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Abstract
In this Thesis we propose new computationally efficient solutions to nonlinear, parameterized
time-dependent problems by means of reduced order models (ROMs). More specifically,
we propose fast and accurate approximations of elastodynamics problems arising in cardiac
mechanics. Being able to perform efficient numerical simulations in this context is indeed essential
to explore multiple virtual scenarios, to quantify cardiac outputs and related uncertainties,
as well as to evaluate the impact of pathological conditions. All these tasks call for repeated
model evaluations over different input parameter values, thus making usual high-fidelity, full
order models, such as those based on the finite element method, computationally prohibitive.
Alternative numerical methods have been developed aiming to compute reliable solutions
to parametric partial differential equations (PDEs) at a greatly reduced computational cost.
Among these, the reduced basis (RB) method represents a powerful and widely used technique,
characterized by a Galerkin projection of the problem onto a low-dimensional subspace and
by a splitting of the reduction procedure into a costly offline phase and an inexpensive online
phase. However, in the case of nonlinear problems, the online stage has a cost that still
depends on the high-fidelity dimension, as the assembling of the reduced operators requires the
reconstruction of the high-fidelity ones. In this Thesis we exploit the RB method, equipped with
hyper-reduction techniques for handling the nonlinear terms, for the solution to time-dependent
problems arising in cardiac mechanics, where the complex material behavior (the cardiac tissue)
is described by means of an exponentially nonlinear constitutive law accounting for the presence
of myocardial fibers. Some examples related to the use of hyper-ROMs in the multi-query
contexts of sensitivity analysis and parameter estimation are also given. Nonetheless, severe
challenges arise from the approximation of the nonlinear terms, usually requiring a large
number of basis functions to correctly capture their variability, thus compromising the overall
online efficiency of the ROM. To overcome the computational bottleneck of hyper-ROMs, we
develop a novel projection-based, deep learning-based, ROM, that we name Deep-HyROMnet.
The key idea is to combine the Galerkin-RB approach with deep neural networks (DNNs) to
approximate reduced nonlinear operators efficiently. Unlike data-driven strategies, for which
the predicted output is not guaranteed to satisfy the underlying PDE, Deep-HyROMnet is a
physics-based ROM, as it computes the problem solution by solving a reduced nonlinear system.
A further benefit of the proposed method lies on the fact that the inputs given to the DNNs
are low-dimensional arrays, so that overwhelming training times and costs can be avoided. We
show how our model outperforms classical hyper-ROMs (such as POD-Galerkin-DEIM ROMs
exploiting the discrete empirical interpolation method) in terms of computational speed-up for
the solution of a wide range of problems in nonlinear elastodynamics, still achieving accurate
results. Finally, we demonstrate the performances of Deep-HyROMnet on patient-specific
cardiac geometries involving about 127000 structural degrees of freedom, and consider the case
of a 3D mechanics model that is monolithically coupled to a 0D windkessel model for blood
circulation, to simulate the cardiac functions in both physiological and pathological scenarios.
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Introduction

Mathematical models involving partial differential equations (PDEs) are ubiquitous in applied
sciences and engineering, being able to describe a wide variety of phenomena, including the
complex mechanisms of cardiac physiology. Computer simulations reproducing in-silico heart
functions, both in physiological and in pathological scenarios, allow to investigate the impact
of various clinical conditions on the cardiac cycle, to explore potentially different surgical
procedures and to measure non-invasively clinical quantities of interest, thus providing a great
opportunity to improve diagnosis, provide real-time decision support and predict prognosis
[QMV17]. However, numerical simulations are usually hampered by severe computational costs,
which prevent their use in clinical practice.

Several models have been developed in the last decades to describe single or coupled cardiac
functions [Tra11; Nor+11; Cha+16; Hir+17; Qua+19; Zin+21], such as tissue mechanics,
blood dynamics and electrophysiology. The work of this Thesis is inspired by the mechanics
problem, which is governed by the equation of motion in elastodynamics, thus relying on finite
elasticity theory to describe the heart contraction and relaxation. Modeling the mechanics of
the cardiac tissue requires complex constitutive laws, characterized by an exponential strain
energy function and by the presence of muscular fibers and sheets. For this reason, the passive
myocardium is considered as an hyperelastic orthotropic material [GCM95], ultimately yielding
nonlinear mechanics problems to be solved. Furthermore, the heart muscle contracts after being
electrically activated without the need of an external load, so that the active behavior of the
tissue has to be properly taken into account.
Indeed, cardiac models depend on a large set of input parameters that are defined to

characterize, e.g., material properties, loads, boundary/initial conditions, source terms, or
geometrical features, and which influence the solution to the problem under investigation and
the associated outputs of interest, i.e. suitable quantities than depend on the problem solution
itself. The knowledge of these input values is often severely limited due to both the difficulties
in performing experiments and the uncertainty associated with their measurements; moreover,
some parameters are related to the mathematical model and do not have a direct physical
meaning, while others are hampered by intrinsic variability among patients. In this context
characterizing the impact of parameter variation on quantities of clinical interest [LF+20;
Cam+20; RCSR19], understanding how uncertainty in the model inputs affects the considered
outputs [Mir+16; Hau+18] and estimating the input values from available data [Cha+13; Hir18]
play a key role in providing reliable patient-specific simulations. From a numerical perspective,
these tasks yield the solution of sensitivity analysis, uncertainty quantification and parameter
estimation problems. All these scenarios share the need of calling for multiple queries of the
parameter-to-solution map, or at least input-output map, in accurate (and possibly very fast)
way.
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Introduction

Despite the continuous increase of available computing resources and the development of
new numerical methods, high-fidelity simulations based on classical discretization schemes, like
the finite element method, entails huge computational costs in terms of both CPU time and
memory, as a large number of degrees of freedom is usually required. Computational complexity
is even more exacerbated if one is interested in going beyond a single, direct simulation, so that
relying on high-fidelity full order model (FOMs) for the approximation of the underlying PDE
solution may become computationally unfeasible. To address this issue, alternative techniques,
such as lower-fidelity models, statistical emulators or reduced order models (ROMs), have
been developed over the years, aiming to compute reliable solutions at a greatly reduced
computational cost.

Objective and contributions of this work

Motivated by the aforementioned needs, the main goal of this Thesis is to develop accurate
projection-based ROMs that enable the efficient solution to nonlinear, time-dependent param-
eterized PDEs by seeking an approximation of the unknown state solution by performing a
Galerkin projection of the discretized governing equations onto a suitable low-dimensional space
[BGW15; Ben+17; QMN16]. We focus in particular on cardiac mechanics, however considering
simplified problems and preliminary geometries, with the aim of providing a powerful tool
to address the solution to multi-query problems and to perform (almost) real-time numerical
simulations. Exploiting proper orthogonal decomposition (POD) for the construction of the
reduced subspace, we can rely on completely physics-based ROMs, which can be extremely
convenient rather than using fully data-driven emulators or surrogate models providing inex-
pensive evaluations of the input-output queries. In fact, by retaining the underlying structure
of the physical model and providing an approximation at each time step of the displacement
vector, physics-based ROMs provide approximations that are physically consistent and reliable,
thanks to the approximability properties of the low-dimensional spaces provided by POD. Not
only, physics-based ROMs allow to consider new quantities of interest that might be useful
both in uncertainty quantification studies or in medical research without the need to repeat the
whole reduction strategy or training process.

In particular, we consider POD-Galerkin ROMs built through the reduced basis (RB) method
[QMN16; HRS16], which represents a powerful and widely used technique characterized by a
splitting of the reduction procedure into an expensive, parameter-independent offline phase and
a usually inexpensive, parameter-dependent online phase. The efficiency of the RB method
mainly relies on two crucial assumptions, namely that

• the solution manifold is low-dimensional, so that the FOM solutions can be approximated
as a linear combination of few reduced modes with a small error;

• the online stage is completely independent of the high-fidelity dimension [Far+20].

The first assumption concerns the approximability of the solution manifold, that is the set of
PDE solutions for all input values varying in the parameters space, and is associated with the
slow decay of the Kolmogorov N -width [Pin85]. Despite their nonlinear nature, parameterized
problems in elastodynamics, including those arising from cardiac modeling, do not pose serious
issues regarding the dimensionality of the reduced spaces, the slow decay of singular values when
considering POD, or the assumption stated by the RB method entailing a linear superimposition
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of modes. Nonetheless, the second assumption regarding the offline-online decoupling cannot
be fulfilled when dealing with nonlinear problems, as the assembling of the reduced nonlinear
operators at each Newton iteration requires the reconstruction of the high-fidelity ones, so that
the online stage has a cost that still depends on the FOM dimension.

To avoid this drawback, we need to recover an affine parametric dependence of the nonlinear
terms, thus relying on a further level of approximation. Among several hyper-reduction
techniques, project-then-approximate strategies have been introduced aiming at approximating
directly ROM operators. In this Thesis we consider the discrete empirical interpolation method
(DEIM) [CS10], which is based on the idea to replace both the reduced residual vectors and
the corresponding reduced Jacobian matrices by means of a collateral reduced basis expansion
computed through an interpolation procedure onto a (hopefully small) set of points, so that
only a subset of entries of the nonlinear arrays needs to be assembled during Newton iterations
at the ROM level. So far, only few contributions have considered the construction of projection-
based ROMs addressing nonlinear unsteady problems related with cardiac mechanics [BMQ17;
MBQ18; Cha+13; Pfa+20]. Numerical experiments showed that, despite their highly nonlinear
nature, elastodynamics problems can be reduced by exploiting projection-based strategies in
an effective way, with POD-Galerkin ROMs achieving very good accuracy even in presence
of a handful of basis functions. In this respect, mechanics problems do not pose the same
issues as transport, wave, or convection-dominated phenomena, where the RB method may
yield inefficient, high-dimensional ROMs. Furthermore, we show how POD-Galerkin-DEIM
ROMs can be used to alleviate the computational costs of global sensitivities analysis and
parameter estimation problems carried out by means of a standard sampling techniques, leading
to comparable results with those obtained using expensive FOMs.

Indeed, if the construction of a reduced subspace to approximate the problem solution does
not pose serious issues, resulting in extremely low-dimensional spaces, numerical results highlight
that the computational bottleneck is represented by the assembling of DEIM reduced operators
and their projection. As a matter of fact, a large number of interpolation points are required to
ensure the convergence of the reduced Newton systems arising from the linearization of the
nonlinear hyper-reduced ROM when dealing with highly nonlinear elastodynamics problems
with complex, anisotropic material laws. In order to overcome the limitations associated with
POD-Galerkin-DEIM, we propose a new semi-intrusive, deep learning-enhanced model order
reduction strategy, which hereon we refer to as Deep-HyROMnet. Since the efficiency of
nonlinear POD-Galerkin ROMs hinges upon the cost-effective approximation of the projections
of the (discrete) nonlinear operators, the key idea is to leverage a Galerkin-RB method for the
solution-space reduction and to rely on deep neural networks (DNNs) to perform hyper-reduction
at a greatly reduced cost. Unlike data-driven-based methods, for which the predicted output
is not guaranteed to satisfy the underlying PDE, Deep-HyROMnet is still a physics-based
model, as it computes the ROM approximation of the displacement field by solving the reduced
nonlinear systems using Newtons method. By dramatically reducing the CPU time required for
the approximation of the reduced nonlinear operators, we are able to compute the solution to
the 3D cardiac mechanics model monolithically coupled to a 0D windkessel model for blood
circulation in a bunch of seconds on a patient-specific left ventricle geometry, even when fine
computational meshes are required, making a step forward the integration of computational
models into the medical practice.
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Outline of the Thesis

This Thesis is organized as follows.

Chapter 1
We introduce the essential features of continuum mechanics and finite deformation theory,
which provide the fundamental framework for the modeling of elastodynamics problems.
Then, after an overview of the cardiac functions, we focus on the mathematical models
for tissue mechanics used for the description of the passive and the active behavior of
the cardiac muscle. Finally, we derive the fully discrete FOM arising from the high-
fidelity approximation of the nonlinear, parameterized initial boundary-value problem for
the elastodynamics equation by means of the finite element method and implicit time
integration schemes.

Chapter 2
In order to provide the necessary tools to understand the reduction strategies adopted
in this Thesis, we briefly described the Galerkin-RB method in the case of stationary
PDEs featuring an affine parametric dependence. Afterwards, we show how to perform
the construction of POD-Galerkin-DEIM hyper-reduced models, relying on

i POD or randomized singular value decomposition for finding a low-dimensional trial
subspace;

ii Galerkin projection to generate, in a physically consistent way, a reduced order
model;

iii hyper-reduction through DEIM technique to accelerate the assembling of nonlinear
(with respect to the solution, to input parameters, or to both) terms.

The numerical performance of POD-Galerkin-DEIM ROMs are investigated on different
applications, from structural tests on simple geometries to benchmark problems in cardiac
mechanics, simulating different phases of the cardiac cycle on both idealized and realist
geometries.

Chapter 3
We show how to take advantage of POD-Galerkin-DEIM ROMs to efficiently address the
solution to multi-query uncertainty quantification tasks. We perform global variance-based
sensitivity analysis studies by computing Sobol’ indices, thus providing a very useful
indicator of which input factors should be correctly chosen and which other make no
significant contribution to the variance of the outputs of interest. Identifying the less
influential factors on a given output quantity, which can then be fixed at any given
value in their range of variability, is extremely useful also in view of the construction of
ROMs, as it allows significant model simplifications. Furthermore, we perform Bayesian
calibration for the estimation of material parameters in a structural mechanics application
by means of Markov Chains Monte Carlo. Relying on POD-Galerkin-DEIM ROMs allows
a remarkable reduction of the computational time (from days to hours) with respect to
the FOM, still preserving the overall accuracy.
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Chapter 4
We present different deep learning-based strategies to efficiently handle the reduced
residual vectors and Jacobian matrices, based on both Newton and Broyden methods,
and we describe the DNN architecture employed for the computation of the approximated
nonlinear reduced operators. Numerical examples show that the Newton approach has
to be preferred to the ones based on Broyden method for the construction of the hyper-
ROMs. The performances of Deep-HyROMnet are then compared to POD-Galerkin-DEIM
ROMs in several scenarios, both in terms of accuracy and efficiency. In particular, we
consider a series of structural tests on a rectangular geometry with different loading
boundary conditions and two benchmark tests on a prolate spheroid geometry simulating
cardiac relaxation and contraction. The results highlights the advantages of avoiding the
assembling stage of the nonlinear terms required by standard hyper-reduction techniques
by showing a great improvement of the CPU speed-up achieved by Deep-HyROMnet with
respect to the FOM for computing the PDE solution for every new instance of the input
parameters.

Chapter 5
To conclude, we address the efficient solution to parameterized cardiac mechanics problems
by means of Deep-HyROMnet hyper-reduced models. In particular, we introduce a 3D-0D
coupled structure-circulation model for the left ventricle, taking into account contractile
forces by means of a surrogate active tension. We show how our DNN-based hyper-
ROM can be adapted to different test cases in this context and finally present two
numerical examples on a patient-specific left ventricle geometry, the former focusing on a
physiological scenario and the latter assuming the presence of an ischemic region inside
the myocardium, also demonstrating how the developed framework is able to enhance
forward uncertainty quantification analysis otherwise unaffordable.

This Thesis has been elaborated within the "iHEART - An Integrated Heart Model for the
simulation of the cardiac function" project, focusing on the task of Variability and Uncertainty
for the development of efficient and reliable RB methods for parameter dependent numerical
simulations, as well as computational techniques for both forward and inverse UQ problems.
The iHEART project has been funded with an Advanced European Research Council (ERC)
grant (agreement No 740132, P.I. Prof. A. Quarteroni) with the aim to create a complete
mathematical model of the human heart, which includes all the relevant physiological processes.
From the implementation point of view, the reduced order models considered in this Thesis
have been implemented from scratch in Python in our software package pyfex, which contains a
Python binding with the in-house Finite Element library lifex (https://lifex.gitlab.io/),
a high-performance C++ library developed within the iHEART project and based on the
deal.II (https://www.dealii.org) Finite Element core [Arn+20]. To perform sensitivity
analysis and inverse uncertainty quantification we have taken advance of the Dakota toolkit
[Ada+20]. Neural networks required by our Deep-HyROMnet technique have been implemented
by means of the Tensorflow deep learning framework [Aba+16]. The training phase has been
carried out on a workstation equipped with an Nvidia GeForce GTX 1070 8 GB GPU. Finally,
post-processing of the computational results has been performed using Matlab. All the
numerical simulations have been performed on a PC desktop computer with 3.70GHz Intel
Core i5-9600K CPU and 16GB RAM.
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Chapter 1

The Elastodyamical problem: formulation and
high-fidelity approximation

This chapter is intended to introduce the essential features of continuum mechanics and to
provide a general framework for the modeling of elastodynamics problems, such as those
arising in cardiac mechanics. First of all, we provide the basic notions of nonlinear continuum
mechanics. Since biological tissues commonly experience large deformations [Dem81], the
central assumption to small strain theory does not hold, and one needs to rely on the more
accurate, yet complex, finite deformation theory. The driving application is that of cardiac
physiology, for which we will focus on the mathematical description of both active and passive
behaviors of the cardiac muscle. Finally, we introduce the high-fidelity model arising from the
discretization of the elastodynamics problem, which represents the reference full order model
considered in the subsequent reduction strategies.

1.1 Nonlinear computational mechanics

The methods of continuum mechanics represent an effective tool to describe various physical
phenomena without taking into account internal micro structures. In this framework the
physical object under investigation is treated as a continuous medium, that is, a composition
of a continuous set of particles, characterized by suitable field quantities, whose motion is
described by means of balance equations (such as the one imposing the equilibrium of forces or
momentum), ultimately yielding the governing equations of elastodynamics.
To characterize relevant quantities in continuum mechanics, it is crucial to define a frame

of reference a continuum is observed from, for which two different approaches can be usually
adopted: the Lagrangian and the Eulerian descriptions. The first pays attention to a body
particle with respect to its initial coordinate frame (that is, where the body was before
deformation), while the second describes these quantities in terms of the position acquired by
the body during deformation, by following the trajectory of any point in space. The Lagrangian
description is commonly used in solid mechanics, as continua constitutive behavior is usually
given in terms of material coordinates and will be the approach adopted in this Thesis. For the
detailed theory we refer, e.g., to [Hol00] and [BW97].

1.1.1 Kinematics

Given a continuum body B embedded in a three-dimensional Euclidean space, let Ω0 ⊂ R3 be
its reference configuration at time t = 0 and Ωt ⊂ R3 its current configuration at time t > 0.
The motion of the body χ : Ω0 × R+ → R3 is defined as a function which takes a generic

7



Chapter 1 Nonlinear continuum mechanics

material point X ∈ Ω0 and maps it onto the corresponding spatial point x = χ(X, t) ∈ Ω, for
all times t > 0. The displacement field is defined as

u(X, t) = x(X, t)−X,

for all times t ≥ 0, and represents the unknown of the problem we are interested in.
A central quantity in finite deformations theory is the so-called deformation gradient,

F(X, t) = ∇0χ(X, t) = ∂x(X, t)
∂X , Fij = ∂xi(X, t)

∂Xj
,

which describes the relationship between quantities in the undeformed and the deformed
configurations of the body, and can be expressed in terms of the displacement field as

F(X, t) = I +∇0u(X, t),

where I is the identity matrix and ∇0 denotes the material gradient. The change in volume
between the reference and the current configurations at time t > 0 is given by the determinant
of the deformation tensor,

J(X, t) = det F(X, t),

known as volume ratio. If there is no motion, i.e. x = X, we obtain the consistency condition
J = 1. In general, a motion for which this condition holds is said to be isochoric.
Another widely used measure of deformation is the right Cauchy-Green deformation tensor

C = FTF, which operates on material vectors and is invariant with respect to rigid body
motion, whilst a common measure of the strain is the Green-Lagrange strain tensor

E = 1
2(C− I),

which is defined in the reference configuration and is zero in absence of motion. All these
kinematic quantities are commonly used in the development of constitutive equations describing
the relationship between mechanical forces and the material motion.

1.1.2 Stresses and constitutive equations
We now introduce the concept of stress and other important related quantities. We point out
that, since stresses are typically defined in the current configuration (as force per unit area) in
this section we adopt both the spatial and material descriptions.
Let t ∈ R3 be the Cauchy traction vector, that is, the force measured per unit surface area

defined in the current configuration, and T ∈ R3 the (pseudo1) surface traction in the reference
configuration, such that

df = tds = TdS.

The Cauchy stress theorem states that there exist unique second-order tensor fields σ and P
such that

t(x, t,n) = σ(x, t)n,
T(X, t,N) = P(X, t)N,

(1.1)

1It acts on the current boundary region ∂Ω and is a function of the material position X and the outward
normal N to the reference boundary ∂Ω0.
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1.1 Nonlinear computational mechanics

where n and N denote the outward unit normal to the boundary surface ∂Ω and ∂Ω0, respectively.
Stress can thus be seen as the effects of the internal force that neighboring infinitesimal volume
elements mutually exert on each other [ES19].
The following relation

σ = JPF−T

holds between the Cauchy stress tensor σ and the first Piola-Kirchhoff stress tensor P. Similarly
to F, the Piola stress P is a two-point tensor, which relates a surface area in the reference
configuration to the corresponding force vector in the current configuration.

The governing equations of solid mechanics, that will be introduced in the following subsection,
are written in terms of the stresses inside the body, which, on their hand, result from the body
deformation and must be expressed in terms of some measure of this deformation, such as
strain [ES19]. The relationships between stresses and strain are known as constitutive laws
and characterize the response of the material under consideration. In this Thesis we restrict
ourselves to the case of hyperelastic materials, whose behavior only depends on the current
deformation state. For this particular class of elastic materials, we can assume that there exists
a strain energy density function W : Lin+ → R such that

P(F) = ∂W(F)
∂F

gives the functional stress-strain relationships, where Lin+ denotes the space of linear applica-
tions between R3 and R3 with positive determinant. The elastic potential W is defined per unit
reference volume and represents the path-independent work done by the stresses from initial to
current configuration.
A material experiencing finite, i.e. large, strains without perceptible changes in volume is

said to be incompressible and is characterized by the constraint J = 1. This condition must be
introduced into the problem formulation by using the technique of Lagrange multipliers or a
penalty method, see, e.g., [MS07]. As commonly done in the treatment of nonlinear elasticity
using FEM, we adopt the latter approach, adding a volumetric term to the expression of the
strain energy function, that will ultimately result of the form

W =W(F) +Wvol(J).

In order to penalize large variations of volume, and therefore ensure the incompressibility
condition, Wvol(J) is usually chosen to be a convex function in J and such that J = 1 is the
global minimum. Several expressions for the volumetric function can be found in the literature
[DS00], depending on the bulk modulus as penalty term.

1.1.3 Balance of linear momentum

We have now all the ingredients required to formulate the mathematical model to describe the
motion of a body in terms of an initial boundary-value problem (IBVP) for the elastodynamics
equation, that is, the equation of motion for continuum mechanics.
Let the body B be a closed system whose mass m is conserved, such that

dm

dt
= d

dt

∫
Ω0
ρ0(X)dV =

∫
Ω0
ρ̇0(X)dV = 0,

9
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where ρ0 is the (reference) mass density, and define the total linear momentum L as

L(t) =
∫

Ω0
ρ0(X)u̇(X, t)dV,

being u̇(X, t) = ∂tu(X, t) the material velocity field. The balance of linear momentum states
that the change in time of the linear momentum must equal the resultant force acting on the
body, i.e.

d

dt

∫
Ω0
ρ0(X)u̇(X, t)dV =

∫
∂Ω0

T(X, t,N)dS +
∫

Ω0
b0(X, t)dV,

where b0 is the reference (pseudo2) body force, such as gravity loading, and T is the pseudo
traction vector. From the integral form of Cauchy stress theorem (1.1) and employing the
divergence theorem, we obtain∫

∂Ω0
T(X, t,N)dS =

∫
∂Ω0

P(X, t)NdS =
∫

Ω0
∇0 ·P(X, t)dV,

where ∇0 · (·) denotes the material divergence. By replacing this equation in the balance of
linear momentum and imposing the conservation of mass, we obtain the Cauchy equation of
motion ∫

Ω0
ρ0(X)ü(X, t)dV =

∫
Ω0
∇0 ·P(X, t)dV +

∫
Ω0

b0(X, t)dV

for all times t, which can be written in local form as ρ0ü = ∇0 · P + b0. This equation is a
generalization of Newton second principle of dynamics. The conservation of mass and of linear
momentum represent fundamental laws governing the mechanical behavior of a material body.
To conclude, the IBVP for elastodynamics states: given a body force field b0 = b0(X, t), a

prescribed displacement ū = ū(X, t) and surface traction T̄ = T̄(X, t,N), find the displacement
field u : Ω0 × (0, T )→ R3 such that

ρ0ü = ∇0 ·P + b0 in Ω0 × (0, T )

u = ū on ΓD0 × (0, T )

PN = T̄ on ΓN0 × (0, T )

PN + αu + βu̇ = 0 on ΓR0 × (0, T )

u = u0, u̇ = u̇0 in Ω0 × {0}

(1.2)

where α, β ∈ R, ΓD0 ∪ ΓN0 ∪ ΓR0 = ∂Ω0 and Γi0 ∩ Γj0 = ∅ for i, j ∈ {D,N,R}.
In the analysis of continuous media, there exist two main sources of nonlinearity: material

nonlinearity, which occurs when the stress-strain relationship is given by nonlinear constitutive
equations, and geometric nonlinearity, when the load deformation behavior is highly influenced
by changes in geometry, [BW97]. Many problems of engineering and clinical interest, such as
the behavior of the cardiac muscle, involve at least one type of nonlinearity, so that we cannot
rely on the linear assumption to properly describe the continuum deformation. Numerical
analysis, in the form, e.g., of the finite element method (FEM), allows to properly simulate

2b0 acts on the current region Ωt and is referred to the reference position X, measuring force per unit
reference volume.

10
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and investigate the complex nonlinear behavior of solid bodies in a bunch of different scenarios.
In the FEM procedure, the continuous body is approximated by a finite number of points,
called nodes, and associated regions, called finite elements (FE), which form the underlying
computational grid. The governing equations of nonlinear continuum mechanics, traditionally
recast in a weak integral form, are thus solved by means of suitable numerical schemes onto
specific FE points, ultimately yielding to a set of nonlinear algebraic equations, see, e.g., [Cia02;
Che05; QV08; EG13]. Further details are given in section 1.3.

1.2 The motivating application: cardiac mechanics

Continuum mechanics represents the fundamental theory for the development of mathematical
models characterizing cardiac mechanics and allows for a quantitative analysis of the heart
function. In this section we give a brief description of normal cardiac physiology and anatomy,
referring, e.g., to [JKT06; Iai09; Kat10; QMV17; TD18] for a full discussion.

1.2.1 Overview of cardiac functions

The human heart is an hollow muscular organ around the size of a closed fist and shaped like an
inverted cone, whose main physiological function is to pump blood into the circulatory system.
It is separated by the septum into a left and a right part, each made of two chambers, the
atrium and the ventricle. Between atria and ventricles and between the left ventricle and the
ascending aorta, a set of valves allow the unidirectional blood to flow in the correct direction
and prevent backward flows. The heart wall is composed of three tissue layers: the inner
epicardium, the middle myocardium and the outer epicardium. The latter is surrounded by
the pericardium, a fibrous sac that isolates the heart from the closest organs and lubricates its
movements, [JKT06].

Due to its crucial function, the left ventricle (LV) represents the most studied among the four
cardiac chambers. It is characterized by an ellipsoidal shape, thick muscular myocardium, which
can increase its volume by up to 40% during the cardiac cycle [WFC85], and a more irregular
interior structure, compared to the right ventricle. The left ventricular myocardium consists of
several layers of cardiac muscle fibers, that wrap around the ventricle forming a heterogeneous
structure [SJ+69; Gre+81]. This particular fiber architecture of the cardiomyocytes, the
excitable cardiac muscle cells, highly influences the mechanical response of the heart, allowing
for the sophisticated, yet effective, movements of the LV.
Cardiac muscle fibers contract via excitation-contraction coupling [Ber02], which describes

the process of converting an electrical stimulus (action potential) into a mechanical response
(muscle contraction). This electrical signal originates at the sinoatrial node, in the upper part
of the right atrium, it propagates through the atrial cells to the atrioventricular node, whose
purpose is to ensure that the ventricle contraction only starts when the blood has been pumped
out of the atria, and finally travels through the Purkinje network, transmitting the cardiac
impulse almost simultaneously to the ventricles, from the heart apex to its base. The heart itself
is able to produce such electrical impulse, triggered by a transmembrane potential generated
by the alternative opening and closing of voltage-gated ion channels (e.g. calcium, sodium
and potassium). In particular, calcium ions [Ca2+] induce a complex chain of reactions which
generates, at the microscopic level, the active force inside the cardiomyocytes. This results, at
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Chapter 1 Nonlinear continuum mechanics

Figure 1.1: LV pressure and volume over time (left) and pressure-volume loop (right), taken from https:
//www.researchgate.net/figure/The-Pressure-Volume-loop_fig1_281955168

the macroscopic level, in the contraction of the heart chambers, characterized by longitudinal
shortening, wall thickening and torsion around the long-axis.

The activity between two consecutive heartbeats is referred to as the cardiac cycle, consisting
of alternating contraction, or systole, and relaxation, or diastole, of the cardiac chambers. In
particular, venous blood drains from the systemic circulation into the right atrium, enters
through the tricuspid valve in the right ventricle and is pumped into the pulmonary circulation,
where it receives oxygen and gives off carbon dioxide. Hence, the oxygenated blood goes back
to the left atrium and, through the mitral valve, enters the LV, which finally pumps it out back
to the systemic circulation through the aorta, the largest artery of the body.
From a mechanical viewpoint, the cardiac cycle is due to blood movement resulting from

pressure differences (or pressure gradient) within the different chambers and blood vessels.
The relationship between pressure and volume in the LV over an entire heartbeat represents a
very useful way to gain a great insight of cardiac mechanics function [Sag88]. In the so-called
pressure-volume loop, see Figure 1.1, the LV cycle is depicted counterclockwise and consists of
four phases: diastolic filling, isometric contraction, systolic ejection and isometric relaxation.
The end systolic pressure-volume relationship (ESPVR), corresponding to the curve in the upper
left part of Figure 1.1, reflects the behavior of the LV during systole due to the active material
properties of maximally contracted myocardium. The slope of the ESPVR can be regarded
as a useful index of cardiac contractility [Kas+89]: increased contractility will indeed result
in a higher slope. Conversely, the curve in the lower right, the end diastolic pressure-volume
relationship (EDPVR), is associated with the behavior of the LV during filling and is mainly
determined by passive material properties. The EDPVR is nonlinear, as higher and higher
pressures are required to continue to fill the ventricle, so that increases in the end diastolic
volume leads to increased net amount of blood ejected by the LV, known as stroke volume (SV).
The Frank-Starling law expresses the fact that the heart adapts to variations in left ventricular
filling, such that, an increase in blood volume, hence in muscle fiber length, determine higher
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1.2 The motivating application: cardiac mechanics

active tension (total tension minus resting tension), leading to a stronger contraction.

1.2.2 Passive and active mechanics

Cardiac mechanics problems aim at understanding the response of the cardiac muscle under
specified loading conditions. However, establishing the stress-strain relationship for biological
materials is a complex task. The myocardium is assumed to be hyperelastic, with nonlinear
passive behavior and, usually, not isotropic, as experiments have shown higher material stiffness
and mechanical response along the cardiac fibers. Many constitutive laws have been derived
for both its passive and active description [GM91; GM93; CHM01; HO09; Nor+11; Wan+13],
taking into account varying material symmetries. In this Thesis we adopt the law proposed in
[GM91] and commonly referred to as the Guccione relation, which assumes the material to be
transversely isotropic, with its primary material axis oriented along the local fiber direction.
The corresponding strain-energy density function is given by

W(F) = C

2 (eQ(F) − 1), (1.3)

with the following form for Q to describe three-dimensional transverse isotropy with respect to
the fiber coordinate system,

Q = bfE
2
ff + bsE

2
ss + bnE

2
nn + bfs(E2

fs + E2
sf ) + bfn(E2

fn + E2
nf ) + bsn(E2

sn + E2
ns).

Here, Eij , i, j ∈ {f, s, n} are the components of the Green-Lagrange strain tensor E, the
material constant C scales the stresses and the coefficients bf , bs, bn are related to the material
stiffness in the fiber, sheet and cross-fiber directions, respectively.
We point out that, since biological tissues are mostly composed of water, the density ρ0 is

often taken constant in time [Nor+11] so that the conservation of mass implies J = 1 and an
incompressible formulation should be adopted. However, as often done in cardiac mechanics
[Bar+18; DGQ20], incompressibility is weakly imposed, and an isochoric-volumetric decoupling
of the strain energy function is employed, yielding

W(F) = C

2 (eQ(F) − 1) +Wvol(J).

Another crucial aspect to be taken into account when modeling cardiac material is the
inclusion of the active contractile forces in the constitutive equation. Active properties are
time-dependent and anisotropic, with more active stress generated along the local muscle fiber
direction [LY98]. Active tension can be integrated into the passive stress tensor in different ways,
among which the active stress and the active strain represent the most common approaches
[AP12]. Here, we adopt the former, and add to the passive first Piola-Kirchhoff stress tensor a
time-dependent active tension, which is assumed to act only in the fiber direction

P(F) = ∂W(F)
∂F + Ta(t)(Ff0 ⊗ f0), (1.4)

where f0 ∈ R3 denotes the reference unit vector in the fiber direction.
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Chapter 1 Nonlinear continuum mechanics

1.3 High-fidelity approximation and full order model
We now outline the full order model arising from the high-fidelity approximation of the
elastodynamics problem (1.2), which represents the FOM our reduction strategy will be built
upon. After the introduction of the weak formulation for the IBVP (1.2), we derive its
numerical approximation by relying on the Galerkin-FEM for space discretization and on
backward differentiation formula (BDF) schemes for time discretization. This yields a finite
set of nonlinear algebraic equations, usually solved by means of the Newton-Raphson iterative
technique, also known as Newton method.

1.3.1 Weak formulation

We assume, without loss of generality, homogeneous Dirichlet boundary condition (that is, we
set Dirichlet data to ū = 0) and define the following functional space over Ω0 ⊂ R3

V (Ω0) := [H1
ΓD

0
(Ω0)]3 =

{
η ∈ [H1(Ω0)]3 : η = 0 on ΓD0

}
.

By multiplying the equation of motion (1.2)1 by a test function η ∈ V (Ω0) and integrating over
Ω0, we obtain

0 =
∫

Ω0
(ρ0ü(t)−∇0 ·P(u(t))− b0(t)) · ηdΩ

=
∫

Ω0
ρ0ü(t) · ηdΩ−

∫
Ω0
∇0 ·P(u(t)) · ηdΩ−

∫
Ω0

b0(t) · ηdΩ

=
∫

Ω0
ρ0ü(t) · ηdΩ +

∫
Ω0

P(u(t)) : ∇ηdΩ−
∫
∂Ω0

P(u(t)) ·N · ηdΓ−
∫

Ω0
b0(t) · ηdΩ

for t ∈ (0, T ), where we have applied the product rule and the divergence theorem on the
second term of the right-hand side. Taking into account the boundary conditions and the fact
that η ∈ V (Ω0), the weak formulation of (1.2) reads: for t ∈ (0, T ), find the displacement field
u(t) ∈ V (Ω0) such that

〈R(u(t)),η〉 :=
∫

Ω0
ρ0ü(t) · ηdΩ +

∫
Ω0

P(u(t)) : ∇ηdΩ +
∫

ΓR
0

(αu(t) + βu̇(t)) · ηdΓ

−
∫

ΓN

T̄(t,N) · ηdΓ−
∫

Ω0
b0(t) · ηdΩ = 0 ∀η ∈ V (Ω0). (1.5)

For the solution of the nonlinear problem above, a very common strategy is to use the Newton
method, which relies on the concept of linearization. In particular, (1.5) is replaced by a
sequence of linear problems of the following form: given û ∈ V (Ω0), find δû such that

〈J(û)[δû],η〉 = −〈R(û),η〉 ∀η ∈ V (Ω0) (1.6)

where J(û) = DR(û) is the Fréchet differential of R evaluated at û. From the linearization of
(1.5) around a generic displacement û, we found

〈J(û)[δû],η〉 =
∫

Ω0
ρ0δ̈û · ηdΩ +

∫
Ω0

[
∂P(û)
∂F : ∇δû

]
: ∇ηdΩ +

∫
ΓR

0

(
αδû + β ˙δû

)
· ηdΓ.
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1.3 High-fidelity approximation and full order model

1.3.2 Space discretization
We can now introduce the FE discretization starting from the weak formulation (1.5) obtained
in previous section. The key idea is to approximate the continuous behavior of u(t) ∈ V (Ω0) in
an element-wise manner on a finite set of elements. With this aim, we introduce a hexahedral
mesh Th of Ω0 such that

⋃
τ∈Th

τ = Ω0, where h > 0 denotes the grid size, and define the FE
space of dimension r ≥ 1

X rh =
{
v ∈ C0(Ω̄0) : v|τ ∈ Qr(τ) ∀τ ∈ Th

}
,

where Qr(τ) is the set of polynomials of degree smaller than or equal to r on each element τ
and dim(X rh) = Ndof

h,r denotes the total number of degrees of freedom (dofs). The FE space of
vector-valued functions is defined as

Vh = V (Ω0) ∩ [X rh ]3 = span {ϕi}Nh
i=1

whose dimension Nh = 3Ndof
h,r corresponds to the total number of structural dofs, including

those associated with the Dirichlet boundary conditions, and ϕi : Ω0 → R3, for i = 1, . . . , Nh,
are the vector-valued basis functions. Given w(t) ∈ V (Ω0), the corresponding element of Vh
can be expressed as a linear combination of the basis functions {ϕi}Nh

i=1 as follows

w̃h(t) =
Nh∑
i=1

wh,i(t) ϕi,

where w̃h(t) ≈ w(t) and wh(t) = [wh,i(t)]Nh
i=1 ∈ RNh denotes the corresponding vector of

coefficients in the expansion with respect to the FE basis, that is, the unknown of our high-
fidelity approximation.

We can now introduce the semi-discrete Galerkin-FE approximation of the continuous IBVP,
that is the following second-order dynamical system: for each t ∈ (0, T ), find uh(t) ∈ Vh such
that  ρ0Müh(t) + F intβ u̇h(t) + F intα uh(t) + S(uh(t)) = Fext(t)

uh(0) = uh,0, u̇h(0) = u̇h,0

where uh,0 = [(u0,ϕi)[L2(Ω0)]3 ]Nh
i=1, u̇h,0 = [(u̇0,ϕi)[L2(Ω0)]3 ]Nh

i=1 and

[M]ij =
∫

Ω0
ϕj ·ϕidΩ, [F intβ ]ij =

∫
ΓR

0

β ϕj ·ϕidΓ, [F intα ]ij =
∫

ΓR
0

α ϕj ·ϕidΓ,

[S(uh(t))]i =
∫

Ω0
P(uh(t)) : ∇ϕidΩ, [Fext(t)]i =

∫
ΓN

0

T̄(t,N) ·ϕidΓ +
∫

Ω0
b0(t) ·ϕidΩ,

for all i, j = 1, . . . , Nh. The spatially semi-discrete form on the IBVP can thus be equivalently
reformulated as: for each t ∈ (0, T ), find uh(t) ∈ Vh such that

R̃(uh(t), t) := ρ0Müh(t) + F intβ u̇h(t) + F intα uh(t) + S(uh(t))−Fext(t) = 0. (1.7)

We remark that problem (1.7) is a high-dimensional, nonlinear, second-order dynamical system.
For the approximation of cardiac mechanics, quadratic FE (Q2) are commonly used [Lan+15].

However, due to the huge computational costs entailed, especially when fine meshes are used, in

15



Chapter 1 Nonlinear continuum mechanics

Figure 1.2: Example of computed tomography scan of a left ventricle (left), the Zygote Solid 3D model
[Inc14] (center) and a corresponding mesh with 36704 elements (right). The CT scan has
been taken from https://images.app.goo.gl/SGUuFVAQ8RxyDbsw7.

this Thesis we always rely on linear FE, i.e. r = 1, which proved to be sufficiently accurate for
the purposes at hand and less expensive. We point out that the reduction strategies described
in Chapters 2 and 4 are independent of the degree r. To give an idea of the complexity of the
problem, in Figure 1.2 we report an example a computational grid Th used in this Thesis for the
FE discretization, resulting in a total number Nh ≈ 127000 of dofs when Q1-FE are employed.
The hexahedral mesh has been generated through ad-hoc processing of a CAD geometry (the
Zygote Solid 3D heart model [Inc14]) reconstructed from clinical images. We point out that
mesh generation is not addressed in this Thesis, and we refer to [FQ21].

1.3.3 Time discretization

For the time discretization of the dynamical system (1.7), we consider a uniform partition
{tn = n∆t, n = 0, . . . , Nt} of the interval (0, T ), where ∆t = T

Nt
is the time step length. To

approximate first and second derivatives at time tn, we employ the following BDF schemes

u̇h(tn) ≈ unh − un−1
h

∆t , üh(tn) ≈ unh − 2un−1
h + un−2

h

∆t2 ,

respectively, where superscripts n, n− 1 and n− 2 denote the solution uh computed at time tn,
tn−1 and tn−2, e.g. uh(tn) = unh. From now on, we indicate all the quantities computed at time
tn with the superscript n, for n = 0, . . . , Nt.
Note that we employ implicit time integration schemes in order to avoid restrictions on the

time step due to the highly nonlinear terms of the strain energy density function considered in
the numerical examples reported in this Thesis, like the one appearing in (1.3).
Thus, we obtain the following discrete approximation of (1.7): for each n = 1, . . . , Nh, find

unh ∈ RNh such that

R(unh, tn) = 0, (1.8)
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where u−1
h and u0

h are given, and

R(unh, tn) :=
(
ρ0

∆t2M+ 1
∆tF

int
β + F intα

)
unh + S(unh)−

( 2ρ0
∆t2M+ 1

∆tF
int
β

)
un−1
h

+ ρ0
∆t2Mun−2

h −Fext,n.
(1.9)

1.3.4 Fully discretized Newton system
In this section we first recall the Newton method for the solution of a nonlinear algebraic system
of the form: find w ∈ RNh such that

R(w) = 0,

and then apply it to system (1.8).
Starting from an initial guess w(0), at each iteration k ≥ 0, given w(k), we obtain the value

w(k+1) = w(k) + δw(k) from the solution of the linearized system

R(w(k+1)) ≈ R(w(k)) +DR(w(k))[δw(k)] = 0, (1.10)

until a suitable stopping criterion is fulfilled. Here, DR(w(k))[δw(k)] denotes the directional
(or Gâteaux) derivative of R at w(k) in the direction of an increment δw(k), which can be
computed as

DR(w(k))[δw(k)] = d

dε

∣∣∣
ε=0

R(w(k) + εδw(k)) = J(w(k))δw(k),

so that Jij(w(k)) = ∂Ri
∂wj

(w(k)). It is important to note that, although R is nonlinear in w,
DR(w(k))[δw(k)] is always linear in δw(k). Thus, we can rewrite equation (1.10) as

J(w(k))δw(k) = −R(w(k)).

The computation of the Jacobian (tangent stiffness matrix) J arising from the space-time
discretization of (1.6) is a complex task, for which in this Thesis we rely on the useful tool
of automatic differentiation (AD) provided in the deal.II (https://www.dealii.org) Finite
Element library [Arn+20].

To conclude, when applied to the solution of (1.9), the Newton method reads as follows: for
each n = 1, . . . , Nt, given un,(0)

h = un−1
h , for k ≥ 0, find δu(k)

h ∈ RNh such that J(un,(k)
h , tn)δu(k) = −R(un,(k), tn)

un,(k+1) = un,(k) + δu(k)

until ‖R(un,(k+1), tn)‖2/‖R(un,(0), tn)‖2 < εNwt, where εNwt > 0 is a prescribed tolerance.
Note that, for n = 1, the initial guess is given by the initial condition, i.e. u1,(0)

h = uh,0.

Broyden method

As an alternative to Newton iterative scheme, we can rely on Broyden’s method [Bro65], which
belongs to the class of quasi-Newton methods, as done, e.g, in [MBQ18; RR16] for model order
reduction of nonlinear elasticity problems.
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Chapter 1 Nonlinear continuum mechanics

The key idea is to avoid the computation of the Jacobian matrix J(w(k)) at each iteration
k ≥ 0 by replacing it with a suitable approximation J̃(k). Therefore, given J̃(0), for k ≥ 0 until
convergence, one must solve the system J̃(k)δw(k) = −R(w(k))

w(k+1) = w(k) + δw(k)
(1.11)

and set
J̃(k+1) = J̃(k) + (R(w(k+1))−R(w(k)))− J̃(k)δw(k)

(δw(k))T (δw(k))
(δw(k))T ,

until ‖R(w(k+1))‖2/‖R(w(0))‖2 < εBrdn. For the initialization of (1.11), a common choice for
J̃(0) is the Jacobian matrix J(w(0)), however, other approximations are also possible.

When applied to (1.9), the Broyden method can be written as follows: for each n = 1, . . . , Nt,
given un,(0)

h = un−1
h and an initial guess J̃(un,(0)

h , tn) for the Jacobian, for k ≥ 0, find δu(k)
h ∈ RNh

such that
J̃(un,(k)

h , tn)δu(k) = −R(un,(k), tn)

un,(k+1) = un,(k) + δu(k)

J̃(un,(k+1)
h , tn) = J̃(un,(k)

h , tn) + (R(un,(k+1), tn)−R(un,(k), tn))− J̃(un,(k)
h , tn)δu(k)

(δu(k))T (δu(k))
(δu(k))T

until ‖R(un,(k+1), tn)‖2/‖R(un,(0), tn)‖2 < εBrdn, where εBrdn > 0 is a prescribed tolerance.
We point out that, when using AD, as done in our HPC library lifex, the computational

burden is represented by the assembling of residual vectors, rather than the calculation of the
Jacobian matrix. Moreover, being a quasi-Newton method, the Broyden method presents a
lower convergence rate than the exact Newton method. For these reasons, in the numerical
examples considered in this Thesis, we rely exclusively on the Newton method.

1.3.5 Parameterized full order model
The main purpose of this Thesis is the construction of efficient, yet accurate, reduced order
models for the solution of nonlinear elastodynamics problems in different scenarios, with the
particular application to cardiac mechanics. The underlying partial differential equation, as
well as the boundary and initial conditions or the geometrical domain, might depend on a set
of input parameters that may have a great impact on the problem under investigation. We
denote the input vector of varying parameters by µ ∈ P ⊂ RP , where P is a suitable closed
subset. Thus, we write the parameterized algebraic system (1.8) as

R(unh(µ), tn;µ) = 0, n = 1, . . . , Nt. (1.12)

The Newton method applied to the parameterized nonlinear system (1.12) reads: given an
initial guess un,(0)

h (µ), for k ≥ 0, find δu(k)
h (µ) ∈ RNh such that J(un,(k)

h (µ), tn;µ)δu(k)
h (µ) = −R(un,(k)

h (µ), tn;µ)

un,(k+1)
h (µ) = un,(k)

h (µ) + δu(k)
h (µ)

(1.13)
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until ‖R(un,(k+1)
h (µ), tn;µ)‖2/‖R(un,(0)

h (µ), tn;µ)‖2 < εNwt, where εNwt > 0 is a prescribed
tolerance. Here, un,(0)

h (µ) is set equal to the initial guess uh,0(µ), when n = 1, and is equal to
the solution at previous time iteration un−1

h (µ), for n = 2, . . . , Nt. From now on, we will refer
to (1.13) as to the FOM for our problem, and denote by Nh the high-fidelity dimension.

In the context of cardiac mechanics, the FOM dimension Nh may become extremely large (of
the order of hundreds of thousands) in order to correctly capture the deformation of the tissue,
especially when considering detailed geometries or pathological scenarios. Furthermore, if one is
interested in the repeated solution to the forward problem for different values of the parameter,
the computational cost becomes prohibitive. The development of accurate and efficient reduced
order models is thus of paramount importance, both to address the solution to multi-query
problems or to allow the use of numerical simulations in clinical practice, and is the subject of
Chapters 2 and 4.
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Chapter 2

Reduced order modeling for nonlinear
parameterized elastodynamics problems

Relying on full order models for the solution of elastodynamics problems, as those introduced
in Chapter 1, results in high computational demands. To address this issue, we focus on
projection-based model order reduction for nonlinear, time-dependent parameterized PDEs.
After a brief introduction of the Galerkin-reduced basis method, we describe the discrete
empirical interpolation method used for efficiently handle the nonlinear terms. The accuracy
and speed-up of the reduction strategy are assessed in several numerical experiments, while
drawbacks and future perspectives are reported at the end of the chapter.

2.1 Solution-space reduction: the reduced basis method
Before dealing with model order reduction of nonlinear, time-dependent parameterized problems,
we introduce the reduced basis (RB) method in the case of stationary PDEs characterized by
an affine parametric dependence. In this way, we provide all the necessary tools to understand
the reduction procedure, before restoring to the more complex case at hand. With this aim, let
Vh be a Nh-dimensional space and define

uh : P → Vh

the (discrete) solution operator of a parameterized, stationary PDE. The goal of the RB method
for parameterized PDEs is to approximate the Nh-dimensional solution manifoldMh = Im(uh)
with a low number N (less than a few dozens, or hundreds at most) of basis functions, forming
the so-called reduced basis. This is usually done by performing a Galerkin (or, more generally,
a Petrov-Galerkin) projection of the high-fidelity problem onto the N -dimensional subspace
spanned by the reduced basis, obtaining a reduced problem facing a much lower computational
complexity, still respecting the structure of the underlying PDE and retaining the essential
features of the parameter-to-solution map.

The efficiency of the RB method relies, mainly, on two assumptions. First, that the solution
manifoldMh is of low-dimension; second, that the reduction procedure can be split into offline
and online stages, where the latter is completely independent of the high-fidelity dimension
[Far+20]. The first hypothesis concerns the approximability of the solution set and is associated
with the concept of Kolmogorov N-width [Pin85]: if the N-width decays rapidly, then the solution
manifold is likely to be well approximated by a small reduced basis. The second assumption is
verified in the case of problems featuring an affine parametric dependence [QMN16]. However,
a full offline-online decoupling is often not possible in the case of nonlinear problems, so that a
further level of approximation must be introduced (see Section 2.2).
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Chapter 2 Reduced order modeling for nonlinear parameterized elastodynamics problems

2.1.1 Introduction to the RB method

For the sake of simplicity, in this section we introduce the RB method for a coercive and
affinely decomposed problem, and later extend the methodology to the class of problems we are
interested in.
Let us consider the variational formulation of a parameterized, elliptic, scalar PDE: given

the parameter vector µ ∈ P, find the solution u(µ) ∈ V such that

a(u, v;µ) = f(v;µ) ∀v ∈ V,

where a(·, ·;µ) : V × V → R is a symmetric, continuous, coercive bilinear form encoding the
differential operator and f(·;µ) : V → R is a linear continuous functional. Here, V = V (Ω0) is
a suitable Hilbert space on the bounded domain Ω0 ⊂ R, usually H1

0 (Ω0) ⊆ V ⊆ H1(Ω0). Let
Vh ⊂ V be a Nh-dimensional subset of V , endowed with the norm ‖·‖V , such that the Galerkin
high-fidelity approximation reads: find the solution uh(µ) ∈ Vh of

a(uh, vh;µ) = f(vh;µ) ∀vh ∈ Vh. (2.1)

We point out that we are adopting a Galerkin approach, where the trial space and the test
space coincide. However, a Petrov-Galerkin approach, where vh ∈ Wh with Wh 6= Vh, is also
possible. By denoting with {φj}Nh

j=1 a basis for Vh, we can write problem (2.1) in the equivalent
algebraic form as: find uh(µ) ∈ RNh such that

Ah(µ)uh(µ) = fh(µ),

where Ah(µ) ∈ RNh×Nh is the µ-dependent stiffness matrix whose components are given by
(Ah(µ))i,j = a(φj , φi;µ), for i, j = 1, . . . , Nh, the right-hand side is fh(µ) = [f(φj ;µ)]Nh

j=1 ∈ RNh

and uh(µ) is the vector of unknown nodal values of uh(µ) =
∑Nh
j=1 u

(j)
h (µ)φj , that is,

uh(µ) =
[
u

(1)
h (µ), . . . , u(Nh)

h (µ)
]T
.

To mitigate the computational costs associated with the solution to the high-fidelity problem,
we introduce the following reduction strategy. Consider the solution manifold

Mh = {uh(µ) ∈ Vh | µ ∈ P} ⊂ Vh

made by all FOM solutions under variation of the parameter vector µ over the parameter
domain P, and assume that it has low-dimension, so that is possible to approximate the
high-fidelity solutions as a linear combination of few reduced modes with a small error. We
aim at generating an N -dimensional subspace VN ⊂ Vh, with N � Nh, in order to replace (2.1)
with the following reduced problem: find uN (µ) ∈ VN such that

a(uN , vN ;µ) = f(vN ;µ) ∀vN ∈ VN , (2.2)

or, equivalently: find uN (µ) ∈ RN solution to

AN (µ)uN (µ) = fN (µ).
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2.1 Solution-space reduction: the reduced basis method

More precisely, we need to:

1. construct a basis {ξj}Nj=1 for VN , starting from a set of FOM solution snapshots

Sh = {uh(µ1), . . . , uh(µns)}

obtained for different parameter values µ` ∈ P, ` = 1, . . . , ns, suitably sampled over the
parameter domain P, and define the corresponding basis matrix V ∈ RNh×N ;

2. given µ ∈ P, set the reduced problem (2.2) via a projection approach;

3. compute the unknown coefficients of uN (µ) =
∑N
j=1 u

(j)
N (µ)ξj ∈ VN in order to find a

reduced approximation to uh(µ) ∈ Vh, such that

uh(µ) ≈ VuN (µ).

Step 1 is done during the costly offline stage of the reduction procedure, which is however
performed once and for all, while steps 2 and 3 are performed inexpensively online for every new
instance of the parameter vector. Regarding step 2, a classical procedure to obtain the RB solu-
tion consists in requiring the fulfillment of a suitable geometric orthogonality criterion, yielding to
the Galerkin-RB method. By forcing the high-fidelity residual rh(vh;µ) := fh(µ)−Ah(µ)vh(µ)
computed over the RB solution to be orthogonal to the subspace VN , we obtain

0 = VT rh(VuN ;µ)
= VT fh(µ)−VTAh(µ)VuN (µ) =: fN (µ)− AN (µ)uN (µ),

that is, we set
AN (µ) = VTAh(µ)V

fN (µ) = VT fh(µ).
(2.3)

Two popular methods for the construction of the RB basis are the greedy algorithm [Edm71],
based on an a posteriori error estimator, and the proper orthogonal decomposition (POD)
[Lum67], based on a singular value decomposition (SVD) of the snapshots matrix. Since for
time-dependent, nonlinear problems error bounds are usually extremely difficult to obtain, in
this thesis we rely on the POD method, which Section 2.1.2 is devoted to.
As already mentioned, a convenient situation in view of a computationally efficient offline-

online decoupling arises when the Nh-dimensional arrays can be written as linear combinations
of (possibly few) µ-independent terms; in the linear steady case, this means that Ah(µ) and
fh(µ) can be expressed as

Ah(µ) =
Qa∑
q=1

θaq (µ)Ah,q and fh(µ) =
Qf∑
q′=1

θfq′(µ)fh,q′ , (2.4)

where Ah,q ∈ RNh×Nh and fh,q′ ∈ RNh are µ-independent arrays, while θaq ,θ
f
q′ : P → R are

µ-dependent coefficients to be computed online. This affine parametric dependence allows to
assemble online the reduced system in a way that is independent of Nh. Indeed, by replacing
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Chapter 2 Reduced order modeling for nonlinear parameterized elastodynamics problems

(2.4) in (2.3), we obtain

AN (µ) = VTAh(µ)V =
Qa∑
q=1

θaq (µ)VTAh,qV =
Qa∑
q=1

θaq (µ)AN,q,

fN (µ) = VT fh(µ) =
Qf∑
q′=1

θfq′(µ)VT fh,q′ =
Qf∑
q′=1

θfq′(µ)fN,q′ ,

so that the reduced arrays AN,q = VTAh,qV ∈ RN×N and fN,q′ = VT fh,q′ ∈ RN can be
computed and stored during the offline stage. Thus, for every new instance of the parameter
µ ∈ P , we only need to deal with (few) low-dimensional arrays, enabling a vary rapid assembling
of the reduced system. The reduction procedure for affinely parameterized PDEs presented so
far is summarized in Algorithm 1.

Algorithm 1 Galerkin-RB method for affine problems
Offline stage
INPUT: µ1, . . . ,µns ∈ P
OUTPUT: AN,q ∈ RN×N , for q = 1, . . . , Qa, and fN,q′ ∈ RN , for q′ = 1, . . . , Qf

1: Generate FOM solution snapshots uh(µ`), for j = 1, . . . , ns
2: Construct RB basis V ∈ RNh×N

3: Project FOM over RB subspace: AN,q = VTAh,qV and fN,q′ = VT fh,q′

Online stage
INPUT: µ ∈ P
OUTPUT: VuN (µ) ∈ RNh

1: Assemble RB system: AN (µ) =
∑Qa
q=1 θ

a
q (µ)AN,q, fN (µ) =

∑Qf

q′=1 θ
f
q′(µ)fN,q′

2: Solve AN (µ)uN (µ) = fN (µ)
3: Recover VuN (µ)

2.1.2 Reduced basis construction
Due to its ease of implementation and its deep mathematical root (related to the analysis of
compact operators, to matrix singular value decomposition and to dimensionality reduction in
data analysis, just to mention a few links), POD has gained remarkable success in the scientific
computing community and has been applied in a broad range of engineering fields [Aub91;
Lia+02; QMN16] to reduce, in an optimal sense, the dimension of a given data set. In this
Thesis POD is used to build the RB basis V, as well as for the construction of the DEIM basis
ΦR for the nonlinear terms (see Section 2.2).

Let sh : P → Vh be a parameter-dependent function, e.g., the solution operator uh, and
sh(µ) ∈ RNh be the corresponding vector of dofs, where dim(Vh) = Nh. For a given set of
training parameters S = {µ1, . . . ,µns} ⊂ P, with ns < Nh, we define the snapshots matrix

S = [s1 | . . . | sns ] ∈ RNh×ns ,

where si = s(µi), i = 1, . . . , ns. Note that the training parameters can be randomly selected or
sampled using more ad-hoc strategies, such as the latin hypercube sampling, especially when
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2.1 Solution-space reduction: the reduced basis method

the dimension of the parameter space gets large. POD aims at approximating the manifold
identified by the image of sh, i.e.

Ms = {sh(µ) ∈ Vh | µ ∈ P},

with a low-dimensional linear subspace, retaining as much as possible of the information gathered
in the snapshots. To achieve this goal, the singular value decomposition (SVD) of S,

S = UΣZT ,

is computed, where U = [ξ1| . . . |ξNh
] ∈ RNh×Nh and Z = [ζ1| . . . |ζns ] ∈ Rns×ns are orthogonal

matrices collecting column-wise the left and the right singular vectors, respectively. The diagonal
matrix

Σ = diag(σ1, . . . , σr) ∈ RNh×ns

contains all singular values of S, sorted in descending order σ1 ≥ . . . ≥ σr > 0, where
r ≤ min(Nh, ns) is the rank of S, so that we can write

S =
r∑
j=1

σjξjζ
T
j .

The N -dimensional POD basis is then obtained by collecting the first N columns of U

V = [ξ1 | . . . | ξN ] ,

corresponding to the N largest singular values (see Algorithm 2). At the basis of the POD
algorithm stands the Schmidt-Eckart-Young theorem [Sch89; EY36], originally introduced for
integral operators, which provides a criterion for the best low-rank approximation of a given
matrix of rank r. In fact, the basis V ∈ RNh×N is such that

VVTS =
N∑
j=1

σjξjζ
T
j

has rank N ≤ r and satisfies the following optimality property:

‖S−VVTS‖2F = min
A∈RNh×Nh

rank(A)≤N

‖S−A‖2F =
r∑

j=N+1
σ2
j , (2.5)

where ‖·‖F is the Frobenius norm. Thus, span(V) is optimal in the sense that, among all
possible N -dimensional subspaces, minimizes the least square error of snapshot reconstruction.
Furthermore, thanks to (2.5), the singular values of the snapshots matrix provide an heuristic
criteria for choosing the basis dimension N , which can be computed as the minimum integer
satisfying the condition

RIC(N) =
∑N
i=1 σ

2
i∑r

i=1 σ
2
i

≥ 1− ε2
POD, (2.6)

where εPOD > 0 is a given tolerance. The left-hand side of (2.6) is the relative information
content (RIC) and represents the ratio between the modeled and the total snapshots information
content.
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Chapter 2 Reduced order modeling for nonlinear parameterized elastodynamics problems

Algorithm 2 Proper orthogonal decomposition (POD)
INPUT: S ∈ RNh×ns

OUTPUT: V ∈ RNh×N

1: Perform SVD of S, i.e., S = UΣZT
2: Select basis dimension N as the minimum integer fulfilling condition (2.6)
3: Construct V collecting the first N columns of U

The POD technique is efficient, provided that a sufficiently large number of snapshots has
been chosen in order to cover the manifold Ms. Furthermore, it can be used as a tool to
assess the reducibility of the underlying problem, that is, if the manifoldMs is likely to be
well approximated by a small reduced basis. A rapid decay of the singular values means that a
limited number of POD modes is potentially sufficient to represent the entire manifold, hence,
the problem is reducible.

Remark 2.1
An efficient, non-deterministic, version of POD can be obtained by relying on the so-called
randomized-SVD, see Algorithm 3. Randomization offers, in fact, a powerful tool for performing
low-rank matrix approximation, especially when dealing with massive data sets. The randomized
approach usually beats its classical competitors in terms of computational speed-up, accuracy
and robustness [HMT11]. The key idea of randomized-SVD is to split the task of computing an
approximated singular value decomposition of a given matrix into a first random stage and a
second deterministic one. The former exploits random sampling to construct a low-dimensional
subspace that captures most of the action of the input matrix; the latter is meant to restrict the
given matrix to this subspace and then manipulate the associated reduced matrix with classical
deterministic algorithms, to obtain the desired low-rank approximations. This randomized
approach is particularly convenient when the snapshots matrix is high-dimensional, i.e. when
Nh and ns are large. In fact, finding the first k dominant singular-values for a dense input
matrix of dimension Nh×ns, requires O(Nhns log(k)) floating-point operations for a randomized
algorithm, in contrast with O(Nhnsk) flops for a classical one.

Algorithm 3 Randomized-SVD
INPUT: S ∈ Rm×n, target rank k ∈ N
OUTPUT: UΣZT ≈ S
stage 1

1: Generate a Gaussian matrix Θ ∈ RNh×k

2: Compute Q ∈ RNh×k whose columns form an orthonormal basis for the range of SΘ and
such that

‖S−QQTS‖2 ≤ min
rank(X)≤k

‖S−X‖2,

e.g., using the QR factorization.
stage 2

1: Form S̃ = QTS ∈ Rk×n
2: Compute SVD of S̃ = ŨΣZT
3: Set U = QŨ
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2.1 Solution-space reduction: the reduced basis method

Finally, Algorithm 3 can be adapted to solve the following problem: given a target error
tolerance εrSV D > 0, find k = k(εrSV D) and Q ∈ RNh×k satisfying

‖S−QQTS‖2 ≤ εrSV D.

2.1.3 RB method for time-dependent nonlinear parameterized PDEs
Based on the idea of the previous section, we extend the RB method to the class of time-
dependent, nonlinear problems, whose numerical approximation can be written as follows: given
µ ∈ P and u0

h(µ) ∈ RNh , for each n = 1, . . . , Nt, find unh(µ) ∈ RNh such that

R(unh(µ), tn;µ) = 0.

Relying on implicit time schemes requires the solution to as many linear systems as the number
of Newton iterations per each time step.
Let us introduce the sample set S = {µ1, . . . ,µns}, for some µ` ∈ P, and define the

corresponding snapshots matrix

Su =
[
u1
h(µ1) | . . . | uNt

h (µ1) | . . . | u1
h(µns) | . . . | uNt

h (µns)
]
,

where each unh(µ`) corresponds to the FOM solution for a fixed parameter µ` at time tn, for
n = 1, . . . , Nt. The reduced basis V ∈ RNh×N for the solution-space is obtained by performing
POD on Su, so that a global basis is used to capture parameter and space-time variability
simultaneously. We point out that different strategies are also possible, as done, e.g., in [Pfa+20].
To conclude, the RB approximation to unh(µ), for n = 1, . . . , Nt, is given by the resulting

linear combination VunN (µ), where unN (µ) ∈ RN is the solution to the reduced nonlinear system

VTR(VunN (µ), tn;µ) = 0,

arising from a Galerkin projection of the high-fidelity problem onto the subspace spanned by the
columns of the basis V. By employing Newton method, we need to solve – online – the following
sequence of problems: given µ ∈ P and, for n = 1, . . . , Nt, the initial guess un,(0)

N (µ) = un−1
N (µ),

find δun,(k)
N (µ) ∈ RN such that, for k ≥ 0, VTJ(Vun,(k)

N (µ), tn;µ)Vδun,(k)
N (µ) = −VTR(Vun,(k)

N (µ), tn;µ),

un,(k+1)
N (µ) = un,(k)

N (µ) + δun,(k)
N (µ),

(2.7)

until ‖VTR(Vun,(k+1)
N (µ), tn;µ)‖2/‖VTR(Vun,(0)

N (µ), tn;µ)‖2 < εNwt, where εNwt > 0 is a
chosen tolerance.
Crucial in the efficacy of the RB method is the decoupling of the offline and online stages,

ensuring that the online computations are independent of the FOM dimension. However, since
both the residual vector R and the Jacobian matrix J depend on the solution at the previous
iteration Vun,(k)

N (µ), they need to be assembled at each Newton step. This means that, in order
to set up the reduced system (2.7)1, we need to assemble the high-dimensional arrays before
projecting them onto the reduced space spanned by the columns of V, entailing a computational
complexity that still depends on (suitable powers of) Nh.
To overcome this issue, a further level of approximation, know as hyper-reduction, must be

introduced, thus pursuing an approximate-then-reduce strategy.
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Chapter 2 Reduced order modeling for nonlinear parameterized elastodynamics problems

2.2 System approximation: the (discrete) empirical interpolation
method

In the case of PDEs featuring nonaffine dependence on the parameters and/or nonlinear
(high-order polynomial, or non-polynomial) dependence on the field variable, a further level
of reduction must be introduced to guarantee the offline-online decoupling in the ROM con-
struction [Far+20]. To recover the ROM efficiency, state-of-the-art methods, such as the
empirical interpolation method (EIM) [Bar+04; Gre+07], the discrete empirical interpolation
method (DEIM) [CS10], its variant matrix DEIM [WSH14; CTB15; NMA15], the missing
point estimation [Ast+08] and the Gauss-Newton with approximated tensors [CBMF11], aim
at recover an affine expansion of the nonlinear operators by computing only a few entries of the
nonlinear terms.
Although originally developed in the context of nonaffine operators, DEIM represents a

valid hyper-reduction technique also for nonlinear parameterized PDEs [DHO12; AZF12;
TR13; HSZ14; RR16; GTS17; BMQ16; BMQ17], employing an interpolation scheme for the
approximation of the nonlinear function. The key idea is to replace the nonlinear arrays in
(2.7) with a collateral reduced-basis expansion, computed through a (hopefully, inexpensive)
interpolation procedure. In the case of DEIM, the construction of the interpolation points,
commonly referred to as magic points, is based on a greedy algorithm, while the (prior)
construction of the reduced basis is obtained by performing POD (or randomized-SVD) on a set
of proper snapshots; in the case of EIM, both tasks are performed at the same time, exploiting
a greedy algorithm.
The DEIM algorithm for the approximation of a generic nonlinear function f : P → RNh ,

f = f(τ) (where τ = t and/or µ), as originally proposed in [CS10], is outlined as follows1:

1. construct a set of snapshots obtained by sampling f(τ) at random values τ1, . . . , τns and
apply POD to extract a basis from these snapshots, i.e.

RNh×m 3 ΦF = POD([f(τ1), . . . , f(τns)] , εPOD),

where εPOD > 0 is a given tolerance such that (2.6) holds;

2. iteratively select m� Nh indices I ⊂ {1, . . . , Nh}, corresponding to a subset rows of ΦF ,
using a greedy procedure, which minimizes the interpolation error over the snapshots set;

3. given τ /∈ {τ1, . . . , τns}, impose the interpolation conditions at the selected entries I

ΦF |Ic(τ) = f(τ)|I , (2.8)

stating that the DEIM approximation ΦFc(τ) and the original function f(τ) must match
at the magic points. Here ΦF |I ∈ Rm×m is the matrix formed by the I rows of ΦF ; as a
result, we obtain

f(τ) ≈ fm(τ) := ΦFΦ−1
F |I f(τ)|I .

Algorithm 4 illustrates the greedy procedure to determine the DEIM interpolation points.
The first magic point is the dof, in the physical domain, corresponding to the largest absolute

1for the sake of simplicity, we directly consider the vector representation of a function, assuming that all the
quantities introduced in this procedure have been discretized on a FE mesh.
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2.2 System approximation: the (discrete) empirical interpolation method

value of the first basis vector of ΦF . For k ∈ {2, . . . ,m}, the k-th magic point added to the
set is the dof corresponding to the largest absolute value of the difference between the current
basis vector φk and its current approximation ΦF ( : , 1: k − 1)ψ, based on the k − 1 computed
interpolation points. In this way the magic points are hierarchical and non-repeated.

Algorithm 4 Discrete empirical interpolation method (DEIM)
INPUT: ΦF = [φ1, . . . ,φm] ∈ RNh×m

OUTPUT: I = {i1, . . . , im}
1: Find i1 = arg maxi{|φ1|i}Nh

i=1
2: Set I = {i1}
3: for k = 2, . . . ,m do
4: Solve ΦF ( : , 1: k − 1)|Iψ = φk |I
5: Compute r = φk −ΦF ( : , 1: k − 1)ψ
6: Find ik = arg maxi{|r|i}Nh

i=1
7: Set I ← I ∪ {ik}
8: end for

We remark that the interpolation condition (2.8) can be generalized to the case where more
sample indices than basis function are considered, leading to a gappy POD reconstruction. The
solution to the least-squares problem

c(τ) = arg min
x∈Rm

‖f(τ)|I −ΦF |Ix‖2

would yield, in this case, fm(τ) = ΦFΦ†F |I f(τ)|I , where the Moore-Penrose inverse of a full
column rank matrix A ∈ Rn×m is defined as A† := (ATA)−1AT .

For the case at hand, the high-dimensional residual R is projected onto a reduced subspace
of dimension m < Nh spanned by a basis ΦR ∈ RNh×m

R(Vun,(k)
N (µ), tn;µ) ≈ ΦRc(Vun,(k)

N (µ), tn;µ),

where c ∈ Rm is the vector of the unknown amplitudes. The matrix ΦR can be pre-computed
offline by performing POD on a set of high-fidelity residuals collected when solving (2.7) for n′s
training input parameters (different from the one used for the RB basis construction),

SR =
[
R(Vun,(k)

N (µ`′), tn;µ`′)), k ≥ 0
]`′=1:n′s
n=1:Nt

. (2.9)

Remark 2.2
In addition to the set of snapshots (2.9), we can consider the FOM residuals collected when
solving (1.13) during the RB-basis construction, i.e.

SR = SFOMR ∪ SROMR

=
[
R(un,(k)

h (µ`), tn;µ`)), k ≥ 0
]`=1:ns

n=1:Nt

∪
[
R(Vun,(k)

N (µ`′), tn;µ`′)), k ≥ 0
]`′=1:n′s
n=1:Nt

.

Taking into account both FOM and ROM residuals entails no extra computational cost and
usually improves the overall accuracy, assuming n′s > ns. On the contrary, collecting FOM
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residuals only gave inaccurate results for all the performed test cases, as shown, for the stationary
case, in [BMQ17]. In fact, DEIM aims at approximating the nonlinear operators evaluated at
the ROM solution, rather than at the FOM solution. Therefore, it follows that construction of
the reduced space and system approximation must be performed sequentially.

For every new instance of the parameter, the µ-dependent coefficient vector c is efficiently
evaluated online by collocating the approximation at the m components selected by a greedy
procedure, that is,

ΦR|Ic(Vun,(k)
N , tn;µ) = R(Vun,(k)

N , tn;µ)|I ,
where ΦR|I and R(·)|I are the restrictions of ΦR and R(·) to the subset of indices I, respectively.
We thus define the hyper-reduced residual vector approximating VTR(Vun,(k)

N (µ), tn;µ) as

RN,m(Vun,(k)
N (µ), tn;µ) :=VTΦR(ΦR−1)|IR(Vun,(k)

N , tn;µ)|I .

During the online phase we need to assemble the µ-dependent quantities R(Vun,(k)
N , tn;µ)|I

only, which are vectors of (possibly small) dimension m. All other quantities are constant
(in fact, ΦR does not depend on t > 0, nor on µ ∈ P) and can be pre-computed and stored
offline. Finally, the Jacobian approximation to VTJ(Vun,(k)

N , tn;µ)V can be computed as the
derivative of RN,m(Vun,(k)

N , tn;µ) with respect to the reduced displacement, that is,

JN,m(Vun,(k)
N (µ), tn;µ) :=∂RN,m(Vun,(k)

N (µ), tn;µ)
∂uN

=VTΦR(ΦR−1)|I
∂R(Vun,(k)

N , tn;µ)
∂uN

|I

=VTΦR(ΦR−1)|IJ(Vun,(k)
N , tn;µ)|IV,

or by relying on the MDEIM algorithm, as done in [BMQ16]. However, since we employ
automatic differentiation to get (an approximation of) the Jacobian matrices, we adopt the former
approximation. As before, the only quantity that must be computed online is the restriction of
the Jacobian matrix to the rows corresponding to the magic points, i.e. J(Vun,(k)

N , tn;µ)|I ∈
Rm×Nh . Note that employing DEIM can be regarded as the use of an exact Newton method on
the reduced problem RN,m(Vun,(k)

N (µ), tn;µ) = 0, such that the k-th Newton iteration for its
solution reads JN,m(Vun,(k)

N (µ), tn;µ)δun,(k)
N (µ) = −RN,m(Vun,(k)

N (µ), tn;µ),

un,(k+1)
N (µ) = un,(k)

N (µ) + δun,(k)
N (µ).

(2.10)

DEIM eliminates any full order evaluation, highly decreasing the computational effort, provided
its dimension is not too large [BGW15].
Remark 2.3
The m points selected by the DEIM algorithm correspond to a subset of nodes of the computa-
tional mesh, which, together with the neighboring nodes (i.e. those sharing the same cell), form
the so-called reduced mesh; an instance of reduced mesh is reported in Figure 2.1. Since the
entries of any FE-vector are associated with the dofs of the problem, RN,m and JN,m can be
computed by integrating the corresponding FOM residual and Jacobian only on the quadrature
points belonging to the reduced mesh, respectively.
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2.2 System approximation: the (discrete) empirical interpolation method

Figure 2.1: Sketch of a reduced mesh for an hexahedral computational grid in a two-dimensional case.
The red dots represent the points selected by the DEIM algorithm.

Algorithm 5 POD-Galerkin-DEIM for nonlinear time-dependent problems
Offline stage
INPUT: µ`, for ` = 1, . . . , ns, and µ`′ , for `′ = 1, . . . , n′s
OUTPUT: V ∈ RNh×N , ΦR ∈ RNh×m, I = {i1, . . . , im}

1: for ` = 1, . . . , ns do
2: for n = 1, . . . , Nt do
3: for k ≥ 0 until convergence do
4: Assemble and solve problem (1.13)
5: Collect Su ← Su ∪

[
un,(k)
h (µ`)

]
column-wise

6: Collect SR ← SR ∪
[
R(un,(k)

h (µ`′), tn;µ`′)
]
column-wise (see Remark 2.2)

7: Construct V = POD(Su, εPOD) (see Algorithm 2)
8: for `′ = 1, . . . , n′s do
9: for n = 1, . . . , Nt do

10: for k ≥ 0 until convergence do
11: Assemble and solve reduced problem (2.7)
12: Collect SR ← SR ∪

[
R(Vun,(k)

N (µ`′), tn;µ`′)
]
column-wise

13: Construct (ΦR, I) = DEIM(SR, εDEIM ) (see Algorithm 4)

Online stage
INPUT: µ ∈ P
OUTPUT: VunN (µ) ∈ RNh , for n = 1, . . . , Nt

1: for n = 0, . . . , Nt − 1 do
2: for k ≥ 0 until convergence do
3: Assemble and solve hyper-reduced problem (2.10)
4: Recover VunN (µ), for n = 1, . . . , Nt

Remark 2.4
We recall that both the FOM and the ROM arrays, such as the solution and the residual vectors,
are column vectors whose elements are the values of the associated quantities evaluated on
the dofs of the physical mesh. Therefore, when assembling the snapshots matrices in order to
compute the RB and the DEIM basis, the corresponding arrays are stacked column-wise.
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Chapter 2 Reduced order modeling for nonlinear parameterized elastodynamics problems

2.3 Numerical results
In this section we investigate the performances of the POD-Galerkin-DEIM approach on different
applications related to the parameterized nonlinear time-dependent mechanics problem (1.2),
namely:

(i) a series of structural tests on a rectangular beam, with different loading conditions and a
simple nonlinear constitutive law;

(ii) two test cases on an idealized left ventricle geometry, simulating cardiac relaxation
and contraction, respectively. The steady-state versions of these test cases have been
introduced in [Lan+15] as benchmarks for the validation of cardiac mechanics software;

(iii) an idealized full cycle of a patient-specific left ventricle, where both pressure and active
stress are imposed.

In all these scenarios, we neglect the body forces b0(µ) = 0 and consider zero initial conditions
u0(µ) = u̇0(µ) = 0. Regarding the Robin boundary, we always assume α = β = 0, so that we
actually impose homogeneous Neumann conditions. Finally, the traction vector T̄ is given by

T̄(X, t,N;µ) = −g(t;µ)JF−TN,

where g(t;µ) will be specified, according to the application at hand.
As a measure of the accuracy of the ROMs with respect to the FOM, for a given parameter

instance, we consider time-averaged L2-errors of the displacement vector, that are,

εabs(µ) = 1
Nt

Nt∑
n=1
‖uh(·, tn;µ)−VuN (·, tn;µ)‖2,

εrel(µ) = 1
Nt

Nt∑
n=1

‖uh(·, tn;µ)−VuN (·, tn;µ)‖2
‖uh(·, tn;µ)‖2

.

The CPU time ratio, i.e. the ratio between FOM and ROM computational times, is used to
measure the ROMs efficiency, since it represents the speed-up of the ROMs with respect to the
FOM. All the computations have been performed on a PC desktop computer with 3.70GHz
Intel Core i5-9600K CPU and 16GB RAM.

2.3.1 Deformation of a clamped rectangular beam
The first series of test cases represents a typical structural mechanics problem, with reference
geometry Ω̄0 = [0, 10−2] × [0, 10−3] × [0, 10−3] m, see Figure 2.2. We consider a nearly-
incompressible neo-Hookean material characterized by the following strain density energy
function

W(F) = G

2 (I1 − 3) + K

4 ((J − 1)2 + ln2(J)),

where G > 0 is the shear modulus, I1 = J−
2
3 det(C) and the latter term is needed to enforce

incompressibility, being the bulk modulus K > 0 the penalization factor. This choice leads to
the following first Piola-Kirchhoff stress tensor, characterized by a non-polynomial nonlinearity,

P(F) = GJ−
2
3

(
F− 1

3I1FT
)

+ K

2 J
(
J − 1 + 1

J
ln(J)

)
FT .
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2.3 Numerical results

Figure 2.2: Rectangular beam geometry (left) and computational grid (right).

Pressure boundary conditions, changing with the deformed surface orientation, are applied to
the entire bottom face z = 0 m (i.e. ΓN0 ), whereas Dirichlet boundary conditions are imposed
on the left face x = 0 m (i.e. ΓD0 ), that is, the beam is clamped at the left-hand side. For
all other faces, we consider homogeneous Neumann conditions (i.e. ΓR0 with α = β = 0). As
possible functions for the external load g(t;µ), we choose

1. a linear function g(t;µ) = p̃ t/T ;

2. a triangular or hat function g(t;µ) = p̃
(
2t χ(t)(0,T

2 ] + 2(T − t) χ(t)( T
2 ,T ]

)
;

3. a step function g(t;µ) = p̃ χ(t)(0,T
3 ], such that the presence of the inertial term is not

negligible.

Here, p̃ > 0 is a parameter controlling the maximum load. The FOM is built on a hexahedral
mesh with 640 elements and 1025 vertices, resulting in a high-fidelity dimension Nh = 3075
(since Q1-FE are employed). The resulting computational mesh in the reference configuration
is reported in Figure 2.2.

Test case 1: linear function for the pressure load

First, we consider the parameterized linear function

g(t;µ) = p̃ t/T

for the pressure load, describing a situation in which a structure is progressively loaded. We
choose a time interval t ∈ (0, 0.25) s and employ a uniform time step ∆t = 5 · 10−3 s for the
time discretization scheme, resulting in a total number of 50 time iterations. As parameters,
we consider:

• the shear modulus G ∈ [0.5 · 104, 1.5 · 104] Pa,

• the bulk modulus K ∈ [2.5 · 104, 7.5 · 104] Pa, and

• the external load parameter p̃ ∈ [2, 6] Pa.

In the following, we analyze the accuracy and the efficiency of the ROM without hyper-
reduction with respect to the POD tolerance εPOD. Then, for a fixed basis V ∈ RNh×N , the
performances of POD-Galerkin-DEIM are investigated, and the CPU times required for the
assembling and solving of the reduced system are computed.
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Chapter 2 Reduced order modeling for nonlinear parameterized elastodynamics problems

Figure 2.3: Test case 1. Decay of the singular values of the FOM solution snapshots matrix.

Let us consider a training set of ns = 50 points generated from the three-dimensional
parameter space P through latin hypercube sampling (LHS) and compute the reduced basis
V ∈ RNh×N using the POD method with tolerance

εPOD ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6}.

The corresponding reduced dimensions are N = 3, 4, 5, 6, 8, 9 and 15, respectively. In Figure 2.3
we show the singular values of the snapshot matrix related to the FOM displacement uh, where
a rapid decay of the plotted quantity means that a small number of RB functions are needed
to correctly approximate the high-fidelity solution. The average relative error εrel computed
over a testing set of 50 randomly chosen parameters, different from the ones used to compute
the solution snapshots, is reported in Figure 2.4, together with the CPU time ratio. The
approximation error decreases up to two orders of magnitude when reducing the POD tolerance

Figure 2.4: Test case 1. Average over 50 testing parameters of relative error εrel (left) and speed-up
(right) of POD-Galerkin ROMs.
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2.3 Numerical results

εPOD from 10−3 to 10−6, corresponding to an increase of the RB dimension from N = 3 to
N = 15. Despite being the RB space low-dimensional, the computational speed-up achieved
by the reduced model is negligible. This is due to the fact that the ROMs still depend on
the FOM dimension Nh during the online stage. For this reason, we need to rely on suitable
hyper-reduction techniques.
For the construction of the DEIM basis ΦR for the approximation of the residual, we need

first to compute snapshots from the ROM solutions for given parameter values and time instants,
and then evaluate the residual vectors. To this goal, we choose a POD-Galerkin ROM with
dimension N = 4, being it a good balance between accuracy and computational effort for the
test case at hand, and perform ROM simulations (see Algorithm 5) for a given set of n′s = 200
parameter samples to collect residual data. We report in Figure 2.5 the decay of the singular
values of SR related to the residual snapshots R(Vun,(k)

N (µ`′), tn;µ`′).

Figure 2.5: Test case 1. Decay of the singular values of the ROM (N=4) residual snapshots matrix.

In order to investigate the impact of hyper-reduction onto the ROM solution reconstruction
error, we compute the DEIM basis ΦR for the approximation of the residual using the POD
method with different tolerances, that are

εDEIM ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},

corresponding to a number of interpolation points equal to m = 22, 25, 30, 33, 39, 43, 51,
respectively. Larger POD tolerances were not sufficient to ensure the convergence of Newton
method for all considered testing parameters. The average relative error εrel is evaluated over a
testing set of n′s = 50 parameters and plotted in Figure 2.6. In Figures 2.7 and 2.8 we report
the high-fidelity, the reduced displacements and their difference, i.e. point-wise displacement
|unh(µ)−VunN (µ)|, for 2 different values of the parameter µ = [G,K, p̃]. The reduced solution
has been computed using a POD-Galerkin-DEIM hyper-reduced order model with N = 4 and
m = 22. In order to compute the high-fidelity solutions, 26 s are required in average, while a
POD-Galerkin-DEIM ROM requires only 2.4 s, thus yielding a speed-up of ×11 compared to
the FOM.
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Chapter 2 Reduced order modeling for nonlinear parameterized elastodynamics problems

Figure 2.6: Test case 1. Average over 50 testing parameters of relative error εrel (left) and average
speed-up (right) of POD-Galerkin-DEIM with N = 4.

Data related to the performances of the POD-Galerkin-DEIM method for N = 4 and different
values of m are shown in Table 2.1. The number of elements of the reduced mesh represents a
small percentage of the one forming the original grid, so that the cost related to the residual
assembling is remarkably alleviated. Relying on the AD tool allows to drastically reduce the
computational time required for the assembling of the Jacobian matrices.

POD tolerance εDEIM 5 · 10−4 5 · 10−5 5 · 10−6

DEIM interpolation dofs m 25 33 43

Reduced mesh elements (total: 640) 86 115 168

Online CPU time 2.8 s 3.6 s 4.3 s

◦ system construction [∗] 78% 83% 88%

◦ system solution 0.16% 0.13% 0.09%

[∗] System construction for each Newton iteration 0.02 s 0.02 s 0.03 s

◦ residual assembling 89% 87% 88%

◦ Jacobian computing through AD 0.6% 0.4% 0.5%

Computational speed-up ×9.4 ×7.3 ×6.0

Time-averaged L2(Ω0)-absolute error 3 · 10−5 2 · 10−5 2 · 10−5

Time-averaged L2(Ω0)-relative error 8 · 10−3 5 · 10−3 5 · 10−3

Table 2.1: Test case 1. Computational data related to POD-Galerkin-DEIM with N = 4 and different
values of m.
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Figure 2.7: Test case 1. FOM (top) and POD-Galerkin-DEIM (middle) displacements at different times
for µ = [1.3225 · 104 Pa, 3.9875 · 104 Pa, 3.43 Pa] and difference between them (bottom).

Figure 2.8: Test case 1. FOM (top) and POD-Galerkin-DEIM (middle) displacements at different times
for µ = [0.6625 · 104 Pa, 5.8625 · 104 Pa, 4.89 Pa] and difference between them (bottom).
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The final accuracy of the POD-Galerkin-DEIM method for N = 4 equals that of the ROM
without hyper-reduction for all εDEIM considered, εrel ≈ 10−2, meaning that the projection error
dominates over the nonlinear operators approximation error. In order to increase the accuracy
of the reduced solution, we need to consider higher values of N . In Figure 2.9 we report the
average relative error and the CPU time ratio computed for N = 8. In this case we are able to
improve the accuracy of the reduced solution of more than one order of magnitude by increasing
the residual basis dimension m. Of course, slower POD-Galerkin-DEIM approximations are
obtained, since we need to assemble a higher number of entries of the nonlinear terms.

Figure 2.9: Test case 1. Average over 50 testing parameters of relative error εrel (left) and average
speed-up (right) of POD-Galerkin-DEIM with N = 8.

Test case 2: hat function for the pressure load

Let us now consider a piecewise linear pressure load given by the following hat function

g(t;µ) = p̃
(
2t χ(t)(0,T

2 ] + 2(T − t) χ(t)( T
2 ,T ]

)
,

describing the case in which a structure is increasingly loaded until a maximum pressure is
reached, and then linearly unloaded in order to recover the initial resting state. For the case at
hand, we choose t ∈ (0, 0.35) s and ∆t = 5 · 10−3 s, resulting in a total number of 70 time steps.
As parameter, we consider the external load parameter p̃ ∈ [2, 12] Pa. The shear modulus
G and the bulk modulus K are fixed to the values 104 Pa and 5 · 104 Pa, respectively. Let
us consider a training set of ns = 50 points generated from the one-dimensional parameter
space P = [2, 12] Pa through LHS and build the reduced space using V ∈ RNh×N with N = 4,
corresponding to εPOD = 10−4.

The singular values of the solution snapshots matrix Su and those of the matrix SR related to
the residual vectors R(Vun,(k)

N (µ`′), tn;µ`′) computed for n′s = 300 randomly chosen parameters
are reported in Figure 2.10.

In this case the DEIM basis ΦR for the approximation of the residual is computed using the
POD method with tolerance

εDEIM ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},
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Figure 2.10: Test case 2. Decay of the singular values of the FOM solution (left) and the ROM (N=4)
residual (right) snapshots matrices.

corresponding to a number of interpolation points m = 14, 16, 22, 24, 29, 31, 37, respectively.
Tolerances εDEIM larger than the values reported above were not sufficient to ensure convergence
of Newton method for all considered testing parameters. The average relative error εrel is about
10−2 when using m = 14 residual basis, and can be further reduced of one order of magnitude
when increasing the DEIM dimension to m = 29, albeit highly decreasing the CPU time ratio,
as shown in Figure 2.11. In Figure 2.12 we show the FOM solution, the POD-Galerkin-DEIM
approximation and their difference for a randomly chosen value of p̃, different from those used
in the offline stage to train the ROM. This deformation corresponds to N = 4 and m = 14,
showing that a good level of accuracy can be achieved also using a small number of basis
functions.

Figure 2.11: Test case 2. Average over 50 testing parameters of relative error εrel (left) and average
speed-up (right) of POD-Galerkin-DEIM with N = 4.
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Figure 2.12: Test case 2. FOM (top) and POD-Galerkin-DEIM (middle) displacements at different
times for µ = [11.3875 Pa] and difference between them (bottom).

Test case 3: step function for the pressure load

As last test case for the beam geometry, we consider a pressure load acting on the bottom
surface area for only a third of the whole simulation time, that is

g(t;µ) = p̃ χ(t)(0,T
3 ],

such that the resulting deformation features oscillations. This case is of particular interest in
nonlinear elastodynamics, since the inertial term cannot be neglected, as it has a crucial impact
on the deformation of the object. For the case at hand, we choose t ∈ (0, 0.27) s and a uniform
time step ∆t = 3.6 · 10−3 s, resulting in a total number of 75 time iterations. For what concerns
the input parameters, we vary the external load p̃ ∈ [2, 12] Pa and consider G = 104 Pa and
K = 5 · 104 Pa fixed.

We build the reduced basis V ∈ RNh×N from a training set of ns = 50 FOM solutions using
εPOD = 10−3, obtaining a reduced dimension of N = 4, and perform POD-ROM simulations for
a given set of n′s = 300 parameter samples to collect residual data for the construction of POD-
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Figure 2.13: Test case 3. Average over 50 testing parameters of relative error εrel (left) and average
speed-up (right) of POD-Galerkin-DEIM with N = 4.

Galerkin-DEIM model. Like previous test cases, the DEIM basis ΦR for the approximation of
the residual is computed by performing POD on SR with tolerance

εDEIM ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},

where εDEIM = 10−3 is the larger POD tolerance that allows to guarantee the convergence
of the reduced Newton algorithm for all testing parameters. The corresponding number of
interpolation points is m = 18, 20, 27, 30, 38, 40, 50, respectively. The results are shown in
Figure 2.13.

Data related to the computational performances of POD-Galerkin-DEIM for three different
dimensions of the residual basis are reported in Table 2.2. The POD-Galerkin-DEIM with
N = 4 and m = 27 is able to accurately approximate the FOM solution, as shown in Figure 2.14,
where we report the high-fidelity and the reduced solutions for a give pressure p̃ at different
time instances.

m = 18 m = 27 m = 38

Computational speed-up ×12 ×9 ×6

Avg. CPU time 4 s 5 s 8 s

Time-avg. L2(Ω0)-absolute error 2.4 · 10−3 1.8 · 10−4 1.3 · 10−4

Time-avg. L2(Ω0)-relative error 6.7 · 10−1 4.5 · 10−1 2.4 · 10−2

Table 2.2: Test case 3. Computational data related to POD-Galerkin-DEIM with N = 4 and different
values of m.
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Figure 2.14: Test case 3. FOM (top) and POD-Galerkin-DEIM (bottom) displacements computed at
different times for µ = [11.4625 Pa].

2.3.2 Benchmark problems with a prolate spheroid geometry

In this section we investigate the performances of a POD-Galerkin-DEIM reduced order model
to address benchmark problems in cardiac mechanics. In both cases, the reference geometry
Ω0 ⊂ R3 is that of a truncated ellipsoid and the material law adopted is the nearly-incompressible
Guccione relation (1.3), although different parameter values are taken into account, according
to [Lan+15]. For what concerns the boundary condition of problem (1.2), we apply a linear
external pressure

g(t;µ) = p̃ t/T

at the endocardium (i.e. ΓN0 ), with p̃ > 0, simulating the presence of blood inside the cardiac
chamber, and consider homogeneous Neumann and Dirichlet conditions at the epicardium (i.e.
ΓR0 with α = β = 0) and on the base (i.e ΓD0 ), respectively, the latter representing the artificial
boundary resulting from truncation of the heart below the valves in a short axis plane.
The FOM is built on a hexahedral mesh with 4804 elements and 6455 vertices, depicted in

Figure 2.15, resulting in a high-fidelity dimension Nh = 19365, since Q1-FE (that is, linear FE
on a hexahedral mesh) are used.

Passive inflation of a left ventricle

In this first case we do not account for anisotropy and only consider the passive contribution of
the Piola tensor, so that the obtained deformation pattern simulates passive ventricular diastole.
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Figure 2.15: Idealized truncated ellipsoid geometry (left) and computational grid (right).

As unknown parameters, we consider

• the material stiffness in fiber and cross-fiber directions bf , bn ∈ [0.8, 1.2], and

• the multiplicative factor C ∈ [8 · 103, 12 · 103] Pa.

All other parameters are fixed to their reference values, namely bs = bfs = bfn = bsn = 1,
K = 50 · 103 Pa and p̃ = 10 · 103. For the time setting, we choose t ∈ (0, 0.25) s and a uniform
time step ∆t = 5 · 10−3 s, resulting in a total number of 50 time instances. In Figure 2.16 we
report the high-fidelity displacement at different time instants. In order to compute the FOM
solution, almost 340 s are required in average on a PC desktop computer with 3.70GHz Intel
Core i5-9600K CPU and 16GB RAM.

Figure 2.16: Passive inflation of a left ventricle. FOM solution computed at different times for
µ = [1.007, 0.853, 8610 Pa].

For ns = 50 points sampled in the parameter space P through LHS, we collect the solution
snapshots in order to compute the RB basis V ∈ RNh×N . The singular values arising from
the SVD of the snapshots matrix Su are reported in Figure 2.17, where a rapid decay of the
reported quantity is observed. We expect that a small number of basis functions is sufficient for
the ROM to guarantee a good approximation of the high-fidelity solution manifold.
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Figure 2.17: Passive inflation of a left ventricle. Decay of the singular values of the FOM solution
snapshots matrix.

As done in previous test case to analyze the performances of the ROM without hyper-reduction,
we consider the following POD tolerances:

εPOD ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},

corresponding to a RB dimension of N = 5, 7, 12, 16, 26, 32 and 55, respectively. Figure 2.18
shows the error and the CPU time ratio over εPOD, where the average is computed over a
testing set of 20 parameters, different from those used for the generation of FOM snapshots. The
plot confirms that few basis functions are required to accurately approximate the high-fidelity
displacements. In particular, we observe that the relative error εrel associated with the ROM
approximation decreases of almost three orders of magnitude when going from N = 5 to
N = 55. However, since at each Newton step we need to assemble high-dimensional arrays
before projecting them onto the reduced space, the CPU time required by the ROM for all
dimensions N is almost comparable to the one of the FOM.

Figure 2.18: Passive inflation of a left ventricle. Average over 20 testing parameters of relative error
εrel (left) and speed-up (right) of POD-Galerkin ROMs.
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Further, we investigate the impact of hyper-reduction onto the ROM solution reconstruction
error. In order to build the POD-Galerkin-DEIM hyper-reduced model, we consider N = 16
basis functions for state reduction, obtained for εPOD = 10−5. For the construction of the
residual basis ΦR ∈ RNh×m, we rely on a snapshots set computed for n′s = 50 points in P and
apply POD on SR using

εDEIM ∈ {5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},

corresponding to m = 84, 127, 148, 207, 239 and 368, and compare these options. As shown
in Figure 2.19 and Table 2.3, no loss of accuracy is experienced when decreasing the number
of DEIM interpolation points m. Higher tolerances εDEIM on the DEIM error do not ensure
the convergence of the reduced Newton system for all testing parameters, such that no higher
speed-ups can be achieved by further reducing the size of the residual basis. Furthermore,
we point out that m > N , meaning that the residual vector shows higher variability with
respect to the displacement. To conclude, the POD-Galerkin-DEIM hyper-reduced order model
with m = 84 is able to achieve a speed-up of ×9.3 compared to the FOM, still achieving an
approximation error equals to the projection error, that is εrel ≈ 10−3.

Figure 2.19: Passive inflation of a left ventricle. Average over 20 testing parameters of relative error
εrel (left) and average speed-up (right) of POD-Galerkin-DEIM with N = 16 and different
values of m.

m = 84 m = 127 m = 368

Computational speed-up ×9.3 ×8.0 ×4.3

Avg. CPU time 36 s 42 s 77 s

Time-avg. L2(Ω0)-absolute error 5.3 · 10−5 2.9 · 10−5 2.9 · 10−5

Time-avg. L2(Ω0)-relative error 5.3 · 10−4 2.9 · 10−4 2.8 · 10−4

Table 2.3: Passive inflation of a left ventricle. Computational data related to POD-Galerkin-DEIM
with N = 16 and different values of m.
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Passive inflation and active contraction of a left ventricle

The second benchmark takes into account both a varying fiber distribution and contractile
forces, dealing with the inflation and the active contraction of an idealized left ventricle with
transversely isotropic material properties. Despite being an idealized test case, the displacement
field reproduces the typical twisting motion of the systole in the left ventricle, caused by the
distribution of the muscular fibers.

In order to compute the fiber orientation in cardiac geometries, suitable rule-based methods
have been developed [Bay+12; WK14; Dos+19; Pie+21], which usually depend on a set of
parameter angles. In this particular case we consider the method proposed in [Ros+14], where
αepi and αendo represent possible values of the rotation angle of the fibers on the epicardium
and endocardium, respectively. Even if electrophysiology in not taken into account, we need
to surrogate the presence of the active generation forces that drive the contraction mechanics.
With this aim, active contraction is modeled through the active stress approach, considering
anisotropic active tension applied in the fiber direction only, see Section 1.2.2. In particular, the
parameterized active tension in the fiber direction Ta = Ta(t;µ) is modeled as a linear function
of the form

Ta(t;µ) = T̃a t/T.

Since we want to assess the performance of a POD-Galerkin-DEIM reduced order model to
reduce the myocardium contraction, we consider as unknown parameters those related to the
active components of the strain energy function:

• the maximum value of the active tension T̃a ∈ [49.5 · 103, 70.5 · 103] Pa, and

• the fiber angles αepi ∈ [−105.5,−74.5]◦ and αendo ∈ [74.5, 105.5]◦.

All other parameters are fixed to their reference values, namely bf = 8, bs = bn = bsn = 2,
bfs = bfn = 4, C = 2 ·103 Pa, K = 50 ·103 Pa and p̃ = 15 ·103. Regarding the time discretization,
we choose t ∈ (0, 0.25) s and a uniform time step ∆t = 5 · 10−3 s.

Given a training set of ns = 50 points obtained by sampling the parameter space P , we
perform a convergence analysis of the ROM without hyper-reduction by constructing the
reduced basis V ∈ RNh×N for different N and computing the associated approximation errors.

Figure 2.20: Passive inflation and active contraction of a left ventricle. Decay of the singular values of
the FOM solution snapshots matrix.
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Figure 2.21: Passive inflation and active contraction of a left ventricle. Average over 20 testing
parameters of relative error εrel (left) and speed-up (right) of POD-Galerkin ROMs.

From Figure 2.20, we observe a slower decay of the singular values of Su with respect to the
previous test case of passive inflation. In fact, using POD tolerances

εPOD ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},

we obtain the RB dimensions N = 16, 22, 39, 50, 87, 109 and 178, respectively, much larger than
the ones obtained for similar tolerances on the previous test case. This behavior is somehow
expected, as the underlying system dynamics, simulating ventricular contraction and associated
torsion, is more involved than the idealized diastole, in which tissue anisotropy is neglected. As
shown by the results obtained so far, the construction of a ROM is highly problem dependent,
since the parameters considered, e.g., in the constitutive relation, strongly influence the form of
the solution manifold, thus the dimension of the reduced basis necessary to obtain comparable
accuracy between the different ROMs.

The error and the CPU speed-ups averaged over a testing set of 20 parameters are both shown
in Figure 2.21, as functions of the POD tolerance εPOD. As already discussed, the speed-ups
achieved by the ROMs are negligible, since at each Newton iteration without hyper-reduction
the ROMs still depend on the high-fidelity dimension Nh. For what concerns the approximation
error, we observe a reduction of almost two orders of magnitude when going from N = 16 to
N = 178.
Given V ∈ RNh×N with N = 16, we construct POD-Galerkin-DEIM approximations by

considering n′s = 200 parameter samples. We point out that smaller values of n′s (n′s ≥ 50)
can be considered, leading to almost the same results in the online phase. Figure 2.22 shows
the decay of the singular values of SR, that is, the snapshots matrix of the residual vectors
R(Vun,(k)

N (µ`′), tn;µ`′). We observe that the reported curve decreases very slowly, so that we
expect that a large number of basis functions is required to correctly approximate the nonlinear
operators.
In fact, by computing ΦR ∈ RNh×m using the following POD tolerances:

εDEIM ∈ {5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6},

we obtain m = 303, 456, 543, 776, 902 and 1233, respectively. Higher values of εDEIM (related
to hopefully smaller dimensions m) were not sufficient to guarantee the convergence of the
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Figure 2.22: Passive inflation and active contraction of a left ventricle. Decay of the singular values of
the ROM (N=16) residual snapshots matrix.

reduced Newton problem for all the parameter combinations considered. The average relative
errors over a set of 20 parameters and the computational speed-ups are reported in Figure 2.23.
In particular, we observe that the relative error is between 4 · 10−3 and 8 · 10−3, as we could
expect from the projection error reported in Figure 2.21.

Figure 2.23: Passive inflation and active contraction of a left ventricle. Average over 20 testing
parameters of relative error εrel (left) and average speed-up (right) of POD-Galerkin-
DEIM with N = 16.

Similar results are obtained when using a finer mesh with 13025 vertices, corresponding to
Nh = 39075 dofs for the FOM. In this case a reduced basis of dimension N = 16 is computed
using εPOD = 10−3, while the POD tolerance εDEIM for the approximation of the nonlinear
arrays has to be chosen no larger than 10−4 to ensure Newton convergence, obtaining m = 385
DEIM terms and a corresponding approximation error εrel ≈ 5 · 10−3. Also in this case, the
highest speed-up achieved by the ROM is greater than that obtained for the coarser mesh (i.e.
×8 against ×6), suggesting that the POD-Galerkin-DEIM convenience grows as the dimension
of the underlying FOM increases.
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Figure 2.24: Passive inflation and active contraction of a left ventricle. Evolution in time of the average
L2(Ω0)-relative error for (N,m) = (16, 303) (blue) and (N,m) = (39, 767) (greed).

Indeed, when a larger reduced basis is considered, such as in the case of N = 39 basis
functions obtained for εPOD = 10−4 when Nh = 19365, a remarkable improvement in accuracy
is achieved, as shown in Figure 2.24 and Table 2.4. However, a higher number of DEIM magic
points is required for the solution of the reduced nonlinear system through Newton method,
ultimately doubling the online CPU time required to solve the hyper-ROM for each parameter
instance.

εPOD 10−3 (N = 16) 10−4 (N = 39)

εDEIM 5 · 10−4 (m = 303) 10−5 (m = 767)

Computational speed-up ×6.2 ×2.9

Avg. CPU time 58 s 124 s

Time-avg. L2(Ω0)-absolute error 1 · 10−3 2 · 10−4

Time-avg. L2(Ω0)-relative error 7 · 10−3 1 · 10−3

Table 2.4: Passive inflation and active contraction of a left ventricle. Computational data related to
POD-Galerkin-DEIM with (N,m) = (16, 303) and (N,m) = (39, 767).

As a matter of fact, the residual basis dimension m is highly influenced by the size N of
the reduced subspace for the solution, so that a larger basis V requires a greater number of
interpolation points to correctly approximate the reduced nonlinear operators, thus reducing the
overall speed-up of the ROM. Therefore, choosing N = 16 represents a good trade off between
accuracy and efficiency. The high-fidelity solution and the POD-Galerkin-DEIM reduced
displacement computed using m = 303 at different time instants are shown in Figures 2.25 and
2.26 for two parameter values, together with their point-wise difference. About 6 minutes are
required in average to solve the high-fidelity problem for each instance of the parameter, while
the solution of the hyper-ROM requires less than a minute, thus achieving a speed-up equal to
×6.2.
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Figure 2.25: Passive inflation and active contraction of a left ventricle. FOM (top) and POD-Galerkin-
DEIM (middle) displacements at different times for µ = [61942.5 Pa, −77.5225◦, 87.9075◦]
and difference between them (bottom), for N = 16.

Figure 2.26: Passive inflation and active contraction of a left ventricle. FOM (top) and POD-Galerkin-
DEIM (middle) displacements at different times for µ = [59737.5 Pa,−102.3225◦, 91.1625◦]
and difference between them (bottom), for N = 16.
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The case of high dimensional parameter spaces At last, we consider a higher number of
training parameters, that are,

• the material stiffness in different directions bf ∈ [6.6, 9.4], bs, bn, bsn ∈ [1.65, 2.35],
bfs, bfn ∈ [3.3, 4.7],

• the bulk modulus K ∈ [4 · 104, 6 · 104] Pa,

• the multiplicative constant C ∈ [1.5 · 103, 2.5 · 103] Pa,

• the maximum active tension T̃a ∈ [49.5 · 103, 70.5 · 103] Pa,

• the steepness of the pressure ramp p̃ ∈ [14 · 103, 16 · 103] Pa, and

• the fiber angles αepi ∈ [−105.5,−74.5]◦ and αendo ∈ [74.5, 105.5]◦,

such that,
µ =

[
bf , bs, bn, bfs, bfn, bsn,K,C, T̃a, p̃,α

epi,αendo
]
∈ P ⊂ R12.

For the construction of the FOM solution and the ROM residual snapshots matrices, we consider
ns = 50 and n′s = 75 training parameters, respectively. Further details are summarized in
Table 2.5. We observe that, despite having increased the number of unknown parameters from
3 to 12, the dimension N of the RB functions is almost unaffected by the choice of a higher
dimensional parameter space, as the mechanical behavior is mostly influenced by the active
parameters T̃a, αepi and αendo previously considered.

εPOD 1e-3 (N = 19)

εDEIM 1e-4 (m = 574)

Computational speed-up ×4.1

Avg. CPU time 87 s

Time-avg. L2(Ω0)-absolute error 3 · 10−3

Time-avg. L2(Ω0)-relative error 2 · 10−3

Table 2.5: Passive inflation and active contraction of a left ventricle. Computational data related to
POD-Galerkin-DEIM with N = 19 and m = 574, when size(µ) = 12.

2.3.3 Idealized full cycle of the left ventricle with a patient specific geometry
Finally, we want to analyze the performances of the POD-Galerkin-DEIM method when the
whole cardiac cycle is taken into account. For the sake of simplicity, we employ suitable
analytical time-dependent functions to surrogate the influence of the active stress model and
blood circulation. In particular, the active tension Ta(X, t;µ) = Ta(t;µ)(Ff0 ⊗ f0) and the
pressure g(t;µ) are computed as follows:

1. for a fixed set of physiological parameters, we solve the cardiac electromechanics (EM)
problem in (0, T ) coupled with a closed-loop 0D circulation model, as done in [Reg+20a],
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where the active forces are modeled by means of an artificial neural network built from
biophysically detailed high-fidelity models [RDQ20b];

2. we compute the space-average of the active tension coming from the EM simulation, that
is

τEMa (t) = avg
X∈Ω0

TEMa (X, t),

where TEM
a (X, t) = TEMa (X, t)(Ff0 ⊗ f0) is the active stress acting in the fiber direction,

as well as the EM blood pressure gEM (t);

3. by performing a cubic spline interpolation of τEMa (t) and gEM (t), we obtain the corre-
sponding analytical surrogate functions τMa (t) and gM (t), reported in Figure 2.27 for
T = 0.8 s;

4. finally, to take into account a parameter-dependence, we define

Ta(t;µ) = T̃a
max
t∈(0,T )

τMa (t)τ
M
a (t), g(t;µ) = p̃

max
t∈(0,T )

gM (t)gM (t),

in order to model different maximum active tensions and loading conditions.

Figure 2.27: Idealized full cycle of the left ventricle. Space-averaged active tension (left) and blood
pressure (right) computed during a EM simulation and the corresponding fitted curves.

The reference geometry Ω0 ⊂ R3 is a patient-specific left ventricle, pre-processed from the
Zygote Solid 3D heart model [Inc14] reconstructed from an high resolution computed tomography
scan, whose associated hexahedral mesh with 6167 vertices is reported in Figure 2.28. The
FOM is built using Q1-FE, such that the high-fidelity dimension is Nh = 18501. Differently
from all other test cases considered so far, we assume the following boundary conditions:

• Robin boundary conditions at the epicardium Γepi0 (or ΓR0 )

P(u)N = −(N⊗N)(K⊥u + C⊥∂tu)− (I−N⊗N)(K‖u + C‖∂tu),

see Table .6 for the values of K⊥,K‖, C⊥ and C‖;

• Neumann boundary conditions at the endocardium Γendo0 (or ΓN0 )

P(u)N = −g(t;µ)JF−TN;
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Figure 2.28: Patient-specific unloaded left ventricle geometry (left) and computational grid (right).

• energy-consistent boundary conditions [RDQ20a] at the base Γbase0

P(u)N = − ‖JF−TN‖∫
Γbase

0
‖JF−TN‖dΓ

∫
Γendo

0

P(u)NdΓ.

We point out that this choice of boundary conditions do not affect the construction of the
ROM, since no assumptions about the form of the full model are made in the reduction strategy.
As for the previous test cases, we consider the nearly-incompressible Guccione law and adopt
the active stress approach. Regarding the fiber distribution, we employ the rule-based method
proposed in [Bay+12], depending on parameter angles αepi, αendo, βepi and βendo. For time
discretization, we consider a uniform time step ∆t = 5 · 10−3 s and set T = 0.8 s, corresponding
to the duration of a single heartbeat, resulting in a total number of 160 time iterations. We
choose, as unknown parameters, those most affecting cardiac deformation during systole and
diastole, that are,

• the multiplicative factor of the constitutive law C ∈ [0.44 · 103, 1.32 · 103] Pa,

• the active tension parameter T̃a ∈ [49.5 · 103, 70.5 · 103] Pa, and

• the fiber angle at the epicardium αepi ∈ [−75,−45]◦.

All other parameters are fixed to their reference values, namely bf = 8, bs = 6, bn = bfn =
bsn = 3, bfn = 12, K = 50 · 103 Pa, p̃ = 15 · 103 Pa, αepi = 60◦, βepi = 20◦ and βendo = −20◦.
In Figure 2.29 we report the FOM solution at different time instants and for two values of the
parameter vector µ = [C, T̃a,αepi]. Computing the high-fidelity solution for each instance of
the parameter required almost 15 minutes on a PC desktop computer with 3.70GHz Intel Core
i5-9600K CPU and 16GB RAM.

Remark 2.5
Due to the fact that we are neglecting the coupling between mechanics and circulation, non-
physiological pressure-volume loops are obtained, especially in the first time steps of the
heartbeat, corresponding to ventricular systole, which lacks of the isometric contraction phase.
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(a) µ = [1.078, 50.025, −66.75] (b) µ = [0.682, 69.975, −54.75]

Figure 2.29: Idealized full cycle of the left ventricle. FOM solution computed at different times.

In addition to this, the end-diastolic configuration of the left ventricle should be recovered before
starting the mechanics simulation. However, we point out that our aim is to test and analyze
the reduction methodology on parameterized time-dependent nonlinear PDEs. Moreover, the
simulated cardiac cycle can be regarded as a sufficiently accurate reproduction of both systole
and diastole deformations for the purpose at hand.

For the construction of the reduced basis V, we collect nS = 20 FOM solutions and perform
POD with εPOD = 10−3, obtaining a reduced subspace of dimension N = 28. To build the
residual basis, we perform n′s = 50 ROM simulations and collect the residual snapshots. Since
we are using Nt = 160 and n′s = 50, and at least two Newton iterations are performed at each
time step, we end up with a residual snapshots matrix SR of more than 16000 columns. For
this reason, we rely on randomized-SVD to speed-up the computation of ΦR, by choosing a
priori the number of DEIM basis, rather the the POD tolerance εDEIM (see Algorithm 3).
Table 2.6 summarizes the average errors computed over a testing set of 20 parameters and the

m = 850 m = 1000 m = 1200

Computational speed-up ×3.0 ×2.8 ×2.7

Avg. CPU time 285 s 303 s 311 s

Time-avg. L2(Ω0)-absolute error 1 · 10−3 1 · 10−3 1 · 10−3

Time-avg. L2(Ω0)-relative error 8 · 10−3 8 · 10−3 8 · 10−3

Table 2.6: Idealized full cycle of the left ventricle. Computational data related to POD-Galerkin-DEIM
with N = 28 and different values of m.

CPU times obtained using m = 850, 1000 and 1200, while volumes and pressure-volume loops
for m = 850 are reported in Figure 2.30. Here, POD-Galerkin-DEIM outputs are compared to
those of the FOM for two different values of the parameter. We point out that no convergence
of the reduced Newton system has been obtained for all testing parameters when using smaller
residual basis. In Figures 2.31 and 2.32 we report the POD-Galerkin-DEIM solutions at four
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time instants, for two different values of the parameter vector µ = [C, T̃a,αepi], respectively.
Moreover, the corresponding pointwise difference between the high-fidelity solution and its
reduced order approximation is also reported.

Figure 2.30: Idealized full cycle of the left ventricle. Ventricular cavity volume (left) and pressure-
volume loop (right) for parameter values µ = [1.078, 50.025,−66.75] (top) and µ =
[0.682, 69.975,−54.75] (bottom).

Figure 2.31: Idealized full cycle of the left ventricle. Patient specific geometry of a left ventricle.
POD-Galerkin-DEIM solution (top) and error (bottom) computed at different times for
µ = [1.078, 50.025,−66.75].
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Figure 2.32: Idealized full cycle of the left ventricle. Patient specific geometry of a left ventricle.
POD-Galerkin-DEIM solution (top) and error (bottom) computed at different times for
µ = [0.682, 69.975,−54.75].

2.4 The hyper-reduction bottleneck

The POD-Galerkin method, equipped with DEIM hyper-reduction, proved able to accurately
approximate the high-fidelity solution of parameterized nonlinear time-dependent problems,
such as those reproducing different phases of the cardiac cycle on both idealized and realistic
geometries. So far, few works have addressed the reduction to solid mechanics problems using
the RB method and DEIM as hyper-reduction technique, e.g., [RR16; GTS17]. Indeed, we
noticed that a small number of RB functions is required to build a good approximation of the
reduced subspace for all considered test cases, and this is a distinguishing feature of several
parameterized problems in elastodynamics. However, the computational speed-up achieved
by the ROM decreases as the complexity of the underlying problem (with respect to either
the parameter space, the geometrical mesh or the IBVP itself) increases. The main difficulty
arises from the approximation of ROM residual vectors, which feature a greater variability with
respect to the solution, especially in the reduction of problems arising in cardiac mechanics,
where an exponentially nonlinear constitutive law is considered. As a matter of fact, even if the
nonlinear quantities are assembled onto a reduced mesh, a large number of interpolation points
is needed to guarantee the convergence of the reduced Newton system for complex applications,
thus compromising the efficiency of the POD-Galerkin-DEIM method, as most of the online
CPU time is required for assembling the reduced residuals.

The data reported in Table 2.7 for the performances of the POD-Galerkin-DEIM technique
applied to the active contraction benchmark problem, with N = 16 and µ = [T̃a,αepi,αendo],
show that the computational bottleneck of the method is indeed the construction of the reduced
system at each Newton iteration, which requires more than 90% of the online CPU time, while
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the actual reduced system solution is performed very efficiently (0.01%). In particular, almost

POD tolerance εDEIM 5 · 10−4 5 · 10−5 5 · 10−6

DEIM interpolation dofs m 303 543 902

Reduced mesh elements (total: 4804) 914 1345 1855

Online CPU time 58 s 81 s 110 s

◦ system construction [∗] 89% 93% 94%

◦ system solution 0.01% 0.01% 0.01%

[∗] System construction for each Newton iteration 0.4 s 0.6 s 0.9 s

◦ residual assembling 94% 94% 94%

◦ Jacobian computing through AD 0.24% 0.24% 0.26%

Computational speed-up ×6.2 ×4.5 ×3.3

Time-averaged L2(Ω0)-absolute error 1 · 10−3 7 · 10−4 6 · 10−4

Time-averaged L2(Ω0)-relative error 8 · 10−3 5 · 10−3 5 · 10−3

Table 2.7: Passive inflation and active contraction of a left ventricle. Computational data related to
the DEIM approach with N = 16 and different values of m.

94% of the computational time required for system construction at each Newton iteration
is used for assembling the residual R(Vun+1,(k)

N , tn+1;µ) on the reduced mesh. Instead, the
computation of the associated Jacobian through AD is extremely fast and requires less than
0.3% of the CPU time, such that, we cannot rely on quasi-Newton methods to improve the
online performances. The remaining CPU time is mostly used for matrix multiplication. Similar
results were found as well for the simpler problem of the deforming beam (see Table 2.1).
This study suggests the idea of using surrogate models to perform operator approximation,

overcoming the need to assemble the nonlinear terms onto a computational mesh; this will be the
object of Chapter 4, where a new technique relying on deep learning algorithms to approximate
operators is proposed, which also represents one of the main contributions of this Thesis.
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Chapter 3

Uncertainty quantification in structural
mechanics

To provide reliable approximations of physical phenomena described by means of PDEs,
understanding how uncertainty in the model inputs affects the considered outputs, as well as
estimating the input parameters from available data, are key tasks. As shown in Chapter 2,
model input parameters may have a large impact on the solution to the problem under
investigation, so that it is crucial to characterize their influence on output quantities of interest
that are useful, e.g., in the clinical practice [RCSR19; Mar+20]. The knowledge of the parameter
values of cardiac models is often severely limited due to both the difficulties in performing
experiments [Kov+21] and the uncertainty associated with their measurements. Moreover, some
parameters are related to the mathematical model and do not have a direct physical meaning.
whilst others are hampered by intrinsic variability among patients [Mir+16].

Identification and propagation of uncertainties and parameters calibration are related to the
field of uncertainty quantification (UQ), which can be divided into two groups of problems:
forward UQ and inverse UQ. The aim of the former is to determine statistical information about
the uncertainty in outputs of interest given statistical information about the uncertainty in the
inputs; the goal of the latter is to infer about unknown input parameters based on observed
outputs.

The solution to both types of problems requires the repeated evaluation of the input-output
map, so that relying on high-fidelity FOMs for the approximation of the underlying PDE
solution may become computationally unfeasible. In order to reduce the computational costs,
surrogate models are commonly adopted [HCM17; Hau+18; RCSR19; Cam+20]. In this chapter
we show how to take advantage of ROMs, such as those based on POD-Galerkin-DEIM, for the
performance of sensitivity analysis studies and Bayesian calibration in the field of structural
mechanics. Indeed, the efficient solution to these UQ problems represent a further step in the
construction of patient-specific models that can be possibly used to improve diagnosis, provide
real-time decision support and predict prognosis.

In Section 3.1 we introduce the basic concepts of variance-based global sensitivity analysis
(SA) and provide few numerical examples about the mutual utility of SA and reduced order
models, while Section 3.2 is devoted to the solution of parameter estimation problems in a
Bayesian framework. The theoretical concepts introduced in this Chapter are mainly based on
[Sal+08; Smi13; Sul15], to which we refer for further details.
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3.1 Variance-based global sensitivity analysis

The goal of SA is to quantify the effects of parameter variation on one or many quantities of
interest, in order to provide a criterion to rank the inputs with respect to their influence on the
outputs. Sensitivities are usually discovered by running the underlying model against different
configurations and analyzing the statistical properties of the associated input-output samples.
Among different tasks of SA, we mention:

• factor prioritization (FP), which aims at identifying which factors, once fixed at their
true values, lead to the greatest reduction in the variance of the outputs, so that these
identified factors should be properly measured, and

• factor fixing (FF), whose goals is to identify which of the inputs can be fixed anywhere in
their range of variation without noticeably affecting the output of interest. These factors
can thus be arbitrarily fixed in order to simplify the model.

For these reasons, SA studies are usually run in tandem with UQ and may also be useful in the
development of reduced order models; indeed, avoiding to include inessential (or less relevant)
parameters among the model inputs can enhance the complexity and the training stage of the
ROMs.
The approaches to perform SA can be broadly classified into two groups according to the

nature of the information provided, that are local and global methods. The former are based
on the calculation of partial derivatives of the outputs with respect to the inputs, so that
the information provided are related to a neighborhood of the points at which derivatives
are evaluated. The latter, instead, are based on sampling techniques on the entire parameter
domain. Since a handful of random data points is more informative and robust than estimating
derivatives at a single data point, in this Thesis we focus on the latter class of methods,
particularly on variance-based global sensitivity analysis.

3.1.1 Sobol’ indices

Let (Ξ,F ,P) be a probability space and consider the random variables

Mi : Ξ→ R
ξ 7→ µi = Mi(ξ),

for i = 1, . . . , P , so that M = (M1, . . . ,MP ) denotes the random parameter vector and
µ = (µ1, . . . , µP ) its realization for a given ξ ∈ Ξ. For the sake of simplicity, we assume all the
input parameters to be independent and uniformly distributed, and normalized in the range
[0, 1]. From a black-box perspective, a generic model can be seen as a function of the random
vector M, that is

Y = y(M),

where the model realization y(µ) is, e.g., the output of interest associated with the PDE solution
computed for µ as input parameter. Here Y is a univariate model output, but multiple outputs
can be analyzed by conducting independent sensitivity studies. Note that y is defined over the
P -dimensional unit hypercube; thus, if y is integrable, it can be decomposed into summands of
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increasing dimensions as

y = y0 +
∑
i

yi +
∑
i<j

yij + . . .+ y1...P ,

where each term is a function of the factors in its index. Under the assumption that each term
in the above expansion has zero mean, we can univocally calculate these terms as [Sob90]:

y0 = E[Y ],
yi = E[Y |Mi]− y0,

yij = E[Y |Mi,Mj ]− yi − yj − y0,

and so on. Further assuming that y is square integrable, leads to the so-called ANOVA
high-dimensional model representation (or ANOVA-HDMR decomposition)

Var(Y ) =
∑
i

Vi +
∑
i<j

Vij + . . .+ V1...P , (3.1)

where
Vi = Var(yi) = Var(E[Y |Mi]),

for i = 1, . . . , P , are the first-order effects,

Vij = Var(yij) = Var(E[Y |Mi,Mj ])− Vi − Vj ,

for i, j = 1, . . . , P (i < j), are the second-order effects, and so on. This decomposition shows
how the (total) variance of the model output can be decomposed into terms related to each
input and to the interactions between them. Variance-based measures represent a powerful tool
to quantify the relative importance of individual factors or groups. Our aim is to determine
what happens to the uncertainty of Y when a factor Mi is fixed to a particular value µi.

First order effects

A primary variance-based measure of sensitivity, referred to as first-order sensitivity index or
first Sobol’ index, is given by

Si = Vi
Var(Y ) = Var(E[Y |Mi])

Var(Y ) , i = 1, . . . , P.

This index represents the main contribution of the input factor Mi to the variance of the output,
as it measures the effect of varying Mi alone averaged over variations in all input parameters.
First Sobol’ indices are useful to perform factor prioritization (FP), as the higher is Si, the
greater is the influence of Mi on the output Y .

To better see this, let µi be a particular value for Mi and consider the conditional variance

Var(Y |Mi = µi),

that is the variance of Y taken over all factors butMi. In order to make this measure independent
of µi, we take its expectation. According to the law of total variance, we can write

E[Var(Y |Mi)] = Var(Y )−Var(E[Y |Mi]), (3.2)
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which, divided by Var(Y ), gives

E[Var(Y |Mi)]
Var(Y ) = 1− Si.

Since the left-hand side of (3.2) corresponds to the model variance once a source of variation
has been fixed, we understand that the more influential is Mi, the smaller is E[Var(Y |Mi)],
hence the greater must be Si.

Total effects

If a model is non-additive, so that it is not possible to separate the effects of its inputs on the
output, it holds ∑

i

Si < 1

and we should look for higher order interactions. In particular, by dividing both sides of (3.1)
by Var(Y ), we obtain ∑

i

Si +
∑
i<j

Sij + . . .+ S1...P = 1.

However, performing such full sensitivity analysis requires the evaluation of 2P − 1 indices,
which can be computationally demanding, especially when the input-output map µ→ y(µ) is
highly nonlinear and it is not possible to compute the expectation values and the variances in
close form, so that Monte Carlo (MC) methods should be applied.

To avoid the computation of all the interaction terms, we can rely on the total effect indices
STi , for i = 1, . . . , P , which account for the contribution to the variance of Y due to factor Mi,
including all its interactions with the other factors. Let

M∼i = (M1, . . . ,Mi−1,Mi+1, . . . ,MP )

be the random vector of all input factors but Mi, for i = 1, . . . , P . From the law of total
variance, we can write

Var(Y ) = E[Var(Y |M∼i)] + Var(E[Y |M∼i]), (3.3)

where E[Var(Y |M∼i)] corresponds to the (average) variance of Y left if M∼i could be fixed
to their true values. Dividing (3.3) by Var(Y ), we obtain the so-called total-effect index or
total-order index for Mi, defined as

STi = E[Var(Y |M∼i)]
Var(Y ) = Var(Y )−Var(E[Y |M∼i])

Var(Y ) = 1− Var(E[Y |M∼i])
Var(Y ) ,

for i = 1, . . . , P . The smaller is STi , the less influential is Mi. A necessary and sufficient
condition for a factor Mi to be non-influential is that its total Solbol’ index is zero, i.e. STi = 0,
so that Mi can be arbitrarily fixed within its range of uncertainty without appreciably affecting
the output of interest Y . Total indices are thus well suited for factor fixing (FF) to reduce the
number of input parameter for the model. Note that, unlike Si, it holds∑

i

STi ≥ 1,

since STi1
and STi2

, for i1 < i2, take both into account the interactions between Mi1 and Mi2 .
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Numerical computation of the sensitivity indices

For most functions y, the sensitivity indices described in the sections above cannot be calculated
analytically and must be estimated by suitable techniques, such as MC or quasi-MC methods. In
this section we describe the procedure developed in [Sal02] (based on the approaches originally
proposed in [Sob90; HS96]), which avoids the cumbersome computation of multidimensional
integrals by brute-force. Let NS ∈ N be a prescribed integer, known as base sample. Sobol’
method (or Saltelli method) consists in the following steps:

1. generate a NS × 2P matrix of random parameter realizations obtained, e.g., from a Sobol’
quasi-random sequence [Sob67];

2. define two matrices of data A,B ∈ RNS×P each containing half of the sample, i.e.

A =


µ

(a,1)
1 . . . µ

(a,1)
P

...
...

µ
(a,NS)
1 . . . µ

(a,NS)
P

 , B =


µ

(b,1)
1 . . . µ

(b,1)
P

...
...

µ
(b,NS)
1 . . . µ

(b,NS)
P

 ,

where µi is the realization of the i-th random variable Mi.

3. construct P matrices Ci, i = 1, . . . , P , formed by all columns of B except the i-th column
taken from A, i.e.

C =


µ

(b,1)
1 . . . µ

(b,1)
i−1 µ

(a,1)
i µ

(b,1)
i+1 . . . µ

(b,1)
P

...
...

...
...

...

µ
(b,NS)
1 . . . µ

(b,NS)
i−1 µ

(a,NS)
i µ

(b,NS)
i+1 . . . µ

(b,NS)
P


4. compute the output of the model for all the parameter vectors given by the rows of A,B

and Ci, for i = 1, . . . , P , thus obtaining the NS-dimensional vectors

yA = y(A), yB = y(B), yCi = y(Ci).

5. for i = 1, . . . , P , estimate the i-th first order sensitivity index as follows,

Si = yA · yCi − ȳ2
A

yA · yA − ȳ2
A

,

where ȳA = 1
NS

NS∑
i=1

y(i)
A is the mean.

6. finally, for i = 1, . . . , P , estimate the i-th total order index as follows,

STi = 1− yB · yCi − ȳ2
A

yA · yA − ȳ2
A

.
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An explanation on why these formulas work can be found, e.g, in [Sal+08]. For P input
factors, computing a full set of Si’s and STi ’s indices requires NS(P + 2) runs of the model
to evaluate yA, yB and yCi , for i = 1, . . . , P . On the other hand, N2

S runs would have been
needed in the brute-force approach. However, since the accuracy of the estimates depends on
NS , which can vary from few hundreds to few thousands, the main drawback of this method is
still its computational cost, especially when the model is expensive to evaluate. When this is
the case, reduced order models can be employed to greatly alleviate the computational expense.

3.1.2 Application of reduced order models to sensitivity analysis
So far we have considered Y = y(M) to be a continuous function of the parameter random
vector M. However, when y is related to a PDE problem, one usually needs to rely on numerical
approximation techniques in order to find a discrete solution uh = [u1

h, . . . ,u
Nt
h ], so that, given

a realization µ of the parameter random vector M, the corresponding model output is given by

yh(µ) = Q(uh(µ)),

where Q : RNh×Nt → RNq is the vector-valued function of the quantities of interest. We recall
that, when Nq > 1, different sensitivity analysis can be carried out, one for each output.

In this setting the ROMs developed in Chapter 2, providing the reduced input-output map

µ 7→ uN (µ) 7→ Q(uN (µ)) = yN (µ)

at a low cost computational, can be used to speed-up the evaluation of Sobol’ indices [PM]. In
particular, we can replace yh with yN in step 4 of the Saltelli method, thus efficiently obtaining
the reduced output vectors

yA = yN (A), yB = yN (B), yCi = yN (Ci),

which are used in the computation of Sobol’ indices Si and STi , for i = 1, . . . , P . Note that,
in this case, the reliability of the approximation depends both on the base sample NS and on
the accuracy of the ROMs. However, thanks to the lower computational cost of the reduced
models, a higher number of samples can be used, thus balancing the discrepancy between the
high-fidelity and the reduced input-output maps.

In the following subsections we focus on applications, dealing with a simple rectangular beam
geometry that undergoes a large deformation due to a pressure load applied on the surface, and
a benchmark problem for cardiac mechanics reproducing ventricular systole. In this case we
consider an idealized left ventricle, given by an truncated ellipsoid.

Numerical example: deformation of a neo-Hookean clamped rectangular beam

Let Ω̄0 = [0, 10−2]× [0, 10−3]× [0, 10−3] m be the reference geometry and consider the structural
problem of a clamped beam with an external load applied at the bottom face (see Section 2.3.1).
For the sake of convenience, we recall that pressure boundary conditions with external load

g(t;µ) = p̃ t/T, t ∈ (0, T ),

are applied to ΓN0 = ∂Ω{z=0}
0 (see Figure 3.1), Dirichlet boundary conditions are imposed on

the left face x = 0 m, and homogeneous Neumann conditions are considered for all other faces.
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3.1 Variance-based global sensitivity analysis

Figure 3.1: Deformation of a neo-Hookean clamped rectangular beam. Computational mesh (left) and
point P0 (right) for the evaluation of the quantities of interest.

As final simulation time we choose T = 0.25 s. The FOM is built on a hexahedral mesh with
1025 vertices using Q1-FE for the approximation in space and a uniform partition of the time
interval with ∆t = 5 · 10−3 s, thus resulting in a high-fidelity dimension Nh = 3075 and in a
total number of 50 time steps.

For the first test case, we consider a nearly-incompressible neo-Hookean material characterized
by the following strain density energy function

W(F) = G

2 (J−
2
3 det(C)− 3) + K

4 ((J − 1)2 + ln2(J)),

where G > 0 is the shear modulus and K is the bulk modulus. The parameter vector µ is thus
given by:

• the shear modulus G ∈ [0.5 · 104, 1.5 · 104] Pa,

• the bulk modulus K ∈ [2.5 · 104, 7.5 · 104] Pa, and

• the external load parameter p̃ ∈ [2, 6] Pa,

so that P = 3. The choice of this numerical test featuring a small number P of input parameters
and a low complexity of the FOM is motivated by the fact that we want to compare the results
of the SA performed using high-fidelity and reduced order models. Since NS(P + 2) model runs
are required to compute the Sobol’ indices of the inputs, where the sample base NS should
be chosen sufficiently big to ensure accuracy, using expensive full order models may become
computationally unfeasible.

As quantity of interest we choose the displacement in the vertical direction of a point P0 at
different time instants. To be more specific, we choose P0 such that its material coordinate
is XP0 = (10−2, 0.5 · 10−3, 0.5 · 10−3), thus corresponding to the central point of the right face
x = 10−2 m of ΓN0 (i.e. opposite to ΓD0 ), as shown in Figure 3.1, and set

yh,j(µ) = Qj(uh(µ)) = uh(XP0 , t
10j ;µ) · ez,

for j = 1, . . . , bNt/10c, so that Nq = bNt/10c = 5. Note that yh,j denotes the j-th component
of high-fidelity output vector yh(µ) = Q(uh(µ)) ∈ RNq .
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Since we are considering a multivariate model for the output (i.e. Nq > 1), multiple SAs are
run in parallel, such that we end up with Nq vectors of first-order and total sensitivity indices

Sj =
[
Sj1, . . . , S

j
P

]
and SjT =

[
SjT1

, . . . , SjTP

]
,

respectively, for j = 1, . . . , Nq.
In order to compare the accuracy of the Sobol’ indices obtained by replacing the high-fidelity

input-output map
µ 7→ uh(µ) 7→ yh(µ)

with the reduced input-output map

µ 7→ uN (µ) 7→ yN (µ),

we construct a POD-Galerkin-DEIM ROM with N = 4 POD basis functions and m = 22 DEIM
basis functions, as done in Section 2.3.1, and run Saltelli method with the base sample equal
to Ns = 1000, so that 5000 model evaluations are required. We recall that in this case the
FOM takes 26 s on a PC desktop computer with 3.70GHz Intel Core i5-9600K CPU and 16GB
RAM for each new instance of the parameter, while the ROM requires on average 2.4 s, so that
around 36 h and 3 h are required in total when using the FOM and the ROM, respectively. All
numerical simulations are performed using the Dakota toolkit [Ada+20] and its Python direct
interface. Table 3.1 reports Sobol’ indices computed using the FOM and the ROM for each
quantity of interest, showing that the FOM can be replaced by a more efficient reduced model
without affecting the results of the sensitivity analysis.

Index → S1
i S2

i S3
i S4

i S5
i S1

T S2
T S3

T S4
T S5

T

G
FOM 0.185 0.490 0.433 0.407 0.451 0.203 0.529 0.467 0.438 0.483

ROM 0.188 0.493 0.435 0.406 0.454 0.205 0.534 0.468 0.437 0.486

K
FOM 0.009 0.017 0.017 0.016 0.016 0.004 0.008 0.008 0.007 0.007

ROM 0.010 0.017 0.017 0.016 0.017 0.004 0.008 0.008 0.007 0.008

p̃
FOM 0.787 0.417 0.478 0.523 0.472 0.787 0.450 0.501 0.543 0.492

ROM 0.785 0.410 0.477 0.525 0.466 0.785 0.445 0.498 0.545 0.487

Table 3.1: Deformation of a neo-Hookean clamped rectangular beam. Sensitivity indices computed
using the FOM and POD-Galerkin-DEIM.

By computing the average over the sensitivity indices, we obtain

S̄ = [0.4, 0.02, 0.5], S̄T = [0.4, 0.01, 0.6]

and we can conclude that G and p̃ are the most influential factors, so that they are more likely
to be identified when solving a parameter estimation problem (see in Section 3.2), whereas the
bulk modulus K has a small impact on the quantities of interest considered and can be fixed at
an arbitrary value within its domain of variability to reduce the model complexity.
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3.1 Variance-based global sensitivity analysis

Figure 3.2: Passive inflation and active contraction of a left ventricle. Apex A0 and point P0.

Numerical example: passive inflation and active contraction of a left ventricle

We now consider the benchmark problem of the passive inflation and the active contraction of
an idealized left ventricle. In this case a linear external pressure

g(t;µ) = p̃ t/T, t ∈ (0, T )

is applied at the endocardium to simulate the presence of blood inside the ventricle, the base is
kept fixed and homogeneous Neumann boundary conditions are imposed at the epicardium.
We consider a Guccione material and take into account contractile forces by introducing the
parameterized active tension

Ta(t;µ) = T̃a t/T (Ff0 ⊗ f0), t ∈ (0, T ),

in the constitutive law, where T = 0.25 s is the final simulation time and f0 is the reference
unit vector in the fiber direction. The FOM is built on a hexahedral mesh with 6455 vertices
using Q1-FE, such that Nh = 19365, and employing a uniform time step ∆t = 5 · 10−3 s.

As quantities of interest, we consider the displacement of the apex A0 in the vertical direction
and that in the horizontal direction of a point P0 on the epicardium, reported in Figure 3.2,
both evaluated at five time instants; thus

yh,j(µ) = Qj(uh(µ)) = uh(XA0 , t
10j ;µ) · ez,

yh,j+5(µ) = Qj+5(uh(µ)) = uh(XP0 , t
10j ;µ) · ex,

for j = 1, . . . , bNt/10c, so that Nq = 10. Finally, the random parameters are given by

• the material stiffness in different directions bf ∈ [6.6, 9.4], bs, bn, bsn ∈ [1.65, 2.35],
bfs, bfn ∈ [3.3, 4.7],

• the bulk modulus K ∈ [4 · 104, 6 · 104] Pa,

• the multiplicative constant C ∈ [1.5 · 103, 2.5 · 103] Pa,

• the maximum active tension T̃a ∈ [49.5 · 103, 70.5 · 103] Pa,

67



Chapter 3 Uncertainty quantification in structural mechanics

• the steepness of the pressure ramp p̃ ∈ [14 · 103, 16 · 103] Pa, and

• the fiber angles αepi ∈ [−105.5,−74.5]◦ and αendo ∈ [74.5, 105.5]◦,

so that
µ = [bf , bs, bn, bfs, bfn, bsn,K,C, T̃a, p̃,αepi,αendo] ∈ P ⊂ R12.

The Sobol’ SA is performed by relying on the POD-Galerkin-DEIM ROM constructed in
Section 2.3.2 with N = 19 and m = 574, and considering a base sample NS = 50, thus resulting
in 700 evaluations of the input-output map. We recall that is this case the FOM takes about 6
minutes for each problem solution, whereas the ROM requires 90 s, thus achieving a speed-up
of 4 times compared to the high-fidelity model.

In Table 3.2 the averaged of the indices over all the quantities of interest are reported, as well
as the average over the outputs related only to the apex A0 or the point P0. From the reported
results we can conclude that the most influential parameters are the maximum value T̃a of the
active tension and the parameter αepi related to the fiber orientation at the epicardium. These
results, obtained on a benchmark test for ventricular systole, can be extremely informative for
the simulation of the whole cardiac cycle, especially if combined with sensitivities studies for
the passive inflation test case. In fact, they allow to narrow the varying parameters to the most
influential ones, in order simplify the construction of reduced order models, as detailed in the
following Section 3.1.3.

Index ↓ bf bs bn bfs bfn bsn K C T̃a p̃ αepi αendo

S̄toti 0.01 0.01 0.01 ≈0 0.01 ≈0 0.01 0.08 0.38 0.03 0.57 0.05

S̄totT 0.01 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 0.05 0.53 0.06 0.55 0.04

S̄A0
i 0.02 0.01 0.01 ≈0 ≈0 ≈0 0.02 0.09 0.59 0.06 0.31 0.01

S̄A0
T 0.01 ≈0 ≈0 ≈0 ≈0 ≈0 0.01 0.05 0.80 0.08 0.24 0.03

S̄P0
i ≈0 ≈0 ≈0 ≈0 0.02 ≈0 ≈0 0.06 0.17 ≈0 0.82 0.10

S̄P0
T 0.01 ≈0 ≈0 ≈0 0.01 ≈0 ≈0 0.06 0.26 0.03 0.85 0.05

Table 3.2: Passive inflation and active contraction of a left ventricle. Sensitivity indices computed using
POD-Galerkin-DEIM.

Another important aspect that arises from this analysis is that the choice of the quantities
of interest affects the outcome of the SA, meaning that some factors having a great impact
on a specific output may be less influential for others. To give an example for the problem at
hand, the active tension has a greater impact on the contraction of the ventricle, whereas the
fiber orientation controls the typical twisting motion. In view of this, relying on physics-based
reduced order models, like the ones considered in this Thesis (see Chapter 2 and 4), can be
extremely convenient rather than using fully data-driven emulators or surrogate models, which
provide inexpensive evaluations of the input-output queries. In fact, by retaining the underlying
structure of the physical model and providing an approximation at each time step of the
displacement vector, physics-based ROMs allow to consider new quantities of interest without
the need to repeat the whole reduction or training process.
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3.1.3 Application of sensitivity analysis to reduced order models
As already mentioned at the beginning of the chapter, SA can be used to identify the less
influential factors on a given output quantity, which can then be fixed at any given value in
their range of variability (factor fixing), thus allowing significant model simplifications. This
fact can be extremely useful also during the construction of a reduced order model. In fact,
since the accuracy and the efficiency of POD-Galerkin ROMs are strictly related to the solution
manifold

Mh =
{
unh(µ) ∈ RNh | n = 1, . . . , Nt, µ ∈ P

}
made by all FOM solutions under variation of the parameter vector µ over the parameter domain,
considering a large number of parameters usually yields a higher-dimensional manifold, so that
a larger number N of reduced basis functions would be required to accurately approximate the
high-fidelity dynamics. In view of this, the following strategy can be adopted:

1. consider the parameter vector µ̂ ∈ P̂ ⊂ RP̂ made of all model inputs and build the
corresponding POD-Galerkin-DEIM ROM (see Chapter 2) choosing N and m in order to
balance accuracy and efficiency. For instance, a sufficient (but not extremely high) level
of accuracy can be first considered for this task;

2. compute Sobol’ indices using Saltelli method with ŷN (µ̂) = Q(ûN (µ̂));

3. according to STi , for i = 1, . . . , P̂ , select the P most influential factors, that are those
with higher Sobol’ indices, and define the parameter vector µ ∈ P ⊂ P̂ . All other factors
can be fixed, e.g., to be equal to the midpoint of their variability range;

4. finally, build a POD-Galerkin-DEIM ROM for µ ∈ P.

Numerical example: deformation of a Guccione clamped rectangular beam

We now apply the strategy described above to the same problem of Section 3.1.2, but now
assuming that the material undergoing the deformation follows the Guccione relation (1.3), so
that

µ̂ = [bf , bs, bn, bfs, bfn, bsn,K,C, p̃] ∈ P̂ ⊂ R9

is the vector of all model inputs for which we consider the following intervals of variability:

• bf ∈ [4, 12], bs, bn, bsn ∈ [1, 3], bfs, bfn ∈ [2, 6] (material stiffness in different directions),

• K ∈ [2.5 · 104, 7.5 · 104] Pa (bulk modulus),

• C ∈ [1 · 103, 3 · 103] Pa (multiplicative constant), and

• p̃ ∈ [2, 6] Pa (slope of the external load).

For the construction of the preliminary reduced model (step 1), we perform 20 FOM sim-
ulations and perform POD with tolerance εPOD = 10−3 on the snapshots matrix Su, thus
obtaining a RB dimension of N = 3. Hence, the POD-Galerkin ROM is built from 50 runs of
the ROM without hyper-reduction, where m = 59 residual basis functions are obtained choosing
the POD tolerance εDEIM equal to 10−5. The resulting computational speed-up with respect
to the FOM is equal to 6, while the time-average L2(Ω0)-absolute error is εabs = 6 · 10−4.
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Let the displacement in the vertical direction of point P0 (see Figure 3.1) at times t = 0.05 s,
t = 0.15 s and t = 0.25 s be the vector of quantities of interest ŷN (µ̂) = Q(ûN (µ̂)) ∈ RNq ,
with Nq = 3. The results of the SA performed using the hyper-ROM (step 2) are reported in
Figure 3.3, where we have chosen NS = 200, suggesting that the bulk modulus K, as well as all
parameters related to the material stiffness, except for bf , can be arbitrarily fixed (step 3).

Figure 3.3: Deformation of a Guccione beam. Sensitivity indices computed using POD-Galerkin-DEIM.

This allows us to construct a simplified ROM (step 4), where the parameter vector is now
given by

µ = [bf , C, p̃] ∈ P ⊂ R3,

where the parameter space is P = [4, 12] × [1 · 103, 3 · 103] Pa × [2, 6] Pa. Tables 3.3 and 3.4
report the comparison between the POD-Galerkin ROMs constructed using 20 FOM simulations
and the POD-Galerkin-DEIM ROMs built for N = 3 and 50 runs of the corresponding ROMs
without hyper-reduction, respectively. Moreover, the average error and computational speed-
ups of two POD-Galerkin ROMs computed over 20 testing parameters are given in Table 3.5.
We can conclude that reducing the number of input parameters has an impact on both the POD
dimension N and on the number of residual basis m necessary to correctly approximate the
nonlinear terms. In fact, when reducing by one third the number of parameters, the required
DEIM basis dimension decreases from m = 59 to m = 36, yielding to an increase of 30% of
the computational speed-up. Moreover, high accuracy can be achieved for P = 3 using smaller
values of N . This observation is crucial for the deep learning-based hyper-ROM developed in
Chapter 4, since reducing both N and P yields to a less complex supervised learning task, thus
allowing to rely on smaller deep neural networks.

εPOD 10−3 5 · 10−4 10−4 5 · 10−5 10−5

P̂ = 9
N

3 5 8 11 18

P = 3 3 4 6 7 11

Table 3.3: Deformation of a Guccione beam. RB dimensions N for POD-Galerkin ROMs.
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εDEIM 5 · 10−4 10−4 5 · 10−5 10−5 5 · 10−6

P̂ = 9
m

46 59 66 84 94

P = 3 29 36 39 47 51

Table 3.4: Deformation of a Guccione beam. Residual basis dimensions m for POD-Galerkin-DEIM
ROMs, with N = 3.

# of parameters 9 3 # of parameters 9 3

εPOD 10−3 Computational speed-up ×6 ×8

N 3 Avg. CPU time 9 s 6.75 s

εDEIM 10−4 Time-avg. L2(Ω0)-absolute error 6.0 · 10−4 2.3 · 10−4

m 59 36 Time-avg. L2(Ω0)-relative error 2.4 · 10−2 1.9 · 10−2

Table 3.5: Deformation of a Guccione beam. Computational data of POD-Galerkin-DEIM ROMs.

3.2 Inverse uncertainty quantification: parameter estimation
Of particular interest when dealing with parameterized models is the task of estimating input
parameters based on observed data, that is, the solution to the so-called inverse UQ problems.
Available approaches to perform inverse UQ can be grouped into two main classes: the first
class consists on variational methods which provide point estimates of quantities of interest and
are based on PDE-constrained optimization or filtering approaches; the second class, instead,
encompasses statistical inference.
In this Thesis we focus on the second approach, particularly on Bayesian inversion, which

provides a suitable framework for the estimation of parameters that are independent of time.
In this setting all model inputs are described as random variables and their probability density
functions (PDFs) are updated as new information is available. It follows that the goal of
Bayesian inference is to improve the knowledge of the unknown inputs starting from the prior
belief on their realizations and exploiting new information in order to compute the posterior
PDF.
Adopting the same notation of previous section, let (Ξ,F ,P) be a probability space and

M = (M1, . . . ,MP ) the random vector of model parameters such that

Mi : Ξ→ R
ξ 7→ µi = Mi(ξ),

for i = 1, . . . , P . Given an observation yobs ∈ RNq , corresponding to the realization of a random
variable

Y = y(M),

i.e. yobs = Y(ξobs), we want to infer the underlying probability distribution that produced the
data. In particular, we consider yobs to be the vector of quantities of interests evaluated on the
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FOM solution uh(µ∗), computed for a specified parameter vector µ∗ ∈ P, i.e.

yobs = Q(uh(µ∗)) = yh(µ∗),

where Q : RNh×Nt → RNq is the output function whose components can be a single quantity
of interest measured at different time instants or multiple measurements acquired at different
locations of the computational domain, or both. Note that, with respect to the previous section,
we do note assume Y to be a univariate model output.

In order to take into account the fact that experiments are usually affected by noise, we
model the measurement error ε ∈ RNq as additive and mutually independent of M, so that the
input-output map is actually given by

Y = yh(M) + ε,

and yobs = yh(µ∗) + ε, where µ∗ = M(ξobs).
For a given data yobs, the posterior density of the parameter random vector M can be

obtained using Bayes’ formula as

π(µ|yobs) = π(yobs|µ)π0(µ)
πY (yobs)

,

where

• π(yobs|µ) is the likelihood of observing yobs given the realization M(ξ) = µ of the input
vector and represents the mechanism through which probabilities are updated;

• π0(µ) is the prior density of the inputs and reflects any knowledge one might have about
the parameters before data are acquired. Non-informative priors, such as the uniform
density, can be used if no previous knowledge is available;

• πY (yobs) is the marginal density function of the output Y given by

πY (yobs) =
∫
P
π(yobs|µ)π0(µ)dµ,

and is used as a normalization factor.

Thanks to the assumption of mutually independence between noise and parameters, the
likelihood function is given by

π(y|µ) = πε(y− y(µ)),

where πε is the PDF of the measurement error, so that the likelihood combines the forward
model and the experimental noise. Once the posterior is computed, one can repeatedly sample
from its distribution in order to compute useful statistical indicators (such as the mean, the
variance, the minimum and the maximum, to name a few) and to perform forward UQ, which
can be run in tandem with reduced order modeling.

Algorithm 6 summarizes the Bayesian approach to inverse UQ problems for PDEs. We precise
that each component of the observation vector yobs is associated with a different quantity
of interest considered. These quantities can be the same measure observed at multiple time
instants and/or outputs of different nature.
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Algorithm 6 Bayesian approach for inverse problems.
INPUT: yobs = yh(µ∗) + ε ∈ RNq (Nq ≥ 1), πε
OUTPUT: π(µ|yobs)

1: Postulate a prior PDF π0(µ) for the unknown parameter vector M
2: Use Bayes’ formula to obtain the posterior PDF

π(µ|yobs) = π(yobs|µ)π0(µ)∫
P π(yobs|µ)π0(µ)dµ

where π(yobs|µ) = πε(yobs − yh(µ))

3.2.1 Application of reduced order models to inverse uncertainty quantification

In order to find a solution to the inverse problem, i.e. to find π(µ|yobs), we have to rely on
suitable numerical techniques to explore the posterior PDF. A large class of algorithms for
sampling from a probability distribution is given by the so-called Markov Chains Monte Carlo
(MCMC) methods. The goal of MCMC techniques is to construct Markov chains {µ`, ` ≥ 1}
whose stationary (target) distribution is the posterior PDF that we want to explore. We refer
to, e.g., [Smi13; RC04; Sul15] for further details.
One of the most popular MCMC methods is the Metropolis-Hastings algorithm, reported

in Algorithm 7 for the case at hand. The key idea is to generate a sequence of NMC samples
(where NMC is fixed, but sufficiently large) such that, at each iteration, the new candidate value
is chosen according to a specified proposal distribution πprop, based on the previous sample.
Hence, the new value is either accepted or rejected, according to an acceptance probability
α which is determined by the properties of the likelihood and prior. In order to reduced the
bias introduced by the choice of the initial sample, we perform burn-in by discarding Nburn-in
iterations at the beginning of an MCMC run. Finally, only one sample every Nthin is kept in
the final chain (thinning), where Nthin is a given sub-sampling period. A common choice for
the proposal πprop is given by

µ̂|µ`−1 ∼ N (µ`−1, σ
2
propI),

for some suitable value of σ2
prop > 0 (see [GG97]).

MCMC techniques can become computationally demanding in the context of PDE problems,
as they require the repeated evaluation of the input-output map, so that relying on high-fidelity
models for the solution of the underlying PDE may become unfeasible. In this Thesis we show
that ROMs can be used to alleviate the computational costs in this respect, as done, e.g., in
[MPL16].

Numerical example: deformation of a neo-Hookean clamped rectangular beam

Going back to the problem of the deformation of a neo-Hookean rectangular beam discussed in
Section 3.1.2, we now want to perform parameter estimation using standard MCMC methods,
such as the Metropolis-Hastings algorithm (see Algorithm 7). Our goal is to compare the
results obtained using an expensive FOM with those computed by performing inverse UQ using
reduced models. In particular, we consider the POD-Galerkin-DEIM ROM built for N = 4 and
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Algorithm 7 Metropolis-Hasting algorithm
INPUT: NMC , Nburn-in, Nthin, yobs ∈ RNq , π0, πε, πprop
OUTPUT:M = {µ`, ` = 1 +Nburn-in : Nthin : NMC}

1: Choose µ0 ∈ P and setM = ∅
2: for ` = 1, . . . , NMC do
3: Draw µ̂ from πprop(µ̂,µ`−1)
4: Calculate the acceptance probability

α(µ̂,µ`−1) = min
(

1, π(yobs|µ̂)π0(µ̂)
π(yobs|µ`−1)π0(µ`−1)

)
where π(yobs| · ) = πε(yobs − yh(·))

5: Draw an independent sample from υ ∼ U [0, 1]
6: if α(µ`−1, µ̂) ≥ υ then
7: Accept µ̂ and set µ` = µ̂
8: else
9: Reject µ̂ and set µ` = µ`−1

10: if ` > Nburn-in and ` ≡ 0 mod Nthinning

11: SetM←M∪ {µ`}

m = 22, which is characterized by a speed-up of 11 with respect to the FOM for the solution to
the forward problem and a time-average L2(Ω0)-absolute error of εabs = 7.4 · 10−5.

As quantities of interest we consider the displacement in the vertical direction of P0 (XP0 =
(10−2, 0.5 · 10−3, 0.5 · 10−3)) acquired every two time instants, so that

yh,j(µ) = Qj(uh(µ)) = uh(XP0 , t
10j ;µ) · ez,

for j = 1, . . . , bNt/2c, where Nq = 25.
The inputs to the Metropolis-Hastings algorithm are reported in Table 3.6. Moreover, the

synthetic data yobs are constructed by taking

µ∗ = [G∗,K∗, p̃∗] = [0.7 · 104 Pa, 3 · 104 Pa, 5 Pa],

while µ0 = [G0,K0, p̃0] = [1 · 104 Pa, 5 · 104 Pa, 4 Pa] is chosen as starting point for the chain.

NMC 10000 π0 U [P] (non-informative)

Nburn-in 500 πε N (0,Σ), with Σ = 10−5I

Nthin 4 πprop U [P]

Table 3.6: Deformation of a neo-Hookean beam. Inputs to the Metropolis-Hastings algorithm.

The samples of the final MCMC chain are reported in Figure 3.4, where the value reported for
each bin is equal to the number of elements of the bin divided by the total number of elements.
In particular, the parameter value µ∗ used for generating the observed data is highlighted in
red, while µ0 corresponds to the black dotted line. These plots show that the hyper-ROM is
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able to achieve the same results of the full order model, with about the same percentage of
rejected candidate samples (27.5%). In particular, it turns out that the bulk modulus K is hard
to identify using both models, while the shear modulus G and the steepness of the pressure
ramp p̃ are easier to capture. This fact confirms the results of the SA reported in Table 3.1,
which identify K as the less influential parameter. For what concerns the CPU time required
for the generation of the MCMC chain, the FOM requires more than 3 days of computation,
while the ROM has a total run time of 7 h 40 min, showing that relying on efficient reduced
models is of paramount importance to address the solution to inverse UQ problems.

Figure 3.4: Deformation of a neo-Hookean beam. MCMC samples obtained using the FOM (top) and
POD-Galerkin-DEIM ROM (bottom).
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Chapter 4

Deep learning-based hyper-reduced order
model network

In this chapter we develop a new deep learning-based hyper-ROM, Deep-HyROMnet, to
overcome the computational bottleneck of POD-Galerkin-DEIM ROMs (see Chapter 2) by
avoiding the assembling stage of the nonlinear arrays onto the computational mesh. First of
all, we present different deep learning-based strategies to efficiently approximate the nonlinear
reduced operators, based on Newton and Broyden methods; then, we describe the deep neural
network (DNN) architecture employed. Finally, the new reduction approach is assessed in several
scenarios and its accuracy and efficiency are compared to the classical POD-Galerkin-DEIM.

4.1 Deep learning based model order reduction
Several papers have recently introduced new methods which combine projection-based reduction
with neural networks (NNs). For instance, in [Swi+19; HU18] machine learning techniques are
investigated with the aim of learning the map between the input parameters and the reduced
basis expansion coefficients in a non-intrusive way, while in [Hij+20] a mixed strategy based on
the idea of combining projection-based methods and data-driven techniques for the solution
to turbulent flows is developed. The nonlinear velocity function of a dynamical system in the
ROM equations is approximated through DNNs in [GWZ20]. In order to take into account
physics laws, physics-informed NNs have also been introduced [RPK19].

In the last decades, the use of machine learning techniques to perform operator inference in
the context of (parameterized) differential equations has been considered, combining ideas from
classical model reduction with data-driven learning. For instance, in [Lu+21] a step forward
is made concerning the design of NNs able to accurately represent linear/nonlinear operators,
mapping input functions to output functions. Based on the universal approximation theorem
of operators [CC95], a general deep learning framework, called DeepONet, has been proposed
to learn continuous operators, such as solution operators of PDEs, using DNNs. In [PW16] a
non-intrusive projection-based ROM for parameterized time-dependent PDEs which are linear
in the state, or include a low-order polynomial nonlinear term, is considered, and further
extended to the case of non-polynomial nonlinear terms given in analytic form in [Ben+20].
In these cases, approximations of the reduced operators are inferred directly from data of the
FOM by solving a least-squares problem. The advantages of projection-based model reduction
and machine learning are combined in [Qia+19] to approximate linear and quadratic operators,
focusing on the solution to a large class of fluid dynamics applications. Furthermore, [Bha+21]
combines principal component analysis-based model reduction with a NNs for approximation,
in a purely data-driven fashion, of infinite-dimensional solution maps, such as the solution
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Chapter 4 Deep learning-based hyper-reduced order model network

operator for time-dependent PDEs.
We recall that we seek an approximation of the nonlinear operators arising in the reduced

Newton system VTJ(Vun,(k)
N (µ), tn;µ)Vδun,(k)

N (µ) = −VTR(Vun,(k)
N (µ), tn;µ),

un,(k+1)
N (µ) = un,(k)

N (µ) + δun,(k)
N (µ),

(4.1)

for n = 1, . . . , Nt and k ≥ 0, that can be computed at a low computational cost. With this aim,
let V ∈ RNh×N be a N -dimensional POD basis for the ROM and define the reduced nonlinear
operators as follows:

RN (Vun,(k)
N (µ), tn;µ) := VTR(Vun,(k)

N (µ), tn;µ) ∈ RN ,

JN (Vun,(k)
N (µ), tn;µ) := VTJ(Vun,(k)

N (µ), tn;µ)V ∈ RN×N ,

for n = 1, . . . , Nt and k ≥ 0. Our goal is the efficient numerical approximation of the whole sets

MRN
= {RN (Vun,(k)

N (µ), tn;µ) ∈ RN | n = 1, . . . , Nt, k ≥ 0, µ ∈ P}

MJN
= {JN (Vun,(k)

N (µ), tn;µ) ∈ RN×N | n = 1, . . . , Nt, k ≥ 0, µ ∈ P}

(which we refer to as reduced residual manifold and reduced Jacobian manifold, respectively)
with a number of operations that depends only on the ROM dimension N and on the number
of parameters P .
The main idea of our deep learning-based approach is to provide an efficient and accurate

approximation of the reduced nonlinear operators arising in (4.1) by relying on DNNs. Provided
the input triplets

ϑ = (µ, tn, k) ∈ P × {t1, . . . , tNt} × N+

made of the input parameters µ ∈ P, the current time step tn, for n = 1, . . . , Nt, and the
Newton iteration k ≥ 0, we employ a suitable NN architecture (described in Section 4.1.1)
to learn the following input-to-residual and input-to-Jacobian maps, when either the Newton
method or the Broyden method are used for the solution of the ROM at each time instant:

• Newton approach

ρN : (µ, tn, k) 7−→ ρN (µ, tn, k) ≈ RN (Vun,(k)
N (µ), tn;µ),

ιN : (µ, tn, k) 7−→ ιN (µ, tn, k) ≈ JN (Vun,(k)
N (µ), tn;µ),

for the reduced residual and the reduced Jacobian, respectively. The linear system in
(4.1) is finally replaced by

ιN (µ, tn, k)δun,(k)
N (µ) = −ρN (µ, tn, k). (4.2)

We refer to this approach as the Deep-HyROMnet method.

• Broyden approach

ρN : (µ, tn, k) 7−→ ρN (µ, tn, k) ≈ RN (Vun,(k)
N (µ), tn;µ),
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4.1 Deep learning based model order reduction

for the reduced residual. For k ≥ 0, the reduced Jacobian JN (Vun,(k+1)
N (µ), tn;µ) can be

approximated as

J̃N (?(k+1)) = J̃N (?(k))

+ ∆ρN (µ, tn, k + 1)− J̃N (?(k))δun,(k)
N (µ)

(δun,(k)
N (µ))T (δun,(k)

N (µ))
(δun,(k)

N (µ))T ,

where we denoted (?(j)) = (Vun,(j)N (µ), tn;µ), for j ∈ {k, k + 1}, and defined the residual
increment as ∆ρN (µ, tn, k + 1) = ρN (µ, tn, k + 1)− ρN (µ, tn, k). The linear system in
(4.1) is in this case replaced by

J̃N (Vun,(k)
N (µ), tn;µ)δun,(k)

N (µ) = −ρN (µ, tn, k). (4.3)

In order to initialize J̃N (Vun,(0)
N (µ), tn;µ), different strategies are possible, such as:

1. learn the input-to-Jacobian map

ιN : (µ, tn, k) 7−→ ιN (µ, tn, k) ≈ JN (Vun,(k)
N (µ), tn;µ),

for all k ≥ 0 and set J̃N (Vun,(0)
N (µ), tn;µ) = ιN (µ, tn, 0);

2. learn the input-to-Jacobian map

ιN,0 : (µ, tn) 7−→ ιN,0(µ, tn) ≈ JN (Vun,(0)
N (µ), tn;µ)

and set J̃N (Vun,(0)
N (µ), tn;µ) = ιN,0(µ, t);

3. given a DEIM basis ΦR ∈ RNh×m, set

J̃N (Vun,(0)
N (µ), tn;µ) = VTΦR(ΦR−1)|IJ(Vun,(0)

N (µ), tn;µ)|IV.

This procedure guarantees to recover the effectiveness of the offline-online decoupling char-
acteristic of the RB method (see Section 2.1.1). During the offline stage, we need to collect
FOM solution snapshots for the construction of the reduced basis V, perform POD-Galerkin
ROM simulations for a new set of parameters (as done for the DEIM-based approach reported
in Section 2.2) to collect the reduced nonlinear operators and then, train the DNNs on these
data. Online, for each new instance of the parameter, the outputs of the networks are evaluated
in order to assemble efficiently the reduced Newton system and the N -dimensional ROM is
solved rapidly. We point out that the inputs given to the DNNs to perform supervised learning
are low-dimensional arrays, so that the overwhelming training times and costs that may be
required by even moderately large high-fidelity dimensions can be avoided.
To summarize, in the case of the Newton approach, we end up with the following reduced

problem: given µ ∈ P and, for n = 1, . . . , Nt, the initial guess un,(0)
N (µ) = un−1

N (µ), find
δun,(k)

N ∈ RN such that, for k ≥ 0, ιN (µ, tn, k)δun,(k)
N (µ) = −ρN (µ, tn, k),

un,(k+1)
N (µ) = un,(k)

N (µ) + δun,(k)
N (µ),

(4.4)
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until ‖ρN (µ, tn, k)‖2/‖ρN (µ, tn, 0)‖2 < εNwt, where εNwt > 0 is a given tolerance. It is
important to point out that, except for the approximation error of the reduced nonlinear
operators, the Deep-HyROMnet approach described in 4.1 is a physics-based method and
that the computed displacement solves a slightly modified nonlinear elastodynamics equation,
because of the approximation of the ROM arrays.
In Algorithm 8, we report a summary of both the offline stage and the online stage of the

hyper-ROM Deep-HyROMnet, based on Newton method (4.2).

Algorithm 8 Deep-HyROMnet for nonlinear time-dependent problems
Offline stage
INPUT: µ`, for ` = 1, . . . , ns, and µ`′ , for `′ = 1, . . . , n′s
OUTPUT: V ∈ RNh×N

1: for ` = 1, . . . , ns do
2: for n = 1, . . . , Nt do
3: for k ≥ 0 until convergence do
4: Assemble and solve problem (1.13)
5: Collect Su ← Su ∪

[
un,(k)
h (µ`)

]
column-wise

6: Construct V = POD(Su, εPOD) (see Algorithm 2)
7: for `′ = 1, . . . , n′s do
8: for n = 1, . . . , Nt do
9: for k ≥ 0 until convergence do

10: Assemble and solve reduced problem (4.1)
11: Collect Sρ ← Sρ ∪

[
VTR(Vun,(k)

N (µ`′), tn;µ`′)
]
column-wise

12: Collect Sι ← Sι ∪
[
VTJ(Vun,(k)

N (µ`′), tn;µ`′)V
]
column-wise

13: Train the DNNs (see Algorithm 9)

Online stage
INPUT: µ ∈ P
OUTPUT: VunN (µ) ∈ RNh , for n = 1, . . . , Nt

1: for n = 0, . . . , Nt − 1 do
2: for k ≥ 0 until convergence do
3: Compute ρN (µ, tn, k) and ιN (µ, tn, k) (see Algorithm 10)
4: Solve hyper-reduced problem (4.4)
5: Recover VunN (µ), for n = 1, . . . , Nt

4.1.1 DL-ROM-based neural network

For the sake of generality, we will focus on the DNN-based approximation of the reduced
residual vector only, that is

ρN (µ, tn, k) ≈ RN (Vun,(k)
N (µ), tn;µ) ∈ RN .

In fact, by relying on a suitable transformation, we can easily write the Jacobian matrix as a
vector of dimension N2 and apply the same procedure described in the following for the residual
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4.1 Deep learning based model order reduction

vector also in the case of the Jacobian matrix. In particular, we define the transformation

vec : RN×N → RN
2
, vec(JN (Vun,(k)

N (µ), tn;µ)) = jN (Vun,(k)
N (µ), tn;µ),

which consists in stacking the columns of JN (Vun,(k)
N (µ), tn;µ) in a vector on which is then

applied the DNN, thus obtaining

ι̃N (µ, tn, k) ≈ jN (Vun,(k)
N (µ), tn;µ) ∈ RN

2
.

Finally, we revert the vec operation, so that ιN (µ, tn, k) = vec−1(ι̃N (µ, tn, k)).
Our aim is to efficiently approximate the whole setMRN

by means of the reduced residual
trial manifold, defined as

MρN = {ρN (µ, tn, k) | µ ∈ P, n = 1, . . . , Nt, k ≥ 0} ⊂ RN .

The DL-ROM-based [FDM21] approximation of the ROM residual RN (Vun,(k)
N (µ), tn;µ) takes

the form
ρN (µ, tn, k) = R̃N (µ, tn, k;θDF ,θD) = fDN (φDFq (µ, tn, k;θDF );θD)

where

• φDFq (· ;θDF ) : RP+2 → Rq such that

φDFq (µ, tn, k;θDF ) = Rq(µ, tn, k;θDF )

is a deep feedforward neural network (DFNN), consisting in the subsequent composition
of a nonlinear activation function, applied to a linear transformation of the input, multiple
times. Here, θDF denotes the vector of parameters of the DFNN, collecting all the
corresponding weights and biases of each layer and q is as close as possible to the input
size P + 2;

• fDN (· ;θD) : Rq → RN such that

fDN (Rq(µ, tn, k;θDF );θD) = R̃N (µ, tn, k;θDF ,θD)

is the decoder function of a convolutional autoencoder (CAE), obtained as the composition
of several layers (some of which are convolutional), depending upon a vector θD collecting
all the corresponding weights and biases.

The encoder function of the CAE is exploited, during the training stage only, to map the reduced
residual RN (Vun,(k)

N (µ), tn;µ) associated to (µ, tn, k) onto a low-dimensional representation

fEq (RN (Vun,(k)
N (µ), tn;µ);θE) = R̃q(µ, tn, k;θE),

where fEq (· ;θE) : RN → Rq denotes the encoder function, depending upon a vector θE of
parameters.
Remark 4.1
We point out that the input of the encoder function, that is, the reduced residual vector RN ,
is reshaped into a square matrix by rewriting its elements in row-major order, thus obtaining
Rreshape
N ∈ R

√
N×
√
N . If N is not a square, the input RN is zero-padded as explained in

[GBC16], and the additional elements are subsequently discarded.
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Regarding the prediction of the reduced residual for a new unseen instance of the input
µtest ∈ P, computing the DL-ROM-based approximation of RN (Vun,(k)

N (µ), tn;µtest), for any
possible n = 1, . . . , Nt and k ≥ 0, corresponds to the testing stage of a DFNN and of the
decoder function of a convolutional AE; meaning that, at testing time, we discard the encoder
function. The architecture used during training is reported in Figure 4.1, whereas, during the
testing phase, the encoder function is discarded.

Figure 4.1: DNN architecture used during the training phase for the reduced residual vector.

Let us define the reduced residual snapshots matrix Sρ ∈ RN×Ntrain , with Ntrain = n′sNtNk,
as

Sρ =
[
RN (Vun,(k)

N (µ`), tn;µ`), k ≥ 0
]`=1,...,n′s
n=1,...,Nt

,

that is, the matrix collecting column-wise ROM residuals computed for n′s sampled parameters
µ` ∈ P, at different time instances t1, . . . , tNt and for each Newton iteration k ≥ 0, and the
parameter matrix M ∈ R(P+2)×Ntrain of the corresponding triples

M =
[
(µ`, tn, k) ,( k ≥ 0

]`=1,...,n′s
n=1,...,Nt

.

The training stage consists in solving the following optimization problem in the weights variable
θ = (θE ,θDF ,θD):

min
θ
J (θ) = min

θ

1
Ntrain

n′s∑
`=1

Nt∑
n=1

Nk∑
k=0
L(µ`, tn, k;θ),

where
L(µ`, tn, k;θ) =ωh

2 ‖RN (Vun,(k)
N (µ`), tn;µ`)− R̃N (µ`, tn, k;θDF ,θD)‖2

+ 1− ωh
2 ‖R̃q(µ`, tn, k;θE)−Rq(µ`, tn, k;θDF )‖2,

(4.5)
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4.1 Deep learning based model order reduction

with ωh ∈ [0, 1]. The loss function (4.5) combines the reconstruction error, i.e. the error
between the ROM residual and the DL-ROM-based approximation, and the error between
the intrinsic coordinates and the output of the encoder. The training stage of the DNNs
involved in Deep-HyROMnet is detailed in Algorithm 9; in particular, we denote by α the
training-validation splitting fraction, by η the starting learning rate, by Nb the batch size, by
nb = (1− α)Ntrain/Nb the number of minibatches and by Ne the maximum number of epochs.
The testing stage of the DNNs is detailed in Algorithm 10. See, e.g., [FDM21; FM22] for further
details.

Algorithm 9 Training stage for the DNNs, based on Algorithm 1 of [FDM21]
INPUT: M ∈ R(P+2)×Ntrain , S ∈ RN×Ntrain (i.e. Sρ or Sι), α, η, Nb, nb, Ne, early-stopping
OUTPUT: θ∗ = (θ∗E ,θ∗DF ,θ∗D) (optimal)

1: Randomly shuffle M and S
2: Split data in M =

[
Mtrain,Mval

]
and S =

[
Strain,Sval

]
(according to α)

3: Normalize M and S according to (4.6)
4: Randomly initialize θ0 = (θ0

E ,θ
0
DF ,θ

0
D)

5: ne = 0
6: while ¬early-stopping and ne ≤ Ne do
7: for k = 1, . . . , nb do
8: Sample a minibatch (Mbatch,Sbatch) ⊂ (Mtrain,Strain)
9: Sbatch = reshape(Sbatch)

10: S̃batchq (θnbne+k
E ) = fEq (Sbatch;θnbne+k

E )
11: Sbatchq (θnbne+k

DF ) = φDFq (Mbatch;θnbne+k
DF )

12: S̃batchN (θnbne+k
DF ,θnbne+k

D ) = fDN (Sbatchq (θnbne+k
DF );θnbne+k

D )
13: S̃batchN = reshape(S̃batchN )
14: Accumulate loss (4.5) on (Mbatch,Sbatch) and compute ∇̂θJ
15: θnbne+k+1 = ADAM(η, ∇̂θJ ,θnbne+k)
16: Repeat instructions 9-13 on (Mval,Sval) to evaluate early-stopping criterion
17: ne = ne + 1

Algorithm 10 Testing stage for the DNNs, based on Algorithm 2 of [FDM21]
INPUT: (µ, tn, k) ∈ P × {t1, . . . , tNt} × N+, (θ∗DF ,θ∗D) (optimal)
OUTPUT: S̃N (i.e. ρN (µ, tn, k) or ιN (µ, tn, k))

1: Sq(θ∗DF ) = φDFq (µ, tn, k;θ∗DF )
2: S̃N (θ∗DF ,θ∗D) = fDN (Sq(θ∗DF );θ∗D)
3: S̃N = reshape(S̃N )

Remark 4.2
Differently from the scaling techniques used in [FDM21; FM22], which are based on a min-max
procedure, we standardize the input and output of the DNN as follows. After splitting the
data into training and validation sets according to a user-defined training-validation splitting
fraction, M =

[
Mtrain,Mval

]
and S =

[
Strain,Sval

]
, we define for each row of the training set
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the corresponding mean and standard deviation

M i
mean = 1

Ntrain

Ntrain∑
j=1

M train
ij , M i

sd =

√√√√√ 1
Ntrain − 1

Ntrain∑
j=1

(M train
ij −M i

mean)2,

so that parameters are normalized by applying the following transformation

M train
ij 7→

M train
ij −M i

mean

M i
sd

, i = 1, . . . , P + 2, j = 1, . . . , Ntrain (4.6)

that is, each feature of the training parameter matrix is standardized. The same procedure is
applied to the training snapshots matrix Strain by replacing M i

∗ with Si∗, where ∗ ∈ {mean, sd}.
Transformation (4.6) is applied to the validation and testing sets as well, but considering the
mean and the standard deviation computed over the training set. In order to rescale the
reconstructed solution to the original values, we apply the inverse transformation.

Remark 4.3
We have observed (see Table 4.1) that the computational time required by the GPU to compute
the outputs of the DNNs does not scale linearly with respect to the number of input instances
(at least when this number is smaller than the number of cores, in our case O(104)). This means
that computing the reduced operators through the DNNs for a single instance of the input triple
ϑ = (µ, tn, k), when n and k are fixed, requires almost the same time necessary to compute
the same quantities for all possible values of n = 1, . . . , Nt and k = 0, . . . , Nnwt, being Nnwt an
upper bound for the number of Newton iterations to be used at each time step. Because of this,
in our numerical examples we pre-compute the DL-ROM-based approximations of the reduced
residual vectors and Jacobian matrices for a given parameter µ ∈ P, and read them from file
when solving the reduced systems (4.2). In particular, we consider Nnwt = NFOM

nwt + 3, where
NFOM
nwt is the maximum number of Newton iterations required by the FOM during the offline

stage. We point out that the computational time required for this stage is taken into account
into the total online time.

Test case 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 5.3.1 5.3.2

N 4 4 4 16 16 63 80

# of instances 1 − −

GPU time for residuals 1.1 ms 1.1 ms 1.1 ms 1.2 ms 1.2 ms − −

GPU time for Jacobians 1.2 ms 1.2 ms 1.2 ms 1.3 ms 1.3 ms − −

# of instances 300 420 450 300 300 1920 1920

GPU time for residuals 1.7 ms 1.9 ms 2 ms 1.8 ms 1.8 ms 8.1 ms 8.3 ms

GPU time for Jacobians 1.8 ms 2 ms 2.2 ms 2.6 ms 2.6 ms 70 ms 180 ms

Table 4.1: Computational times required to compute a given number of instances of the DNN-outputs,
for different test cases.
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Figure 4.2: Rectangular beam geometry (left) and computational grid (right).

4.2 Numerical results
In this section we measure the performances of the proposed reduction strategy on the numerical
examples considered in Section 2.3, specifically,

(i) a series of structural tests on a simple rectangular geometry with different loading boundary
conditions;

(ii) two benchmark tests on a prolate spheroid geometry simulating cardiac relaxation and
contraction,

and compare the results with those obtained when using POD-Galerkin-DEIM ROMs.
We recall that, as a measure of the accuracy of the ROM with respect to the FOM, for a

given parameter instance, we consider time-averaged L2-errors of the displacement vector, that
are

εabs(µ) = 1
Nt

Nt∑
n=1
‖uh(·, tn;µ)−VuN (·, tn;µ)‖2

εrel(µ) = 1
Nt

Nt∑
n=1

‖uh(·, tn;µ)−VuN (·, tn;µ)‖2
‖uh(·, tn;µ)‖2

.

Moreover, the ratio between FOM and ROM online computational times is used to measure
the ROM efficiency, since it represents the speed-up of the ROM with respect to the FOM. All
the computations have been performed on a PC desktop computer with 3.70GHz Intel Core
i5-9600K CPU and 16GB RAM.

4.2.1 Deformation of a clamped rectangular beam
The first series of test cases represents a typical structural mechanics problem, with reference
geometry Ω̄0 = [0, 10−2]× [0, 10−3]× [0, 10−3] m, reported in Figure 4.2. The beam is clamped
at the left-hand side, that is, Dirichlet boundary conditions are imposed on the left face x = 0 m,
whilst a pressure load changing with the deformed surface orientation is applied to the entire
bottom face z = 0 m (i.e. ΓN0 ). Homogeneous Neumann conditions are applied on the remaining
boundaries. For the cases at hand, we consider a nearly-incompressible neo-Hookean material,
yielding the following first Piola-Kirchhoff stress tensor, characterized by a non-polynomial
nonlinearity,

P(F) = GJ−
2
3

(
F− 1

3I1FT
)

+ K

2 J
(
J − 1 + 1

J
ln(J)

)
FT .
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Here G > 0 denotes the shear modulus, I1 = J−
2
3 det(C) and K > 0 is the bulk modulus

penalizing volume variations. The FOM is built on a hexahedral mesh with 640 elements
and 1025 vertices and Q1-FE are employed, so that the high-fidelity dimension is equal to
Nh = 3075.

Test case 1: linear function for the pressure load

As first test case, we consider a situation in which the beam is progressively loaded by choosing
as pressure boundary condition the following parameterized linear function,

g(t;µ) = p̃ t/T, t ∈ (0, T ).

We choose T = 0.25 s as final time instance and employ a uniform time step ∆t = 5 · 10−3 s for
the time discretization scheme, resulting in a total number of 50 time steps. As parameters, we
consider:

• the shear modulus G ∈ [0.5 · 104, 1.5 · 104] Pa;

• the bulk modulus K ∈ [2.5 · 104, 7.5 · 104] Pa;

• the external load parameter p̃ ∈ [2, 6] Pa.

For the construction of the hyper-ROM, we consider a reduced basis V ∈ RNh×N build by
performing POD on the solution snapshots matrix Su for ns = 50. In this case we consider
N = 4, which yields a projection error (that is the error of the POD-Galerkin ROM without
hyper-reduction) of εrel ≈ 10−2. As observed in Section 2.3, POD-Galerkin ROMs achieve
good accuracy even in presence of a handful of basis functions, so that choosing small values
of N facilitates the training of the DNNs which are used to approximate low-dimensional
structures. Finally, we perform n′s = 200 ROM simulation in order to collect reduced-residual
and reduced-Jacobian data for training the DNNs (see Algorithm 8).
In Table 4.2 we report the computational data related to the DEIM-based hyper-ROMs

(see Table 2.1 for further details), which clearly shows that the computational bottleneck of
the POD-Galerkin-DEIM technique is the construction of the reduced system at each Newton

DEIM interpolation dofs m 25 33 43

Online CPU time 2.8 s 3.6 s 4.3 s

◦ system construction [∗] 78% 83% 88%

◦ system solution 0.16% 0.13% 0.09%

[∗] System construction for each Newton iteration 0.02 s 0.02 s 0.03 s

◦ residual assembling 89% 87% 88%

◦ Jacobian computing through AD 0.6% 0.4% 0.5%

Table 4.2: Test case 1. Computational data related to POD-Galerkin-DEIM with N = 4 and different
values of m.
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iteration, which requires between 78% and 88% of the total CPU time. In particular, almost
90% of this computational time is demanded for assembling the residual R(Vun,(k)

N (µ), tn;µ)
on the reduced mesh, while computing the associated Jacobian matrix using the automatic
differentiation tool takes less than 1%.
To assess the performances of the deep learning-based hyper-ROMs (4.2) and (4.3), and

compare their efficiency and accuracy with respect to classical hyper-reduction approaches, we
consider the POD-Galerkin-DEIM ROMs obtained for a given DEIM residual basis ΦR ∈ RNh×m

of dimension m = 22 (DEIM-22) and m = 30 (DEIM-30), respectively, which represent good
trade-offs between accuracy and computational speed-up. Hence, we compute the corresponding
reduced solutions on a testing set of 50 instances of the parameter vector, different form the
ones used during the offline stage. The computational speed-up with respect to the FOM, the
absolute error εabs and the relative error εrel, averaged over the testing set, are reported in
Table 4.3.

DEIM-22 DEIM-30 Deep-HyROMnet Broyden 1. Broyden 2.

Speed-up ×11 ×8 ×1012 ×987 ×978

Avg. CPU time 2 s 3 s 0.026 s 0.026 s 0.027 s

meanµ εabs(µ) 7.4 · 10−5 1.9 · 10−5 7.7 · 10−5 2.0 · 10−4 1.6 · 10−4

meanµ εrel(µ) 9.7 · 10−3 5.0 · 10−3 8.3 · 10−3 1.3 · 10−2 1.1 · 10−2

Table 4.3: Test case 1. Computational data related to DEIM-based and DNN-based hyper-ROMs, for
N = 4.

In terms of efficiency, the DNN-based ROMs outperform the POD-Galerkin-DEIM ROMs
substantially. In particular, both Newton and Broyden approaches are able to compute the
reduced solutions in less than 0.03 s, thus yielding an overall speed-up of order O(103) compared
to the FOM. For what concerns the approximation error, Deep-HyROMnet shows better results
with respect to both deep learning-based Broyden approaches, and is able to achieve the same
accuracy of DEIM-22, whilst being almost 100 times faster. The evolution of the L2(Ω0)-absolute
error, averaged over the testing parameters, is reported in Figure 4.3 for all of the hyper-ROMs
considered.

Figure 4.3: Test case 1. Evolution in time of the average L2(Ω0)-absolute error computed using
DEIM-based and DNN-based hyper-ROMs, for N = 4.
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Deep-HyROMnet Broyden 1. Broyden 2.

N = 4 7.7 · 10−5 2.0 · 10−4 1.6 · 10−4

N = 8 9.0 · 10−5 2.1 · 10−4 1.8 · 10−4

N = 12 1.4 · 10−4 2.7 · 10−4 2.1 · 10−4

N = 16 1.8 · 10−4 3.3 · 10−4 2.9 · 10−4

Table 4.4: Test case 1. Absolute error of DNN-based hyper-ROMs, for different RB dimensions N .

The final accuracy of the hyper-ROMs equals that of the ROM without hyper-reduction, i.e.
εrel ≈ 10−2 (see Figure 2.4), meaning that the projection error dominates over the nonlinear
operators approximation error. In order to increase the accuracy of the reduced solution, we
should consider higher values of the RB dimension N . However, by increasing the RB dimension,
the task of the DNNs becomes more complex, meaning that more training samples and a larger
size of the neural networks themselves may be required. In Table 4.4 we report the average
absolute error εabs associated with the hyper-ROMs when N is increased, but the number of
training snapshots and the architecture of the DNNs are unchanged. Figures 4.4a and 4.4b
report the FOM and the DNN-based hyper-ROMs displacements at time T = 0.25 s in two
scenarios, together with the error between the high-fidelity solution and the reduced solution.

(a) µ = [1.3225 · 104 Pa, 3.9875 · 104 Pa, 3.43 Pa].

(b) µ = [0.6625 · 104 Pa, 5.8625 · 104 Pa, 4.89 Pa].

Figure 4.4: Test case 1. FOM (wireframe) and DNN-based hyper-ROMs (colored) displacements and
corresponding difference at time T = 0.25 s.
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Test case 2: hat function for the pressure load

Let us now consider the case of a piecewise linear pressure load describing a structure which is
increasingly loaded until a maximum pressure is reached and then linearly unloaded in order to
recover the initial resting state, so that

g(t;µ) = p̃
(
2t χ(t)(0,T

2 ] + 2(T − t) χ(t)( T
2 ,T ]

)
, t ∈ (0, T ).

We recall that T = 0.35 s and ∆t = 5 · 10−3 s, whereas we consider the maximum external load
p̃ ∈ [2, 12] Pa as varying parameter. The shear modulus G and the bulk modulus K are fixed
to the values 104 Pa and 5 · 104 Pa, respectively. The RB basis V is built by performing POD
on ns = 50 FOM solution snapshots with tolerance εPOD = 10−4, thus obtaining N = 4, whilst
the training set for the DNNs is constructed from n′s = 300 POD-Galerkin ROM simulations.
In order to compare the computational speed-up and the approximation accuracy of the

deep learning-based ROMs with the ones of POD-Galerkin-DEIM ROM, we choose DEIM-14
and DEIM-29 (that are, the DEIM-based hyper-ROMs associated with m = 14 and m = 29,
respectively), since these dimensions leads to POD-Galerkin-DEIM ROMs with a good trade-off
between accurate results and required CPU time. Table 4.5 shows the comparison between the

DEIM-22 DEIM-30 Deep-HyROMnet Broyden 1. Broyden 2.

Speed-up ×14 ×9 ×1133 ×1126 ×1153

Avg. CPU time 3 s 5 s 0.035 s 0.036 s 0.036 s

meanµ εabs(µ) 9.0 · 10−5 6.8 · 10−6 2.0 · 10−4 1.9 · 10−3 1.9 · 10−3

meanµ εrel(µ) 1.5 · 10−2 1.4 · 10−3 1.7 · 10−2 1.6 · 10−1 1.7 · 10−1

Table 4.5: Test case 2. Computational data related to DEIM-based and DNN-based hyper-ROMs,
for N = 4.

hyper-reduced models on a testing set of 50 parameter instances. As observed in the previous
test case, Deep-HyROMnet is able to achieve good results in terms of accuracy, comparable
with the fastest DEIM-based model, at a greatly reduced cost. Also in this case, the speed-up
achieved by the DNN-based hyper-ROMs is of order O(103) with respect to the FOM, since less
than 0.04 s are needed to compute the reduced solution for each new instance of the parameter,
against a time of about 40 s required by the FOM, and of 3 s required by DEIM-14. The
evolution in time of the average L2(Ω0)-absolute error is shown in Figure 4.5 for all of the
hyper-ROMs considered.

We point out that the accuracy obtained using Deep-HyROMnet, although slightly lower than
the ones achieved using a DEIM-based approximation, is still satisfying in all the considered
scenarios. On the other hand, for some parameter values, the Broyden-based models do not
lead to accurate approximations, as shown in Figures 4.6 and 4.7, where the FOM and the
DNN-based hyper-ROMs displacements at time t = 0.19 s (i.e. corresponding to the greatest
deformation) for two different values of the pressure parameter p̃ are reported, together with the
error between the high-fidelity and the reduced solutions. Accordingly to these results, from now
on we will consider only the Deep-HyROMnet strategy among the DNN-based hyper-ROMs.
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Figure 4.5: Test case 2. Evolution in time of the average L2(Ω0)-absolute error computed using
DEIM-based and DNN-based hyper-ROMs, for N = 4.

Figure 4.6: Test case 2. FOM (wireframe) and DNN-based hyper-ROMs (colored) displacements and
corresponding difference at time t = 0.19 s for µ = [3.7625 Pa].

Figure 4.7: Test case 2. FOM (wireframe) and DNN-based hyper-ROMs (colored) displacements and
corresponding difference at time t = 0.19 s for µ = [10.7375 Pa].
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Test case 3: step function for the pressure load

As last test case for the clamped beam, we consider a constant pressure load acting on the
bottom surface area for t ∈ (0, T/3], being T = 0.27 s the final simulation time, i.e.

g(t;µ) = p̃ χ(t)(0,T
3 ],

so that the deformation of the object results in several oscillations of decreasing amplitude. Let
∆t = 3.6 · 10−3 s be a uniform time step and the parameter µ be equal to the external load
p̃ ∈ [2, 12] Pa, whilst G = 104 Pa and K = 5 · 104 Pa are fixed. We build the reduced basis
V ∈ RNh×N from a training set of ns = 50 FOM solutions using εPOD = 10−3, thus obtaining
a reduced dimension of N = 4, and perform POD-Galerkin ROM simulations for a given set of
n′s = 300 parameter samples to collect the nonlinear terms data necessary for the construction
of both POD-Galerkin-DEIM and Deep-HyROMnet ROMs.
Like for the previous test cases, we compare POD-Galerkin-DEIM and Deep-HyROMnet

ROMs, with respect to the displacement error and the CPU time ratio. As reported in Table 4.6,
also in this case Deep-HyROMnet outperforms DEIM substantially in terms of efficiency when
handling the nonlinear terms. Indeed, Deep-HyROMnet yields a ROM that is more than 1000
times faster than the FOM (this latter requiring 51 s in average to be solved), still providing
satisfactory results in terms of accuracy. Figures 4.8 and 4.9 represent the Deep-HyROMnet
solution at different time instants for two different values of the parameter and show that the
hyper-ROM is able to correctly capture the nonlinear behavior of the continuum body also
when the inertial term cannot be neglected.

DEIM (m = 18) DEIM (m = 38) Deep-HyROMnet

Computational speed-up ×12 ×6 ×1350

Avg. CPU time 4 s 8 s 0.038 s

Time-avg. L2(Ω0)-absolute error 2.4 · 10−3 1.3 · 10−4 4.8 · 10−4

Time-avg. L2(Ω0)-relative error 6.7 · 10−1 2.4 · 10−2 1.0 · 10−1

Table 4.6: Test case 3. Computational data related to POD-Galerkin-DEIM ROMs and Deep-
HyROMnet, for N = 4.

Figure 4.8: Test case 3. FOM (wireframe) and Deep-HyROMnet (colored) solutions computed at
different times for µ = [5.1125 Pa].
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Figure 4.9: Test case 3. FOM (wireframe) and Deep-HyROMnet (colored) solutions computed at
different times for µ = [11.4625 Pa].

4.2.2 Benchmark problems with a prolate spheroid geometry

In order to investigate the performances of Deep-HyROMnet for the solution to cardiac mechanics
problems, we consider the benchmark test cases introduced in Section 2.3.2, where the reference
geometry Ω0 ⊂ R3 is given by an idealized left ventricle (see Figure 4.10, here reported for
the sake of convenience) and the nearly-incompressible Guccione relation (1.3) is adopted as
constitutive equation.

Figure 4.10: Idealized truncated ellipsoid geometry (left) and computational grid (right).

A linear external pressure
g(t;µ) = p̃ t/T, t ∈ (0, T ),

with p̃ > 0, is applied at the endocardium (i.e., ΓN0 ) to simulate the presence of blood inside
the ventricle, while the base (i.e., ΓD0 ) is kept fixed through homogeneous Dirichlet boundary
conditions. The FOM is built on a hexahedral mesh with 4804 elements and 6455 vertices, so
that the high-fidelity dimension is Nh = 19365 when Q1-FE are employed.
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Passive inflation of a left ventricle

In order to simulate the passive ventricular diastole we do not account for anisotropy and active
tension, and only consider the passive component of the first Piola-Kirchhoff stress tensor. As
unknown parameters, we choose

• the material stiffness in fiber and cross-fiber directions bf , bn ∈ [0.8, 1.2], and

• the multiplicative factor C ∈ [8 · 103, 12 · 103] Pa,

whilst all other parameters are fixed to their reference values. For the time setting, we assume
t ∈ (0, 0.25) s and a uniform time step ∆t = 5 · 10−3 s. We recall that almost 6 minutes are
required by the FOM to compute the solution for each new instance of the input parameter.

In order to compute the RB basis V ∈ RNh×N , we collect the solution snapshots for ns = 50
points sampled in the parameter space P and apply POD with εPOD = 10−5, obtaining a
reduced basis of dimension N = 16. Furthermore, with the aim of training the DNNs, we
collect data from n′s = 50 POD-Galerkin ROM simulations. For comparison purposes, we
consider POD-Galerkin-DEIM hyper-ROMs built with m = 84 and m = 127, in order to balance
accuracy and efficiency. The evolution in time of the average L2(Ω0)-absolute error and the
computational data obtained over a testing set of 20 parameters are reported in Figure 4.11
and Table 4.7, respectively, for all of the hyper-ROMs considered.

Figure 4.11: Passive inflation of a left ventricle. Evolution in time of the average L2(Ω0)-absolute error
computed using DEIM-based and DNN-based hyper-ROMs, for N = 16.

DEIM (m = 84) DEIM (m = 127) Deep-HyROMnet

Computational speed-up ×9 ×8 ×3360

Avg. CPU time 36 s 42 s 0.1 s

Time-avg. L2(Ω0)-absolute error 5.3 · 10−5 2.9 · 10−5 4.8 · 10−3

Time-avg. L2(Ω0)-relative error 5.3 · 10−4 2.9 · 10−4 1.9 · 10−2

Table 4.7: Passive inflation of a left ventricle. Computational data related to POD-Galerkin-DEIM
ROMs and Deep-HyROMnet, for N = 16.
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In this scenario Deep-HyROMnet is able to achieve a speed-up of 3360 times with respect
to the FOM, allowing us to compute the reduced solution in 0.1 s, whereas at least 36 s are
required by the DEIM-based hyper-ROM. We recall, in fact, that no further speed-ups can be
achieved by POD-Galerkin-DEIM by decreasing m, thus the size of the reduced mesh. The
DNN-based computed solutions, despite being less accurate than those computed by means of
classical hyper-reduction techniques, show good approximation performances. Figure 4.12 shows
the Deep-HyROMnet solution at time T = 0.25 s, for three different values of the parameter,
together with the corresponding pointwise error with respect to the FOM.

Figure 4.12: Passive inflation of a left ventricle. Deep-HyROMnet displacements (top) and pointwise
error (bottom) for µ = [0.881, 1.171, 11.65 · 103 Pa] (left), µ = [1.007, 0.853, 8.61 · 103 Pa]
(center) and µ = [0.827, 1.049, 8.15 · 103 Pa] (right).

Passive inflation and active contraction of a left ventricle

Finally, we assess the performances of the reduced model for the simulation of ventricular
systole. With respect to the previous test case, we take into account a varying fiber distribution
and contractile forces by introducing a parameterized active tension of the form

Ta(t;µ) = T̃a t/T, t ∈ (0, T ),

in the material law. We recall that, as varying parameters, we consider

• the maximum value of the active tension T̃a ∈ [49.5 · 103, 70.5 · 103] Pa, and

• the fiber angles αepi ∈ [−105.5,−74.5]◦ and αendo ∈ [74.5, 105.5]◦.

All other model inputs are fixed to their reference values, namely bf = 8, bs = bn = bsn = 2,
bfs = bfn = 4, C = 2 ·103 Pa, K = 50 ·103 Pa and p̃ = 15 ·103. Regarding the time discretization,
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we choose t ∈ (0, 0.25) s and a uniform ∆t = 5 · 10−3 s, resulting in a total number of 50 time
steps. The FOM is built on a hexahedral mesh of a truncated ellipsoid with 4804 elements and
6455 vertices, so that Nh = 19365 when Q1-FE are employed. In this case almost 6 min are
required to compute a single high-fidelity solution. The reduced basis V ∈ RNh×N is computed
by means of the POD method on a set of FOM solutions computed for 50 points sampled in the
parameter space P , resulting in a RB dimension equals to N = 16 when choosing εPOD = 10−3.
Moreover, we run ns = 200 simulations of the ROM without hyper-reduction in order to collect
the necessary training sets for the DNNs, as well as the residual snapshots required for the
construction of the DEIM-based hyper-ROM.
Table 4.8 reports the computational data of the POD-Galerkin-DEIM ROM, in the most

efficient configurations, and of the Deep-HyROMnet, clearly showing that the latter outperforms
the classical reduction strategy regarding the computational speed-up. In fact, Deep-HyROMnet
is able to approximate the solution dynamics in 0.1 s, that is even faster than real-time, while a
POD-Galerkin-DEIM ROM requires 1 min in average, where the final simulation time T is set
equal to 0.25 s. Although the Deep-HyROMnet error is one order of magnitude higher than the
one evaluated by a DEIM-based hyper-ROM (see Figure 4.13), the results are satisfactory in
terms of accuracy. In Figures 4.14 the FOM and the DNN-based hyper-ROM displacements at
time T = 0.25 s are reported for three different values of the parameters, together with the
error between the high-fidelity and the reduced solutions.

DEIM-303 DEIM-456 Deep-HyROMnet

Speed-up ×6 ×5 ×3554

Avg. CPU time 58 s 75 s 0.1 s

meanµ εabs(µ) 1.3 · 10−3 6.6 · 10−4 1.5 · 10−2

meanµ εrel(µ) 7.5 · 10−3 5.0 · 10−3 6.4 · 10−2

Table 4.8: Passive inflation and active contraction of a left ventricle. Computational data related to
DEIM-based and DNN-based hyper-ROMs, for N = 16.

Figure 4.13: Passive inflation and active contraction of a left ventricle. Evolution in time of the average
L2(Ω0)-absolute error computed using DEIM-based and DNN-based hyper-ROMs, for
N = 16.
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Figure 4.14: Passive inflation and active contraction of a left ventricle. FOM (wireframe) and
Deep-HyROMnet (colored) displacements (frontal view on top, lateral view in the
middle) and corresponding difference (bottom) at time T = 0.25 s for µ =
[61942.5 Pa,−77.5225◦, 87.9075◦] (left), µ = [59737.5 Pa,−102.3225◦, 91.1625◦] (cen-
ter) and µ = [50497.5 Pa,−100.9275◦, 80.0025◦] (right).

To conclude, we repeat that the approximation of the reduced nonlinear operators with
Deep-HyROMnet does not depend directly on the high-fidelity dimension Nh, but rather on
reduced basis dimension N . To test its performances using a higher FOM dimension, we address
the solution to the problem described in this section, however considering a finer hexahedral
mesh with 9964 elements and 13025 vertices, thus obtaining Nh = 39075 as FOM dimension.
In this case about 13 minutes are required to compute the high-fidelity dynamics. On the other
hand, a reduced basis of dimension N = 16 is computed for εPOD = 10−3. The computational
data, averaged over a testing set of 20 parameter samples, are reported in Table 4.9. Almost
unexpectedly, the online CPU time required by Deep-HyROMnet doubles as we double Nh.
This may be due to the higher time required to perform matrix-vector multiplication for the
reconstruction of the reduced solutions VunN (µ), for n = 1, . . . , Nt. Further analysis should be
performed to investigate this issue. Nonetheless, is it worth saying that the overall computational
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speed-up of Deep-HyROMnet increases as the FOM dimension Nh grows, while the number N
of reduced basis function remains small, so that reduced solutions can be computed extremely
fast. For what concerns the approximation accuracy of the hyper-ROMs with respect to the
associate FOMs, we obtain almost the same results, showing that Deep-HyROMnet is able to
deal with higher high-fidelity dimensions.

Deep-HyROMnet

Nh 19365 39075

FOM time 5 min 54 s 13 min 01 s

N 16

Speed-up ×3554 ×3886

Avg. CPU time 0.1 s 0.2 s

meanµ εabs(µ) 1.5 · 10−2 2.7 · 10−2

meanµ εrel(µ) 6.4 · 10−2 8.3 · 10−2

Table 4.9: Passive inflation and active contraction of a left ventricle. Computational data related to
Deep-HyROMnet for Nh = 19365 and Nh = 39075.
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Chapter 5

Application to cardiac mechanics: physiological
and pathological scenarios

In this chapter we address the efficient solution to parameterized cardiac mechanics problems
by means of the Deep-HyROMnet hyper-reduced model developed in Chapter 4. In particular,
we introduce a 3D-0D coupled structure-circulation model for the left ventricle in Section 5.1,
taking into account contractile forces by means of a surrogate active tension. Further, we
show how our DNN-based hyper-ROM can be adapted to different test cases in this context
in Section 5.2. To conclude, we present two numerical examples in Section 5.3 on a patient-
specific left ventricle geometry, first focusing on a physiological scenario (Section 5.3.1) and
then assuming the presence of an ischemic region inside the myocardium (Section 5.3.2), also
showing, in Section 5.3.3, how the developed framework is able to enhance forward UQ analysis
otherwise unaffordable.

5.1 Mathematical models: 3D-0D coupled cardiovascular model

Propagation of the electrical signalIon dynamics

Active contraction of cardiomyocytes

ionic current

  action potential

Blood circulation Tissue mechanics

active tension

mechanical 
deformation

calcium

pressure-volume

Figure 5.1: Cardiac core models describing the different physics.

When interested in the accurate and efficient solution to cardiac mechanics problems, described
in Chapter 1, one needs to take into account the interactions between several biophysical
phenomena concurring to the heart function, namely electrophysiology, biochemistry, mechanics
and fluid dynamics, each described by suitable models (core models, see Figure 5.1) written in
terms of PDEs and/or ODEs [QMV17]. Electrophysiology corresponds to the propagation of
the electrical potential and ion dynamics, and describes the electrical activity of cardiac muscle
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cells; the activation of cardiomyocytes is the results of complex mechano-chemical interactions
among contractile proteins [Ber01] and provides the active tension necessary to the mechanics
model. In this section we introduce the 3D structural model for the cardiac tissue and the 0D
model for the blood circulation required in order to reproduce the whole cardiac cycle, and
further describe the construction of the analytical form of the active tension that surrogates
the input provided by the active force generation model.

5.1.1 3D elastodynamics model
The strong formulation of the nonlinear parameterized IBVP for cardiac mechanics we want to
solve reads as follows: given µ ∈ P, find the displacement field u(µ) : Ω0 × (0, T )→ R3 such
that 

ρ0ü(µ)−∇0 ·P(u(µ);µ) = 0 in Ω0 × (0, T ),

P(u(µ);µ)N = pLV (t;µ)‖JFT (u(µ);µ)N‖v(t) on Γbase0 × (0, T ),

P(u(µ);µ)N = −pLV (t;µ)JF−T (u(µ))N on Γendo0 × (0, T ),

P(u(µ);µ)N + Kepiu(µ) + Cepiu̇(µ) = 0 on Γepi0 × (0, T ),

u(µ) = u0(µ); u̇(µ) = u̇0(µ) in Ω0 × {0},

(5.1)

where the computational boundary ∂Ω0 is divided into the inner endocardium Γendo0 , the outer
epicardium Γepi0 and the ventricular base Γbase0 , the latter representing the artificial boundary
resulting from truncation of the heart below the valves in a short axis plane. The boundary
conditions on Γbase0 are energy-consistent and provide an explicit expression for the stresses at
the base [RDQ20b], being

v(t) =
∫

Γendo
0

JF−T (u(µ))NdΓ∫
Γbase

0
‖JF−T (u(µ))N‖dΓ .

At the endocardium we take into account the action of the blood pressure pLV = pLV (t;µ)
inside the chamber, which is governed by the circulation model of Section 5.1.2. Finally, the
Robin boundary conditions at the epicardium aim at modeling the interaction between the
ventricle and the pericardium [GDQ19], that is the fibroelastic sac containing the heart, and
are given by Kepi = K⊥(N⊗N) +K‖(I−N⊗N) and Cepi = C⊥(N⊗N) + C‖(I−N⊗N),
where the local values of stiffness Kepi and viscosity Cepi of the epicardial tissue, in the normal
(⊥) and tangential (‖) directions, are reported in Table .6.

5.1.2 0D blood external circulation model
To provide meaningful numerical simulations of the left ventricle activity between two consecutive
heartbeats, and then to characterize the complete cardiac cycle from a mechanical point of
view, we need to suitably model the presence of blood inside the cardiac chamber providing
the pressure to the endocardial boundary Γendo0 in (5.1). Several hemodynamics models have
been proposed in the literature, see, e.g., [Reg+20a; BF10; WLW09; Nor+11], just to mention
a few examples. Among these, in the context of coupled problems, lumped-parameter fluid
models have been extensively considered [Hir+17; Pfa+20; Mol+18], since they provide good
approximation results at a greatly reduced cost. In this Thesis we adopt the following lumped
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description (0D model), as done in [GDQ19; RDQ20b], which is illustrated in the Wiggers
diagram [Wig51] reported in Figure 5.2. Starting with systole, that is the phase in which the
ventricle is full of blood and both the mitral valve and the aortic valve are closed, the four
phases of the cardiac cycle are described as:

1. isovolumetric contraction: the endocardial pressure rapidly grows from the end-diastolic
pressure (EDP) pED to the value pAV O measured in the aorta, in such a way that the
volume remains unchanged;

2. ejection: as soon as the aortic valve opens, the ejection phase starts and the evolution
of the pressure pLV (t;µ) is governed by a two-element windkessel model [WLW09], with
capacitance Cp and resistance Rp:

Cp ṗLV (t;µ) = −pLV (t;µ)
Rp

− V̇LV (u(µ), t;µ), t ∈ (TAV O, TAV C ],

p(TAV O;µ) = pAV O.

(5.2)

Here, TAV O and TAV C are the aortic valve opening and closing times, respectively, and
pAV O is the pressure measured in the aorta at the beginning of the ejection phase. This
phase is characterized by a decrement of the volume due to the contraction of the ventricle;

3. isovolumetric relaxation: when the aortic valve closes, the ventricle relaxes and the pressure
drops. As both the ventricular valves are closed, no change of volume is experienced;

4. filling: finally, as the pressure inside the ventricle falls below that in the atrium, the mitral
valve opens and the ventricle begins to fill again, so that the pressure linearly increases to
the EDP, concluding the cardiac cycle.

Figure 5.2: Wiggers diagram, adapted from https://commons.wikimedia.org/w/index.php?curid=
50317988, illustrating the events taking place over the cardiac cycle.
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5.1.3 Active tension
In order to surrogate the input provided to tissue mechanics by the active force generation
model, we consider the active stress

Ta(X, t;µ) = Ta(t;µ)(Ff0 ⊗ f0) (5.3)

acting in the fiber direction, where Ta(t;µ) is a prescribed time-dependent function, as done in
test case 2.3.3 of Section 2.3. We point out that, for the sake of simplicity, we assume a uniform
activation of the cardiomyocytes in the healthy tissue, while no activation of the cardiac cells
will be considered inside the necrosis in pathological scenarios (see 5.3.2). For completeness, we
recall the computational pipeline that is required for the definition of Ta(t;µ):

1. for a fixed set of physiological parameters, solve the 3D electromechanics problem coupled
with a closed-loop circulation model by means of the FEM in space and suitable implicit-
explicit schemes in time. In our case, the different core models are solved sequentially and
with different time steps sizes (being the time step used for the solution to electrophysiology
smaller than that used for the mechanics) [Reg+20b] in the time interval (0, 0.8) s;

2. compute the space-average of the active tension coming from the EM simulation,

τEMa (t) = avg
X∈Ω0

TEMa (X, t), (5.4)

and perform a cubic spline interpolation of τEMa (t) to obtain the corresponding time-
dependent function τMa (t), reported in Figure 5.3;

3. finally, for an input parameter T̃a > 0, define

Ta(t;µ) = T̃a
max

t∈(0,0.8)s
τMa (t) τ

M
a

(
0.8

(
t

T
−
⌊
t

T

⌋))

to take into account a parameter-dependence and to model different (eventually, periodic)
functions for the active tension.

Figure 5.3: Space-averaged active tension computed during a EM simulation and the corresponding
fitted curve.
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To summarize, we define the active stress Ta(t;µ) in (5.3), modeling the contraction of
cardiomyofiber bundles in reference fiber direction, by performing a cubic spline interpolation
of the average tension computed from the solution to a 3D-0D EM problem and introducing a
scaling factor depending on the parameter T̃a.

5.1.4 The 3D-0D coupled full order model
The mechanics and the blood circulation core models described in previous sections, which
mutually exchange pressure and volume, must be suitable coupled in order to provide physically
meaningful simulations of the cardiac cycle, leading to a 3D-0D coupled structure-windkessel
problem. In this section we outline the corresponding full order model obtained by relying on
the FEM in space and on implicit time schemes.
With this aim, let us denote by {t0, . . . , tNt} a uniform partition of the time interval (0, T ),

corresponding to the duration of a single heartbeat, with time step ∆t. To ease the notation of
what follows, we define

(?n,(k)
h ) := (un,(k)

h (µ), pn,(k)
LV (µ), tn;µ),

where we assume pn,(k)
LV (µ) := pnLV (µ), ∀k ≥ 0, during the non-isochoric phases.

During ventricular ejection (phase 2) and filling (phase 4), the structural and the circulation
problems are segregated, meaning that the two models are solved one after the other. In
particular, in the ejection phase, the current pressure pnLV (µ) = pLV (tn;µ) is updated by
solving the two-element windkessel model (5.2) before addressing the mechanics problem. For
simplicity, we assume

V̇LV (unh(µ), tn;µ) ≈ VLV (un−1
h (µ), tn−1;µ)− VLV (un−2

h (µ), tn−2;µ)
∆t ,

where the ventricular volume at time tj , for j ∈ {n− 1, n− 2}, is computed as

VLV (ujh(µ), tj ;µ) = 1
3

∫
Γendo

0

J(X + ujh(µ)− bjh(µ)) · F−TNdΓ0,

being bjh(µ) = 1
|Γbase

0 |
∫

Γbase
0

(X + ujh(µ))dΓ0. For further details on the derivation of this formula
we refer to [RDQ20b]. The resulting problem at time tn, for n = 1, . . . , Nt, is given by the
nonlinear system

R(unh(µ), pnLV (µ), tn;µ) = 0 in RNh .

In order to find the unknown unh(µ) ∈ RNh , we rely on the Newton method, which requires the
solution of a sequence of linear systems of the form

∂uR(?n,(k)
h )δu(k)

h (µ) = −R(?n,(k)
h ), k ≥ 0,

where ∂uR is the directional derivative of the structural residual. At each iteration k, the
solution is updated as un,(k+1)

h (µ) = un,(k)
h (µ) + δu(k)

h (µ).
On the other hand, during the isovolumetric phases 1 and 3, the elastodynamics problem is

solved together with the volume constraint V n
LV = V n−1

LV . This results in a nonlinear saddle-point
system for the unknowns unh(µ) and pnLV (µ) of the form R(unh(µ), pnLV (µ), tn;µ) = 0,

VLV (unh(µ), tn;µ) = VLV (un−1
h (µ), tn−1;µ),
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that can be solved by means of the Schur complement reduction [BGL05]. By applying Newton
method, we end up with the following linear system ∂uR(?n,(k)

h ) ∂pR(?n,(k)
h )

∂uRvol(?n,(k)
h ) 0


 δu(k)

h (µ)

δp
(k)
LV (µ)

 = −

 R(?n,(k)
h )

Rvol(?n,(k)
h )


at each iteration k ≥ 0, where Rvol ∈ R is the residual related to the volume constraint.
To summarize, the discrete nonlinear parameterized FOM for the coupled problem can be

written as: given µ ∈ P, for n = 1, . . . , Nt, find unh(µ) ∈ RNh and pnLV (µ) > 0 such that R(unh(µ), pnLV (µ), tn;µ)

Rvol(unh(µ), pnLV (µ), tn;µ)

 = 0, (5.5)

where Rvol is discarded during phases 2 and 4 of the cardiac cycle.

5.2 Deep-HyROMnet for the 3D-0D structure-circulation problem
In this section we address the reduction to the 3D-OD coupled problem described in Section 5.1.4
by means of the Deep-HyROMnet technique. We point out that, since blood circulation is
modeled through a lumped-parameter model and the volume constraint implies few additional
dofs to the mechanics problem, we apply model order reduction only to the structural component
of (5.5), similarly to the approach adopted in [Pfa+20].

With this aim, let V ∈ RNh×N be the reduced basis built by performing POD on the snapshots
matrix of mechanics displacements, i.e.

Su =
[
u1
h(µ1) | . . . | uNt

h (µ1) | . . . | u1
h(µns) | . . . | uNt

h (µns)
]
,

for randomly sampled parameter values µ1, . . . ,µns . By performing a Galerkin projection
of the FOM (5.5) onto the reduced subspace spanned by the columns of V, we obtain the
low-dimensional nonlinear problem VTR(VunN (µ), pnLV (µ), tn;µ)

Rvol(VunN (µ), pnLV (µ), tn;µ)

 = 0. (5.6)

Let’s define the notation

(?n,(k)
N ) := (Vun,(k)

N (µ), pn,(k)
LV (µ), tn;µ).

The corresponding Newton system at time tn, for n = 1, . . . , Nt, reads:

• for the ejection and filling phases: given an initial guess un,(0)
N (µ), find un,(k)

N (µ) such
that, for k ≥ 0,  VT∂uR(?n,(k)

N )Vδu(k)
N = −VTR(?n,(k)

N ),

un,(k+1)
N (µ) = un,(k)

N (µ) + δu(k)
N (µ),

until ‖VTR(?n,(k+1)
N )‖2/‖VTR(?n,(0)

N )‖2 < εNwt, where εNwt > 0 is a prescribed tolerance;
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• for the isovolumetric phases: given initial guesses un,(0)
N (µ) and pn,(0)

LV (µ), find un,(k)
N (µ)

and pn,(k)
LV (µ) such that, for k ≥ 0,

 VT∂uR(?n,(k)
N )V VT∂pR(?n,(k)

N )

∂uRvol(?n,(k)
N )V 0


 δu(k)

N (µ)

δp
(k)
LV (µ)

 = −

 VTR(?n,(k)
h )

Rvol(?n,(k)
h )

 ,
then set un,(k+1)

N (µ) = un,(k)
N (µ) + δu(k)

N (µ) and pn,(k+1)
LV (µ) = p

n,(k)
LV (µ) + δp

(k)
LV (µ), until

‖VTR(?n,(k+1)
N )‖2/‖VTR(?n,(0)

N )‖2 < εNwt, where εNwt > 0 is a prescribed tolerance.

We recall that VTR ∈ RN , VT∂uRV ∈ RN×N , VT∂pR ∈ RN , Rvol ∈ R and ∂uRvolV ∈ R1×N ,
where N is the RB dimension, depend on the input parameter µ and on the current solutions
Vun,(k)

N (µ) and pn,(k)
LV (µ), so that the corresponding high-fidelity arrays must be assembled at

each Newton iteration before projecting them onto the reduce subspace. For this reason, we
need to rely on hyper-reduction techniques.
Hence, given the triplets ϑ = (µ, tn, k) ∈ P × {t1, . . . , tNt} × N+, we efficiently compute

the N -dimensional ROM operators evaluated on (?n,(k)
N ) by exploiting the DL-ROM-based

architecture described in Chapter 4 to learn the following nonlinear maps:

ρN : (µ, tn, k) 7−→ ρN (µ, tn, k) ≈ VTR(?n,(k)
N ),

ιN : (µ, tn, k) 7−→ ιN (µ, tn, k) ≈ VT∂uR(?n,(k)
N )V,

πN : (µ, tn, k) 7−→ πN (µ, tn, k) ≈ VT∂pR(?n,(k)
N ),

υN : (µ, tn, k) 7−→ [υ∂RN (µ, tn, k),υRN (µ, tn, k)] ≈ [∂uRvol(?n,(k)
N )V,Rvol(?n,(k)

N )].

The online stage of Deep-HyROMnet thus reads as follows: given µ ∈ P, for n = 1, . . . , Nt,
given an initial guess un,(0)

N (µ) = un−1
N (µ), for k ≥ 0, find δu(k)

N (µ) ∈ RN and δp(k)
LV > 0 such

that
ιN (µ, tn, k)δu(k)

N = −ρN (µ, tn, k) (5.7)

for the ejection and filling phase, and by ιN (µ, tn, k) πN (µ, tn, k)

υ∂RN (µ, tn, k) 0


 δu(k)

N

δp
(k)
LV

 = −

 ρN (µ, tn, k)

υRN (µ, tn, k)

 (5.8)

for the isovolumetric phases, until a suitable convergence criterion is fulfilled.
Thanks to the use of DNNs, the linear systems (5.7) and (5.8) are assembled in an extremely

efficient way, i.e. O(10−3) s, while both FOM and POD-Galerkin ROMs require O(10−1) s or
even O(1) s for each Newton iteration. Since this operation is done NtNnwt ≈ 800 times during
each cardiac cycle (where we consider Nt = 320 and an average number of Newton iterations
per time step equal to Nnwt = 2.5), rely on Deep-HyROMnet allows to achieve remarkable
speed-ups with respect to the FOM, about two orders of magnitude of CPU time as shown in
the following section.
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5.3 Numerical results

In this section we present the numerical results obtained using Deep-HyROMnet for the solution
to the 3D-0D structure-windkessel model in both physiological and pathological scenarios. For
the approximation of cardiac mechanics, quadratic (Q2) FE are commonly used [Lan+15],
especially in a nearly-incompressible regime, due to possible instabilities. However, due to the
huge computational costs entailed, we rely on linear (Q1) FE, which proved to be sufficiently
accurate for the purposes at hand and less expensive, however considering suitable refined
meshes. We point out that no instabilities have been observed. Moreover, we recall that the
reduction strategy, acting at the algebraic level, works irrespective of the chosen FE degree.
For all the numerical examples, we consider a uniform time step ∆t = 2.5 · 10−3 s for time
discretization and set the final time equal to T = 0.8 s, corresponding to a single heartbeat.
For the construction of the fiber distribution, we employ the Bayer-Blake-Plank-Trayanova
algorithm proposed in [Bay+12], depending on angles coefficients αepi, αendo, βepi and βendo.

Remark 5.1
In order to correctly start the numerical simulation, we need to find the end-diastolic configura-
tion of the left ventricle and to use the corresponding displacement as initial condition for our
problem. This is done by solving the quasi-static problem (obtained from (5.1) by setting to
zero the time dependent terms, see, e.g., [Reg+20a]) on the stress-free reference configuration,
so that the resulting initial displacement depends on the model parameters. For practical

Find the initial 
displacement

+ u

Figure 5.4: Sketch of the strategy to initialize the simulation, adapted from [Reg+20a]. The black line
represents the pressure-volume loop, while the gray line is the Klotz curve [Klo+06].

reasons, we solve the initial displacement problem once and for all given the reference values
of the model parameters, reported in Table .6, that we collectively denote as µ̃, so that the
initial conditions are uh,0 = uh,0(µ̃) and u̇h,0 = u̇h,0(µ̃) for every instance of the parameter
vector, both during training (offline stage) and testing (online stage). Nonetheless, a reduced
model for the quasi-static problem can be developed in order to take into account different
initial conditions as well.
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Figure 5.5: Patient-specific loaded left ventricle geometry (left) and computational grids (center and
right).

In Figure 5.5 we report the computational geometry obtained when the ventricle is loaded by a
value of pressure corresponding to the end diastolic pressure, in our case pED = 15 mmHg, and
the hexahedral meshes used.

5.3.1 Physiological scenario

We now present the results of the Deep-HyROMnet approximation of the FOM solution on
physiological, yet challenging, scenarios in cardiac mechanics. In this case we choose as unknown
parameters

• the bulk modulus in the passive material law K ∈ [2.5 · 104, 7.5 · 104] Pa,

• the resistance of the windkessel model Rp ∈ [2.5 · 107, 4.5 · 107] Pa · s ·m−3,

• the active tension parameter T̃a ∈ [4.5 · 104, 6 · 104] Pa,

that is we set
µ = [K,Rp, T̃a] ∈ P ⊂ R3.

The parameter space P is chosen in order to test the accuracy of Deep-HyROMnet in a wide
range of scenarios. All other parameters are fixed to their reference values reported in Table .6.

The FOM is built on an hexahedral mesh with 4588 elements and 6167 vertices, featuring a
high-fidelity dimension equal to Nh = 18501. During the offline stage we collect the solution
snapshots for 20 parameter samples, each requiring almost 30 minutes using the FOM, and
apply POD for the construction of the reduced basis V ∈ RNh×N . In Table 5.1 we report three
values of the POD tolerance εPOD and the corresponding RB dimension N .

POD tolerance εPOD 10−3 5 · 10−4 10−4

RB dimension N 39 52 99

Table 5.1: Cardiac cycle, physiological scenarios. POD tolerances and associated RB dimension for the
physiological scenario, when Nh = 18501.
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Since, as explained in Remark 4.1, the input of the encoder function is reshaped into a square
matrix and we do not want to introduce too many additional terms when zero-padding, we
choose N such that

√
N + 1 ∈ N (note that the input to υN has dimension N + 1), in this case

N = 63, and build the RB basis by means of the randomized SVD, see Algorithm 3.
Once the ROM is built, we perform n′s = 50 simulations to collect the reduced data necessary

for training the DNNs, namely

Sρ =
[
VTR(Vun,(k)

N (µ`), tn;µ`), k ≥ 0
]`=1,...,n′s
n=1,...,Nt

,

Sι =
[
VT∂uR(Vun,(k)

N (µ`), tn;µ`)V, k ≥ 0
]`=1,...,n′s
n=1,...,Nt

,

Sπ =
[
VT∂pR(Vun,(k)

N (µ`), tn;µ`), k ≥ 0
]`=1,...,n′s
n=1,...,Nt

,

Sυ =
[
∂uRvol(Vun,(k)

N (µ`), tn;µ`)V | Rvol(Vun,(k)
N (µ`), tn;µ`), k ≥ 0

]`=1,...,n′s
n=1,...,Nt

,

(5.9)

where Sρ ∈ RN×1×Ntrain , Sι ∈ RN×N×Ntrain , Sπ ∈ RN×1×N ′train and Sυ ∈ R1×(N+1)×N ′train .
Here, Ntrain and N ′train denote the total number of snapshots, being Ntrain > N ′train, since the
snapshots for Sπ and Sυ are collected only during the isovolumetric phases.
A finer computational grid obtained by refining the previous mesh is also considered. In

particular, 36704 elements and 42225 vertices are used, so that the average cell diameter
is equal to 0.0016 m (corresponding to the mesh size commonly used to accurately capture
the myocardial displacement with expensive, high-fidelity models [Aug+16; Reg+20b]). The
resulting FOM is characterized by Nh = 126675 degrees of freedom and allows to assess the
performances of Deep-HyROMnet in more realistic situations. In this case we consider ns = 15
samples to build the RB basis V by means of randomized SVD, choosing N = 63 as in the
coarser case. In Table 5.2 we report the RB dimension N obtained for different values of εPOD.
Furthermore, we perform n′s = 50 ROM simulations in order to build the snapshots matrices
(5.9) necessary for training the DNNs.

POD tolerance εPOD 10−3 5 · 10−4 10−4

RB dimension N 37 48 91

Table 5.2: Cardiac cycle, physiological scenarios. POD tolerances and associated RB dimension for the
physiological scenario, when Nh = 126675.

Remark 5.2
In order to reduce the computational time required for the training of the DNNs in the case of
the finer mesh, we rely on a suitable pre-training strategy [GBC16], where the coarser model is
used as initial state of the new network, as proposed in [FM22] in the case of parameterized
PDE problems.

Figures 5.6, 5.7 and 5.8 show the Deep-HyROMnet solution for the coarser and the finer meshes
computed at different phases of the cardiac cycle, for three different values of the parameter
vector. We observe that the pointwise error between the FOM and the Deep-HyROMnet
solutions does not increase in time.
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Figure 5.6: Cardiac cycle, physiological scenarios. FOM (wireframe) and Deep-HyROMnet (colored)
displacements for the coarser (top) and the finer (bottom) mesh for µ = [34500 Pa, 3.00 ·
107 Pa · s ·m−3, 55950 Pa].

Figure 5.7: Cardiac cycle, physiological scenarios. FOM (wireframe) and Deep-HyROMnet (colored)
displacements for the coarser (top) and the finer (bottom) mesh for µ = [58500 Pa, 4.16 ·
107 Pa · s ·m−3, 49050 Pa].
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Figure 5.8: Cardiac cycle, physiological scenarios. FOM (wireframe) and Deep-HyROMnet (colored)
displacements for the coarser (top) and the finer (bottom) mesh for µ = [66500 Pa, 4.20 ·
107 Pa · s ·m−3, 57750 Pa].

Table 5.3 summarizes the average results obtained on a testing set of 10 input parameters
using Deep-HyROMnet for both meshes. Moreover, we report the performances of POD-
Galerkin-DEIM built by employing the POD method on the ROM residual snapshots with
tolerance εDEIM = 10−5, corresponding to a DEIM residual basis of dimension m = 1545. No
further speed-up can be achieved by decreasing the size of the reduced mesh due to convergence
issues of the reduced Newton system for some instances of the considered parameters.

For Nh = 18501, Deep-HyROMnet computes a reduced solution in only 16 s, that is, almost

DEIM-1045 Deep-HyROMnet Deep-HyROMnet

Nh 18501 126675

FOM time 27 min 3 h 50 min

Speed-up ×1.4 ×100 ×150

Avg. CPU time 20 min 16 s 1 min 30 s

meanµ εabs(µ) 3 · 10−3 3 · 10−2 7 · 10−2

meanµ εrel(µ) 7 · 10−3 7 · 10−2 7 · 10−2

Table 5.3: Cardiac cycle, physiological scenarios. Computational data related to DEIM-based and
DNN-based hyper-ROMs, for N = 63.
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100 times faster than the reference high-fidelity simulation which requires 27 minutes, whilst
yielding an absolute error εabs on the displacement field of order O(10−2). On the other hand,
the POD-Galerkin-DEIM ROM, despite being slightly more accurate than Deep-HyROMnet,
still requires high computational resources, employing 20 min to simulate a single heartbeat.
When using a finer mesh, Deep-HyROMnet only takes 90 s to compute the displacement
dynamics for a complete heartbeat, against almost 4 h required by the FOM. We mention that
the smaller speed-ups achieved with respect to the benchmark tests of Chapter 4 are due to
the fact that high-dimensional arrays are used for the computation of the left ventricle volume
during the isochoric phases. Further investigation on this issue is currently ongoing to enhance
the computational performances even more.

The left ventricular pressures and volumes obtained using the FOM and the proposed Deep-
HyROMnet for three parameter values are reported in Figures 5.9 and 5.10 for the coarser and
the finer test cases, respectively, showing perfect agreement of the reduced outputs of interest
with the high-fidelity ones, uniformly on the set of parameter inputs.

Figure 5.9: Cardiac cycle, physiological scenarios. Pressures, volumes and pressure-volume relationships,
for Nh = 18501.
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Figure 5.10: Cardiac cycle, physiological scenarios. Pressures, volumes and pressure-volume relation-
ships, for Nh = 126675.

5.3.2 Pathological scenario

We now address the solution to the 3D-0D coupled problem in the eventuality that a portion of
the cardiac tissue has been affected by myocardial ischemia, that is, a reduction of blood supply
to the myocardium that may lead to the death of cells in the affected area [Gri+08]. In this case
a reduced excitability of the cells and altered ionic currents are observed, as well as inhibited
contractility of the tissue. For a detailed description and the numerical treatment of such
pathological scenario from the electromechanical viewpoint we refer, e.g., to [Ger18; Sal+21].
Model order reduction in the case of ischemic necrosis is applied to the electrophysiology problem
in [PMQ18; Fre+20]. However, ROMs have never been applied to characterized the mechanical
behavior of the cardiac tissue in these scenarios for varying conditions of the ischemic tissue.
This is the first time that such a phenomenon is investigated systematically in a broad variety
of conditions.
In this chapter we exploit the Deep-HyROMnet technique to build a hyper-ROM for the

mechanics of the left ventricle, when a region of the myocardium is affected by necrosis. In
particular, let

B(Xc, r) = {X ∈ Ω0 | ‖Xc −X‖2 < r} ⊂ R3

be an idealized ischemic region with (fixed) center Xc ∈ Ω0 and radius r > 0. To model the fact
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that cardiomyocytes inside the necrosis behave as passive conductors, we assume zero active
tension in the dofs belonging to the affected region. To be more specific, given τMa as in (5.4),
we define the following parameterized time-dependent function for the active stress in the fiber
direction Ta(X, t;µ) = Ta(X, t;µ)(Ff0 ⊗ f0):

Ta(t;µ) = T̃a
max

t∈(0,0.8)s
τMa (t) τ

M
a

(
0.8

(
t

T
−
⌊
t

T

⌋))
χ
Bc(Xc,r)(X),

where we assume a uniform activation of the myocytes outside the scar B(Xc, r).
As unknown parameters for the pathological scenario, we choose

• the resistance of the windkessel model Rp ∈ [2.5 · 107, 4.5 · 107] Pa · s ·m−3,

• the active tension parameter T̃a ∈ [4.5 · 104, 6 · 104] Pa,

• the radius of the ischemic region r ∈ [0.2 · 10−3, 20 · 10−3] m,

that are the most influential parameters associated with the circulation model, the active
component of the structural model (as seen in Chapter 3 for the benchmark of the passive
inflation and the active contraction of an idealized left ventricle) and the necrotic region,
respectively. Here we considered an hexahedral mesh with 6167 vertices, so that the FOM
obtained using Q1-FE has dimension Nh = 18501.
Figure 5.11 shows the pressure-volume loops obtained for six different values of the vector

µ = [Rp, Ta, r] ∈ P, highlighting how parameter variations may have a great impact on clinical
quantities of interest. In particular, we observe that the end systolic volume ranges from
40 ml to 72 ml, so that the ejection fraction (EF ), that is the volumetric portion of blood
ejected from the ventricle with each contraction, reduces from 67% to 40%. On the other hand,
the maximum values of the blood pressure goes from 102 mmHg to almost 124 mmHg, thus
influencing the slope of the end systolic pressure-volume relationship which provides an index

Figure 5.11: Cardiac cycle, pathological scenarios. Pressure-volume loops computed using the FOM
with different parameter instances.
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of myocardial contractility [Sat+98]. All these indicators are useful in clinical practice [Doy+13;
BMS05; Sho15]. However, in order to gain more knowledge about the relationships between
model inputs and clinical outputs of interest, sensitivity analysis studies should be performed.

The reduced basis is built by collecting high-fidelity solution snapshots for ns = 20 parameter
samples and performing randomized SVD using N = 80. In fact, a higher dimension of the
RB basis with respect to the physiological scenario is required, possibly due to the presence of
the ischemic region, as highlighted in Table 5.4. Indeed, the presence of the ischemic region
ultimately makes the parameters-to-solution map more involved, affecting the behavior of the
solution in a more pronounced way and thus requiring a higher dimension of the basis if a
global linear subspace has to be used to approximate the whole solution manifold with sufficient
accuracy.

POD tolerance εPOD 10−3 5 · 10−4 10−4

RB dimension N 72 100 184

Table 5.4: Cardiac cycle, pathological scenarios. POD tolerances and associated RB dimension for the
pathological scenario, when Nh = 18501.

Hence, n′s = 50 ROM simulations are performed to collect the reduced nonlinear data (5.9)
and the DNNs are trained. The results obtained using Deep-HyROMnet are reported in
Table 5.5, where the average is computed over 20 testing parameters. As in the physiological
scenario, Deep-HyROMnet requires less than 17 s to compute a whole heartbeat, so that it
is almost 100 times faster than the FOM, which for the same task to be achieved requires
almost 26 minutes. It is worth mentioning that relying on POD-Galerkin-DEIM ROMs led to
negligible speed-ups (only 1.2 times faster that the FOM), thus making the development of
the Deep-HyROMnet ROM necessary to efficiently address the solution to the problem under
investigation. For what concerns the accuracy of the hyper-ROM, the absolute displacement
error εabs is around 5 · 10−2. Although more accurate results can be obtained with classical
hyper-reduction techniques, a good approximation of the outputs of interest is obtained using
Deep-HyROMnet. In particular, the error between the FOM and Deep-HyROMnet on the EF ,
computed over the testing set, is less than 3%. Figure 5.12 reports few examples of hyper-ROM
displacement and pointwise error with respect to the FOM at time t = 0.25 s, when the ventricle
in fully contracted, while the corresponding pressure-volume loops are shown in Figure 5.13.

DEIM-3000 Deep-HyROMnet

Speed-up ×1.2 ×94

Avg. CPU time 22 min 17 s

meanµ εabs(µ) 6 · 10−3 5 · 10−2

meanµ εrel(µ) 2 · 10−3 1 · 10−1

Table 5.5: Cardiac cycle, pathological scenarios. Computational data related to DEIM-based and
DNN-based hyper-ROMs, for N = 80.
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5.3 Numerical results

Figure 5.12: Cardiac cycle, pathological scenarios. Deep-HyROMnet deformation (top) and error
(bottom) at time t = 0.25 s for different values of the parameter µ (from left to right).

Figure 5.13: Cardiac cycle, pathological scenarios. Pressure, volumes and pressure-volume relationships
for different values of the parameter µ (from left to right).
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5.3.3 Forward uncertainty quantification: preliminary results
To conclude, we address the repeated evaluation of the inputs-to-solution map in both phys-
iological and pathological scenarios by means of the Deep-HyROMnet ROMs developed in
Sections 5.3.1 and 5.3.2, in order to gain some useful knowledge about the impact of the model
parameters on quantities of clinical interest.

With this aim, let us consider as model outputs:

• the ejection fraction, that represents the amount of blood pumped at each heartbeat,
defined as

EF = EDV − ESV
EDV

,

where EDV and ESV denote the end-diastolic and the end-systolic volumes, respectively;

• the maximal rate of change in pressure

dP/dtmax = max
t∈(0,T )

(
dpLV (t;µ)

dt

)
≈ max

n=1,...,Nt

(
pnLV (µ)− pn−1

LV (µ)
∆t

)
,

which is a common indicator of cardiac contractility.

These choice is motivated by the fact that both EF and dP/dtmax are commonly used mechanical
biomarkers. Nonetheless, since Deep-HyROMnet computes the whole displacement at each
time instance, any additional output, such as, e.g., the wall thickening, the end-systolic pressure
or the longitudinal fractional shortening [LF+20; Cam+20], can be considered online without
the need to rebuild the reduced order model. This is a distinguishing feature of the proposed
reduction technique, compared to recent frameworks addressing NN-based approximation of
output quantities of interest, without taking into account the approximation of the field variables
involved in the output evaluations [Reg+21].

For what concerns the varying parameters, we consider:

• the resistance of the windkessel model Rp ∈ [2.5 · 107, 4.5 · 107] Pa · s ·m−3,

• the active tension parameter T̃a ∈ [4.5 · 104, 6 · 104] Pa, and

• the radius of the ischemic region r ∈ [0.2 · 10−3, 20 · 10−3] m,

so that we always assume K = 5 · 104 Pa as online value for the bulk modulus in the healthy
case as well.

The following results are obtained by performing 500 hyper-ROM simulations in physiological
scenarios, i.e. for µ = [Rp, T̃a], and 1000 in pathological ones, i.e. for µ = [Rp, T̃a, r], taking into
account an hexahedral computational mesh of a patient-specific left ventricle (see Figure 5.5)
with 6167 vertices. The inputs are sampled over the parameter space using latin hypercube
sampling. We recall that the underlying FOM dimension is Nh = 18501 and that less than
17 s are required by Deep-HyROMnet to compute the problem solution for each new instance
of the parameter, thus entailing less than 7 hours of CPU time on a PC desktop computer
with 3.70GHz Intel Core i5-9600K CPU and 16GB RAM. Performing these studies using the
FOM would have required 27 days of computations, which become almost 240 days if the
finer computational grid with 42225 vertices has to be considered (reducing to 38 hours when
employing Deep-HyROMnet).
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Figure 5.14: Cardiac cycle, physiological scenarios. Scatter plots of the EF (left) and the dP/dtmax

(right) for 500 different parameters. The colormap represents the values of the output of
interest.

Concerning the outcomes of the healthy scenarios, we observe that both the resistance Rp
of the two-element windkessel model and the active stress T̃a have a great impact on the EF ,
as we can see from the scatter plot reported in Figure 5.14 (left). Both parameters are, in
fact, associated with the systolic phase of the cardiac cycle: larger values of the maximum
active tension lead to a greater contraction of the myocardial tissue, whereas higher values of
Rp correspond to a lower amount of blood that the ventricle is able to pump during ejection
(phase 2 of the heartbeat, see Figure 5.2). As a consequence, they both affect the ESV without
substantially changing the EDV . In particular, given a fixed value of Rp, the EF increases
as T̃a becomes higher; on the other way round, when T̃a is fixed, the EF decreases as the
resistance of the circulation model is increased. As an example, the minimum value EF = 37%
corresponds to µ = [4 · 107 Pa · s ·m−3, 4.605 · 104 Pa], that is, to a case where Rp and T̃a are
closed to their upper and lower bounds, respectively; its maximum value EF = 78% is obtained
instead for µ = [2.6 · 107 Pa · s ·m−3, 5.835 · 104 Pa]. On the other hand, from the analysis of
Figure 5.14 (right) we can conclude that the maximal rate of change in pressure is directly
proportional to the active tension, going from 1763 mmHg · s−1 to 1998 mmHg · s−1 as T̃a is
increased from 4.515 · 104 Pa to its maximum value 5.985 · 104 Pa, whilst we observe that Rp
has almost no influence on dP/dtmax.

Assessing the way input variations affect the considered outputs of interest in the pathological
scenarios becomes more involved due to the presence of an additional parameter and to the fact
that no activation of the cardiac myocytes is assumed inside the necrotic region B(Xc, r), being
Xc ∈ Ω0 a fixed point inside the myocardium. In Figure 5.15 we report the scatter plots of EF
and dP/dtmax, where in the x-,y- and z-axis are reported Rp, T̃a and the radius r, respectively,
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(a) EF (b) dP/dtmax

Figure 5.15: Cardiac cycle, pathological scenarios. Scatter plots of the EF (left) and the dP/dtmax

(right) in the xyz-plane (x = Rp, y = T̃a and z = r) for 1000 different parameters. The
colormap represents the values of the outputs of interest.

while the colors of the data points encode the value of the outputs EF and dP/dtmax. Regarding
the interaction between the maximum active tension T̃a and the windkessel resistance Rp on
their influence on the EF (Figure 5.16, left), we can draw similar conclusions to the healthy
case. To give a few examples, the lower values of 34, 9% and 35.6% for the EF are computed for
the parameters µ = [4.48 · 107 Pa · s ·m−3, 4.905 · 104 Pa, 0.0118 ·m−3] and µ = [4.36 · 107 Pa ·
s ·m−3, 4.755 · 104 Pa, 0.0066 ·m−3], respectively, whereas the higher values EF = 76.8% and
77.6% are associated with the inputs µ = [2.60 · 107 Pa · s ·m−3, 5.835 · 104 Pa, 0.0018 ·m−3]
and µ = [2.56 · 107 Pa · s ·m−3, 5.835 · 104 Pa, 0.011 ·m−3]. On the other hand, the influence of
r on the EF is more difficult to ascertain from the analysis of the scatter plots.

In Figure 5.17 we report pressures and volumes for both the physiological and the pathological
scenarios, obtained after one single heartbeat (so that the limit cycle is not reached). The
colormaps refer to the size of the necrotic region, with r = 0 corresponding to a healthy heart.
As we expect, the presence of the disease impacts the problem solution by reducing the ability
of the ventricle to contract, resulting in higher volumes and lower pressures during ejection,
corresponding to smaller values for the ESV with respect to the physiological scenarios, and
thus smaller EF . Finally, from the 2D-views of the scatter plots reported in Figure 5.18, we can
assume that variations of both Rp and r have almost no effect on the maximal rate of change
of pressure dP/dtmax, and that T̃a is the most influential parameter between those considered.
To conclude, we have observed that the maximum value of the active tension T̃a has great

influence on the EF and dP/dtmax, both in the physiological and in the pathological tests
considered. This is in accordance with the results of sensitivity analysis conducted in [Cam+20]
for the healthy left ventricle in a quasi-static assumption. Furthermore, the resistance Rp of
the circulation model, associated with the ejection phase of ventricular systole, influences the
values EF , as well as the size of the necrosis.
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Figure 5.16: Cardiac cycle, pathological scenarios. 2D-views of the scatter plots of the EF for 1000
different parameters. The colormap represents the values of the output of interest.

Figure 5.17: Cardiac cycle, physiological and pathological scenarios. Pressures (left), volumes (center)
and pressure-volume loops (right) computed using the Deep-HyROMnet with 1500 different
parameter instances. The colormap represents the values of the scar radius.

Figure 5.18: Cardiac cycle, pathological scenarios. 2D-views of the scatter plots of the dP/dtmax for
1000 different parameters. The colormap represents the values of the output of interest.
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Conclusion

In this Thesis we have addressed the solution to nonlinear, time-dependent PDEs depending on
several input parameters by means of suitable projection-based reduced order models (ROMs),
developed to accurately capture the state solution dynamics at a reduced computational cost
with respect to full order models (FOMs) providing expensive high-fidelity approximations. We
focused in particular on the elastodynamics equation correlated with nonlinear constitutive
laws, which can be used to describe the complex mechanical behavior of cardiac contraction
and relaxation. Being able to evaluate the parameter-to-solution map in an inexpensive way,
both in terms of CPU time and memory requirements, is essential to provide real-time solutions
to cardiac mechanics models that can be carried out, e.g., on a laptop computer, thus providing
an effective tool to embed numerical simulations of virtual hearts into the clinical practice.
In particular, the contributions of this Thesis are related with:

• the extension of state-of-art projection-based ROM strategies to tackle nonlinear parame-
terized PDEs in elastodynamics;

• the application of projection-based ROMs to sensitivity analysis and to the solution of
uncertainty quantification problems in elastodynamics;

• the introduction of a new, deep learning-based strategy to perform hyper-reduction almost
inexpensively and to overcome major computational bottlenecks in the construction of
the ROMs;

• the application of the proposed strategies to cardiac mechanics problems, both in physio-
logical and pathological scenarios.

We focused on Galerkin-reduced basis (RB) methods, characterized by a projection of the
differential problem onto a low-dimensional subspace built, e.g., by performing proper orthogonal
decomposition (POD) on a set of FOM solutions, and by the splitting of the reduction procedure
into a costly offline phase and an inexpensive online phase. Numerical experiments showed that,
despite their highly nonlinear nature, elastodynamics problems can be reduced by exploiting
projection-based strategies in an effective way, with POD-Galerkin ROMs achieving very good
accuracy even in presence of a handful of basis functions. However, when dealing with nonlinear
problems, a further level of approximation is required to make the online stage independent of
the high-fidelity dimension.

To efficiently handle the nonlinear operators, we considered the discrete empirical interpolation
method (DEIM), properly combined with POD or randomized singular-value decomposition, as
hyper-reduction technique. Examples of the performances of POD-Galerkin-DEIM ROMs in
numerical tests reproducing different phases of the cardiac cycle, on both idealized and realistic
geometries, have been shown. However, a serious issue is represented by the assembling (albeit
onto a reduced mesh) of the approximated nonlinear operators in this framework, as a large
DEIM basis is needed to ensure the convergence of Newton method for complex applications,
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overall compromising the ROM efficiency. The highly nonlinear nature of the constitutive laws
makes, in fact, the residual terms orders of magnitude more expensive to be approximated than
the parameter-to-solution map. This observation suggested the idea of relying on surrogate
models to perform operator approximation, overcoming the need to assemble the nonlinear
terms onto the computational mesh.

Pursuing this strategy, we have proposed a new projection-based, deep learning-based ROM,
Deep-HyROMnet, which combines the Galerkin-RB approach with deep neural networks (DNNs)
to assemble the reduced Newton system in an efficient way, thus avoiding the computational
burden entailed by classical hyper-reduction strategies. This approach allows to rely on physics-
based (thus, consistent) ROMs retaining the underlying structure of the physical model, as
DNNs are employed only for the approximation of the reduced nonlinear operators, so that
the problem displacement at each time instance is computed by solving the reduced nonlinear
system. Regarding the offline cost of this hybrid reduction strategy, we point out that:

• FOM solutions are required only for the construction of the reduced basis functions;

• since the nonlinear operators are collected during Newton iterations at each time step,
a smaller number of ROM simulations with respect to purely data-driven approaches is
sufficient for training the DNNs;

• being the training data low-dimensional, the overwhelming training times and costs that
would be required by the DNN if FOM array were used can be avoided.

Sensitivity analysis (SA) carried out on structural problems showed that the FOM can be
replaced by more efficient ROMs without affecting the results of the studies. On the other
way round, being able to quantify the impact of parameter variations on outputs associated
with the problem solution can be extremely informative for the construction of the ROMs
themselves, as the number of varying input factors can be narrowed to the most influential
ones. This fact is particularly useful in the construction of Deep-HyROMnet ROMs, since
it allows to reduced the size of the network inputs, which depends on the number of model
parameters, as well as the dimension of the training data, i.e. the reduced nonlinear operators,
ultimately depending on the dimension of the RB space. Another important aspect that has
emerged is that the choice of the quantities of interest affects the outcome of the SA, meaning
that some factors having a great impact on a specific output may be less influential for others.
Considering the (idealized) ventricle systole, the active tension showed to have a greater impact
on the contraction of the ventricle, whereas the fiber orientation controls the typical twisting
motion. In view of this, relying on physics-based ROMs, providing an approximation at each
time step of the displacement vector, allow to consider new quantities of interest without the
need to repeat the whole reduction procedure or the training process.

To conclude, we have shown how Deep-HyROMnets outperform POD-Galerkin-DEIM ROMs
in terms of computational speed-up and allow to address the efficient solution to cardiac mechan-
ics problems coupled with a lumped-parameter model for blood circulation, for which classical
hyper-ROMs require high computational costs. Preliminary results of forward uncertainty
quantification carried out on physiological and pathological test cases using a patient-specific
left ventricle allowed to gain some useful knowledge about the impact of the model parameters
on quantities of clinical interest. In particular, we have observed that the active tension has
great influence on both the considered clinical biomarkers, that are the ejection fraction and
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the maximal rate of change in pressure, while other parameters, such as the resistance of the
circulation model and the size of the necrosis, showed higher influence on the ejection fraction
only.

By providing a reliable and computationally efficient reduction procedure, Deep-HyROMnet
can be successfully used to address the solution to multy-query problems, such as parameter
estimation and uncertainty quantification. Nonetheless, a number of issues still need to be
further investigated. First of all, the assessment of the reduction strategy on even more involved
scenarios, among which we mention:

• finer computational meshes, biventricular geometries, smaller time steps;

• a surrogate model for the computation of space- and time-dependent active tension, thus
taking into account the activation of cardiac myocytes at different time instants;

• more and/or different input parameters according to sensitivity analysis carried on the
simulation of the whole cardiac cycle.

Another aspect that should be addressed is the derivation of a posteriori error estimator
accounting for the errors related to the solution-space reduction and to the hyper-reduced
approximation of the nonlinear terms, at least when relying on POD-Galerkin-DEIM ROMs. In
addition, the investigation of Deep-HyROMnet approximation properties when deeper neural
network architectures are employed or a larger number of online inputs (e.g. including the
reduced Newton increments) are considered can enhance the development of more accurate
hyper-reduced models. Finally, a multi-fidelity approach, combining the FOM, POD-Galerkin-
DEIM ROMs and Deep-HyROMnets, as well as other low-fidelity ROMs, could be beneficial in
order to face larger scale applications.
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Appendix

Cardiac mechanics simulation parameters

The reference parameters for the 3D-0D structure-windkessel model used in this Thesis are
summarized in this appendix.

Name Parameter Value Unit

Cardiac mechanics

Tissue density ρ0 103 kg ·m−3

Robin boundary condition K⊥ 2 · 105 Pa ·m−1

Robin boundary condition K‖ 2 · 104 Pa ·m−1

Robin boundary condition C⊥ 2 · 104 Pa · s ·m−1

Robin boundary condition C‖ 2 · 103 Pa · s ·m−1

Passive myocardial tissue

Hyperelastic parameter bf 8

Hyperelastic parameter bs 6

Hyperelastic parameter bn 3

Hyperelastic parameter bfs 12

Hyperelastic parameter bfn, bsn 3

Material stiffness C 880 Pa

Bulk modulus K 5 · 104 Pa

Active myocardial tissue

Maximum active tension T̃a 5 · 104 Pa

Fiber angle αepi −60 deg

Fiber angle αendo 60 deg

Fiber angle βepi 20 deg

Fiber angle βendo −20 deg
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Circulation

Capacitance Cp 4.5 · 109 m−3 · Pa−1

Resistance Rp 3.5 · 107 Pa · s ·m−3

End-diastolic pressure pED 15 mmHg

Aortic valve opening pressure pAV O 82, 50 mmHg

Mitral valve opening pressure pMVO 5 mmHg

Table .6: Reference values of the input parameters to the 3D-0D problem.
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