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Abstract

The advent of the Internet and information systems in recent decades has led to a dra-
matic increase in the number of data streams in the digital ecosystem. Therefore, machine
learning applied to data streams is a significant stake but also a challenge due to the re-
source constraints involved. Indeed, applying machine learning directly to data streams
has significant advantages in terms of flexibility and speed. It offers a range of solutions
to sudden or gradual changes in the statistics of these streams, something that standard
machine learning cannot do. Massive Online Analysis (MOA) is an open-source software
library developed in Java, allowing these streaming machine learning algorithms to be
implemented and tested. Paradoxically, embedded systems, which are by nature limited
in resources, are more and more used, especially with the advent of connected objects.
The Raspberry Pi is an embedded computer, or microcomputer, that offers features com-
parable to those of a basic desktop computer, in an extremely compact format. It is in
this context that this thesis is written, which proposes to evaluate the suitability of the
Raspberry Pi to run streaming machine learning algorithms on data streams, using MOA.
First, the feasibility of the project was assessed with the implementation of Raspberry Pi
emulators. Then, the performance of a real Raspberry Pi was evaluated, with synthet-
ically generated data and real data. Finally, a quantized, and therefore lighter, version
of MOA was produced and tested on the Raspberry Pi to evaluate the gain in execution
performance in balance with the loss of precision. Thus, there are two main focuses in this
thesis, the first being the evaluation of the performance of streaming machine learning
algorithms, using MOA, on the Raspberry Pi, and the second being the development of
an original solution that improves these results, through quantization.

Keywords: Streaming Machine Learning, Raspberry Pi, Quantization, MOA





Sommario

L’avvento d’Internet e dei sistemi informatici negli ultimi decenni hanno portato ad un au-
mento esponenziale del numero di flussi di dati nell’ecosistema digitale. L’apprendimento
automatico applicato ai flussi di dati costituisce quindi un’importante opportunità, ma
anche una sfida a causa dei vincoli di risorse. Infatti, applicare l’apprendimento auto-
matico direttamente ai flussi di dati presenta importanti vantaggi in termini di flessibilità
e velocità, e offre una serie di soluzioni a cambiamenti improvvisi o graduali nelle statis-
tiche di questi flussi, cosa che l’apprendimento automatico standard non è in grado di fare.
Massive Online Analysis (MOA) è una libreria software open source, sviluppata in Java,
che permette di implementare e testare questi algoritmi di apprendimento automatico
in streaming. Paradossalmente, i sistemi embedded, che per loro natura hanno risorse
limitate, sono sempre più utilizzati, soprattutto con l’avvento degli oggetti connessi. Il
Raspberry Pi è un computer embedded, o microcomputer, che offre funzionalità parago-
nabili a quelle di un computer desktop di base, in un formato estremamente compatto. È
in questo contesto che si inserisce questa tesi, valutando l’idoneità del Raspberry Pi per
eseguire algoritmi di apprendimento automatico in streaming su flussi di dati, utilizzando
MOA. In primo luogo, è stata valutata la fattibilità del progetto con l’implementazione
di un emulatore Raspberry Pi. Poi, sono state valutate le prestazioni di un Raspberry Pi
reale con dati generati sinteticamente e con dati reali. Infine, una versione quantizzata,
e quindi più leggera, di MOA è stata prodotta e testata su Raspberry Pi per valutare il
guadagno in termini di prestazioni di esecuzione in rapporto alla perdita di precisione.
In questa tesi, quindi, ci sono due obiettivi principali. Il primo è la valutazione delle
prestazioni degli algoritmi di apprendimento automatico in streaming utilizzando MOA
su Raspberry Pi, mentre il secondo è lo sviluppo di una soluzione innovativa che migliori
questi risultati.

Parole chiave: Apprendimento Automatico in Streaming, Raspberry Pi, Quantizzazione,
MOA
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1| Introduction

The technological and digital transformations of the last decades led industries and ser-
vice companies to invest in and use information technologies massively. Years later, they
realized the potential added value of judicious use of the huge amounts of data produced,
collected, and transiting in their systems. At the same time, research and innovative
industries (or start-ups) continued to deepen and develop technologies based on artificial
intelligence, a field whose theory was built and developed since the 1950s, and whose field
of possibilities and applications is also emerging with information technologies and the
evolution of hardware. One subfield of artificial intelligence will be of particular interest
to most companies, who will see it as a major strategic asset due to its unprecedented pre-
dictive capacity: machine learning. Today, the development of the Internet, coupled with
the phenomena described above, led to a paradigm shift, where it is no longer a question
of storing and then processing static data, which arrives in excessive quantities, but rather
of considering transitory data as streams, which must be processed and analyzed as is.
This is a major challenge for those who use machine learning models, which usually make
use of static training and validation data sets, and which need to be re-trained each time
new data are stored, requiring huge amounts of resources. The problem is amplified by
the increasing use of connected objects, and thus embedded systems, which are by nature
limited in resources, and to which industries wish to delegate an increasing amount of
tasks, to perform computations as close as possible to the data source.

1.1. Streaming Machine Learning

This new paradigm has given rise to streaming machine learning [1], which proposes
machine learning models directly adapted to data streams. Such a model processes an
instance at a time, as the data stream grows, inspects it only once to make a prediction,
and then gets updated incrementally. This field has its roots in machine learning and
many of its models are direct adaptations of existing machine learning models. It is also
possible to use them on traditional data sets, too large to be processed in one go. This
new paradigm brings a gain in flexibility and speed, but also a gain in resources, since
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data is only in transit, and does not need to be stored. Streaming machine learning also
allows for more flexibility in addressing problems of changing data stream statistics (or
concept drift) [2], that standard machine learning cannot address effectively. These are
generally problems related to the change in the distribution of data over time. Its lower
resource consumption also opens the field of possibilities, and suggests new applications,
especially in the field of the Internet of Things, where embedded systems are limited in
resources. This field is still relatively young, and there is much to explore. This thesis
aims to study the ability of the Raspberry Pi, a compact system that can be embedded,
to run streaming machine learning models, and thus contribute to the exploration of this
field.

Massive Online Analysis [3] (or MOA) is an open-source software implemented in Java,
which offers a range of tools and algorithms in the field of streaming machine learning.
It is related to the WEKA project, a collection of machine learning algorithms for data
mining tasks implemented in Java. Two interfaces are proposed: a graphical interface
and a command line interface. All the experiments presented in this thesis were carried
out using the command line interface of MOA. A compact version of MOA, called tinyMOA,
which only includes the most common algorithms and tools for weight gain, is also used.
This compact version comes from a related work [4] which is presented in Section 2.4.

1.2. Raspberry Pi

The Raspberry Pi [5] is a microcomputer, developed and designed by the Raspberry Pi
Foundation, in the form of a single board with an ARM processor. In that, it can be
suitable for embedded use. ARM processors [6] are Reduced Instruction Set Computer
(RISC) processors, an important feature to be considered when an emulated version is
implemented on a host system based on an x86 Complex Instruction Set Computer (CISC)
processor, widely spread among desktop computers. First released in 2012, it benefited in
the course of its evolution from the increased capacity to build smaller and more powerful
components, until it can offer in its latest version, the Raspberry Pi 4b, features close
to those of some personal computers. In short, up to 8GB of RAM memory, a cortex A72
ARM-v8 64-bit processor, and physical ports such as micro-HDMI, or ethernet, as shown
in Figure 1.1.
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Figure 1.1: Raspberry Pi 4b, src. [7]

1.3. Contributions of the thesis

This thesis aims to :

• Demonstrate through Raspberry Pi emulations that running streaming machine
learning models, including both learning and evaluation, on this type of system is
possible.

• Define and carry out a set of experiments with the Massive Online Analysis (or MOA)
software to evaluate the performance of the physical Raspberry Pi.

• Produce a lighter version, therefore more suitable for embedded systems, of MOA via
the quantization process.

• Evaluate the performance gains of this quantized version, and put them in perspec-
tive with the induced accuracy losses.

1.4. Thesis outline

Following this introductory chapter, Chapter 2 sets the context and presents the state of
the art of the topics of interest in this thesis as well as public works related to the topics
addressed in this thesis. More specifically, the state of the art of streaming machine learn-
ing is discussed, and details on edge computing and quantization are provided. Chapter
3 formulates the problem and the approach adopted to answer it. It describes the dif-
ferent steps and details the experiments that were conducted. Chapter 4, which is more
technical, details the different implementations, scripts and algorithms implemented or
used throughout the thesis. Finally, Chapter 5 presents the results of the experiments de-
tailed previously. The last chapter, Chapter 6, concludes this thesis and discusses possible
developments to continue to deepen the topic.
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2| State of the Art and Related

Work

This chapter is divided into 4 sections. The first Section 2.1, presents the basic concepts
of streaming machine learning, starting by explaining the initial approach of standard
machine learning, then specifying the important concepts and components that consti-
tute the current state of the art. Section 2.2 presents the two main current paradigms
related to embedded systems used to perform complex computational tasks, such as ma-
chine learning. Section 2.3.1 presents the concept of tiny machine learning, and more
specifically of quantization, which was applied in this thesis on tinyMOA to lighten it.
Finally, Section 2.4 gathers the different research works that were published around the
topics of this thesis, i.e., streaming machine learning on embedded systems.

2.1. Streaming Machine Learning

Streaming machine learning is a direct adaptation of standard machine learning. It mainly
includes the same families of models, adapted to streaming use. There exist many uses for
streaming data processing, such as sensor data processing, received at a certain frequency,
an anomaly detection system that monitors a data stream and that needs to be up to date
at any given time, or a recommendation system evolving in real-time. Adapting models
is not enough, this paradigm shift requires redefining the entire framework, including for
example, performance evaluation methods or data sampling methods such as those tradi-
tionally used for bootstrap aggregating [8] (or bagging). In addition to this redefinition
part, there are new methods made possible by the nature of streams, such as those related
to concept drift detection. These are mainly methods that use sliding windows, statistics,
and detection conditions directly on the fly.
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2.1.1. Machine Learning Approach

Machine learning [9] is a subfield of artificial intelligence, which has its roots in several
scientific fields, such as statistics, computer science, neurobiology, and logic. It is a set
of methods which seek to adjust their parameters optimally, for a given problem, thanks
to a set of input data. The dataset is usually divided into three parts, a training set, a
validation set, and a test set. The training set is used to adjust the model parameters,
while the validation set is only used to evaluate the model performance during training.
The test set is used only once, at the end of the learning process, and is not used to
adjust the model parameters or hyperparameters in any way. Machine learning tasks
are generally classified into two main categories, supervised learning and unsupervised
learning. Note that is now possible to define a third, intermediate category, named semi-
supervised learning, which combines the first two. Each category and sub-category of
tasks has its own set of models, which are adapted to the nature of the task.

Supervised and Unsupervised Methods

Supervised learning is a class of machine learning tasks that uses a training set composed
of pairs of inputs and outputs. The objective is to estimate the parameters of a model that
predicts the expected output from the input data, as shown in Figure 2.1. The two main
families of supervised learning tasks are classification and regression. Classification is a
task that consists in predicting a class, or category, from a given input, while regression
is a task that consists in predicting a continuous value from a given input. Unsupervised
learning is a class of machine learning tasks that use training sets composed of inputs
without outputs. These methods are often used to find structures or patterns in a given
dataset, for instance during the data exploration and analysis phase of data mining.

Figure 2.1: Representation of the supervised learning principle.
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Figure 2.2: Representation of the streaming machine learning principle.

2.1.2. Streaming Machine Learning Approach

Streaming machine learning is an extension of machine learning in principle. It consists
in updating a model, from a dataset, finite or infinite (theoretically unbounded), which is
received as a stream, as illustrated in Figure 2.2. Within this framework, it is not possible
to define a priori different datasets for learning, validating, and testing. This thesis
focuses on supervised streaming machine learning models for classification tasks, which
already allows for the implementation of experimental setups requiring large amounts
of computation. This work might be extended to other tasks, such as regression or
unsupervised learning tasks.

Classification is the only task studied in this thesis. The input is made of attributes,
which are numerical, categorical, or ordinal variables. The output is a class, or category,
which is a categorical variable.

2.1.3. Concept Drifts

The concept drift [2] is a phenomenon that occurs when the distribution of data changes
over time. From a probabilistic point of view, given a set of input data X1, X2, ..., Xn,
classification of Xn amounts to finding the class c∗ that maximizes the conditional prob-
ability of the class, knowing the input data, see Eq. 2.1.

c∗ = argmax
c∈C

P (c|Xn) (2.1)
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Figure 2.3: Representation of the three different types of concept drift, src. [10]

Or, after development with Bayes’ law, see Eq 2.2,

c∗ = argmax
c∈C

P (Xn|c)P (c)

P (Xn)
(2.2)

where C is the set of classes, P (c) is the prior probability of the class c, P (Xn|c) is the
likelihood of the input data Xn given the class c, and P (Xn) is the marginal probability
of the input data Xn.

A concept drift, sudden or gradual depending on the number of data points (or window)
leading from one distribution to another, can thus derive its characteristics from a change
in the distribution of P (c) and/or a change in P (Xn|c) which can result in a change
in P (c|Xn). It is usually complex to identify these changes, especially because they are
interdependent. The fact is that when P (c|Xn) changes, the machine learning model loses
its ability to correctly predict the class of Xn, as shown in Figure 2.3. If the change is
sudden or even brutal, the model can completely lose it. To overcome this problem, a
standard machine learning model must be re-trained on a new dataset, collected after
the distribution change. This can be costly in terms of time and resources and may be
problematic before the model is retrained as it no longer performs as expected. Within the
streaming machine learning framework, as each data point is processed as it arrives, it is
possible to apply concept drift detection methods using sliding windows and to automate
the decision-making to forget or not some old parameters of the model.

ADaptive WINdowing (ADWIN)

ADWIN [11] is a concept drift detection method that uses a sliding window. It is currently
one of the most efficient common methods to address this problem. With each new data
point coming from the stream, the method tries to find two complementary subwindows
from the sliding window, as illustrated in Figure 2.4, which are statistically different
according to a threshold tuned as a hyperparameter. If two subwindows meeting these
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Figure 2.4: Representation of ADWIN concept drift detection method, inspired by [12].

requirements are found, the method keeps the one with the most recent data. Adaptive
models use this data to train an alternative model or part of the existing model that
replaces the original one if it performs better.

2.1.4. Performance Evaluation

Evaluating the performance of a model is an essential step before its deployment. While
a standard machine learning model is evaluated on a dedicated validation set during
training, streaming machine learning has no such set. As data points arrive on the fly, a
palette of dedicated solutions must be used:

• Prequential evaluation

The prequential evaluation method [13, 14], shown in Figure 2.2, is directly adapted
to the principle of online learning. It consists in running the model on each new
data point to make the corresponding prediction, before using it for training. A
common approach consists in giving more weight to recent data, to avoid, in the
case of an infinite or too large stream, that the evaluation is no longer representative
of the current state of the model, as it would become increasingly difficult to vary
the value of the metric. Two methods are generally used for this purpose:

– use a sliding window and evaluate the model only on the k last data.

– use a decay factor α, with α ∈ [0, 1] and weight the data by a decreasing power
of α.

• Interleaved Test Then Train

The interleaved test then train evaluation method is the same as the as the pre-
quential method, without using any weighting method.



10 2| State of the Art and Related Work

Figure 2.5: Representation of the Periodic Hold-Out performance evaluation method.

• Periodic Hold-Out

The periodic hold-out evaluation method, illustrated in Figure 2.5, closer to the
evaluation methods used for standard machine learning, consists in evaluating the
model on a test set, periodically taken from the data stream, whose data are thus not
used for learning. The size of each test set is a hyperparameter, as is the evaluation
frequency. This method, unlike the two previous ones, has the disadvantage of not
using all the available data for learning.

Accuracy

Accuracy is a classical performance metric for a classification task. It is defined as the
ratio between the number of correct predictions and the total number of predictions, see
Eq. 2.3. Accuracy is therefore comprised between 0 and 1, 1 being the ideal value.

Accuracy =
Number of correct predictions
Total number of predictions

(2.3)

A usual way to track performance in a classification task is to use the confusion matrix,
see Table 2.1, which is a table that summarizes the results obtained so far.

It contains the number of true positives, true negatives, false positives, and false negatives.
From this perspective, accuracy can be defined as in Eq. 2.4, where TP , TN , FP , and
FN are the number of true positives, true negatives, false positives, and false negatives
respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.4)

2.1.5. Streaming Machine Learning Classification Algorithms

Many machine learning algorithms exist, and many of them were adapted for streaming
machine learning. Still in the context of classification, it is possible to group the main
models into three groups:



2| State of the Art and Related Work 11

Classified as pos. Classified as neg.

Data labeled pos. True Positives (TP) False Negatives (FN)

Data labeled neg. False Positives (FP) True Negatives (TN)

Table 2.1: Confusion matrix.

• Decision trees.

• Naive bayes.

• Ensemble models, which use several models, usually decision trees.

Decision Tree

Decision trees [15] are non-parametric machine learning models, i.e., they do not adjust
any parameter. These models split at each node into sub-trees, depending on a condition
on a variable, up to the leaves that make the final prediction, on a voting or probabilistic
basis for example. The principle is illustrated in Figure 2.6. Thus, each node tests a
variable, each branch represents a range of values of that variable, and each leaf assigns
a class. The problem that arises in the streaming configuration lies in the incremental
construction of the tree. The objective is to build a tree that is identical, with a high
probability and theoretical guarantees on the error rate, to the one that would be obtained
on the stored dataset. This is possible thanks to the Hoeffding bound, giving birth to the
Hoeffding Tree algorithm, and its derived version the Hoeffding Adaptive Tree.

• Hoeffding Tree

The Hoeffding Tree [16] (or Very Fast Decision Tree - VFDT/HT) algorithm is
an incrementally constructed decision tree that uses the Hoeffding bound to deter-
mine whether there is enough statistical evidence to split a new node. This prevents
the model from deciding to split or not on a too small sample that is not represen-
tative of reality. The condition for creating a new node is given by the formula
of Eq. 2.5, where G(x) is the impurity measure of a node, e.g., entropy or gini, of
the variable x. xparent and xchild are two informative variables, N is the number of
observations, δ is the confidence bound and R is the range of G.

G(xparent)−G(xchild) > ϵ =

√
R2 ∗ log 1

δ

2N
(2.5)
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Figure 2.6: Decision tree principle.

G(xparent) − G(xchild) represents the information gain of creating a new node at
xchild. δ is defined as in Eq. 2.6

δ = 1− Desired proba. of choosing the correct attribute at any given node (2.6)

• Hoeffding Adaptive Tree

The Hoeffding Adaptive Tree [17] (or HAT) algorithm is an extension of the
Hoeffding Tree algorithm, which allows to incrementally build decision trees with
an increased capacity of reaction to concept drifts. The HAT algorithm uses the
ADWIN concept drift detection algorithm at each branch (each node), to replace it
when a concept drift is detected. When the performance of a branch degrades,
ADWIN provides the subwindow of recent data that is expected to follow the new
distribution, and the HAT algorithm uses it to build an alternative branch, ready to
be used if its results are better than those of the original branch.

Naive Bayes

Naive Bayes [18] is a non-parametric probabilistic classification model, which is based on
Bayes’ theorem. The name naive comes from the fact that the model assumes that the
variables are conditionally independent, which remains a strong assumption. The assumed
conditional independence amounts to writing Eq. 2.7, where xi is the ith independent
variable and y the class.

P (x1, x2, ..., xn|y) =
n∏

i=1

P (xi|y) (2.7)

Using this assumption in Bayes’ formula results in Eq. 2.8.
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P (y|x1, x2, ..., xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, x2, ..., xn)
(2.8)

Finally, the Naive Bayes classifier returns the class y∗ that maximizes the probability
P (y|x1, x2, ..., xn), as described in Eq. 2.7, which gives Eq. 2.9.

y∗ = argmax
y

P (y|x1, x2, ..., xn) (2.9)

Adapting this model to a data stream is simply a matter of updating the estimators of
the useful distributions for the prediction in an incremental way [19]. For a mean, the
incremental update is given by Eq. 2.10, where si is the sum of the first i observations,
and x̂i is the mean of the first i observations [20].


si = si−1 + xi,

x̂i =
si
i

(2.10a)

(2.10b)

For a variance estimator, the incremental update is given by Eq. 2.11, where qi is the sum
of the squares of the first i observations, and σi

2 is the variance of the first i observations.


qi = qi−1 + xi

2,

σi
2 =

1

i− 1
∗ (qi −

si
2

i
)

(2.11a)

(2.11b)

Ensemble Methods Approach

Ensemble methods [21] for classification use multiple base learners, typically decision trees,
whose individual predictions are combined to produce a more robust final prediction. It
is possible to induce diversity by several means, to combine models in different ways, and
to combine their predictions in different ways as well. For streaming machine learning,
ensemble methods [22] could also be used to enhance the ability of the overall model to
adapt to evolving data [23].

To induce diversity, the main options are:

• Horizontal Partitioning

For horizontal partitioning, a common method is bagging [8]. It consists in com-
bining several models, each with a large variance, i.e., that fit the training data
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particularly well, but which are more easily subject to the phenomenon of over-
fitting [24]. M models are trained, each with a different bootstrap sample of the
training data. Each bootstrap sample is a random sample with replacement of the
same size as the original training data, where each data point is chosen K times
with P (K = k) following a binomial distribution. Within the streaming machine
learning framework, bagging was adapted into online bagging, see Section 2.1.5, by
using a Poisson distribution.

Another common method is boosting [25], which consists in combining several mod-
els with a large bias, i.e., which are not able to fit the training data particularly well,
but which are more robust to overfitting. M models are trained, each with a dif-
ferent training dataset, which is a weighted version of the original training dataset.
The weights are updated at each iteration so that the next model is trained on the
data points where the previous model made the most errors.

• Vertical Partitioning

For vertical partitioning [22], a common approach is to consider random subspaces
of the original feature space. The number of features in the subspace is usually
much smaller than the original number of features. Each learner is then trained on
a different subspace. If decision trees are used as base learners, local randomization
or global randomization can be applied, as shown in Figure 2.7. Local randomization
consists in randomly selecting a subset of features at each node of the tree, while
global randomization consists in randomly selecting a subset of features for the
whole tree. The difference is illustrated in Figure 2.7.

Figure 2.7: Vertical partitioning for decision trees, src. [26]
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• Others

Other methods for inducing diversity include base learner manipulation, i.e., varying
the parameters of the same base learner, or using different base learners to obtain
members with different biases.

To combine predictions, the main aspects are:

• Combination Architecture

As illustrated in Figure 2.8, base learners can be organized in different ways, from a
flat architecture where each learner directly feeds the voting combination layer, to
the meta learner architecture, where a meta learner takes the predictions of the base
learners as input, and outputs the final prediction, or to a hierarchical architecture
where the base learners are organized in layers where different combinations are
possible.

• Voting Combination

Base learners’ predictions can also be combined in different ways, as shown in Fig-
ure 2.9. The simplest way is to use majority voting, i.e., to consider the class that is
predicted by a majority of base learners. Another common method consists in using
weighted voting, where the weight of each learner is proportional to a criterion such
as its accuracy on the training dataset. Each base learner could also rather provide
a ranking of the probable classes, and all rankings could be combined to produce a
final one.

Figure 2.8: Main combination architectures, inspired by [27].
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Figure 2.9: Main voting combinations, inspired by [27].

Finally, to adapt to evolving data, the main aspects are:

• Cardinality

A fixed number of learners can be used, or learners can be added dynamically on
the fly.

• Learning Mode

Data streams can be processed in different ways by learners, depending on the type
of windowing used. For instance, learners can be trained incrementally on the data
stream, on a sliding window, on a landmark window or an adaptive window, etc.

Ensemble Methods: Online Bagging

Within the online framework, the training data is not available in advance, and it is
consequently impossible to use the bootstrap sampling method in the same way as in
the offline framework. To overcome this problem, the online bagging method, also called
the Oza Bagging algorithm after one of its authors [28], uses a Poisson(λ = 1) [29]
distribution, see Figure 2.10. instead of a binomial distribution. Indeed, for a large
number of samples, the binomial distribution tends to be a Poisson(λ = 1) distribution.
For each new arriving sample, the Poisson(λ = 1) distribution determines the number of
times the sample is used to train each base learner.

Ensemble Methods: Leveraging Bagging

Leveraging Bagging [30] is an online bagging method that uses the Poisson(λ = 6)

distribution instead of the Poisson(λ = 1) distribution as in Oza Bagging. The rationale
behind this choice is that the Poisson(λ = 6) distribution adds more randomization. In
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Figure 2.10: Poisson distribution for λ ∈ {1, 4, 10} src. [29]

addition to increasing the resampling, Leveraging Bagging also uses the ADWIN concept
drift detector to adapt better in case of concept drift. Each learner feeds its predictions
to an ADWIN detector. After a change is detected, the worst learner of the ensemble, based
on the error estimation by ADWIN, is replaced by a new one.

2.2. Cloud and Edge Computing

When embedded systems are used to collect data at the source, there are two paradigms
for processing it. Those are cloud computing and edge computing, depending on where
the computations occur.

2.2.1. Cloud Computing

Traditionally, data collected by embedded systems is sent to remote servers in the cloud.
Servers then take care of data processing, for example, to update a machine learning
model. This paradigm has several advantages, including:

• Local bandwidth savings

The data is sent to a remote server, not to another embedded system through a
local network.

• Storage savings

Data is not stored on the embedded system.

• Removal of resource constraints

Embedded systems are often resource-constrained, and cloud computing makes it
possible to perform complex tasks without limitations due to available resources.
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However, this paradigm also has disadvantages, notably a massive use of telecommunica-
tion networks, at the risk of congestion, and more seriously, dependence on them. This
solution is unthinkable in contexts where telecommunication networks are not available
or are not reliable. This solution can also be costly, as it requires the implementation of
a cloud computing infrastructure.

2.2.2. Edge Computing

In recent years, edge computing [31] has become an increasingly popular solution for
processing data collected by embedded systems. It consists in processing the data collected
as close as possible to the source, as represented in Figure 2.11. This solution eliminates
the disadvantages of cloud computing but presents engineers with new challenges. It
requires dealing with a limited amount of resources, while applications are becoming
increasingly complex. To overcome this problem, it is necessary to define an architecture
adapted to the number of computations, and deploy it on a network of embedded systems.
Thus, the multiplication of embedded systems allows to distribute the computation load
but requires new cooperation algorithms between systems. On the other hand, it is also
possible to work on data processing algorithms, to make them more efficient or lighter so
that a single embedded system can support the computations.

Figure 2.11: Edge computing V.S Cloud computing
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2.3. Tiny Machine Learning and Quantization

2.3.1. tinyML

tinyML is a term that refers to a subfield of machine learning that focuses on the develop-
ment of machine learning technologies and applications for resource-constrained devices.
According to the tinyML Foundation1:

"Tiny machine learning is broadly defined as a fast growing field of machine
learning technologies and applications including hardware, algorithms and soft-
ware capable of performing on-device sensor data analytics at extremely low
power, typically in the mW range and below, and hence enabling a variety of
always-on use-cases and targeting battery operated devices."

The development of this field is a direct consequence of the evolution of edge computing
and its advantages, applied to one of the most computationally intensive fields. A great
illustration of this trend is TensorFlow Lite2, i.e., the lite version of the TensorFlow

library, which is designed to optimize deep learning models for mobile and edge devices
such as microcontrollers. A common practice to lighten models is to use quantization, as
discussed in Section 2.3.2.

2.3.2. Quantization

Quantization has its origin in signal processing and consists in approximating a continuous
signal by the values of a discrete set. For software, quantization consists in approximating
floating values by integers or by other floating values with less precision. Execution is then
lighter, which is particularly interesting for systems with limited resources. The key point
is to understand what is quantized, when, and how. For instance, with Tensorflow Lite,
the weights of the neural network are post-training quantized. This means that a model
is first trained on a powerful machine, and the adjusted weights are then processed to
make the model lighter for deployment.

Within the streaming machine learning framework, the traditional training and production
phases are merged, thus the edge device is responsible for both training and testing. In
this thesis, quantization is performed on tinyMOA, by reducing the precision of 64-bit float
variables in the source code and compiling a new library. This makes quite a difference
with the example of TensorFlow Lite where only the production phase is quantized.

1https://www.tinyml.org/
2https://www.tensorflow.org/lite/microcontrollers

https://www.tinyml.org/
https://www.tensorflow.org/lite/microcontrollers
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2.4. Related Work

Several works were conducted around the topics of interest of this thesis. The article
[4] is of particular interest, as it focuses on the execution of MOA on a Raspberry Pi, in a
configuration using Kafka3 and Parsl4. Parsl is a python library that allows to parallelize
codes so that Apps execute concurrently while respecting data dependencies. It is used in
this case to dynamically deploy MOA algorithms on the available computational resources,
including the Raspberry Pi. Kafka is a message broker that is used on the same device
as the Parsl Executor to support stream management. The data used is the Census

dataset [32], which aims at predicting whether a person earns more than $50,000 per
year. The comparison of MOA performance between Raspberry Pi and high-performance
computing resources is detailed, in the form of a series of what-if scenarios. The article also
introduces a compact version of MOA named tinyMOA, which simply has fewer features than
MOA, for a smaller software size. This paper shows interesting results, in this particular
configuration, which seem to confirm the feasibility and the interest of the first part of
this thesis, which also focuses on the execution of MOA on the Raspberry Pi.

Other articles present the execution of standard machine learning algorithms on the Rasp-
berry Pi, or streaming machine learning ones for specific uses, such as intrusion detection.
Article [33] for instance presents the execution of standard machine learning algorithms,
using WEKA, on several Raspberry Pis, with sensor data. The trained models are frequently
sent from the Raspberry Pis to a central server in the cloud, that averages them. Then, it
returns the averaged model to the Raspberry Pis, and the process is repeated. Article [34]
presents a lightweight detection system for cyber attacks, based on the Hoeffding Tree

algorithm. This other article [35] shows the execution of deep learning models for video
analysis and object detection on the Raspberry Pi. Article [36] gets deeper into the uti-
lization of streaming machine learning for subspace analysis, a task that consists in finding
subspaces of the original space such that the corresponding projection has some special
properties. A typical example is the Principal Component Analysis (PCA) algorithm,
which aims at finding the subspace that maximizes the variance of the projected data.

These articles, which are the closest ones to the scope of this thesis, show that the execu-
tion of streaming machine learning algorithms on the Raspberry Pi is the logical contin-
uation of what has been done so far, where streaming machine learning has the ability to
replace machine learning for more and more applications, and where edge devices replace
high-performance computing resources.

3https://kafka.apache.org/
4https://parsl-project.org

https://kafka.apache.org/
https://parsl-project.org
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3| Objectives and Proposed

Approach

In this chapter are presented both the problem to be solved and the adopted approach to
reach a solution, with each step clearly formulated. For each one, the imagined experi-
ments, their components, and the selected configurations are detailed. Thus, this chapter
presents in a comprehensive manner all the work that has been done for this thesis. Then,
the algorithms, scripts, and leveraging technologies are detailed in Chapter 4 while the
results are exposed in Chapter 5.

3.1. Problem Statement

This thesis is structured around two main axes. The first one is the study of the Raspberry
Pi’s suitability to execute streaming machine learning algorithms. The purpose of the
suitability analysis is to determine:

1. whether it is possible to run MOA with reasonable performance on the Raspberry Pi,

2. how far the performance of MOA on the Raspberry Pi is from the performance ob-
tained with a desktop computer.

The second axis is the study of an innovative improvement possibility of the results ob-
tained with MOA on the Raspberry Pi. This improvement possibility consists in quantizing
the tinyMOA software, proposed as a compact alternative to MOA in the article [4], as ex-
plained in Section 1.1, to further lighten its execution and thus propose a version adapted
to embedded systems. The improvement study aims at determining:

1. whether it is possible and how to compile a quantized version of tinyMOA,

2. whether there is a significant gain in execution performance with this quantized
version and to what extent the quantization impacts accuracy in return.
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3.2. Approach Overview

The adopted approach to address the issues outlined in the previous section consists of
five steps.

• Suitability Analysis (3 steps)

The first step is to study, choose and implement a virtual version of the Raspberry
Pi that will be suitable to run MOA and estimate the performance of a physical
Raspberry Pi board. This step allows the assessment of the feasibility of the project,
and once done, implements a suitable working environment to estimate what would
be the performance of MOA on a physical Raspberry Pi board. For this purpose, this
step also includes the execution of a set of benchmarks. These benchmarks were
previously executed on physical boards whose results are available in the public
domain so that it is possible to evaluate the performance differences between the
virtual and the physical versions and thus calibrate the virtual environment against
the physical one. The second step consists in running a series of experiments with
MOA on the Raspberry Pi emulators. These experiments allow to confirm or deny the
potential suitability of the Raspberry Pi to run MOA. After confirmation, the third
step begins. A physical Raspberry Pi board is used to run these experiments, as
well as a desktop computer, to finally compare their results.

• Improvement study (2 steps)

The fourth step consists in implementing a quantized version of tinyMOA, named
tinyMoa-lite, and running a series of experiments on the Raspberry Pi to compare
this version and the original one. The fifth and final step consists in determining
if there exists a compromise between the original version and the quantized one
which would offer a perfectly similar execution to the original version. This quasi-
quantized version is a variant of the quantized version with the minimum possible
number of 64-bit variables such that it generates the very same solutions as the
original version. Indeed, since both the training and testing phases are quantized,
the obtained solutions between the two versions may differ.

3.3. Raspberry Pi Simulation

There exist different versions of the Raspberry Pi, which is now developed for more than
10 years. The ones that could offer a suitable working environment to run MOA are the
Raspberry Pi 3b (or 3b+) and the Raspberry Pi 4b. The Raspberry Pi 2b, although
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RPi 2b RPi 3b RPi 3b+ RPi 4b

Processor Cortex-A7 Cortex-A53 Cortex-A53 Cortex-A72

Processor
specs.

ARMv7 900MHz ARMv8 1.2GHz ARMv8 1.4GHz ARMv8 1.5GHz

CPU Quad-Core Quad-Core Quad-Core Quad-Core

Thread
per core

1 1 1 1

Instruction
length

32 bits 64 bits 64 bits 64 bits

RAM 1GB 1GB 1GB 1,2,4 or 8GB

Table 3.1: Comparative table of the Raspberry Pi models.

older, can also be considered as an option, with lower performance but lower cost. As
virtualization allows to try out several versions at no extra cost, all three versions, 2b, 3b+,
and 4b, are virtualized. The Raspberry Pi 2b features an ARMv7 900MHz processor,
1GB of RAM, and four USB ports. The Raspberry Pi 3b offers an ARMv8 1.2GHz
processor, 1GB of RAM, and 4 USB ports. The intermediate version between the 3b and
4b, the 3b+, offers an ARMv8 1.4GHz processor, 1GB of RAM and 4 USB ports. Its
architecture is similar to the 3b with a slightly better processor. This thesis presents the
results with the 3b+ version rather than the 3b. The Raspberry Pi 4b offers an ARMv8
1.5GHz processor, 1GB of RAM, and 4 USB ports. The ARMv8 architecture is a major
evolution of the ARMv7 architecture since it allows 64-bit instructions to be executed
instead of 32-bit ones. Table 3.1 recapitulates these differences.

To virtualize a Raspberry Pi, several solutions exist. In particular, two families of solutions
were considered: simulators and emulators.

3.3.1. Simulators and Emulators

Simulators are solutions that offer a simulation of the electronic circuits of the Raspberry
Pi. This allows the user to run and test programs that make use of components such
as GPIO (General Purpose Input Output) ports or other specific modules. They are
mainly interfaces that only allow users to execute code snippets of certain languages,
like Python or NodeJS. Simulators are therefore interesting solutions for testing ad hoc
programs, but they do not provide the user any access to a terminal and do not allow to
estimate the performance of the Raspberry Pi as only the circuits are simulated.

Emulators are more complete but heavier solutions, which propose to virtualize a set of
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physical components, and thus replicate the execution of the desired system. To emulate
a complete Raspberry Pi, especially from a non-ARM system, both the software and the
hardware must be virtualized. This includes emulating the ARM processor, memory,
peripherals, and operating system. It is possible to run any ARM-compatible operating
system on top of the virtualized hardware, but there exists a dedicated operating system
to the Raspberry Pi, named Raspberry Pi OS (formerly Raspbian). Emulation is the
chosen solution for the sequel of the thesis, as it allows to perfectly replicate the execution
of the physical board. More specifically, QEMU [37] was used. This solution offers great
customization of the emulation, proposes almost all the common hardware components,
and gives direct access to a terminal, which offers the user a total freedom.

QEMU

QEMU is an open-source emulator that allows to emulate a set of components, and thus
replicate the execution of the desired system. It also offers specific support for emulating
the Raspberry Pi 2b, 3b, and 3b+, which gives access to a set of specific components
such as GPIO ports.

Raspberry Pi 2b Emulation

For the Raspberry Pi 2b, QEMU v2.9.0 was used, with specific support for the
Raspberry Pi 2b board. This emulation implements a Broadcom 2709 quad-core cortex-
A7 CPU at 900MHz, 512MB of RAM, and the Raspbian OS Jessie (2016-05-27 release)
operating system. The operating system is installed on a virtual SD card.

Raspberry Pi 3b+ Emulation

For the Raspberry Pi 3b+, QEMU v6.2.0 was used, with specific support for the
Raspberry Pi 3b+ board. This emulation implements a Broadcom 2710 quad-core
cortex-A53 CPU at 1.4GHz, 1GB of RAM, and the Raspberry Pi OS Bullseye ARM64

operating system (2022-01-28 release).

Raspberry Pi 4b Emulation

For the Raspberry Pi 4b, QEMU v6.2.0 was used, but no specific support for this board
was available at this time. The emulation is supported by Virtio with the components of
the Raspberry Pi 4b. Virtio is a Linux kernel programming interface useful for virtual
machines. It allows virtual devices to be managed as physical devices directly within the
Linux kernel. This emulation implements a Broadcom 2711 quad-core cortex-A72 CPU
at 1.5GHz, 1GB of RAM, and the Raspberry Pi OS Bullseye ARM64 operating system
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RPi 2b RPi 3b+ RPi4b

Emulated
processor

Cortex-A7 Cortex-A53 Cortex-A72

Processor
specs.

ARMv7 900MHz ARMv8 1.4GHz ARMv8 1.5GHz

QEMU version v2.9.0 v6.2.0 v6.2.0

Specific
board support

Yes Yes No

OS Raspbian Jessie Raspberry Pi OS
Bullseye ARM64

Raspberry Pi OS
Bullseye ARM64

Instruction
length

32 bits 64 bits 64 bits

RAM 1GB 1GB 4GB

Table 3.2: Comparative table of the Raspberry Pi emulations.

(2022-01-28 release). Table 3.2 recapitulates the different emulations implemented.

3.3.2. Benchmarks

After implementing the different emulations, different benchmarks were used to evaluate
their performance and compare them to their physical counterparts, as a kind of calibra-
tion. This step is crucial before running the series of experiments with MOA, as it will
allow to estimate the potential performance of the physical boards with the emulations.
Benchmarks are programs that measure the performance of a system. They are often
used to compare several systems and they usually consist of a series of operations that are
repeated a large number of times. The main performance dimensions are the execution
time, the resource consumption, or the number of computations performed. Within the
context of this thesis, two performance dimensions were evaluated for the emulators: the
execution throughput and the memory consumption. To evaluate them, parallel execu-
tions must be distinguished from sequential ones.

It was necessary to run benchmarks whose performance on the Raspberry Pi were available
in the public domain. Thus, the benchmarks used come from the publication [38], where
the compiled files are provided along with the results obtained on a couple of Raspberry
Pi models: the Raspberry Pi 3b+ and the Raspberry Pi 4b. Consequently, the emula-
tion of the Raspberry Pi 2b was not used for the following, and the Raspberry Pi 2b

solution was then definitively abandoned. Only the 64-bit benchmarks were executed,
although the 32-bit versions were also available, as MOA is run with 64-bit instructions.
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Single Thread Benchmarks CPU

CPU benchmarks focus on the device execution throughput. It measures the number of
computations per execution time ratio. Sequential executions make use of a single thread
and consist of operations that need to be executed sequentially, i.e., with no parallelism,
and that are repeated a large number of times. The benchmarks used are the following:

• Whetstone: a benchmark that executes basic computational loops (e.g., cos, exp)
and evaluates performance on floating-point numbers.

• Dhrystone: a benchmark that executes basic computation loops (e.g., addition,
multiplication) and evaluates the performance on integers.

• Linpack: a benchmark that executes matrix calculations by solving linear systems.
It evaluates the performance for scientific applications.

• FFT: a benchmark that performs Fourier transform calculations. It evaluates the
performance on floating point numbers, single and double precision.

• Livermore: a benchmark that runs physics and chemistry calculations. It evaluates
the performance on floating point numbers, single and double precision.

Multiple Threads Benchmarks CPU

These benchmarks make use of multiple threads as they consist in executing operations
with a certain degree of parallelism. The benchmarks used are the following:

• MP Whetstone: a benchmark that runs 8 test functions at the same time with
dedicated variables. The performance measurement is based on the last thread to
finish. Common data can only be accessed by one thread at a time. The process is
repeated with 1,2,4 and 8 threads.

• MP Dhrystone 2: a benchmark that runs several copies of Dhrystone at the same
time with dedicated data lists but many common variables.

• MP Linpack NEON: linear algebra routines with 128-bit NEON registers, which
are registers adapted to vector calculations, in unrolled loops with four-dimensional
differential equations.

• MP MFLOPS: a benchmark that performs calculations on float variables, in cache
and in memory. Several operations are performed on each word, and each thread
supports the same calculation, from different segments of memory.
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Single Thread Memory Benchmarks

Memory benchmarks focus on how well the device reads data in cache and memory.
Results are often expressed in MB/sec. Similarly, sequential and parallelized executions
have been distinguished for memory benchmarks. The sequential single-thread memory
benchmarks are as follows:

• BusSpeed: a read-only benchmark that reads word after word, with different in-
crements.

• MemorySpeed: performs computations on lists in memory and in cache, and
measures reading rates.

• NeonSpeed: similar to the MemorySpeed benchmark, with NEON registers and di-
rectives.

Multiple Threads Memory Benchmarks

The parallelized memory benchmarks are the following ones:

• MP BusSpeed: a read-only benchmark that reads integers word by word, each
thread on different memory segments.

• MP RandMem: a benchmark that reads and writes integers randomly in memory.
Each thread starts at a different location and then accesses the memory randomly.

3.4. Emulator Experiments with MOA

Once the emulators were implemented, and their performance calibrated against the phys-
ical boards, a series of experiments with MOA was performed. To conduct the experiments,
MOA was used, as well as its compact version tinyMOA. MOA offers two interfaces: a graph-
ical interface and a command line interface. With tinyMOA, the .jar file is lighter, 900
KB against 2.8 MB for MOA, which represents a significant gain an embedded use, with
limited memory.

3.4.1. Datasets

Within the streaming machine learning framework, a central element remains the data
stream. Two types of data streams can be used to conduct experiments, those synthetically
generated and real datasets.
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Synthetic Datasets

Synthetically generated datasets are generated by algorithms. They use pseudo-random
number generators, and other mathematical functions to generate data with certain prop-
erties. MOA directly provides a set of data generators, which can be parameterized. The
following synthetic generators were used for the experiments run on the couple of emula-
tors:

• RandomTreeGenerator : generates a classification problem via a randomly gen-
erated decision tree. It constructs a decision tree by choosing attributes at random
to split, and assigning a random class label to each leaf. Once the tree is built,
new instances are generated by assigning uniformly distributed values to attributes,
and then traversing the tree to find the class label This generator comes from the
publication [16].

• RandomRBFGenerator : generates a random radial basis function stream. While
the RandomTreeGenerator generates a classification problem adapted to decision
trees, the RandomRBFGenerator generates an alternate complex concept type that
is not easily learned by decision trees. A fixed number of random centroids are
generated. Each center has a random position, a single standard deviation, class
label and weight. New instances are generated by selecting a center at random so
that the probability of selecting a it is proportional to its weight. A random direction
is chosen to offset the attribute values from the central point. The length of the
displacement is randomly drawn from a gaussian distribution with the standard
deviation of the center. The class label is determined by the centroid.

• RandomRBFGeneratorDrift : same as the RandomRBFGenerator, but the con-
cept drift is directly introduced via the generator by moving the centroids with
constant speed.

• SEAGenerator : generates SEA concepts functions [39]. The points of the dataset
are divided into four blocks with different concepts. That is why this generator is
used for the concept drift based experimentss in the sequel of this thesis, as it is
easily possible to change and parametrize the concept of the generated data.

• AgrawalGenerator : generates one of the ten predefined loan functions as intro-
duced by Agrawal et al. [40]. This generator is also used in the sequel of the thesis,
along with the SEAGenerator, to configure experiments that implement concept
drifts as it is easy to switch between different functions by parametrizing it.

• LEDGenerator : generates a problem of predicting the digit displayed on a seven-
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segment LED display where each attribute has a 10% chance of being inverted.
This implementation proposes 24 binary attributes, 17 of which are irrelevant. This
generator comes from [41].

• LEDGeneratorDrift : same as the LEDGenerator with concept drift, directly
introduced via the generator by changing the concept for certain attributes.

• WaveFormGenerator : generates a problem of predicting one of three waveform
types [41]. Each waveform type is generated by a combination of three base waves.
There are 21 numerical attributes, all of which include noise.

• WaveFormGeneratorDrift : same as the WaveFormGenerator, with concept
drift, directly introduced via the generator by changing the concept for certain
attributes.

• HyperplaneGenerator : generates a problem of predicting class of rotating hy-
perplane [42]. This generator is useful to implement incremental drift thanks to its
properties as explained in the dedicated Section 3.4.4.

Real Datasets

For the emulators’ experiments, only one ARFF file dataset was used, which is the dataset
census.arff. It contains information about the income of the inhabitants of the United
States. Specifically, it is a binary classification dataset, which associated task consists in
predicting whether an individual earns more or less than $50,000 per year. This dataset
appears in the group of paper [4] experiments, where the results obtained on emulators
are compared with the results of a physical board.

3.4.2. Algorithms

The algorithms used are the following:

• HoeffdingTree (HT): incremental decision tree Hoeffding Tree as presented in
Section 2.1.5. This implementation is directly adapted from paper [42]. In the
current version of MOA, the HoeffdingTree algorithm is by default implemented
with the Naive Bayes Adaptive algorithm at leaves, since it gives the best re-
sults. This Naive Bayes Adaptive prediction method monitors the error rate of
Majority Class and Naive Bayes decisions in every leaf, and chooses to em-
ploy Naive Bayes decisions only where they have been more accurate in past
cases. The decision method at leaves is tunable, and it is possible to select only
Majority Class or only Naive Bayes in substitution to Naive Bayes Adaptive.
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In this thesis, HT (MC) is the abbreviation for the Hoeffding Tree model with the
Majority Class decision method at leaves.

• HoeffdingAdaptiveTree (HAT): incremental decision tree Hoeffding Adaptive

Tree, a variant of the Hoeffding Tree, with ADWIN concept drift detectors at each
node for increased adaptation capacity, also presented in Section 2.1.5. This imple-
mentation is directly adapted from paper [17]. It uses the HoeffdingTree imple-
mentation presented above as a base.

• NaiveBayes (NB): the incremental Naive Bayes algorithm, as presented in Sec-
tion 2.1.5.

• OzaBag (OB) : the Oza Bagging algorithm, as presented in Section 2.1.5. It
implements an online bagging method, as described in this paper [28], from N. Oza
and S. Russell. For all experiments, 10 HoeffdingTree, as described above, were
used as base learners.

• OzaBagAdwin (OBA) : a variant of OzaBag, as described above, with ADWIN

concept drift detectors for each base learner, so that in case of concept drift, the
worst performing base learner is replaced by a new one. This implementation is
directly adapted from paper [43].

• LeveragingBag (LB) : the Leveraging Bagging algorithm, as presented in Sec-
tion 2.1.5. It implements an online bagging method, with more randomization than
OzaBag and is directly adapted from this paper [30]. As for OzaBag, for all experi-
ments, 10 HoeffdingTree were used as base learners.

3.4.3. Evaluation Methods

As presented in Section 2.1.4, several performance evaluation methods exist within the
streaming machine learning framework. For these experiments, the following evaluation
methods were used:

• EvaluatePrequential: the method presented in Section 2.1.4, which consists in
first evaluating the model and then updating it for each new incoming instance.
With MOA, it is possible to use either a sliding window with a tunable size or a
fading factor. The implementation is directly adapted from paper [13]. Then, the
frequency for reporting the results is also tunable.

• EvaluateInterleavedTestThenTrain: the method presented in Section 2.1.4,
which is the same as the Prequential Evaluation, without any sliding window
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or fading factor.

• EvaluatePeriodicHoldOutTest: the method presented in Section 2.1.4, which
consists in evaluating the model on a hold-out set at a certain frequency. With MOA,
the frequency can be tuned as well as the size of the hold-out set.

3.4.4. Concept Drift Types

As presented in Section 2.1.3, an important possible concern for streaming machine learn-
ing models are concept drift phenomenon. It consists of a change of the underlying dis-
tribution of the data, which can occur in different ways. For these experiments, concept
drifts are also artificially generated with the following types:

• Abrupt drift: the underlying distribution changes abruptly, meaning that the
window needed for the data to totally shift is really small (a few instances).

• Gradual drift: the underlying distribution changes gradually, meaning that the
window needed for the data to totally shift may be more or less large (a few hundreds
to thousands of instances). In this window, the data might come from the old
distribution or from the new one, the proportion of each gradually changing from
[1,0] to [0,1].

• Incremental drift: the underlying distribution changes incrementally, meaning
that the data changes from one distribution to another smoothly in a continuous way.
To do so, the incremental concept drift directly occurs within the data generator,
which must be the Hyperplane Generator, by varying the values of the hyperplane
weights as the data stream is generated. These weights change its relative orientation
and position. The Hyperplane Generator is chosen for these properties that allow
to easily generate incremental concept drifts.

3.4.5. Experiments

The experiments conducted on the emulators can be grouped into two groups. The
first group includes the experiments taken from the MOA official tutorials. The second
group includes the experiments presented in the paper [4], which were performed on a
Raspberry Pi 4b, with 2GB of RAM, in the special configuration using Kafka and Parsl

previously presented in Section 2.4. Although the execution conditions are different,
comparing the results detailed in this paper with those of the emulators ensures that the
orders of magnitude in the difference between the virtual and the physical performance,
estimated when calibrating the emulators against the benchmarks, are consistent.
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#inst. algo. evaluation generator

Ex. 1 1000000 HT,
NB

Interl. Test Train (freq.=10000) RandomTree

Ex. 2 1000000 HT Interl. Test Train (freq.=10000),
Prequential (freq.=10000, Nwin=1000),
Hold-Out (freq.=10000, Ntest=1000)

RandomTree

Ex. 3 1000000 HT,
NB

Interl. Test Train (freq.=10000) RandomRBF

Ex. 4 1000000 HAT,
OBA,
HT (MC)

Interl. Test Train (freq.=10000) RandomRBF

Ex. 6 1000000 HT,
HAT,
OBA

Prequential (freq.=10000, Nwin=1000) RandomRBF

Table 3.3: MOA Tutorial 1 experiments.

MOA Tutorials

MOA tutorials are examples of MOA usage, each focusing on different aspects. Two tutorials
were followed, each presenting several exercises, leading to a total of 13 experiments.
The first tutorial is a basic tutorial, presenting the basic functionalities of MOA. Table 3.3
summarizes these experiments, with freq. being the frequency of the evaluation, Nwin

the size of the sliding window, and Ntest the size of the hold-out set.

The second tutorial includes experiments about concept drifts, as recapitulated in Ta-
ble 3.4, with w being the width of the concept drift, i.e., the number of instances to
shift from a distribution to another, and k the position of the concept drift, i.e., the
number of instances where the concept drift is centered. Each experiment uses the
Interleaved Test Then Train evaluation method with a frequency freq. = 1000.

Paper Experiments

These experiments come from paper [4]. As previously mentioned, the objective is to
ensure that the benchmarks results are consistent and allow to consider the calibration
of the emulators against the physical boards as reliable. Table 3.5 details them, where
Hoeffding Option Tree is a regular Hoeffding Tree with additional option nodes that
allow several tests to be applied, leading to multiple Hoeffding Trees as separate paths.
ASHT or Adaptive-Size Hoeffding Tree is derived from the Hoeffding Tree algorithm
with a maximum number of split nodes or size, such that if the number of split nodes of
the ASHT is higher than the maximum value, it deletes some nodes to reduce its size. The
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#inst. algo. concept drift generator

Ex. 3.1 100000 NB 1 abrupt drift (w=1, k=50000) SEA
Ex. 3.2 100000 NB 1 gradual drift (w=20000, k=50000) RandomTree

Ex. 4.1 100000 LB 3 abrupt drifts (w1,w2,w3=1, k1=25000,
k2=50000, k3=75000)

SEA

Ex. 4.2 100000 LB 2 gradual drifts (w1,w3=10000, k1=25000,
k3=75000),
& 1 abrupt drift (w2=1, k2=50000)

RandomRBF

Ex. 5 100000 NB Incremental drift RandomRBF

Ex. 7.1 100000 HT 1 abrupt drift (w=1, k=50000) SEA

Ex. 7.2 1000000 HT 2 gradual drifts (w1=200000, w2=50000,
k1=350000, k2=600000)

SEA

Ex. 7.3 1000000 HT 3 abrupt drifts (w1,w2,w3=1, k1=250000,
k2=500000, k3=750000)

Agrawal

Table 3.4: MOA tutorial 5 experiments.

Random Hoeffding Tree is simply a random decision tree.

3.4.6. Performance Dimensions

The selected performance dimension is the execution throughput. This measure is inde-
pendent of the results of the model, and only evaluates the ability of the device to execute
it.

The throughput measures the ratio between the number of instances processed and the
execution time. Note, however, that it must be averaged or aggregated carefully. De-
pending on whether the number of instances or the execution time varies between each
experiment, it may be necessary to use the arithmetic or harmonic mean. Generally, we
can define the throughput as in Eq. 3.1.

throughput =
nbr of instances

time
(3.1)

3.5. Raspberry Pi Experiments with MOA

After running the experiments with the couple of emulators, it appeared that the results
were good enough to try out MOA on physical board and that the Raspberry Pi 4b was
outperforming the Raspberry Pi 3b+ in a way that justifies its extra cost. The exper-
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#inst. algos. evaluation data source

Exp 1 10000000 Hoeffding Tree Interl. Test Train
(freq.=100000)

WaveForm

Exp 2 100000 Hoeffding Tree,
Hoeffding Option Tree,
Hoeffding Adaptive Tree,
ASHT,
Random Hoeffding Tree

None WaveForm

Exp 3 100000 Hoeffding Tree None WaveForm,
SEA,
LED,
Hyperplane,
RandomTree,
census.arff

Exp 4 2000000 Hoeffding Tree None census.arff

Table 3.5: Paper [4] Experiments.

iments previously described were then run on a physical board, as well as on a desktop
computer, to compare their performance. This step ends the suitability analysis of the
Raspberry Pi to run MOA. The results obtained along with all the results of the thesis are
presented in Chapter 5. They tend to show that it is possible to use the Raspberry Pi 4b

to run MOA, with performance lower than those of a desktop computer, but good enough
for a certain number of applications.

Raspberry Pi Configuration

The Raspberry Pi 4b used is a version with 4GB of RAM, with a 64-bit Raspberry Pi

OS Bullseye ARM operating system. Its other components were previously described in
Section 3.3.1.

Desktop Configuration

The desktop computer used is a server in the cloud, with 6 CPU cores, 16GB of RAM, and
a 64-bit Ubuntu 20.04 LTS (Focal Fossa) operating system. The chosen provider is
UpCloud. With such a configuration, the aim was to set up a high-performance computing
configuration, with performance in the order of magnitude of a basic cloud computing
solution.

Table 3.6 summarizes the features of the two devices.
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RPi4b Desktop

CPU Cortex-A72 1.5GHZ AMD EPYC 7542 3.4GHz

Nbr of cores 4 6

RAM 4GB 16GB

OS Raspberry Pi OS Bullseye ARM Ubuntu 20.04 LTS (Focal Fossa)

Table 3.6: Comparative table of the Raspberry Pi and Desktop used.

3.6. tinyMOA Quantization

At this stage, the suitability analysis is completed. The second axis of development of this
thesis consists of the development of a possible improvement of the execution performance
of MOA on Raspberry Pi, via the quantization of the tinyMOA software, which gave birth
to tinyMOA-lite. Once the quantization done, a series of experiments were conducted to
compare the performance of tinyMOA-lite to those of tinyMOA, still on the Raspberry Pi.
Contrary to the experiments carried out on emulators, it was necessary for this part to
obtain robust enough results, which could demonstrate the relevance of the quantization of
tinyMOA, with relatively strong statistical support. For this purpose, a significant number
of experiments were conducted, featuring different configurations, and a large number of
repetitions for each one, to counterbalance differences due to the operating system, the
system load, or other factors possibly inducing noise.

3.6.1. Quantization

As mentioned in Section 2.3.2, within the streaming machine learning framework, the
traditional training and production phases are merged, and thus the edge device is re-
sponsible for both training and testing. Consequently, the quantization was not applied
to the trained weights as for tf-lite, but to the whole tinyMOA software source code.
The source code being in Java, the quantization is performed by transforming all double
variables into float variables.

3.6.2. Datasets

Similarly to the experiments carried out on emulators, these experiments were conducted
on synthetic datasets provided by MOA, and real datasets, taken from this repository [44].
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Synthetic Datasets

The data generators used are the same as those presented in Section 3.4.1.

Real Datasets

To ensure the relevance of the results obtained with synthetically generated datasets, the
experiments were also conducted on real datasets, stored as ARFF files. These datasets
present different data structures and are different one from another, in their characteristics
such as the number of features, their length, or their feature types, which have a strong
impact on the execution of streaming machine learning models. These datasets are the
following:

• airlines.arff: 7 features, 539 383 instances, 1 target of 2 classes. The task
consists in predicting whether a flight will be delayed or not.

• covtypeNorm.arff: 54 features, 581012 instances, 1 target of 7 classes. It contains
the forest cover type for 30x30 meter celles obetained from US Forest Service (USFS)
Region 2 Resource Information System (RIS) data.

• elecNormNew.arff: 8 features, 45312 instances, 1 target of 2 classes. The data
is collected from the Austrian Electricity Market. The task consists in predicting
whether the price of electricity will increase or decrease, relative to a moving average
of the last 24 hours. Each sample refers to a period of 30 minutes.

• GMSC.arff: 10 features, 150000 instances, 1 target of 2 classes. This data comes
from the Give Me Some Credit Kaggle competition. The task consists in predicting
whether a loan will be paid back or not.

• kdd99.arff: 41 features, 4898431 instances, 1 target of 23 classes. This data comes
from the KDD Cup 1999 competition. The task consists in predicting the type of
cyber attack, among 23 different types.

• spam_corpus.arff: 39916 features, 9324 instances, 1 target of 2 classes. The task
consists in predicting whether an email is a spam or not.

3.6.3. Algorithms

The algorithms used are the same as those presented in Section 3.4.2, namely
HoeffdingTree, HoeffdingAdaptiveTree, NaiveBayes, OzaBag, OzaBagAdwin, and
LeveragingBag. 10 HoeffdingTree base learners were used for OzaBag, OzaBagAdwin,
and LeveragingBag.



3| Objectives and Proposed Approach 37

Algos. HT, HAT, NB, OB, OBA, LB
Generators Agrawal, SEA, RBF (Drift), LED (Drift), Random Tree,

WaveForm (Drift)

#inst. 500k per experiment

Seeds 10 per key [algorithm, generator, MOA version]

Repetitions 30 per key [algorithm, générateur, MOA version, seed]

Table 3.7: Group 1 experiments post quantization.

3.6.4. Experiments

The experiments were conducted in three groups. The first group, Group 1, proposes con-
figurations without extra concept drift in addition to those produced by data generators
(e.g., with RBF Drift, LED Drift, or WaveForm Drift). The second group, Group 2, gath-
ers configurations with hand-crafted concept drifts, including gradual and abrupt ones.
Finally, Group 3 includes all the experiments conducted on real datasets. This last group
aims at confirming the consistency of the results of Group 1 and Group 2.

Group 1

The whole Group 1 includes 18 000 experiments ( 6 algorithms x 10 generators x 10 seeds
x 30 repetitions per seed ) with both tinyMOA and tinyMOA-lite, i.e., 36000 experiments
in total, see Table 3.7. The objective is to compare, for each key [algorithm, generator],
the performance of tinyMOA and tinyMOA-lite. Each key retrieves 600 experiments, 300
for tinyMOA and 300 for tinyMOA-lite.

Group 2

Group 2 consists of 12600 experiments ( 6 algorithms x 2 generators x 6 concept drift
types x 10 seeds x 15 repetitions per seed) for both tinyMOA and tinyMOA-lite, i.e., 21600
experiments in total. In this case, the objective is to compare, for each key [algorithm,
generator, concept drift type] the results obtained with tinyMOA and tinyMOA-lite. Each
key retrieves 300 experiments, 150 for tinyMOA and 150 for tinyMOA-lite.
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Algos. HT, HAT, NB, OB, OBA, LB

Generator SEA, Agrawal
Concept drift
types

[1AD] 1 abrupt drift (k=250000, w=1)
[3AD] 3 abrupt drifts (w1,w2,w3=1, k1=125000, k2=250000, k3=375000)
[MAD] Multiple abrupt drifts (w1,w2,w3=1, k1=125000, k2=250000,
k3=375000)
[1GD] 1 gradual drift (w=100000, k=250000)
[2GD] 2 gradual drifts (w1=50000, w2=25000, k1=175000, k2=300000)
[MMD] Multiple mixed drifts (w1=50000, w2=1, w3=50000, k1=125000,
k2=250000, k3=375000)

#inst. 500k per experimentation

Seeds 10 per key [algorithm, generator, concept drift type, MOA version]

Repetitions 15 per key [algorithm, generator, concept drift type, MOA version, seed]

Table 3.8: Group 2 Experiments post quantization.

Details are provided in Table 3.8, with w the width of the drift and k the position of
the center of the drift. The difference between [MAD] and [3AD] as concept drift types,
although the structure of the drifts is the same, resides in the order of the distributions
used.

Group 3

Group 3 includes experiments conducted on six real datasets, some with highly complex
data structures composed of hundreds of features, and others with simple structures and
larger numbers of data points. For each real dataset, the six usual algorithms are run,
with a certain number of repetitions to limit noise in the results, see Table 3.9.

Seeds, Repetitions and Permutations

Seeds are numbers used by pseudo-random algorithms, themselves used by the data gen-
erators. They correspond to the input of the pseudo-random number generation function.
Using multiple seeds for the same experiment configuration limits the bias related to data
generation itself, which is emphasized when the generated data with the default seed leads
to an execution that is not representative of the true performance of the model.

Repeating the same experiments multiple times also limits the bias, related this time to
external factors, in particular those due to the operating system, e.g., the load of the
system, memory availability, etc.
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Dataset Algos. Repetitions

airlines.arff HT HAT NB,
OB OBA LB

30 tinyMOA and 30 tinyMOA-lite
15 tinyMOA, 15 tinyMOA-lite

covtypeNorm.arff HT HAT NB,
OB OBA LB

30 tinyMOA and 30 tinyMOA-lite
15 tinyMOA, 15 tinyMOA-lite

elecNormNew.arff HT HAT NB OB OBA LB 30 tinyMOA and 30 tinyMOA-lite

GMSC.arff HT HAT NB OB OBA LB 30 tinyMOA and 30 tinyMOA-lite

kdd99.arff HT HAT NB OB OBA LB 15 tinyMOA and 15 tinyMOA-lite

spam_corpus.arff HT HAT NB OB OBA LB 15 tinyMOA and 15 tinyMOA-lite

Table 3.9: Group 3 Experiments post quantization.

Between each repetition, cached data is flushed to limit the impact of previous executions.
All permutations of order between tinyMOA and tinyMOA-lite are also implemented to
limit these shared memory issues.

Recap

Two groups of experiments with synthetically generated data are carried out to compare
the performance of tinyMOA and tinyMOA-lite. Group 1 includes experiments without
added concept drift. Group 2 includes experiments with added concept drifts of different
types. Finally, Group 3 consists of experiments on a bunch of six real datasets, to ensure
the consistency of the previous results.

3.6.5. Outliers Detection

The first stage of data processing, after collecting the results, consists in removing outliers
along the throughput dimension. Outliers are data points that probably do not belong to
the population, and may distort further analyses. They can be caused by external factors
to the algorithm, related to the execution environment. The aim is not simply to keep
the average results but to keep all the results that probably belong, to some extent, to
the population. In other words, an important aspect of this step is to carefully review the
data so as not to delete any data that comes from the population. Several base methods
were considered: N min and max, the Boxplot method, and the Z-score method.
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N Min and Max

N min and max tackles the outliers problem by removing the N best and N worst results.
This method is simple to implement but does not guarantee the removal of outliers or the
preservation of results that probably belong to the population.

Boxplot Method

The Boxplot method consists in removing the values that are lower than Q1− 1.5 ∗ IQR

and higher than Q3 + 1.5 ∗ IQR, where Q1 and Q3 are quartiles 1 (25%) and 3 (75%),
and IQR is the interquartile range. This method is more robust than the previous one
even though it still does not guarantee the removal of outliers nor the preservation of
results that probably belong to the population of results. This method works well for
data following a normal distribution but can be unsuitable for other distributions, for
example, if there are several distinct clusters in the data. This method was often too
restrictive by removing too many results (around 3%), mainly because part of the results
were not gaussian-like distributed.

Z-Score Method

The Z-score method consists in removing the results that are not included in the interval
around the mean, defined by :

[x̄− 3 ∗ σ, x̄+ 3 ∗ σ]

where x̄ is the mean, and σ the standard deviation. This method is based on the as-
sumption that the data follows a normal distribution, in which case this interval includes
99.7% of the theoretical population.

Adopted Method

The finally adopted method to remove outliers is a mix of the N min and max and Z-Score

methods, detailed in Algorithm 4.4. A Shapiro-Wilk statistical test is first executed to
determine whether the data follows a normal distribution (null-hypothesis), defined by
Eq. 3.2,

W =
(
∑n

i=1 aixi)
2∑n

i=1(xi − x̄)2
(3.2)

where xi is the i-th value, x̄ the mean, and ai a coefficient given by a table according to
the sample size. W is then compared to a table of values which returns the thresholds
at 5% to reject or not the null-hypothesis. The p-value can also be calculated with
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Algorithms

Hoeffding Trees Hoeffding Tree, Hoeffding Adaptive Tree

Naive Bayes Naive Bayes

Ensemble Methods OzaBag, OzaBag Adwin, Leveraging Bagging

Table 3.10: Algorithm subgroups considered for aggregation.

dedicated algorithms (e.g., the Royston algorithm). Above a certain threshold, the data
is considered as normally distributed and is filtered with the Z-score method to set
parameter N for the final step. Then N min and max method is applied at the very end,
with a default value for parameter N if the previous condition was not met, so that the
couple of samples from tinyMOA and tinyMOA-lite have the same size, based on the one
with the most detected outliers. This method leads to the removal of 0.5% of the data.

3.6.6. Performance Dimensions

Accuracy, throughput, and memory consumption were chosen as performance dimensions
for these experiments. Some additional statistics also provide a more accurate view of the
limitations of the results. The accuracy is a dimension of the model performance while
the throughput and the memory consumption are meta dimensions that give insights into
the execution itself.

Results are aggregated at different levels to provide a complete analysis at different lev-
els of granularity. They can be aggregated by individual experiment configuration, by
algorithm, or by groups of algorithms where algorithms are mainly grouped into three
subgroups, as described in Table 3.10.

Accuracy and Statistics

Accuracy, as presented in Section 2.1.4, is the metric that calculates the proportion of
correct predictions. Within the streaming machine learning framework, this measure must
be updated incrementally. An incremental formula is given by Eq. 3.3, where yi is the
prediction of the i-th instance, and accuracyi is the accuracy after the i-th instance.

accuracyn = accuracyn−1 +
1

n
· (yn − accuracyn−1) (3.3)

The accuracy aggregations are performed as follow:
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• Extract for each experiment configuration the mean accuracy of tinyMOA and
tinyMOA-lite. A configuration is identified by the key [generator, algorithm, seed]
for Group 1, the key [generator, algorithm, concept drift type, seed] for Group 2

and the key [dataset, algorithm] for Group 3.

• Calculate the desired comparative statistics, such as the average gain, the Pearson
correlation coefficient, the mean absolute error, etc., for each pair of results.

• Aggregate gains and statistics with the desired granularity.

The aggregated results are therefore averages of ratios, not ratios of averages. Gains are
first computed per key and then averaged. This choice was motivated by the desire to give
each experiment configuration the same importance, independently from absolute values,
and also to avoid compensations between results.

Individual key accuracy gain is calculated as stated in Eq. 3.4.

Gainaccuracy =
AccuracytinyMOA−lite

AccuracytinyMOA

− 1 (3.4)

It gives an idea of the loss of precision induced by the quantization.

The first additional statistic is the Pearson correlation coefficient, which measures the
linear correlation between two random variables. The formula is as in Eq. 3.5, where xi

and yi are the i-th values of the two variables, and x̄ and ȳ their mean. The value of r is
between -1 and 1, and indicates the linear correlation between the two variables.

rpearson =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(3.5)

The second one is the mean absolute error (MAE) and is calculated as in Eq. 3.6, where
xi and yi are the i-th values of the two variables. The value of MAE is between 0 and 1,
and indicates the average of the absolute error between the two variables.

MAE =
1

n

n∑
i=1

|xi − yi| (3.6)

Finally are computed the average of the maximums absolute errors, which simply averages
the largest absolute error in precision across all experiment configurations, and the max-
imum of the maximums absolute errors, which returns the largest absolute error across
all experiment configurations.
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Throughput and Statistics

For the throughput dimension, aggregations follow a similar pattern as for the accuracy,
except that seeds are not considered individually. The process is as follows:

• Extract for each experiment configuration the throughputs of tinyMOA-lite and
tinyMOA. A configuration is identified by the key [generator, algorithm] for Group 1,
the key [generator, algorithm, concept drift type] for Group 2, and the key [dataset,
algorithm] for Group 3. Each key retrieves the results of the corresponding repeti-
tions and seeds.

• Apply the adopted method for the removal of the outliers.

• Calculate the desired statistics to compare both versions, such as the average quan-
tization gain or the Welch’s t-test p-value.

• Aggregate gains and statistics with the desired granularity.

This time, averages must be computed as harmonic means because throughputs are them-
selves ratio, where the numerator (number of instances) is common to all experiment rep-
etitions and seeds for a configuration key. The harmonic mean is computed as in Eq. 3.7,
where xi is the i-th throughput value, and n the number of throughputs. The aggregated
results are also averages of ratios.

x̄ =
n∑n
i=1

1
xi

(3.7)

Individual key throughput gain is calculated as follows in Eq. 3.8.

Gain =
ThroughputtinyMOA−lite

ThroughputtinyMOA

− 1 (3.8)

Ideally, the gain is positive indicating a performance improvement by the quantized ver-
sion.

In addition to the average gain are calculated:

• The minimum gain across the seeds of a configuration key [algorithm, generator]
for Group 1, [algorithm, generator, concept drift type] for Group 2 and [algorithm,
dataset] for Group3.

• The maximum gain across the seeds of a configuration key.

• The Welch’s t-test p-value, which is a statistical test with a null hypothesis that
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states that two samples have the same mean. This variant of the Student’s t-
test allows to compare two samples with unequal variance. The objective is to
ensure that the differences in performance between tinyMOA and tinyMOA-lite are
statistically significant.

Memory Consumption and Statistics

To measure memory consumption, MOA provides in its execution report a measure in
RAM.Hours which multiplies the execution time in nanoseconds and the memory con-
sumption in MB. The results are aggregated in the same way as for throughputs, de-
tailed in the previous Section 3.6.6, except that the arithmetic mean is initially used
instead of the harmonic mean to average results across repetitions and seeds. The gain
in RAM.Hours is calculated as in Eq. 3.9.

Gain =
RAM.HourstinyMOA−light

RAM.HourstinyMOA

− 1 (3.9)

Ideally, the gain should be negative, meaning a gain in performance for the quantized
version. In addition to the average gain are calculated:

• The minimum gain (the worst, i.e., the largest in absolute value) among the seeds
of a configuration key.

• The maximum gain (the best, i.e. the smallest in absolute value) among the seeds
of a configuration key.

3.7. tinyMOA Quasi-quantization

The last task of this thesis, also related to the improvement study and the quantization
part, consists in proposing a quasi-quantized version of tinyMOA, which with a minimum
of 64-bit variables proposes a perfectly similar execution to the non-quantized version.
The objective is to keep the advantages of quantization, i.e., a lighter execution while
generating the very same solution as the non-quantized version. This problem mainly
concerns decision trees and adaptive models. As in streaming machine learning the exe-
cution is sequential, as soon as the quantized version makes a different decision (choice
of the splitting variable, concept drift detection etc.) from the non-quantized version, the
execution may diverge and the solution proposed by the quantized version, in the end, is
no longer the same as the one proposed by the non-quantized version.

For adaptive algorithms, the impact of the parameter delta of ADWIN was a possible devel-
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opment axis. The idea is to compare the results of adaptive models for different values of
delta and to see if it is possible to obtain more similar results between the quantized ver-
sion and the original version with the optimal delta. In a second phase, a quasi-quantized
version of tinyMOA was compiled, after backtracking all causes of differences between
the quantized and the non-quantized version, for models using HoeffdingTree and/or
ADWIN. The quasi-quantized version, with a minimum of 64-bit variables, must propose
a perfectly identical execution to the non-quantized version for the algorithms subject
to differences in the solution structure, i.e., HoeffdingTree, HoeffdingAdaptiveTree,
OzaBag, OzaBagAdwin and LeveragingBag.

3.7.1. Delta Tuning

For adaptive models, the results in terms of accuracy are affected by the number of
detections triggered by the concept drift detector, ADWIN in this case. Indeed, adaptive
models proceed to heavy modifications of their structure when a concept drift is detected.
Streaming machine learning model execution is sequential, thus a modification results in
a different execution from the non-quantized version. The delta parameter of ADWIN is a
parameter controlling the concept drift detection sensitivity.

1 p r i va t e boolean blnCutexpress ion ( i n t n0 , i n t n1 , double u0 , double u1 ,
2 double v0 , double v1 , double absvalue , double de l t a ) {
3 i n t n = getWidth ( ) ;
4 double dd = Math . l og (2 ∗ Math . l og (n) / de l t a ) ; // High de l t a => smal l dd
5 double v = getVar iance ( ) ;
6 double m = (( double ) 1 / ( ( n0 − mintMinWinLength + 1 ) ) ) +
7 ( ( double ) 1 / ( ( n1 − mintMinWinLength + 1 ) ) ) ;
8 double e p s i l o n = Math . s q r t (2 ∗ m ∗ v ∗ dd) + ( double ) 2 / 3 ∗ dd ∗ m;
9 // Small dd => smal l e p s i l o n

10 boolean r e s u l t = (Math . abs ( absvalue ) > ep s i l o n ) ;
11 re turn r e s u l t ; // Small e p s i l o n => more r e s u l t s be ing True
12 }

Listing 3.1: Code snippet of the ADWIN concept drift detector.

As shown in Listing 3.1, the higher the value of delta, the more sensitive the concept drift
detector. Starting from this observation, the idea is to compare the results obtained with
the quantized version and the original version of tinyMOA, tuned with the optimal delta
for each experiment. The optimality criterion is the mean accuracy, and the optimal
delta value is obtained by a grid search, where the values of delta are tested on an
interval of values with a certain step.
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Algos. HT, HAT, NB, OB, OBA, LB

Generators Agrawal, SEA, RBF, LED, Random Tree, WaveForm

#inst. 100k per experiment

Seeds 5 per key [algorithm, generator, MOA version]

Repetitions 5 per key [algorithm, generator, MOA version, seed]

Table 3.11: Experiments without added concept drift after quasi-quantization.

3.7.2. Quasi-quantization

For the quasi-quantization phase, the main goal is to minimize the use of 64-bit variables.
To determine the causes of differences between the quantized and the non-quantized ver-
sion, an example with LeveragingBag was analyzed, and the causes of differences were
backtracked using static lists and counters, useful for observing the execution flow in de-
tail. It turned out that in order to get two identical executions, different modifications
of the source code were necessary. An important number of 64 bits variables had to be
reintroduced. In summary, the following modifications were necessary:

• the LeveragingBag class, for calculations related to the Poisson distribution, used
for online bagging,

• of the HoeffdingTree class, for all the computations related to the split decisions
and to the choices at Naive Bayes Adaptive leaves,

• of the ADWIN class, for computations related to concept drift detection,

• of the NaiveBayes class, for computations related to numerical attributes using
Gaussian distributions.

Quasi-quantization was thus only possible at the cost of many 64-bit variables, resulting in
a new compiled file tinyMOA-quasi-lite. Experiments were conducted to assess whether
some of the benefits of quantization were still valid. Two groups of experiments were
conducted, following the same principle as previously. One group focuses on experiments
without added concept drift, which are detailed in Table 3.11, and the other group focuses
on experiments with added concept drift, detailed in Table 3.12. Each experiment is run
with tinyMOA and tinyMOA-quasi-lite. w is the width of the drift and k the position
of the center of the drift.
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Algos. HT, HAT, NB, OB, OBA, LB

Generator SEA, Agrawal
Concept drift
types

[1AD] 1 abrupt drift (k=250000, w=1)
[MAD] Multiple abrupt drifts (w1,w2,w3=1, k1=125000, k2=250000,
k3=375000)
[1GD] 1 gradual drift (w=100000, k=250000)
[MMD] Multiple mixed drifts (w1=50000, w2=1, w3=50000, k1=125000,
k2=250000, k3=375000)

#inst. 100k per experimentation

Seeds 5 per key [algorithm, generator, concept drift type, MOA version]
Repetitions 5 per key [algorithm, generator, concept drift type, MOA version, seed]

Table 3.12: Experiments with added concept drift after quasi-quantization.
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This chapter focuses on the main scripts, algorithms, and leveraging technologies of this
thesis. It follows the same order as the previous chapter 3. The first section focuses on
the Raspberry Pi simulation part, including the emulators themselves and the conducted
experiments using the benchmarks and MOA. The second section focuses on the quanti-
zation of tinyMOA, including the conducted experiments, the outliers detection methods
and the results aggregation strategies. Finally, the third and last section focuses on the
quasi-quantization part, including delta fine-tuning and a couple of important scripts for
the extraction of results. Only the main scripts or algorithms are presented for each
section.

4.1. Raspberry Pi Simulation Implementation

4.1.1. Emulators

The first task consisted in implementing the emulators of the Raspberry Pi 2b,
Raspberry Pi 3b+, and Raspberry Pi 4b, using QEMU as leveraging technology. To
automate the deployment of such emulators, bash scripts are used along with Docker

containers. Docker containers isolate the emulators from the host system along with
their dependencies, to ensure that the environment is the same at each run. This solu-
tion was adopted since the Raspberry Pi 2b emulator leverages QEMU v2.9.0 while the
Raspberry Pi 3b+ and Raspberry Pi 4b emulators leverage QEMU v6.2.0, and each ver-
sion of QEMU requires a different set of dependencies. Docker containers provide a solution
to this problem at a low cost in terms of performance.

Each emulator is associated with a Dockerfile, which contains the instructions to build
the image of the corresponding container, as shown with the example of Listing 4.1, and a
bash script to download the operating system, download the right version of QEMU, process
the operating system iso file with qemu-img, and run Docker, as shown with the example
of Listing 4.2. After the execution of each script, the corresponding emulator is ready for
use, and the emulated terminal is directly accessible.
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1 FROM ubuntu : 2 0 . 0 4
2 ARG DEBIAN_FRONTEND=non in t e r a c t i v e
3
4 # Create u s e f u l d i r e c t o r i e s
5 RUN mkdir /home/ rasp i3b
6 RUN mkdir /home/ rasp i3b /boot3b
7
8 # Copy in the conta ine r qemu , the operat ing system and the u s e f u l f i l e s f o r qemu
9 COPY ./ s r c / ra sp i3b /image−raspi3b−r e s i z ed −8G. img /home/ rasp i3b /

10 COPY ./ s r c / ra sp i3b /qemu−6 . 2 . 0 . ta r . xz /home/ rasp i3b /
11 COPY ./ s r c / ra sp i3b /boot3b/ ke rne l 8 . img /home/ rasp i3b /boot3b/
12 COPY ./ s r c / ra sp i3b /boot3b/bcm2710−rp i −3−b−plus . dtb /home/ rasp i3b /boot3b/
13
14 RUN apt−get update −y
15 RUN apt−get i n s t a l l xz−u t i l s −y
16
17 # Unzip qemu
18 WORKDIR /home/ rasp i3b
19 RUN tar −xvJf . / qemu−6 . 2 . 0 . ta r . xz
20
21 # I n s t a l l dependenc ies
22 RUN apt−get i n s t a l l −y gcc make ninja−bu i ld pkg−c on f i g l i b g l i b 2 .0−dev
23 RUN apt−get i n s t a l l −y libpixman−1−dev l i b c a i r o 2 −dev l ibpango1 .0−dev
24 l i b jp eg8 −dev l i b g i f −dev ;
25 RUN apt−get i n s t a l l −y python l i b f d t −dev ;
26 RUN apt−get i n s t a l l −y l i b g t k2 .0−dev ;
27 RUN apt−get update −y && apt−get upgrade −y ;
28
29 # Build and compi le qemu
30 WORKDIR /home/ rasp i3b /qemu−6.2 .0
31 RUN mkdir bu i ld
32 WORKDIR /home/ rasp i3b /qemu−6.2.0/ bu i ld
33 RUN . . / c on f i gu r e −−target− l i s t=aarch64−softmmu , arm−softmmu
34 RUN make −j ‘ nproc ‘
35
36 WORKDIR /home/ rasp i3b

Listing 4.1: Dockerfile used for the Raspberry Pi 3b+ emulation.
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1 i f [ [ $1 = "−b" ] ] ; then # Build the docker image
2 # Create u s e f u l d i r e c t o r i e s
3 mkdir s r c
4 mkdir s r c / ra sp i3b
5
6 # Download the Raspberry Pi opera t ing system
7 apt−get update −y
8 apt−get i n s t a l l −y wget unzip
9 wget " https : // downloads . r a spbe r ryp i . org / raspios_arm64/ images / \

10 raspios_arm64 −2022−01−28/2022−01−28− ra sp io s −bu l l s eye −arm64 . z ip " −P ./ s r c / ra sp i3b
11 cd . / s r c / rasp i3b
12
13 # Unzip the opera t ing system
14 unzip 2022−01−28− ra sp io s −bu l l s eye −arm64 . z ip
15 IMAGE=‘ f i nd . / −name ’ 2∗ . img ’ ‘
16
17 # Mount the opera t ing system and ex t r a c t the ke rne l and the dev i ce t r e e
18 l o s e tup −f −−show −P $IMAGE > loop . txt
19 LOOPDIR=$ ( cat loop . txt )
20 LOOPDIRMODIF=$LOOPDIR"p1"
21 mkdir /mnt/ rp i
22 mount $LOOPDIRMODIF /mnt/ rp i
23 mkdir . / boot3b
24 cp −r /mnt/ rp i /∗ . / boot3b
25 umount /mnt/ rp i
26 l o s e tup −d $LOOPDIR
27
28 # Res ize the opera t ing system with qemu−img
29 apt−get i n s t a l l −y qemu−u t i l s
30 cp $IMAGE ./ image−raspi3b−r e s i z ed −8G. img
31 qemu−img r e s i z e " image−raspi3b−r e s i z ed −8G. img" 8G
32 wget https : // download . qemu . org /qemu−6 . 2 . 0 . ta r . xz
33 cd . . / . . /
34 export DOCKER_BUILDKIT=1
35
36 # Build the docker image
37 docker bu i ld −t ra sp i3b −f Docke r f i l e −ra sp i3b .
38 docker run −p 2222:2222 −−name rasp i3b − i t −d rasp i3b
39
40 e l s e # Just s t a r t the conta ine r
41 docker s t a r t ra sp i3b ;
42 f i
43
44 # Execute the QEMU command with in the conta ine r to s t a r t the emulator
45 docker exec − i t ra sp i3b /bin /bash −c \
46 " . / qemu−6.2.0/ bu i ld /aarch64−softmmu/qemu−system−aarch64 −m 1024 −M rasp i3b \
47 −cpu cortex−a53 −smp 4 −ke rne l . / boot3b/ ke rne l 8 . img
48 −dtb . / boot3b/bcm2710−rp i −3−b−plus . dtb \
49 −dr iv e f i l e =./ image−raspi3b−r e s i z ed −8G. img , i f=sd , format=raw \
50 −append ’ rw ear lycon=pl011 , 0 x3f201000 conso l e=ttyAMA0 l o g l e v e l=8 \
51 root=/dev/mmcblk0p2 f s c k . r e p a i r=yes net . i fnames=0 rootwa i t memtest=1’ \
52 −dev i ce usb−net , netdev=net0 −netdev user , id=net0 , ipv4=on , hostfwd=tcp : :2222 − :22 \
53 −nographic "

Listing 4.2: Deployment bash script for the Raspberry Pi 3b+ emulator.
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4.1.2. Experiments with MOA

The experiments conducted with MOA on the emulators come from the official MOA tutorials
and the publication [4]. Thus, there are two groups of experiments, and three distinct
parts in the implementation: tutorial 1, tutorial 5, and the paper experiments. For each
part, two bash scripts are used. One for the installation of MOA along with the calls to
the different experiments. This script is the one executed by the user and an example is
given in Listing 4.3. The other script includes the experiments themselves, implemented
with MOA (or tinyMOA) commands. An example is shown in Listing 4.4.

1 whi l e ge topt s i : opt ion
2 do
3 case "${ opt ion }"
4 in
5 i ) i n s t a l l=${OPTARG} ; ; # I n s t a l l a t i o n opt ion
6 esac
7 done
8
9 i f [ [ $ i n s t a l l = " f u l l " ] ] ; then

10 mkdir Tuto r i a l s 1
11 # Download MOA i n s t a l l a t i o n s c r i p t from the Github r epo s i t o r y
12 wget " https : // raw . g i thubuse rcontent . com/ franckdeturchedura / te s ina −SML−raspberryPI / \
13 main/2_MOA/ s c r i p t s / installMOA . sh" −O installMOA . sh
14 apt−get i n s t a l l −y dos2unix
15 dos2unix installMOA . sh
16 bash i n s t a l l −MOA. sh
17 # Download exper iments execut ion s c r i p t from the Github r epo s i t o r y
18 wget " https : // raw . g i thubuse rcontent . com/ franckdeturchedura / te s ina −SML−raspberryPI / \
19 main/2_MOA/ s c r i p t s / Tuto r i a l s 1 / e x e r c i c e s . sh" −O Tuto r i a l s 1 / e x e r c i c e s . sh
20
21 e l i f [ [ $ i n s t a l l = " j r e " ] ] ; then # Just i n s t a l l the JRE
22 apt−get update
23 apt−get i n s t a l l −y de fau l t −j r e
24
25 e l s e
26 echo "Execution with in c loned r epo s i t o r y " ;
27 f i
28
29 # Execute the 5 exper iments o f Tuto r i a l 1
30 cd Tuto r i a l s 1
31 apt−get i n s t a l l −y dos2unix
32 dos2unix e x e r c i c e s . sh
33 read −p "Enter your dev i ce name : " DEVICENAME
34 echo $DEVICENAME | bash . / e x e r c i c e s . sh −n 1
35 echo $DEVICENAME | bash . / e x e r c i c e s . sh −n 2
36 echo $DEVICENAME | bash . / e x e r c i c e s . sh −n 3
37 echo $DEVICENAME | bash . / e x e r c i c e s . sh −n 4
38 echo $DEVICENAME | bash . / e x e r c i c e s . sh −n 6

Listing 4.3: Bash script for MOA installation and experiments calls for Tutorial 1.
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1 # Create a l l the nece s sa ry d i r e c t o r i e s and va r i a b l e s .
2 cd . . / s r c
3 MOADIR=’moa ’
4 cd $MOADIR
5 MOAJAR=’ . /moa . j a r ’ # or . / tinyMOA . j a r
6 SIZEOFFAG=‘ f i nd . / −type f −name ’ s i z e o f a g ∗ . j a r ’ ‘
7 read −p "Enter your dev i ce name : " DEVICENAME
8 BASEDIR=’ . . / . . / Tuto r i a l s 1 ’
9 mkdir $BASEDIR/ r e s u l t s

10 mkdir $BASEDIR/ r e s u l t s /$DEVICENAME
11
12 whi l e ge topt s n : opt ion
13 do
14 case "${ opt ion }"
15 in
16 n)number=${OPTARG} ; ; # Number o f the experiment to execute
17 esac
18 done
19
20 i f [ [ $number = 1 ] ] ; then # Execute the corre spond ing MOA commands
21 java −cp $MOAJAR −javaagent : $SIZEOFFAG moa . DoTask \
22 "EvaluateInter leavedTestThenTrain − l t r e e s . Hoef fd ingTree \
23 −s g ene ra to r s . RandomTreeGenerator \
24 − i 1000000 −f 10000" > $BASEDIR/ r e s u l t s /$DEVICENAME/ex1_HoeffdingTree . csv
25 # Resu l t s are d i r e c t l y saved as a csv f i l e with in the r e s u l t s d i r e c t o r y .
26 java −cp $MOAJAR −javaagent : $SIZEOFFAG moa . DoTask \
27 "EvaluateInter leavedTestThenTrain − l bayes . NaiveBayes \
28 −s g ene ra to r s . RandomTreeGenerator \
29 − i 1000000 −f 10000" > $BASEDIR/ r e s u l t s /$DEVICENAME/ex1_NaiveBayes . csv
30
31 e l i f [ [ $number = 2 ] ] ; then
32 java −cp $MOAJAR −javaagent : $SIZEOFFAG moa . DoTask \
33 "EvaluateInter leavedTestThenTrain − l t r e e s . Hoef fd ingTree \
34 −s g ene ra to r s . RandomTreeGenerator \
35 − i 1000000 −f 10000" > $BASEDIR/ r e s u l t s /$DEVICENAME/ex2_IntervealedTestThenTrain . csv
36
37 # . . . and so on un t i l the end o f the t u t o r i a l , i . e . , 5 exper iments
38
39 e l s e
40 echo "nothing to execute " ;
41 f i

Listing 4.4: Bash script with Tutorial 1 experiments.

The experiments conducted, after this part on the physical Raspberry Pi 4b, are the
same as the ones conducted on the emulators. Consequently, the same bash scripts were
used.
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4.2. Quantization Implementation

In the quantization part, many components were implemented because it was important
to obtain statistically robust results to confirm or not the potential gain provided by the
quantization. That is why in addition to the experiments, tools such as outliers detection
methods and aggregation strategies were implemented.

4.2.1. Experiments

The first step was to run the MOA experiments, with a more complex procedure than the one
used for the emulators. Each experiment is repeated multiple times, with different seeds
for synthetic generators, and different permutations between tinyMOA and tinyMOA-lite

to avoid any conflict or optimization between runs. There are three groups of experiments,
each one associated with its own execution flow.

The three groups of experiments have each two bash scripts associated, used in the same
way as for the emulators. A script is executed by the user, it ensures that the environ-
ment allows to run MOA and calls the other script that contains the different tinyMOA (or
tinyMOA-lite) commands.

Group 1 is the one that focuses on experiments without added concept drifts. The exe-
cution pseudocode is detailed in Algorithm 4.1. The algorithms and generators abbrevia-
tions used (lines 1-3) refer to the same concepts as described in Chapter 3. The function
createResultPath (line 13) creates the relative path where results are stored as csv files.
The path is composed of the components of the configuration, i.e., the algorithm, the gen-
erator, the seed, and the repetition counter value. The function InterlTestTrain (line
14) refers to the streaming machine learning execution function, that takes as input the
model to be trained, the generator, the number of instances to be processed, the evalua-
tion frequency evaluation, and the tinyMOA version to use between the quantized and the
non-quantized one. The evaluation method is InterleavedTestThenTrain.
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Algorithm 4.1 Pseudocode of Group 1 experiments execution
1: algos← {HT,HAT,NB,OB,OBA,LB}
2: generators← {RandomTree,RBF,RBFDrift, LED,LEDDrift,

WaveForm,WaveFormDrift, Agrawal,Hyperplane, SEA}
3: seeds← {1456985, 2547893, 3547812, 4865791, 5478963,

628941, 7854226, 8541277, 9854753, 9658741}
4: permutations← {moalite,moa,moa,moalite,moalite,moa}
5: for each gen ∈ generators do
6: for each seed ∈ seeds do
7: for each algo ∈ algos do
8: cnt← 0

9: while i < loop do
10: for each moaType ∈ permutations do
11: Drop caches
12: gen← set seed to gen

13: resultPath← createResultPath(algo, gen, seed, cnt)

14: result← InterlTestTrain(algo, gen, inst, freq,moaType)

15: Write result to csv file resultPath

16: i← i+ 1

17: end for
18: end while
19: end for
20: end for
21: end for

Group 2 is the one that focuses on experiments with hand-crafted concept drifts. The
execution pseudocode is provided in Algorithm 4.2. This time there are only two gen-
erators, and an additional loop to switch between the different concept drift types. The
functions are the same as the ones described for Group 1.
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Algorithm 4.2 Pseudocode of Group 2 experiments execution
1: algos← {HT,HAT,NB,OB,OBA,LB}
2: generators← {Agrawal, SEA}
3: seeds← {1456985, 2547893, 3547812, 4865791, 5478963,

628941, 7854226, 8541277, 9854753, 9658741}
4: conceptDrifts← {1AD, 1GD, 2GD, 3AD,MAD,MMD}
5: permutations← {moalite,moa,moa,moalite,moalite,moa}
6: for each gen ∈ generators do
7: for each seed ∈ seeds do
8: for each algo ∈ algos do
9: for each cd ∈ conceptDrifts do

10: cnt← 0

11: while i < loop do
12: for each moaType ∈ permutations do
13: Drop caches
14: gen← set seed to gen

15: resultPath← createResultPath(algo, gen, seed, cd, cnt)

16: result← InterlTestTrain(algo, gen, cd, inst, freq,moaType)

17: Write result to csv file resultPath

18: i← i+ 1

19: end for
20: end while
21: end for
22: end for
23: end for
24: end for

Group 3 focuses on experiments with real datasets. The execution pseudocode is detailed
in Algorithm 4.3. The principle is the same as for the experiments of Group 1, but
generators are replaced with real datasets. The functions used are still the same and the
datasets (line 2) are the one introduced in Chapter 3.
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Algorithm 4.3 Pseudocode of Group 3 experiments execution
1: algos← {HT,HAT,NB,OB,OBA,LB}
2: datasets← {airlines, covTypeNom, elecNormNew,GMSC, kdd99, spamcorpus}
3: permutations← {moalite,moa,moa,moalite,moalite,moa}
4: for each dataset ∈ datasets do
5: for each algo ∈ algos do
6: cnt← 0

7: while i < loop do
8: for each moaType ∈ permutations do
9: Drop caches

10: resultPath← createResultPath(algo, dataset, cnt)

11: result← InterleavedTestTrain(algo, dataset, inst, freq,moaType)

12: Write result to csv file resultPath

13: i← i+ 1

14: end for
15: end while
16: end for
17: end for

4.2.2. Results Processing

Outliers Detection

Once the results were collected, the next step was to process and analyze them. To
remove outliers, a mix between two methods was used, as shown in Algorithm 4.4. To
summarize, the Z-Score method, presented in Algorithm 4.5, is used when a statistical
test shows evidence that the sample follows a normal distribution. In this case, all points
that are more than 3 standard deviations away from the mean are considered outliers.
Otherwise, a default number of outliers n is assigned for the last step. Finally, the
n min and max method, see Algorithm 4.6, is used to make both the quantized and non-
quantized samples have the same size, based on the one with the most detected outliers.
The configurations are the different combinations of hyperparameters that define the
experiments. Each configuration is a key [algorithm, generator] for Group 1, [algorithm,
generator, concept drift type] for Group 2, and [algorithm, dataset] for Group 3. The
retrieveResults function retrieves all the results for a given configuration and a given
version of tinyMOA (either tinyMOA or tinyMOA-lite). The number of retrieved results
depends on the number of repetitions and seeds for a given configuration and tinyMOA

version. resultstinyMOA and resultstinyMOA−lite are sets of throughputs, which is the
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considered dimension for outliers removal. The function testShapiroWilk returns the
p-value of the statistical Shapiro-Wilktest, which null-hypothesis states that the sample
follows a normal distribution. The threshold value 1e−5 was chosen empirically as the
value that rejects for sure only the non-gaussian distributed samples for these experiments.

Algorithm 4.4 Pseudocode of the outliers detection method
1: function removeOutliers(configurations,n)
2: r ← n

3: for each configuration ∈ configurations do
4: resultstinyMOA ← retrieveResults(configuration, tinyMOA)

5: resultstinyMOA−lite ← retrieveResults(configuration, tinyMOA− lite)

6: if testShapiroWilk(resultstinyMOA) > 1e−5 then
7: rtinyMOA ← |zScore(resultstinyMOA)|
8: else
9: rtinyMOA ← r

10: end if
11: if testShapiroWilk(resultstinyMOA−lite) > 1e−5 then
12: rtinyMOA−lite ← |zScore(resultstinyMOA−lite)|
13: else
14: rtinyMOA−lite ← r

15: end if
16: r ← max(rtinyMOA, rtinyMOA−lite)

17: outlierstinyMOA ← nMinMax(resultstinyMOA, rtinyMOA)

18: outlierstinyMOA−lite ← nMinMax(resultstinyMOA−lite, rtinyMOA−lite)

19: Remove outlierstinyMOA from resultstinyMOA

20: Remove outlierstinyMOA−lite from resultstinyMOA−lite

21: end for
22: Return resultstinyMOA, resultstinyMOA−lite

23: end function

In Algorithm 4.5, which details the Z-Score algorithm, the function mean computes the
mean of the sample and the function std computes the standard deviation of the sample.
In the N min and max Algorithm 4.6, the function min(results, n) returns the value of
the n-th smallest value of the sample. Similarly, the function max(results, n) returns the
value of the n-th largest value of the sample.
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Algorithm 4.5 Pseudocode of the Z-score outliers detection method
1: function zScore(results)
2: thresholdinf ← mean(results)− 3 ∗ std(results)
3: thresholdsup ← mean(results) + 3 ∗ std(results)
4: outliers← ∅
5: for each result ∈ results do
6: if result < thresholdinf or result > thresholdsup then
7: outliers← outliers ∪ result

8: end if
9: end for

10: Return outliers

11: end function

Algorithm 4.6 Pseudocode of the N min and max outliers detection method
1: function nMinMax(results,n)
2: thresholdinf ← min(results, n)

3: thresholdsup ← max(results, n)

4: outliers← ∅
5: for each result ∈ results do
6: if result ≤ thresholdinf or result ≥ thresholdsup then
7: outliers← outliers ∪ result

8: end if
9: end for

10: Return outliers

11: end function

Aggregation Strategies

To aggregate the results, considering the three chosen performance dimensions (accuracy,
memory, and throughput), from each individual repetition to the overall performance,
specific strategies were set up. granularity defines which experiment configurations must
be aggregated, such that:
granularity ∈ {All,HoeffdingTrees,NaiveBayes, EnsembleMethods}. Details about
configurations for each dimension are provided in Section 3.4.6. Algorithm 4.7 shows the
accuracy aggregation strategy. retrieveConfigurations retrieves all the configurations for
a certain granularity, while retrieveExperiments retrieves all the experiments associated
with a configuration, which cardinality depends on the number of seeds and/or repetitions.
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Algorithm 4.7 Pseudocode of the accuracy aggregation strategy
1: meanAccuraciestinyMOA ← ∅
2: meanAccuraciestinyMOA−lite ← ∅
3: meanAccuracyGains← ∅
4: configurations← retrieveConfigurations(granularity)

5: for each configuration ∈ configurations do
6: experiments← retrieveExperiments(configuration)

7: for each exp ∈ experiments do
8: meanAccuraciestinyMOA ← exp.meanAccuracytinyMOA

9: meanAccuraciestinyMOA−lite ← exp.meanAccuracytinyMOA−lite

10: end for
11: gain← Mean(meanAccuraciestinyMOA−lite)

Mean(throughputstinyMOA)

12: meanAccuracyGains← meanAccuracyGains ∪ gain

13: end for
14: aggregatedResult←Mean(meanAccuracyGains)

Algorithm 4.8 shows the throughput aggregation strategy. The last performance dimen-
sion, memory consumption in RAM.Hours, uses this same algorithm, with arithmetic
means instead of harmonic means.

Algorithm 4.8 Pseudocode of the throughput aggregation strategy
1: throughputstinyMOA ← ∅
2: throughputstinyMOA−lite ← ∅
3: throughputGains← ∅
4: configurations← retrieveConfigurations(granularity)

5: for each configuration ∈ configurations do
6: experiments← retrieveExperiments(configuration)

7: for each exp ∈ experiments do
8: throughputstinyMOA ← exp.throughputtinyMOA

9: throughputstinyMOA−lite ← exp.throughputtinyMOA−lite

10: end for
11: gain← HarmonicMean(throughputstinyMOA−lite)

HarmonicMean(throughputstinyMOA)

12: throughputGains← throughputGains ∪ gain

13: end for
14: aggregatedResult←Mean(throughputGains)
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4.3. Quasi-quantization Implementation

For the quasi-quantization part, the first step was to fine-tune the delta hyperparameter
for ADWIN, to compare the results between the quantized and non-quantized versions for
the optimal delta. The grid search function takes as input the experiment configurations
for which the optimal delta is to be found and returns the corresponding list of optimal
values. Algorithm 4.9 details it. The criterion considered is the mean accuracy and
a configuration is simply the key [algorithm, generator, seed] for Group 1, [algorithm,
generator, concept drift type, seed] for Group 2, and [dataset, algorithm] for Group 3.
runExp runs the experiment for a given configuration and delta with either tinyMOA or
tinyMOA-lite. It returns the associated mean accuracy, which is the optimality criterion.
Obviously, this part only concerns configurations that make use of adaptive models with
ADWIN.

Algorithm 4.9 Pseudocode of the delta grid search
1: function deltaGridSearch(configurations)
2: deltas← {0.00001, 0.00005, ..., 1}
3: deltas∗tinyMOA ← ∅
4: deltas∗tinyMOA−lite ← ∅
5: for each conf ∈ configurations do
6: resultsconf,tinyMOA ← ∅
7: resultsconf,tinyMOA−lite ← ∅
8: for each delta ∈ deltas do
9: resulttinyMOA,delta ← runExp(conf, delta, tinyMOA)

10: resulttinyMOA−lite,delta ← runExp(conf, delta, tinyMOA− lite)

11: end for
12: delta∗conf,tinyMOA = argmaxdelta∈deltas(resultsconf,tinyMOA)

13: delta∗conf,tinyMOA−lite = argmaxdelta∈deltas(resultsconf,tinyMOA−lite)

14: deltas∗tinyMOA ← deltas∗tinyMOA ∪ delta∗conf,tinyMOA

15: deltas∗tinyMOA−lite ← deltas∗tinyMOA−lite ∪ delta∗conf,tinyMOA−lite

16: end for
17: Return deltas∗tinyMOA, deltas∗tinyMOA−lite

18: end function

In a second part, a quasi-quantized version of tinyMOA was compiled. For this purpose,
the tinyMOA-lite source code was modified thanks to static lists and counters which
were used to backtrack the causes of the differences in the execution of the quantized and
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non-quantized version. Some important code snippets are the ones that allow to extract
these counters and lists from the text file results. They are presented in Listing 4.5 and
Listing 4.6.

1 de f get_counter ( resu l tPath , counterName ) :
2 counter = 0
3 with open ( resu l tPath , ’ r ’ ) as f i l e :
4 f o r l i n e in f i l e :
5 i f l i n e . s t a r t sw i t h ( ’ counterName ’ ) :
6 counter = in t ( l i n e . s p l i t ( ’ ’ ) [ −1 ] )
7 re turn counter

Listing 4.5: Pseudocode of the static counters extractor.

1 de f get_l i s t_from_str ing ( l i s t_ s t r i n g ) :
2 r e s_ l i s t = [ ]
3 ind_start = [ i f o r i , ind in enumerate ( l i s t_ s t r i n g ) i f ind == ’ [ ’ ] [ 0 ]+1
4 ind_end = [ i f o r i , ind in enumerate ( l i s t_ s t r i n g ) i f ind == ’ ] ’ ] [ 0 ]
5 r e s_ l i s t_ s t r i n g = l i s t_ s t r i n g [ ind_start : ind_end ]
6 r e s_ l i s t_ s t r i n g = r e s_ l i s t_ s t r i n g . s p l i t ( ’ ’ )
7 t ry :
8 f o r elem in r e s_ l i s t_ s t r i n g :
9 #de l e t e a l l ’ , ’ from elem

10 elem = elem . r ep l a c e ( ’ , ’ , ’ ’ )
11 r e s_ l i s t . append ( f l o a t ( elem ) )
12 except :
13 p r i n t ( ’ Fa i l ed to f i nd the l i s t . ’ )
14 re turn r e s_ l i s t

Listing 4.6: Pseudocode of the static lists extractor.
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This chapter presents the results of all the different experiments presented in Chapter 3.
They follow the same order and correspond to the described configurations. To keep the
thesis readable, only the main results or some representative ones are presented here.

5.1. Raspberry Pi Simulation Results

5.1.1. Benchmarks Results

First will be presented the results of the benchmarks executed on the emulators, as de-
tailed in Section 3.3.2. The benchmarks are divided between memory and CPU perfor-
mance evaluation, and between single thread or multi threads execution. Each bench-
mark is composed of one or several compiled files (or operations). The emulators of the
Raspberry Pi 3b+ and the Raspberry Pi 4b were used, as the benchmarks results of
the physical devices are presented in paper [38]. The objective is to compare the emu-
lators’ results with the corresponding physical devices results, to estimate and calibrate
the emulators’ performance. For each benchmark, two main results are presented:

• the first interesting one is the ratio between the emulator and its corresponding
physical device performance, both for the Raspberry Pi 3b + and the Raspberry

Pi 4b. The aggregation procedure across operations for a benchmark is as described
in Eq. 5.1, where Nop is the number of operations of benchmark, Emulatorop,rpi is
the performance result of the rpi emulator for the operation op of benchmark and
Physicalop,rpi is the performance result of the physical device rpi for the operation
op of benchmark.

∀benchmark ∈ {Whetstone,Dhrystone, ...}

∀operation ∈ benchmark

∀rpi ∈ {Rpi3b+, Rpi4b}

Ratiobenchmark,rpi =
1

Nop

×
∑

op∈benchmark

Emulatorop,rpi
Physicalop,rpi

(5.1)
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• the second interesting one is the performance ratio of the Raspberry Pi 3b + with
the Raspberry Pi 4b, to determine whether the Raspberry Pi 4b benefits are
worth its extra cost on the one hand, and to make sure that the emulators’ results
are consistent with physical ones on the other hand. The aggregation procedure
across operations for a benchmark is as described in Eq. 5.2, where Nop is the
number of operations of benchmark, RPi3b+op,env is the performance result of the
env for the operation op of benchmark and RPi4bop,env is the performance result of
the env for the operation op of benchmark..

∀benchmark ∈ {Whetstone,Dhrystone, ...}

∀operation ∈ benchmark

∀env ∈ {Emulator, Physical}

Ratiobenchmark,env =
1

Nop

×
∑

op∈benchmark

RPi3b+op,env

RPi4bop,env

(5.2)

All the mentioned physical results on Physical Raspberry Pi 3b+ and Physical

Raspberry Pi 4b come from paper [38]. Detailed benchmarks results are included in
Appendix A to keep this chapter compact.

Single Thread CPU Benchmarks

Single thread CPU benchmarks include sequentially executed operations. Absolute re-
sults, before ratio computations, are expressed in MFLOPS (Millions of Floating Point
Operations Per Second) or MIPS ( Millions of Instructions Per Second), see Appendix A.

Figure 5.1: Performance ratio emulation/physical for single thread CPU benchmarks.
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Figure 5.2: Performance ratio RPi3b+/RPi4b for single thread CPU benchmarks.

Figure 5.1 follows the principle of equation 5.1 and presents the ratio between physical
and virtual environments both for the Raspberry Pi 3b + and the Raspberry Pi 4b.
The Raspberry Pi 3b+ emulator shows performance between 20% and 50% of those of
the physical device, with an average of 33.2%. The Raspberry Pi 4b emulator shows
performance between 10% and 45% of the physical device, with an average of 24.4%.

Figure 5.2 follows the principle of equation 5.2 and presents the performance ratio be-
tween the Raspberry Pi 3b + and the Raspberry Pi 4b both for the physical and vir-
tual environments. Both environments show a ratio between 1.5 and 3 in favor of the
Raspberry Pi 4b, with an average of 2.35 for the physical environment and 1.57 for the
virtual one. These results demonstrate a certain consistency of the emulators’ perfor-
mance with respect to the physical boards’ ones, which is a good sign that they preserve
the differences and orders of magnitude between their target devices.

Multiple Threads CPU Benchmarks

Multiple threads CPU benchmarks operations are executed with a certain degree of par-
allelism, over multiple threads. Absolute results are still expressed in MFLOPS or MIPS,
before being used for ratio, as it concerns CPU performance.

Figure 5.3 follows the principle of equation 5.1. The Raspberry Pi 3b + emulator shows
results between 15% and 35% of the physical device, with an average of 20.8%. The
Raspberry Pi 4b emulator shows results between 10% and 45% of the physical device,
with an average of 21.8%, which is close to the single thread CPU benchmarks performance
(with 24.4%).
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Figure 5.3: Performance ratio emulation/physical for single thread CPU benchmarks.

Figure 5.4: Performance ratio emulation/physical for single thread CPU benchmarks.

Figure 5.4 follows the principle of equation 5.2. The obtained ratios are between 1.4 and
2.5 in favor of the Raspberry Pi 4b, for both the physical and emulated environments,
with 2.17 on average for the physical environment and 1.64 for the virtual one. Once
again, the results show a great consistency between both environments.

Single Thread Memory Benchmarks

Memory benchmarks aim at measuring memory performance, in particular the capacity
of the device to access and read data in cache and memory. The absolute results of
the different operations, before being used to compute ratios, are expressed in MB/s.
The single thread memory benchmarks include operations where the data must be read
sequentially in cache and memory.
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Figure 5.5: Performance ratio emulation/physical for single thread Memory benchmarks.

Figure 5.6: Performance ratio emulation/physical for single thread Memory benchmarks.

Figure 5.5 follows the principle of equation 5.1. The Raspberry Pi 3b + emulator shows
results between 25% and 100% of the physical device, with an average of 50.3%. The
Raspberry Pi 4b emulator shows results between 10% and 70% of the physical device,
with an average of 33%.

Figure 5.6 follows the principle of equation 5.2. The obtained ratios are comprised between
1.5 and 3 in favor of the Raspberry Pi 4b, with an average of 2.56 for the physical
environment and 1.58 for the virtual one.

Multiple Threads Memory Benchmarks

Multiple threads memory benchmarks consist of operations executed with a certain degree
of parallelism, where the ability of the device to access and read data from different
segments of the memory is evaluated.
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Figure 5.7: Performance ratio emulation/physical for multiple thread Memory
benchmarks.

Figure 5.8: Performance ratio emulation/physical for multiple thread Memory
benchmarks.

Figure 5.7 follows the principle of equation 5.1. The Raspberry Pi 3b + shows results
between 45% and 100% of the physical device, with an average of 64%. The emulator of
the Raspberry Pi 4b shows results between 35% and 160% of the physical device, with
an average of 70.8%.

Figure 5.8 follows the principle of equation 5.2. The results show ratios between 1.2 and 4
in favor of the Raspberry Pi 4b, for both the physical and emulated environments, with
an average of 2.13 for the physical environment and 2.32 for the virtual one.
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Recap

The Raspberry Pi 3b+ emulator produces CPU performance around 27% of the physical
device, and the emulator of the Raspberry Pi 4b shows CPU performance around 23%
of the physical device. Consequently, we can roughly estimate, when it comes to executing
MOA on the emulators, that the corresponding physical performance is approximately 3
to 5 times better. Concerning memory performance, although they are less interesting
regarding the MOA experiments conducted in this thesis as data is mainly synthetically
generated on the fly, the Raspberry Pi 3b+ emulator shows performance around 55% of
the physical device, and the Raspberry Pi 4b emulator shows performance around 50%
of the physical device.

Another important aspect that follows these results is the way the Raspberry Pi 4b

outperforms the Raspberry Pi 3b+, around 2.2 faster on average for CPU performance
and 1.6 times for memory performance. It gives a first strong insight that the ben-
efits of choosing the Raspberry Pi 4b are worth its extra cost in comparison to the
Raspberry Pi 3b+. This gain in performance is relatively consistent between the physi-
cal and virtual environments, which indicates that the emulators behave similarly to the
physical devices to a certain extent, with a loss factor. This ends the first step of the
suitability analysis as it gives an overview of the emulators’ performance.

5.1.2. Emulators Results with MOA

After the emulators were evaluated and calibrated with the benchmarks, the time came to
conduct the prepared bunch of experiments with MOA on these emulators. There are two
groups of experiments, including the group implementing Tutorial 1 and Tutorial 5,
and the group implementing the paper [4] experiments. While the results of the first group
show the emulators’ performance in absolute values, the results of the second group are
particularly interesting as the paper [4] also details those on Raspberry Pi 4b, admittedly
with the special configuration described in Section 2.4, but still providing a relatively
precise overview of the physical board performance. Each group of experiments was run
with MOA and tinyMOA to also evaluate the potential performance gain of the compact
version.
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Figure 5.9: Emulators throughputs for Tutorial 1 experiments.

Tutorial 1

This section’s results come from the experiments detailed in Table 3.3. Figure 5.9 includes
the throughputs obtained with the Raspberry Pi 3b+ and Raspberry Pi 4b emulators.
These absolute values confirm that Raspberry Pi devices are able to run MOA with rea-
sonable performance, i.e., that satisfy the requirements for certain applications. The
Raspberry Pi 3b+ emulator runs MOA with throughputs between 300 instances/sec and
25k instances/sec, depending on the model, the evaluation method or the generator. The
Raspberry Pi 4b emulator runs MOA with throughputs between 800 instances/sec and
45k instances/sec. Ensemble methods perform worse than decision trees or naive Bayes,
which is consistent as ensemble methods are more computationally intensive.

As expected, the Raspberry Pi 4b emulator performs better. Figure 5.10 demonstrates
that the Raspberry Pi 4b emulator performs between 1.5 and 2.8 times faster, in terms
of throughputs than the Raspberry Pi 3b+ emulator. This confirms very well the results
obtained with the CPU benchmarks.
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Figure 5.10: Comparison of the RPi3b+ and RPi4b emulators throughputs for the
Tutorial 1 experiments.

Tutorial 5

This section’s results come from the experiments detailed in Table 3.4. Figure 5.11 in-
cludes the throughputs obtained with the Raspberry Pi 3b+ and Raspberry Pi 4b em-
ulators. Once again, the Raspberry Pi 4b performs better than the Raspberry Pi 3b+.
The Raspberry Pi 3b+ emulator runs MOA with throughputs between 100 instances/sec
and 10k instances/sec, depending on the configuration.

Figure 5.11: Emulators throughputs for the Tutorial 5 experiments.



72 5| Results

Figure 5.12: Comparison of the RPi3b+ and RPi4b emulators throughputs for the
Tutorial 5 experiments.

The Raspberry Pi 4b emulator runs MOA with throughputs between 250 instances/sec
and 20k instances/sec. Observation made on ensemble methods for Tutorial 1 also applies
in this case.

Figure 5.12 shows that the Raspberry Pi 4b emulator performs between 1.8 and 2.9
times better, in terms of throughput than the Raspberry Pi 3b+ emulator. This also
confirms the results obtained with the CPU benchmarks.

TinyMOA

The idea was to try out the tinyMOA implementation with Tutorial 1 and 5 experiments
and compare the results with the ones obtained with MOA. For embedded use, such a
compact version is expected to provide gains in performance, as it is lighter than the
original version, and the limited resources aspect of the Raspberry Pi should amplify this
phenomenon.

Figure 5.13 shows the emulators’ throughputs with both tinyMOA and MOA. The aggrega-
tion across subgroups, as defined in Table 3.10, is performed to keep the figure readable
and the comparison easier. Significant improvements are observed by using tinyMOA,
especially for the Raspberry Pi 3b+ emulator, which is consistent with the fact that it
embeds only 1GB of RAM, while the Raspberry Pi 4b emulation embeds 4GB of RAM.
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Figure 5.13: Emulators throughputs for experiments ran with MOA and tinyMOA.

Figure 5.14: Comparison of the RPi3b+ and RPi4b emulators with tinyMOA.
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And indeed, Figure 5.14 shows that the Raspberry Pi 4b emulator benefits less, around
1.6 times faster, from the use of tinyMOA than the Raspberry Pi 3b+, around 2.3
times faster on average. Consequently, tinyMOA reduced the gap between both emu-
lators, although the Raspberry Pi 4b still provides significant gain with respect to the
Raspberry Pi 3b+.

Paper Experiments

Paper [4] experiments results have the big advantage to be accompanied by those of
the physical Raspberry Pi 4b. Even though Kafka and Parsl were used to manage
the execution, it gives a good insight into the performance of the Raspberry Pi 4b.
Only Exp 3 results are presented here. The other experiments tend to produce the same
conclusions and are included in Appendix B.

Exp 3 results, see Figure 5.16, 5.15 show that the Raspberry Pi 4b emulator reaches
between 20% and 48%, with an average of 32% of the Raspberry Pi 4b physical board
performance. By selecting the synthetically generated datasets, this interval is reduced to
[20%,38%], which is very consistent with the results of the CPU benchmarks. By selecting
the only real dataset, stored as an arff file, the same emulator reaches 48% of the physical
performance, which is also consistent with both the CPU and memory benchmarks as
data is read in memory in this case. Memory benchmarks gave a performance of 50% on
average, with a maximum of 100%, of the physical board, while CPU benchmarks were
sticking around 23%, within an interval of [10%, 45%].

Figure 5.15: Emulators throughputs for
Exp 3.

Figure 5.16: Comparison of emulators
and RPi4b performance on Exp 3.
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5.1.3. Simulation Conclusions

Tutorial 1 and 5 experiments results confirm that it is possible to run MOA on Raspberry
Pi devices. The Raspberry Pi 4b is the best candidate, with a very significant gain, on
average 2.2 times better than the Raspberry Pi 3b+ for CPU performance and 1.6 times
better for memory performance. The tinyMOA version also provides a significant gain in
terms of performance, especially for the Raspberry Pi 3b+, which is consistent with the
fact that it embeds less memory. The paper [4] experiments results tend to confirm the
validity of the benchmarks results used for calibration with the benchmarks. All these
observations finally confirm the feasibility of the project, i.e., the ability of the Raspberry
Pi to run MOA, likely with reasonable performance. This ends the second step of the first
axis of the project, the suitability analysis.

5.2. Raspberry Pi Results with MOA

Once the simulation part confirmed the ability of the Raspberry Pi to run MOA, a phys-
ical Raspberry Pi 4b was used to run Tutorial 1 and 5 experiments. This last step of
the suitability analysis aims at validating the simulation results and providing absolute
values to describe and give an overview of the physical board performance with the main
streaming machine learning algorithms implemented in MOA. In addition, the same exper-
iments were conducted on a Desktop computer, as described in Section 3.5, to evaluate
the difference in performance between a high-performance computing resource and the
Raspberry Pi 4b.

5.2.1. Tutorial 1

With Tutorial 1, the Raspberry Pi 4b delivers throughputs between 3500 and 250k
instances/sec, while the Desktop delivers throughputs between 11000 and 770k in-
stances/sec, see Figure 5.17. More in detail, ensemble methods perform the worst, with
a throughput arithmetic mean of 5000 instances/sec for the Raspberry Pi and 21000
instances/sec for the Desktop. Naive Bayes performs the best with a throughput arith-
metic mean of 194000 instances/sec for the Raspberry Pi and 576000 instances/sec for
the Desktop. Finally, the Hoeffding Trees subgroup reaches 47000 instances/sec for the
Raspberry Pi and 222000 instances/sec for the Desktop.
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Figure 5.17: RPi4b and Desktop throughputs for Tutorial 1 experiments.

Figure 5.18: Comparison of the RPi4b and the Desktop for Tutorial 1 experiments.
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The Raspberry Pi 4b is on average around 23.7% of the Desktop throughput, see Fig-
ure 5.18, which is a good result considering the difference in cost and size between the
two platforms. With such results, a large panel of edge applications may be considered
to be executed on the Raspberry Pi, within the throughputs limits presented before.

5.2.2. Tutorial 5

With Tutorial 5, the Raspberry Pi 4b delivers throughputs between 800 and 100k in-
stances/sec, while the Desktop delivers throughputs between 5000 and 500k instances/sec,
see Figure 5.19. More in detail, ensemble methods perform the worst, with a throughput
arithmetic mean of 942 instances/sec for the Raspberry Pi and 5400 instances/sec for the
Desktop. Naive Bayes performs the best with a throughput arithmetic mean of 86000
instances/sec for the Raspberry Pi and 413000 instances/sec for the Desktop. Finally, the
Hoeffding Trees subgroup reaches 51000 instances/sec for the Raspberry Pi and 213000
instances/sec for the Desktop.

The Raspberry Pi 4b is on average around 21.1% of the Desktop throughput, see Fig-
ure 5.20, which is consistent with the observations made in Tutorial 1.

Figure 5.19: RPi4b and Desktop throughputs for Tutorial 5 experiments.
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Figure 5.20: Comparison of the RPi4b and a Desktop for Tutorial 5 experiments.

5.2.3. Suitability Analysis Conclusions

This step ends the suitability analysis of the thesis, which was the first main axis. The
simulation part’s first step with benchmarks confirmed the feasibility of the project to
run streaming machine learning algorithms on a Raspberry Pi device. The second step,
with MOA on emulators, gave insights into how well it would perform on physical device,
along with strong indications that the Raspberry Pi 4b is the best choice. Finally the
experiments conducted on a physical Raspberry Pi 4b confirmed the suitability of the
Raspberry Pi to run streaming machine learning algorithms, with throughputs around
22% of those of a high-performance computing resource, which is quite encouraging. The
next axis focuses on a way to improve MOA performance on Raspberry Pi 4b.

5.3. Quantization Results

The quantization results follow the same order as the experiments presented in Section 3.6.

5.3.1. Overview

The first results are presented in Table 5.1. This overview is the highest level of ag-
gregation. It shows the gain in terms of throughput, accuracy, and RAM.Hours for all
the experiments of Group 1 and Group 2. Group 3 results are presented independently
in Section 5.3.4, as they are used to ensure that the results obtained with synthetically
generated data are consistent with a bunch of real datasets. Aggregations were performed
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Accuracy RAM.Hours Throughput

-0.006% -5.94% +6.1%

Table 5.1: Quantization gains overview.

Overall Ensemble Methods Naive Bayes Hoeffding Trees

12k inst/sec 6.8k inst/sec 175k inst/sec 38k inst/sec

Table 5.2: Quantization throughputs overview.

as described in Algorithm 4.7 and Algorithm 4.8, in particular harmonic mean were used
for throughputs as they share the same numerator. In this way, averages correspond
to the throughput required to process the sum of all instances within the overall time.
Throughputs aggregations results are detailed in Table 5.2.

On average, the quantized version of tinyMOA is 6.1% faster in terms of throughput,
which is a significant gain. The accuracy is slightly worse than the original version with
a 0.0006% average loss, but it seems that the difference is bearable for most applications.

5.3.2. Results Group 1

For Group 1, as detailed in Tables 5.3 and 5.4, the quantized version of tinyMOA is
7.5% faster in terms of throughput, which is a significant gain. The accuracy is also
slightly worse than the original version. More in detail, no subgroup show very significant
differences in terms of accuracy. Even the Ensemble Methods subgroup, which is the
more prone to differences as models are more complex, with two of the three models
which are adaptive (OzaBagAdwin and LeveragingBag), shows a max difference among all
experiments at any point of 1.37%. All experiment configurations [algorithm, generator],
60 in total, show a significant gain in throughput, according to the Welch’s t-test over their
seeds and repetitions with a 95% confidence level. The throughput gain for each subgroup
is significant and no configuration has a negative throughput gain. This means that the

Accuracy RAM.Hours Throughput

-0.004% -7.46% +7.5%

Table 5.3: Quantization gains overview Group 1.
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Hoeffding Trees Naive Bayes Ensemble Methods

Accuracy Gain +0.5% -0.02% -1.2%

Pearson 99.5% 100% 99.9%

MAE 0.04% 0.0007% 0.03%

Mean max diff 0.09% 0.003% 0.09%

Max max diff 2.67% 0.02% 1.37%

RAM.Hours Gain -7.73% -6.7% -7.52%

Min gain -0.8% -2.4% -3.3%

Max gain -14.8% -10.8% -12.3%

Throughput Gain +9.95% +7.2% +8.2%

Min gain +1.1% +2.5% +3.37%

Max gain +13.4% +12.1% +%14.1

Mean p-value 0.1% 9.8e−66 8.6e−20
Significant (95%) 20/20 10/10 30/30

Table 5.4: Quantization results Group 1.

quantized version always performs better than the original version on the experiments of
Group 1.

5.3.3. Results Group 2

For Group 2, as detailed in Tables 5.5 and 5.6, the quantized version of tinyMOA is on
average 5% faster in terms of throughput, which is also a significant gain. This time
the loss in accuracy is higher than in Group 1, which is consistent with the fact that
these experiments include added concept drifts, which make the differences in execution
between the quantized and non-quantized less stable. Once again, the Ensemble Methods

subgroup is the most prone to differences in terms of accuracy, with a max difference
among all experiments at any point of 15.2% and an average loss of 2.7%. A max difference
of 30.9% can be noted for the Hoeffding Trees subgroup, which is not representative of
the global behavior of the subgroup. This value comes from a difference at a given point

Accuracy RAM.Hours Throughput

-0.8% -4.7% +5%

Table 5.5: Quantization gains overview Group 2.
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Hoeffding Trees Naive Bayes Ensemble Methods

Accuracy Gain +2.7% -0.01% -2.7%

Pearson 97.8% 100% 97.9%

MAE 0.56% 0.016% 0.51%

Mean max diff 2.72% 0.12% 2.94%

Max max diff 30.9% 0.5% 15.2%

RAM.Hours Gain -3.19% -5.26% -5.84%

Min gain +0.8% -3.9% -2.8%

Max gain -6.5% -6.2% -7%

Throughput Gain +3.54% +5.6% +6.2%

Min gain +1.5% +4.1% +2.9%

Max gain +5.4% +6.6% +7.5%

Mean p-value 0.2% 1.4e−32 3.8e−13
Significant (95%) 24/24 12/12 36/36

Table 5.6: Quantization gains overview Group 2.

after an abrupt drift, where one of the two versions responds faster than the original
version. This is typically the kind of difference stressed by the delta tuning part of the
quasi-quantization process 5.4.1. All experiment configurations [algorithm, generator,
concept drift type], 72 in total, show a significant gain in terms of throughput, according
to the Welch’s t-test over their seeds and repetitions with a 95% confidence level.

5.3.4. Results Group 3

Finally, the results for the experiments conducted on real datasets (Group 3) (see Ta-
ble 5.7) confirm the results obtained on synthetic data, with significant gains for the
quantized version. Depending on the data structure, with more or fewer features and dif-
ferent structure complexity, the quantization process leads to throughput gains between
2.1% and 13.9%. The accuracy loss is between 0% and 9.4%, which is also consistent with
the previous results, especially if the spam_corpus dataset is not considered, in which case
the accuracy loss is comprised between 0% and 0.3%. The spam_corpus is a very special
dataset, with a very high number of features (39916) which makes the Hoeffding Trees,
as well as Naive Bayes, very inefficient and makes a difference in the split choice between
the quantized and original versions very likely to happen, even with a small difference in
precision in the information gain.
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Accuracy Gain RAM.Hours Gain Throughput Gain

airlines.arff -0.04% -2.7% +3.9%

covtypeNorm.arff +0% -1.6% +4.2%

elecNormNew.arff -0.1% -4.5% +2.1%

GMSC.arff -0.1% -4.5% +2.1%

kdd99.arff -0.3% -8.8% +12.1%

spam-corpus.arff -9.4% -18.8% +13.9%

Table 5.7: Quantization gains overview Group 3.

5.4. Quasi-quantization Results

5.4.1. Delta Tuning

For the delta tuning task, the objective was to observe the effect of tuning the delta

hyperparameter of ADWIN, used by adaptive models such as HoeffdingAdaptiveTree,
OzaBagAdwin, or LeveragingBag. The quantization has for side effect of possibly creating
differences between the original model and the quantized model during the training phase.
Adaptive models are particularly affected as concept drift detection may cause major
changes in the model structure, such as a full branch replacement or a full base learner
replacement in the case of ensemble methods. An example of an interesting configuration
([LeveragingBag, SEAGenerator,1AD].) is shown in Figure 5.21, where the two versions
of tinyMOA react differently to an abrupt drift.

Figure 5.21: Example of an interesting configuration.
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Figure 5.22: Comparison of the accuracy with default and optimal delta for tinyMOA
and tinyMOA-lite.

Figure 5.22 shows that the optimal delta for both tinyMOA and tinyMOA-lite generates
different results than the default delta. The criterion used to select the best delta is the
mean accuracy.

By selecting the optimal delta, the two versions generate more similar results than with
the default delta. In the example shown in Figure 5.23, the mean absolute error changes
from 0.65% to 0.27%. However, this does not make the two executions perfectly similar,
which was the initial objective, as the differences may come from different causes than
the concept drift detector. This is the topic of the next and last part, where differences
are treated directly by reintegrating 64-bit variables in the source code.

Figure 5.23: Comparison of the accuracy of tinyMOA and tinyMOA-lite with default
and optimal delta.
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Accuracy Gain RAM.Hours Gain Throughput Gain

Overall -0.07% +2.1% -2.1%

No concept drift -0.2% +2.5% -2.4%

Concept drift +0% +1.8% -1.8%

Table 5.8: Quasi-quantization gains overview.

5.4.2. Quasi-quantization Results

As explained in Section 3.7.2, the quasi-quantization was applied at the cost of many
64-bit variables. In addition to these variables, additional mathematical operations were
required to keep some results in ranges that can be represented by 32-bit variables, for
instance with the power function. The consequence of these modifications is the loss of all
the quantization benefits, and more generally a loss of performance even in comparison
with the non-quantized version, as shown in Table 5.8. The presented results are the gain
of the quasi-quantized version against the non-quantized one.

It may be noticed that accuracy differences seem worst than the ones obtained with
basic quantization. The reason is that across quantization results, accuracy means can
compensate as in certain cases the quantized version execution leads to better mean
accuracy, while the quasi-quantized version proposes the same concept drift detections
and node splits as the original version and accuracy only suffers the lack of precision of
the remaining 32-bit variables.

These results lead to the conclusion that quasi-quantization is not a valid option as it
requires too many modifications to the quantized version, and even degrades the results
of the original version.
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6| Conclusions and Future

Developments

The ambition of this thesis was to explore the possibilities offered by the combination
of two domains, streaming machine learning, and embedded systems, which are bound,
if they are not already, to take a major place in the development of new intelligent
systems. The first axis of work, the suitability analysis of the Raspberry Pi to run
streaming machine learning algorithms, was carried out in three steps. First, Raspberry
Pi emulators were implemented to determine the feasibility of the project, and a set of
benchmarks was executed to calibrate them against the corresponding physical boards.
The series of experiments with MOA carried out confirmed the ability of the Raspberry
Pi to run these algorithms, to a reasonable extent that could be suitable for a number
of applications. In a second step, the same series of experiments were conducted on a
physical Raspberry Pi 4b 4GB board, in order to obtain exploitable results of the board’s
performance and compare them to the performance of a desktop computer. The second
axis of work consisted in studying the possibility of improving the execution performance
previously obtained, by using the quantization process on tinyMOA. The results showed
that quantization allows to improve execution performance with a relatively small loss
of precision. The results of this part contribute at their scale to the state of the art, by
proposing this new solution particularly advantageous for embedded systems. This second
axis also included a study of a compromise between the quantized and original versions,
with quasi-quantization, where the objective is to obtain a perfectly similar execution as
the original version, with as less 64-bit variables as possible. It appeared that this solution
loses all the benefits of quantization, and even more, gives worse performance than the
original version. Consequently, a choice has to be made between the original version with
its 64-bit precision, or more throughput with a quantized version with a bit less precision.

To go further, it would be interesting to quantize tinyMOA even more, using 32-bit or 16-bit
integer variables for example. Experiments with streaming machine learning algorithms
for unsupervised or regression tasks could also be implemented instead of the classification
ones. Finally, a new and more general development axis would be to reproduce these
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experiments with another embedded system, perhaps even more compact and less powerful
than the Raspberry Pi, or within another streaming machine learning framework such as
the River python library.
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All benchmarks are detailed in paper [4], where they come from.

A.1. Single Thread CPU Benchmarks

Whetstone

MWIPS FP1 FP2 FP3 COS EXP FIXPT EQUAL

Emulated RPi3b+ 393 139 109 151.6 6.13 6 705 660

Physical RPi3b+ 1071 383 403 328 20.9 12.4 1704 1357

Emulated RPi4b 547.9 256.7 167.5 208 8.52 8.51 721.8 892

Physical RPi4b 2269 522 534 398 54.8 39.8 2487 997

Table A.1: Whetstone benchmarks results in MFLOPS.

Dhrystone

VAX

Emulated RPi3b+ 675.6

Physical RPi3b+ 4028

Emulated RPi4b 1150.57

Physical RPi4b 8176

Table A.2: Dhrystone benchmarks results in MIPS.
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Linpack

DP SP NEON SP

Emulated RPi3b+ 83.57 109.62 116.19

Physical RPi3b+ 396.6 562.1 604.2

Emulated RPi4b 112.7 161.8 174.67

Physical RPi4b 1059.9 1977.8 1968.6

Table A.3: Linpack benchmarks results in MIPS.

Livermore

Max DP Avg DP Geomean DP Harmean DP Min DP

Emulated RPi3b+ 171.2 88.2 81.5 74.8 29.5

Physical RPi3b+ 737.7 319.4 284.7 250.6 91.6

Emulated RPi4b 264.6 126 115.3 104.9 42.1

Physical RPi4b 2490.5 892 730.3 603.3 212.4

Table A.4: Livermore benchmarks results in MFLOPS.

FFT

FFT1 SP FFT1 DP FFT3 SP FFT3 DP

Emulated RPi3b+ 158.75 478.15 106.27 141.87

Physical RPi3b+ 329.6 445.64 360.34 957.85

Emulated RPi4b 195.51 292.8 33.53 48.46

Physical RPi4b 253.71 462.44 233.73 261.28

Table A.5: FFT benchmarks results in MFLOPS.
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A.2. Multiple Threads CPU Benchmarks

MP Whetstone

MWIPS FP1 FP2 FP3 COS EXP FIXPT EQUAL

Emulated RPi3b+ 389.4 172.5 174.7 122.9 6.4 5.43 649.3 521.7

Physical RPi3b+ 1152 383 383 328 23.2 13 2721 1365

Emulated RPi4b 542.9 229.1 223.7 179.1 8.7 7.8 1142.7 819.9

Physical RPi4b 2395 536 538 397 60.8 39 4483 997

Table A.6: MP Whetstone benchmarks results for 1 thread in MFLOPS.

MWIPS FP1 FP2 FP3 COS EXP FIXPT EQUAL

Emulated RPi3b+ 787.8 325.2 315.1 266.8 12.3 11.86 1665.8 1055.3

Physical RPi3b+ 2312 767 767 657 46.5 26 5461 2738

Emulated RPi4b 1035.1 496.8 468.5 397 15.6 15.15 2174.1 1596.9

Physical RPi4b 4784 1062 1079 794 121.2 77.9 8932 1990

Table A.7: MP Whetstone benchmarks results for 2 threads in MFLOPS.

MWIPS FP1 FP2 FP3 COS EXP FIXPT EQUAL

Emulated RPi3b+ 1290.3 553.9 443 489.4 20.4 18 2348.3 1837.6

Physical RPi3b+ 4580 1506 1526 1304 92 51.6 10777 5449

Emulated RPi4b 1844.5 845.2 936.3 657.4 28.3 26.92 3469.9 2503.3

Physical RPi4b 9476 2125 2080 1568 240.8 155.3 17718 3962

Table A.8: MP Whetstone benchmarks results for 4 threads in MFLOPS.
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MWIPS FP1 FP2 FP3 COS EXP FIXPT EQUAL

Emulated RPi3b+ 1230.2 592.9 609.1 435.6 19 17.8 3632.3 1982.7

Physical RPi3b+ 4788 1815 1961 1382 95 53.3 13827 5811

Emulated RPi4b 1898.9 944.1 1028.3 679.2 28.6 28.52 4362.2 2907

Physical RPi4b 9834 2631 2744 1630 243.6 160.1 22265 4053

Table A.9: MP Whetstone benchmarks results for 8 threads in MFLOPS.

MP Dhrystone

VAX 1 thread VAX 2 threads VAX 4 threads VAX 8 threads

Emulated RPi3b+ 704 1065 1281 1250

Physical RPi3b+ 4207 6804 7401 7415

Emulated RPi4b 1445 1532 2089 2127

Physical RPi4b 8880 7828 8303 8314

Table A.10: MP Dhrystone benchmarks results in MIPS.

MP MFLOPS

MP MFLOPS Single Precision

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 124 120 116 138 143 150

Physical RPi3b+ 792 806 373 1780 1783 1724

Emulated RPi4b 211 197 185 222 219 212

Physical RPi4b 2908 2854 459 5778 5734 5405

Table A.11: MP MFLOPS Single Precision benchmarks results for 1 thread in MFLOPS.
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Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 302 311 210 316 334 303

Physical RPi3b+ 1482 1596 382 3542 3509 3380

Emulated RPi4b 368 353 363 414 391 377

Physical RPi4b 5700 5311 457 10935 11212 7968

Table A.12: MP MFLOPS Single Precision benchmarks results for 2 threads in MFLOPS.

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 398 364 347 476 465 432

Physical RPi3b+ 2861 2742 429 5849 7013 5465

Emulated RPi4b 418 488 441 663 676 666

Physical RPi4b 10375 5588 490 10181 21842 7637

Table A.13: MP MFLOPS Single Precision benchmarks results for 4 threads in MFLOPS.

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 321 326 342 463 463 461

Physical RPi3b+ 2770 2877 429 6434 6700 6101

Emulated RPi4b 427 615 554 628 705 692

Physical RPi4b 9675 8460 511 20128 20567 8568

Table A.14: MP MFLOPS Single Precision benchmarks results for 8 threads in MFLOPS.
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MP MFLOPS Double Precision

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 91 77 65 136 132 120

Physical RPi3b+ 415 386 209 1400 1403 1333

Emulated RPi4b 134 133 124 191 199 190

Physical RPi4b 1464 1386 225 3398 3386 3182

Table A.15: MP MFLOPS Double Precision benchmarks results for 1 thread in MFLOPS.

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 167 191 135 249 269 240

Physical RPi3b+ 820 813 209 2804 2767 2597

Emulated RPi4b 229 231 212 367 352 339

Physical RPi4b 2837 2792 228 6720 6741 4547

Table A.16: MP MFLOPS Double Precision benchmarks results for 2 threads in MFLOPS.

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 191 201 134 358 377 354

Physical RPi3b+ 1328 1323 212 5433 5340 2465

Emulated RPi4b 320 349 348 558 564 552

Physical RPi4b 5172 3414 251 10405 12762 4763

Table A.17: MP MFLOPS Double Precision benchmarks results for 4 threads in MFLOPS.
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Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 158 307 196 397 406 375

Physical RPi3b+ 1343 1308 214 5090 5006 3280

Emulated RPi4b 389 386 300 651 529 524

Physical RPi4b 4774 4353 275 11506 12118 4865

Table A.18: MP MFLOPS Double Precision benchmarks results for 8 threads in MFLOPS.

MP MFLOPS NEON

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 139 162 114 152 141 139

Physical RPi3b+ 830 823 406 2989 2986 2792

Emulated RPi4b 221 195 198 245 241 236

Physical RPi4b 331 3192 535 6442 6548 6198

Table A.19: MP MFLOPS NEON benchmarks results for 1 thread in MFLOPS.

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 308 227 181 262 264 293

Physical RPi3b+ 1575 1498 414 5981 5872 5445

Emulated RPi4b 396 421 339 468 445 462

Physical RPi4b 4607 6186 552 13030 13012 8468

Table A.20: MP MFLOPS NEON benchmarks results for 2 threads in MFLOPS.
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Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 435 358 312 416 437 407

Physical RPi3b+ 2217 2650 431 11661 11644 6061

Emulated RPi4b 557 523 499 797 791 710

Physical RPi4b 6279 5725 562 23798 24128 9374

Table A.21: MP MFLOPS NEON benchmarks results for 4 threads in MFLOPS.

Op1 12.8KB Op1 128KB Op1 12,8MB Op2 12.8KB Op2 128KB Op2 12.8MB

Emulated RPi3b+ 339 390 352 435 442 387

Physical RPi3b+ 2733 3197 437 10505 10637 6708

Emulated RPi4b 507 595 574 686 761 757

Physical RPi4b 7815 12044 486 22725 21712 9395

Table A.22: MP MFLOPS NEON benchmarks results for 8 threads in MFLOPS.

A.3. Single Thread Memory Benchmarks

BusSpeed

16KB 32KB 64KB 128KB 256KB 512KB 1MB 4MB 16MB 64MB

Emulated RPi3b+ 1554 1533 1546 2078 1929 1123 1345 1576 1631 1037

Physical RPi3b+ 3870 3674 3602 3625 3622 2790 1636 1840 1642 1864

Emulated RPi4b 2504 2530 2552 2428 2573 2526 2465 2285 1997 2085

Physical RPi4b 8217 7507 7918 7874 7883 7716 5721 4111 4115 4036

Table A.23: BusSpeed (Increment = 1) benchmarks results in MB/sec.
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16KB 32KB 64KB 128KB 256KB 512KB 1MB 4MB 16MB 64MB

Emulated RPi3b+ 2371 1892 2180 2209 2189 2011 1926 1639 848 1175

Physical RPi3b+ 5089 4082 3350 3238 3164 2085 1070 881 977 989

Emulated RPi4b 2594 2813 2838 2732 2817 2673 2546 2446 1650 1557

Physical RPi4b 5891 5154 5163 5161 5265 5124 3283 2009 2071 2023

Table A.24: BusSpeed (Increment = 2) benchmarks results in MB/sec.

Memory Speed

Op1 DP Op1 SP Op1 Int Op2 DP Op2 SP Op2 Int Op3 DP Op3 SP Op3 Int

Emul. RPi3b+ 521 444.9 1107.6 787.7 713.9 1240.9 645.5 652.2 625

Phy. RPi3b+ 2178.3 1862.6 2730.1 3586.5 2656.9 3177.7 3398.3 2985 2953.5

Emul. RPi4b 913.8 683.3 1845 1278.5 1092 1904.7 1184.3 1158.8 1165.5

Phys. RPi4b 9220.6 8480.5 7968.2 9226.2 8714.1 9115.36 7284.5 6489.6 5963

Table A.25: Memory Speed benchmarks results in MB/sec.

NEON Speed

Op1 normal Op1 NEON Op2 normal Op2 NEON Op3 Float Op3 Int

Emulated RPi3b+ 264.8 335 467.8 681.5 415.6 845.5

Physical RPi3b+ 1897.8 2949.2 2522.6 2815 3077.5 3113.1

Emulated RPi4b 419.3 574 613.5 1261.2 750.3 1344.7

Physical RPi4b 7396.7 8290 7061 7593. 8307.2 8429.8

Table A.26: NEON Speed benchmarks results in MB/sec.
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A.4. Multiple Threads Memory Benchmarks

MP BusSpeed

12.3KB 1T 12.3KB 2T 12.3KB 4T 12.3KB 8T 122KB 1T 122KB 2T

Emulated RPi3b+ 1004 1904 2270 2081 1287 1547

Physical RPi3b+ 1737 3361 6597 5195 1712 3387

Emulated RPi4b 1284 2472 2551 3016 1322 2438

Physical RPi4b 4221 7837 14794 13075 4152 8184

Table A.27: MPBusSpeed (Increment = 1) benchmarks results in MB/sec. - pt 1

122KB 4T 122KB 8T 122MB 1T 122MB 2T 122MB 4T 122MB 8T

Emulated RPi3b+ 2554 2809 911 557 1628 1341

Physical RPi3b+ 4372 6514 1363 2182 2158 2051

Emulated RPi4b 4524 3027 1305 2324 2825 2952

Physical RPi4b 14617 13633 3616 6228 3789 3577

Table A.28: MPBusSpeed (Increment = 1) benchmarks results in MB/sec. - pt 2

12.3KB 1T 12.3KB 2T 12.3KB 4T 12.3KB 8T 122KB 1T 122KB 2T

Emulated RPi3b+ 937 2345 1936 1659 918 2559

Physical RPi3b+ 1708 3303 6216 5350 1627 3268

Emulated RPi4b 1322 2384 2930 3032 1388 2276

Physical RPi4b 4115 7837 14794 13075 4152 8184

Table A.29: MPBusSpeed (Increment = 2) benchmarks results in MB/sec. - pt 1
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122KB 4T 122KB 8T 122MB 1T 122MB 2T 122MB 4T 122MB 8T

Emulated RPi3b+ 2634 3377 462 696 733 1144

Physical RPi3b+ 6427 6317 1016 946 975 1077

Emulated RPi4b 4255 4258 1165 1633 3054 3742

Physical RPi4b 14617 13633 3616 6228 3789 3577

Table A.30: MPBusSpeed (Increment = 2) benchmarks results in MB/sec. - pt 2
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Figure B.1: Emulators throughputs for
Exp 1.

Figure B.2: Comparison of emulators
and RPi4b performance on Exp 1.

Figure B.3: Emulators throughputs for
Paper Exp 2.

Figure B.4: Comparison of emulators
and RPi4b performance on Exp 2.
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Figure B.5: Emulators throughputs for
Paper Exp 4.

Figure B.6: Comparison of emulators
and RPi4b performance on Exp 4.
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