50000 samples per second when all the samples are streamed to the PC. Should
a communication interface featuring a higher speed, like PCIe, be available, a greater
improvement could be attained, reaching a simulation time improvement factor of about
10000 with respect to VHDL simulations.
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