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Abstract

Agriculture is experiencing a crisis due to economical, social, political, and climatic fac-
tors, causing a dropping in manpower in farming. Accordingly, research in robotics has
been expanded to improve productivity, specialization, and environmental sustainability
in the sector.

Collaborative robots are presenting exciting solutions for the collection of fruits. In berry
cultivation, labour represents the largest cost and a vast operational uncertainty for farm-
ers. Therefore, automation is desirable even though picking small soft crops is challenging
for manipulators since it requires high accuracy and robustness while working in unstruc-

tured environments.

This thesis work aims to address some issues in the field of autonomous strawberry har-
vesting. It tackles the problem of perception using modern object detectors such as DETR
and Detectron2 to identify and classify fruits by ripeness and occlusion properties. Re-
garding the reach-to-pick task, it exposes some improvements on the Deep-Probabilistic-
Movement-Primitives model for trajectory generation. The main novelty stands in the
introduction of a deep model based on Graph Attention Networks for the prediction of
picking scheduling from visual input. This allows human-like reasoning to reduce failures
in autonomous harvesting.

A trajectory dataset and annotated strawberry images dataset are collected and processed
for this work. The overall proposed procedure for the autonomous collection of a specific

berry target was tested with a Franka Emika robotic arm.

Keywords: Robotics, Reach-to-Pick, Learning from Demonstration, Object Detection,

Scheduling, Graph Attention Network, Strawberry.
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Abstract in lingua italiana

L’agricoltura sta attraversando una crisi dovuta a fattori economici, sociali, politici e
climatici, che stanno causando una diminuzione della manodopera in questo campo. Di
conseguenza, parte della ricerca in robotica si ¢ sviluppata con lo scopo di migliorare la
produttivita, la specializzazione e la sostenibilita ambientale nel settore.

I robot collaborativi stanno introducendo soluzioni interessanti nel campo della raccolta
della frutta. Nella coltivazione dei frutti di bosco, la manodopera rappresenta il costo
maggiore, nonché una incertezza operativa per gli agricoltori. Pertanto I’automazione in
questo settore sarebbe vantaggiosa, nonostante maneggiare piccoli frutti sia impegnativo
per i manipolatori poiché richiede elevata precisione e robustezza lavorando in un ambiente

non uniforme.

Questo lavoro di tesi affronta alcune problematiche relative alla raccolta autonoma delle
fragole. Propone l'utilizzo di moderni strumenti di object detection come DETR e De-
tectron2, per identificare e classificare i frutti in base alle proprieta di maturazione e
occlusione. Per quanto riguarda il problema di reach-to-pick, espone alcuni miglioramenti
al modello Deep-Probabilistic-Movement-Primitives per la generazione di traiettorie. Ma
la principale novita sta nell’introduzione di un deep model basato su Graph Attention
Networks per la predizione di uno scheduling di raccolta partendo da input visivi. Cio
permette una percezione simile a quella umana, con lo scopo di diminuire le imprecisioni
nella raccolta autonoma.

Per questo lavoro di tesi sono stati raccolti ed elaborati un dataset di traiettorie e un
dataset di immagini di fragole provvisto di annotazioni. La procedura proposta per la
raccolta autonoma di una specifica fragola é stata testata su un braccio robotico Franka
Emika.

Parole chiave: Robotica, Reach-to-Pick, Learning from Demonstration, Object De-

tection, Scheduling, Graph Attention Network, Fragola
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]_ ‘ Introduction

1.1. Awutomation in the farming industry

The field of Agricultural Robotics has been increasing in the past years. The demand for
new technologies has been imposed by different social, political, and economic factors [1];

this is an indication of how relying on human labour is not safe for the agricultural chain.

1.1.1. Arising issues in the agricultural sector

Since the global population is increasing, with a projection of 9.7 billion people by 2050,
agricultural production will need to increase by at least 70% from current levels to serve
nutritional trends. This is bringing our planet’s health under even more stress [2]: it is
well known that climate change is becoming a growing threat to agricultural systems as
they operate under progressively hostile conditions like erratic rainfalls, drought spells,
and floods [3].

Global food security mainly depends on the price of fossil fuels to manufacture fertilizers
and pesticides, run tractors, heat greenhouses, etc. Russia and Ukraine account for 73%
of the sunflower oil trade (mainly from Ukraine). Russia is the world’s largest fertilizer
exporter, the world’s 2nd largest oil exporter, and the world’s 1st natural gas exporter.
The country accounts for 10% of global nitrogen fertilizer exports, 10% of global phos-
phate fertilizer exports and 17% of global potassium fertilizer exports [4]. They also
account for 12% of all calorie exports traded internationally. These two countries repre-
sent 23% of global wheat exports as well as 16% of global corn exports, which corresponds
respectively to the 7% and 3% of global consumption [4]. Today, the war in Ukraine and
its consequences prove once again the fragility of our globalized agricultural and food

systems.

The recent COVID-19 pandemic introduced a new problem by imposing restrictions on
travelling. Let us consider that more than a quarter of all Italian food is produced by
the over 370,000 seasonal workers who travel to the country each year [5]. But this is

not to be considered circumscribed to the pandemic problem: according to the European
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Number of people employed in agriculture, 1801 to 2019

Agriculture includes the cultivation of crops and livestock production, as well as forestry, hunting, and fishing.
Employment includes anyone engaged in any activity to produce goods or services for pay or profit.

16 million
14 million
12 million
10 million

8 million

6 million

Japan
— United States
South Korea

N J Spain
2 million - “||~ France
X United Kingdom

== — ||~ Sweden
— _ r Belgium

0I T T T =
1801 1850 1900 1950 2019

4 million

Source: Our World in Data based on International Labor Organization (via the World Bank) and historical sources
OurWorldInData.org/employment-in-agriculture « CC BY

Figure 1.1: Number of people employed in agriculture |8|

Commission president, FEurope and the rest of the world must prepare all sectors to cope

with an “era of pandemics” [6].

Being an agricultural worker comes therefore with many more risks. The labour shortage
was already a growing problem for the past decade: a study from the International Labor
Organization (ILO) shows that the manpower of agricultural workers dropped from 81.0%
to 48.2% in developing countries and from 35.0% to 4.2% in developed ones since 2014

[7]. A decline of 12.8% is observed in the European agriculture sector alone.

1.1.2. Robots in agriculture

The objective of agricultural robotics is to help the sector in its efficiency and in the
profitability of the processes. In other words, mobile robotics (and manipulator robotics)
works in the agricultural sector to improve productivity, specialization, and environmental
sustainability. The incorporation of robotics in agriculture improves both productivity

and working conditions. Intelligent systems are becoming the ideal solution to drive
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precision agriculture [9]. Agricultural robots are increasing production yields for farmers

in various ways, automating slow, repetitive, and dull tasks [10].

The quality of the agri-food chain is one of the excellence of Made in Italy, but to maintain
this primacy, especially in the current historical period, traditional strategies in agricul-
ture must be accompanied by those of Agriculture 4.0.

Sigma Consulting describes Agriculture 4.0 as a synergy of the use of various innova-
tive digital technologies such as Internet of Things (IoT), 5G Radio, Big Data Analytics,
Artificial Intelligence, and Robotics, which offer the possibility to expand the data val-
orization approach to multiple company functions (e.g. logistics, planning, management
control) and, to the entire agri-food chain, aimed at improving the yield and sustainabil-
ity of agricultural activity, production and processing quality, social conditions and the

environmental impact of the entire agri-food chain [11].

Therefore, global spending on “smart” agriculture, including AT and machine learning, is
projected to triple to $15.3 billion by 2025 [12]. The market size of Al in agriculture
should expect a compound annual growth rate (CAGR) of 20%, reaching $2.5 billion by
2026 [13)].

1.2. Case study: strawberries

Collaborative robots are now commonly used in fruit harvesting or insect grafting and
cultivation, where Artificial Intelligence provides predictive data to optimize farms and

plantations [9].

In the early 2010s, while robots were already incorporated in many areas of agricultural
work, they were still largely missing in the harvesting of various crops. This started to
change as companies began to develop robots that complete more specific tasks on the
farm. The major concern over robots picking fruit comes from harvesting soft crops such

as strawberries which can easily be damaged or missed entirely [14, 15].

Strawberries are popular fruits consumed in almost all parts of the globe, and this expan-
sion is a result of the fruit adaption capability that makes cultivation possible in multiple
climates. The efforts of producers and scientists were also aimed to expand strawberry
production and commercialization, generating adaptive systems that allow the cultivation
of fruit to specific conditions of each region. Furthermore, the production and commer-
cialization of strawberries are present in 76 countries, reaching a global production of 7.7
million tons in 2013. This consumption has increased in the 21st century and has been

accompanied by technological innovations that allow the availability of strawberries all
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Figure 1.2: Dyson strawberries poly-tunnel farm [20]

year long, thus feeding a continuous market demand [16].

In the European sphere, Italy is the fourth country for strawberry production (around
140,000 tons), on a surface of 3,700 ha, 80% of which takes place inside covered spaces.
Greenhouses are located in the northeast of the Emilia Romagna Region, one of the most
important horticultural areas in Italy, both for the variety and quality of the products
[17].

Labour represents the largest cost and also a vast operational uncertainty for strawberry
farmers [18]: labour costs for the domestic strawberry industry approach about $1 billion
annually, and equipment costs are competitive compared to human harvest ones [15].

Therefore, automated fruit picking is desirable. However, despite extensive research over
the past four decades, there are no mechanical harvesters for the fresh market commer-

cially available, for strawberries and many other crops [19].

1.2.1. Robots challenges in strawberry farms

Robotic picking at a commercial level needs to overcome problems that are mended in
hand-picking due to human expertise. Selective harvesting is a well-known and studied
topic. Parsa et al. [21]| already exposed a work reasoning on these scientific research
questions in the specific strawberry case. First of all, berries are easily damaged and
bruised. Secondly, this kind of harvesting requires highly selective procedures, since these

fruits tend to ripe unevenly; as a result, at a given time, berries exhibit large variations
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Figure 1.3: Franka configuration, in the robotics laboratory of the Univesity of Lincoln

in colour and size. Finally, strawberries tend to grow in clusters, which makes it hard to

identify and pick them individually [22].

So a harvesting robot needs to be a tightly integrated system, incorporating advanced
features and functionalities from numerous fields, including navigation, perception, motion
planning, and manipulation. These robots are also required to operate at high speed, with
high accuracy and robustness, and at a low cost, all features that are especially challenging

in unstructured environments, such as strawberry farms [23].

1.2.2. Picking scheduling decision problem

Scheduling of the order of picking is needed to collect a set of objects.
Many Computer Vision (CV) tools allow a machine to identify strawberries in an image.

Nowadays, AT techniques can even classify berries as ripe or unripe [24].

Choosing a random target from the objects identified as pluckable might lead to a failure
in the picking. It would be simpler to raise an isolated strawberry, but they grow in
clusters. Accordingly, they are often occluded with respect to the robot view by leaves or
other berries; hence these fruits do not share reachability easiness.

The human eye is able to identify which element is better to take first. It can also plan
the harvesting of a whole cluster, taking into consideration how plucking one strawberry

could ease the visibility of another one, and so on.

Notwithstanding how teaching a machine to output an optimized order of the raise would
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complete the automation of fruit harvesting, the state of the art still lacks research on Al

techniques for scheduling fruit picking.

1.3. Thesis research objectives and achievements

This thesis work was carried out at the Intelligent Manipulator Lab of the University of

Lincoln. The problems addressed in the research are:

e identification of strawberries from an image;

classification of ripe and unripe strawberries;

classification of occlusion properties of ripe strawberries;

picking scheduling decision;

motion planning for reach-to-pick.

The novelty of this work stands in the proposal of a deep model for outputting the
scheduling order of strawberry picking starting from information about strawberries in an

image.

A Franka Emika Panda Manipulator with an eye-in-hand RealSense camera was used. To
formulate an initial simple problem, these constraints were followed: the robot returns to
its home position after arriving at each berry; the images collected from the camera are
exploited only before any trajectory generation, so there is the sole possibility of frontal

view perception.

To obtain an optimal harvesting order, a dataset of human-chosen scheduling was used,
so that the decision of an individual could be mimicked. Two heuristic scheduling com-
putations are also proposed, estimated using Fuclidean distances between strawberries,

and a weighted score to represent the occlusion properties.

During the testing of the in-development work, it was noted that after the picking of a
single berry, the configuration of the cluster might change, since the manipulator might
collide with leaves or other fruits. Although being able to output directly the whole
sequence of order of picking is an interesting challenge, it could be fairly important to

evaluate just which is the easiest element to be picked.
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1.4. Thesis structure

Chapter 2 - State of the art: Overview of the state-of-the-art technologies used for

motion planning in a reach-to-pick task, and strawberry visual perception.

Chapter 3 - Deep Probabilistic Movement Primitives for Motion Planning:
Explanation of the theory that builds the Deep Probabilistic Movement Primitives model

and proposed improvements to this approach.

Chapter 4 - Scheduling decision: Report on the object detection and Graph Attention

Network models for the identification of the strawberries and the scheduling prediction.

Chapter 5 - Experimental Setup: Description of the trajectories and annotated im-
ages datasets and their preprocessing. Illustration of the integration of the models for the

testing of this research in a laboratory.

Chapter 6 - Results and Discussions: Presentation of the results obtained for the
various models of strawberry detection and scheduling prediction and comments on the

trending of these.

Chapter 7 - Conclusions and future developements: Summary of the main topics

of this thesis work and proposals on possible next steps.
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2 State of the art

This chapter reports a detailed overview of the state of the art of technologies used in
this specific work: trajectory planning for a reach-to-pick task, strawberries perception

and classification, and deep learning models to handle graph data.

2.1. Deep Learning in Motion Planning for Reach-
to-pick task

Arisen as a subfield of Artificial Intelligence (AI), Machine Learning (ML) is the field of
study that gives computers the ability to learn without being explicitly programmed. [25]; in
a few words, it uses data to gain models. In turn, Deep Learning (DL) is a class of machine
learning algorithms that learns data representation directly from data, by progressively
extracting higher-level features from the raw input. ML and DL processes make use of
Neural Networks (NN), a very complex mechanism made of simple neurons organized in
layers. An example of NN is in Figure 2.1

As will be described below, research on motion planning started way before the introduc-
tion of AL

Learning from demonstrations (LfD) is a well-established technique for teaching
robots how to perform useful tasks. The basic idea is that the robot learns behaviour
from one or several demonstrations performed by a teacher, most often human [26]. In
the task of trajectory generation, this has been exhaustively exploited.

For example, Movement Primitives (MPs) are commonly used for representing and
learning basic movements in robotics. MP formulations are compact parameterizations of
the robot’s control policy. Modulating their parameters permits imitation and reinforce-
ment learning as well as adapting to different scenarios [27].

The control policies of a fundamentally different approach to motion representation, based
on nonlinear dynamic systems as policy primitives, were termed Dynamic Movement

Primitives (DMPs). DMPs are based on methods of second-order differential equations
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Figure 2.1: Fully-connected Neural Network

to encode the properties of the desired motion. Equations have been developed for peri-
odic and discrete movements. One of the most critical advantages of DMPs is the ability
to take into account perturbations and include feedback terms, which can be added to
change the timing and/or avoid some areas of the workspace [28].

Probabilistic movement primitives (ProMPs) was introduced as a general proba-
bilistic framework for representing and learning MPs; it is a distribution over trajectories.
Since a trajectory distribution can also encode the variance of the movement, a ProMP
can often directly encode optimal behaviour in stochastic systems. Moreover, a proba-
bilistic framework allows the modelling of the covariance between trajectories of different

degrees of freedom, which can be used to couple the joints of the robot [27].

Recently, some LfD approaches were proposed directly mapping the visual perception
into the learned trajectory. Deep Movement Primitives (deep-MP) captures the
correlation between the visual information and the corresponding manipulation trajec-
tories, for complex trajectory/path planning tasks [29]. This work was extended with
Deep Probabilistic Motion Planning (d-PMP), an approach that maps the visual
sensory information into a distribution of robot trajectories, generating distributions of
trajectories by the corresponding mean and variance [30]. This probabilistic approach to
Deep LfD outperforms the state-of-the-art method in a series of real robot tasks of mock

strawberry picking.



2| State of the art 11

2.2. Object Detection for strawberries identification
and classification

Object detection is a key field in artificial intelligence, allowing computer systems to
“see” their environments by detecting objects in visual images or videos. It is one of the
fundamental problems of computer vision, forming the basis of many other downstream
computer vision tasks such as instance and image segmentation, image captioning, object
tracking, and more [31]. The goal of object detection is to predict a set of bounding boxes

and category labels for each object (or in this case fruit) of interest.

Fruit detection and classification remain challenging due to the form, colour, and texture
of different fruit species. Classification of fruit is a relatively complex problem due to
the vast number of varieties. In species and varieties, significant variations in appearance
occur including irregular forms, colours, and textures. Moreover, images are easily blurred
by natural lighting, and a small change in camera view can have a great impact on depth
perception and occlusion. This weakness led to the absence of real-life implementations
of multi-class automated fruit classification systems [32]. In this work, the classification
task is limited to one fruit - the strawberry - with multiple classes to distinguish different

properties of occlusion of the berries.

Object detection has evolved over the past 20 years. It can be performed using either
traditional image processing techniques or modern deep learning networks. The pioneering
work that started the development of traditional object detection methods is Viola-
Jones Detector (2001) [33]; other milestones are from HOG Detector (2006) [34], a
popular feature descriptor for object detection in computer vision and image processing,
and DPM (2008) [35] with the first introduction of bounding box regression. Image
processing techniques generally do not require annotated images (where humans labelled
data manually for supervised training) for training and are unsupervised in nature. These
techniques are restricted to multiple factors, such as complex scenarios without unicolour

background, occlusion, illumination and shadows, and clutter effect [31].

Deep Learning methods depend on supervised or unsupervised learning, meaning they
can infer a function both from a finite set of labelled or unlabelled data. Specifically
designed networks to process pixel data are the Convolutional Neural Networks (CNN);
convolution is a mathematical operation * on two functions (f and g) that produces a
third function that expresses how the shape of one is modified by the other. Note that
the performance of these DL models is limited by the computation power of GPUs.

In general, DL-based object detectors extract features from the input image or video
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frame. An object detector solves two subsequent tasks: find an arbitrary number of
objects (possibly even zero); classify every single object, and estimate its size with a
bounding box. To simplify the process, those tasks can be separated into two stages.
Other methods combine both tasks into one step to achieve higher performance at the cost
of accuracy. The two-stage architecture involves object region proposal with conventional
Computer Vision methods or deep networks, followed by object classification based on
features extracted from the proposed region with bounding-box regression. These methods
achieve the highest detection accuracy but are typically slower, because of the many
inference steps per image. Various two-stage detectors include region convolutional neural
network (RCNN) [36], with evolutions Faster R-CNN [37] or Mask R-CNN [38]. The
latest evolution is the granulated RCNN (G-RCNN) [39]. Chen et al. [40] employed a
faster region-based convolutional neural network for fruit detection in orchards. Villacrés,
and Auat Cheein [41] went ahead to employ Faster R-CNN in a more unique and modified

way for the purpose of cherry detection and characterization.

Two-stage object detectors first find a region of interest and use this cropped region for
classification. However, such multi-stage detectors are usually not end-to-end trainable
because cropping is a non-differentiable operation. On the other end, one-stage detectors
predict bounding boxes over the images without the region proposal step. This process
consumes less time and can therefore be used in real-time applications. Such detectors
prioritize inference speed but are not as good at recognizing irregularly shaped objects or
a group of small objects [31]. The most popular one-stage detectors include the YOLO
[42], SSD [43], and RetinaNet [44]. Kirk et al. [45] proposed this model for a rapid and
robust outdoor fruit detection system combining bio-inspired features with one-stage DL
networks. The latest real-time detectors are YOLOv7 (2022) [46], YOLOR (2021) [47]
and YOLOv4-Scaled (2020) [48]. YOLO has earned popularity due to its ability to detect
tiny objects of which various researchers utilized different versions for the purpose of fruit
detection. For example, a mango-based model was proposed by Jia et al. [49] for a task
of real-time fruit detection and orchard fruit load estimation; this is the integration of the
YOLO V3 and YOLO V2 (tiny) networks which form the benchmarking of “Mango Yolo”
[50].

Deep learning object detection is significantly more robust to occlusion, complex scenes,
and challenging illumination. Unfortunately, a huge amount of training data is required;
the process of image annotation is labour-intensive and expensive. For example, labelling
500’000 images to train a custom DL object detection algorithm is considered a small
dataset. However, many benchmark datasets (MS COCO, Caltech, KITTI, PASCAL
VOC, V5) provide the availability of labelled data. For this work, a new labelled dataset of
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images of strawberries is provided, described in chapter 5.2.1. Today, deep learning object
detection is widely accepted by researchers and adopted by computer vision companies to

build commercial products [31].

To establish a fair comparison between different detectors many metrics were defined over
the years. IoU metric evaluates the division between the area of overlap and the area
of union. In other words, it evaluates the degree of overlap between ground truth and
predictions. It ranges from 0 to 1, where 1 would be a perfect overlap between the ground
truth and the prediction.

In classification, a correct detection is termed a true positive (TP), an incorrect one false
positive (FP), while a false negative (FN) is a Ground-truth not detected. With these

values, we can evaluate precision and Recall.

- TP -
TecCtsion == ————— .
b TP+ FP
TP
= ——" 2.2
T = TP FN (22)

Precision indicates the proportion of correct positive identification. The recall relates to
the proportion of actual positives that were correctly identified.
When plotting the precision-recall curve evaluated at an IoU threshold, we get the Average

Precision (AP):
1
APa:/ p(r)dr (2.3)
0

where “a”” is the threshold value, p is the precision, and r is the recall value.
When considering a multi-class object detector the mean average precision (mAP) gives

the mean AP across all classes.

Q

where “AP” is the average precision of each “q” class and “Q” is the number of classes.

MAP = (2.4)

In recent years, object detection performance has improved significantly, with an increase
from 30% mean average precision (mAP) to more than 90% in 2018 on the PASCAL VOC
benchmark (measured on the PASCAL VOC object detection public dataset). The main
driver of these improved results was the use of Deep Learning. With the development of
new technologies that allow faster and easier pipelines and the availability of large-scale

open data sets, the development of powerful models has become a reality [51].
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Figure 2.2: DETR Architecture, from the paper “End-to-end object detection with trans-
formers” [53|: DETR directly predicts (in parallel) the final set of detections by combin-
ing a common CNN with a transformer architecture. During training, bipartite matching
uniquely assigns predictions with ground truth boxes. Prediction with no match should

yield a “no object” class prediction.

This thesis work uses a couple of famous architectures:

e Detectron2 [52]: based on Masked-RCNN, it has become the standard for instance
segmentation. It is also able to detect keypoints for human pose estimation. It was

fine-tuned for strawberry segmentation and keypoint estimation [24].

e DETR |[53]: consists of a convolutional backbone followed by an encoder-decoder
Transformer which can be trained end-to-end for object detection. It greatly simpli-
fies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which
use tools like region proposals, non-maximum suppression procedures, and anchor
generation. Moreover, DETR can also be naturally extended to perform panoptic

segmentation [54|, by simply adding a mask head on top of the decoder outputs.

2.3. Graph Neural Networks for scheduling fruit har-
vesting

With a model designed for an object detection task, it’s difficult to learn a scheduling
order of picking - for example, by classifying fruits as first-to-be-picked or not - from a
visual input. Instead, every berry should learn its representation in the contest of the
cluster, to acquire knowledge on its easiness-of-picking with respect to the other straw-
berries in the neighbourhood. This is the field of Graph Neural Networks. In this section,

there is an overview of the evolution of these networks and their purpose.

Any set of objects and the connections between them is naturally expressed as a graph. In

numerous scientific tasks, the data is suitably represented by a graph structure. This ap-
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plies to telecommunication networks, but also to 3D meshes, molecules or other biological

networks, and so on [55].

Graph Neural Networks were introduced in 2006 by Scarselli and Gori [56] and in
2008 [57|, setting the mathematical foundations for the Graph Neural Network. It can
be seen as a recursive neural network - meaning a NN that recursively applies the same
set of weights on structured inputs- which can directly deal with any cyclic, directed,
and undirected graph. A GNN can be used for graph-level, node-level, or edge-level
predictions.

Single nodes are defined by a vector with a set dimension, that encodes features (e.g.
colour for an image’s pixel, an object’s pattern, etc). The edges have a representation
vector, too, to describe the relationship among nodes (e.g. “distance” between them).
The main idea behind GNNs is to propagate nodes’ information among neighbours, and
aggregate them to create for each node features enriched with other nodes’ representations.
It’s an iterative process, which propagates the node states until a certain threshold is

reached [58]. An illustration of the functioning of these networks is in Figure 2.3

DeepWalk [59] came out in 2014 as a potential improvement for GNN. It’s the first
graph to implement the embedding method and it is based on representation learning and
language modelling — SkipGram model [60]. DeepWalk returns latent representations
of an input graph based on nodes’ social attributes [61]. The graph is described as
G = (V, E), with V vertices and E edges.

From 2014 to 2017, a lot of publications were made in the attempt of applying CNNs to
graphs [62]. The reason behind this was to highlight the relationship between the spectral
analysis of a graph and the convolution operation; this is possible just by adapting the
grid convolution operation in a graph domain [63]. Graph Convolutional Neural
Networks (GCNs) have been wildly used for object detection and classification tasks;
for example, Sajitha et al. [64] introduce a GCN for banana’s fruit disease detection and

categorization, to overcome the main difficulties with phytopathology.

In 2016, Atwood and Towsley introduced Diffusion-Convolutional Neural Networks
(DCNN) [65, 66]. This network deals with the graph classification problem by learning a

summarization of local information through a diffusion process [67].

To handle graphs with evolving features or connectivities - dynamic graphs -, Tem-
poral Graph Networks (TGNs) were introduced, represented as sequences of timed
events. Using a combination of memory modules and graph-based operators, it’s a com-
putationally efficient approach [68]. Other models had already been introduced to deal

with dynamic graphs, represented as a sequence of graph snapshots [69], or that support
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a continuous-time scenario [70]. It is shown that such models can be cast as specific
instances of TGNs. The applications for this framework are many. Vyas et al. [71] pro-
posed a novel GNN-based solution that learns temporal graph structures and forecasts
soil moisture in an end-to-end framework, to schedule irrigation and optimize the use of

water.

In the contest of node classification of graph-structured data, Velickovié¢ et al. [72] pro-
posed an attention-based architecture called Graph Attention Network (GAT). It
follows a self-attention strategy, attending to each node’s neighbours to compute its rep-
resentation. The attention architecture is parallelizable across node neighbour pairs. It
can be applied to graph nodes with different degrees by establishing arbitrary weights for
the neighbours. Moreover, the model can handle inductive learning problems, so it can

deal with unseen graphs.
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Figure 2.3: Tllustration of a graph neural network. (A) A typical example of graph data.
(B) The embedding space. In this embedding space, each data point is represented by
a vector while the original topological information in (A) is preserved in that vector.
(C) The graph neural network for embedding the network in (A). Let’s use nodes a
and b as examples. The internal properties of each node are considered as the original
representations. In each layer, the nodes aggregate information from their neighbours and
update the representations with averaging and activation functions. The output of layer 2
is considered as the embedding result in this example. Notice that the parameters within
the same layer between different trees are shared so this method can be generalized to
the previously unseen graph of the same type. Image and description are taken from Li
et. al [73]
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3 ‘ Deep Probabilistic Movement
Primitives for Motion Planning

Probabilistic Movement Primitives (ProMPs) are a Learning from Demonstration tool
for generating a distribution over trajectories. A probabilistic approach can be preferred
over a deterministic one in terms of trajectory prediction: starting from a distribution of
trajectories, a sample from it can be chosen to meet secondary objectives such as collision
avoidance. The basics of Movement Primitives and ProMPs are described in the next

section.

Deep Probabilistic Motion Planning has been proposed to generate trajectories in reach-
to-pick motion in [30], mapping the visual information into a distribution of effective robot
trajectories. A couple of improvements can be easily implemented, which are explained

in this chapter.

3.0.1. Fundamentals of Deep-ProMPs

The Movement Primitives model [27] describes a trajectory ¢ as:

Nbas

q= Z Oipi(2(1)) + € (3.1)

introducing the trajectory weights 0; € R; the Gaussian basis functions vi(z(t)); the

function for time modulation z(t), z(t) = % (with f sampling frequency) if no modulation

is needed; the Gaussain noise ¢,. In this case, the Gaussian basis functions are chosen for

stroke-like movements:

-

(2(t) — )’
> bi(=(2))

bi(a(t)) 1= eap(— 50,

Equation 3.1 can be expressed in matrix form ¢, = U7 O + ¢,, defining
U, = (P1(2(8)), ooy Y, (2(2))) € RMas*l and ©, := (61, ..., O,,,) € RNvasx1,
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Figure 3.1: Starting from the left: compact weight representation of a trajectory for each
basis function; Gaussian basis functions; trajectory of a single DoF

Since this is valid for every joint of a robot, it is then defined also Q := (O, ...,Oy,,,,,) €
RNvasNjoint X1 and & 1= [Uy, ..., Up]T € RT*Noas,

Figure 3.1 shows an example of how a trajectory can be retrieved for a single joint from

oint

a compact weight representation with specific basis functions.

Probabilistic Movement Primitives model [27] introduces the probability of observing a

trajectory q; as

p(a]©) = N(q:| /0, %,). (3.2)

Being 3, always the same for every time step and ¢; taken from ii.d. (independent

identical distributions), then the probability of observing a trajectory ¢ is expressed as:

T

p(g1©) = [[ p(al©).

t=1

where weights © are assumed to be taken from a Gaussian distribution: © ~ p(6|p) =
N(Olue, Xe), taking p = (ue,Xe). Then, substituting in (3.2) we obtain:

pglp) = /N(qtl‘l’tT@, SN (Blpe, Ze)dO = N (q:| T} pe, Xy + ¥y Se ;)  (3.3)

In Figure 3.2, it’s shown an example of how from a weight distribution, with specific basis

functions, a trajectory distribution can be retrieved.

A step further is made by Deep Probabilistic Movement Primitives model[30], which learns
the relation between the mean vector ©,,cq, ; and covariance matrix Xg ; of a trajectory

distribution and an input image. This allows the mapping of visual information of a
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Figure 3.2: Starting from the left: weight distribution of a trajectory for each basis

function; Gaussian basis functions; trajectory distribution of a single DoF

robot’s workspace to the distribution of robot trajectories, for every joint j as:

@mean,jaz(a,j = fj(m/jvln?O-j) (34)

where f; is a non-linear function of the input image /™, W; is the weight parameter and
o; is the node activation. As it’s shown in Equation 3.3, the trajectory distribution can

now be retrieved as:
Qmean,j = (I)T@mean,j 5 Eq,j = (I)TZ@,j(I) (35)

The model has two parts: the first encodes the high-dimensional input RGB image in a
low-dimensional latent space vector using a set of convolutional layers; the second maps
the latent embedded vector to the relative ProMPs weights distribution using a Multi-
layer Perceptron per each joint. MPL is a neural network connecting multiple layers in a
directed graph.

For the encoding part different baselines were tested, such as auto-encoder (AE), Varia-
tional AE (VAE), and Conditional VAE (cVAE). AE is an unsupervised artificial neural
network composed of an encoder and a decoder. The encoder learns how to efficiently
compress and encode data, instead, the decoder learns how to reconstruct the data back
from the reduced encoded representation to a representation that is as close to the origi-
nal input as possible. By design, the model reduces data dimensions by learning how to
ignore the noise in the data [74]. A next step is done in VAEs, in which the latent space
is represented by the mean and covariance of a distribution so that multiple samples can
be generated from it |75, 76]. Further evolution is found in ¢VAEs, which inserts label
information in the latent space to force a deterministic constrained representation of the
learned data [77].
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Figure 3.3: d-PMP architecture from [30]

3.1. Improved Deep-ProMP

In the d-PMP paper [30] there are some annotations on possible future works. The solu-
tion to a couple of these is explored in this section.

A Root Mean Squared Error loss is used in the training phase of the model to judge the
error of the generated trajectory distribution. This should be corrected with a more justi-
fied metric such as Kullback-Leibler divergence (KLD), which measures how the predicted
probability distribution differs with respect to the ground truth one. Being p and ¢ two
normal probabilities distributions defined on the sample space with mean p and variance
>, KLD is defined as:

Dicu(ple) = 3 pla)log(2(0h) = S low (528 = k-t (1 = )57 + r(5750] (39

A visualisation of Kullback-Leibler divergence is in Figure 3.4.

Another improvement is regarding the joint correlation. Indeed there is a trained model
for each joint or task space degree of freedom (DoF). As a matter of fact, the model is
more accurate if it can output fewer values. To obtain a trajectory for a DoF 36 weights
are needed. These are used to reconstruct the mean and covariance of the trajectory
distribution. If the model had to output weights for all the DoFs, it would mean 252
values: a number too big for the proposed approach!

However, having an independent ProMP for each degree of freedom does not allow the

capturing of potentially important correlations between degrees of freedom, like the cor-
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Figure 3.4: Visualisation of KLD between two distributions p and ¢. Graphic inspired by
78]

relations between joint angles to achieve a desired end-effector pose. In the Probabilistic
Movement Primitives paper, the authors propose a way of encoding coupling between

joints, to coordinate their movement [27].

yie| |6 - - 0

p(yJw) =N : : : .| w,oy | = N(ye|®w, 0y) (3.7)

lyae| LO . .. ¢tT_

The problem of the dimension of the model output could be addressed with the right
preprocessing of the trajectories’ weights. In order to do this, a new dataset is needed.
The dataset collection and preprocessing are described in chapter 5.1.

This work was done in collaboration with another MSc student, whose thesis was devel-
oped in parallel to the present work. Starting from these improvements, he then proceeded
by introducing a novel model to map the visual sensory information into a distribution of

robot trajectories.
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4: Scheduling decision

This chapter enters in a detailed explanation of the techniques used to learn harvesting
scheduling from perception. First, it introduces the problem of the perception of the
fruits. Then, a couple of heuristic scheduling computations are described and confronted
with a human-decided harvesting order. Finally, it proposes a deep model for strawberry

picking scheduling decision.

4.1. Strawberries Object Detection

In the context of autonomous fruit harvesting, the first goal is to visualize the strawberries.
The perception can be done using any vision sensor or camera with an in-eye or in-hand

configuration. As shown in Figure 1.3, in this work an in-hand configuration was used.

After the perception, the second step is to identify the berries. Chapter 2.2 shows many
techniques that allow the prediction of bounding boxes and category labels. A manually
annotated set of images is needed to learn this task. As it is exhaustively described in
5.2.1, the dataset provided contains annotations with information on: bounding boxes,
occlusion properties, and human-decided scheduling. This information is on the ripe
strawberries only. The occlusion properties are chosen between four options: occluded,
occluding, occluded and occluding, or neither. So it can be trained a model that can
detect strawberries and classify them by distinguishing occlusion properties or order of

picking.

End-to-end Object Detection with Transformer [53] was shown to significantly outper-
form competitive baselines, viewing object detection as a direct set prediction problem.
The innovation stands in the encoder-decoder architecture based on transformers, a deep
learning model that adopts the mechanism of self-attention. This self-attention mecha-
nism, a technique meant to mimic cognitive attention first introduced by Vaswani et al.
[79], explicitly models all pairwise interactions between elements in a sequence making
these architectures particularly suitable for specific constraints of set prediction such as

removing duplicate predictions. On the cons, training any transformer-based architecture
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Figure 4.1: Eye-in-hand VS Eye-to-hand configuration [80].

requires a huge amount of data and computational power. To get around this the training
was not from scratch, but fine-tuning was done for 300 epochs starting from a DETR-DC5
benchmark model. Giving as input the dataset’s images and annotation files, the obtained
output is a detection and classification for the strawberries for the 5 classes of the occlu-
sion properties indicated in the data annotation - “occluded”; “occluding”, “occluded and
occluding”, or “neither”.

This model can now be used for obtaining annotations of bounding boxes and occlusion

properties of ripe strawberries starting from “raw” images of strawberry plantations.

Another fine-tuning was executed, this time exploiting the scheduling annotations and
treating as classes the scheduling orders. This wasn’t a successful attempt: it is difficult
to learn the number of order of picking a berry just by confronting it with other images of
berries with the same scheduling value. Moreover, as illustrated in Table 5.1, the classes
are imbalanced, so it is more different for a model to learn a classification. As shown in 4.4
(b), other issues of this approach were that in the output more strawberries can have the
same harvesting number and the scheduling is not guaranteed to start from 1 and have a
linearly increasing value. For these reasons, it was decided that it was more rational and

interesting to predict scheduling with another technique besides object detection.

The dataset does not have annotations of unripe strawberries present in the clusters. To
retrieve such information, a Detectron-2 model [52] was used. Fine-tuned for Strawberry
picking point localization ripeness and weight estimation [24], it predicts also bounding

boxes and ripeness of berries. The purpose of using this model is to acquire information
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Figure 4.2: Fine-tuned DETR output: strawberries identification and occlusion properties

classification.

Figure 4.3: Fine-tuned DETR output: strawberries identification and scheduling identi-
fication. The integer numbers represent the predicted order of picking, the other number

is the probability of the prediction

about all the fruits in the images so that all factors are taken into account for a more
complete prediction of the scheduling order. Note that the unripe berries do not have
occlusion information: a new dataset with such annotations would be needed to train a
model that detects this information. This is not seen as a problem since the targets for

the harvesting are of course just the ripe strawberries.
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Figure 4.4: From the paper: Strawberry picking point localization ripeness and weight
estimation [24]|, where ripe strawberries are labelled as “pluckable”, and unripe as “un-

pluckable”

4.2. Heuristic scheduling computations

In the dataset, the scheduling is a human choice. The human makes this decision taking

into consideration:
e the level of isolation of the strawberries in the cluster
e the depth of the strawberries in the image
e the occlusion of the strawberries:
— by a leaf
— by a stem
— by another strawberry

e how the picking of a strawberry can ease the visibility and reachability of another

one

A con of human annotation is that it’s difficult to check the consistency of the dataset.

For example, two individuals could make a different choice on the same configuration.

To compute the order of picking starting from bounding boxes and occlusion properties



4| Scheduling decision 29

a
Hypothenuse %/

hyp:

l\J‘E

e

e z

(b) (c) (d)

Figure 4.5: Distance between bounding boxes for boxes’ distance computation

without the need for a neural network, two heuristic scheduling methods are proposed.
They will be used as a comparison with the dataset and with the scheduling GNN model.
For both heuristic computations, it is necessary to calculate the distances between the
strawberries” bounding boxes. Figure 4.5 (a) shows a visualization of this distance D,
represented by the red arrow. Knowing the width w, height h, and left-down corner
coordinates (Zymin, Ymin) for each box, the distance between the centres is the Hypothenuse

indicated in the figure. From the Hypothenuse it can be estimated the cos a.

w
Te=ZTmin+ =5 Yo =Ymin + 3

2 2
Hypothenuse = VX2 4+ Y2 X =2, — 2|, Y = |Ye; — Yool
X 2 2
cosa =———— hyp; = wi/ ,  hyps = ws/
Hypothenuse COS (v COS (v

The distance between the boxes can then be retrieved as:

D = Hypothenuse — hyp, — hypa
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Figure 4.6: Comparison between students scheduling and heuristic min-max computation

over the dataset

One of the reasons behind taking this distance computation instead of the simple distance
between centres is that including the size of the bounding boxes can help with giving an

idea of the depth level of the strawberries.

Heuristic min-max

The first-to-be-picked is the most isolated and non-occluded strawberry.

For each fruit, the distance between all the other ripe and unripe berries in the image is
computed. The minimum of these distances is added to a vector min__distances. The ripe
strawberries are divided into four groups relative to the four occlusion properties: non-
occluded, occluding, occluded /occluding, and occluded. Following this order, for each of
the occlusion groups, the scheduling is subsequently decided by ordering the strawberries
according to the decreasing maximum minimum distance. Then a harvest schedule can
also be easily estimated for unripe berries.

In Figure 4.6 we can visualize with a heatmap the correspondence between the scheduling
just computed and the human-chosen scheduling of the dataset. Every element of the
cell ¢; ; indicates the number of strawberries with heuristic scheduling label ¢ and human-
decided scheduling label 5. This means that if the two schedulings coincided, the heatmap

would be a diagonal matrix.
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Figure 4.8: Visualization of GAT scheduling classification model

Heuristic easiness score

This second heuristic scheduling computation assigns an easiness score to each strawberry
and then retrieves the scheduling, ordering berries from easiest to most difficult to pick.
The easiness score is a simple multiplication between the distance and the occlusion scores.
The distance score is computed as in 4.2.

The occlusion score is chosen to be 1 if a strawberry is not occluded; 0.7 if it’s occluded
by a leaf, meaning that it was annotated as occluded but it only has positive distances
from the other boxes; 0.9 times the percentage of the free area of the bounding box if the
occlusion is by another berry. Figure 4.5 shows an example of two boxes with a positive
distance (b), with null distance (c¢) or with a negative distance (d). In the latter case, the
percentage of occlusion is computed as the fraction between the overlapping area and the

bounding box area.

Figures 4.7 is similar to Figure 4.6, but 4.7 (b) takes into consideration the unripe straw-

berries, too.

4.3. GAT model

To predict the picking order, the idea is to make each strawberry learn its representa-
tion in the context of the cluster. For this type of learning, Graph Neural Networks are
used. In fact, the concept behind these networks is that in every layer each node sends
its representation to its neighbours, and aggregates its features with the ones received: so
it becomes aware of the presence and the characteristics of other nodes. Moreover, with
self-attention, it can be learnt how each neighbour is important for every node.

As explained in 5.2.2; the dataset is inputted in the form of a graph. The nodes are the
strawberries represented by the bounding box coordinates, an occlusion weight, a ripeness
indicator, and compressed information of the image patch inside the bounding box. So
a graph neural network can be trained to obtain a model that can output a scheduling

sequermnce.



4| Scheduling decision 33

Two main attempts were followed. The first four layers are the same for all of the trials:

1. Graph Convolutional Attention Layer. It is a convolution, adapted to work
on graph structures, that uses the self-attention mechanism to compute how every

node attends to each neighbour.

2. ReLu activation function. The activation functions decide if a neuron in the neural
network needs to be activated or not. They introduce non-linearity for the learning
of more complex tasks. The Rectified Linear Unit (ReLu) is expressed as f(x) =

maz(0, ).

3. Dropout layer. It randomly drops out neurons during training allowing for gen-
eralization. It is used to help the prevention of overfitting, which is what happens
when a model adapts to the observations it was trained on, and it is so unable to

perform correctly on unseen data.
4. second Graph Convolutional Attention Layer

The reason for avoiding having too many convolutional layers is the risk of oversmoothing.
If the message passing and aggregation are done too many times, every node will end up

with the same information making it impossible to distinguish and classify them.

In the first approach, the model executes a node-classification task. It’s a binary classifi-
cation problem where the classes are not first-to-be-picked (0) and first-to-be-picked (1).
The output of the model is a vector of probabilities as long as the number of nodes. Each
probability represents how likeable is for the strawberry (node) to be picked first.

The last layer of this model is a Sigmoid activation function f(z) = which allows

1
Tre—e>
all the output values to be between 0 and 1. This is an important constraint since the
output values indicate a probability.

The loss, which is a function used to evaluate how similar are the predictions of the model

with respect to the ground truth, is the Binary Cross Entropy(BCE) loss:

N, des
1 T O
BOE = 5 > yilog(p(yi) + (1 — y:) log(1 — p(y:)) (4.1)
noaes Z—l

where N,,o4¢s is the number of analyzed nodes in the batch, y; is the label 0 or 1, and
p(y;) is the probability of a node being 1. As a matter of fact, BCE is the standard loss
function for binary classification problems. It computes the cross-entropy loss between
predicted labels and true labels, where the cross-entropy is a measure of the difference
between two probability distributions. Since the dataset is imbalanced (see Table 5.1),

the loss can be weighted.
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INPUT ReLu Dropout Custom
GATConv L GATConv OUTPUT
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Figure 4.9: Visualization of GAT scheduling score predictor model

In the beginning, the classification targeted was similar to the DETR scheduling attempt
(see chapter 4.1). This means the model had to learn how to distinguish between 17
classes, where the classes represented the order of picking. The activation function was
just linear and the loss was Cross Entropy. Similar to BCE, the loss is calculated for each

class and summed:
1 Nnodes Nclass

Nnodes Z yi,c log(pi,c) (42)

=1 c=1

CE=—

where N,,oqes is the number of analyzed nodes in the batch, N4 is the number of classes,
Y;.c is a binary indicator of the correctness of the prediction of observation i to belong to
class ¢, and p; . is the predicted probability for observation ¢ to belong to class c.

Some trials were also made in the training of a classifier for 5 classes, in which we identified
as “fifth to be picked” the strawberries labelled as sixth higher, too. This helped with
the imbalance of the dataset; nevertheless, the GAT scheduling model performed better
when trained as a binary classifier. It also became more reasonable to concentrate the
efforts on the correct prediction of the first strawberry to pick. This is because during the
collection of a target, the manipulator might collide with leaves, stems, or other berries,

changing the configuration and consequently the best scheduling order.

The other approach consists of the prediction of an “easiness of picking” score for each
strawberry. This is a way of generalizing: this score is in fact an absolute measure, not
relative to the single images.

The score is not present as an annotation of the dataset. It is retrieved as described in
the Heuristic easiness score subsection of this chapter.

Here the last layer of the model is a custom LeakyReLU, with a small negative slope
a and a positive slope 8: f(x) = fmaz(0,x) + amin(0,z). Since the variables « and
are hyperparameters, their values are tuned during the training. There is no need for the
model to output values between zero and one, but this activation function helps in the
distribution of the scores following the trends noted in the dataset. The score distribution

of the dataset can be visualized in Figure 6.3 (a).
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The loss function used is Mean Squared Error:

Nnodes

Z (ypredn - ytruen>2 (43)

nodes o

MSE =

where Np4es is the number of analyzed nodes in the batch, y,,eq, is the predicted score
for node n and Y., is the true label score of node n. For each node, it measures the

squared difference between the predicted and the true score and then computes the mean.

In all the approaches a scheduling order can be retrieved from the model output: the
harvesting order is from the most likeable to the least likeable to be picked first, or from

the easiest to pick to the least easy to pick.
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5 Experimental Setup

This chapter outlines the collection and preprocessing of the trajectories dataset and the
strawberry images dataset. Then it proceeds to describe the testing of the presented work

on a Franka Emika manipulator.

5.1. Motion Planning

5.1.1. Trajectories dataset collection

The working environment for the data collection of a dataset of trajectories was compre-

hensive of:
e a Franka Emika manipulator;

e a RealSense camera;

Operating system: Ubuntu 16.04;
e ROS Kinetic;

Python 2.7;

Libfranka 0.5.0;

Frankaros 0.6.0.

The trajectories are retrieved for 5 different configurations of strawberry clusters, each
one containing 20 strawberries. For every strawberry in every configuration, a picture
was taken. In Figure 5.1 you can see an example of one of the configurations.

To collect the trajectories the robot was hand-guided from a fixed home to the reach-
to-pick position for every strawberry. For this operation, torque control was applied,
meaning the output of the controller is the torque, and there is feedback from the applied
force. After reaching a strawberry, the robot is sent back to the home position. Here, the
control is switched to position control, where the output is the position of the joints. In

Figure 5.2 it is illustrated the robot’s control interface. The trajectories were collected at
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Figure 5.1: Shot taken from the camera of the robot in home position

Workstation
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libfranka
\ measurement
data
measurement
data
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commands

control

commands values

\ \/ \

Control

@ ] Franka Control Interface (FCI)

Figure 5.2: Franka Control Interface (FCI)

the velocity of around 30 frames per second, following a sequence of strawberries from left
to right. If two or more strawberries are on the same branch, then the order is from top to
bottom. For each strawberry 10 trajectories are collected. This adds up to a total of 1000
collected trajectories. Moving the robot, a wide range of solutions to reach the strawberry
were covered, in order to obtain a wide probabilistic distribution of trajectories and mimic
human behaviour. All the trajectories were saved both for joint states and task space,
respectively as a tri- or bi-dimensional array of shape (¢, 1,7) and (¢, 7); ¢ is the time taken

for each experiment. Task space is the space where the task that the manipulator has
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camera

T robot
: camera

calibration grid

Figure 5.3: Visualusation of the robot and camera frame. 7% is the output of the

calibration. Image is taken from [84].

to accomplish is specified, and it’s defined by the posture z = [Z] , with p position and

0
¢ orientation. Joint space is defined by the vector of joint variables ¢ = | : | , where
g7
q; = 0; for rotating joints, and ¢; = d; for prismatic joints.
Mounting a camera on top of the robot’s end effector adds weight; this makes the robot’s
arm not able to sustain itself while in torque control. So the gripper mass was tuned to
include the camera. From the camera sensor, it can be retrieved where an object is in
the camera frame. To retrieve this information in the robot frame, camera calibration is
needed.
For this operation, WhyCon markers [81] were used (Figure 5.4 (a)): they are registered
markers with known dimensions, and they can be easily detected by the camera. To
estimate the new frame transformation, the robot is asked to move the end effector in
different positions given in the robot frame and to save each time the perceived position
of the markers in the camera frame. The output of the calibration is a translation and
a rotation as numbers in meters to characterize the frame. Now there’s a static trans-
formation between the camera frame and the robot frame. To test the correctness of the
calibration, ArUco markers [82, 83| were used (Figure 5.4 (b)). The robot was asked to
reach the marker, which position was now detected in the robot frame. If the robot is

able to reach the target, it means that the calibration is correct.
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(a) (b)

Figure 5.4: Example of (a) WhyCon marker [81] and (b) Aruco marker [82, 83]

5.1.2. Data processing

The goal is to get compressed information on the trajectory distributions’” mean and
covariance.

The ProMP’s weights are defined as:

weightlxb = [((I)gxt(btxb + 1_12]bxb)®gxtﬂx1}T (51)

where b is the number of basis functions chosen to be 8:; t is the time of the duration of the
trajectory; ® is the Gaussian basis function; I is an identity matrix; 7" is the trajectory
for a single degree of freedom.

The weights for all ten trajectories taken to reach the same strawberries are computed
and stacked in a (n x b) matrix, where n is the number of trajectories. The mean and
covariance can now be computed. Covariance indicates the level to which two variables
vary together. The mean vector consists of the mean of each variable, and it has shape

(1 x b), while the covariance matrix C' has shape (n x b).

PCA is a statistical procedure that allows for the reduction of the dimensionality of a data
object, without losing important information. To apply this procedure to the trajectories’
covariance, Singular Value Decomposition (SVD) needs to be computed.

SVD is a linear algebra operation that computes the factorization of a matrix C,, «; in three

matrices U, xn, Snxp, and Vpyp. Since C'is real, U and V are real orthogonal matrices. S
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Figure 5.5: Trajectories comparison

is a diagonal matrix that contains in decreasing order the singular values, meaning CTC’s
(or CCT) eigenvalues’ square root. U’s column are the eigenvectors of CCT, V’s columns
are the eigenvectors of CTC. The eigenvalues represent the dimensionality of the data.
The greatest the eigenvalue, the more relevant its corresponding data. For example, in

the first collected trajectory of the first joint, the singular values contained in S are:
s = [2.49x10%, 5.31x10?, 3.48x10%,9.23x10*, 3.09x10°, 6.08x10™*,2.49x10°, 1.05x10~]

This means that the first singular value contains more than 95% of the information of C,
so the others can be discarded. This was verified for all the trajectories, in both task and
joint space. By stacking together the first element of S s1, the first row of U ul, and the
first row of V7 v1, a vector of dimension 1+ n + b = 19 is obtained, from which it can be
reconstructed a covariance of 8 x 8 = 64 elements as C' = ul * s1 * v1”. This means that
with this dimensionality reduction only 7 x b = 56 values are needed for the mean and
7% (1 4+ n+b) = 133 for the covariance of a trajectory distribution, with a total of 189
elements for all seven DoFs. In Figure 5.5 there are plotted ten trajectories taken from
a distribution that has the original mean vector and covariance C', confronted with the
ten trajectories from which weights were computed. As can be seen, PCA removed some

noise and some redundancy in the distribution.
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Figure 5.6: Figure (a): data sample. Figure (b): annotated image via [85, 86|; the

numbers on the bounding boxes indicate the chosen scheduling label.

5.2. Scheduling decision

5.2.1. Dataset description

The dataset was collected by MSc students from the University of Lincoln. It consists
of 2000 images of clusters of strawberries. Figure 5.6 (a) shows a sample of the data.
For each “raw” image they generated a corresponding annotated image (Figure 5.6 (b)),
and a JSON file containing the annotations about the ripe fruits. The structure of the
annotation is composed by name and size (widthxheight) of the image file, and this

information for each bounding box:
e shape attributes:

— 1z, y pixel coordinate of the x, y position of left down corner of the bounding

box;
— width, height of the bounding box.
e region attributes:
— scheduling: label chosen by taking into consideration the position of the straw-

berry in the cluster and the occlusion properties;

)y e

— occlusion: property selected between “occluded”, “occluding”, “occluded /occluding”

and “neither”.
The JSON annotations were uniformed in a Common Object in Context (COCO) format

[87]. COCO is one of the most popular large-scale labelled image datasets for public use. It

stores data in a JSON file formatted by info, licenses, categories, images, and annotations.
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5.2.2. Data as Graphs

Data needs to be represented as graphs, where the idea is to use strawberries as the nodes
that exchange information about their representations. The input graphs of Graph Neural

Networks are formed by nodes and edges, characterized by their respective features.
e Node features:
— bounding box coordinates (normalized, to make information simpler to use);
— percentage of occlusion, considering the overlapping of the bounding boxes;

— leaf occlusion, binary indicated (0 if the berry is not occluded by a leaf, 1

otherwise);
— ripeness, binary indicated (0 if ripe, 1 if unripe);

— patch of the image inside the bounding box, compressed with EfficientNet [88]
- a competitive CNN classifier that takes images as input; to retrieve just the
compressed information of the inputted image, the last layers are not used,

since those are for the classification task.
e Edge feature:

— pixel-wise euclidean distance between the bounding boxes (normalized, to make

information simpler to use)
The adding or removing of different node features was tuned during training.

There are no graphs with less than two nodes: images with just one strawberry were
dismissed, as they represent a trivial case in scheduling prediction. Table 5.1 shows the
number of strawberries present in the dataset for each scheduling label. There are more
“first-to-be-picked” berries than “eleventh-to-be-picked”. This is of course because there
are graphs with different numbers of nodes.

It is important to avoid over-smoothing: this is something that can happen when infor-
mation is shared and aggregated too many times between nodes so that they all converge
the same information. The number of edges was changed multiple times to see what
configuration was giving the best performance: fully connected graphs, with strawberries

connected in a line, in a polygon, or with just the diagonals of this polygon.
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1 | 2 |34 5|6 |7 (8]9|10|11 1213|1415 16

17

1321 | 1321 | 785 | 512 | 302 | 186 | 106 | 67 |37 | 28 |12 | 6 | 6 | 4 | 3 | 3

Table 5.1: Dataset distribution.

Number of strawberries for each scheduling label

(a)

Figure 5.7: The robot snaps a picture from home position (a). This is fed to the algorithm
to retrieve a target berry as the one in (b). The target is given to the model for the

trajectory generation, so the robot can execute it (c)

5.3. Robot test of the models’ integration

This section illustrates how to integrate the perception, scheduling, and trajectory gener-
ation models for autonomous harvesting with an RGB image input. A representation of
this is in Figure 5.8.

The raw image taken by the robot in its home position is input to two object detection
models, to retrieve information on the bounding boxes of ripe and unripe strawberries and
the occlusion properties of the ripe ones. This information is then represented in a graph
format. The graph is fed to the scheduling decisions model, to get the order of picking.
This data is then given to trajectory generation Improved-d-PMP model developed in the
parallel work introduced in Chapter 3.1. Now, the robot can execute the reach-to-pick
motion. The user can choose between a Pick-All or Pick-One algorithm, deciding if the
robot will execute the picking of all the ripe strawberries in the shooted image or if the

order of picking needs to be recomputed after the collection of each strawberry.

The setup is the same as for the trajectory dataset collection. The robot is asked to take
an image. This is fed to the algorithm above explained, which outputs the trajectory that
the robot will execute in position control. After reaching the goal position, it returns to

the home configuration. Figure 5.7 shows an example of performing.
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Figure 5.8: Logical scheme for a real-life application
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6 Results and Discussion

This Chapter discusses the results of the models used in this thesis for the scheduling

decision problem, both for the detection and the harvesting order prediction parts.

6.1. Object Detection

As described in Chapter 4.1, this work provides a DETR model for the visual detection of
the strawberries and classification of their occlusion properties. The gain of using such a
model with a self-attention mechanism will be underlined even more in the next chapter,
but Table 6.1 shows its cons: without a huge amount of data and computational power

state-of-the-art performances can never be achieved.

DETR-DC5 model GPUs | data AP AP50 AP75 APS APM APL

Benchmark 8 123k | 43.3 | 63.1 | 459 | 22.5 | 47.3 | 61.1
Customized 1 2k | 21.2| 29.8 | 24.1 | 30.0 | 35.0 | 46.5

Table 6.1: DETR comparison. Benchmark data are taken from [53].
AP is the abbreviation of “average precision”. The subscript number is the threshold of

bounding box overlap. S, M and L stand respectively for small, medium and large.

The trends between the average precision values are similar to the state-of-the-art. For
example, the average precision values are higher for the bigger identified object. This is a
known issue with DETR, already addressed in the original paper [53]|. This matter is here
somewhat discouraged. Since the given dataset has all the annotated bounding boxes
“small”, meaning smaller than a quarter of the image size, the model is trained more to
detect little targets. Consequently, the APg value of the customized model outperforms
the benchmark one.

For the specific application of this thesis research, these limited results were not a restric-
tion since the training of the GAT scheduling model was done with the information in
the annotations and not with the outputs of the perception models as it happens in the

test exposed in the previous chapter. Moreover, many other models for a perception task
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Figure 6.1: Visualization of simpler GAT scheduling classification model

can be adapted to the provided strawberry dataset without the need for more data or
GPUs. For example, the Detctron2 model used to add information on unripe berries is

easily adaptable to detect occlusion properties as well.

6.2. Graph Attention Network

The GAT scheduling models designed in the beginning were very simple, and more en-
riching features were added building upon those. The first models were trained on data
graphs without information on unripe berries or image patches, meaning every node car-
ried only five features 6.1. The most important hypothesis was that the first two berries
of the annotated scheduling order were both labelled as first-to-be-picked, to have a more
balanced dataset (see Table 6.2) which is a very helpful feature in a classification problem.
The justification behind this choice is that the aim of the research was training a network
to identify the easiest target to pick with human-like reasoning.

The simplicity of the model allowed faster training, giving the possibility of confronting
the performance of different configurations by varying the number of layers and neurons

and by tuning hyperparameters.

Table 6.2: Dataset distribution after balancing

First to be picked (1) 2642
Not first to be picked (0) || 2059

Figure 6.2 (a) shows the variation of BCE loss and accuracy of prediction during training
of the best simpler model. The values printed on the plot represent the loss and accuracy

on the train and validation sets of the model with the smallest validation loss.

The confusion matrix of Figure 6.2 (b) reports a precision of 755 = 0.6976 and recall
of TPIZ% = (0.7457. So this model has a good enough accuracy for recognising the first

strawberry to pick in a cluster, but the loss and the prediction of the whole scheduling

order can be improved.
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Figure 6.2: Simpler GAT scheduling model loss and accuracy training plot (a), and con-
fusion matrix on the test set (b).
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Heuristic easiness score distribution.
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Figure 6.3: This data bar shows the number of strawberries (y-axis) for each rounded
easiness score (x-axis). Figure (a): in blue is represented the train, in orange the valida-
tion, and in green the test set. Figure (b): in blue are represented the predictions, and in

orange the train set.
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The models for the prediction of an absolute easiness score for each fruit had some compli-
cations. Figure 6.3 (a) shows the distribution of the scores in the dataset. The predictions
of the model in Figure 6.3 (b) are all values close to zero. An explanation behind this
could be that the MSE loss favours small values. To discourage this, a custom LeakyReLu
activation function was introduced (see chapter 4.3). Another cause is the imbalance in
the dataset, which led to reasoning on a new easiness score computation with less weight

on the pixel-wise Euclidean distance between the strawberries.

The removal of the hypothesis for the forced balancing and the introduction of the unripe
strawberries in the images did give more knowledge of the whole cluster to the model,
but it also brought more imbalance in the dataset. In fact, unripe berries are now nodes
in the graphs with a label, and they will be classified by the model. Improving the binary
node classification model with these new features, the accuracy of the prediction of the
first berry to be picked diminished, but the overall scheduling decision is more accurate,
as shown in Figure 6.4. Again, every element of the cell ¢;; indicates the number of
strawberries with human-decided scheduling label ¢ and predicted scheduling label j;
if the two schedulings coincided, the heatmap would be a diagonal matrix. Here the
percentage of correspondence is 38.7%.

Figure 6.5 displays the occlusion properties of the scheduled strawberries. Each cell ¢; ;
indicates the number of berries with scheduling label j which have occlusion property
1, chosen between ‘non-occluded”; “occluded by a leaf”, and “occluded by a berry”. This
shows that the majority of non-occluded strawberries are usually picked first by the model,
as expected. A surprisingly high amount of strawberries occluded by a berry are picked
early in the scheduling. This suggests that a more aggressive weight should be given as
occlusion in the node features.

Figures 6.6, 6.7 are heatmaps to compare the predicted scheduling trained on human
annotation with the heuristic scheduling computations. These numbers indicate how the
overall scheduling sequence is less accurate, with a percentage of overall correspondence
of roughly 7%, but there’s more accordance in the prediction of the easiest strawberries
to collect. It is a promising result since during the testing of the in-development work it
was noted that after the picking of a single berry, the configuration of the cluster might
change because the manipulator might collide with leaves or other fruits. Although being
able to output directly the whole sequence of order of picking is an interesting challenge,

it could be fairly important to evaluate just which is the easiest element to be picked.
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7 ‘ Conclusions and future

developments

This thesis work proposes solutions to some of the main problems of autonomous robotic
strawberry harvesting.

In particular, the reach-to-pick task from visual input was improved starting from the work
of d-PMP [30]. The progress sets the basis for the generation of more precise trajectories
with joint correlation. Since the labour shortage is a growing problem [7] and labour
represents the largest cost and also a large operational uncertainty for strawberry farmers
[18], this work suggests another way how automation can help in the agricultural field.
To reduce failures in autonomous picking, the choice of the target berry in a cluster is
crucial. The scheduling decision prediction from perception is a novelty in the harvesting
of small fruit. GAT scheduling model is presented in two main versions, to accurately
predict the first strawberry to be picked or the whole harvesting sequence.

The overall procedure of target identification and trajectory generation from visual input

was tested on a Franka Emika manipulator provided with a RealSense camera.

Since picking scheduling prediction with GNNs is a new topic, many future improvements
can grow from this work. Starting from the perception problem, a new dataset would
be needed to train a model that recognises both the ripeness and the occlusion of the
strawberries.

Another improvement could surely be to give graphs depth perception. Analyzing the re-
sults of the easiness score, it turns out that pixel distance and bounding box size are not
enough to capture the separation between berries. As already introduced in the previous
chapter, a new scheduling score could benefit from this information. Moreover, a custom
loss could be introduced for the GAT scheduling model that assigns an absolute easiness
score to each strawberry, since the MSE method favours small values and is slowing down
the learning of correct prediction.

An interesting improvement in the graph representation would be exploiting more DETR
for the node features. In fact, the decoder part of the transformer outputs an atten-

tion map for every detected object, that measures how pixels attend to each other. A
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self-attention(430, 600) self-attention(450, 830)

self-attention(520, 450) 8 o - v R self-attention(440, 1200)

Figure 7.1: From “End-to-End Object Detection with Transformers” [53]: encoder self-
attention for a set of reference points. The encoder is able to separate individual instances.

Predictions are made with baseline DETR model on a validation set image.

representation of this is shown in Figure 7.1. Including this information in the graphs
would be another measure of how strawberries are related to one another in a cluster. It
could be tested if Attention is enough in this case or if other parameters such as occlusion

properties and distance are necessary to understand a scheduling order.
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