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Abstract

In the context of Artificial intelligence, approximate reasoning is a well-known technique
that aims at improving the efficiency of deductive artificial intelligence by trading inference
correctness for performance (e.g., execution time). In particular, prominent examples of
approximate reasoning include, but are not limited to approximate consistency checking
using linear classifiers, relational learning with Machine Learning models (e.g. RESCAL
and TransE), and Knowledge Graph completion using Deep Learning techniques (e.g.
ConvE). To the best of our knowledge, none of the existing approximation techniques
has been applied to materialization, i.e., the task of computing all the entailed assertions
given a knowledge base. A major obstacle is the lack of a benchmark for the task that
enables the investigation of expressiveness and efficiency trade-off. In this thesis work, we
address these problems by designing a full-fledged benchmark named KlevR that is based
on an accepted deep learning dataset called CLEVR. In particular, KlevR is a knowledge
graph that includes three OWL ontologies (one for each OWL profile) that captures the
CLEVR abstractions, scenes, and queries. We tested KlevR using a baseline model set
named DeepR, which performs the approximate materialization task. In particular, DeepR
is a set of deep learning models performing approximate materialization for each OWL
profile using a tensor representation for KlevR. Considering the generative nature of the
materialization task (adding new assertions), we designed DeepR as a generative model
based on Variational Autoencoders. Moreover, as the embedding model for the tensor, we
opted for a triple-based subject-predicate-object, since it allows a fair reconstruction of
the knowledge graph structure from the vector representations. Finally, we tested KlevR
using DeepR and verified a set of metrics. The result of our work is a synthetic and
scalable benchmark for testing Deep Learning models addressing future investigations
about the approximate materialization task.

Keywords: approximate reasoning, variational autoencoder , Knowledge Graph.





Abstract in lingua italiana

Nel contesto dell’intelligenza artificiale, il ragionamento approssimativo è una tecnica ben
nota che mira a migliorare l’efficienza della deduzione, in termini di una ridotta preci-
sione a fronte di una migliore performance (in termini di tempo di esecuzione). In par-
ticolare, esempi rilevanti di ragionamento approssimativo includono, ma non si limitano,
all’approssimazione del task di consistency checking utilizzando classificatori lineari, al
relational learning con modelli di Machine Learning (es. RESCAL e TransE) e al comple-
tamento di grafi di conoscenza utilizzando tecniche di Deep Learning (es. ConvE). Allo
stato delle attuali conoscenze e delle informazioni a nostra disposizione, nessuna delle
tecniche esistenti è stata applicata alla materializzazione, cioè il task di calcolare tutte le
asserzioni implicate data una base di conoscenza. Uno dei principali ostacoli è la man-
canza di un benchmark di riferimento per il task di materializzazione approssimata, che
consenta di indagare l’espressività e il compromesso di efficienza. Nel seguente lavoro di
tesi, affrontiamo questi problemi progettando KlevR, un benchmark completo basato su
un dataset noto nell’ambito del Deep Learning chiamato CLEVR. In particolare, KlevR
è un grafo di conoscenza scritto in OWL2 che include tre ontologie OWL (una per ogni
profilo), e che cattura le astrazioni di CLEVR, le sue scene e domande. Abbiamo testato il
benchmark con un insieme di modelli di Deep Learning chiamato DeepR, che approssima
la materializzazione per ciascun profilo OWL, utilizzando un modello tensoriale di embed-
ding per KlevR. Considerando la natura generativa del compito di materializzazione (ag-
giungere nuove asserzioni), abbiamo progettato DeepR con un modello generativo basato
su Variational Autoencoder. Inoltre, come modello di embedding per i tensori, abbiamo
optato per un modello basato su triple soggetto-predicato-oggetto, poiché consente una
fedele ricostruzione della struttura del grafo di conoscenza dalle rappresentazioni vettori-
ali. Infine, abbiamo testato KlevR utilizzando DeepR e verificato una serie di metriche.
Il risultato del nostro lavoro consiste in un benchmark sintetico e scalabile per il train-
ing di modelli di Deep Learning utilizzabili per approfondire il task di materializzazione
approssimata.

Parole chiave: ragionamento approssimativo, autoencoder variazionale, grafo di conoscenza.
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1| Introduction

This chapter introduces our work. Section 1.1 provides the motivations that led to this
thesis, Section 1.2 presents the related research questions, Section 1.3 describes the contri-
butions offered by this work, and finally, Section 1.4 describes the thesis’ general outline.

1.1. Motivations

Knowledge can be defined as the information available to an agent for effective action.
Gilbert Ryle in The Concept of Mind (1949), distinguished two types of knowledge:

• Knowing how (procedural knowledge), i.e., the set of skills and abilities to perform
tasks of different complexity.

• Knowing that (declarative knowledge), which is the conceptual knowledge that sup-
ports reasoning and can be verbalized and communicated using natural language or
specialized symbolic systems.

Knowing how is immediately available for action planning, knowing that instead becomes
available for action through reasoning, which is the process of inference made by the mind.

Figure 1.1 shows the three types of inference that are usually distinguished:

• Deductive reasoning (or deduction): the conclusions are entailed by the premises.

• Abductive reasoning (or abduction): an inference from certain observed effects to
their plausible causes.

• Inductive reasoning (or induction): an inference from specific data to general rules.
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Figure 1.1: Schematic representation the types of inference.

Our work focuses on deductive and inductive reasoning. In particular, deduction entails
valid conclusions from valid premises, while induction generalizes from examples. It is
well known that induction does not guarantee the validity of a conclusion. Alas, if an
argument is strong, the probability of the premise would mean the conclusion is likely.

In the deductive reasoning context, well-known formalisms to describe knowledge are
the Description Logics (DLs). DLs are formal languages used to construct ontologies.
They allow the encoding of knowledge about specific domains and often include reasoning
rules that support the processing of that knowledge. Reasoning with DLs consists of three
main tasks: consistency checking, classification, and materialization. There exists a trade-
off between the expressiveness of a DL and its reasoning cost. Different languages and
technologies explore the trade-off by maximizing the expressiveness under some limitations
on the reasoning effort.

For what concerns induction, the most reliable approaches are based on statistics and
Machine/Deep Learning. These methods use data to approximate functions and perform
probabilistic inference. In particular, Machine and Deep Learning are good examples of
inductive inferences. The target function to approximate is the general rule, while data
are the specific examples that have to be generalized. In the human mind, the more
something happens, the higher is the probability that the fact will repeat in the future.
With the same concept, pattern and regularities in the data are extracted by models and
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used to generalize future observations.

Induction and deduction can be combined together. A first approach consists of reduc-
ing the uncertainty of inductive methods with deduction, for example, in the knowledge-
infused learning [10]. Another approach instead uses induction to increase the efficiency
of the deduction. An example of the latter approach is the approximate reasoning. Nev-
ertheless, the approaches in the literature focus only on a specific reasoning task or on
a limited set of rules. Moreover, there is no benchmark that evaluates the task taking
into consideration the trade-off expressiveness/reasoning effort. Our work tries to solve
this problem through a synthetic benchmark, representing the dataset CLEVR [8] using
Knowledge Representation standards, together with a baseline to test it made of a deep
learning models set.

1.2. Research Questions

Now that we frame the problem space, we present the related research questions through
the Macro-Meso-Micro framework [19] (see Figure 1.2).

Figure 1.2: The research questions, expressed through the Macro-Meso-Micro framework.

Our macro question [M] covers numerous possible solutions, therefore, it is hard to
answer. To restrict our scope we focus on the materialization of Knowledge Bases (KBs).
In particular, we focus on approximate materialization using a generative Deep Learning
model. This approach leads to the meso [m]. To address this problem, we elicit a set
of requirements for the construction of an embedding model for the KB. In designing
our experiments, we have realized the need for a benchmark that evaluates the task of
approximate materialization. Thus, it comes our research micro question [µ]
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1.3. Contributions

The final research question is traduced into a design problem, whose purpose is nearing
the KB reasoning with Deep Learning.

In particular, the problem consists of designing a benchmark based on CLEVR to eval-
uate the approximation of the materialization task. CLEVR is a synthetic dataset used
to test deep learning models on visual question answering. CLEVR includes a large num-
ber of training samples that guarantees a proper set for training Deep Learning models.
Moreover, the entities and properties of its abstraction are already well identified, allow-
ing a simpler KR design workflow. For this reason, we built KlevR, a knowledge graph
that captures the CLEVR abstractions and describes its scenes. We designed KlevR fol-
lowing the KR standards (i.e., designing the OWL profiles) with the goal of maximizing
the reasoning effort of the reasoners. To evaluate the quality of the benchmark, we pro-
posed a baseline consisting of a generative Deep Learning model. Thus, we built DeepR,
a variational autoencoder (VAE) that approximates the materialization task on KlevR.
Moreover, we proposed SPO, an embedding model to encode the knowledge graphs de-
scribing the CLEVR scenes. Finally, we realized a proof-of-concept implementation of the
benchmark and the baseline. Thanks to the synthetic nature KlevR, our research could
be extended to deeper investigations. In particular, the benchmark allows different ex-
tensions for both the ontologies (i.e., more complex class hierarchies and property chains)
and the data (i.e., the introduction of data noise).

1.4. Outline of the Thesis

• Chapter 2: provides the basements to understand this Thesis, with an overview of
the Knowledge Representation and Deep Learning technicalities.

• Chapter 3: defines the research questions and the related problem addressed in
this thesis.

• Chapter 4: describes the design process for the benchmark, modeling KlevR and
DeepR.

• Chapter 5: describes the implementation of the benchmark and exhibits the result
of the experiment.

• Chapter 6: draws the conclusions of this work, depicting its limitations and de-
scribing possible future works.
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2| Background

This Chapter provides an overview of the related search areas. Section 2.1 provides an
overview of Knowledge Representation and reasoning domain, while Section 2.2 focuses
on Semantic Web technologies. Finally, Section 2.3 describes the Deep Learning funda-
mentals and provides a detailed explanation of the model exploited in this Thesis.

2.1. Knowledge Representation and Reasoning

Knowledge Representation (KR) is a branch of Artificial Intelligence that aims at making
information accessible to software applications in order to carry out certain computational
tasks. Knowledge bases are repositories of knowledge containing data structures en-
coding relevant facts that can be made available for effective action through automated
reasoning. The software in charge of carrying out new information is called reasoner. A
logical system L has three components:

• A formal language (typically defined by a context-free grammar), which specifies
different types of expressions (or formulas); an important subset of such expressions
are called statements.

• A formal semantics, which interprets the expressions of the formal language as
being about the elements of some domain of discourse. In turn, the domain of
discourse is modeled as a mathematical structure belonging to a suitable structure
type. A semantic interpretation assigns a truth value (either true or false) to every
statement, relative to the chosen mathematical structure. The rules for assigning
truth values to statements are called the truth conditions of the statement.

• A reasoning procedure, which allows one to build proofs of certain statements (con-
clusions) starting from other statements (premises).

2.1.1. Knowledge Bases

A knowledge base (KB) is composed of an ontology and a collection of facts. An ontology
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Figure 2.1: Composition of a Knowledge Base.

is a representation of a domain through formal naming and definition of its categories,
properties, and relations between the concepts, data, and entities. The common compo-
nents of an ontology are:

• Individuals: Instances or objects

• Classes: Sets, concepts, types of objects

• Attributes: Aspects, properties, characteristics, or parameters that objects may
have

• Relations: Ways in which classes and individuals can be related to one another

• Function terms: Complex structures formed from certain relations that can be
used in place of an individual term in a statement

• Restrictions: Formally stated descriptions of what must be true for some assertion
to be accepted as input

• Axioms: Assertions in a logical form that together comprise the overall theory that
the ontology describes in its domain of application.

As shown in Figure 2.1, an ontology is composed of a TBox ("Terminology box"), the
collection of all the class axioms, and a RBox ("Role box"), the collection of all the
property axioms, and can be written in DL (Description logic) or in OWL (see Section
2.2.3). The collection of facts instead, namely ABox ("assertion box"), contains all the
individual assertions and can be written in RDF (see Section 2.2.1).
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2.1.2. Reasoning

A knowledge base K entails statement φ when the truth of all the axioms of K is sufficient
to guarantee the truth of φ. In particular:

K |= φ

if, and only if, every model of K satisfies φ that is, any interpretation I that satisfies
every axiom of K (I |= K). On the contrary:

K ⊭ φ

means that there is at least one interpretation I that satisfies every axiom of K but does
not satisfy φ, and so K does not entail φ . The function of a reasoning procedure R

is to derive from K exactly those statements that are entailed by K. To express this
requirement, R must have the properties of soundness and completeness :

• R is sound if, and only if: if R derives φ from K (K ⊢R φ), then K is guaranteed
to entail φ : if K ⊢R φ then K |= φ

• R is complete if, and only if: if K entails φ, then R is guaranteed to derive φ from
K in a finite number of reasoning steps: if K |= φ then K ⊢R φ.

An essential property of a knowledge base is consistency. K is consistent if it has at least
one model, otherwise it is inconsistent. If K admits of no model, then a fortiori there is
no interpretation I such that I |= K and I ⊭ φ, and this for every possible statement
φ. This implies that every inconsistent KB entails all possible statements, which makes
the KB completely useless. A reasoner usually provides a number of reasoning services,
of which the most common ones are listed below. Given a knowledge base K, its classes
C and D and its individual a:

• Consistency: Determine whether K is or is not consistent.

• Classification of atomic classes: Build the hierarchy of subclass relationships between
all the atomic classes of K.

• Classification of individuals: Assign every individual to the most specific atomic
classes to which the individual belongs.

• Subclass relationship: Establish whether K |= C ⊑ D or K ⊭ C ⊑ D.

• Class equivalence: Establish whether K |= C ≡ D or K ⊭ C ≡ D.
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• Class satisfiability: Establish whether C is K-satisfiable (there is at least one model
of K in which the interpetation of C is not empty).

• Instance check: Given an arbitrary class C and an individual a, establish whether
a belongs to C.

• Instance retrieval: In the set of all the individuals that appear in K, find all the
individuals belonging to a given class C.

2.2. Semantic web

The Semantic Web is an extension of the World Wide Web standardized by the W3C with
the goal of making internet data machine-readable. The proposed framework consists of
the so-called “semantic web stack” (Figure 2.2), composed of different layers with several
technologies and encodings to represent data and semantics.

Figure 2.2: Semantic web stack. [2]

The Semantic Web involves the usage of specific languages such as Resource De-
scription Framework (RDF), Web Ontology Language (OWL), and Extensible Markup
Language (XML) designed specifically for data. In the context of this Thesis, RDF,
OWL2, and SPARQL are used because they are the W3C standards languages in the
field of knowledge representation.
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2.2.1. RDF

RDF (Resource description framework [26]) is a directed, labeled graph data format for
representing information in the semantic Web. An RDF data model is composed of triples
(statements), expressions of the form

(s, p, o) ∈ (I ∪B) × I × (I ∪B ∪ L)

Where I is a set of IRIs, L is a set of literals (couples < String,Datatype >) and B
is a set of blank nodes, used to refer to anonymous resources. For example, to express
the notion “The sun is yellow” in RDF, the triple used is

(Sun,hasColor,Yellow)

where “Sun” is the subject, “Yellow” is the object and the predicate “hasColor” represents
the relationship of having that color. A collection of RDF statements can be viewed as a
labeled, directed multi-graph and can be extended with RDF Schema (RDFS), which is
a set of classes and properties using the RDF extensible knowledge representation data
model, providing basic elements for the description of ontologies. The most common
terms defined by the RDF/RDFS specification are grouped in Table 2.1.

Term Semantics
rdf:XMLLiteral the class of XML literal values
rdf:Property the class of properties
rdfs:Resource the class resource, everything
rdfs:Literal the class of literal values, e.g. strings and integers
rdfs:Class the class of classes
rdfs:Datatype the class of RDF datatypes
rdfs:subClassOf the subject is a subclass of a class
rdfs:subPropertyOf the subject is a subproperty of a property
rdfs:domain a domain of the subject property
rdfs:range a range of the subject property

Table 2.1: RDF/RDFS main vocabulary.

W3C defines RDF/XML as the default serialization format for RDF models, however,
other formats like Turtle (TTL), JSON for linked data (JSON-LD), or NTriples (NT) are
supported. The serialization format of our choice is Turtle because it is more simple to
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read. Listing 2.1 shows the same triple of the previous example, "The sun is yellow",
expressed in Turtle.

1 <http ://ex.org/Sun> <http ://ex.org/hasColor > <http ://ex.org/Yellow

>.

Listing 2.1: RDF triple in Turtle format.

Turtle allows to define Base URIs or Prefixes in order to make the document more
readable and to use shortcuts such as semicolons to group predicates of the same subject
or commas to group objects with the same predicate. Some examples are reported in
Listing 2.2.

1 <!--Example of Base URI definition-- >

2 BASE <http ://ex.org/>

3 <Sun > <hasColor > <Yellow > .

4

5 <!--Example of Prefix definition-- >

6 PREFIX ex: <http ://ex.org/>

7 ex:Sun ex:hasColor ex:Yellow .

8

9 <!--Example of semicolon shortcut to group the subject-- >

10 ex:Sun ex:hasColor ex:Yellow;

11 ex:belongsTo ex:MilkyWay.

12

13

14 <!--Example of comma shortcut to group the predicate-- >

15 ex:Sun ex:hasColor ex:Yellow ,

16 ex:Orange.

Listing 2.2: Turtle shortcuts examples.

2.2.2. RML

The RDF Mapping Language (RML [18]) is a mapping language defined to express cus-
tomized mapping rules from heterogeneous data structures and serializations (CSV, TSV,
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XML and JSON data sources) to the RDF data model. RML is a superset of the W3C-
standardized language R2RML, it follows exactly the same syntax, but RML mappings
are themselves RDF graphs. No formalization exists to define an RML mapping. List-
ing 2.3 shows an example of an input file in JSON, Listing 2.4 the RML mapping and
Listing 2.5 shows the relative output in Turtle format.

1 #input.json

2 {

3 "Sun":

4 {

5 "color": "Yellow",

6 }

7 }

Listing 2.3: Example of input in JSON format.

1 @prefix rr: <http://www.w3.org/ns/r2rml#>.

2 @prefix rml: <http:// semweb.mmlab.be/ns/rml#>.

3 @prefix ql: <http:// semweb.mmlab.be/ns/ql#>.

4 @prefix ex: <http://ex.corg/>.

5

6 <#VenueMapping > a rr:TriplesMap;

7 rml:logicalSource [

8 rml:source "input.json";

9 rml:referenceFormulation ql:JSONPath;

10 rml:iterator "$"

11 ];

12 rr:subjectMap [

13 rr:template "http: //ex.org/Sun";

14 rr:class ex:Star

15 ];

16 rr:predicateObjectMap [

17 rr:predicate ex:hasColor;

18 rr:objectMap [

19 rml:reference "sun.color"

20 ]];

Listing 2.4: RML mapping.
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1 @prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>
2 @prefix ex: <http://ex.org/>
3

4 <http: //ex.org/Sun> rdf:type ex:Star.
5 <http: //ex.org/Sun> ex:hasColor ex:Yellow.

Listing 2.5: Output in Turtle format.

2.2.3. OWL

The Web Ontology Language (OWL [25]) is the knowledge representation language for
the Semantic Web, and it is a standard of the W3C recommendation. Its last updated
version is OWL 2, which is the default for this thesis. OWL language is characterized by
formal semantics. It is built upon the RDF Schema language, extending it with additional
classes and properties to design ontologies. With OWL relying on the theoretic semantics
of Description Logic (DL) language, is possible to infer implicit knowledge from the already
asserted axioms, which is also called reasoning (see Section 2.1.2). The main terms of the
OWL vocabulary used in this thesis are reported in Table 2.2.

The first OWL version was based on SHOIN(D) Description logic, while OWL 2 is
based on SROIQ(D), which differs in expressive power and reasoning complexity. OWL 2
could be uncontrollable in the worst case, but three particular fragments (called profiles)
with bounded complexity have been identified.

The OWL 2 EL profile is designed for systems using huge ontologies with few indi-
viduals and allows performing basic reasoning in polynomial time w.r.t. the size of the
ontology.

The OWL 2 QL profile is designed for systems using small ontologies with s huge
number of individuals. The name QL reflects the intent of designing a query-answering-
oriented profile with low data complexity.

The OWL 2 RL profile is designed for systems that require scalable reasoning. Base
reasoning services such as ontology consistency, class expression satisfiability, class expres-
sion subsumption can be solved in polynomial time w.r.t. the ontology size. Figure 2.3
shows the relation between the OWL2 language and its profiles. The difference between
applications of the OWL profiles is due to their different entailment regimes (the subset
of allowed axioms and expressions) which are summarized in Appendix A.
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Figure 2.3: OWL 2 superset.

Term Interpretation
owl:Class Class definition.
owl:Thing Top class (universe).
owl:NamedIndividual Individual definition.
owl:Nothing Bottom class (empty set).
owl:intersectionOf ( C1 . . . Cn ) Intersection of classes.
owl:unionOf ( C1 . . . Cn ) Union of classes.
owl:allValuesFrom C Universal restriction.
owl:someValuesFrom C Existential restriction.
owl:disjointWith C2 Class disjointness.
owl:equivalentClass Cj+1. j = 1 . . . n− 1 Class equivalence.
owl:AllDisjointClasses Classes disjointness.
owl:Restriction Restriction.
owl:someValuesFrom Existential restriction.
owl:topObjectProperty Universal property.
owl:ObjectProperty Property definition.
owl:inverseOf Pn Inverse property.
owl:SymmetricProperty Symmetric property.
owl:TransitiveProperty Transitive property.

Table 2.2: OWL2 main vocabulary.

2.2.4. SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a graph query language stan-
dardized by the W3C used to retrieve and manipulate data stored in an RDF graph.
SPARQL allows to extract information in the form of URIs, blank nodes, plain and typed
literals, to extract RDF subgraphs or to construct new RDF graphs based on information
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from a Knowledge Base. SPARQL queries are based on graph pattern matching, which
consists of bindings between query variables in triple patterns and RDF terms. A triple
pattern is similar to an RDF triple, but any component can be a query variable (indicated
with "?"), as shown in Listing 2.6:

1 <?x ex:hasColor ?y>.

Listing 2.6: triple pattern in SPARQL.

As shown in Listing 2.6, SPARQL uses the Turtle syntax and allows Base URIs and
prefixes definition. The result of a query that extracts information from an RDF dataset
is the collection of triples that matches the desired triple pattern. In the case of queries
that read data from the database, the SPARQL language specifies four different query
variations for different purposes (i.e., SELECT, ASK, CONSTRUCT, and DESCRIBE).
Each of these query forms optionally takes a WHERE block to restrict the query and may
also include modifiers such as DISTINCT, ORDER BY and GROUP BY. For the purpose
of this Thesis, the SELECT and the ASK are used, of which we present an example. The
SELECT query extracts raw values from a dataset, the results are returned in a table
format. Listing 2.7 shows a query that returns all the URI of entities having yellow color.

1 PREFIX ex: <http ://ex.org/>

2 SELECT ?x

3 WHERE{

4 ?x ex:hasColor ex:Yellow .

5 }

Listing 2.7: SELECT query example.

The output obtained applying the query on the example in 2.5 is reported in Listing 2.8.

1 <http ://ex.org/Sun >

Listing 2.8: SELECT query result.

The ASK query provides a simple True/False result for a query. Listing 2.9 example
shows a query that states if the sun is yellow. The output obtained applying the query
on the example in 2.5 is "True".
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1 PREFIX ex: <http ://ex.org/>

2 ASK { ex:Sun ex:hasColor ex:Yellow}

Listing 2.9: ASK query example.

2.3. Deep learning

Deep learning is a branch of machine learning based on artificial neural networks, mod-
els that consist of the aggregation of multiple perceptrons and can be universal clas-
sifiers thanks to nonpolynomial activation functions and hidden layers of unbounded
width. The adjective "deep" refers to the use of multiple and deep layers in the net-
works. Deep learning is based on 3 main learning paradigms: Given a collection of data
D = x1,x2,x3, ...,xN

• Supervised learning : given the desired outputs t1, t2, t3, ..., tN produces the correct
output given a new set of input.

• Unsupervised learning : exploit regularities in D to build a representation to be used
for reasoning or prediction.

• Reinforcement learning : producing actions a1, a2, a3, ..., aN which affect the envi-
ronment, and receiving rewards r1, r2, r3, ..., rN learn to act in order to maximize
rewards in the long term.

Deep learning mainly concerns about supervised learning, but deep models are widely
used in combination with ML models in the other paradigms.

2.3.1. FFNN and CNN

Feedforward neural networks are non-linear models characterized by multiple layers of
computational units (neurons) connected in a feed-forward way that are able, thanks
to the universal approximation theorem, to approximate every continuous function that
maps intervals of real numbers to some output interval of real numbers. Feedforward
neural networks (FFNN) are the most general-purpose neural network. The entry point
is the input layer, and it consists of several hidden layers and an output layer (see Figure
2.4). The output of a single neuron is given by an activation function (that must be
differentiable) applied to the weighted sum of its input (output of the previous layer).
FFNN follows the supervised learning paradigm, the training phase consists of adjusting
the weight of the model in order to minimize the loss function, which choice relies on the
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Figure 2.4: High level view of an FFNN’s architecture.[6]

design task. It could be for example the mean squared error (MSE) for regressions or
cross-entropy for classifications.

The optimization problem is solved by gradient-based algorithms such as stochastic
gradient descent (SDG). Computing the gradient of the loss function with respect to the
network’s weights and adjusting them to the opposite direction of the gradient, the loss
will gradually decrease until it converges to some local minima. The weights adjustment is
performed iteratively during the training phase, and it’s regularized by a learning rate that
avoids the algorithm’s divergence (if the loss ‘jumps over’ the minimum ) and decreases the
learning time. The gradient instead is obtained using backpropagation, which computes
the gradient of the loss function with respect to each weight using the chain rule, that is,
computing the gradient one layer at a time and iterating backward from the last layer to
avoid redundant calculations of intermediate terms in the chain rule.

FFNNs have some drawbacks in dealing with complex tasks. While solving an image
classification problem, for example, the first step is to convert a 2-dimensional image
into a 1-dimensional vector prior to training the model, drastically increasing the number
of trainable parameters and losing the spatial features of an image. A Large number
of parameters could lead to vanishing or exploding gradient, problems associated with
the backpropagation algorithm due to the multiplications in the chain rule, or more in
general, increases the complexity of the models, making them prone to overfitting data
(some techniques exist to avoid the overfitting, such as dropout or weight decay).

Convolutional neural networks (CNNs) take a different approach toward regulariza-
tion: they take advantage of the hierarchical pattern in data and assemble patterns of
increasing complexity using smaller and simpler patterns embossed in their filters.

The layers of a CNN are, in fact, made of convolutional filters which extract the high-
level features of the input tensor. The main advantage of the convolutional filters is the
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parameter sharing: it relies on the assumption that if a patch feature is useful at some
spatial position, then it should also be useful at other positions. The neurons in each
filter have the same weights and bias, allowing the forward pass in each depth slice of the
convolutional layer to be computable as a convolution of the neurons’ weights with the
input volume. The result of this convolution is an activation map, and the set of activation
maps for each different filter are stacked together along the depth dimension to produce
the output volume. Parameter sharing also contributes to the translation invariance of
the CNN architecture.

The convolutional filters "slide" on the input tensor (or volume) to apply the convo-
lution; the dimension of the output volume can be reduced or controlled using padding
or stride (the "pass" of the filter on the input volume). The dimensionality reduction
could also be made using pooling layers, decreasing the computational power required.
They are also useful for extracting dominant features which are rotational and positional
invariant, thus maintaining the process of effectively training the model.

CNNs are usually completed by adding a fully-Connected layer for learning non-linear
combinations of the high-level features as represented by the output of the convolutional
layers. Figure 2.5 shows an example of a CNN architecture with the fully-connected layers
for classification.

Figure 2.5: Example of a CNN’s architecture.[5]

2.3.2. Autoencoder

Autoencoders are unsupervised artificial neural networks able to efficiently learn how to
compress and encode data and how to reconstruct them back from the reduced encoded
representation to a representation that is as close to the original input as possible. Au-
toencoders learn a representation (encoding) typically for dimensionality reduction by
training the network to ignore the noise in the data. Autoencoders consists of 4 main
parts:
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• Encoder: The part of the model that learns how to reduce the input dimensions
compressing the input data into an encoded representation.

• Bottleneck: The layer that contains the compressed representation of the input
data.

• Decoder: The part of the model that learns how to reconstruct the data from the
encoded representation.

• Reconstruction Loss: The function that measures how well the decoder is per-
forming.

The training then involves backpropagation in order to minimize the network’s recon-
struction loss. Figure 2.6 shows a high-level view of the architecture of an autoencoder.

Figure 2.6: High level view of an autoencoder’s architecture [22].

The network architecture could be a simple FeedForward network or Convolutional
Neural Network depending on the use case, some of which are image denoising, anomaly
detection, and word embedding.

2.3.3. Variational Autoencoder

Aiming to force the learned representations to assume useful properties, autoencoders
can become generative models, taking the name of Variational Autoencoders (VAEs [9]).
Just as standard autoencoders, variational autoencoders are architectures made of both
an encoder and a decoder and are trained to minimize the reconstruction error between
the encoded-decoded data and the input data. However, in order to introduce some
regularisation of the latent space, a slight modification of the encoding-decoding process
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is needed: instead of as a single point, a distribution over the latent space is encoded and
the model is then trained as follows:

1. The input is encoded as a distribution over the latent space;

2. A point from the latent space is sampled from that distribution;

3. The sampled point is decoded;

4. The reconstruction error can be computed and backpropagated through the network.

Encoded the normal distribution, the encoder can be trained to return their means and
covariance matrices, allowing to express the latent space regularization very naturally:
the returned distributions are enforced to be close to a standard normal distribution.
Thus, the loss function is composed of a “reconstruction term” (on the final layer) and
a “regularization term” (on the latent layer) that tends to regularize the organization of
the latent space by making the distributions returned by the encoder close to a stan-
dard normal distribution. As reconstruction loss, mean squared error and crossentropy
are both often used, as distance loss between the two distributions instead, the reverse
Kullback–Leibler divergence between the real posterior distribution and the encoded one
is a good choice. However, without a well-defined regularisation term, the model can
learn, in order to minimize its reconstruction error, to “ignore” the fact that distributions
are returned and behave almost like classic autoencoders (leading to overfitting), either
returning distributions with tiny variances or with very different means. In order to avoid
these effects, the regularization is done by enforcing distributions to be close to a stan-
dard normal distribution (centered and reduced), requiring the covariance matrices to be
close to the identity, preventing punctual distributions, and the mean to be close to 0,
preventing encoded distributions from being too far apart from each other. Naturally, as
for any regularisation term, this comes at the price of a higher reconstruction error on the
training data. The trade-off between the reconstruction error and the KL divergence can
however be adjusted using a variational inference formulation.

Being z a latent representation sampled from the prior distribution p(z), the input
data x is sampled from the conditional likelihood distribution p(x|z). Thus, the encoder
is defined as p(z|x) while the decoder as p(x|z). The regularisation of the latent space
appears in the definition of the data generation process: encoded representations z are as-
sumed to follow the prior distribution p(z). The link between the prior p(z), the likelihood
p(x|z), and the posterior p(z|x) is also enlightened by the Bayes theorem:

p(z|x) = p(x|z)p(z)∫
p(x|u)p(u) du
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With the assumption that p(z) is a standard Gaussian distribution and p(x|z) is a Gaus-
sian distribution whose mean is defined by a deterministic function f of the variable z
(with co-variance matrix cI where c is a constant ), the function f is assumed to belong
to a family of functions denoted F , having:

p(z) ≡ N (0, I)

p(x|z) ≡ N (f(z), cI), f ∈ F, c > 0

Computing p(z|x) with the Bayesian theorem implies to solve the integral at the de-
nominator which is often intractable and so requires the use of approximation techniques.
Variational inference (VI) is a technique to approximate complex distributions, consists of
setting a parametrized family of distribution and looking for the best approximation of the
target distribution among this family, that is, the one that minimize a given approxima-
tion error measurement (Kullback-Leibler divergence between approximation and target)
and is found by gradient descent over the parameters that describe the family. Let qx(z)

be a Gaussian distribution whose mean and covariance are defined by two parametrized
functions, g and h, of the parameter x belonging to the families of functions G and H:

qx(z) ≡ N (g(x), a(x)), g ∈ G, h ∈ H

qx(z) is a family of candidates for variational inference to approximate p(z|x). The
best approximation among this family is found by optimizing g and h that minimize
the Kullback-Leibler divergence between the approximation and the target p(z|x):

(g∗, h∗) = argmin
(g,h)∈G×H

KL (qx(z), p(z | x))

= argmin
(g,h)∈G×H

(
Ez∼qx (log qx(z))− Ez∼qx

(
log

p(x | z)p(z)
p(x)

))
= argmin

(g,h)∈G×H

(Ez∼qx (log qx(z))− Ez∼qx(log p(z))− Ez∼qx(log p(x | z)) + Ez∼qx(log p(x)))

= argmax
(g,h)∈G×H

(Ez∼qx(log p(x | z))−KL (qx(z), p(z)))

= argmax
(g,h)∈G×H

(
Ez∼qx

(
−∥x− f(z)∥2

2c

)
−KL (qx(z), p(z))

)
The trade-off there exists between maximizing the likelihood of the “observations” and
staying close to the prior distribution comes up in the second last equation and expresses
the balance that needs to be found between the confidence in the data and the confidence
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in the prior. If the regularity is mostly ruled by the prior distribution assumed over the
latent space, the performance of the overall encoding-decoding scheme highly depends on
the choice of the function f , which defines the decoder. Indeed, as p(z|x) can be approx-
imate (by variational inference) from p(z) and p(x|z) and as p(z) is a simple standard
Gaussian, the only two optimizable levers in the model are the parameter c (that defines
the variance of the likelihood) and the function f (that defines the mean of the likelihood).

For any function f in F (each defining a different probabilistic decoder p(x|z)) the best
approximation of p(z|x) can be found, denoted q∗x(z), in order to get an encoding-decoding
scheme as efficient as possible and, f needs to maximize the expected log-likelihood of x
given z when z is sampled from q∗x(z). Thus, the optimal f ∗ is such that

f ∗ = argmax
f∈F

Ez∼q∗x(log p(x | z))

= argmax
f∈F

Ez∼q∗x

(
−∥x− f(z)∥2

2c

)
where q∗x(z) depends on the function f . Gathering all the pieces together, the goals are
f ∗, g∗ and h∗ such that

(f ∗, g∗, h∗) = argmax
(f,g,h)∈FxGxH

(
Ez∼qx

(
−∥x− f(z)∥2

2c

)
−KL (qx(z), p(z))

)
(2.1)

This objective function contains the reconstruction error between x and f(z) and the reg-
ularization term given by the KL divergence between qx(z) and p(z) (which is a standard
Gaussian). The constant c rules the balance between the two previous terms. A higher c
means a high variance around f(z) for the probabilistic decoder and, so, the regularisation
takes over the reconstruction term (and the opposite stands for lower c).

Since it’s not easy to optimize over the entire space of functions, the optimization
domain could be constrained and f , g and h expressed as neural networks. Thus, F, G and
H correspond respectively to the families of functions defined by the networks architectures
and the optimisation is done over the parameters of the networks. In practice, g and h are
not defined by two completely independent networks but share a part of their architecture
and their weights as Figure 2.7 shows:

g(x) = g2(g1(x)) h(x) = h2(h1(x)) g1(x) = h1(x)

In order to reduce the number of parameters, qx(z) is assumed to be a multidimensional
Gaussian distribution with a diagonal covariance matrix, so h(x) is the vector of its
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diagonal elements and has the same size as g(x) (these assumptions could result in less
accuracy). Contrarily p(x|z) is assumed to be a Gaussian with fixed covariance. The
function f of the variable z defining the mean of that Gaussian is modeled by a neural
network and can be represented as in Figure 2.8.

The overall architecture is then obtained by concatenating the encoder and the de-
coder parts. The sampling process has to be expressed in a way that allows the error
to be backpropagated through the network. A simple trick, called reparametrization
trick, is used to make the gradient descent possible despite the random sampling that
occurs halfway through the architecture and consists in using the fact that if z is a
random variable following a Gaussian distribution with mean g(x) and with covariance
H(x) = h(x).hT (x) then it can be expressed as

z = h(x)δ + g(x) δ ∼ N (0, I)

Finally, the objective function is given by Equation 2.1 in which the theoretical expectancy
is replaced by a more or less accurate Monte-Carlo approximation that consists, most of
the time, into a single draw. Considering this approximation and denoting C = 1

2c
, the

obtained loss is a function composed of a reconstruction term, a regularisation term and
a constant to define the relative weights of these two terms:

loss = C∥x− f(z)∥2 −KL (N (g(x), h(x)),N (0, I)) (2.2)

Figure 2.7: VAE encoder representation. Figure 2.8: VAE decoder representation.
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This chapter presents our research problem, its context, and the research questions that
guided our investigations. For the problem formalization we used the Macro-Meso-Micro
framework [19] that allows to formulate research questions at three levels of analysis.

1. The Macro level is generally related to broad, complex, and unanswerable ques-
tions. It refers to large-scale analysis related to entire communities or families of
entities.

2. The Meso level presents more specific but still unanswerable questions. It refers to
medium-scale analysis involving small groups or a Ph.D. thesis.

3. The Micro level is where the actual investigation happens. It follows a list of
feasible problems to solve.

3.1. From reasoning to approximate reasoning

Knowledge representation (KR) is the branch of artificial intelligence dedicated to repre-
senting information about the world in a form that a computer system can use to solve
complex tasks. KR also incorporates findings from logics to automate reasoning, such as
the application of rules or the relations of sets and subsets. A representation could be
more or less expressive, depending on the semantics it can encode. Figure 3.1 shows how
the increase in the semantics of a representation results in an increase in the reasoning ca-
pabilities. For example, with XML Schema we can only describe the elements in an XML
document, while with RDF/RDFS we can define object classes and binary relationships.

The most expressive representation in Figure 3.1 is the Web Ontology Language 2
(OWL), which is the standard used in Semantic Web to represent rich and complex
knowledge. In particular, information and the semantics of a given domain are encoded
in Knowledge Bases (KB). KBs include sets of axioms defining classes and properties
(TBox), and sets of individuals (ABox) that represent instances of the given domain (see
Section 2.2.3 for more details). Thanks to automated reasoning, computer programs are
able to produce new information by deducing facts of individuals in the ABox using the
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Figure 3.1: Relation between reasoning capabilities and knowledge representation.

axioms in the TBox and given inference rules. In particular, three reasoning tasks are
allowed with OWL:

• Consistency checking: the task of determining whether an ontology is consistent
or not.

• Classification: the task of computing all entailed class subsumption between
named classes in the ontology.

• Materialization: the task of computing all entailed class assertions for named
classes and individual names occurring in the ontology. Materialization can be
divided in 3 different sub-tasks :

– Instance retrieval : the task of listing all the individuals of a given class.

– Concept satisfiability : the task of deciding if a given concept is consistent with
respect to the KB.

– Axiom entailment : the task of verifying if a given axiom is entailed by the KB.
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Profile Consistency checking complexity DL
OWL2 EL PTIME-complete EL++
OWL2 QL NLogSPace-complete DL− Lite
OWL2 RL PTIME-complete DLP
OWL2 FULL Undecidable SROIQ(D)

Table 3.1: OWL2 profiles complexity of the consistency checking task and their DLs.

The formalisms underlying OWL are the Description Logics (DLs). DLs are logical
languages designed for the specification of Knowledge Bases. They extend both Proposi-
tional Logic (PL) and First Order Logic (FOL) but also allow for the specification of binary
relationships. Some DLs are more expressive than others. In general, the more expressive
a DL is, the more complex reasoning becomes. Therefore, a balance between expressive-
ness and the complexity of reasoning has to be sought. OWL 2 is based on SROIQ(D),
the most expressive decidable fragment of FOL. However, OWL 2 extends SROIQ(D)
with axioms that makes the reasoning undecidable. For this reason, three fragments (pro-
files) of OWL are defined, based on more simple DLs, whose reasoning complexities are
bounded. Table 3.1 shows the complexity of each OWL profile for the consistency check-
ing task and their underlying DLs. For what concerns the other reasoning tasks instead,
it is hard to evaluate their complexity because it depends on the algorithms used by the
reasoners (we only know the upper and lower bounds). Nevertheless, Singh et Al. [20]
have designed OWL2Bench, a benchmark that empirically compares standard reasoners
for all the three reasoning tasks on the OWL profiles and clearly show how the time com-
plexity increases as the expressiveness of the ontology increases. As an example, Table
3.2 shows the performances of HermiT on an ABox belonging to OWL2Bench, made of 5
universities. The reasoner runs out of time (t.o.) on all the tasks for the RL profile and
on the classification and realization task for the EL profile.

Profile CC CT RT
OWL2 EL 665.12 t.o. t.o.
OWL2 QL 6.56 10.01 10.01
OWL2 RL t.o. t.o. t.o.

Table 3.2: Hermit performances (in seconds) on consinstency cheking (CC), classification
(CT) and realization (RT) tasks of OWL2Bench.

The complexity of the algorithms (in particular time complexity) increases as the
expressiveness of a DL increases. The OWL profiles focus on the trade-off between com-
plexity and expressiveness in an exact fashion, defining segments of the language in which
the limited expressiveness has the maximum performance. Another approach instead con-
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sists of the approximate reasoning, a technique that improves the efficiency of deduction
by trading correctness for performance. Entering the world of approximation, the first as-
sumption is the loss of information. Thus, the attention is brought towards the quality of
the inference produced. Reasoning produces inference according to a so-called entailment
regime. However, not all deductions are equally important. For example, given :

Amedeo
type−−→ Student

subClassOf−−−−−−−→ Person
subClassOf−−−−−−−→ Thing

knowing that "Amedeo is a Thing" does not add much information as knowing that
"Amedeo is a Person".

OWL reasoning is done in a deductive way, so it needs valid premises to derive valid
conclusions. The approximation process corrupts the deductive approach, removing for
example some premises. For this reason, our first approach was taking into consideration
inductive reasoning as an approximation medium. From that, it follows the first research
question.

M Is it possible to approximate deductive reasoning using inductive reasoning?

The Macro M covers numerous possible alternatives, therefore, it is hard to answer.
However, we can use the question to formulate some hypotheses that will guide our in-
vestigation.

H1 The approximated reasoner should be faster than a standard reasoner.

H2 The approximate reasoner should reach a sufficient soundness and completeness
threshold for the materialization task.

H3 The loss of soundness and completeness doesn’t have to be horizontal.

H1 is the result, in terms of computing time, which we are expecting doing an ap-
proximation, while H2 is the result in terms of the quality of the approximation. H3
specializes H2, in particular, we expect that the approximation compresses useless infor-
mation in favor of the more meaningful ones.

3.2. From Macro to Meso

Guided by M, we have analyzed the inductive approaches adopted by the research com-
munity. In particular, we have begun with the survey by Nickel et al. [16], which lists
the state-of-the-art approaches based on ML and the first approaches using deep learning.
The first relevant approach is RESCAL [15] which is an embedding model that uses tensor
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factorization to predict the probability of the existence of a triple. Instead, NTN [21] is
the first approach that combines tensor factorization with standard neural network layers,
resulting in a model that scores triples to predict their existence.

According to Nickel et al. [16] we can distinguish another family of ML methods
that consists of translational embeddings, namely, TransE [1], TransH [28], TransD [7]
and TransR [11]. These models predict the probability of relationships from the distance
between latent representations of entities embedded in hyperspaces.

Two modern approaches based on CNN have been proposed: ConvE [3] and ConvKB
[14]; the former uses a convolutional layer to complete a given couple <s,p> with the
missing <o>, the latter scores the triples in input using convolutional filters and the dot
product. The use of deep learning has gone even forward with more complex models such
as DAPath [23] and GRL [27] which uses reinforcement learning in combination with path
embedding or LSTM to perform triple completion. Nathani et Al. [13] proposed to use a
graph attention network (GAT [24]) together with a multi-head attention mechanism to
embed and score a set of given triples. Finally, with a different perspective, Paulheim et
Al. [17] proposed to perform approximate ABox consistency checking by using a linear
classifier, reaching an accuracy of more than 95% at computation times at least 50 times
as fast as a standard ontology reasoner.

Table 3.3 summarizes the approaches and highlights some important characteristics.
In particular,

• "type of inference" indicates the type of feature used by the model (features ex-
tracted by embeddings, attention for graphs, and paths );

• "semantic" stands for the usage of the ontology in building the model (explicitly
means that the model was directly fed with the ontology while implicitly means that
the model has learned some ontology’s rules from data);

• "reasoning task" refers to the reasoning task performed by the model.

The "reasoning task" in Table 3.3 has no direct correspondence with the OWL tasks. On
the contrary, it can be seen as an interpretation of the models’ inference from an OWL
point of view. For example, RESCAL performs triples prediction, which is similar to what
a reasoner does with axiom entailment. Models that perform triples completion can be
related to the instance retrieval task. The approach of Paulheim et Al. [17], instead, is the
only one that explicitly aims to approximate the consistency checking task. Since Nickel
et al. [16] did not report any reference to the reasoning tasks, we labeled the models as
follows:
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• Axiom entailment: if the model scores the triples or computes existence proba-
bilities.

• Instance retrieval: if the model performs triple completion.

• KB satisfiability: if the model computes the satisfiability of the KB.

Model Technique
Type of
inference

Semantic Reasoning task

RESCAL
Embedding via
tensor factorization

Feature
manipulation

Implicit
axiom
entailment

NTN Tensor factorization+NN
Feature
manipulation

Implicit
axiom
entailment

Trans_ Translational embedding
Feature
manipulation

Implicit
Instance
retrieval

GAT Attention mechanism
Attention
manipulation

Explicit
axiom
entailment

ConvE CNN
Feature
manipulation

Implicit
instance
retrieval

ConvKB CNN
Feature
manipulation

Implicit
axiom
entailment

DAPath RL + path embedding
Feature
manipulation

Implicit
axiom
entailment

GRL LSTM + RL
Path
manipulation

Implicit
Instance
retrieval

Abox CC Linear classifier
Feature
manipulation

Explicit
KB
satisfiability

Table 3.3: State of the art models summary.

From Table 3.3 emerges that none of the presented approaches approximates the
materialization task, but rather completes single triple iteratively or "brute-forces" all
the possible combinations of <s,p,o>. The task of designing a model for approximate
materialization poses the challenge of designing a model that "generates" new triples
using only the information given as input.

The generative nature of the task has led us towards generative models. In particular,
Variational Autoencoders (VAE) consist of an encoding block that compresses the input
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information into a constrained multivariate latent distribution and a decoding block that
reconstructs it as accurately as possible. VAEs were initially designed for unsupervised
learning, but their effectiveness has been proven for semi-supervised or supervised learning
forcing the learned representations to assume useful properties. More details are listed in
Section 2.3.3. Following the intuition of VAE we reduce question M into:

m Is it possible to approximate the materialization task with a variational
autoencoder?

3.3. From Meso to Micro

VAEs belong to the family of deep learning models, i.e., they are universal approximations
for any given function. Thus, we are going to introduce the following formalization:

LetMT be the function that represents the materialization:

MT : {ABox+ TBox} −→ ABox∗ (3.1)

MT takes as input the KB (ABox+TBox) and outputs ABox∗, the materialized Abox.
Let approx−MT be the function that approximatesMT :

approx−MT : {ABox+ TBox}−̃→ABox∗ (3.2)

With this formalization, the meso m translates into designing a variational autoencoder
that approximatesMT with the function approx−MT . So, we can elicit some require-
ments to guide our design.

• R1: The semantic (Tbox) shall be taken into account in the vector representation.

• R2: The model shall take as input the entire ABox.

• R3: A unique mapping function between the OWL representation and the vector
representation used as input and output of the model shall exist.

R1 comes directly from the challenge of the Macro M, since we aim to approximate the
function MT which uses the rules of the ontology to make inferences on the ABox. R2
comes from the definition of the function approx−MT and guarantees a fair comparison
with standard reasoners (their input are the complete ABoxes). Moreover, processing the
entire ABox could increase the accuracy of the inference. For example, symmetric proper-
ties involve two triples (i.e., <a,P,b> and <b,P,a>, where P is the symmetric property).
The symmetry could be lost when taking as input a single triples iteratively. The major-



30 3| Problem statement

ity of the models presented in Table 3.3 use unsupervised paradigms to build embeddings
for the triples and use maximum likelihood probability to decode the embedded values.
Thus, R3 is essential to avoid ambiguities, especially during the evaluation of the model
asserted triples. The requirements focus on the choice of an embedding model for the
KB. In particular, R3 imposes the use of Closed World Assumption (CWA), i.e., every
fact that is not known to be true is considered false (it is opposite to the open world
assumption where the answer of an unknown fact is "not known"). In our context, the
CWA is essential to prevent the explosion of the triple generation for example, in the case
of blank nodes. After this meditation, we can enlight the challenges that comes with m:

1. Find an embedding model that encodes the semantic of the TBox and supports R1
and R2.

2. Find an architecture for the variational autoencoder able to approximate the func-
tionMT respecting R2 and R3.

Now that we have chosen the model and set the requirements for the embedding, we must
choose the experimental setting to prove the feasibility of our research question more.
However, in the literature, there is no benchmark for the approximate materialization
task that investigates the trade-off between expressiveness and efficiency. In particular, a
meaningful benchmark for the task should include strong semantics to stress the reasoner
and should follow the standards for what concerns Knowledge Representation (i.e., KG
with OWL profiles) and Deep Learning (i.e., large and scalable dataset). The lack of
a standardized datasets for evaluating approximated materialization represents a huge
obstacle for our research. Thus, we decided to focus on the design of a reliable and
flexible benchmark for the task. Therefore, our research micro question is:

µ How can we design a benchmark to evaluate the task of approximate
materialization?

A standard benchmark design workflow consists of three main steps:

1. Describe the purpose of the benchmark.

2. Select or design a representative dataset.

3. Design a baseline.

The scope of the benchmark has already been introduced: we aim to evaluate the perfor-
mance of deep learning models on the approximate materialization task. OWL2Bench[20]
is a benchmark that evaluates the performance of standard reasoners on different expres-
sive KGs. However, it does not represent a feasible solution for evaluating the efficiency of
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the approximate materialization because it does not provide the ground truth for the task.
The reasoners tested by OWL2Bench, in fact, run out of time for most of the dimension
of the proposed KG.

For what concerns the dataset selection, two approaches are feasible: Using real-world
data or designing a synthetic dataset. The first approach consists of using well-known
ontology such as GALEN1. GALEN is an ontology with a strong semantic, but in our
context comes with two problems: it has a small ABox with relatively few entities, which
would need fragmentation to produce many samples for the deep learning model. On
the other hand, DBpegia 2, Yago 3 and SNOMED 4 are examples of knowledge bases
with huge ABoxs but not very expressive Tboxes. Instead, the second approach has the
advantage of having both the desired expressiveness and a possibly infinite number of
samples in the ABox. Moreover, real data contain irregularities that could stress the
reasoner. A synthetic dataset could be seen as more regular and allows the introduction
of additional noise for deeper investigations. So, given the desired level of expressiveness,
the most important feature for training our deep learning model is scalability, which brings
us towards the synthetic approach. Instead of designing a synthetic dataset from scratch,
we have chosen to bring CLEVR [8] into the logic domain, a well-accepted benchmark for
the visual question-answering task in Deep Learning [12]. The choice of CLEVR relies
on having already identified abstractions which simplifies the KGs design, and a large
synthetic dataset for training a deep learning model that could be extended or corrupted,
and also includes questions that can be tranlsated into SPARQL queries.

The goal of a benchmark is to push the technological progress by guaranteeing a fair
assessment. Therefore, it is crucial to test the designed task and dataset against a baseline
that is sufficiently sophisticated to solve the task yet not more advanced than the state
of the art. For our purpose, the baseline is a trivial model that shows the quality of the
benchmark for the approximate materialization task and sets a starting point for future
investigations. Therefore, we opted for a Variational Autoencoder, which satisfies R2
and lays the foundation for future investigation about our meso research question m. For
what concerns the KG embedding, the simpler model that could respect our requirements
is the SPO, a tensor representation for triples in a KB used to build RESCAL [15], where
an entry χi,j,k = 1 if the triple <si,pj,ok> exists. With SPO, we can encode every triple
of the KBs in a single tensor, so the model uses the full available information for its
predictions and satisfies R1. Moreover, SPO guarantees a unique mapping between the

1https://www.opengalen.org/themodel/ontology.html
2https://www.dbpedia.org
3https://yago-knowledge.org
4https://www.snomed.org
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KGs and the vector representation (R3), being the indexes of its entries unique for every
triple.

This lead us to the definition of our design problem.

Design a benchmark based on CLEVR to evaluate the approximation of the
materialization task and test it on a baseline model that satisfies the re-
quirements.

The solution to this problem is a reusable and adaptable benchmark that lays the
foundation for future works and insights.
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This chapter presents the solutions to our design problem. In particular, Section 4.1
describes the modeling of the benchmark and the design its Knowledge Graph KlevR.
Section 4.2 instead, focuses on the design of the baseline to test the benchmark. In
particular presents DeepR and on the choice of the embedding model for the KGs.

4.1. Benchmark Task: KlevR

This Section describes the knowledge representation process that we followed, consisting
of the modeling of KlevR. In order to design the ontology, we have followed two principles:

1. The level of expressiveness has to be such that the reasoner is heavily stressed.

2. We have to follow the knowledge representation standards.

The first one is the basement of our research since we wanted to design a benchmark for
the materialization task. The second principle consists of designing an ontology with all
the OWL profiles. In particular, given a domain, a standard ontologies design workflow
consists of the following steps:

1. Analyse the domain;

2. Identify the abstractions;

(a) Identify the entities.

(b) Identify the properties that link the entities.

(c) Organize the entities in a hierarchy.

(d) Specialize the entities with properties.

3. Test the information needs (using competency questions);

4. Populate the knowledge base;

5. Materialize with a reasoner;
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The result of our design is KlevR, an Knowledge Graph written in OWL that models
CLEVR.

4.1.1. Domain Analysis

CLEVR is a benchmark that consists of scenes and questions. It is a diagnostic dataset for
analyzing visual question answering (VQA) systems on different visual reasoning tasks [8].
It includes 70000 images for the training set and 15000 for the test set.

A CLEVR scene is a collection of spatially related objects on the ground-plane. Each
scene is associated with a scene graph. A scene graph is direct graph with a set of nodes
that represents objects and a set of edges that represents relationships among the objects.
The nodes are labeled with the attributes of the object they represent. Scene graphs are
agnostic from the point of view. Agnosticism is essential to have a standard and
invariant description of each scene. On the other hand, a scene includes a point of view,
which is randomly changed on the scenes. Figure 4.1 shows an example of a scene with
three objects, a small brown cube in the top right, a small gray cylinder in the center-left
and a small brown cube in the bottom center.

Figure 4.1: Example image of a CLEVR scene [8].

4.1.2. Abstractions

The first approximation we have made with respect to the VQA task is to use the scene
graphs, which encode the ground truth information, removing the ambiguities due to the
camera angle and point of vision.

The CLEVR entities include objects that can have the following atomic attributes:
{Shape, Size, Material, Color}. Table 4.1 shows the possible values for each attribute,
Figure 4.2 instead shows eight objects with different combinations of attributes.
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Figure 4.2: CLEVR objects with possible combinations of attributes [8].

Figure 4.3: Left/Right relationship [8] Figure 4.4: Front/Behind relationship [8]

Objects are spatially related via the the relationships: "left","right","behind","front".
The semantics of the relationships depends on both object positions and camera viewpoint.
Figures 4.3 and 4.4 show examples of how the spatial relationships are intended.

In KlevR, each object belongs to the class object, while a complex hierarchy of classes
captures the semantics of the attributes. Conveying the combinatorial nature of CLEVR
attributes, we have organized the numerous classes in two nested hierarchies.



36 4| Benchmark Design

Attribute name Domain
Shape Cube, Sphere, Cylinder
Size Big, Small
Material Rubber, Metal
Color Blue, Brown, Gray, Red, Yellow, Green, Purple, Cyan

Table 4.1: CLEVR object’s attributes.

Figure 4.5 shows the first hierarchy, which describes every possible combination of at-
tribute types. In particular, the level 1 in Figure 4.5 is made of the classes that rep-
resent a type of CLEVR attribute, namely ColoredObject, MaterialObject, ShapedObject
and SizedObject. Their children instead are the intersection of the father with another
attribute type. All the possible combinations of attributes at the conceptual level are
shown in Figure 4.6. The standard we have followed in building the combinations consists
of the alphabetical order of the attributes. A possible extension considering a different
order is presented in Section 6.2.1.

Figure 4.5: First KlevR class hierarchy.

The second hierarchy consists of attribute values. In particular, KlevR contains a
class for each attribute value and for each possible combination, as shown in Figure 4.7.
Considering the values reported in Table 4.1, the total number of classes is 323. For
example, the attribute Blue is encoded with the class BlueObject, Cube with CubeOb-
ject. Combinations are made with both two values (e.g. RedSphereObject), three val-
ues (e.g. GrayMetallicBigObject) and four values (e.g. GreenRubberSmallSphereObject).
The classes that describe an attribute value belong to both hierarchies. For example,
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Figure 4.6: Venn diagram of object-attribute classes.

BlueMetallicObject is a subclass of both BlueObject, MetallicObject, and ColoredMateri-
alObject. Figure 4.7 shows some of the classes belonging the second hierarchy (in red)
nested with the classes of the first hierarchy (in black). The properties of KlevR are
the spatial relationships between the objects, both direct and not direct, which are sub-
property of hasNear and hasDirectlyNear, respectively. Table 4.2 shows their domain,
range, and characteristics (they are not supported by each profile, explanation follows).
By defining direct and indirect properties, we have also built a property hierarchy with

Figure 4.7: Complete KlevR class hierarchy.
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the possibility of property chains, increasing the required reasoning effort of the reasoner.
The design aspects just described are common for all the OWL profiles of KlevR. Then,
each profile has been designed with different features accordingly to its entailment regime.

KlevR_RL is the OWL RL profile of KlevR. With existential quantification and
someValuesFrom allowed, we have added classes to encode the semantics of the attribute
values. For example, the class Red stands for "a red Thing" and is a subclass of Color.
Their instances will be anonymous nodes, and are used in combination with four new
properties whose semantic is "having that attribute", namely hasColor, hasMaterial, has-
Shape and hasSize. Each class of the first level of the hierarchy is restricted with an
existential quantification. For example

BlueObject equivalentTo hasColor some Blue

defines the class of blue objects as the set of objects having blue color. KlevR_RL also
supports transitive and symmetric properties, resulting in the most expressive profile.

KlevR_QL is the OWL QL profile of KlevR. The OWL QL profile is less expressive
than the RL one, it supports all the RL expressions and axioms we used in KlevR_RL
except for existential quantifications and transitive property. For this reason, the seman-
tics of the attributes lies only in the class names in the hierarchy. Indeed, KlevR_QL was
modeled starting from KlevR_RL and then removing the attribute-type classes (Color,
Material, Shape and Size), their subclasses, the property hasColor, hasMaterial, hasShape,
and hasSize, and the transitivity from the properties.

KlevR_EL is the OWL EL profile of KlevR. The OWL EL profile is less expressive
than the RL one, but in our case, it doesn’t differ so much from KlevR_QL; in particular,

Property Domain Range inverseOf characteristics
hasNear Object Object - transitive, symmetric
hasDirectlyNear Object Object - symmetric
hasOnLeft Object Object hasOnRight transitive
hasDirectlyOnLeft Object Object hasDirectlyOnRight -
hasOnRight Object Object hasOnLeft transitive
hasDirectlyOnRight Object Object hasDirectlyOnLeft -
hasOnFront Object Object hasBehind transitive
hasDirectlyOnFront Object Object hasDirectlyBehind -
hasBehind Object Object hasOnFront transitive
hasDirectlyBehind Object Object hasDirectlyOnFront -

Table 4.2: KlevR properties description.
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supports its expressions and axioms except for inverse and symmetric properties. In ad-
dition, it supports transitivity and disjunction. KlevR_EL, in fact, was modeled starting
from KlevR_QL and then changing the characteristics of the properties.

4.1.3. Information Needs

As per the competency questions, which we can use to frame the scope by capturing the
information needs the ontology is intended to answer, we have translated the CLEVR
questions into SPARQL queries in order to set the expressivity of the ontology so that
the reasoning effort is maximized.

For each CLEVR scene, a set of questions is associated (train and validation sets
also have the answers), generated using different templates. The templates are made of
placeholders (reported in Table 4.3), that are substituted with randomly sampled values
of the attributes to generate the real questions. Placeholders can be empty whenever an
attribute or a relationship is omitted from the question. For example, the question "How
many red cubes are there?" is generated using the template "how many <Z> <C> <M>
<S> are there?" replacing the attributes "<C>" and "<S>" with "red" and “cube”, <Z>
and <M> instead are empty. CLEVR has 90 families of questions that can be grouped in
13 basic types. Table 4.4 shows some example templates for each type of basic question.
Complex questions are made by composing the basic ones using spatial relationships,
allowing the creation of a possibly infinite number of questions. An example is "How
many <Z> <C> <M> <S> are <R> of the <Z1> <C1> <M1> <S1>" where <R>
could be any of the spatial relationships.

Placeholder values
< S > Shapes: Cube, Sphere, Cylinder
< Z > Size: Big, Small
< M > Materials Rubber, Metal
< C > Colors: Blue, Brown, Gray, Red, Yellow, Green, Purple, Cyan

< R > Relationships: Left, Right, Front, Behind

Table 4.3: CLEVR template placeholders.

Each question is associated with a functional program (FP) that yields the answer
to the question when applied to the scene graph. FP are built from basic functions that
correspond to elementary operations of VQA (i.e., querying object attributes, counting
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Type Questions

Count How many <Z> <C> <M> <S> are there?
What number of <Z> <C> <M> <S> are there?

Exist
Are there any <Z> <C> <M> <S>s?
Are any <Z> <C> <M> <S>s visible?
Is there a <Z> <C> <M> <S>?

Query shape What shape is the <Z> <C> <M> <S>?
Query color The <Z> <C> <M> <S> has what color?
Query size What is the size of the <Z> <C> <M> <S>?
Query material What is the <Z> <C><S> made of?

Compare integer, less Is there fewer <Z> <C> <M> <S> than
<Z1> <C1> <M1> <S1>?

Compare integer, greater Is there more <Z> <C> <M> <S> than
<Z1> <C1> <M1> <S1>?

Compare integer, equal Are the <Z> <C> <M> <S>
the same number of <Z1> <C1> <M1> <S1>?

Compare size Is the <Z> <C> <M> <S> the
same size of the <Z1> <C1> <M1> <S1>?

Compare shape Does the <Z> <C> <M> <S> and the
<Z1> <C1> <M1> <S1> have the same shape?

Compare material Are the <Z> <C> <M> <S> and the
<Z1> <C1> <M1> <S1> made of the same material?

Compare color Is the <Z> <C> <M> <S> the
color of the <Z1> <C1> <M1> <S1>?

Table 4.4: Examples of CLEVR question templates [8]

objects, comparing values) and can be chained to build complex questions as shown in
Figure 4.8.

FPs are essential for benchmarking VQA models since they tell us exactly which
reasoning abilities are required to solve it, allowing performance comparison on questions
requiring different types of reasoning.

Given the KlevR profiles, we have translated the competency questions into SPARQL
queries. Listings 4.1 shows an example of the query related to the question ""How many
<Z1> <C1> <M1> <S1>s are there?"" for the RL profile. We need to filter dinjuncted
blank nodes ?c, ?z, ?m, ?s since the RL profile doesn’t support class disjunction. The
complete list of queries is reported in the appendix B.
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Figure 4.8: Left: Examples of questions and their associated functional programs. Right:
Catalog of basic functions used to build questions. [8].

1 SELECT (COUNT(?x) as ?xCount)

2 WHERE

3 {

4 ?x ex:hasColor ?c ;

5 ex:hasSize ?z;

6 ex:hasMaterial ?m;

7 ex:hasShape ?s .

8

9 ?c rdf:type ex:<C> .

10 ?z rdf:type ex:<Z> .

11 ?m rdf:type ex:<M> .

12 ?s rdf:type ex:<S> .

13

14 FILTER(?s <> ?c) FILTER(?s <> ?z)

15 FILTER(?s <> ?m) FILTER(?c <> ?z)

16 FILTER(?c <> ?m) FILTER(?z <> ?m)

17 }

Listing 4.1: RL SPARQL query for "How many <Z1> <C1> <M1> <S1>s are there?".
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4.1.4. KlevR Population

In populating the KBs, our goal was to feed the reasoner with individuals belonging
to the lower level classes (e.g. BlueMetallicSmallCubeObject), forcing it to scale up the
hierarchy using the subclass entailment rule. Moreover, we wanted the objects to be
related only with their direct positional relationships, to enforce the reasoner to inference
about subproperties and transitivity. With the dataset annotation, we have obtained an
RDF graph for each scene, which we call KlevR scene graph.

Definition 4.1.1 (KlevR scene graph). A KlevR scene graph is the RDF encoding
of a plain scene graph. The graph’s nodes describe the objects and the attributes, and
relations connect objects to objects and objects to attributes.

Figure 4.9 shows a KlevR scene graph with the objects labeled with RDF annotation
in Turtle format.

Figure 4.9: KlevR scene graph example.

CLEVR provides a file in JSON format which reports the scene graphs for each image.
First, we have adjusted the given file removing all the information intended for the blender.
Then, we gave ids to objects, and set the direct positional properties between the objects.
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For example, Listing 4.2 shows an example of CLEVR scene and Listing 4.3 shows the
scene after the adjustment for the annotation.

1 {

2 "image_index": 0, "image_filename":

3 "CLEVR_train_0.png", "split": "train",

4 "objects":[

5 {"color": "blue", "size": "large", "shape": "cube",

6 "material": "rubber", "rotation": 269.85 ,

7 "3d_coords": [-1.371, 2.079, 0.699] ,

8 "pixel_coords": [269, 88, 12.661]} ,...] ,

9 "relationships": {

10 "right": [[2,5],[0,2,3,4,5],[5],[0,2,4,5],[0,2,5],[]],

11 "behind": [[],[0,5],[0,1,5], [0,1,2,5],[0,1,2,3,5],[0]],

12 "front": [[1,2,3,4,5],[2,3,4],[3,4],[4],[],[1,2,3,4]],

13 "left": [[1,3,4],[],[0,1,3,4],[1],[1,3],[0,1,2,3,4]]},

14 "directions": {

15 "right": [0.65, 0.75, -0.0], "behind": [-0.75, 0.65, 0.0],

16 "above": [0.0, 0.0, 1.0], "below": [-0.0, -0.0, -1.0],

17 "left": [-0.65, -0.75, 0.0], "front": [0.75, -0.65, -0.0]}

18 }

Listing 4.2: Example of a CLEVR scene in JSON format.

1 {

2 "image_index": 0,

3 "objects": [ {

4 "id": "o0",

5 "color": "Blue","size": "Large",

6 "shape": "Cube","material": "Rubber",

7 "hasOnLeft": ["o1","o3","o4"],"hasOnRight": ["o2","o5"],

8 "hasOnFront": ["o1","o2","o3","o4","o5"],"hasBehind": [],

9 "hasDirectlyOnLeft": ["o1"],"hasDirectlyOnRight": ["o2"],

10 "hasDirectlyOnFront": ["o1"],"hasDirectlyBehind": []},...] ,

11 }

Listing 4.3: Example of a CLEVR scene in the adjusted JSON format.
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To annotate the dataset, we have used YARRRML’s Matey1, a web application that
produce RML mappings and relative RDF outputs using YARRRML, a human readable
text-based representation for declarative generation rules. We defined the YARRRML
mapping reported in Listing 4.4, whose output is a KlevR scene graph in Turtle format.
The result for the example scene in Listing 4.3 is reported in Listing 4.5.

1 prefixes:

2 ex: "http: // example.com/"

3 mappings:

4 person:

5 sources:

6 - [’data.json~jsonpath ’, ’$. objects [*]’]

7 s: http:// example.com /$(id)

8 po:

9 - [a, ex::$( color)$( material)$( shape)$(size)Object]

10 - [ex:hasDirectlyOnRight , ex:o$( hasDirectlyOnRight [0])]

11 - [ex:hasDirectlyOnLeft , ex:o$( hasDirectlyOnLeft [0])]

12 - [ex:hasDirectlyOnFront , ex:o$( hasDirectlyOnFront [0])]

13 - [ex:hasDirectlyBehind , ex:o$( hasDirectlyBehind [0])]

Listing 4.4: YARRRML mapping for the KlevR scene graphs.

1 PREFIX ex: <http: // example.org/>

2 PREFIX rdf: <http: //www.w3.org /1999/02/22 -rdf -syntax -ns>

3 <ex:o0 > <rdf:#type> <ex:GrayRubberCubeLargeObject >.

4 <ex:o0 > <ex:hasDirectlyOnLeft > <ex:o1>.

5 <ex:o0 > <ex:hasDirectlyOnRight > <ex:o2>.

6 <ex:o0 > <ex:hasDirectlyOnFront > <ex:o1>.

7 ...

Listing 4.5: Example of a KlevR scene graph in Turtle format.

1https://rml.io/yarrrml/matey/
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4.1.5. Dataset Materialization

Once we have annotated every CLEVR scene, we have proceeded with the materialization.
The reasoner of our choice was HermiT2 because it provides a simple to use API and it
is widely tested and benchmarked. Unlike a standard KR task where the ABox contains
all the individuals to materialize, each KlevR scene graph consists of a single ABox. To
perform the inference according to the OWL profiles, we merged the three ontologies with
the ABoxes, then we have materialized them together, and finally we have subtracted the
ontologies to obtain the realized Aboxes. Figure 4.10 illustratively shows a materialized
KlevR scene graph, labelling the image with its completed RDF annotation. With the
materialization, we have obtained the set of targets for training Deep Learning models on
the approximate materialization task. The targets represent the ground truth, both for
the performance by means of computational time and the accuracy of the inference.

Figure 4.10: Materialized KlevR scene graph example.

2http://www.hermit-reasoner.com
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4.2. Baseline solution: DeepR

In building KlevR, we have obtained three datasets. In particular, for each OWL profile,
we have a training and a testing set that we define as D = {< xi, ti >} where xi is a KlevR
scene graph and ti is a materialized KlevR scene graph. To design and train the baseline
model for the benchmark, the first step consists of the choice of the embedding model
for the RDF graphs which is described in Subsection 4.2.1. The second step, reported
in Subsection 4.2.2, consists of the design of the Variational Autoencoders. Finally, in
Subsection 4.2.3 we discuss how to evaluate the baseline using the standard Deep Learning
metrics and how they could be interpreted to evaluate the quality of the approximation.

4.2.1. Embedding Model

As we discussed in Chapter 3, the embedding model we propose for our baseline is the
Subject-Predicate-Object (SPO), a 3D-tensor representation of an RDF graph. With an
SPO tensor, each triple is represented as an entry Xi,j,k, which is such that Xi,j,k = 1 if
the triple < si, pk, oj > exists in the graph, Xi,j,k = 0 otherwise. In particular, each tensor
slice encodes a properties pk, while its rows and column are made of the concatenation
of all the existing subjects and objects in the scenes. Figure 4.11 shows an example
of a KlevR scene graph fragment encoded with the SPO embedding. The advantage of
using this representation is that the semantic of the ontology is brought to the encoding.
Every triple, in fact in the KG, can be represented with an entry in the tensor, not only
the ones belonging to the ABox. However, in our approach, the triples of the TBox are
subtracted from the graphs before encoding it. The semantic is still implicitly part of
the representation because the position (indexes) of its elements is constant throughout
the scenes, which means that the structure of the tensors reflects a part of the semantics
of the ontology. If for example si and oj are linked with a symmetric property pk, both
Xi,j,k and Xj,i,k will be equal to 1. This property is also valid across different slices, for
example with inverse or transitive properties and for subclass relationships. Encoding
all the scenes in this way introduces a bias for the model, but it is essential to comply
with R1 3.3. R2 3.3 is also respected since an SPO tensor embeds an entire KlevR scene
graph. For what concern R3 3.3, the algorithm that builds the embedding (presented in
Subsection 5.2.1) keeps track of the indexes of the elements, building a mapping function
between the RDF and the tensor representations.
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Figure 4.11: Example of SPO embedding.

4.2.2. VAE Design

In order to evaluate our benchmark for the approximation of the materialization task and
set a baseline for future assessments, we have designed a model based on a simplified
VAE called DeepR. In particular, DeepR has three different architectures, one for each
OWL profile of Klevr. Our approach in designing the architectures was not model-driven.
In the research community, there are no other studies regarding VAEs for reasoning ap-
proximation. Thus, we have decided to plan a hyperparameters tuning to find the best
architectures that maximize the models’ accuracies on the data. In particular, we have
tested different number of layers, filters per layer, learning rates and optimizers. The only
a priori decisions we have made are about the activation and loss functions. Subsection
2.3.3 and in particular Equation 2.2 describe the trade-off between the reconstruction
term and the regularization term of the loss function. Our approach consists of ignoring
this trade-off and using the Binary Cross Entropy (BCE) as loss function. With the BCE,
there is no clear separation in the tasks performed by the encoder and the decoder, but
the whole model contributes to the approximation, getting rid of redundant or useless
information in the encoding and adding new triples in the encoding and decoding block.
The choice of a simpler loss function leads to a simplified VAE, however, in Section 6.2 we
will discuss an extension of the model that strictly follows the design of standards VAEs,
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encoding the input in the first part of the architecture. For what concern the activation
function, to constraint the output of the output of the model to be in the range [0 : 1],
we opted for the sigmoid function.

4.2.3. Metrics

As evaluation metrics to test the baseline on KlevR, we opted for standards Deep Learning
metrics (i.e., accuracy, precision, and recall), giving them an interpretation from a reason-
ing point of view. Thanks to the SPO embedding, we evaluated the model’s performances
as if it was a classification task. In particular, true positives are valid triples predicted
by the model, true negatives are triples not asserted both by the model and the reasoner,
false positives are incorrectly asserted triples by the model, and false negatives are missing
triples by the model. With this interpretation, precision is the percentage of valid triples
correctly asserted by the model with respect to the total number of assertions, while recall
is the percentage of valid triples asserted by the model with respect to the total number
of expected assertions.

Moreover, given T the target tensor for deepR, T∗ its prediction, and X the input,
we have computed the metrics, both using the couples < T∗,T >, and the couples <

T∗−X,T−X >. While the first approach focuses only on the predictions, the second one
takes into consideration the input as well. Removing the input from the predictions and
the outputs allowed us to distinguish if a triple is asserted by the model in approximating
the materialization or if it was already present in the ABox.

Due to the sparse nature of the SPO embedding, we expected the models to push
their weights towards zero during the training phase. In Figure 4.11, for example, three
triples are mapped into a 4x4x3 tensor made of three 1s and forty-five 0s. To deal with
the unbalanced classification problem, we evaluated the models using the threshold-moving
technique, which consists of comparing the confidence of a model’s predictions with differ-
ent thresholds. Thus, we exploited the Receiver Operating Characteristic (ROC) curve to
understand the trade-off between the true-positive rate and false-positive rate for different
thresholds and the ROC Area Under the Curve (AUC) to compare the two approaches
(with and without the input triples). The AUC represents the degree of separability. It
tells how much a model is capable of distinguishing between classes. Higher the AUC, the
better the model is at predicting true negatives and true positives. Given the ROC, the
highest value of the Geometric Mean between the true-positive rate and the false-positive
rate denotes the best threshold.

The ROC curve focuses on all model predictions. To evaluate the materialization
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made by the model, however, the main focus should fall on the asserted triples (the
positives). For this reason, we also relied on the Precision-Recall (PR) curve to compare
the precision against the recall on different thresholds. Given the PR, the highest value
of F-measure denotes the best threshold.
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Experience and Results

This chapter presents the implementation experience based on the benchmark design
described in the Chapter 4. In particular, Section 5.1 describes the development of the
KlevR KGs, Section 5.2 describes the implementation of DeepR, and Section5.3 presents
the results of our experiments testing the benchmark. The Github repository1 of this
thesis contains every algorithm or file we have produced. The setup we have used consists
of an Ubuntu virtual machine with 64 VCPUs, 128GB ram and 1TB hard disk. We
opted for more powerful CPUs instead of a GPU because our models are not sofisticated.
Instead, the amount of data that has to be loaded on memory during our pipeline faced a
bottleneck on CPU usage. In general, Stronger CPUs promises faster data transfer hence
promising faster calculations. For what concerns the Deep Learning, the framework chosen
for this Thesis is Pytorch2, due to its popularity in the research field [4].

5.1. Benchmark Task: KlevR

This Section focuses on the technicalities of the KR aspect of our implementation. In
particular, Section 5.1.1 describes the process of developing the ontologies, and Sections
5.1.2 the dataset annotations and the materialization.

5.1.1. KlevR TBox Generations

The combinatorial nature of the CLEVR entities makes extremely time-consuming the
usage of traditional KR tools like Protegè3. For this reason, we have developed an algo-
rithm to automate the hierarchy building. Algorithm 5.1 shows a fragment of the hierarchy
builder. In particular, the algorithm loops over the possible attribute values and outputs
the triples for the class and subclass declarations (with functions write_class_statement

1https://github.com/pake97/KlevR-and-DeepR-Master-Thesis.git
2https://pytorch.org
3https://protege.stanford.edu
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and write_subclass_statement). The complete code includes more nested loops to de-
clare every possible combination of attributes and every subclass relationship. Once the
hierarchy was built, we relied on Protegè to define the properties and finalize the ontolo-
gies.

Algorithm 5.1 Hierarchy builder fragment
Require: List<String> colors, materials, sizes, shapes

for c in colors do
l1_class_name← c+"Object"
l0_class_name← "Object"
for m in materials do
l2_class_name← c+m+"Object"
for s in sizes do
l3_class_name← c+m+"Object"
for sh in shapes do
l4_class_name← c+m+"Object"
write_class_statement(l4_class_name)
write_subclass_statement(l4_class_name, l3_class_name)

end for
end for

end for
end for

Table 5.1 reports the statistics of the three OWL profiles of KlevR for what concerns
the resulting number of classes, properties, and axioms.

Profile #Classes #Properties #Axioms
KlevR_EL 339 10 1672
KlevR_QL 339 10 1673
KlevR_RL 358 15 2109

Table 5.1: Statistics of KlevR profiles.

As Table 5.1 shows, the EL and QL profiles have fewer classes and properties with
respect to the RL profile because the latter includes specific classes for the attributes’
values and properties for the existential quantifications (see Section 4.1).

Regarding the Aboxes, it is important to highlight some statistics about the CLEVR
scenes, which reflect in the KlevR scene graphs. In particular, Figure 5.1 shows the
distribution of the number of objects per scene. Considering the annotation of the scenes
described in Section 4.1.4, for each object, an ABox includes at most five triples (one for
the type, four for the direct positional relationships). Therefore, the dimension of the
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ABoxes ranges between 15 and 50 triples. Figure 5.2, instead, shows how the attributes’
values are equally distributed over all the objects.

Figure 5.1: Distribution of objects per scene.

(a) (b)

(c) (d)

Figure 5.2: Attributes distributions.
(a) : Shape, (b) : Color, (c) : Material, (d) : Size.
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5.1.2. KlevR Scene Graphs ABox Population and Materializa-

tion

To make the benchmark scalable, extensible, and reusable for further investigations, we
designed a data pipeline from the CLEVR scene graphs to the materialized KlevR scene
graphs. Figure 5.3 shows the components of the pipeline and the status of the data before
and after each step.

Figure 5.3: Implementation pipeline for the KG population and materialization.

Step a) consists of KGs population. To annotate every CLEVR scene graph, we opted
for YARRRML’s Matey as described in Subsection 4.1.4. Once the KG is populated, it
should be materialized. In particular, thanks to Apache Jena4, in step b), we have merged
every KlevR scene graph with the three ontologies of KlevR. Therefore, we obtained three
Knowledge Graphs for each CLEVR scene. Then in step c), we have materialized every
graph using the HermiT API5. The outputs of the pipeline are three materialized KlevR

4https://jena.apache.org
5http://www.hermit-reasoner.com
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scene graphs (one for each OWL profile of KlevR) for every CLEVR scene graph. Steps
a) to c) guarantee flexibility of the pipelines, which easily welcomes the insertion of new
scene graphs and updates to the annotation and/or to the Tboxes.

5.2. Baseline Solution: DeepR

This section describes the implementation experience of the baseline with which we tested
the approximation of the materialization task on the benchmark. In particular, Section
5.2.1 describes SPO embedding algorithms we developed, and Sections 5.2.2 the hyper-
parameter tuning of DeepR.

5.2.1. SPO Embedding

To embed each KlevR scene graph with the SPO embedding model (see Section 4.1.4), we
developed Algorithm 5.2, which loops over the triples of a KlevR scene graph and embeds
them in a 3D-tensor. It uses two hashing tables to map each triple < s, p, o > into an
entry of the tensor. The hashing table E returns the index of the row (s) and column
(o), which are the entities, while the hashing table P returns the slice (p) of which is the
property. A new record in the hashing tables is added when a new entity or property
is found, assigning it a new unique index. At the end of the dataset embedding, the
hashing tables represent the mapping function between the KlevR scene graph and the
SPO tensors.

Algorithm 5.2 SPO embedding
Require: Hash tables E,P,list list_triples, integers maxe, maxp

Ensure: Tensor T
T ← Zeros(maxe,maxe,maxp)
for < s, p, o > in list_triples do
idxs ← E.get(s) {Create new key if not present}
idxo ← E.get(o) {Create new key if not present}
idxp ← P.get(p) {Create new key if not present}
T [idxs][idxo][idxp]← 1

end for
return T,E,P

The complexity of Algorithm 5.2 is O(n), where n is the number of triples. The param-
eters maxe and maxp are the dimension of the tensor T and have been computed as the
maximum number of nodes and properties in the dataset’s graphs.

We have applied a slight modification for the embedding of the KlevR RL profile. As
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Section 4.1 describes, there is one class for each value of CLEVR attributes (for example
Red for the color "red"). Moreover, each class of the first level of the class hierarchy
is restricted with an existential quantification that relates an object with a blank node
representing the attribute, which impacts the number of individuals. For example, if a
scene includes an object o1 belonging to the class RedObject, the triple

o1 hasColor b1

exists, where b1 is a blank node belonging to the class Red. Figure 5.4 shows the example
of how the information "o1 is red" is captured by the three KlevR profiles. HermiT, which
we have used for the materialization, could instantiate multiple blank nodes of the same
type, resulting in the explosion of triples in the RDF graph and the loss of the mapping
between the scene and the embedding. To avoid this, we manually added one blank node
for each attribute to the embedding and mapped every repeated node to the same index
when it was found.

Figure 5.4: Example of a KlevR scene graph for each OWL profile.

5.2.2. VAE Implementation

In Section 4.2.2, we discussed that the architectures of DeepR are the result of an hy-
perparameters tuning. To plan the search for the optimal set of parameters, we have
used a hyperparameter optimization framework compatible with Pytorch, which is called
Optuna6. In particular, we have defined the model’s accuracy as the objective function
to maximize, then we have set the searchable parameters with the ranges shown in Table
5.2. The most important parameters are the number of autoencoder layers (the value is

6https://optuna.org
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the same for the encoder and the decoder) and the kernel size because they determine the
models’ architectures. The latter is bounded to 15 because a higher number could cause
an extreme dimensionality reduction, resulting in the loss of information. Moreover, the
kernel size and the stride of the pooling layers are chosen for each layer of the network.

Parameter Range
optimizer ["Adam", "RMSprop", "SGD"]
learning rate [10−5:10−1]
Num layers [1:5]
Kernel size [3:15]
Max pool Stride [1:2]

Table 5.2: DeepR hyperparameters.

We have run 1000 trials on the training set and obtained as results the values reported
in Table 5.3. The difference between the depth of the networks can be interpreted from
a complexity point of view: deeper and more complex models usually approximate more
complex functions. Indeed, reasoning with EL and DL has a higher upper bound in terms
of reasoning complexity with respect to QL (see Table 3.1).

Hyperparameter DeepR EL DeepR QL DeepR RL
num layers 4 1 5
kernel size layer 1 9 9 5
stride pool layer 1 2 N/A 1
kernel size layer 2 11 N/A 9
num filters layer 2 2 N/A 2
stride pool layer 2 1 N/A 1
kernel size layer 3 9 N/A 15
num filters layer 3 3 N/A 3
stride pool layer 3 2 N/A 1
kernel size layer 4 7 N/A 13
num filters layer 4 4 N/A 3
stride pool layer 4 N/A N/A 2
kernel size layer 5 N/A N/A 3
num filters layer 5 N/A N/A 4

Table 5.3: DeepR models hyperparameters.
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5.3. DeepR Evaluation on KlevR.

This section presents the evaluation of the DeepR architectures on KlevR. In particular,
we wanted to verify the hypothesis listed in Chapter 3. For this reason, we have evaluated
both the efficiency of the approximation made by the model in terms of time performances
and the quality of the approximation with the metrics described in Section 4.2.3.

5.3.1. DeepR QL

Given the parameters in Table 5.3, the final architecture of DeepR for the QL profile is
shown in Figure 5.5.

Figure 5.5: DeepR QL architecture.

DeepR QL has the simplest architecture. A possible interpretation regarding the
model’s architecture could rely on the complexity of reasoning with the OWL profile,
which in fact is the lowest. Table 5.4 reports the time performances of the model in its
different phases (scene parsing, embedding, training and testing) and the time perfor-
mances of HermiT on the entire dataset.

Scene parsing SPO embedding DeepR Training Total Total/scene DeepR testing Testing/scene HermiT HermiT/scene
5027.3 4141.0 555266.1 564434.4 8.1 8835,71 0.589 536749 5.37

Table 5.4: Computing time of DeepR QL and HermiT.

Due to the loading and storing of a huge amount of data in the main memory and the
multiple epochs, DeepR is slower than HemiT in the training phase. However, during the
testing phase, the model widely outperforms HemiT, reaching the efficiency theorized in
our hypotheses. Figure 5.6 shows a comparison between the HermiT average reasoning
time per scene and DeepR QL training (limited to the last epoch) and testing time per
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scene. The model reaches an average speedup of 14x with respect to the training and a
speedup of 10x with respect to HetmiT.

Figure 5.6: Time comparison between HermiT and DeepR QL.

Despite the results of the efficiency evaluation, DeepR QL does not perform well for
what concerns the approximation quality. As discussed in section 4.2.3, we exploited the
ROC curve to investigate the trade-off between the true-positive and false-positive rates
for different thresholds and find the best one. Figure 5.7 shows the ROC curves derived
from the predictions made by DeepR QL on the test set. The blue curve refers to the
standard predictions, while the green one is derived by removing the triples belonging to
the input from the predictions and the targets. The two ROCs are close to each other,
denoting a similar degree of separability in both the experiments, and the high values of
the AUC suggest good overall performances. However, the steepness of the curves reveals
a high true-positive rate and a low false-positive rate, caused by the sparse nature of the
SPO embedding and the resulting tendency of the model to push the weights toward zero.
The best threshold for both experiments is in fact 0.000144. The overall accuracy reached
by DeepR QL with the best threshold is 94.236%.

Unlike standard Deep Learning experiments, the high value of the accuracy in our
baseline does not prove the quality of the approximation. The high number of 0s in the
embedding leads to an elevated number of true negatives which increases the accuracy.
To better deal with the unbalanced problem, we also derived the PR curves for both
experiments, which are reported in Figure 5.8. Despite the high accuracy, the model
performs a poor inference in terms of both correctly predicted triples, which is pointed
by the low precision, and the number of predicted triples, which is pointed by the low
recall. Moreover, the difference between the two PR curves highlights the real model’s
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ability to infer new triples. A lower precision means fewer true positives and/or more
false positives, which translates into fewer asserted triples and/or more wrong assertions.
Therefore, the majority of the true positives are due to the triples already belonging
to the ABoxes before the materialization. The best thresholds for the experiments are
0.0853 (with input triples) and 0.0893 (without input triples). Table 5.5 reports the values
for the accuracy, precision, and recall (with and without the input triples) for the three
thresholds. The results highlight how the nature of the embedding impacts the evaluation
of the metrics. The high values of accuracy for the materialization task with the SPO do
not reflect the quality of the inference, which is instead explained by the precision and
the recall.

Figure 5.7: DeepR QL ROC curve. Figure 5.8: DeepR QL PR curve.

Threshold AI A PI P RI R
0.000144 0.94236 0.94236 0.00386 0.00349 0.87361 0.86199
0.0893 0.99961 0.99960 0.17999 0.12148 0.15806 0.10872
0.0853 0.99961 0.99960 0.17776 0.11855 0.16006 0.10872

Table 5.5: Thresholds comparison of DeepR QL accuracy, precision, and recall. (A) :
accuracy, (P) : precision, (R) : recall, (I) : with input triples.

5.3.2. DeepR EL

Given the parameters in Table 5.3, the final architecture of DeepR for the EL profile is
shown in Figure 5.9. The architecture of DeepR EL is more complex then DeepR QL. A
possible interpretation regarding the model’s architecture could rely on the complexity of
reasoning with the EL profile, which in fact is higher with respect to QL .Table 5.6 reports
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Figure 5.9: Time comparison between DeepR EL and HermiT.

the time performances of the model in its different phases (scene parsing, embedding,
training and testing) and the time performances of HermiT on the entire dataset.

Scene parsing SPO embedding DeepR Training Total Total/scene DeepR testing Testing/scene HermiT HermiT/scene
4402.6 92.2 912505.2 917000 13.1 14340.51 0.956 211933 2.12

Table 5.6: Computing time of DeepR EL and HermiT.

As for the QL profile, DeepR is slower than HemiT during the training phase and
outperforms it in the testing phase. However, in this case, the performances on the testing
set are close, while the difference during the training phase is much greater. The reasons
rely on a lower HermiT’s computing time and on the more complex model. Figure 5.10
shows a comparison between the HermiT average reasoning time per scene and DeepR
EL average training (limited to the last epoch) and testing time per scene. The model
reaches an average speedup of 6x with respect to the training and a speedup of 2x with
respect to HetmiT.

Figure 5.10: Time comparison between DeepR EL and HermiT.
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As for the experiments with the QL profile, DeepR EL does not perform well for
what concerns the approximation quality. Figure 5.11 shows the ROC curves derived
from the predictions made by the model on the test set. The blue curve refers to the
standard predictions, while the green one is derived by removing the triples belonging to
the input from the predictions and the targets. Also in this case, there is a similar degree
of separability in both experiments (the ROCs are close to each other), and the values of
the AUC suggest good overall performances. However, the best threshold is lower than
the one for QL: 0.00001. Indeed, the architecture of DeepR EL is more complex and the
weights’ tendency toward zero is greater. The overall accuracy reached by DeepR EL
with the best threshold is 97.180%. The poorer performance of the model on the EL
profile can also be seen from the PR curves for both experiments, which are reported in
Figure 5.12. Once again, despite the high accuracy, the model performs a poor inference
in terms of both correctly predicted triples, which is pointed by the low precision, and
the number of predicted triples, which is pointed by the low recall. The smaller difference
between the two PR curves, however, highlights that the model even misspredict the
triples belonging to the input, removing them from its output. The best thresholds for
the experiments are 0.105182 (with input triples) and 0.081462 (without input triples).
The resulting thresholds do not differ much from those of DeepR QL, in fact, the lower
recall and lower precision are due to the higher true negatives. Table 5.7 reports the
values for the accuracy, precision, and recall (with and without the input triples) for the
three thresholds. The results highlight how the architecture of the model and the true
negatives impact even more the evaluation of the metrics as compared to the experiments
with the QL profile.

Figure 5.11: DeepR EL ROC curve. Figure 5.12: DeepR EL PR curve.
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Threshold AI A PI P RI R
0.00001 0.97180 0.97181 0.00584 0.00519 0.65978 0.64189
0.105182 0.99955 0.99957 0.10966 0.08532 0.11183 0.09276
0.081462 0.99944 0.99946 0.09127 0.07341 0.13691 0.11829

Table 5.7: Thresholds comparison of DeepR EL accuracy, precision, and recall. (A) :
accuracy, (P) : precision, (R) : recall, (I) : with input triples.

5.3.3. DeepR RL

For reasons of time, the training and testing on the RL profile were made on a lim-
ited portion of the dataset (10000 scenes). Given the parameters in Table 5.3, the final
architecture of DeepR for the RL profile is shown in Figure 5.13.

Figure 5.13: DeepR RL architecture.

The architecture of DeepR RL is a bit more complex than that of DeepR EL. The
reason could rely on the greater dimension of the scenes. Table 5.8 reports the time
performances of the model in its different phases (scene parsing, embedding, training and
testing) and the time performances of HermiT on the entire dataset.

Scene parsing SPO embedding DeepR Training Total Total/scene DeepR testing Testing/scene HermiT HermiT/scene
5563.6 6438.1 193370 205371.5 29.1 3210.1 1.07 4764269 47.642

Table 5.8: Computing time of DeepR RL and HermiT.

With the RL profile, DeepR outperforms HemiT both on the training and testing
phase. Figure 5.14 shows a comparison between the HermiT average reasoning time per
scene and DeepR RL average training (limited to the last epoch) and testing time per
scene. In average, the model reaches a 27x speedup of with respect to the training and
45x with respect to HetmiT.
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Figure 5.14: Time comparison between DeepR RL and HermiT.

DeepR RL, too, does not perform well in terms of the approximation quality. Figure
5.15 shows the ROC curves derived from the predictions made by the model on the test
set. The blue curve refers to the standard predictions, while the green one is derived by
removing the triples belonging to the input from the predictions and the targets. The
ROCs almost coincide, and the values of the AUC still suggest good overall performances.
The best threshold derived from the ROCs is 0.000165, and the curves are less steep, which
translates into a higher FPR and a lover TPR. Indeed, the KGs of the RL profile have a
higher number of triples, which results in more 1s in the SPO embedding. For this reason,
the tendency of the model’s weights toward zero could be lower. The overall accuracy
reached by DeepR RL with the best threshold is 91.121%. The higher threshold, indeed,
causes more mispredictions. Figure 5.16 shows the PR curves derived from the model’s
predictions on the test set. Once again, despite the high accuracy, the model performs
a poor inference in terms of both correctly predicted triples, which is pointed by the low
precision, and the number of predicted triples, which is pointed by the low recall. The PR
curves are even closer than the ones of DeepR EL, highlighting more mispredictions on
the triples belonging to the input. The best thresholds for the experiments are 0.029293
(with input triples) and 0.028836 (without input triples). Table 5.9 reports the values
for the accuracy, precision, and recall (with and without the input triples) for the three
thresholds. As for the other experiments, the accuracy does not reflect the quality of the
approximation.
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Figure 5.15: DeepR RL ROC curve. Figure 5.16: DeepR RL PR curve.

Threshold AI A PI P RI R
0.000165 0.91121 0.91121 0.00253 0.00242 0.92435 0.92243
0.029293 0.99929 0.99930 0.07117 0.06418 0.15715 0.14723
0.028836 0.99926 0.99927 0.06979 0.06313 0.16369 0.15389

Table 5.9: Thresholds comparison of DeepR RL accuracy, precision, and recall. (A) :
accuracy, (P) : precision, (R) : recall, (I) : with input triples.
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In this thesis, we presented our benchmark to test the approximation of the Knowledge
Base materialization task, together with a baseline model implemented with a Variational
Autoencoder.
In Chapter 3, we presented the challenges related to the trade-off between the expres-
siveness of a Description Logics and the complexity of the reasoning. Using the Macro-
Meso-Micro framework, we introduced the research question is it possible to approximate
deductive reasoning using inductive reasoning? This question helps us to analyze the
the approaches existing in the research community and to narrow the scope towards the
Deep Learning field. This led us to a more specific question: Is it possible to approximate
the materialization task with a Variational Autoencoder? This question has brought us
to the definition of some requirements regarding the data encoding. Then, we narrowed
the investigation even further to identify a feasible problem to solve. We found out that
there is no benchmark that takes into consideration both the knowledge representation
and the deep learning effort. The final research question How can we design a benchmark
to evaluate the task of approximate materialization? raised the design problem: design a
benchmark based on CLEVR to evaluate the approximation of the materialization task
and test it on a baseline model that satisfies the requirements.

In Chapter 4, we addressed the design problem by providing an Knowledge Graph
called KlevR and a baseline model implemented with a simplified VAE called DeepR. We
started by describing our process of designing the ontology starting from CLEVR. Then
we focused on the embedding model for the KlevR scene graphs. Finally, we discussed
our approach on the design of the VAE.
In Chapter 5 we presented the implementation experience of our research with the data
pipeline and tools we have used. Moreover, we presented the performances of our baseline
model on the benchmark we have defined.
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6.1. Lessons Learned

In light of the results obtained from our experiments, we can draw some conclusions
regarding the approximate reasoning task and the benchmark we proposed.

Although the metrics we propose are not exhaustive, KlevR proves how a trivial
model based on a VAE is not able to successfully perform the approximation of the
materialization. This result manifests the importance of the benchmark for the task,
which lays the foundation for future assessments. The quality of the benchmark lies on
the scalability of the dataset and on the reasoning effort proved by the ground-truth given
by HermiT. However, the benchmark implementation is not exempt from improvements.
The main challenges we have encountered in our experiments rely on the portability and
usability of the data. In particular, the data pipeline we have used to compute the ground
truth for the materialization task is computationally intensive and time-consuming. To
ensure the usability of the benchmark for future assessment, the pipeline needs to be
optimized and made more flexible and scalable.

The poor results obtained from the baseline proposed by us proves the complexity
of the task. However, we can draw conclusions that reflect the results of our approach.
In particular, the SPO embedding is not the best choice for encoding the Knowledge
graphs. The sparse nature of SPO forces the network to very low thresholds, increasing
the risk of false positives. Also, classic Deep Learning metrics can be misleading due
to the high presence of true negatives. The accuracy of DeepR, in fact, is excellent on
the test set, but it does not reflect the accuracy of the task objective, which instead
resides in the true positives/negatives and the precision. For what concerns the DeepR
models, the performances in terms of computing time reflect the effort of reasoning for
the corresponding OWL profile during the training phase. However, this is not the case
in the testing phase. The obtained approximations appear to gain speedups of the same
order of magnitude for the three models.

6.2. Limitation and Future Works

For reasons of time, we did not have the opportunity to perform other complex experi-
ments. An important extension that represents a future work consists of testing different
existing embedding models on KlevR and verifying how different representations deals
with our benchmark. To solve the problem of encoding the KGs, the design of an embed-
ding model that takes into consideration the semantics of the ontology should be tackled.
Moreover, other experiments could focus on the scalability property of KlevR. Thus, a
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future work will be to provide a complete and detailed evaluation including extension on
the ontologies (see Section 6.2.1) and different experiments (see Section 6.2.3). More-
over, future investigations include the design of a more efficient baseline model for the
approximate materialization task, with the extensions explained in Section 6.2.2.

6.2.1. Ontologies Extension

Thanks to the combinatorial nature of the CLEVR attributes, the class hierarchies of
KlevR ontologies are very spread. However, the ontologies could be further extended. In
building the hierarchies we followed the alphabetic order of the attribute types for the class
names, but other arrangements could be also used, together with the "owl:equivalentClass"
axiom. Figure 6.1 shows an example for the class BlueMetallicSmallCubeObject. Consider-
ing n as the number of attibutes in a class name (n depends on the level in the hierachies),
all the possible combinations are n!.

Figure 6.1: Example of a extended KlevR classes.

6.2.2. DeepR Extension

Our implementation of DeepR does not follow the standard Variational Autoencoder im-
plementation. In particular, we do not have used the loss function descripted in Section
2.3.3. A future extension of DeepR could include the loss function with both the recon-
struction and regularization terms. In particular, it would be interesting to train the
encoder on embedding the input KG and the decoder to materialize it. To reach this
goal, the reconstruction term of the loss function could take into account the difference
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between the input and the output KGs. In this way, it is easier to derive if the errors
made by the model rely on the encoder or on the decoder part of the architecture.

6.2.3. Further Investigations

Thanks to the synthetic nature of KlevR, more experiments can be planned to test the
approximate materialization task. For example, the use of "negative triples", as Nichel
et Al.[16] discuss, could be implemented to test if the model recognizes and removes the
incorrect triples.

Another interesting investigation relies on the DeepR "abilities" to learn specific en-
tailment rules. With KlevR, it is possible to design specific KGs, that force the reasoner
to use only a specific rule. For example, if the model receives as input ABoxes which
target implies reasoning only on transitivity, the accuracy on that specific entailment rule
can be computed.
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This appendix describes the entailment regimes of the OWL profiles. In particular, Table
A.1 lists the OWL axioms supported by each profile. The axioms labelled with "RC"
are restricted to class expressions, while the ones labelled with "RSub" are restricted to
subclasses.

Axiom / expression EL QL RL
ObjectSomeValuesFrom RC RSub RSub
DataSomeValuesFrom RC RSub RSub
ObjectIntersectionOf RC v RSub
ObjectComplementOf x v RC
SubClassOf v v v
EquivalentClasses v v v
DisjointClasses v v v
InverseObjectProperties x v v
SubObjectPropertyOf v v v
SubDataPropertyOf v v v
EquivalentObjectProperties v v v
EquivalentDataProperties v v v
ObjectPropertyDomain v v v
DataPropertyDomain v v v
ObjectPropertyRange v v v
DataPropertyRange v v v
DisjointObjectProperties x v v
DisjointDataProperties x v v
SymmetricObjectProperty x v v
ReflexiveObjectProperty v v x
IrreflexiveObjectProperty x v v
AsymmetricObjectProperty x v v
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DifferentIndividuals v v v
ClassAssertion v v v
ObjectPropertyAssertion v v v
DataPropertyAssertion v v v
ObjectOneOf RC x RSub
ObjectUnionOf x x RSub
ObjectHasValue v x RSub
DataHasValue v x RSub
ObjectAllValuesFrom x x RC
ObjectMaxCardinality 0/1 x x RC
DataAllValuesFrom x x RSub
DataMaxCardinality 0/1 x x RC
ObjectHasSelf RC x v
DataOneOf v x RSub
DataIntersectionOf v x v
TransitiveObjectProperty v x v
SameIndividual v x v
NegativeObjectPropertyAssertion v x v
NegativeDataPropertyAssertion v x v
FunctionalDataProperty x x v
HasKey v x v
DisjointUnion x x x
ObjecComplementOf x RC RC
ObjecIntersectionOf v RC RC

Table A.1: OWL profiles entailment regimes.
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This appendix lists the SPARQL query obtained translating the CLEVR questions (see
Section 4.1.1). In particular, we reports a query for each profile of KlevR and for every
question type. (see Section 4.1 for explanations).

• How many <Z> <C> <M> <S> are there?, What number of <Z> <C> <M>
<S> are there?
Listings B.1, B.2, B.3 shows the query for the RL, QL and EL profile respectively.

• Are there any <Z> <C> <M> <S>?, Are any <Z> <C> <M> <S> visible?, Is
there a <Z> <C> <M> <S>?
Listings B.4, B.5, B.6 shows the query for the RL, QL and EL profile respectively.

• What shape is the <Z> <C> <M>? Listings B.7, B.8, B.9 shows the query for the
RL, QL and EL profile respectively. The queries for the color, size and material are
the same, except for the placeholders.

• Is there fewer <Z> <C> <M> <S> than <Z1> <C1> <M1> <S1>?
Listings B.10, B.11, B.12 shows the query for the RL, QL and EL profile respectively.
The queries for the "grater" and "equal" are the same, except for the comparison
symbols.

• Is the <C> <M> <S> the same size of the <C1> <M1> <S1>?
Listings B.13, B.14, B.15 shows the query for the RL, QL and EL profile respectively.
The queries for the color, material and shape are the same, except for the class
names.
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1 SELECT (COUNT(?x) as ?xCount)
2 WHERE
3 {
4 ?x ex:hasColor ?c;
5 ex:hasSize ?z;
6 ex:hasMaterial ?m;
7 ex:hasShape ?s.
8

9 ?c rdf:type ex:<C>.
10 ?z rdf:type ex:<Z>.
11 ?m rdf:type ex:<M>.
12 ?s rdf:type ex:<S>.
13

14 FILTER(?s <> ?c) FILTER(?s <> ?z)
15 FILTER(?s <> ?m) FILTER(?c <> ?z)
16 FILTER(?c <> ?m) FILTER(?z <> ?m)
17 }

Listing B.1: RL SPARQL query for the question "How many <Z><C><M><S> are
there?".
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1 SELECT (COUNT(?x) as ?xCount)
2 WHERE
3 {
4 ?x rdf:type ex:<C>Object;
5 rdf:type ex:<Z>Object;
6 rdf:type ex:<S>Object;
7 rdf:type ex:<M>Object.
8 }

Listing B.2: QL SPARQL query for the question "How many <Z><C><M><S> are
there?".

1 SELECT (COUNT(?x) as ?xCount)
2 WHERE
3 {
4 ?x rdf:type ex:<C>Object;
5 rdf:type ex:<Z>Object;
6 rdf:type ex:<S>Object;
7 rdf:type ex:<M>Object.
8 }

Listing B.3: EL SPARQL query for the question "How many <Z><C><M><S> are
there?".
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1 ASK
2 WHERE
3 {
4 ?x ex:hasColor ?c;
5 ex:hasSize ?z;
6 ex:hasMaterial ?m;
7 ex:hasShape ?s.
8

9 ?c rdf:type ex:<C>.
10 ?z rdf:type ex:<Z>.
11 ?m rdf:type ex:<M>.
12 ?s rdf:type ex:<S>.
13

14 FILTER(?s <> ?c)
15 FILTER(?s <> ?z)
16 FILTER(?s <> ?m)
17 FILTER(?c <> ?z)
18 FILTER(?c <> ?m)
19 FILTER(?z <> ?m)
20 }

Listing B.4: RL SPARQL query for the question "Are there any <Z> <C> <M> <S>?".

1 ASK
2 WHERE
3 {
4 ?x rdf:type ex:<C>Object;
5 rdf:type ex:<Z>Object;
6 rdf:type ex:<S>Object;
7 rdf:type ex:<M>Object;
8 }

Listing B.5: QL SPARQL query for the question "Are there any <Z> <C> <M> <S>?".
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1 ASK
2 WHERE
3 {
4 ?x rdf:type ex:<C>Object;
5 rdf:type ex:<Z>Object;
6 rdf:type ex:<S>Object;
7 rdf:type ex:<M>Object;
8 }

Listing B.6: EL SPARQL query for the question "Are there any <Z> <C> <M> <S>?".

1 SELECT ?s ?shapeClass
2 WHERE
3 {
4 ?x ex:hasColor ?c ;
5 ex:hasSize ?z;
6 ex:hasMaterial ?m;
7 ex:hasShape ?s.
8

9 ?c rdf:type ex:<C>.
10 ?z rdf:type ex:<Z>.
11 ?m rdf:type ex:<M>.
12 ?s rdf:type ?shapeClass.
13

14 ?shapeClass rdf:subClassOf ex:Shape.
15

16 FILTER(?s <> ?c)
17 FILTER(?s <> ?z)
18 FILTER(?s <> ?m)
19 FILTER(?c <> ?z)
20 FILTER(?c <> ?m)
21 FILTER(?z <> ?m)
22 }

Listing B.7: RL SPARQL query for the question "What shape is the <Z> <C> <M>?".
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1 SELECT ?shapedObject
2 WHERE
3 {
4 ?x rdf:type ex:<Z><C><M>Object;
5 rdf:type ?shapedObject.
6 ?shapedObject rdf:subClassOf ex:ShapedObject.
7 }

Listing B.8: QL SPARQL query for the question "What shape is the <Z> <C> <M>?".

1 SELECT ?shapedObject
2 WHERE
3 {
4 ?x rdf:type ex:<Z><C><M>Object;
5 rdf:type ?shapedObject.
6 ?shapedObject rdf:subClassOf ex:ShapedObject.
7 }

Listing B.9: EL SPARQL query for the question "What shape is the <Z> <C> <M>?".
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1 SELECT ?result
2 WHERE
3 {
4 {
5 SELECT (COUNT(?x) as ?xCount)
6 WHERE
7 {
8 ?x ex:hasColor ?c;
9 ex:hasSize ?z;

10 ex:hasMaterial ?m;
11 ex:hasShape ?s.
12

13 ?c rdf:type ex:<C>.
14 ?z rdf:type ex:<Z>.
15 ?m rdf:type ex:<M>.
16 ?s rdf:type ex:<S>.
17

18 FILTER(?s <> ?c) FILTER(?s <> ?z)
19 FILTER(?s <> ?m) FILTER(?c <> ?z)
20 FILTER(?c <> ?m) FILTER(?z <> ?m)
21 }
22 }
23 {
24 SELECT (COUNT(?y) as ?yCount)
25 WHERE
26 {
27 ?y ex:hasColor ?c1;
28 ex:hasSize ?z1;
29 ex:hasMaterial ?m1;
30 ex:hasShape ?s1.
31

32 ?c1 rdf:type ex:<C1 >.
33 ?z1 rdf:type ex:<Z1 >.
34 ?m1 rdf:type ex:<M1 >.
35 ?s1 rdf:type ex:<S1 >.
36

37 FILTER(?s1 <> ?c1) FILTER(?s1 <> ?z1)
38 FILTER(?s1 <> ?m1) FILTER(?c1 <> ?z1)
39 FILTER(?c1 <> ?m1) FILTER(?z1 <> ?m1)
40 }
41 }
42 BIND ( IF ( ?xCount < ?yCount , "yes" , "no" ) AS ?result )
43 }

Listing B.10: RL SPARQL query for the question "Is there fewer <Z> <C> <M> <S>
than <Z1> <C1> <M1> <S1>?".
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1 SELECT ?result
2 WHERE
3 {
4 {
5 SELECT (COUNT(?x) as ?xCount
6 WHERE
7 {
8 ?x rdf:type ex:<C>Object;
9 rdf:type ex:<Z>Object;
10 rdf:type ex:<S>Object;
11 rdf:type ex:<M>Object.
12 }
13 }
14 {
15 SELECT (COUNT(?y) as ?yCount)
16 WHERE
17 {
18 ?y rdf:type ex:<C1>Object;
19 rdf:type ex:<Z1 >Object;
20 rdf:type ex:<S1 >Object;
21 rdf:type ex:<M1 >Object.
22 }
23 }
24 BIND ( IF ( ?xCount < ?yCount , "yes" , "no" ) AS ?result )
25 }

Listing B.11: QL SPARQL query for the question "Is there fewer <Z> <C> <M> <S>
than <Z1> <C1> <M1> <S1>?".
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1 SELECT ?result
2 WHERE
3 {
4 {
5 SELECT (COUNT(?x) as ?xCount
6 WHERE
7 {
8 ?x rdf:type ex:<C>Object;
9 rdf:type ex:<Z>Object;

10 rdf:type ex:<S>Object;
11 rdf:type ex:<M>Object.
12 }
13 }
14 {
15 SELECT (COUNT(?y) as ?yCount)
16 WHERE
17 {
18 ?y rdf:type ex:<C1 >Object;
19 rdf:type ex:<Z1>Object;
20 rdf:type ex:<S1>Object;
21 rdf:type ex:<M1>Object.
22 }
23 }
24 BIND ( IF ( ?xCount < ?yCount , "yes" , "no" ) AS ?result )
25 }

Listing B.12: EL SPARQL query for the question "Is there fewer <Z> <C> <M> <S>
than <Z1> <C1> <M1> <S1>?".
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1 ASK
2 WHERE
3 {
4 ?x ex:hasColor ?c;
5 ex:hasSize ?z;
6 ex:hasMaterial ?m;
7 ex:hasShape ?s.
8

9 ?c rdf:type ex:<C>.
10 ?m rdf:type ex:<M>.
11 ?s rdf:type ex:<S>.
12

13 ?y ex:hasColor ?c1;
14 ex:hasSize ?z;
15 ex:hasMaterial ?m1;
16 ex:hasShape ?s1.
17

18 ?c1 rdf:type ex:<C1 >.
19 ?m1 rdf:type ex:<M1 >.
20 ?s1 rdf:type ex:<S1 >.
21

22 ?z rdf:type ?sizeClass.
23

24 ?sizeClass rdf:subClassOf ex:Size.
25

26

27 FILTER(?s <> ?c) FILTER(?s <> ?z)
28 FILTER(?s <> ?m) FILTER(?c <> ?z)
29 FILTER(?c <> ?m) FILTER(?z <> ?m)
30 }

Listing B.13: RL SPARQL query for the question "Is the <C> <M> <S> the same size
of the <C1> <M1> <S1>?".
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1 ASK
2 WHERE
3 {
4 ?x rdf:type ex:<C>Object;
5 rdf:type ex:?z;
6 rdf:type ex:<S>Object;
7 rdf:type ex:<M>Object;
8

9 ?y rdf:type ex:<C1>Object;
10 rdf:type ex:?z;
11 rdf:type ex:<S1 >Object;
12 rdf:type ex:<M1 >Object;
13 }

Listing B.14: QL SPARQL query for the question "Is the <C> <M> <S> the same size
of the <C1> <M1> <S1>?".

1 ASK
2 WHERE
3 {
4 ?x rdf:type ex:<C>Object;
5 rdf:type ex:?z;
6 rdf:type ex:<S>Object;
7 rdf:type ex:<M>Object;
8

9 ?y rdf:type ex:<C1>Object;
10 rdf:type ex:?z;
11 rdf:type ex:<S1 >Object;
12 rdf:type ex:<M1 >Object;
13 }

Listing B.15: EL SPARQL query for the question "Is the <C> <M> <S> the same size
of the <C1> <M1> <S1>?".
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