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Abstract

Locally resonant metamaterials are artificial composites that, by a proper design, can
control the elastic wave propagation and provide the band gaps. The latter are special
frequency ranges in which waves cannot propagate without attenuation. In particular,
anisotropic locally resonant metamaterials are able to provide also the polarization
control of elastic waves in specific frequency intervals, called polarization bands.
In the present work, we take into consideration a ternary locally resonant metamate-
rial made of a periodic repetition of cells with non-symmetrically coated inclusion
and we obtain the equivalent anisotropic dynamic mass density tensor through the
two-scale asymptotic homogenization technique. The eigenvalues of this tensor allow
us to identify the band gaps and the polarization bands.
With a proper geometric configuration of the metamaterial, mode-converting mecha-
nisms can be achieved within these polarization bands. Transmission analyses confirm
the possibility to generate mode-conversion.
The developed homogenization technique allows to analyze the effect of several ge-
ometric parameters. A further development of this work could be in direction of
metamaterial optimization for specific requests.

III





Contents

Acknowledgements I

Abstract III

List of Figures VII

List of Tables XI

1 Introduction 1
1.1 Anisotropy of locally resonant materials and mode conversion applica-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aims of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Elastic wave propagation in metamaterials 11
2.1 Wave propagation in homogeneous media . . . . . . . . . . . . . . . . 11
2.2 Wave propagation in periodic metamaterials . . . . . . . . . . . . . . 14
2.3 Examples of discrete periodic metamaterials . . . . . . . . . . . . . . 18

2.3.1 1D monoatomic chain . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 2D mass-in-mass chain . . . . . . . . . . . . . . . . . . . . . . 19

3 Dynamic homogenization of locally-resonant metamaterials 31
3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Asymptotic homogenization . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Motion in the matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Motion in the inclusions . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Homogenized equation of motion . . . . . . . . . . . . . . . . . . . . 37
3.6 Effective dispersion properties . . . . . . . . . . . . . . . . . . . . . . 37

4 Evaluation of the homogenized properties 39
4.1 Effective stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Square unit cell with circular inclusions . . . . . . . . . . . . . 40
4.1.2 Rhomboidal unit cell with circular inclusions . . . . . . . . . . 44

4.2 Effective mass density . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Perfectly centered fiber . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Eccentric fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Band-gaps prediction by Bloch-Floquet analysis . . . . . . . . . . . . 50
4.3.1 Perfectly centered fiber . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Eccentric fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

V



CONTENTS

4.4 Effective dispersion properties . . . . . . . . . . . . . . . . . . . . . . 54
4.4.1 Square unit cell with eccentric fiber . . . . . . . . . . . . . . . 54
4.4.2 Rhomboidal unit cells with eccentric fiber . . . . . . . . . . . 57

4.5 Parametric discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Transmission analyses 65
5.1 Eccentric fibers with θ=0° . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 eeeI-transmission analysis . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 eeeII-transmission analysis . . . . . . . . . . . . . . . . . . . . . 69

5.2 Eccentric fibers with θ=90° . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 eeeI-transmission analysis . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 eeeII-transmission analysis . . . . . . . . . . . . . . . . . . . . . 72

5.3 Eccentric fibers with θ=45° . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusions and further developments 79

Bibliography 83

VI



List of Figures

Figure1.1 Unpolarized light, possessing random polarization, passes through
a linear polarizer to create linearly polarized light, then passes through
a quarter-wave plate to create circularly polarized light (from [20]). . 4

Figure1.2 Illustration of ground motions produced by compressional or
P-waves and shear or S-waves (from [21]). . . . . . . . . . . . . . . . 4

Figure1.3 An illustration of a mode-coupled layer surrounded by an
isotropic medium. The incident longitudinal wave can be converted
to the shear wave as it propagates through the mode-coupled layer
(from [23]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure1.4 The principle of the ultrasonic shear-wave tomography system
(from [24]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure1.5 a) Ultrasonic shear-wave tomography instrument b) Analysis
image (from [24]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure2.1 Three-dimensional homogeneous media . . . . . . . . . . . . . 11
Figure2.2 Polar diagrams of normalized phase velocities with respect

to propagation directions (blue) and with superposed polarization
directions (red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure2.3 a) 2D b) 3D Primitive Bravais lattices, from [36] . . . . . . . . 15
Figure2.4 a) Metamaterial with hollowed square unit cells b) Wigner-Seitz

primitive cell c) FBZ and IBZ . . . . . . . . . . . . . . . . . . . . . . 16
Figure2.5 Boundaries of the IBZ (red) for a square reciprocal Wigner-Seitz

cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure2.6 Rhomboidal unit cell: a) Wigner-Seitz primitive rhomboidal

cell b) reciprocal hexagonal cell (FBZ) with the boundaries of the IBZ
depicted in red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure2.7 1D monoatomic chain . . . . . . . . . . . . . . . . . . . . . . . 18
Figure2.8 2D "mass-in-mass"-spring lattice: the blue box indicates the

unitary cell of side L, while the red one identifies a focus zone useful
for the derivation of the dynamic equlibrium equations . . . . . . . . 20

Figure2.9 2D "mass-in-mass"-spring lattice: focus zone (red box) . . . . . 20
Figure2.10 Dispersion curves versus effective mass: isotropic case with

s1=s2=630.22 [N/m] . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure2.11 Dispersion curves versus effective mass: isotropic case with

s2=s1=1721.00 [N/m] . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure2.12 Dispersion curves versus effective masses: anisotropic case with

s1=630.22 [N/m] and s2=1721.00 [N/m] . . . . . . . . . . . . . . . . 26

VII



LIST OF FIGURES

Figure2.13 Opening and closure frequencies along x1 and x2 in function of
β: cases with α=0.1, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure2.14 Opening and closure frequencies along x1 and x2 in function of
β: cases with α=3, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure3.1 a) Geometry of locally resonant metamaterial b) Unit cell with
eccentric fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure3.2 State of stress on ∂Yf of the fiber . . . . . . . . . . . . . . . . 36

Figure4.1 a) Square unit cell with eccentric fiber b) Rhomboidal unit cell
with eccentric fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure4.2 Square unit cell of the periodic media with holes instead of
inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure4.3 Tension test along direction x1 for the square cell: comparison
of the contour of displacement along x1 between real and homogenized
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure4.4 Non-pure shear test for the square cell: comparison of the
contour of displacement along x2 between real and homogenized model
(case 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure4.5 Non-pure shear test for the square cell: comparison of the
contour of displacement along x2 between real and homogenized model
(case 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure4.6 Rhoboidal unit cell of the periodic media with holes instead of
inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure4.7 Tension test along direction x1 for the rhomboidal cell: com-
parison of the contour of displacement along x1 between real and
homogenized model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure4.8 Tension test along direction x2 for the rhomboidal cell: com-
parison of the contour of displacement along x2 between real and
homogenized model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure4.9 Non-pure shear test for the rhomboidal cell: comparison of the
contour of displacement along x2 between real and homogenized model 47

Figure4.10 Circular inclusions: coating with eccentric fiber . . . . . . . . . 48
Figure4.11 Normalized effective mass density for the perfectly centered

fiber (null horizontal eccentricity) . . . . . . . . . . . . . . . . . . . . 48
Figure4.12 Normalized effective mass density for the eccentric fiber (hori-

zontal eccentricity e=1.5 mm) . . . . . . . . . . . . . . . . . . . . . . 49
Figure4.13 a) Dispersion curves of the square unit cell with perfectly cen-

tered fiber b) Dispersion curves of the rhomboidal unit cell with
perfectly centered fiber c) Normalized effective mass density for the
perfectly centered fiber . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure4.14 a) Dispersion curves of the square unit cell with eccentric fiber
b) Dispersion curves of the rhomboidal unit cell with eccentric fiber c)
Normalized effective mass density for the eccentric fiber . . . . . . . . 51

Figure4.15 Dispersion surfaces for the square unit cell with eccentric fiber
on FBZ, 3D view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

VIII



LIST OF FIGURES

Figure4.16 Comparison between dispersion curves along the IBZ a) and
dispersion surfaces on FBZ, lateral view b) for the square unit cell
with eccentric fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure4.17 Dispersion surfaces for the rhomboidal unit cell with eccentric
fiber on FBZ, 3D view . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure4.18 Comparison between dispersion curves along the IBZ a) and
dispersion surfaces on FBZ, lateral view b) for the rhomboidal unit
cell with eccentric fiber . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure4.19 Square unit cell with eccentric fiber: phase velocities (black
line) and polarization directions (red line) within different propagation
directions (blue line) when ρ011<0 and ρ022>0. a) Low mass contrast b)
High mass contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure4.20 Square unit cell with eccentric fiber: phase velocities (black
line) and polarization directions (red line) within different propagation
directions (blue line) when ρ022<0 and ρ011>0. a) Low mass contrast b)
High mass contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure4.21 Rhmoboidal unit cells: geometrical configurations . . . . . . . 57
Figure4.22 Rhomboidal unit cells with eccentric fiber: phase velocities

(black line) and polarization directions (red line) within different
propagation directions (blue line) when ρ011<0 and ρ022>0 (frequency
ω/2π=1200 Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure4.23 Rhomboidal unit cells with eccentric fiber: phase velocities
(black line) and polarization directions (red line) within different
propagation directions (blue line) when ρ022<0 and ρ011>0 (frequency
ω/2π=920 Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure4.24 Fiber radius Rf variation, maintaining fixed the coating radius
Rc and the horizontal eccentricity e of the fiber . . . . . . . . . . . . 61

Figure4.25 Frequency bands in which ρ011 < 0 and ρ022 > 0 (blue), ρ022 < 0
and ρ011 > 0 (red) and ρ011 < 0 and ρ022 < 0 (purple) for different values
of the ratio Rf/Rc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure4.26 Horizontal eccentricity e variation, related to the fiber, main-
taining fixed the coating radius Rc and the fiber radius Rf . . . . . . 62

Figure4.27 Frequency bands in which ρ011 < 0 and ρ022 > 0 (blue), ρ022 < 0
and ρ011 > 0 (red) and ρ011 < 0 and ρ022 < 0 (purple) for different values
of the ratio e/emax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure5.1 Unit cell of the three different kind of metamaterial considered
with a) θ = 0° b) θ = 45° c) θ = 90°. . . . . . . . . . . . . . . . . . . . 65

Figure5.2 Principal values of the effective mass density tensor for L = 21
mm, Rc = 7.5, Rf = 3.5 mm and e = 3.25 mm. . . . . . . . . . . . . . 66

Figure5.3 Array of 40×1 cells with horizontally eccentric fibers (θ = 0°),
employed in the eeeI-transmission analysis. . . . . . . . . . . . . . . . . 67

Figure5.4 Transmission spectrum of |〈u〉| as a function of frequency for
the array of 40×1 cells (θ=0°) with imposed eeeI-displacement. . . . . . 67

IX



LIST OF FIGURES

Figure5.5 a) Contour plot of the horizontal displacement in the first twelve
cells of the array at frequency ω/2π = 505 Hz b) Contour plot of the
horizontal displacement in the first six cells of the array at frequency
ω/2π = 681 Hz c) Contour plot of the horizontal displacement in the
last six cells of the array at frequency ω/2π = 681 Hz. . . . . . . . . . 68

Figure5.6 Contour plot of the horizontal displacement in the last twenty-
four cells of the array at frequency ω/2π = 442 Hz. . . . . . . . . . . 69

Figure5.7 Array of 40×1 cells with horizontally eccentric fibers (θ = 0°),
employed in the eeeII-transmission analysis. . . . . . . . . . . . . . . . 69

Figure5.8 Transmission spectrum of |〈v〉| as a function of the frequency
for the array 40×1 cells (θ=0°) and the imposed eeeII-displacement. . . 70

Figure5.9 a) Contour plot of the vertical displacement in the first ten
cells of the array at frequency ω/2π = 371 Hz b) Contour plot of
the vertical displacement in the first fourteen cells of the array at
frequency ω/2π = 447 Hz. . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure5.10 Array of 40×1 cells with vertically eccentric fibers (θ = 90°),
employed in the eeeI-transmission analysis. . . . . . . . . . . . . . . . . 71

Figure5.11 Transmission spectrum of |〈v〉| as a function of the frequency
for the array 40×1 cells (θ=90°) and the imposed eeeI-displacement. . . 71

Figure5.12 Array of 40×1 cells with vertically eccentric fibers (θ = 90°),
employed in the eeeII-transmission analysis. . . . . . . . . . . . . . . . 72

Figure5.13 Transmission spectrum of |〈u〉| as a function of the frequency
for the array 40×1 cells (θ=90°) and the imposed eeeII-displacement.
The close-up in red represent a more refined trends of |〈u〉| at two
different frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure5.14 Media of 7×21 cells and eccentric fibers with θ = 45°, employed
in the inclined transmission analysis. . . . . . . . . . . . . . . . . . . 74

Figure5.15 Transmission spectrum of |〈u cos(45°) + v sin(45°)〉| in P1 as a
function of the frequency for the inclined transmission analysis. . . . 74

Figure5.16 Contour plot of u cos(45°) + v sin(45°) on the deformed shape
for: a) ω/2π = 540 Hz b) ω/2π = 591 Hz c) ω/2π = 677 Hz. . . . . . 75

Figure5.17 Close-up view of the transmission spectrum of figure 5.15 at
frequencies: a) ω/2π = 540.1 Hz b) ω/2π = 591.5 Hz c) ω/2π = 676.4
Hz. The black line is |〈u cos(45°) + v sin(45°)〉| and the green line is
|〈−u sin(45°) + v cos(45°)〉|. . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure5.18 Transmission spectrum of |〈−u sin(45°) + v cos(45°)〉| in P2 as
a function of the frequency for the inclined transmission analysis. . . 76

Figure5.19 Contour plot of −u sin(45°) + v cos(45°) on the deformed shape
for: a) ω/2π = 306 Hz b) ω/2π = 368 Hz c) ω/2π = 392 Hz. . . . . . 77

Figure5.20 Close-up view of the transmission spectrum of figure 5.18 at
frequencies: a) ω/2π = 306.2 Hz b) ω/2π = 367.4 Hz c) ω/2π = 392.4
Hz. The green line is |〈−u sin(45°) + v cos(45°)〉| and the black line is
|〈u cos(45°) + v sin(45°)〉|. . . . . . . . . . . . . . . . . . . . . . . . . . 78

X



List of Tables

Table2.1 Maximization and minimization discussion for k2L along Γ X
for α=0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table2.2 Maximization and minimization discussion for k1L along XM
for α=0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table2.3 Maximization and minimization discussion for k1L=k2L along
MΓ for α=0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table4.1 Geometrical and material properties . . . . . . . . . . . . . . . 40
Table4.2 Tension test along direction x1 for the square cell: outputs . . . 42
Table4.3 Non-pure shear test for the square cell: outputs (case 1) . . . . 42
Table4.4 Non-pure shear test for the square cell: outputs (case 2) . . . . 44
Table4.5 Tension test along direction x1 for the rhomboidal cell: outputs 45
Table4.6 Tension test along direction x2 for the rhomboidal cell: outputs 46
Table4.7 Non-pure shear test for the rhomboidal cell: outputs . . . . . . 47

XI





Chapter 1

Introduction

This first chapter is devoted, in a first part, to a general introduction about anisotropic
locally-resonant metamaterials within the concept of wave polarization and then to
specific applications presented in literature. In a second part, the aims of the work
will be described and in a third and last part, an outline of the thesis contents will
be given.

1.1 Anisotropy of locally resonant materials and mode
conversion applications

Metamaterials are artificial composites made by a micro-structure that gives them
special properties which are difficult to find in the usual natural materials. These
specific properties can be achieved from particular configurations of the geometry
of the structure, defined using sufficiently small elements which are periodically
arranged. The chemical composition of the components of these artificial composites
are not so relevant for the presence of these special properties. In order to get the
desired properties, a suitable design of the micro-structure have to be developed.

In mechanics, some applications are related to phononic crystals that are meta-
materials made using a periodic structure that allows them to act as a filter to the
propagation of elastic waves at specific frequency ranges. These frequency bands,
in which waves cannot propagate without attenuation, are called band gaps. An
interesting property, used for the prediction of these special frequency ranges, is
the effective dynamic mass density which becomes negative in these frequency inter-
vals. The intervals of frequency, in which waves are attenuated, can have different
applications in vibration isolation and impact absorption ([1],[2],[3] and [4]). The
band gaps, with reference to locally-resonant metamaterials, are generated by a
mechanism in which energy is trapped in parts of the structure that resonate. Some
examples that show how this category of metamaterials work can be found in [5]
and [6]. As mentioned in [5], locally-resonant acoustic metamaterials (LRAMs)
have recently attracted a great interest for their dynamic behaviour, characterized
by band gaps at relatively low frequencies. In artificial LRAMs, the opening and
closure frequencies of the band gaps depend on the frequency of the resonators and,
thus, they can provide a wave attenuation at relatively low frequency, e.g., in the
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Chapter 1. Introduction

range of some kHz, without requiring large dimensions as it occurs for phononic
crystals. LRAMs are usually composed by a stiff matrix with a periodic repetition
of small heavy resonators trapped in a soft coating. When the frequency is near to
the local resonance frequency of the resonating mass, LRAMs absorb and store the
kinetic energy. Moreover, they provide a damping mechanism without any material
dissipation. As mentioned in [6], the local resonance phenomenon is independent
from the lattice dimensions.

An important focus must be done on the concept of effective dynamic mass
density which is a frequency-dependent property useful for studying the dynamic
behaviour of locally-resonant metamaterials. In order to obtain the effective dynamic
mass density tensor, the two scale asymptotic homogenization technique can be
used. As mentioned in [7], the two scale homogenization method was firstly proposed
in [8] for binary elastic composite materials, and then implemented in different
directions. The further development of the method with three-component composite
materials was defined in [9]. Another interesting works extend the approach also
for a periodic arrangement of locally resonant inclusions ([10], [11]). In particular,
the homogenized media can be represented by an equivalent mass density that is
frequency-dependent and which can become negative close to the resonant frequen-
cies of the inclusions, thus defining the band gaps. The asymptotic procedure for
the two scale homogenization was firstly proposed in [12] in order to overcome the
hypothesis of wavelength much higher than the characteristic lattice length. This
new technique was also implemented in [13] to study the wave propagation through
an elastic media made of periodic arrangements of inclusions. As shown in [14],
the macroscopic behaviour of periodically heterogeneous linearly elastic bodies can
be described by asymptotic homogenization which is a diffuse mathematical tool.
This technique is able to define the homogenized properties of a periodic media by
means of the so-called cell problems. In some cases, analytical solutions can be
achieved but this method can be also numerically implemented by the available
finite element software. After setting specific hypotheses on the geometry and on the
materials which compose the unit cell, this tool provides predictions of the band gaps,
through a frequency-dependent effective mass density. The theoretical framework
of this technique is developed in chapter 3. As explained in [7], the study of wave
propagation in locally-resonant metamaterials can be defined in different ways. An
alternative approach takes into account the wave propagation through an infinite
periodic media and implements the Bloch-Floquet analysis to achieve the dispersion
surfaces and to identify the band gaps [15]. In order to apply the Bloch-Floquet
principles, a finite element analysis can be performed considering a unit cell of the
periodic material with the Bloch-Floquet boundary conditions ([16], [17]). As shown
in chapter 4, the band gaps obtained with these two different methods are in good
agreement from a qualitative point of view. However, the are few studies which
discuss the comparison between these two methods, except in [18]. As mentioned
in [7], the principal advantage of the homogenization technique with respect to the
Bloch-Floquet analysis is that it can provide analytical predictions of the band gaps
and, in this way, the method is very suitable in the design of the metamaterial.
In particular, the homogenization approach can be useful also for opening a way
to the optimization of the metamaterial because it provides information about the
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Chapter 1. Introduction

dependence of the band gaps on the geometry and on the mechanical properties of
the components. It is important also to remind that the homogenization approach is
strictly governed by specific hypothesis which can affect the range of application.

As explained in [19], for spherical homogeneous inclusions, the dynamic mass
density is equal in any direction of the motion, while for cylindrical inclusions, it has
components which are not the same for the motion along the axis of the cylinder. In
the latter case, the dynamic mass density is therefore anisotropic. Another case, in
which the dynamic mass density is anisotropic, is related to composites with elliptic
fibers. The anisotropy can be also achieved in the case of a micro-structure made
of elastic beams or plates; in particular, the anisotropic effect, for example, can be
due to an higher stiffness for the motion along the direction of the beam than for
the motion along the transversal direction. In the present work, for the discrete
model (subsection 2.3.2), the anisotropic effect on the dynamic mass is obtained
though the presence of different spring stiffnesses along two different directions in
a "mass-in-mass"-spring lattice, while for the continuum model (chapters 3 and 4),
the anisotropic effect on the dynamic mass density is provided by the presence of an
eccentric cylindrical fiber. Making reference to an in-plane wave propagation, this
anisotropic effect provides an effective dynamic mass density tensor in which the
two principal components have different sign in specific frequency intervals. These
special frequency intervals, predicted by the two scale asymptotic homogenization
technique, are called polarization bands.

In order to understand the physical meaning of polarization, we can refer to [20],
in which polarization of light is described. The latter is the optical phenomenon
occuring when oscillations of an electric field vector within an electromagnetic wave
become restricted to a single plane. This polarization plane is obtained by the
direction of propagation and the direction of the electric field oscillations. In general,
light is unpolarized and possesses a random polarization in which the electric field
vector oscillates in random directions that are perpendicular to the direction of
propagation. From a practical point of view, the light waves are not aligned in
any specific direction but they continuously change it. In order to give a specific
polarization direction to light waves, the light has to pass through a polarizer. There
are different types of polarization such as linear and circular. Linearly polarized light
is such that the electric field vector oscillates in a single plane which is perpendicular
to the direction of propagation. Light can be linearly polarized with a polarizer
that acts as a filter which gives a preferential polarization direction to light waves
and, in the meanwhile, blocks the others. Circularly polarized light occurs when the
electric field vector rotates, around the direction of propagation within a constant
amplitude and frequency. This type of polarization can be generated by passing
linearly polarized light through a quarter-wave plate. These two types of polarization
for light are shown in figure 1.1.
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Chapter 1. Introduction

Figure 1.1. Unpolarized light, possessing random polarization, passes through a linear
polarizer to create linearly polarized light, then passes through a quarter-wave
plate to create circularly polarized light (from [20]).

Another physical interpretation for the concept of polarization is related to seismic
waves. The body waves can be distinguished in two main categories that are the
compressional or P-waves and the shear or S-waves. For P-waves, the propagation
direction and the ground motion direction are parallel, while for S-waves, these
directions are orthogonal, as shown in figure 1.2.

Figure 1.2. Illustration of ground motions produced by compressional or P-waves and shear
or S-waves (from [21]).

The ground motion direction can be also seen as a particle motion direction.
The latter, from a physical point of view, represents the orientation of the particle
oscillations, which is the polarization direction.

With reference to the present work, the discussion about polarization directions
will be developed in chapters 3 and 4, while the role of polarization bands in terms
of transmission analysis will be developed in chapter 5.

As mentioned in [22], in correspondence of the band gaps, the transmission of
elastic waves is impeded. In [22], it is reported the numerical linear elastic transmis-
sion spectrum, for the periodic material taken into consideration and for a specific
propagation path, superimposed to the band gaps. It is possible to notice that the
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transmission curve shows attenuated peaks inside the band gaps. In the present
work, in chapter 5, we perform several numerical transmission analyses for specific
periodic arrays and we discuss the role of the polarization bands predicted by the
two scale asymptotic homogenization technique.

Anisotropic locally-resonant metamaterials can be designed in order to achieve
mode conversion from longitudinal to shear waves, with some interesting applications.
As explained in [23], both longitudinal and shear modes occur in elastic solids. During
elastic wave propagation in anisotropic media, longitudinal and transverse particle
motions can be coupled and transformed. For example, a longitudinal wave can be
transformed in a longitudinal and S wave through an anisotropic mode-coupled layer,
as shown in figure 1.3.

Figure 1.3. An illustration of a mode-coupled layer surrounded by an isotropic medium. The
incident longitudinal wave can be converted to the shear wave as it propagates
through the mode-coupled layer (from [23]).

With reference to figure 1.3, the mode-coupled layer is an elastic metamaterial
with slender, tilted microvoids inserted in an isotropic media. After the propagation
through this mode-coupled layer, there is a partial conversion from longitudinal to
shear mode, due to the presence of the anisotropic media.

As shown in [24], the use of shear waves has a great potential in civil engineering
applications, such as in non-destructive testing methods. The latter are useful for
detecting horizontal cracking or delamination, spalling, map-cracking at the mid-
depth of concrete pavement slabs, concrete cracks, delamination in bridge columns
and shallow concrete cover in bridge piers. Ultrasonic shear-wave tomography
overcomes the limitation of traditional ultrasonic testing which is the high scattering
of the transmitted pulses due to the heterogeneity of concrete. Another advantage
is the reduction of operating time because the traditional transducers have to be
coupled to the surface of concrete pavement using a coupling gel and this procedure
usually takes much more time. The principle of the ultrasonic shear-wave tomography
system is shown in figure 1.4.
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Figure 1.4. The principle of the ultrasonic shear-wave tomography system (from [24]).

The shear waves are generated by exciting a piezoelectric material with a short-
burst, high-amplitude pulse which has high voltage and current. The principle is
based on the ultrasonic pulse-echo method with the use of transmitting and receiving
transducers. In particular, one transducer sends a stress-wave pulse and a second
one receives the reflected pulse. The travel time ∆t from the beginning of the pulse
to the arrival of the echo can be measured, the shear wave velocity Cs is known, the
distance X from the transmitter to the receiver is also known and, thus, the depth d
of the reflecting interface can be computed using the equation shown in figure 1.4.
Moreover, figure 1.5 a) shows the testing instrument on a cracked concrete bridge
column, whereas figure 1.5 b) shows the analysis image in which the delamination
cracks are displayed at the depth of 60–90 mm from the surface.

Figure 1.5. a) Ultrasonic shear-wave tomography instrument b) Analysis image (from [24]).

As mentioned in [25], non-destructive testing by ultrasonic shear waves is use-
ful also for investigation of mechanical behaviour of materials. In that specific
study, it was possible to provide the characterization of acoustic properties for sandy
sediments. In particular, transducers are used in order to transmit and receive
shear waves obtained by reflection mode conversion. The analysis of the amplitude
responses and their spectrum can provide information on vibrations in a very low
range frequency of 1–10 Hz. This application can be useful for the study of physical
properties related to soils but also for detecting the dynamic characteristics of the
machine structures perturbed by static or dynamic forces. For example, one of the ap-
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plications allows the characterization of the acoustic impedance for the sand sediment.

As mentioned in [26], the ultrasonic shear waves can be very efficient to predict
fatigue state in pressurized components, such as pipes in nuclear power generation
plants or in other industrial applications. These steel pipes are usually subjected
to important cyclic loadings and they can be very sensitive to fatigue damage. The
prediction of fatigue state for these pipes is very important because failure can
suddenly occur but also because their monitoring and replacement costs could be
very high. Ultrasonic waves can be employed to detect the presence of fatigue damage.
As shown in [27],[28] and [29], it is possible to correlate the evolution of ultrasonic
velocity and attenuation within the fatigue state of a component. As explained in
[26], augmenting the sensitivity of a through-thickness wave measurement to the
changes in velocity and attenuation is always desirable because larger changes provide
more confidence for the prediction of the fatigue state. Through-thickness shear wave
measurements can be useful in this sense, because they can increase the changes in
velocity since they spend much more time in the fatigue spots. The opportunity
of using shear waves provides an improvement of the measurements, in terms of
sensitivity to fatigue, due to two substantial aspects:

• Shear waves are more sensitive to the presence of a fatigue zone. [30],[31] and
[32] have shown that shear waves are much better at causing dislocations to
vibrate.

• EMATs with high repeatability for shear waves have recently become available,
within an improved sensitivity to fatigue and the possibility to provide an
high-quality scanning area.

The longitudinal-to-shear mode conversion has great potential also in medical
ultrasonic applications. As explained in [33], clinical applications of longitudinal
and shear mode ultrasound propagation within the human skull bone have been
provided for the treatment of tumors, targeted drug delivery, thrombolytic stroke
treatment, blood flow imaging and brain imaging. Experimental investigations
with isotropic phantom materials and ex vivo human skulls verified that a shear
mode propagation scenario is less distorted with respect to the longitudinal one.
The crucial advantage consists on providing an higher resolution for the imaging
applications. This higher resolution provided by the shear mode propagation is
due to the lower velocity of shear waves with respect to longitudinal waves. As
shown in [34], the skull’s shear wave velocity provides also less phase alteration
than its longitudinal counterpart. Also in this work, practical demonstrations of
the phenomena and numerical predictions are developed with plastic phantoms and
using an ex vivo human skull. Since the shear wave experiences a reduced phase shift,
a more simplified non-invasive trans-skull focusing method can be developed and
it can be extended to larger regions in the brain. Another interesting information
are mentioned in [35], in which they discover that the longitudinal-to-shear mode
conversion, which occurs at the interface between elastic bone and tissues, can be
used for the distorsion reduction in imaging applications by increasing the incidence
angle between the ultrasound beam and the skull.
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1.2 Aims of the work
The focus of this thesis is on the study of wave propagation in anisotropic locally-
resonant metamaterials and on the possibility to control wave polarization. Specific
design of this particular category of metamaterials allows to obtain band gaps in the
dispersion plot where all waves are attenuated and other intervals, called polarization
bands, where only propagation of waves with specific polarization is allowed for.
The focus is related to wave polarization within the polarization bands that can
be obtained by the metamaterial’s anisotropy. One of the most important aims of
this work consists on studying the effect of the anisotropic equivalent mass on band
gaps and polarization bands. The study of the eigenvalues of the equivalent mass
can predict band gaps, polarization bands and can identify the effects of several
geometric parameters on these special frequency ranges. Thus, another purpose is
to analyze the effects of geometric parameters related to the metamaterial taken
into consideration and study the influence of them on band gaps and polarization
bands. Anisotropic locally-resonant metamaterials can be designed in order to
obtain the mode conversion from longitudinal to shear waves inside the polarization
bands. Mode conversion can be achieved in the polarization bands predicted by the
two-scale asymptotic homogenization technique. This can be developed through
specific transmission analysis. For obtaining mode conversion, a proper geometric
configuration of the metamaterial will be adopted. Shear waves, obtained by mode
conversion, are very useful in a great number of real engineering applications. The
latters can be industrial, medical but also for detecting mechanical behaviour of
materials in the civil engineering field.

1.3 Outline of the thesis
After this first chapter, the present thesis is divided into other four chapters.

The second chapter is devoted, in a first part, to a general description of elastic
wave propagation in homogeneous media and periodic metamaterials. In a second
part, examples of discrete periodic metamaterials are developed in order to study
wave propagation and obtain the dispersion curves. An important step developed in
this chapter is the description of the effective negative mass that can be useful for
the prediction of band gaps and polarization bands. The latter, with reference to the
2D "mass-in-mass"-spring lattice, are due to the use of different spring stiffnesses
along two different directions that provides an anisotropic effect to the system.

In the third chapter, the theoretical framework of the two-scale asymptotic
homogenization procedure is developed. This technique is defined for a periodic
locally-resonant metamaterial made by a rigid eccentric fiber with a soft coating
embedded in a stiff matrix. In particular, this procedure is numerically implemented
in order to obtain the equivalent frequency-dependent mass tensor useful for the
prediction of band gaps and polarization bands.

The fourth chapter is the core of the work since it contains the evaluation of the
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homogenized properties obtained numerically. The latter are the effective stiffness
for two different geometric configuration of the matrix and the effective mass density
for perfectly centered and eccentric fiber. Furthermore, a band gaps prediction is
developed by Bloch-Floquet analysis to obtain the dispersion curves for the two
different geometric shapes of the matrix. This predictions are defined for the perfectly
centered fiber and also for the eccentric one. Another important section of this
chapter is devoted to the effective dispersion properties. Phase velocities, polarization
and propagation directions are shown in polar diagrams in order to observe how they
change in different polarization bands and within different geometrical configurations
of the matrix. The last section consists on the analysis of the effects of geometric
parameters related to the metamaterial and on studying the influence of them on
band gaps and polarization bands.

The fifth chapter is devoted to transmission analysis for three different types
of fiber eccentricity. In particular, the case in which the fiber is eccentric with an
angle of 45° with respect to the horizontal axis of the plane is considered in detail.
In this case, mode conversion can be detected in the polarization bands which are
numerically predicted by the homogenization procedure.

At the end of the elaborate, a final chapter related to conclusions and further
developments is presented.
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Chapter 2

Elastic wave propagation in
metamaterials

In this chapter, elastic wave propagation will be described for homogeneous media
and also for periodic metamaterials. In the section related to periodic metamaterials,
the focus will be done on the Bloch-Floquet analysis. Moreover, the last section of
this chapter will be devoted to examples of discrete models which can be useful for
understanding the concept of effective negative mass for the prediction of band gaps
and polarization band gaps. The theoretical references are related to [36].

2.1 Wave propagation in homogeneous media
Let us consider a three-dimensional media made of an isotropic homogeneous linear-
elastic material, as the one which is shown in figure 2.1.

Figure 2.1. Three-dimensional homogeneous media

The dynamic equilibrium equation of the media is:

∇ · σσσ − ρ∂
2uuu

∂t2
= 000 (2.1)
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with uuu is the displacement field, ρ is the mass density and σσσ is the Cauchy’s stress
tensor. The latter, for a linear-elastic isotropic material can be expressed as:

σσσ = 2µεεε+ λεvolIII (2.2)

where λ, µ are the Lame’s costants of the material, εεε is the small strain tensor given
by:

εεε =
1

2
(∇uuu+∇uuuT ) (2.3)

while εvol is the volumetric strain, i.e., the trace of εεε.

Replacing (2.2) and (2.3) in (2.1), one obtains the Navier’s equation:

(λ+ µ)∇∇ · uuu+ µ∇2uuu− ρ∂
2uuu

∂t2
= 000 (2.4)

Applying the gradient on both sides of (2.4), one obtains:

(λ+ 2µ)∇2εvol = ρ
∂2εvol
∂t2

(2.5)

which can be recognized as a classical wave equation. In particular, it is possible to
observe that the volumetric strain propagates at a velocity c1:

c1 =

√
λ+ 2µ

ρ
(2.6)

Thus, c1 is the velocity of propagation of pressure (P) waves which provokes only
a volumetric deformation of the media. The P-waves are also called longitudinal
waves.

If no volumetric deformation occurs, i.e, ∇ · uuu = 000, equation (2.4) reads:

µ∇2uuu− ρ∂
2uuu

∂t2
= 000 (2.7)

which is the wave equation that governs the propagation of isochoric waves. The
latters, called shear (S) waves propagate at a velocity c2:

c2 =

√
µ

ρ
(2.8)

It is important to note that the longitudinal waves’ velocity c1 is always greater than
the shear waves’ velocity c2, because the elasticity tensor is positive definite, i.e.,
λ+ 2µ > 0 with µ > 0.

Dispersion properties for an homogeneous isotropic elastic media One
can search for a solution in the form of a monochromatic wave:

uuu(xxx, t) = ppp exp[i(kkk · xxx− ωt)] (2.9)
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where ppp is the polarization vector, kkk=knnn is the wavevector, k the wavenumber, nnn the
propagation direction and ω the angular frequency.

Substituting (2.9) in (2.4), it is possible to obtain the dispersion relation:

(QQQ− ρc2III) · ppp = 000 (2.10)

where c = ω/k is the phase velocity and QQQ(nnn) is the acoustic tensor obtained as:

QQQ(nnn) = nnn · D · nnn (2.11)

where D is the fourth-order elastic stiffness tensor depending on Lame’s costants and
it is defined as:

D = 2µI + λIII ⊗ III (2.12)

QQQ(nnn) is a real second order symmetric tensor due to the symmetries of D (2.12) and
it is also positive definite.

Equation (2.10) can be recognized as a standard eigenvalue problem. Since QQQ(nnn)
is real, symmetric and positive definite, equation (2.10) defines three real eigenvalues
c21, c22 and c23 associated to the corresponding real eigenvectors ppp1, ppp2 and ppp3.

For an homogeneous isotropic media, c1, c2 are defined in (2.6) and (2.8) re-
spectively and c3 = c2. The corresponding eigenvectors represent the associated
polarization directions; in particular, at the phase velocity c2, polarization and
propagation directions are orthogonal, while at the phase velocity c1, these directions
are parallel. When there is orthogonality between these directions, the waves are
defined as shear waves (S-waves), whereas when they are parallel, the waves are
longitudinal (P-waves).

In a 2D problem, only c1 and c2 can be defined and they are represented in
adimensional form with respect to

√
E/ρ in figure 2.2. E is the Young’s modulus

and it can be defined through the Lame’s costants:

E =
µ(3λ+ 2µ)

λ+ µ
(2.13)

Since c1 and c2 are normalized with respect to
√
E/ρ, the Poisson’s coefficient ν is

the sole parameter that influences the solution. ν is defined as:

ν =
λ

2(λ+ µ)
(2.14)

With reference to figure 2.2, since the stiffness tensor is isotropic, the wave
velocities do not depend on nnn and so they are represented by two circumferences. It
can be noticed that the velocity c1, represented by the bigger circumference, increases
augmenting the value of ν. On the other side, the velocity c2, represented by the
smaller circumference, decreases augmenting the value of ν.
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Figure 2.2. Polar diagrams of normalized phase velocities with respect to propagation
directions (blue) and with superposed polarization directions (red)

With reference to figure 2.2, the propagation directions are always radial with
respect to the polar diagrams. Moreover, at the bigger phase velocity c1 (P-waves),
the polarization and propagation directions are parallel, whereas at the smaller phase
velocity c2 (S-waves), polarization and propagation directions are orthogonal.

2.2 Wave propagation in periodic metamaterials
We consider now a three dimensional periodic body, i.e., invariant with respect to a
set of translations defined by the translation vectors:

RRR = n1aaa1 + n2aaa2 + n3aaa3 (2.15)

where n1, n2, n3 are integer numbers and aaa1, aaa2, aaa3 are the three non-complanar
vectors, called primitive vectors. The set of points defined by (2.25) is called Bravais
lattice of the periodic body. With reference to [36], some examples of primitive
Bravais lattices are shown in figure 2.3.

Since the considered body is periodic, it can be constructed by the repetition of
a unit cell by means of the translations defined in equation (2.25). The smallest cell
which can reproduce the entire space without any overlap is called primitive cell.

Among all the primitive cells, only one can preserves all the symmetries of the
lattice. This cell is called Wigner-Seitz cell and it is also defined as the locus of
points which are the closest to one point of the lattice.

Due to the periodicity of the considered body, each associated property f must
have the same periodicity of the Bravais lattice, such that:

f(xxx+RRR) = f(xxx) (2.16)
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Figure 2.3. a) 2D b) 3D Primitive Bravais lattices, from [36]

and this is valid for any integer numbers n1, n2 and n3.

Since the body is periodic, f(xxx) can be written in Fourier series as:

f(xxx) =
∑
KKK

f̃KKK exp(iKKK · xxx) (2.17)

where f̃KKK are the Fourier coefficients of f with respect to the following vectors:

KKK = β1bbb1 + β2bbb2 + β3bbb3 (2.18)

where β1, β2, β3 are real numbers and bbb1, bbb2, bbb3 are the basis of the reciprocal lattice.
The basis vectors are obtained from a condition that reads:

aaai · bbbj = 2πδij (2.19)

where δij is the Kronecker delta. It is possible to prove that the vectors bbb1, bbb2, bbb3 are
not coplanar, which means that the set of points defined in (2.18) construct a Bravais
lattice, called reciprocal lattice. The latter lives in the space of the wavevectors.

The Wigner-Seitz cell of the reciprocal lattice is called First Brillouin Zone (FBZ)
and the smallest portion of the FBZ, which can be achieved exploiting all the sym-
metries of the lattice, is called Irreducible Brillouin Zone (IBZ). For example, in a
2D plane, a metamaterial with Wigner-Seitz primitive square cell of lenght L has a
reciprocal cell which is also a square but with side 2π/L (figure 2.4). With reference
to figure 2.4 c), the FBZ is the square of side 2π/L highlighted in black and the IBZ
is the triangle depicted in red.

The propagation of elastic waves in a three dimensional periodic domain, charac-
terized by the repetition of a unit cell, can start from equations (2.1) and (2.3) but
considering σσσ as:

σσσ = D : εεε (2.20)

The elastic stiffness tensor D(xxx) and the mass density ρ(xxx) of the body are periodic
and satisfy the equation (2.16).
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Figure 2.4. a) Metamaterial with hollowed square unit cells b) Wigner-Seitz primitive cell
c) FBZ and IBZ

We assume the separation of variables for the displacement field:

uuu(xxx, t) = uuu(xxx) exp(−iωt) (2.21)

where uuu(xxx) must satisfy the Helmholtz equation:

∇ · [D : εεε(uuu)] + ρω2uuu = 000 (2.22)

For a periodic media, according to the Bloch’s theorem [36], the eigenmodes of (2.22)
are Bloch waves of the form:

uuu(xxx) = exp(−ikkk · xxx)ũuu(xxx) (2.23)

where kkk is the wavevector and ũuu(xxx) is a vector field which has the same periodicity
of the Bravais lattice, i.e., satisfies the condition:

ũuu(xxx+RRR) = ũuu(xxx) (2.24)

Considering a specific unit cell of the body, for each point x’x’x’ in the region occupied
by the body, a unique point xxx in the unit cell and a triplet n1, n2, n3 exist such that
x′x′x′ = xxx+RRR. Thus, from (2.23) one has:

uuu(x′x′x′) = exp(−ikkk ·RRR)uuu(xxx) (2.25)

This means that the solution of (2.22) can be found only within a single unit cell,
while in the whole domain, it can be reconstructed through (2.25). On the opposite
sides of the unit cell must be prescribed the so-called Bloch-Floquet’s boundary
conditions, through condition (2.25). We finally obtain the so-called Bloch-Floquet’s
problem, in which one has to determine the frequencies ω and the wavevector kkk such
that:

∇ · [D : εεε(uuu)] + ρω2uuu = 000 where sss = D : εεε(uuu) in the unit cell
uuu(xxx+ aaai) = exp(−ikkk · aaai)uuu(xxx) on the boundaries of the unit cell
NNN · sss(xxx+ aaai) = NNN exp(−ikkk · aaai)sss(xxx) on the boundaries of the unit cell

(2.26)
has no trivial solutions. NNN is the unit outer normal and the considered boundaries
are the opposite sides of the unit cell.
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Due to periodicity and to the symmetries of the unit cell, the wavevector kkk can
be defined by considering only the IBZ but, usually, the discretization is done along
the boundaries of the IBZ (ΓXMΓ), as shown in figure 2.5.

Figure 2.5. Boundaries of the IBZ (red) for a square reciprocal Wigner-Seitz cell

The components of the wave vector, in the vertices of the IBZ, are:
Γ : (k1 = 0, k2 = 0)

X : (k1 = 0, k2 = π
L

)

M : (k1 = π
L
, k2 = π

L
)

(2.27)

Another case is defined in figure 2.6 that shows the FBZ related to the rhomboidal
unit cell which is a regular hexagon of side 4π/3d1, while the IBZ is the triangle of
vertices Γ, X and M.

Figure 2.6. Rhomboidal unit cell: a) Wigner-Seitz primitive rhomboidal cell b) reciprocal
hexagonal cell (FBZ) with the boundaries of the IBZ depicted in red

With reference to figure 2.6, the primitive vectors of the direct lattice are:{
aaa1 = d1(−1

2
,
√
3
2

)

aaa2 = d1(
1
2
,
√
3
2

)
(2.28)
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where d1 is the horizontal diagonal of the rhombus cell. Through (2.19), one can
compute the reciprocal basis, which reads:{

bbb1 = 2π
d1

(−1,
√
3
3

)

bbb2 = 2π
d1

(1,
√
3
3

)
(2.29)

With reference to figure 2.6, the wavevector’s components assume different values in
the vertices of the IBZ: 

Γ : (k1 = 0, k2 = 0)

X : (k1 = π
d1
, k2 = π

d1
)

M : (k1 = 4π
3d1
, k2 = 2π

3d1
)

(2.30)

The approach that can be used for solving problem (2.26) consists on fixing a real
wavevector kkk and ,through (2.26), determining the frequencies ω(kkk). Throughout
the present work, we always refer to this technique which is known as the inverse
solution method. The obtained results can be:

• frequency intervals in which the solution exists and they are called pass bands

• frequency intervals in which the solution do not exist and they are called
band-gaps. In this case, no real wavenumber can satisfy the Bloch-Floquet
problem. In these ranges, the wavevector is complex, and in equation (2.23)
real exponential terms appear which damped out the solution. This means
that the elastic waves cannot propagate without attenuation.

2.3 Examples of discrete periodic metamaterials

2.3.1 1D monoatomic chain

Figure 2.7. 1D monoatomic chain

Let us consider first the simple 1D monoatomic chain of figure 2.7 that can be
used to understand the basis for writing the dispersion equations.

The dynamic equilibrium equation can be written along the x-axis as:

M
∂2Ui
∂t2

= S(Ui+1 − Ui) + S(Ui−1 − Ui) (2.31)

18



Chapter 2. Elastic wave propagation in metamaterials

where M is the mass, S is the stiffness of the spring, U is the horizontal displacement
of the mass and i is the index used to identify a specific mass in the lattice.

The solution in the form of Bloch waves in order to take into account the lattice
periodicity is:

U(t, x) = U(x) exp(i(ωt− kx)) (2.32)

where ω is the frequency and k the wave number. Moreover, U(x) is periodic of
period L.
The displacement of the element i reads:

Ui(t) = U(t, x)δ(x− iL) = U(ω) exp(i(ωt− kiL)) (2.33)

where δ is the Dirac delta.

It is possible to substitute the wave solution (2.33) at frequency ω in the dyamic
equilibrium equation:

(−Mω2+2S)U exp(i(ωt−kiL)) = SU [exp(i(ωt−k(i+1)L))+exp(i(ωt−k(i−1)L))]
(2.34)

which can be simplified to:

{(−Mω2 + 2S)− S[exp(−ikL) + exp(ikL)]}U = 0 (2.35)

From equation 2.35, non-trivial solutions are obtained for:

ω2 = ω2(k) =
2S

M
(1− cos (kL)) (2.36)

that gives the frequency of propagating Bloch’s waves as a function of wave number.
This is also called dispersion equation from which the dispersion curves are obtained.

2.3.2 2D mass-in-mass chain

In this subsection, a discrete mass-in-mass model will be developed in order to study
the wave propagation and to derive the dispersion curves. The concept of effective
mass will then be introduced to predict the existence of band gaps and polarization
band gaps. As in [37], the discrete model is developed with reference to the lattice
shown in figure 2.8.

The "mass-in-mass"–spring lattice, shown in figure 2.8, leads to anisotropic ef-
fective mass with two orthogonal principal directions x1 and x2. This anisotropic
effective mass has an effect on the wave propagation in elastic metamaterials. This
important effect is studied in the next sections.

With reference to figure 2.9, the discrete model is a mass-in-mass system in
which the internal mass m is joined with the external mass M through two internal
springs represented by stiffness s1 along the direction x1 and by stiffness s2 along the
direction x2. This element of the lattice is linked within other elements through the
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Figure 2.8. 2D "mass-in-mass"-spring lattice: the blue box indicates the unitary cell of
side L, while the red one identifies a focus zone useful for the derivation of the
dynamic equlibrium equations

external springs represented by axial stiffness S, shear stiffness G along the direction
x1 and x2. The index i is referred to the horizontal direction x1, whereas the index j
is referred to the vertical direction x2. The displacement components of mass M are
U along x1 and V along x2. The displacement components of mass m are u along x1
and v along x2.

Figure 2.9. 2D "mass-in-mass"-spring lattice: focus zone (red box)

With reference to figure 2.9, the first step is to write the dynamic equilibrium
equations of the mass M and m in the element (i, j) along the directions x1 and x2.
The following equations are obtained:
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Mass M along the direction x1

M
∂2Ui,j
∂t2

=S(Ui+1,j + Ui−1,j − 2Ui,j) + s1(ui,j − Ui,j)+

+G(Ui,j−1 + Ui,j+1 − 2Ui,j)
(2.37)

Mass m along the direction x1

m
∂2ui,j
∂t2

= s1(Ui,j − ui,j) (2.38)

Mass M along the direction x2

M
∂2Vi,j
∂t2

=S(Vi,j+1 + Vi,j−1 − 2Vi,j) + s2(vi,j − Vi,j)+

+G(Vi−1,j + Vi+1,j − 2Vi,j)
(2.39)

Mass m along the direction x2

m
∂2vi,j
∂t2

= s2(Vi,j − vi,j) (2.40)

In order to obtain the dispersion curves, a specific wave vector must be defined:

kkk =

[
k1
k2

]
(2.41)

Due to the periodicity of the lattice, the reciprocal lattice to which the wave vectors
belong is also periodic, with periodicity 2π/L. The wavevector variation can hence
be limited to the unit cell of the reciprocal lattice (FBZ). Exploiting the symmetries,
one can restict the analysis to the boundary of the IBZ, as shown in figure 2.5 by
the red line. The vertices of the IBZ are defined as in (2.27) and the components
of the wavevector vary along each side. In the following for the discretization, 30
points will be considered along each side of the IBZ.

Bloch waves are used for accounting the lattice periodicity in order to define the
waves propagation:

Ui,j = U exp(i(ωt− k1iL)) (2.42)

ui,j = u exp(i(ωt− k1iL)) (2.43)

Vi,j = V exp(i(ωt− k2jL)) (2.44)

vi,j = v exp(i(ωt− k2jL)) (2.45)

Bloch-Floquet’s conditions have to be applied to the displacement components of
mass M in order to take into account the presence of other cells in the lattice:

Ui+1,j = Ui,j exp(−ik1L) = U exp(i(ωt− k1iL)) exp(−ik1L) (2.46)
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Ui−1,j = Ui,j exp(ik1L) = U exp(i(ωt− k1iL)) exp(ik1L) (2.47)

Ui,j+1 = Ui,j exp(−ik2L) = U exp(i(ωt− k1iL)) exp(−ik2L) (2.48)

Ui,j−1 = Ui,j exp(ik2L) = U exp(i(ωt− k1iL)) exp(ik2L) (2.49)

Vi+1,j = Vi,j exp(−ik1L) = V exp(i(ωt− k2jL)) exp(−ik1L) (2.50)

Vi−1,j = Vi,j exp(ik1L) = V exp(i(ωt− k2jL)) exp(ik1L) (2.51)

Vi,j+1 = Vi,j exp(−ik2L) = V exp(i(ωt− k2jL)) exp(−ik2L) (2.52)

Vi,j−1 = Vi,j exp(ik2L) = V exp(i(ωt− k2jL)) exp(ik2L) (2.53)

Taking the second partial derivative of equation (2.42) with respect to time and
substituting the equations (2.42), (2.43), (2.46), (2.47), (2.48) and (2.49) in equation
(2.37), we have:

−Mω2U exp(i(ωt− k1iL)) =SU exp(i(ωt− k1iL))[exp(−ik1L) + exp(ik1L)− 2]+

+ s1 exp(i(ωt− k1iL))[u− U ]+

+GU exp(i(ωt− k1iL))[exp(−ik2L) + exp(ik2L)− 2]

(2.54)

Simplifying and making all the algebraic computations, we obtain:

U [−Mω2 + 2S(1− cos(k1L)) + s1 + 2G(1− cos(k2L))] + u[−s1] = 0 (2.55)

Taking the second partial derivative of equation (2.43) with respect to time, substi-
tuting the equations (2.42) and (2.43) into equation (2.38) and, collecting all the
terms, we have:

−mω2u exp(i(ωt− k1iL)) = s1 exp(i(ωt− k1iL))[U − u] (2.56)

Simplifying equation (2.56), we have:

u[−mω2 + s1] + U [−s1] = 0 (2.57)

Equations (2.55) and (2.57) can be collected in a 2x2 algebraic system:[
−Mω2 + 2S(1− cos(k1L)) + s1 + 2G(1− cos(k2L)) −s1

−s1 −mω2 + s1

] [
U
u

]
=

[
0
0

]
(2.58)
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Dispersion equation along the direction x1 Computing the determinant of
the coefficients’ matrix in the algebraic system (2.58) and putting it equal to zero, it
is possible to obtain the dispersion equation along the direction x1 in the form:

Mmω4−s1(M+m)ω2+2S[s1−mω2](1−cos(k1L))+2G[s1−mω2](1−cos(k2L)) = 0
(2.59)

Taking the second partial derivative of equation (2.44) with respect to time and
substituting the equations (2.44), (2.45), (2.50), (2.51), (2.52) and (2.53) in equation
(2.39), we have:

V [−Mω2 + 2S(1− cos(k2L)) + s2 + 2G(1− cos(k1L))] + v[−s2] = 0 (2.60)

Taking the second partial derivative of equation (2.45) with respect to time and
substituting the equations (2.44) and (2.45) into equation (2.40), we have:

v[−mω2 + s2] + V [−s2] = 0 (2.61)

Equations (2.60) and (2.61) can be collected in a 2x2 algebraic system:[
−Mω2 + 2S(1− cos(k2L)) + s2 + 2G(1− cos(k1L)) −s2

−s2 −mω2 + s2

] [
V
v

]
=

[
0
0

]
(2.62)

Dispersion equation along the direction x2 Computing the determinant of
the coefficients’ matrix in the algebraic system (2.62) and putting it equal to zero, it
is possible to obtain the dispersion equation along the direction x2 in the form:

Mmω4−s2(M+m)ω2+2S[s2−mω2](1−cos(k2L))+2G[s2−mω2](1−cos(k1L)) = 0
(2.63)

Equations (2.59) and (2.63) have to be solved in order to find the frequencies
ω of propagating Bloch’s waves as a function of the wavevector kkk. Within the
variation of the wavevector along the three sides of the IBZ, the frequencies ω can
be obtained solving the biquadratic equations (2.59) and (2.63) with MATLAB. The
obtained ω(kkk) are the so-called dispersion curves; in particular, for each direction,
two dispersion curves will be achieved. When the internal stiffnesses s1 and s2 are
equal, i.e., isotropic case, the dispersion diagram can be composed by pass and
band gaps, while for different internal stiffnesses s1 and s2, i.e., anisotropic case, the
dispersion diagram can be composed by pass and polarization band gaps along the
direction x1 and x2.

Effective mass matrix Wave propagation in the "mass-in-mass"-spring lattice of
figure 2.8 is thus governed by the two systems (2.58) and (2.62). Starting from this
formulation, one can obtain an interesting interpretation in terms of effective masses.
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In order to find the effective mass matrix, it is possible to solve the algebraic system
(2.58) for u and the system (2.62) for v:

u =
s1

s1 −mω2
U (2.64)

and
v =

s2
s2 −mω2

V (2.65)

Substituting (2.64) in the first row of the system (2.58) and (2.65) in the first row of
the system (2.62), it is possible to derive these equations:

ω2[M +
ms1

s1 −mω2
] = 2S(1− cos(k1L)) + 2G(1− cos(k2L)) (2.66)

and
ω2[M +

ms2
s2 −mω2

] = 2S(1− cos(k2L)) + 2G(1− cos(k1L)) (2.67)

Equation (2.66) can be interpreted as the dynamic equilibrium equation in the
direction x1 of an equivalent resonator having an effective mass meff,11:

meff,11 = M +
ms1

s1 −mω2
(2.68)

Analogously, equation (2.67) can be interpreted as the dynamic equilibrium equation
in the direction x2 of an equivalent resonator having an effective mass meff,22:

meff,22 = M +
ms2

s2 −mω2
(2.69)

The effective mass matrix can be defined as:

Meff =

[
meff,11 0

0 meff,22

]
(2.70)

The effective masses meff,11 and meff,22 are frequency-dependent and can be negative
in some frequency intervals. These frequency ranges are coincident with the band
gaps or polarization band gaps found in the dispersion diagrams.

Comparison between the dispersion curves and the effective mass The
results obtained exploiting the dispersion analysis and those coming from the effective
mass approach can be compared in order to identify the position and size of the band
gaps for the isotropic case and of the polarization band gaps for the anisotropic case.

Dispersion curves versus effective mass: isotropic cases The input data for
the example shown in figure 2.10 are: M=0.074 kg/m; m=0.0094 kg/m; s1=s2=630.22
N/m; S=108 N/m; G=1.80 · 106 N/m; L=0.04 m. The resonance frequency is
ω/2π=41.21 Hz.
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Figure 2.10. Dispersion curves versus effective mass: isotropic case with s1=s2=630.22
[N/m]

In this case, only one shaded region can be identified and this is a band gap,
highlighted in purple. In this zone, waves cannot propagate without attenuation.
The effective mass is equal in the two directions, as s1=s2 in equations (2.68), (2.69)
and becomes negative in the same interval identifying the band gap.

Another example is shown in figure 2.11 corresponding to the following data:
M=0.074 kg/m; m=0.0094 kg/m; s2=s1=1721.00 N/m; S=108 N/m; G=1.80 · 106

N/m; L=0.04 m. The resonance frequency is ω/2π=68.10 Hz.

Figure 2.11. Dispersion curves versus effective mass: isotropic case with s2=s1=1721.00
[N/m]
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Also in this case, only one shaded region can be identified and this is a band gap,
highlighted in purple. In this zone, waves cannot propagate without attenuation and
the effective mass is negative.

Dispersion curves versus effective masses: anisotropic case The input data
for the example shown in figure 2.12 are: M=0.074 kg/m; m=0.0094 kg/m; s1=630.22
N/m; s2=1721.00 N/m; S=108 N/m; G=1.80 · 106 N/m; L=0.04 m. The resonance
frequencies are ω/2π=41.21 Hz for the direction x1 and ω/2π=68.10 Hz for the
direction x2.

Figure 2.12. Dispersion curves versus effective masses: anisotropic case with s1=630.22
[N/m] and s2=1721.00 [N/m]

The effective mass is different in the two directions, as s1 6=s2 in equations (2.68),
(2.69) and becomes negative in different intervals identifying the polarization band
gaps. Two different shaded regions can be distinguished:

• blue zone, in which the horizontal component of the effective mass (meff,11) is
negative and this is a polarization band gap

• red zone, in which the vertical component of the effective mass (meff,22) is
negative and also this is a polarization band gap.

Parametric discussion The influence of different parameters on the behaviour of
the discrete model can be discussed by introducing two non-dimensional parameters:

α =
m

M
(2.71)

β =
s2
s1

(2.72)
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Dispersion equation along the direction x1 The equation (2.59) can be rewrit-
ten in function of α and β in an implicit form:

αMω4

βs1
− (α + 1)ω2

β
+[

2S

βM
−2Sαω2

βs1
](1−cos(k1L))+[

2G

βM
−2Gαω2

βs1
](1−cos(k2L)) = 0

(2.73)

Dispersion equation along the direction x2 Also the equation (2.63) can be
rewritten in function of α and β in an implicit form:

αMω4

βs1
− (α+1)ω2 +[

2S

M
− 2Sαω2

βs1
](1−cos(k2L))+[

2G

M
− 2Gαω2

βs1
](1−cos(k1L)) = 0

(2.74)

The goal is to obtain a relation in which the frequencies ω depend only on α
and β. Since the frequencies ω depend also on the wavevector, it is useful to study
a specific set of values for k1L and k2L. Moreover, some quantities are fixed for
simplicity: M=0.074 kg/m; s1=630.22 N/m.

Direction x1 The first step is to find the 2 positive solutions ω1,2 of the biquadratic
equation 2.73 with MATLAB. The 2 positive solutions depend on α, k1L and k2L
but not on β. Since the dispersion curves are plotted only along the IBZ (figure 2.5),
it is possible to restict the 2 positive solutions in this way:

ΓX : ω1,2 = ω1,2(k1L = 0, k2L), k2L = λπ λ ∈ [0, 1]

XM : ω1,2 = ω1,2(k1L, k2L = π), k1L = λπ λ ∈ [0, 1]

MΓ : ω1,2 = ω1,2(k1L, k2L = k1L), k1L = λπ λ ∈ [0, 1]

(2.75)

Along Γ X, the stationary points are obtained from:

dω1

d(k2L)
= 0 and

dω2

d(k2L)
= 0 (2.76)

After finding the values k1L and k2L, it is possible to put these results in the 2
positive solutions ω1,2 for all the 3 sides of the Irreducible Brilluoin Zone. Fixing for
example α=0.1 [-] and this can be done for all the values, the next tables 2.1, 2.2
and 2.3 resume the results.

Table 2.1. Maximization and minimization discussion for k2L along Γ X for α=0.1

k2L=0 k2L = π

ω1/2π[Hz] 0 46.444
ω2/2π[Hz] 48.713 1569.963
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Table 2.2. Maximization and minimization discussion for k1L along XM for α=0.1

k1L=0 k1L = π

ω1/2π[Hz] 46.444 46.446
ω2/2π[Hz] 1569.963 37036.063

Table 2.3. Maximization and minimization discussion for k1L=k2L along MΓ for α=0.1

k1L=k2L=0 k1L=k2L=π

ω1/2π[Hz] 0 46.446
ω2/2π[Hz] 48.713 37036.063

From these results, it can be noticed that when the wavevector components
are approaching 0, the frequencies ω1,2 are minimized; whereas, when they are
approaching to π, the frequencies ω1,2 are maximized. In order to take the absolute
maxima for the opening frequency ω1, the values of the wave vector’s components
are:

k1L = k2L = π (2.77)

In order to take the absolute minima for the closure frequency ω2, the values of the
wave vector’s components are:

k1L = k2L = 0 (2.78)

The solutions ω1,2 along the direction x1 can be plotted in function of α.

Direction x2 The same procedure can be applied to the the direction x2, starting
from the biquadratic equation 2.74. The results of of the wavevector components are
the same expressed in the previous paragraph. In this case, the solutions ω1,2 along
the direction x2 can be plotted in function of α and β.

The solutions ω1,2 along the direction x1 and along the direction x2 are plotted in
the next figures (2.13 and 2.14), fixing 4 cases of α=[0.1, 1, 3, 10]. The blue lines rep-
resent the opening and closure frequencies along direction x1 independent from β, the
red ones represent the opening and closure frequencies along direction x2 dependent
from β and the shaded area in purple represent the band gap zone. Moreover, the area
between the blue and red lines, respectively, represent the polarization band gap zone.

With reference to figures 2.13 and 2.14, the band gap zone tend to expand with
the increment of α and hence with the increment of the internal mass m, for fixed
mass M . Since s1 is fixed, the influence of β is relevant only for the opening and
closure frequencies along direction x2 that vary within s2.
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Figure 2.13. Opening and closure frequencies along x1 and x2 in function of β: cases with
α=0.1, 1

Figure 2.14. Opening and closure frequencies along x1 and x2 in function of β: cases with
α=3, 10
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Chapter 3

Dynamic homogenization of
locally-resonant metamaterials

In this chapter, the asymptotic dynamic homogenization technique will be dis-
cussed for locally-resonant metamaterials. The formulation, for the in-plane wave
propagation, is given in [7].

3.1 Problem formulation
A ternary locally resonant metamaterial is considered in which the unit cell is
composed by a stiff matrix (m) containing a compliant coating (c) and an eccentric
rigid cylindrical fiber (f), as shown in the figure 3.1. The material is endowed with a
two-dimensional periodicity.

Figure 3.1. a) Geometry of locally resonant metamaterial b) Unit cell with eccentric fiber

The matrix and the coating are considered with a linear elastic isotropic behaviour,
while the fiber is considered as rigid. The in-plane periodicity of the cylindrical body
allows us to study the propagation of an in-plane wave in plane strain conditions.
We call Ωε the section that can be obtained by the periodic repetition of the unit
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cell Y ε (figure 3.1). Then, xxx = x1eee1 + x2eee2 is the macroscopic position vector with
eee1 the unit vector along axis x1 and eee2 the unit vector along axis x2. Moreover, we
assume the scale separation hypothesis for which the ratio ε = L/A� 1, where A
and L are the characteristic sizes of Ωε and Y ε, respectively.

With reference to small strains and displacements hypothesis, the in-plane wave
propagation in Ωε is governed by the Helmholtz equation:

∇ · [Dε : εεε(uuuε)] + ρεω2uuuε = 000 (3.1)

where ω is the angular frequency, uuu(xxx) = u1(xxx)eee1 + u2(xxx)eee2 is the displacement field,
εεε(uuuε) is the small strain tensor, i.e., the symmetric part of the displacement gradient,
whereas Dε(xxx) and ρε(xxx) are the fourth order elastic stiffness tensor and mass density
of the involved materials. For isotropic materials, the elastic stiffness tensor can be
defined as:

Dε = 2µεI + λεIII ⊗ III (3.2)

where λε(xxx) and µε(xxx) are the Lame’s constants.

We define the stress field σσσε in Ωε as:

σσσε = Dε : εεεε (3.3)

with
εεεε =

1

2
(∇uuuε +∇Tuuuε) (3.4)

We further assume that there is high contrast between the stiffness of the matrix
and that of the coating, while we consider the simplifying assumption of rigid fiber.
The mass densities of the three materials are supposed to be of the same order of
magnitude. These hypothesis are introduced as follow:

λε =

{
λm in Y ε

m

ε2λc in Y ε
c ,

µε =

{
µm in Y ε

m

ε2µc in Y ε
c

and ρε =


ρm in Y ε

m

ρc in Y ε
c

ρf in Y ε
f

(3.5)

3.2 Asymptotic homogenization
With reference to the two-scale asymptotic homogenization technique, it is possible
to define the homogenized domain Ω and the fast variable yyy = xxx/ε = y1eee1 + y2eee2.
The latter is defined in the re-scaled unit cell Y = Y ε/ε of the periodic media. The
classical two-scale asymptotic method consists on expanding the field uuuε in Ωε as:

uuuε(xxx) = uuu0
(
xxx,
xxx

ε

)
+εuuu1

(
xxx,
xxx

ε

)
+ε2uuu2

(
xxx,
xxx

ε

)
+o(ε2) (3.6)

where the vector fields uuui(xxx,yyy) are defined on Ω× Y and are Y -periodic with respect
to yyy.
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In the same manner, the stress field σσσε is expanded in Ωε as:

σσσε(xxx) = ε−1σσσ−1
(
xxx,
xxx

ε

)
+σσσ0

(
xxx,
xxx

ε

)
+εσσσ1

(
xxx,
xxx

ε

)
+ε2σσσ2

(
xxx,
xxx

ε

)
+o(ε2) (3.7)

where the vector fields σσσi(xxx,yyy) are defined on Ω× Y and are Y -periodic with respect
to yyy.

For a vector uuu(xxx,yyy), one denotes by εxεxεx(uuu) the symmetric part of the gradient
of uuu with respect to xxx and by εyεyεy(uuu) the symmetric part of the gradient of uuu with
respect to yyy. In the same manner, for a tensor σσσ(xxx,yyy), one denotes by ∇xxx · σσσ
and ∇yyy · σσσ the divergence of σσσ with respect to xxx and yyy, respectively. Moreover,
the gradients and the divergences are computed with the chain rule. For the gra-
dients, εεε(uuu) = εxεxεx(uuu)+ε−1εyεyεy(uuu), whereas for the divergences, ∇·σσσ = ∇xxx ·σσσ+ε−1∇yyy ·σσσ.

From the expansion (3.6), one gets:

εεε(uuuε) = ε−1εyεyεy(uuu
0) + [εyεyεy(uuu

1) + εxεxεx(uuu
0)] + ε[εyεyεy(uuu

2) + εxεxεx(uuu
1)] + o(ε) (3.8)

and from the expansion (3.7), one gets:

∇·σσσε = ε−2∇yyy ·σσσ−1+ε−1∇yyy ·σσσ0+(∇yyy ·σσσ1+∇xxx ·σσσ0)+ε(∇yyy ·σσσ2+∇xxx ·σσσ1)+o(ε) (3.9)

The above expansions (3.6)-(3.9) are substituted into the governing equation
(3.1). The terms of the same order in ε will be considered separately. At order -1, in
Ω× Y , we have:

∇yyy · σσσ0 = 000 (3.10)

while at order 0, in Ω× Y , we have:

∇yyy · σσσ1 +∇xxx · σσσ0 + ρω2uuu0 = 000 (3.11)

and at order 1, in Ω× Y , we have:

∇yyy · σσσ2 +∇xxx · σσσ1 + ρω2uuu1 = 000 (3.12)

Inserting (3.7) and (3.8) into (3.3)-(3.4) gives at order -1 in Ym:

εyεyεy(uuu
0) = 000 (3.13)

which implies that uuu0 depends only on xxx in Ω× Ym:

uuu0(xxx,yyy) = UUU0(xxx) (3.14)
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3.3 Motion in the matrix
Restricting the focus on the matrix only and with reference to (3.14), it is possible
to derive the effective stiffness tensor through the homogenization procedure.

Firstly, the expansion of (3.3)-(3.4) gives, in Ω× Ym, at order 0:

σσσ0 = Dm : [εxεxεx(UUU
0) + εyεyεy(uuu

1)] (3.15)

By considering (3.14) and using the periodic conditions that uuu1 and σσσ0 ·NNN must
satisfy on the boundary of Y (NNN denotes the unit outer normal), by linearity, one
derives that uuu1 can be expressed in Ω× Ym as:

uuu1(xxx,yyy) =
2∑

i,j=1

εxxx,ij(UUU
0)χχχij(yyy) +UUU1(xxx) (3.16)

where εxxx,ij is the component ij-th of εxεxεx(UUU0) which can be interpreted as a constant
eigenstrain within the cell and χχχij , for i, j = 1, 2, are the displacement fields solutions
of the so-called matrix cell problems. These linear elastic problems, that have to be
solved only in the matrix, are written as:

∇yyy · [Dm : (εyεyεy(χχχ
ij) + eeei � eeej)] = 000 in Ym

[Dm : (εyεyεy(χχχ
ij) + eeei � eeej)] ·NNN = 000 on ∂Ym \ ∂Y

χχχij periodic on ∂Y
[Dm : (εyεyεy(χχχ

ij) + eeei � eeej)] ·NNN anti-periodic on ∂Y
(3.17)

where εyεyεy(χχχij) is the small strain tensor, i.e., the symmetric part of the displacement
gradient, eeei�eeej = 1/2(eeei⊗eeej +eeej⊗eeei) is the symmetric part of the tensorial product
between eeei and eeej, which represents a uniform imposed eigenstrain and Dm is the
elastic stiffness tensor of the matrix. Moreover, on ∂Ym \ ∂Y , it is imposed the null
traction condition and on ∂Y , periodicity conditions are defined for the traction and
for the displacement fields χχχij. Each matrix cell problem is defined up to a constant
that can be fixed as: ∫

Ym

χχχij(yyy)dyyy = 000 (3.18)

With reference to (3.14) and (3.15), the stress field σσσ0 can be defined, in Ω× Ym,
as:

σσσ0(xxx,yyy) =
2∑

i,j=1

Dm : [εyεyεy(χχχ
ij(yyy)) + eeei � eeej)]εxxx,ij(UUU0) (3.19)

Considering the average value of σσσ0 on Y and using (3.17), one obtains:

〈σσσ0〉(xxx) :=
1

|Y |

∫
Y

σσσ0(xxx,yyy)dyyy = D0 : εεε0(UUU0) (3.20)
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where D0 is the fourth order homogenized stiffness tensor whose components are
given by:

D0
ijhk =

1

|Y |

∫
Ym

[εyεyεy(χχχ
ij) + eeei � eeej] : Dm : [εyεyεy(χχχ

hk) + eeeh � eeek]dyyy (3.21)

for i, j, h, k ∈ {1, 2}. In equation (3.21), the functions χχχij(yyy) represent the periodic
displacement field of the re-scaled unit cell Y when it is subjected to a uniform
eigenstrain eeei � eeej. The equation (3.21) can be interpreted as the homogenized
stiffness of the holed periodic media.

3.4 Motion in the inclusions
With reference to the coating and the fiber only, we assume that the reference system
y1 − y2 is centroidal for the fiber, so that:∫

Yc∪Yf
yyydyyy = 000 (3.22)

The fiber undergoes an in-plane rigid body motion within Y and one has that in
Ω× Yf :

uuu0(xxx,yyy) =
2∑
i=1

U0
i (xxx)(τττ i + ψiyyy ∧ eee3) (3.23)

where τττ i and ψi for i ∈ {1, 2} describe, respectively, the displacement of the centroid
and the in-plane rotation of the fiber.

For exploiting the problem related to the coating, first of all, the expansion of
(3.3)-(3.4) gives, in Ω× Yc, at order 0:

σσσ0 = 000 (3.24)

Substituting equation (3.24) into (3.11), we obtain in Ω× Yc:

∇yyy · σσσ1 + ρcω
2uuu0 = 000 (3.25)

where
σσσ1 = Dc : εyεyεy(uuu

0) (3.26)

due to the expansion of the constitutive relation (3.3) at order 1. Substituting
equation (3.26) into (3.25), we obtain the problem governing the motion of the
coating: 

∇yyy · [Dc : εyεyεy(uuu
0)] + ρcω

2uuu0 = 000 in Yc
uuu0 = UUU0 on ∂Yc
uuu0 =

∑2
i=1 U

0
i (xxx)(τττ i + ψiyyy ∧ eee3) on ∂Yf

(3.27)
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The linearity of the problem (3.27) allows to search a displacement field defined in
Ω× Yc as:

uuu0(xxx,yyy) =
2∑
i=1

U0
i (xxx)ηηηi(yyy) (3.28)

where the displacement functions ηηηi, for i ∈ {1, 2}, solve the differential problems:
∇yyy · [Dc : εyεyεy(ηηη

i)] + ρcω
2ηηηi = 000 in Yc

ηηηi = eeei on ∂Yc \ ∂Yf
ηηηi = τττ i + ψiyyy ∧ eee3 on ∂Yf

(3.29)

The displacements ηηηi depend on the frequency. It is important to take into account
that on ∂Yc \ ∂Yf , it is applied a unitary displacement along directions i ∈ {1, 2}. τττ i
and ψi can be determined by enforcing the balance of linear and angular momentum
of the fiber. The boundary ∂Yf of the fiber is subjected to the stress σσσ1 developed
by the coating, as shown in figure 3.2.

Figure 3.2. State of stress on ∂Yf of the fiber

The equilibrium in weak form is defined by:{∫
∂Yf

σσσ1 ·NNNdyyy +
∫
Yf
ρfuuu

0ω2dyyy = 000

eee3 ·
∫
∂Yf

yyy ∧ (σσσ1 ·NNN)dyyy +
∫
Yf
ρfyyy ∧ uuu0ω2dyyy = 0

(3.30)

Substituting (3.26) and (3.28) into (3.30), one obtains:{∫
∂Yf

[Dc : εyεyεy(ηηη
i)] ·NNNdyyy + ρf |Yf |ω2τττ i = 000

eee3 ·
∫
∂Yf

yyy ∧ [Dc : εyεyεy(ηηη
i)] ·NNNdyyy + ρfIfω

2ψi = 0
(3.31)

for i, j ∈ {1, 2} and with If the second polar moment of the fiber, defined as:

If =

∫
Yf

||yyy||2dyyy (3.32)

Equations (3.29) and (3.31) define the inclusion cell problem. The solution of
this problem is given by the fields ηηηi(yyy, ω), τττ i(ω) and ψi(ω).

36



Chapter 3. Dynamic homogenization of locally-resonant metamaterials

3.5 Homogenized equation of motion
Integrating the equation (3.11), defined at order 0, over Y , leads to the following
expressions for the different terms:∫
Y

∇yyy·σσσ1dyyy =

∫
∂Y

σσσ1NNNds = 000 by virtue of the periodic conditions (divergence theorem),

(3.33)

〈∇xxx · σσσ0〉 = ∇xxx · [D0 : εxεxεx(UUU
0)] by virtue of (3.20) and (3.34)

〈ρuuu0〉 = ρρρ0(ω)UUU0 by virtue of (3.14) and (3.28). (3.35)

With (3.33), (3.34) and (3.35), the homogenized Helmholtz equation of the periodic
media in Ω is:

∇xxx · [D0 : εxεxεx(UUU
0)] + ω2ρρρ0(ω) ·UUU0 = 000 (3.36)

where ρρρ0(ω) is the effective mass density tensor, which is symmetric. The components
of ρρρ0(ω) are given by:

ρ0ij(ω) = ρstδij + ρc
|Yc|
|Y |

(
1

|Yc|

∫
Yc

ηij(yyy, ω)dyyy − 1

)
+ρf
|Yf |
|Y |

(τ ij(ω)− 1) (3.37)

where δij is the Kronecker’s delta and ρst the static mass density, which is defined
as:

ρst = ρm
|Ym|
|Y |

+ ρc
|Yc|
|Y |

+ ρf
|Yf |
|Y |

(3.38)

3.6 Effective dispersion properties
In order to obtain the disperion relation of the homogenized media, one can consider
the propagation of the wave:

UUU0(xxx) = ppp exp(ikkk · xxx) (3.39)

where ppp is the polarization vector, kkk = knnn is the wavevector, k the wavenumber and
nnn the propagation direction. In particular, nnn is:

nnn = n1eee1 + n2eee2 = cos θeee1 + sin θeee2 (3.40)

where θ ∈ [0, 2π] is the angle of propagation of the elastic wave, with respect to eee1.

Substituting (3.39) into the effective Helmholtz equation (3.36), it is possible to
obtain the effective dispersion relation:

[QQQ0(nnn)− c2ρρρ0(ω)] · ppp = 000 (3.41)

where c = ω/k is the phase velocity and QQQ0(nnn) is the second order effective acoustic
tensor:

QQQ0(nnn) = nnn · D0 · nnn (3.42)
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QQQ0(nnn) is a second order symmetric tensor due to the minor and major simmetries
of D0 that can be noted in equation (3.21).

The eigenvalues of problem 3.41 are phase velocities and the associated eigenvec-
tors are polarization directions. In our two-dimensional problem, three different kind
of frequency intervals can be defined:

• Case 1: pass bands, in which both the principal mass components of the
effective mass density tensor, i.e., ρ0I and ρ0II , are positive. This implies that
c21 and c22 are positive and, thus, equation (3.41) admits two real postive wave
velocities c1, c2. In these frequency intervals, elastic waves can propagate.

• Case 2: band-gaps, when ρ0I and ρ0II are negative. This implies that c21 and
c22 are negative and, therefore, equation (3.41) has no real solution. In these
frequency intervals, elastic waves cannot propagate without attenuation.

• Case 3: polarization bands, when ρ0I and ρ0II have different sign. This implies
that c21 and c22 have opposite sign and, thus, equation (3.41) admits a unique
real positive solution. In these frequency intervals, elastic waves can propagate
with a unique polarization vector which is mainly aligned with the principal
direction of the positive mass.
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Evaluation of the homogenized
properties

In this chapter, it is defined the evaluation of the homogenized properties for a
ternary locally resonant metamaterial. In particular, we consider a circular fiber
that can be eccentric or perfectly centered with respect to the coating. These two
inclusions are embedded in matrix that can be square or rhomboidal, as depicted in
figure 4.1. For the perfectly centered fiber, the horizontal eccentricity e is null, while
for the eccentric fiber, the horizontal eccentricity is e=1.5 mm.

Figure 4.1. a) Square unit cell with eccentric fiber b) Rhomboidal unit cell with eccentric
fiber

We consider also a rhomboidal shape for the matrix, having the same surface of
the square one, because we will perform significant comparison between the two.

The geometrical and material properties are listed in the table 4.1.
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Chapter 4. Evaluation of the homogenized properties

Table 4.1. Geometrical and material properties

Constituents E [MPa] ν [-] ρ [kg/m3]

Matrix (m) - Epoxy (L=21 mm d1=22.56 mm d2=39.08 mm) 3600 0.37 1180
Coating (c) - Rubber (Rc=7.5 mm) 0.118 0.469 1300

Fiber (f) - Lead (Rf=5 mm) 14000 0.42 11340

4.1 Effective stiffness

4.1.1 Square unit cell with circular inclusions

For the homogenized stiffness of the square unit cell with circular inclusions, the
domain to consider in the plane x1 − x2 is only the matrix, as obtained from the
homogenization approach (section 3.3). Figure 4.2 shows the domain taken into
consideration.

Figure 4.2. Square unit cell of the periodic media with holes instead of inclusions

The components of the effective stiffness tensor are given by equation (3.21).
The anelastic strain eeei � eeej is imposed in COMSOL Multiphysics with periodicity
conditions on the opposite sides of the cell, as defined in the matrix cell problem
(3.17). With a surface integration over the matrix area, it is possible to take out
the averaged stress tensor that can be divided by the total area of the cell in order
to obtain the effective stiffness tensor. In the plane x1 − x2, the components of the
effective stiffness tensor can be expressed, according to the Voigt’s notation, as:

[D0] =

D0
1111 D0

1122 D0
1112

D0
2211 D0

2222 D0
2212

D0
1211 D0

1222 D0
1212

 (4.1)

In this case, the numerical values obtained are:

[D0] =

1.8003e+ 09 5.4683e+ 08 0
5.4683e+ 08 1.8003e+ 09 0

0 0 2.6544e+ 08

Pa (4.2)

Even if the unit cell is doubly symmetric, which implies D0
1111 = D0

2222, it can be
observed that D0 is anisotropic.
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Validation of the effective stiffness With reference to the square cell, in order
to check if the homogenized stiffness is accurate, it is possible to compare the real
model with the homogenized one. This comparison is here performed through two
static tests simulated with COMSOL Multiphysics:

• a tension test along direction x1

• a non-pure shear test

Tension test along direction x1 For the real model, a 10×10 pattern with holes
is considered. The material properties assigned to the pattern are related to the
epoxy matrix. The boundary conditions are:

• null horizontal displacement on the left side

• null vertical displacement on the lower point of the left side

• unitary horizontal displacement at the right side

Through finite element analysis, we compute and compare the following quantities:

• the averaged vertical displacement at the upper side

• the total horizontal reaction at the right side

• the elastic strain energy of the whole domain

For the homogenized model, the geometry is equal to the real one without
holes. The important modification is related to the material properties; in fact, the
anisotropic effective stiffness tensor, obtained before in equation (4.2), is introduced
to the model. The boundary conditions and outputs are defined as in the real model.
The figure 4.3 shows the contour of displacement along x1 for the real model and for
the homogenized one. The table 4.2 resumes the numerical values of the outputs.

Figure 4.3. Tension test along direction x1 for the square cell: comparison of the contour
of displacement along x1 between real and homogenized model
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Table 4.2. Tension test along direction x1 for the square cell: outputs

Real model Homogenized model e[%]

Vertical displacement at the upper side [m] -0.30489 -0.30374 0.38
Horizontal reaction at the right side [N] 1.6168e+09 1.6342e+09 1.06

Elastic strain energy [J/m] 8.0842e+08 8.1710e+08 1.06

The relative errors e are very low and, thus, the effective stiffness provided by
homogenization is accurate.

Non-pure shear test For the real model, a 10×10 pattern with holes is considered.
The material properties assigned to the pattern are related to the epoxy matrix. In
a first case, the boundary conditions are:

• null horizontal and vertical displacement on the left side

• unitary vertical displacement at the right side

Through finite element analysis, we compute and compare the following quantities:

• the averaged vertical displacement at the upper side

• the total vertical reaction at the right side

• the elastic strain energy of the whole domain

For the homogenized model, the geometry is equal to the real one without holes.
The important change is related to the material properties; in fact, the anisotropic
effective stiffness tensor (4.2) is introduced to the model. The boundary conditions
and outputs are defined as in the real model. Table 4.3 resumes the numerical values
of the outputs. Figure 4.4 shows the contour of displacement along x2 for the real
model and for the homogenized one.

Table 4.3. Non-pure shear test for the square cell: outputs (case 1)

Real model Homogenized model e[%]

Vertical displacement at the upper side [m] 0.46025 0.46199 0.38
Vertical reaction at the right side [N] 1.4809e+08 1.4762e+08 0.32

Elastic strain energy [J/m] 7.4046e+07 7.3808e+07 0.32

The relative errors e are very low and, therefore, the effective stiffness provided
by homogenization is accurate.
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Figure 4.4. Non-pure shear test for the square cell: comparison of the contour of displace-
ment along x2 between real and homogenized model (case 1)

Moreover, with respect to the previous case, i.e., tension test along direction
x1, there is a modification on the constraints applied on the left side, whereas the
number of cells is maintained equal. For this first non-pure shear test, if the vertical
displacement on the left side is not null, with a 10×10 pattern, the relative errors
are very high. This lead to a consideration about the number of cells that have to
be used in order to obtain low relative errors, maintaining the same costraints of
the previous case, i.e., tension test along direction x1, on the left side. Therefore, a
second non-pure shear test consists on using the same data of the first one, but with
null vertical displacement only on the lower point of the left side. The geometrical
pattern, used for having low relative errors, is now 40×40.

Figure 4.5 shows the contour of displacement along x2 for the real model and for
the homogenized one. Table 4.4 resumes the numerical values of the outputs.

Figure 4.5. Non-pure shear test for the square cell: comparison of the contour of displace-
ment along x2 between real and homogenized model (case 2)
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Table 4.4. Non-pure shear test for the square cell: outputs (case 2)

Real model Homogenized model e[%]

Vertical displacement at the upper side [m] 0.68697 0.69188 0.71
Vertical reaction at the right side [N] 9.0249e+07 8.9048e+07 1.33

Elastic strain energy [J/m] 4.5125e+07 4.4524e+07 1.34

The relative errors e are very low and, thus, the effective stiffness provided by
homogenization is accurate.

4.1.2 Rhomboidal unit cell with circular inclusions

As for the square unit cell with circular inclusions, also for the homogenized stiffness
of the rhomboidal one, the domain to consider in the plane x1−x2 is only the matrix.
Figure 4.6 shows the domain taken into consideration.

Figure 4.6. Rhoboidal unit cell of the periodic media with holes instead of inclusions

The procedure for obtaining the components of the effective stiffness tensor is
the same of the one developed for the square unit cell (explained in subsection 4.1.1).
In this case, the numerical values obtained for the effective stiffness tensor are:

[D0] =

1.6399e+ 09 7.4186e+ 08 0
7.4186e+ 08 1.6399e+ 09 0

0 0 4.4902e+ 08

Pa (4.3)

It can be observed that D0 is anisotropic but with D0
1111 = D0

2222.

Validation of the effective stiffness With reference to the rhomboidal cell, in
order to check if the homogenized stiffness is accurate, it is possible to compare the
real model with the homogenized one. This comparison is here performed through
three static tests simulated with COMSOL Multiphysics:
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• a tension test along direction x1

• a tension test along direction x2

• a non-pure shear test

Tension test along direction x1 For the real model, a 10×10 pattern with holes
is considered. The material properties assigned to the pattern are related to the
epoxy matrix. The boundary conditions and the outputs are the ones defined in
subsection 4.1.1 for the tension test along direction x1.

For the homogenized model, the geometry is equal to the real one without
holes. The important modification is related to the material properties; in fact, the
anisotropic effective stiffness tensor, obtained before in equation (4.3), is introduced
to the model. The boundary conditions and outputs are defined as in the real model.
The figure 4.7 shows the contour of displacement along x1 for the real model and for
the homogenized one. The table 4.5 resumes the numerical values of the outputs.

Figure 4.7. Tension test along direction x1 for the rhomboidal cell: comparison of the
contour of displacement along x1 between real and homogenized model

Table 4.5. Tension test along direction x1 for the rhomboidal cell: outputs

Real model Homogenized model e[%]

Vertical displacement at the upper side [m] -0.37742 -0.41037 8.03
Horizontal reaction at the right side [N] 1.2588e+09 1.1832e+09 6.01

Elastic strain energy [J/m] 6.2939e+08 5.9159e+08 6.01

The relative errors e are not so low and they are higher than the ones obtained
for the square cell (table 4.2). This is due to the change of the geometrical pattern
that influences the static response, under specific costraints and displacements. A
solution could be the addition of more cells in order to decrease the relative errors.
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Tension test along direction x2 For the real model, a 20×20 pattern with holes
is considered. The material properties assigned to the pattern are related to the
epoxy matrix. The boundary conditions are:

• null vertical displacement on the lower side

• null horizontal displacement on the right point of the lower side

• unitary vertical displacement at the upper side

Through finite element analysis, we compute and compare the following quantities:

• the averaged horizontal displacement at the left side

• the total vertical reaction at the upper side

• the elastic strain energy of the whole domain

For the homogenized model, the geometry is equal to the real one without
holes. The important modification is related to the material properties; in fact, the
anisotropic effective stiffness tensor, obtained before in equation (4.3), is introduced
to the model. The boundary conditions and outputs are defined as in the real model.
The figure 4.8 shows the contour of displacement along x2 for the real model and for
the homogenized one. The table 4.6 resumes the numerical values of the outputs.

Figure 4.8. Tension test along direction x2 for the rhomboidal cell: comparison of the
contour of displacement along x2 between real and homogenized model

Table 4.6. Tension test along direction x2 for the rhomboidal cell: outputs

Real model Homogenized model e[%]

Horizontal displacement at the left side [m] 0.47457 0.50993 6.93
Vertical reaction at the upper side [N] 1.5393e+09 1.4702e+08 4.49

Elastic strain energy [J/m] 7.6967e+08 7.3512e+08 4.49

The relative errors are lower than the previous case, i.e., tension test along
direction x1, due to the increasing number of cells but they are higher with respect
to ones obtained for the square cell (table 4.2).
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Non-pure shear test For the real model, a 20×20 pattern with holes is considered.
The material properties assigned to the pattern are related to the epoxy matrix. The
boundary conditions and the outputs are the ones defined in subsection 4.1.1 for the
first non-pure shear test (case 1).

For the homogenized model, the geometry is equal to the real one without
holes. The important modification is related to the material properties; in fact, the
anisotropic effective stiffness tensor, obtained before in equation (4.3), is introduced
to the model. The boundary conditions and outputs are defined as in the real model.
The figure 4.9 shows the contour of displacement along x2 for the real model and for
the homogenized one. The table 4.7 resumes the numerical values of the outputs.

Figure 4.9. Non-pure shear test for the rhomboidal cell: comparison of the contour of
displacement along x2 between real and homogenized model

Table 4.7. Non-pure shear test for the rhomboidal cell: outputs

Real model Homogenized model e[%]

Vertical displacement at the upper side [m] 0.45223 0.44757 1.03
Vertical reaction at the right side [N] 1.5219e+08 1.3952e+08 8.33

Elastic strain energy [J/m] 7.6096e+07 6.9758e+07 8.33

The relative errors for the reaction and the elastic strain energy are the highest
found in all the analysis and this is especially due to the type of test applied to the
model. On the other side, for the displacement, the relative error is very low.

4.2 Effective mass density
For the effective mass density, we can make reference to the coating and fiber only,
as defined in the homogenization approach (subsections 3.4 and 3.5). Figure 4.10
shows the domain taken into consideration.
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Figure 4.10. Circular inclusions: coating with eccentric fiber

A first scenario that can be analyzed is the one with a perfectly centered fiber with
respect to the coating and with reference to figure 4.10, the horizontal eccentricity e
is null. A second scenario consists on an eccentric fiber with respect to the coating
and with reference to figure 4.10, the horizontal eccentricity is e=1.5 mm.

4.2.1 Perfectly centered fiber

In this first scenario in which the fiber is perfectly centered, COMSOL Multiphysics
is employed for computing the numerical solution of the inclusion cell problems (3.29)
and (3.31). Then, the evaluation of the effective dynamic mass density is performed
through equation (3.37).

Since x1−x2 (axis of symmetry) is the principal mass reference system, the extra-
diagonal components of equation (3.37) are null. Due to null eccentricity and perfect
symmetry, the diagonal components of equation (3.37) are equal, i.e., ρ011 = ρ022 = ρ0.
In this case, the effective mass density tensor is isotropic.

In the case of perfectly centered fiber, i.e., null horizontal eccentricity, figure 4.11
shows the normalized effective mass density obtained through equation (3.37).

Figure 4.11. Normalized effective mass density for the perfectly centered fiber (null hori-
zontal eccentricity)
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With reference to figure 4.11, the frequency intervals shaded in purple are the
ones in which the normalized effective mass density is negative.

4.2.2 Eccentric fiber

A second scenario is the case in which the fiber has an eccentricity, e.g. horizontal,
with respect to the center of the cell. Also in this case, COMSOL Multiphysics is
employed for computing the numerical solution of the inclusion cell problems (3.29)
and (3.31). Then, the evaluation of the effective dynamic mass density is performed
through equation (3.37).

x1 − x2 is the principal mass reference system and, thus, the extradiagonal com-
ponents of equation (3.37) are null. In this case, the effective mass density tensor is
anisotropic, i.e., ρ011 6= ρ022.

In the case of eccentric fiber, i.e., horizontal eccentricity e=1.5 mm, figure 4.12
shows the normalized effective mass density obtained through equation (3.37).

Figure 4.12. Normalized effective mass density for the eccentric fiber (horizontal eccentricity
e=1.5 mm)

With reference to figure 4.12, three different shaded regions can be distinguished:

• blue zone, in which ρ011 < 0 and ρ022 > 0

• red zone, in which ρ022 < 0 and ρ011 > 0

• purple zone, in which ρ011 < 0 and ρ022 < 0.
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4.3 Band-gaps prediction by Bloch-Floquet analysis
In this section, we compare the normalized effective mass densities with the disper-
sion curves obtained through Bloch-Floquet analysis. The procedure for obtaining
the dispersion curves and the theoretical framework for Bloch-Floquet analysis is
explained in the section 2.2. The aim is to verify that the total band-gaps predicted
by Bloch-Floquet analysis are in good agreement with the ones obtained by the
normalized effective mass densities.

4.3.1 Perfectly centered fiber

With reference to the case of perfectly centered fiber, the domains to consider for
defining the dispersion curves are shown in figure 4.1 but with null horizontal eccen-
tricity. The dispersion curves, obtained numerically with COMSOL Multiphysics,
are defined for the square and the rhomboidal unit cell. The Bloch-Floquet problem
(2.26) is solved numerically with COMSOL Multiphysics through an inverse solution
method, as described in section 2.2.

Figure 4.13 shows, on the left, the dispersion curves of the square unit cell with
perfectly centered fiber, obtained through Bloch-Floquet analysis. In the same figure,
in the center, there are the dispersion curves of the rhomboidal unit cell with perfectly
centered fiber, obtained through Bloch-Floquet analysis. On the right of the same
figure, there is the normalized effective mass density for the perfectly centered fiber,
described in the subsection 4.2.1.

Figure 4.13. a) Dispersion curves of the square unit cell with perfectly centered fiber b)
Dispersion curves of the rhomboidal unit cell with perfectly centered fiber c)
Normalized effective mass density for the perfectly centered fiber

With reference to figure 4.13, the frequency intervals shaded in purple are the
total band-gaps. For the dispersion curves, these bands represent the frequency
intervals in which waves cannot propagate, whereas for the plot on the right, the

50



Chapter 4. Evaluation of the homogenized properties

frequency intervals in which the normalized effective density is negative. Comparing
the plots, from a qualitative point of view, these zones are in good agreement.

4.3.2 Eccentric fiber

With reference to the case of eccentric fiber, the domains to consider for defining the
dispersion curves are shown in figure 4.1. The dispersion curves, obtained numerically
with COMSOL Multiphysics, are defined for the square and the rhomboidal unit cell.
The Bloch-Floquet problem (2.26) is solved numerically with COMSOL Multiphysics
through an inverse solution method, as described in section 2.2.

Figure 4.14 shows, on the left, the dispersion curves of the square unit cell with
eccentric fiber, obtained through Bloch-Floquet analysis. In the same figure, in the
center, there are the dispersion curves of the rhomboidal unit cell with eccentric
fiber, obtained through Bloch-Floquet analysis. On the right of the same figure,
there is the normalized effective mass density for the eccentric fiber, described in the
subsection 4.2.2.

Figure 4.14. a) Dispersion curves of the square unit cell with eccentric fiber b) Dispersion
curves of the rhomboidal unit cell with eccentric fiber c) Normalized effective
mass density for the eccentric fiber

With reference to figure 4.14, the frequency intervals shaded in purple are the
total band-gaps. For the dispersion curves, these bands represent the frequency
intervals in which waves cannot propagate, whereas for the plot on the right, the
frequency intervals in which ρ011 < 0 and ρ022 < 0. Comparing the plots, from a
qualitative point of view, these zones are in good agreement. With reference to figure
4.14 c), the regions shaded in red and blue, in which ρ011 and ρ022 have different sign,
represent the polarization bands.

Dispersion surfaces for the square unit cell with eccentric fiber Due to
the eccentricity of the fiber, in order to check that the path ΓXMΓ along the IBZ is
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sufficient to identify band-gaps, we reconstruct the dispersion surface on the whole
FBZ. The latter, in this case, is a square of side 2π/L. To obtain the dispersion
surfaces, a numerical Bloch-Floquet analysis can be performed with COMSOL
Multiphysics. The Bloch-Floquet periodicity conditions are applied on the opposite
sides of the cell. Figure 4.15 shows the dispersion surfaces in a 3D view, on the FBZ
of the square unit cell.

Figure 4.15. Dispersion surfaces for the square unit cell with eccentric fiber on FBZ, 3D
view

At this point, the dispersion curves obtained along the IBZ can be compared
with the dispersion surfaces represented in a lateral view, as shown in figure 4.16.
The lateral view of figure 4.16 (b) is defined in order to facilitate the comparison
with the dispersion curves along the IBZ.

Figure 4.16. Comparison between dispersion curves along the IBZ a) and dispersion surfaces
on FBZ, lateral view b) for the square unit cell with eccentric fiber
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Observing figure 4.16, the total band-gap in purple and the other resonance
frequencies are equal in both of the graphs. Even if the fiber is eccentric and the unit
cell is no more doubly symmentic, the dispersion curves along the IBZ are sufficient
for the identification of band-gaps.

Dispersion surfaces for the rhomboidal unit cell with eccentric fiber As
for the square unit cell, due to the eccentricity of the fiber, in order to check that
the path ΓXMΓ along IBZ is sufficient to identify band-gaps, we reconstruct the
dispersion surface on the whole FBZ. The latter, in this case, is a regular hexagon of
side 4π/3d1. To obtain the dispersion surfaces, a numerical Bloch-Floquet analysis
can be performed with COMSOL Multiphysics. The Bloch-Floquet periodicity
conditions are applied on the opposite sides of the cell. Figure 4.17 shows the
dispersion surfaces in a 3D view, on the FBZ of the rhomboidal unit cell.

Figure 4.17. Dispersion surfaces for the rhomboidal unit cell with eccentric fiber on FBZ,
3D view

At this point, the dispersion curves obtained along the IBZ can be compared
with the dispersion surfaces represented in a lateral view, as shown in figure 4.18.
The lateral view of figure 4.18 (b) is defined in order to facilitate the comparison
with the dispersion curves along the IBZ.

Observing figure 4.18, the total band-gap in purple and the other resonance
frequencies are equal in both of the graphs. Even if the fiber is eccentric and the unit
cell is no more doubly symmentic, the dispersion curves along the IBZ are sufficient
for the identification of band-gaps.
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Figure 4.18. Comparison between dispersion curves along the IBZ a) and dispersion surfaces
on FBZ, lateral view b) for the rhomboidal unit cell with eccentric fiber

4.4 Effective dispersion properties
In this section, exploiting the effective properties computed in sections 4.1 and 4.2,
we discuss the effective dispersion behaviour of the equivalent homogenized media.
In particular, this discussion will be focused on a comparison of phase velocities
and polarization vectors involved in two different geometrical pattern of the unit
metamaterial cell: square and rhomboidal. The theoretical framework about the
effective dispersion properties is discussed in the section 3.6.

4.4.1 Square unit cell with eccentric fiber

We consider the square unit cell with eccentric fiber, i.e., horizontal eccentricity e=1.5
mm (figure 4.1 (a)). The anisotropic effective stiffness tensor is the one obtained in
equation (4.2). In this case, the components of the effective acoustic tensor, through
equation (3.42), are given by:

[QQQ0] =

[
D0
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2
1 +D0

1212n
2
2 (D0

1122 +D0
1212)n1n2

(D0
1122 +D0
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2
1 +D0

2222n
2
2

]
(4.4)

With reference to the section 3.6, we focus on the polarization bands (case 3),
where ρ0I = ρ011 and ρ0II = ρ022 have different sign.

In a first scenario, with reference to figure 4.12, we consider the polarization band
in which ρ011 < 0 and ρ022 > 0. A first frequency can be selected when the contrast
between the two diagonal components of the effective mass density tensor is low.
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For example, at frequency ω/2π=1270 Hz, the effective mass tensor is given by the
following entries:

[ρρρ0] =

[
−175.65 0

0 417.59

]
kg/m3 (4.5)

with |ρ011/ρ022| = 0.42.

A second frequency can be selected when the contrast between the two diagonal
components of the effective mass density tensor is high. For example at frequency
ω/2π=1200 Hz, the effective mass tensor is given by the following entries:

[ρρρ0] =

[
−5.24e+ 03 0

0 325.85

]
kg/m3 (4.6)

with |ρ011/ρ022| = 16.08.

In these two selected frequencies, the effective dispersion relation (3.41) admits a
unique real positive solution because c21 and c22 have opposite sign. This eigenvalue,
from a physical point of view, is the phase velocity. The associated eigenvector
is the polarization vector which is mainly aligned with the principal direction of
positive mass. Figure 4.19 shows the two polar diagrams fixed at the two frequencies
ω/2π=1270 Hz and ω/2π=1200 Hz. These polar diagrams show the phase velocities
(black line) and the polarization directions (red line) within different propagation
directions (blue line).

Figure 4.19. Square unit cell with eccentric fiber: phase velocities (black line) and polar-
ization directions (red line) within different propagation directions (blue line)
when ρ011<0 and ρ022>0. a) Low mass contrast b) High mass contrast

Since the effective stiffness and mass tensors are anisotropic, the magnitude of
the phase velocity depends on the angle of propagation. A comment can be done
on the polarization directions that, differently than an isotropic homogenous case
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(figure 2.2), are not completely parallel or orthogonal to the propagation directions.
This means that the propagating waves are not longiudinal or shear waves, but
they belong to a mixed type of them. From the comparison between the two polar
diagrams, it is possible to note that, when the mass contrast becomes higher (figure
4.19 (right)), the polarization directions tend to be fully verticalized. This lead
to consider that the polarization directions are strongly depedent from the mass
contrast in the effective mass density tensor. Moreover, with an higher mass contrast,
the phase velocity’s trend tend to expand but without changing the shape.

In a second scenario, with reference to figure 4.12, we consider the polarization
band in which ρ022 < 0 and ρ011 > 0. A first frequency can be selected when the
contrast between the two diagonal components of the effective mass density tensor is
low. For example, at frequency ω/2π=1000 Hz, the effective mass tensor is given by
the following entries:

[ρρρ0] =

[
702.55 0

0 −531.71

]
kg/m3 (4.7)

with |ρ022/ρ011| = 0.76.

A second frequency can be selected when the contrast between the two diagonal
components of the effective mass density tensor is high. For example at frequency
ω/2π=920 Hz, the effective mass tensor is given by the following entries:

[ρρρ0] =

[
491.56 0

0 −3.26e+ 04

]
kg/m3 (4.8)

with |ρ022/ρ011| = 66.32.

In these two selected frequencies, the effective dispersion relation (3.41) admits a
unique real positive solution because c21 and c22 have opposite sign. This eigenvalue,
from a physical point of view, is the phase velocity. The associated eigenvector
is the polarization vector which is mainly aligned with the principal direction of
positive mass. Figure 4.20 shows the two polar diagrams fixed at the two frequencies
ω/2π=1000 Hz and ω/2π=920 Hz. These polar diagrams show the phase velocities
(black line) and the polarization directions (red line) within different propagation
directions (blue line).

With reference to figure 4.20, the polarization directions, with an higher mass
contrast (figure 4.20 b), tend to be fully horizontalized.
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Figure 4.20. Square unit cell with eccentric fiber: phase velocities (black line) and polar-
ization directions (red line) within different propagation directions (blue line)
when ρ022<0 and ρ011>0. a) Low mass contrast b) High mass contrast

4.4.2 Rhomboidal unit cells with eccentric fiber

In this subsection, we compare the polar diagrams obtained with reference to four
different geometrical configurations of the rhomboidal unit cell (figure 4.21). The
matrix areas of these different configurations are kept equal to the one of the square
unit cell, with no modifications on the areas of the coating and of the fiber.

Figure 4.21. Rhmoboidal unit cells: geometrical configurations

As shown in 4.1.2 for the rhomboidal unit cell with angles at 60° and 120°, the
procedure for obtaining the effective stiffness tensor can be performed also with these
new geometrical configurations. In particular for the rhomboidal unit cell with d1=18
mm and d2=49 mm, the components of the anisotropic effective stiffness tensor are:

[D0] =

2.0605e+ 09 5.1685e+ 08 0
5.1685e+ 08 1.3919e+ 09 0

0 0 2.0489e+ 08

Pa (4.9)

For the rhomboidal unit cell with d1=24 mm and d2=36.75 mm:

[D0] =

1.5441e+ 09 8.0104e+ 08 0
8.0104e+ 08 1.6072e+ 09 0

0 0 5.0816e+ 08

Pa (4.10)
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For the rhomboidal unit cell with d1=d2=29.7 mm (that is simply the square unit
cell rotated by 45°):

[D0] =

1.4391e+ 09 9.0807e+ 08 0
9.0807e+ 08 1.4391e+ 09 0

0 0 6.2676e+ 08

Pa (4.11)

For the rhomboidal unit cell with d1=48 mm and d2=18.38 mm:

[D0] =

1.4439e+ 09 5.3878e+ 08 0
5.3878e+ 08 2.0249e+ 09 0

0 0 2.2844e+ 08

Pa (4.12)

The effective acoustic tensor must be defined as in equation (4.4) for all the four
different cases.

With reference to the section 3.6, we focus on the polarization bands (case 3),
where ρ0I = ρ011 and ρ0II = ρ022 have different sign.

In a first scenario, with reference to figure 4.12 (the horizontal eccentricity of
the fiber is always e=1.5 mm), we consider the polarization band in which ρ011 < 0
and ρ022 > 0. The frequency is chosen at ω/2π=1200 Hz. The anisotropic effec-
tive mass density tensor is defined in equation (4.6) and it is equal for all the four cases.

In this selected frequency, the effective dispersion relation (3.41) admits a unique
real positive solution because c21 and c22 have opposite sign. This eigenvalue, from
a physical point of view, is the phase velocity. The associated eigenvector is the
polarization vector which is mainly aligned with the principal direction of positive
mass. Figure 4.22 shows the four polar diagrams fixed at the frequency ω/2π=1200
Hz. These polar diagrams show the phase velocities (black line) and the polarization
directions (red line) within different propagation directions (blue line).

Figure 4.22. Rhomboidal unit cells with eccentric fiber: phase velocities (black line) and
polarization directions (red line) within different propagation directions (blue
line) when ρ011<0 and ρ022>0 (frequency ω/2π=1200 Hz)
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With reference to figure 4.22, it is possible to observe that the shape of phase
velocities changes within different geometrical configurations of the rhomboidal unit
cell. This is especially due to the variation of the effective stiffness tensor for the
four different cases. It can be noticed that the angle of propagation in which there is
the more relevant change of shape of the phase velocity is θ=0°. We can analyze the
equation (3.41) by components. At this angle, the effective acoustic tensor is diagonal,
i.e., (D0

1122 + D0
1212)n1n2 = 0 with n2 = sin θ = sin 0 = 0. Since only ρ022>0, only

the component D0
1212n

2
1 +D0

2222n
2
2 of the effective acoustic tensor must be taken into

account. At this angle, the component of the effective stiffness tensor which is influent
for the change of shape of the phase velocity is D0

1212, i.e, D0
1212n

2
1 +D0

2222n
2
2 = D0

1212

with n1 = cos θ = cos 0 = 1 and n2 = sin θ = sin 0 = 0. As shown in equations (4.9),
(4.10), (4.11) and (4.12), the component D0

1212 increases from the first geometrical
configuration to the third one but decreseas in the fourth one. In fact, phase velocity,
at a null angle of propagation, increases from the first to the third case and but
decreases in the fourth geometrical case.

At frequency ω/2π=1200 Hz, another interesting case is the one in which is
possible to compare the polar diagram of figure 4.19 b) and the polar diagram of
figure 4.22 c). The first one represents the polar diagram with reference to the square
unit cell and the second one with reference to the square unit cell rotated by 45°.
The substantial difference between these two cases is the position of the fiber; in fact,
in the square unit cell its position is on the horizontal axis of symmetry, whereas in
the rotated square cell is on the horizontal diagonal. This provoke a misalignment
of both effective stiffness and effective mass density tensors. However, also in this
comparison, with reference to equations (4.2) and (4.11), the component D0

1212 of the
effective stiffness tensor influences the phase velocities’ trends. In the case of rotated
square unit cell, phase velocity at a null angle of propagation increases with respect
to the one obtained with the square unit cell, as happen for the component D0

1212.

In a second scenario, with reference to figure 4.12 (the horizontal eccentricity of
the fiber is always e=1.5 mm), we consider the polarization band in which ρ022 < 0
and ρ011 > 0. The frequency is chosen at ω/2π=920 Hz. The anisotropic effective
mass density tensor is defined in equation (4.8) and it is equal for all the four cases.

In this selected frequency, the effective dispersion relation (3.41) admits a unique
real positive solution because c21 and c22 have opposite sign. This eigenvalue, from
a physical point of view, is the phase velocity. The associated eigenvector is the
polarization vector which is mainly aligned with the principal direction of positive
mass. Figure 4.23 shows the four polar diagrams fixed at the frequency ω/2π=920
Hz. These polar diagrams show the phase velocities (black line) and the polarization
directions (red line) within different propagation directions (blue line).

With reference to figure 4.23, also in these cases, the component D0
1212 of the

effective stiffness tensor is the most influent for the phase velocity’s trend. The only
aspect to consider is that now the angle of propagation to consider is θ=90° and
the component D0

1111n
2
1 +D0

1212n
2
2 of the effective acoustic tensor must be taken into

account because only ρ011 > 0.
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Figure 4.23. Rhomboidal unit cells with eccentric fiber: phase velocities (black line) and
polarization directions (red line) within different propagation directions (blue
line) when ρ022<0 and ρ011>0 (frequency ω/2π=920 Hz)

4.5 Parametric discussion
Another purpose of this thesis is to analyze the effects of geometric parameters
related to the metamaterial taken into consideration and study the influence of
them on band gaps and polarization bands. In particular, the effects provided by
the geometric parameters can be analyzed studying the variation of the effective
mass density tensor’s components. In order to obtain these components, COMSOL
Multiphysics is used to implement the numerical evaluation described in subsection
4.2.2. The eccentricity of the fiber is horizontal along eee1, x1 − x2 is the principal
mass reference system and the components of the anisotropic effective mass density
tensor are ρ011 6=ρ022.

A first scenario is devoted to the influence of the fiber radius Rf variation on
ρ011 and ρ022. The radius of the coating is fixed as Rc = 7.5 mm and the horizontal
eccentricity of the fiber is kept at e = 1.5 mm. The scheme of this first case in shown
in figure 4.24. From a practical point of view, it is possible to perform numerical
evaluations of ρ011(ω/2π) and ρ022(ω/2π) for different values of the ratio Rf/Rc. For
each value of the ratio Rf/Rc, three special frequency ranges could be distinguished:

• polarization band in which ρ011 < 0 and ρ022 > 0

• polarization band in which ρ022 < 0 and ρ011 > 0

• band gap in which ρ011 < 0 and ρ022 < 0.
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Figure 4.24. Fiber radius Rf variation, maintaining fixed the coating radius Rc and the
horizontal eccentricity e of the fiber

Figure 4.25 shows, within some values of the ratio Rf/Rc, the qualitative trend
of these particular frequency zones. The polarization bands in which ρ011 < 0 and
ρ022 > 0 are depicted in blue, the polarization bands with ρ022 < 0 and ρ011 > 0 are
represented in red and the band gaps in which ρ011 < 0 and ρ022 < 0 are the purple
zones.

Figure 4.25. Frequency bands in which ρ011 < 0 and ρ022 > 0 (blue), ρ022 < 0 and ρ011 > 0
(red) and ρ011 < 0 and ρ022 < 0 (purple) for different values of the ratio Rf/Rc

With reference to figure 4.25, it is possible to notice a clear qualitative trend
of the band gap, depicted in purple, within the ratio Rf/Rc. Increasing the latter,
the polarization bands, represented in blue and red, tend to amplify their size in
order to provide the band gap. For higher values of Rf/Rc, the band gap tends to
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increase its size. In general, another aspect to observe is that the band gap, achieved
by the intersection of the two polarization bands, occurs at higher frequencies as
the ratio Rf/Rc increases. For low values of the ratio Rf/Rc, the polarization bands
are fully separated with short sizes and the band gap is not achieved. The case in
which Rf/Rc = 0.8 is not useful for real applications because the contact between
the coating and the fiber occurs. Furthermore, the dashed line represents the original
study case of figure 4.1 in which Rf = 5 mm and Rf/Rc = 0.67.

A second scenario is devoted to the influence of the horizontal eccentricity e
variation, related to the fiber, on ρ011 and ρ022. The radius of the coating is fixed as
Rc = 7.5 mm and the radius of the fiber is kept at Rf = 5 mm. The scheme of this
second case in shown in figure 4.26.

Figure 4.26. Horizontal eccentricity e variation, related to the fiber, maintaining fixed the
coating radius Rc and the fiber radius Rf

From a practical point of view, it is possible to perform numerical evalua-
tions of ρ011(ω/2π) and ρ022(ω/2π) for different values of the ratio e/emax, where
emax = Rc − Rf = 2.5 mm is the horizontal eccentricity for which the contact
between the coating and the fiber occurs.

Figure 4.27 shows, within some values of the ratio e/emax, the qualitative trend
of the polarization bands in which ρ011 < 0 and ρ022 > 0 (blue), of the polarization
bands with ρ022 < 0 and ρ011 > 0 (red) and of the band gaps in which ρ011 < 0 and
ρ022 < 0 (purple).

With reference to figure 4.27, it is possible to observe the qualitative trend of
the band gap, depicted in purple, within the ratio e/emax. Increasing the latter, the
polarization bands, represented in blue and red, tend to be more separated with
a lower possibility to provide the band gap. For higher values of e/emax, the band
gap tends to decrease its size. In general, another aspect to notice is that the band
gap, achieved by the intersection of the two polarization bands, occurs at higher
frequencies as the ratio e/emax increases. For the ratio e/emax = 0, the effective
mass density tensor is isotropic, i.e., ρ011 = ρ022 = ρ0, and, thus, only the band gap
is achieved. A limit case is shown for the ratio e/emax = 0.99, in which it can be
observed that the polarization bands are fully separated and the band gap is not
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provided. The case in which e/emax = 1 is not useful in real applications because
the contact between the coating and the fiber occurs. Moreover, the dashed line
represents the original study case of figure 4.1 in which e = 1.5 mm and e/emax = 0.6.

Figure 4.27. Frequency bands in which ρ011 < 0 and ρ022 > 0 (blue), ρ022 < 0 and ρ011 > 0
(red) and ρ011 < 0 and ρ022 < 0 (purple) for different values of the ratio e/emax

Another interesting aspect is that figure 4.25 and 4.27 can be used in a combined
way in order to provide a proper geometric configuration of the metamaterial for
specific purposes. For example, in the next chapter 5, the purpose is to provide well
separated polarization bands. A proper combination of Rf and e can be identified in
order to satisfy this request. In particular, making reference to figure 4.25 and 4.27,
the design choice can be the use of a lower Rf and an higher e with respect to the
original study case of figure 4.1 in which the polarization bands are not separated,
as shown in figure 4.12.

This parametric discussion is strictly linked with an important open topic which
is the metamaterial optimization, as explained in chapter 6. In particular, the aim of
the optimization is to provide, among several geometric and material parameters, a
suitable design configuration of the metamaterial in order to satisfy specific requests
and purposes. A request can be, for example, the achivement of specific configurations
of band gaps and polarization bands within proper frequency ranges.
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Chapter 5

Transmission analyses

This chapter is devoted to the transmission analyses of different locally-resonant
metamaterials with anisotropic mass density. As depicted in figure 5.1, we consider
three different kind of unit cell, all characterized by the side L = 21 mm, the coating
radius Rc = 7.5 mm, the fiber radius Rf = 3.5 mm and the eccentricity e = 3.25
mm, with three different angles of inclination θ of the eccentricity with respect to eee1.
The material properties are the same shown in table 4.1. The first case, shown in
figure 5.1 a, consists of horizontally eccentric fiber (θ = 0°), the second case, shown
in figure 5.1 b, consists of eccentric fiber with θ = 45° and the third case, shown in
figure 5.1 c, consists of vertically eccentric fiber (θ = 90°).

Figure 5.1. Unit cell of the three different kind of metamaterial considered with a) θ = 0°
b) θ = 45° c) θ = 90°.

The evaluation of the frequency-dependent effective dynamic mass density is
performed numerically following the procedure developed in subsection 4.2.2. The
unit vectors related to the principal mass reference system are eeeI−eeeII and ρ0I , ρ0II are
the eigenvalues of the equivalent frequency-dependent mass density tensor, obtained
through the two scale homogenization approach. Figure 5.2 shows the normalized
effective mass density represented by ρ0I and ρ0II . In the first case (figure 5.1 a),
x1 − x2 is the principal mass reference system, i.e., ρ0I = ρ011 and ρ0II = ρ022. In the
second case (figure 5.1 b), the principal mass reference system eeeI − eeeII is rotated by

65



Chapter 5. Transmission analyses

45° with respect to eee1 − eee2. For the third case (figure 5.1 c), eeeI − eeeII is rotated by
90° with respect to eee1 − eee2. In the latter case, ρ0I=ρ022 and ρ0II=ρ011.

Figure 5.2. Principal values of the effective mass density tensor for L = 21 mm, Rc = 7.5,
Rf = 3.5 mm and e = 3.25 mm.

With reference to figure 5.2, the regions shaded in red and in blue represent the
polarization bands. In the blue zone, one has ρ0I <0 and ρ0II >0, whereas in the red
zones, ρ0II <0 and ρ0I >0.

In the next sections, we will show the effect of the polarization bands on the
transmission analyses for different configurations of the locally-resonant metamaterial.
These transmission analyses are carried out numerically with the finite element
software COMSOL Multiphysics. In particular, we will consider three study cases
in which the locally-resonant metamaterial is composed by the unit cells shown in
figures 5.1 a (θ = 0°), 5.1 c (θ = 90°) and 5.1 b (θ = 45°).

5.1 Eccentric fibers with θ=0°

5.1.1 eeeI-transmission analysis

As a first case, we consider a locally-resonant metamaterial composed by an array of
40×1 cells with horizontally eccentric fibers (θ = 0°). In this case, the principal mass
directions eeeI and eeeII concides with eee1 and eee2 respectively. The imposed boundary
conditions are:

• a unitary horizontal displacement on the left side of the array

• a fixed vertical displacement of the mean point of the left side of the array.

Through the finite element analysis, it is evaluated 〈u〉, i.e., the average value of
the horizontal displacement, on the right side of the array. Figure 5.3 shows the
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configuration of the metamaterial within the imposed boundary conditions and the
evaluated output.

Figure 5.3. Array of 40×1 cells with horizontally eccentric fibers (θ = 0°), employed in the
eeeI -transmission analysis.

Figure 5.4 shows the semi-logarithmic transmission spectrum of |〈u〉|, as a function
of the frequency, with a black line. The blue shaded region is the frequency interval
in which ρ0I <0 and the red shaded regions are the ones in which ρ0II <0. The
polarization bands are the same depicted in figure 5.2.

Figure 5.4. Transmission spectrum of |〈u〉| as a function of frequency for the array of 40×1
cells (θ=0°) with imposed eeeI -displacement.

With reference to figure 5.4, taking into consideration that the propagating waves
are polarized in the eeeI-direction, in the blue zone (ρ0I <0) |〈u〉| is absorbed. In the
white and red zones, in which ρ0I >0, the absorption does not take place. The trend
of |〈u〉| at the opening frequency of the blue band is due to the absorption which
takes place in very few cells. In the red zone, in which ρ0II <0, the wave polarization
direction is oriented with the principal direction of the positive mass ρ0I and, since
this direction is horizontal, |〈u〉| is not absorbed.
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In the blue polarization band, the activated local resonance mechanism is the
one of the resonance mode, related to the inclusion, at the opening frequency of
the polarization band. As shown for the first cell of the array in figure 5.5 a), at
a frequency close to the opening of this band (ω/2π = 505 Hz), the displacements
associated to the matrix and to the fiber (resonating mass) are in phase opposition.
The wave absorption occurs within few cells and this can be noticed from the contour
plot of figure 5.5 a) in which u, i.e., the horizontal component of the displacement
field, decreases in amplitude up to a null value after few cells. The absorption can be
observed making reference to the matrix only. As shown for the first cell of the array
in figure 5.5 b), also at a frequency near to the closure of this band (ω/2π = 681
Hz), the displacements of the matrix and the fiber are in phase opposition. Making
reference to the matrix only, as shown in figure 5.5 c), the local resonance mechanism
is active also in the last cells of the array and, thus, the full absorption is not achieved
within 40 cells but it requires a larger number.

Figure 5.5. a) Contour plot of the horizontal displacement in the first twelve cells of the array
at frequency ω/2π = 505 Hz b) Contour plot of the horizontal displacement
in the first six cells of the array at frequency ω/2π = 681 Hz c) Contour plot
of the horizontal displacement in the last six cells of the array at frequency
ω/2π = 681 Hz.

In order to show a case in which the displacement of the fiber is in phase with
respect to the displacement related to the matrix, in the second red polarization band
(ρ0II <0), the peak in transmission is taken into account at the frequency ω/2π = 442
Hz. Figure 5.6 shows that the displacement of the fiber is amplified with respect to
the displacement of the matrix.
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Figure 5.6. Contour plot of the horizontal displacement in the last twentyfour cells of the
array at frequency ω/2π = 442 Hz.

5.1.2 eeeII-transmission analysis

We now consider the same media employed in subsection 5.1.1 but with different
boundary conditions:

• a unitary vertical displacement on the left side of the array

• a fixed horizontal displacement of the mean point of the left side of the array.

Moreover, it is evaluated 〈v〉, i.e., the average value of the vertical displacement, on
the right side of the array. Figure 5.7 shows the configuration of the metamaterial
within the imposed boundary conditions and the evaluated output.

Figure 5.7. Array of 40×1 cells with horizontally eccentric fibers (θ = 0°), employed in the
eeeII -transmission analysis.

For this second case, figure 5.8 shows the semi-logarithmic transmission spectrum
of |〈v〉| as a function of the frequency. With reference to figure 5.8, taking into
account that the propagating waves are polarized in the eeeII-direction, in the red
zones (ρ0II <0) |〈v〉| is absorbed. In the blue and white zones, in which ρ0II >0, the
absorption does not occur. The trend of |〈v〉| at the opening frequencies of the red
bands is due to the absorption that takes place in very few cells. In the blue zone, in
which ρ0I <0, the wave polarization direction is oriented with the principal direction
of the positive mass ρ0II and, since this direction is vertical, |〈v〉| is not absorbed.

In the red polarization bands, the activated local resonance mechanisms are the
ones of the resonance modes, related to the inclusion, at the opening frequencies
of the polarization bands. As shown for the first cell of the array in figure 5.9
a), at a frequency close to the opening of the second band (ω/2π = 371 Hz), the

69



Chapter 5. Transmission analyses

Figure 5.8. Transmission spectrum of |〈v〉| as a function of the frequency for the array 40×1
cells (θ=0°) and the imposed eeeII -displacement.

displacements associated to the matrix and to the fiber are in phase opposition.
The absorption of the wave occurs within few cells and this can be noticed from
the contour plot of figure 5.9 a) in which v, i.e., the vertical component of the
displacement field, decreases in amplitude up to a null value after few cells. The
absorption can be noticed making reference to the matrix only. As shown for the
first cell of the array in figure 5.9 b), at a frequency near to the closure of the second
band (ω/2π = 447 Hz), the displacements of the matrix and the fiber are in phase
opposition. Differently than the case in subsection 5.1.1, as shown in figure 5.9 b),
the full absorption is achieved but with a larger number of cells with respect to the
ones provided in ω/2π = 371 Hz.

Figure 5.9. a) Contour plot of the vertical displacement in the first ten cells of the array at
frequency ω/2π = 371 Hz b) Contour plot of the vertical displacement in the
first fourteen cells of the array at frequency ω/2π = 447 Hz.
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5.2 Eccentric fibers with θ=90°

5.2.1 eeeI-transmission analysis

Firstly, we consider an array of 40×1 cells with vertically eccentric fibers (θ=90°).
In this new case, the principal mass directions eeeI and eeeII are oriented as eee2 and eee1
respectively. We impose the following boundary conditions:

• a unitary vertical displacement on the left side of the array

• a fixed horizontal displacement of the mean point of the left side of the array.

The evaluation of 〈v〉, i.e., the average value of the vertical displacement, is defined
on the right side of the array through the finite element analysis. Figure 5.10 shows
the metamaterial taken into consideration within the boundary conditions and the
related output.

Figure 5.10. Array of 40×1 cells with vertically eccentric fibers (θ = 90°), employed in the
eeeI -transmission analysis.

Figure 5.11 shows the semi-logarithmic transmission spectrum of |〈v〉| as a function
of the frequency and the polarization bands are the same shown in figure 5.2.

Figure 5.11. Transmission spectrum of |〈v〉| as a function of the frequency for the array
40×1 cells (θ=90°) and the imposed eeeI -displacement.
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With reference to figure 5.11, the propagating waves are polarized in the eeeI-
direction; therefore, in the blue zone, in which ρ0I <0, |〈v〉| is absorbed, while in the
other zones, in which ρ0I >0, the wave absorption does not occur. The trend of |〈v〉|
at the opening frequency of the blue band is due to the fact that absorption takes
place in very few cells.

5.2.2 eeeII-transmission analysis

We now take into consideration the same metamaterial discussed in subsection 5.2.1
but with the following boundary conditions:

• a unitary horizontal displacement on the left side of the array

• a fixed vertical displacement of the mean point of the left side of the array.

〈u〉, i.e., the average value of the horizontal displacement, is evaluated on the right
side of the array through the finite element analysis and figure 5.12 shows the
configuration of the metamaterial with the new boundary conditions and the relative
output.

Figure 5.12. Array of 40×1 cells with vertically eccentric fibers (θ = 90°), employed in the
eeeII -transmission analysis.

For this new case, figure 5.13 shows the semi-logarithmic transmission spectrum
of |〈u〉| as a function of the frequency.

With reference to figure 5.13, it is important to remind that the propagating
waves are now polarized in the eeeII-direction and, thus, in the red zones (ρ0II <0)
|〈u〉| is absorbed. In the other zones, in which ρ0II >0, the absorption does not take
place. The trend of |〈u〉| at the opening frequencies of the red bands is due to the
absorption that occurs in very few cells. In figure 5.13, due to the presence of some
off-curve points, are shown two close-up in red obtained by performing finite element
analyses with a finer frequency discretization.
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Figure 5.13. Transmission spectrum of |〈u〉| as a function of the frequency for the array
40×1 cells (θ=90°) and the imposed eeeII -displacement. The close-up in red
represent a more refined trends of |〈u〉| at two different frequencies.

5.3 Eccentric fibers with θ=45°
We now consider a two-dimensional locally-resonant metamaterial, as shown in figure
5.14, constituted of an array of 7×21 cells having eccentric fibers with θ = 45°. In
this case, eeeI is inclined by 45° with respect to eee1, while eeeII is inclined by -45°. For
the transmission analysis, we consider the following boundary conditions:

• a unitary displacement along eeeI on the left edge of the three central cells

• fixed displacement along eeeII on the mid-point of the left edge of the media.

The response of the metamaterial is evaluated in terms of the displacement compo-
nents along eeeI , i.e., 〈u cos(45°) + v sin(45°)〉, where u is the horizontal displacement
and v is the vertical displacement and along eeeII , i.e., 〈−u sin(45°) + v cos(45°)〉, in
the two points P1 and P2, as shown in figure 5.14.

Figure 5.15 shows the semi-logarithmic transmission spectrum of |〈u cos(45°) +
v sin(45°)〉| in P1 as a function of the frequency. The polarization bands are the same
depicted in figure 5.2. With reference to figure 5.15, it is important to take into
account that the propagating waves are polarized in the eeeI-direction; therefore, in
the blue zone (ρ0I <0) |〈u cos(45°) + v sin(45°)〉| is mainly absorbed. Also in this case,
the trend of |〈u cos(45°) + v sin(45°)〉| at the opening frequency of the blue band is
affected by an absorption which takes place in very few cells. However, differently
than the cases described in sections 5.1 and 5.2, in three different frequencies,
|〈u cos(45°) +v sin(45°)〉| is not absorbed but shows some peaks of amplification. The
reason is related to the presence of global resonant modes of the matrix only.
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Figure 5.14. Media of 7×21 cells and eccentric fibers with θ = 45°, employed in the inclined
transmission analysis.

Figure 5.15. Transmission spectrum of |〈u cos(45°) + v sin(45°)〉| in P1 as a function of the
frequency for the inclined transmission analysis.

The frequency responses of the three peaks of amplification, which occur in the
blue band, are shown in figure 5.16. These peaks are associated to global resonant
modes of the matrix only.

However, these modes, in correspondence of the three peaks, are the cause of
the amplification of the wave in a polarization band in which the expected result is
an absorption. A possible solution, to reduce such a problem, could be to consider
a larger domain for the transmission analysis of the metamaterial, which however
would increase the computational burden.
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Figure 5.16. Contour plot of u cos(45°)+v sin(45°) on the deformed shape for: a) ω/2π = 540
Hz b) ω/2π = 591 Hz c) ω/2π = 677 Hz.

In this blue polarization band, when the global resonant modes occur, the absorp-
tion is not achieved but it is always provided that |〈−u sin(45°)+v cos(45°)〉|>|〈u cos(45°)+
+v sin(45°)〉| in P1, as shown in figure 5.17. The latter shows the close-up view of
the transmission spectrum of figure 5.15 at three different frequency ranges which
contain the peaks of amplification. In order to provide a more accurate trend for
the peaks, it has been developed a more refined frequency discretization in the finite
element analysis.

With reference to figure 5.17, it is possible to notice that in the eeeII-direction in
which ρ0II >0, the propagation is always higher than in the eeeI-direction in which
ρ0I <0. This effect is pronounced at the opening of the blue band (a) but it is reduced
in (b) and (c). The peaks of the green curve, in all the three cases, have the same
order of magnitude, while the values of the peaks related to the black curve increase
from figure 5.17 a) to figure 5.17 c). The most important aspect to consider is that,
observing the close-up view of figure 5.17, mode conversion can be achieved within
the polarization band. The displacement |〈−u sin(45°) + v cos(45°)〉|, represented by
the green curve, is oriented as eeeII which is orthogonal to eeeI . These results are very
important because they ensure the achievement of one of the aims of the thesis.
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Figure 5.17. Close-up view of the transmission spectrum of figure 5.15 at frequencies: a)
ω/2π = 540.1 Hz b) ω/2π = 591.5 Hz c) ω/2π = 676.4 Hz. The black line is
|〈u cos(45°) + v sin(45°)〉| and the green line is |〈−u sin(45°) + v cos(45°)〉|.

Focusing our attention on point P2, figure 5.18 shows the semi-logarithmic
transmission spectrum of |〈−u sin(45°) + v cos(45°)〉| in P2 as a function of the
frequency.

Figure 5.18. Transmission spectrum of |〈−u sin(45°) + v cos(45°)〉| in P2 as a function of
the frequency for the inclined transmission analysis.

With reference to figure 5.18, the propagating waves are now polarized in the
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eeeII-direction and, thus, in the red zones (ρ0II <0) |〈−u sin(45°) + v cos(45°)〉| is
mainly absorbed. At the opening frequencies of the red bands, the trend of
|〈−u sin(45°) + v cos(45°)〉| is probably affected by global resonant modes since
normally, at the opening of the bands, the wave absorption occurs in very few cells.
Moreover, at a frequency of the second red band, |〈−u sin(45°) + v cos(45°)〉| is not
absorbed but shows a peak of amplification due to the presence of a global resonant
mode of the matrix only.

The frequency responses of the peaks, that occur at the opening frequencies of
the red bands, and the peak of amplification, which occurs in the second red band,
are shown in figure 5.19. These peaks are related to global resonant modes of the
matrix only.

Figure 5.19. Contour plot of −u sin(45°) + v cos(45°) on the deformed shape for: a) ω/2π =
306 Hz b) ω/2π = 368 Hz c) ω/2π = 392 Hz.

Also in this case, in order to reduce this problem, a solution could be to take into
account a larger media for the transmission analysis. However, the computational
burden would considerably increase.

In these red polarization bands, in correspondence of the frequencies in which
global resonant modes occur, the absorption is not reached; however, it is always
confirmed that |〈u cos(45°) + v sin(45°)〉|>|〈−u sin(45°) + v cos(45°)〉| in P2, as shown
in figure 5.20. The latter shows the close-up view of the transmission spectrum of
figure 5.18 at three different frequency intervals which include the peaks taken into
consideration. Also in this case, it has been performed a more refined frequency
discretization in the finite element analysis for obtaining a more accurate trend of
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the peaks.

Figure 5.20. Close-up view of the transmission spectrum of figure 5.18 at frequencies: a)
ω/2π = 306.2 Hz b) ω/2π = 367.4 Hz c) ω/2π = 392.4 Hz. The green line is
|〈−u sin(45°) + v cos(45°)〉| and the black line is |〈u cos(45°) + v sin(45°)〉|.

With reference to figure 5.20 a) and b), the refined frequency discretization
shows that the peaks at the opening frequencies of the red bands are actually of
amplification. As shown in figure 5.20, in the eeeI-direction (ρ0I >0), the propagation
is always greater than in the eeeII-direction (ρ0II <0). With reference to the second
red band, the values of the peaks related to the green curve increase from figure
5.20 b) to figure 5.20 c), while the peaks of the black curve have the same order of
magnitude. Observing the close-up view of figure 5.20, mode-converting mechanisms
can be obtained inside the polarization bands. |〈u cos(45°) + v sin(45°)〉|, represented
by the black line, is directed as eeeI which is orthogonal to eeeII . Also for this case,
these results are meaningful because they guarantee the achievement of one of the
goals of the work.
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Conclusions and further
developments

The present work, focused on polarization control of elastic waves in anisotropic
locally resonant metamaterials, has two main aims. The first one consists on studying
the effect of the equivalent anisotropic dynamic mass density tensor, obtained through
the homogenization approach, on band gaps and polarization bands. Through the
study of the eingenvalues of the effective mass density tensor, the effects of several
geometric parameters, related to the metamaterial taken into consideration, are
highlighted. The second aim, which represents the core of the work since it is strictly
related to real applications, is to demonstrate that the polarization bands, predicted
by the homogenization technique, can effectively provide the polarization conversion
of elastic waves and allow for mode-converting mechanisms.

We consider a ternary locally resonant metamaterial in which the unit cell, pe-
riodically repeated, is composed by a stiff matrix, a soft cylindrical coating and a
heavy eccentric cylindrical fiber. The two-scale asymptotic homogenization technique
is implemented in order to obtain the anisotropic dynamic mass density tensor. The
study of the eigenvalues of this tensor allows us to predict band gaps and polarization
bands. Furthermore, the band gaps can be qualitatively compared with the ones
obtained by the Bloch-Floquet analysis. The results show that these frequency
intervals are in good agreement from a qualitative point of view. The most important
aspect to take into account is the role of the homogenized mass density tensor in the
effective dispersion properties of the periodic media. In particular, the sign of the
two principal mass components of this tensor governs the elastic wave propagation.
Elastic waves can propagate in the case in which both the mass components are
positive (pass bands) and they cannot propagate without attenuation when both the
principal mass components are negative (band gaps). In the polarization bands, in
which the mass components have a different sign, elastic waves can propagate with a
unique polarization vector which direction is close to the principal direction of the
positive mass component. From the numerical results, it is possible also to observe
that, when the ratio between the negative and the positive mass tends to infinity,
the polarization direction coincides with the principal direction of the positive mass.
This ratio tends to infinity when the opening of the polarization bands occurs.
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With reference to the second aim, several numerical transmission analyses have
been developed for different geometric configurations of the locally resonant meta-
material. Starting from simple monodimensional arrays, the transmission spectra
show that the polarization bands, predicted by the homogenization, act as filters
that are able to absorb a wave with a polarization direction that is orthogonal to the
one provided by the wave itself. At the opening of these polarization bands, it is
shown that the wave is attenuated very efficiently in the first few cells. However, for
the cases in which the eccentricity of the fiber is horizontal or vertical in the plane,
mode-conversion cannot be achieved. In order to demonstrate the possibility to
generate mode-converting mechanisms, a bidimensional array has been considered in
which the eccentricity of the fiber is inclined by 45° with respect to the horizontal axis
of the plane. In this case, global structural modes occur in the polarization bands
in which the expected result is a wave absorption. These global structural modes
take place since the geometry of the bidimensional array is finite. One can consider
to extend the geometric configuration of the array but the time requested for the
finite element analysis could be very long. Even if the global structural modes affect
the results, mode-converting mechanisms are achieved in the polarization bands. It
is shown that these bands provide a preferential wave polarization direction that
is orthogonal to the direction in which the wave should be absorbed. This is an
important result because mode-converting mechanisms are able to generate, e.g. [23],
shear waves from a initial propagation of longitudinal waves. Shear waves, as shown
in literature, are very useful in the civil engineering field, such as in non-destructive
testing methods. Ultrasonic shear-wave tomography is a very diffuse technique that
is able to detect cracks and delaminations in the reinforced concrete structures. Shear
waves provide an higher resolution since they are slower than the longitudinal waves.

We studied the effects of two main geometric parameters, related to the meta-
material taken into account, on band gaps and polarization bands. In particular,
it was possible to implement several numerical evaluations of the effective mass
density tensor within different values of these geometric parameters. Band gaps and
polarization bands, identified by the components of this tensor, can be compared
for different values of the geometric parameters. With reference to the influence of
the fiber radius with a fixed fiber eccentricity, it was possible to notice that for low
values of this geometric parameter, the polarization bands are fully separated with
short sizes and, thus, the band gaps are not achieved. While for higher values of the
fiber radius, the polarization bands are larger and overlap providing the band gaps.
The other case which has been analyzed is the one related to the influence of the
fiber eccentricity with a fixed fiber radius. In the latter case, it was possible to notice
that, increasing this geometric parameter, the polarization bands tend to be more
separated with a lower possibility to achieve full band gaps. This is an expected
result since the effective mass density tensor tends to be more anisotropic when the
fiber eccentricity increases. When this geometric parameter is null, the effective mass
density tensor becomes isotropic and, thus, only the band gap is obtained. Another
interesting aspect is that these two separated analyses can be used in combined way
in order to provide a suitable geometric configuration of the metamaterial for specific
purposes. Furthermore, these parametric analyses can be extended also considering
other material parameters.
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The previous parametric discussion is strictly linked with an open topic which is
the metamaterial optimization. Iterative optimization algorithms, such as genetic
algorithms, can be numerically implemented in order to provide a suitable geometric
configuration of the metamaterial useful for specific aims. The aim of these algorithms
is to satisfy an objective function finding the optimal combination of several design
variables. In the context of this thesis, an objective function can be related to the
achievement of maximum mode-conversion in specific polarization bands and the
design variables can be the geometric parameters related to the metamaterial, such
as the angle of the fiber eccentricity.
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